
Dynamic Bracketing and DiscourseRepresentationAlbert VisserAlbert.Visser@phil.ruu.nl Kees VermeulenKees.Vermeulen@phil.ruu.nlMarch 28, 1995AbstractIn this paper we describe a framework for the construction of entities,that can serve as interpretations of arbitrary contiguous chunks of text.An important part of the paper is devoted to describing stacking cells:the proposed meanings for bracket-structures.1 IntroductionMotto: Sentence structure and text structure are di�erent, but not in kind.1.1 Dynamic brackets in actionLet's start with an example. Consider the sentenceA dog sees a cat.To give a logical semantics for this sentence, we have to produce a meaningfor the sentence. Such a meaning could be (given by) the following sentence ofpredicate logic. 9x(DOG(x)^9y(SEES(x; y)^CAT (y)))Even if this result were a satisfactory meaning representation, we should not becontent. We do not just want correct meanings to be produced in an oracularway. We want the process of producing a meaning from a sentence to be system-atic. Being systematic involves precise speci�cation of the interpretation processand satisfaction of certain constraints. One such constraint is compositionality.Another such constraint is maximizing the number of meaningful components.Yet another one |subordinate to, but not a consequence of compositionality|1

is uniformity of the way the meanings interact. In its usual formulation Mon-tague grammar does not meet the uniformity constraint, but we could try toset it up function application as the fundamental mode of meaning interaction.Traditionally the process of interpretation has two stages. The �rst stage|parsing| is still at the syntactical level. It consists of enriching the inputsentence with syntactical structure. We analyse what the appropriate compo-nents are and the way in which these components depend on each other. Forexample our sentence could be parsed as one of,(i) ((a dog) (sees (a cat))) (ii) ((a dog) n sees / (a cat))(iii) (a(dog,sees(a cat))) (iv) (sees(a dog, a cat))The second stage is semantical interpretation proper. Grammatical structuresteers this process. It is what makes the compositionality constraint meaning-ful. We interpret componentwise and the meaning of the whole is obtained fromthe meaning of the parts, by applying the appropriate function to the mean-ings of the parts in the way prescribed by the grammar. E.g., the meaning ofsees in our example (iii) above could be a binary function which is applied tothe meanings of a dog and a cat, where the slashes are indicative of argumentlocation. Grammar is syncategorematic in this approach to semantics, i.e., nosemantical objects are ascribed to the symbols �xing grammatical structure. Inour examples: the brackets and the slashes get no meanings.Why do we arrange the interpretation as we do? A number of the ideas |likecompositionality| that go into it, can be viewed as general design constraints.They do not reect anything out there, but just �x a format for describingthings. Other things could be dictated by the idea that we want to model some-thing. Dynamic semantics as we view it is shaped by one such idea. We wantthe way the logical semantics is produced to model the interpretation process inhumans and machines. This programmatic idea will cause us to diverge from thereceived idea of the role of grammar as syncategorematic steering. (Note that\modelling the interpretation process" is not among the classical aims of modeltheory, which are rather to gain understanding of validity and de�nability. Thusnothing we say should be constructed as criticism of model theory.)Does the interpretation process as programmed by the grammatical analysisof, say, example (i) reect the actual temporal interpretation process? Thisanalysis prescribes that we �rst interpret (a dog) and (a cat). Then we process(sees (a cat)) and �nally ((a dog) (sees (a cat))). Suppose we are hearingsomeone saying very slowly: a : : : dog : : : sees : : : a : : : cat. Our \theory" predictsthat after hearing sees we cannot combine the meaning of sees with the meaningof a dog. But, surely, we can. The point can be strengthened by looking at verylong sentences.If we accept this argument, there are two ways to go. First we may search fora grammar that reects the process of interpretation over time more adequately.2

But in our example, what else could such a grammar yield than((((a dog) sees) a) cat)Is this really convincing? We also would understand something, if we missed thespeakers �rst words and just heard: : : : sees : : : a : : : cat. Surely, interpretationsatis�es the Break in Principle: we can break into a piece of ongoing text atany place and still gain a measure of understanding. The second possibility isto drop the treatment of grammar as syncategorematic. Grammar is not whatsteers the interpretation process. It does something else, which is reected atthe semantical level. For, where else could it be reected?In this paper we will consider the idea that grammar is there for categore-matical steering. In other words, yes, grammar plays the role of guiding theway we process information, but, no, grammar's role is not well placed at thetransition from syntax to semantics.The semantics that we want to develop is a version of Heim's �le changesemantics for inde�nites (see [Hei83] and [Hei90]).1 In our version the meaning of(is going to be introduce a new �le for storing the subsequent information. Theaction that (means will be modelled by an appropriate mathematical object, Inthe style of program-semantics. Analogously, a right bracket is going to meaneliminate the current �le.To understand the idea of brackets as actions or program-instructions bet-ter, it helps to consider an analogy. The �rst one is existential quanti�cation.In dynamic semantics the existential quanti�er 9x is usually interpreted as theinstruction introduce a new �le labelled x (see e.g. [GS91]). Vermeulen in his[Ver93]2 modi�ed this to: push a new �le onto the stack labelled x. The stack-ing way of viewing the existential quanti�er opens the way for introducing acompanion of exists x, viz., exit x, meaning: pop the current �le from the stacklabelled x. Vermeulen's alternative predicate logic is called DPLE. By way ofexample, we produce a sentence in DPLE-language, written with four di�erentnotational conventions, each suggestive in its own way.(a) 9x:P (x):9y:Q(x; y):Ex:R(y):Ey(b) pushx:P (x):pushy:Q(x; y):popx:R(y):popy(c) nbeginfxg:P (x):nbeginfyg:Q(x; y):nendfxg:R(y):nendfyg(d) [x:P (x):[y :Q(x; y):x]:R(y):y]In contrast to predicate logic, where the existential quanti�er is standardlyassociated with scoping brackets, exists and exit are their own brackets. Assuggested by (d), [x and x] are brackets enclosing a stretch a text in which theinformation stored under x goes to a certain �xed �le. But if we can view existsand exit as brackets, where these brackets are given instructions as meanings,1Our semantics is also closely related to Kamp's DRT (see [Kam81], [KR93]) and toSeuren's Discourse Semantics (see [Seu85]).2See also [HV94] 3

why should we not seriously consider to give the usual brackets also such asemantics?Our �rst programmatic point was the idea of modelling the interpretationprocess. With the example of the existential quanti�er a second theme has beensilently introduced. The aim of the dynamic interpretation of the existentialquanti�er was to provide a better simulation of the way anaphoric phenomenaare handled in natural language. Anaphoricity is typically a text phenomenon,which exceeds the scope of individual sentences. Thus dynamic semantics aimsat describing not just interpretation of sentences, but primarily interpretationof texts. Sentence interpretation just appears as a subproblem. Note that,because texts can be arbitrarily long, there is no temptation to interpret \text-brackets" like a man or suppose syncategorematically.3 If we treat grammarcategorematically, and if the syntax-to-semantics interpretation process is notguided by grammatical structure, what is the syntax-to-semantics interpretationprocess going to look like? Setting apart all kinds of hybrid approaches, let's justlook at the most radical one. The radical answer is simply that we can interpretany stretch or chunk of text and that the interpretation of the concatenationof chunks is a function of the interpretation of the chunks. We will call thisfunction the merger. We will use \�" to designate the merger.Let's look at an example. We are going to parse a dog sees a cat as:(.(.sub.ax.dog.).sees.(.ob.ay.cat.).)This formula is a formula of the fragment of predicate logic we are going todevelop. sub and ob are markers for the argument places. We can both in-terpret (.(.sub.ax.dog.).sees, getting as meaning, roughly, a dog sees something,and sees.(.ob.ay .cat.).), getting as meaning, roughly, something sees a cat. Ob-viously, to make this all work out well, we should demand that the result ofmerging the meaning of (.(.sub.ax.dog.).sees with the meaning of (.ob.ay .cat.).)is the same as the result of merging the meaning of (.(.sub.ax.dog.) with themeaning of sees.(.ob.ay .cat.).). Thus we demand that � is associative. We willconveniently add an empty meaning or tabula rasa. This tabula rasa will act asthe identity for �. So therefore our meanings will form a monoid with tabula rasaas the identity. We call the interpretation process, as described, monoidal pro-cessing. Note that monoidal processing includes the possibility of incrementalprocessing, i.e., processing strictly from left to right.In the most radical case, where we interpret all syntax categorematically,there will be no syncategorematic syntax at all. Thus our approach has asconsequence a radical unburdening of the speci�cation language. All sentencesof this language are grammatical and can be assigned meanings. Of course,some meanings are more equal than the others : : : .3If we say, suppose : : : , we introduce an imagined world. Thus, supposing opens a stretchof discourse which is interpreted with respect to this new imagined world. The idea thatsuppose is \pushing into fantasy" comes from a suggestive discussion by Douglas Hofstadterin his [Hof79], p128. It was studied by Lysbeth Zeinstra in [Zei90].4

In this paper we will address the problem of interpretation from parsedsentence to semantical object. We will not consider the problem of run-timeparsing. We will, however, in designing our speci�cation language, pause toconsider variants that would make the parsing easier. (See e.g. subsection 2.3on the use of lazy brackets.) Some of the work on incremental grammars (seee.g., [Mil92], [Mil94]) is close in spirit to what we are aiming at.1.2 Context and contentIn the previous subsection we introduced the �rst design feature of our ap-proach: grammatical structure is treated as meaningful. In this subsection,we describe the second feature: the DRT-style representation of meanings ascontext/content pairs.In Groenendijk & Stokhof's DPL (see [GS91]), dynamic meanings are ac-tions, which are in their turn mathematically represented as input-output rela-tions. This approach has the advantage of mathematical simplicity. It has asdisadvantages that one cannot associate a good notion of information growth toit and that one cannot easily separate the statical and the dynamical aspects.We follow another dynamic tradition, DRT or File-change Semantics, in takingour meanings to be static objects (relational databases, sets of assignments),enriched by dynamic contexts (see e.g., [Zee91] and [KR93]). We claim thefollowing advantages.. There is a good separation between the static and the dynamic. We keepthe classical ideas of a meaning as a database and of a meaning as a setof assignments.. Our approach supports a good notion of information growth.. We do not throw away the relational way. From a DRT-style meaning aDPL-style relational meaning can be `extracted'. The `extraction'-functionwill be morphism of monoids, mapping � to relational composition, �.. In a way similar to the one of the previous item, we can associate updatefunctions to our meanings.4The main novelty of this paper is the machinery we develop to build thedynamic contexts. We will begin the development of our tool-kit in section 3.1.3 The local and the globalIn subsection 1.1, we already mentioned the structure of larger-than-sentencediscourses. Evidently, anaphoric phenomena belong to this structure. In the4Both relations and update functions can be associated to our meanings in a mathemati-cally elegant way. We will substantiate these claims elsewhere.5

present paper we will give a treatment of anaphoric phenomena, which can beviewed, very roughly, as a DRT-version of Vermeulen's DPLE. We will, on theother hand, treat local sentential structure in a new way. The most salientproperty is that our speci�cation language embodies a di�erent, more naturallanguage like, strategy to handle argument places than Predicate Logic. InPredicate Logic terms get into the correct argument place by occurring at rigidlyprescribed places after atomic predicate symbols. In our approach terms get intoplace by carrying the appropriate place markers (argument handlers). Theseplace markers are analogous to prepositions in, say, Dutch or to the casi in, say,Latin. In our language, the following items will be essentially equivalent.. (.(.hex.sub.).cut.(.they .bread.ob.).(.with.az .knife.).). (.(.with.az .knife.).(.they .bread.ob.).(.(.hex.sub.).cut.)The role of sub and ob is the same as the role of with. E.g., sub is like the casusnominativus in Latin.By a mechanism to be explained in subsection 4.2, we will see that hex func-tions as a link between the global discourse structure (which involves a discoursereferent labelled x) and the local sentential structure (which involves a discoursereferent that fuses with the dicourse referent associated to the argument han-dler sub). We submit that in this way our semantics for the �rst time correctlydescribes one major aspects of anaphors: that they function as places where alocal and a global machinery link up. Standard DRT and DPL could not dothis since their specifation language uses the mechanism of Predicate Logic forhandling arguments. In Predicate Logic there is nothing like the role of bringingan argument to its proper place. There an argument simply is in place by beingwritten in the proper place.1.4 On the use of categoriesOne obstacle to reading the paper for the reader whose roots are in linguisticsprobably is our use of Category Theory. We feel that the use of this machinerywas forced on us by the material. The categorical framework seems tailor-madefor the description of the ow of �les. To be more precise, we do not justwant descriptions, we want descriptions such that objects described that wayhave certain desirable properties, the most important one being that our objectsinteract as the elements of a monoid. Moreover, our monoids will be monoidsonly modulo isomorphism. Again, Category Theory is the appropriate mediumto describe these isomorphisms in a systematic way. So there is no way to escapeCategories. Let's stress, however, that Category Theory in our paper functionsjust as a de�nitional format. We do not really use any deep or hard theory. Wehave added a brief introduction to categories (section 3) to ease the pain. Wehave tried to keep the paper readable by suppressing certain, essentially trivial,but lengthy computations. 6

2 Monoids and structure: simple stacking cellsMotto: Don't be afraid of atness!IntroductionOne of the problems that one might expect for our set up, is the representationof (hierarchical/constituent/component/recursive/bracket) structure: since wehave set out to describe the whole interpretation process in terms of monoids,there seems to be little room to account for the hierarchical structure that is soabundantly present in most syntactic and semantic phenomena. After all, themonoidal operation is associative, which means that the elements of a monoidare insensitive to structure.However, it turns out that the notion of a stacking cell comes to rescue here.5We will see that stacking cells form a monoid, as required. But at the same timethey allow us to encode the structural properties of objects. This means thatwe can introduce structure in the monoidal set up by using stacking cells ascontexts.As an example we will consider the following sentence:The quick brown fox that jumped over the lazy dog wanted therabbit that ran.Before we can start to interpret this sentence, it will be necessary to make someof the information about its syntactic structure explicit. Here we focus on theconstituent structure of the sentence, which we make explicit by adding brackets,as follows:((the quick brown fox ((that) jumped (over the lazy dog))) wanted(the rabbit ((that) ran)))This is not the representation of constituent structure as it will be produced bythe ultimately correct theory of syntax. But that is not the point here. Thepoint is that even the ultimately correct representation will encode informationabout constituent structure in some way or other. And we will use stackingcells in the processing of that ultimately correct representation. As we do notwish to wait for that ultimately correct representation, we illustrate the use ofstacking cells using the naive representation, with brackets.Now we �nd ourselves confronted with a bracketed string in which di�erentitems convey di�erent kinds of information. We have isolated the structural in-formation in the brackets,) and (. The other elements of the string convey otherkinds of information, that, for now, we will group under a common heading:5Stacking cells were introduced by Visser in [Vis94], [Vis92].7

(truth conditional) content. In our (left-to-right) interpretation of this stringwe keep score of the di�erent kinds of contribution of the string components atthe same time. The content-like contributions will be `added up' according totheir location in the contexts: this corresponds to our view on the role of gram-mar in categorematic steering. Therefore we work with objects which consist ofa context component, which serves to keep score of the structural informationthat we meet, and a content component, in which we add up the content-likeinformation according to its place in the context. These context-content pairshave to form a monoid.It �ts into our program (as explained above) to try and construct this monoidof complex objects from simple(r) monoids: the monoid of contexts and themonoids of contents. Here we �rst discuss the monoid of contexts, i.e. themonoid which we will use to represent the structural, constituent-like informa-tion. In section 4 we show how simple monoids can be combined into complexones. Then, in section 6, we will discuss the content components in some detail,so that we will have all the ingredients required for the interpretation of ourexample.We have used brackets to mark the boundaries of the constituents in thesentence. Thus the brackets are the elements in the example that give theinformation about the structure of the expression. The other elements giveother kinds of information altogether. Therefore we may �rst concentrate onthe string:(:(:1:1:1:1:(:(:1:):1:(:1:1:1:1:):):):1:(:1:1:(:(:1:):1:):):)instead of the complete example above. This string is obtained from the exampleby replacing everything but the brackets with 1, some tabula rasa element that isstructurally neutral. This way we can concentrate on the structural informationin our example.62.1 Pair representation of simple stacking cellsWe now have to develop a suitable monoidal representation the kind of stringsthat we saw above (cf. page 8). For each substring its representation has toencode the impact of the substring on the structure in which it occurs. As a�rst attempt we consider the following method of representation.We imagine ourselves working on a stack of constituents in each stage of theinterpretation. The stack shows how deep the constituent that we are currentlyworking on is nested in the overall structure. For example, if our string startswith (((, we will obtain a stack consisting of three constituents. It is clear thata left bracket, (, indicates the beginning of a new constituent. Each left bracketcauses an increase in the depth of nesting of constituents by one: it is a push6Note that we write : here between each of the elements of the strings. This is our o�cialnotation, but, as usual, we will allow ourselves to omit : if no confusion can arise.8

action. So it seems that the contribution of each left bracket can be describedby the integer +1, to indicate that it adds one new constituent to the currentstack of constituents.For the right bracket) the situation is dual: the right bracket indicates adecrease in the nesting depth by one: it is a pop action. So it seems that thecontribution of the left bracket can be indicated by the integer -1. Also the stacksthemselves can be represented as integers: we can map each stack to the numberof levels on the stack. So the monoid of integers+addition seems a suitablecandidate for the representation of bracket strings: stacks get represented bythe number of push levels that they contain and strings get represented as thesum on the contributions of the brackets in the string: ((()) corresponds to1+1+1+(-1)+(-1)=1, () to 1+(-1)=0 etc. But this representation of bracketstrings will not work. Let's compare the following two strings: () and)(. If weapply the method of representation indicated above, we �nd that both stringscorrespond to 0. Thus this method of representation suggests that both stringsare structurally neutral. It will be clear that this is not true: although bothstrings leave the amount of constituents intact, they do not have the same e�ecton the structure at all. The string () really does have a neutral contribution tothe overall structure: if we add () to some string s, then we will �rst start a newconstituent with (and then �nish this constituent with). As a result we endup in the same constituent where we were after s. But if we add)(to a strings, things are di�erent. Now we will �rst �nish a constituent (of s) with) andthen start a new one with (. So)(will cause us to switch from one constituentto the next.Clearly such switches will be important for the interpretation of our example.Therefore the representation of the structural contribution of bracket strings byintegers is too naive: it is not only the amount of brackets that matters, butalso their order.Fortunately it is possible to get away with an almost equally natural rep-resentation: we will not represent bracket strings by one integer, but by twonatural numbers.7 One number will be used to indicate the number of con-stituents that are closed o� by the string, the other number gives the numberof new, nested constituents that the string introduces. By keeping these twoe�ects separate, we will be able to distinguish the e�ect of () and)(:. (can now be represented as h0; 1i,.) as h1; 0i,. () as h0; 0i and.)(as h1; 1i.We can go on and interpret arbitrary strings built up from)'s, ('s and 1's assuch pairs hn;mi. To get a `monoidal' picture of this interpretation of strings7There is a strong analogy with the construction of the integers as pairs of natural numbers!9

we have to supply an operation of adding up -or: merging- the pairs. This isachieved by the following de�nition:8hn1; n2i � hm1;m2i = hn1 + (m1 �� n2);m2 + (n2 �� m1)iSome examples:. ((((�)) ! ((, since h0; 4i � h2; 0i = h2; 0i.)) � ((((!))((((, since h2; 0i � h0; 4i = h2; 4i. ((�)))) !)), since h0; 2i � h4; 0i = h2; 0iThe examples show how the second string will �rst pop all the constituentsthat the �rst string has introduced. Then, if the second string still has some)-brackets left, these are simply added to those of the �rst string: this is whywe have n1+(m1 �� n2) in the de�nition. Dually, if any (-brackets are left of the�rst string, then these are simply added to the second string: m2 + (n2 �� m1).This turns out to be the suitable view on the role of the brackets in our setup: we will represent each bracket string by two natural numbers which canbe added/merged as indicated above. The �rst number represents the negativee�ect of the string, the second number its positive contribution.It is not hard to check that this gives us a monoid. We �nd that the operation�, as de�ned above, is associative and the tuple h0; 0i is a unit element of the �operation (and hence we can use it as the 1 that we needed in our example).Proposition 2.1 h! � !; �; h0; 0ii is a monoid.We call such tuples hn1; n2i simple stacking cells (SSC's) and we will usethem to encode the structural properties of expressions.9 This monoid is calledSSCpair, the simple stacking cells represented as pairs.2.2 Stacking cells as partial functionsThere is a slightly di�erent way of looking at SSC's, which will turn out tobe quite convenient later on: we can look at SSC's as partial injections on thenatural numbers.8Here �� stands for cut-o� substraction: x �� y = x� y if y � x and x �� y = 0 else.9The reader may wish to verify that the monoid of simple stacking cells is in fact the freemonoid over two generators) and (with equation ()=1. We will prefer to work with the moreconcrete representations in this paper.
10

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

ω:

ω:

Figure 1: Simple stacking cellDe�nition 2.2. A simple stacking cell represented as a partial injection (SSCinj) a is apartial function a : ! �!� ! such that:dom(a) = fna; na + 1; : : :g for some na 2 !a(na + k) = a(na) + k for all k 2 !. The monoid of simple stacking cells as partial injections, SSCinj , is de�nedas SSCinj = hSSCinj ; �; idi, where � stands for composition of (partial)functions and id is the identity function on !.Note that such a partial function a is completely �xed by the choice of naand a(na) (which are equal to 3 and 5 resp. in the picture above). In this waywe get a correspondence between the partial injections as de�ned here and thepairs of natural numbers as introduced above.Fact 2.3 The mapping � : SSCinj ! ! � !, de�ned by �(a) = hna; a(na)iinduces an isomorphism of monoids � : SSCinj ! SSCpair.Now that this isomorphism has been established it is no longer necessary todistinguish carefully between SSCinj and SSCpair . In what follows we simplytalk about SSC, `the' monoid of simple stacking cells.One clear advantage of the functional representation of simple stacking cellsis the elegant de�nition of the monoidal operation: it is simply compositionof partial functions. This is not only an advantage because it is an extremelyfamiliar operation, but also because it is immediately clear that it is associative.We see, for example, that the �rst cell maps 6 to 4, the second cell maps 4 to 3.Therefore in the resulting cell 6 is mapped to 3. We can also read o� that the�rst number in the domain of the resulting cell is 5 and that 5 will be sent to 2(via 3). 11

0

1

2

3

4

5

6

7

0

1

2

3

4

5

1

2

3

4

5

0

1

2

3

4

0

1

2

3

4

5

6

7

0

1

2

3

4Figure 2: Merging simple stacking cells2.3 Excursion: L-monoidsAbove we have constructed several representations of simple stacking cells. Inthe constructions involved we have used the natural numbers with the usualnotions of addition and cut-o� substraction as a starting point. But it turnsout that the constructions can already be carried out in a slightly more generalsituation: they work for any L-monoid.De�nition 2.4 An L-monoid is a structureM = hM; �; ; idi such that hM; �; idiis a monoid and the following additional requirements are met.De�ne: x � y , for some u : u � y = x.L1 x � z = y � z) x = yL2 x � y = id) y = idL3 x � y � z , x � z yAn L-monoid is a monoid with an additional operation . Condition L3says that is a left-implication, whence the L in L-monoid. In the literature([Pra91],[MO94]) the operation is also known as left residuation. It is closelyrelated to the notion of an adjoint in category theory (cf. [Mac71]). The analogywith implication becomes clear as soon as we consider a Boolean (or Heyting)algebra B = hB; ^;>i as a monoid: now the is the Boolean implication.10If we regard the �-operation in the monoid as an operation for the additionof information, then the operation can also be seen as a sort of directedsubstraction operation: if we take the monoid ! = h!;+; 0i, then the left-implication is cut-o� substraction. So in general one can try to think of (m n)as m minus n.One important example of an L-monoid is h!;+; �� ; 0i. And the nextexample is not far away: we obtain an L-monoid M� = hM; �; ; idi for anylimit ordinal � if we set:11. M = f�j � < �g10By the symmetry of ^ the Boolean implication also is a right implication.11Recall that addition of ordinals is not in general commutative!12

. � � � = � + �. id = 0We then �nd that � �M � i� � �ord �. This results in the following de�nitionfor the left implication, which we will write as �� , a generalisation of cut-o�substraction for arbitrary ordinals:. 0 �� = 0. (�+ 1) �� = (� ��) + 1 if �ord �. (�+ 1) �� = (� ��) if � <ord . � �� = supordf� �� j � <ord �g for limit ordinals �We can see our pair representation of simple stacking cells introduced above asa special case of the construction of stacking cells over an arbitrary L-monoid.De�nition 2.5 [SSCM] For any L-monoid M we de�ne the simple stackingcells overM, SSCM, as follows:SSCM = hM �M; �; hid; idiiwhere hx0; xi � hy0; yi = h(y0 x) � x0; (x y0) � yiThe de�nition of � can be understood by direct analogy with the example ofthe bracket strings (substitute + for � and �� for), but we can also try toget a more general feeling for what is going on in terms of substraction andaddition of information. Recall our remark above that � can be seen as additionof information and as substraction of information. The pairs hx0; xi tell us to�rst substract information x0 from the context and then add information x to it.In hx0; xi � hy0; yi we perform such an operation twice: �rst for hx0; xi and thenfor hy0; yi. This has the overall e�ect that we will substract at least x0 from thecontext. Then we will provisionally add information x, but immediately afterthat we will substract y0. Finally we add information y.In case the M we start out with is a linear order (as in the examples above),we know that either (x y0) = id or (y0 x) = id. Then we can compute theoverall e�ect of these actions by distinguishing two situations:. either (y0 x) = id. Now x provides all the information that y0 wantsto substract. In that case some information will remain after substractingy0 from x and the remaining information (x y0) can be added to theinformation y. We end up with hx0; (x y0) � yi.. otherwise (x y0) = id. Now x does not provide everything that y0 asksfor. In that case there is an additional request for (y0 x) from thecontext. Then we get the overall e�ect of h(y0 x) � x; yi.13

If M is not a linear order, a third case remains in which neither (x y0) = idnor (y0 x) = id. The de�nition above simply summarises all situations.It is left to the industrious reader to check that SSCM is in fact a monoid.Thus we obtain a pairing construction which makes monoids out of L-monoids.It is easy to check that the simple stacking cells are indeed what we get if wetakeM =M! as a starting point.So we see that the pairing construction generalises to arbitrary L-monoids.Also the representation of stacking cells as partial functions can be generalised toarbitrary L-monoids. Each SSC hx; yi in SSCM gives rise to a partial mapping�x;y : M !M as follows:dom(�x;y) = fzj z � xg = fzj 9u : u � x = zg and�x;y(u � x) = u � y(Here it has to be checked that the u such that u�x = z is unique, which followsimmediately from L1.)We leave it to the reader to verify that:Proposition 2.6 The mapping � : SSCM ! f�x;yj x; y 2Mg de�ned by:�(hx; yi) = �x;yinduces an isomorphism between SSCM and hf�x;yj x; y 2Mg; �; �id;idi2.4 Lazy vs tiresome bracketingAll this may seem an example of generalising for the sake of generality, but itturns out that there are some nice ideas about the management of (linguistic)structure that can be captured in this way. As an example we discuss the idea oflazy bracketing which will amount to the use of SSC!2 instead of SSC!. Let'sreconsider our example:The quick brown fox that jumped over the lazy dog wanted therabbit that ran.Above we have explained that we have to add some information about the man-agement of constituents if we want to interpret this sentence and we have usedbrackets to make the constituent information explicit. The brackets correspondto very explicit operations on constituent structures: each bracket correspondsto pushing or popping exactly one constituent. Thus the use of brackets asindicated above gives the following tiresome picture of the left-to-right interpre-tation of a sentence: �rst we decide (or: guess) at run-time exactly how manylevels we have to push. (In the example this turns out to be three.) We push14

these levels one by one. Then we go on to interpret the sentence. Finally wepop the remaining levels one by one.But we can also give a more easy-going picture of how things work.12 Atthe beginning of each sentence, indicated by the use of a capital letter, we knowthat we are at a new starting point. At such a point we do not have to countthe exact number of constituents required: we simply introduce `su�cientlymany' constituents. Then we go on to interpret the sentence. At the end ofthe sentence, indicated by the use of a full stop, we know that we have reachedan end point. So there is no need to be very careful in popping the remainingconstituents one by one: we can simply throw away all remaining constituentsin one full sweep.To represent this picture of the lazy management of constituents we do notbracket the example as before, but instead use the following bracketing:[the quick brown fox ((that) jumped (over the lazy dog))) wanted(the rabbit ((that) ran]Here [indicates the introduction of `su�ciently many' constituents and]stands for throwing away whatever remains. We call [and] lazy brackets. Inthe monoid containing lazy brackets we would expect equalities such as [)=[,[))=[, [)))= [etc. to hold, indicating that [does indeed introduce su�cientlymany constituents. Dually we would like to have (]=], ((]=], (((]=] etc. Ofcourse we also want []=()=1.It turns out that we can adapt our de�nitions to model these ideas aboutlazy constituent management quite easily: we simply set up the whole machinerystarting with the L-monoid based on !2 instead of !. Then it turns out thatthe following way of looking at the brackets works:13. (; h0; 1i.); h1; 0i. [; h0; !i.] ; h!; 0iThus the general construction of stacking cells from L-monoids allows us tolook at constituent management in non-standard ways. Lazy brackets are justa �rst example of an interesting kind of variation on the operations that wemay want to consider for linguistic applications: starting from other suitableL-monoids may very well generate other interesting views on the management of(linguistic) structure. But at this point there is no time to speculate more in thisdirection. In what follows we will concentrate on the �rst kind of stacking cells:12We were led to this view on things by remarks of Henk Zeevat on `discourse popping'.13In fact this gives us the free monoid over four generators),(,] and [satisfying the additionalequations: [)=[(=[, (]=)]=] and []=()=1. 15

stacking cells on !. Lazy brackets will not pop up again until our treatment of`himself' on page 48.2.5 Levels of stacking cellsThe stacking cells will be our way of coding up structural information in amonoidal setting. Our overall goal is to use this structural information in theinterpretation of (structured) expressions. These expressions do not only con-tain information about their structure, but typically also contain other sorts ofinformation, which we have called (truth) content above. It is important thatwe are able to locate this content in the correct way in the (structural) content:the content information has to be stored in the constituents of the stacking cell.As a �rst step, we show how we can associate with each simple stacking cella set of levels (or: constituents) in such a way that we keep control over theirlocation in the simple stacking cell. Then we can store the content items inthe stacking cell by linking them to the appropriate level of the simple stackingcell. We will only be able to complete this task properly after section 4, whenwe will have seen the Grothendieck construction, but already at this point wecan already go some way towards explaining the idea and showing what theproblems are.First we present a mapping L that associates to each SSC its set of levels.De�nition 2.7 For each SSC a we de�ne the set L(a), the levels of a, as follows:L(a) = a [fh?; nij n < nag [fhn; ?ij n < a(na)g [fh?; ?ig(Here ? is some �xed new entity.)Among the levels of a we distinguish the following types:. h?; 0i; h?; 1i; h?; 2i; : : : h?; na � 1i: the pop levels (in chronological order). ha(na)� 1; ?i; ha(na)� 2; ?i; : : : ; h0; ?i: the push levels (in chronologicalorder). a: the stem levels. h?; ?i: a garbage levelWe will store the content information that we �nd in the constituents on theselevels. The pop levels correspond to the constituents that our stacking cell willclose o�. The push levels correspond to the constituents that the stacking cellintroduces. Note that the location of a level hn;mi is �xed by n and m. Forexample in the representation of the string:lazy dog))) wanted (the rabbit ((that16

lazy dog

wanted

the rabbit

that

Figure 3: An inhabited stacking cellwe will �nd the SSC h3; 3i. We will attach the information `lazy dog' to thelevel h?; 0i, the �rst pop level. The information `the rabbit' will end up at levelh2; ?i, a push level, and the information `that' will go to h0; ?i, another pushlevel.14The stem levels are levels that are structurally neutral. In this examplethe information `wanted' will be stored on such a level: the example tells us`wanted', and we know that this information lives in the constituent in whichall the pop and push levels are nested. But the string does not give this levelany structural status: it may become a push or pop level depending on thecontext in which the whole string occurs. Therefore we store the informationthat `wanted' conveys on a structurally neutral stem level: h3; 3i.In our set up we have provided a rather large number of stem levels. Theexample above does not make clear why we would ever need more than onesuch level, but we will see that there are cases where several stem levels arerequired. Although in practice we will always only use �nitely many stem lev-els, we have chosen to add !-many such levels, mainly for technical convenience.Sofar all levels correspond directly to one of the constituents of an expres-sion. In addition we will allow ourselves to have some extra levels, where we canstore information that is not located in any of the constituents, but still belongsto the stacking cell. We will call these extra levels: garbage levels. Here we havejust one such level, h?; ?i, but later �nite sets of garbage levels will occur. Atthis point it is hard to be precise about the exact use of garbage levels. The realreason for introducing them is that it will considerably smoothen the de�nitionslater on: when we want to merge two simple stacking cells a and b in which wehave stored information, some of the push levels of a may be popped by b. Thismeans that these levels will not show up in the merger a � b. But if we arenot careful this will also mean that all the information that we stored on thoselevels is lost. It will be easy to prevent such disasters by (temporarily) storing14In fact `that' will be interpreted as a link between levels (cf. last section), so strictlyspeaking we cannot say that `that' is located on one particular level.17

the information of these levels in a garbage level.In fact the use of garbage levels is just one example of a general issue in thede�nition of the merger of stacking cells once they are enriched with additionalinformation. As we pointed out above, we want to add information content tothe context that a simple stacking cell provides by attaching this informationcontent to the levels of a simple stacking cell. So, as a �rst step, we will have tobe able to work with tuples ha;Xai where L(a) gives us the constituent levelsof a and Xa stands for the garbage levels of a. We want to de�ne the monoidaloperation � in this situation. This means that, apart from producing the rightSSC a � b, we also have to make sure that the information that we have storedon some level of a or b ends up on the right level of a � b. In slogan:we have to keep track of how levels travelTo do this correctly we will borrow some techniques from category theory,which will be presented in section 3 and section 4.3 Categories for monoidal updatingFor the development of our tool-kit for building meanings, we need categories.How nice it would have been if monoids were su�cient. The reason they arenot is as follows. Consider simple stacking cells or SSC's. SSC's interact withreassuring monoidal simplicity. But how can we use SSC's to describe morecomplicated objects? We need some way to talk about the individual `levels'of an SSC and we need some way to describe what happens to the levels whentwo SSC's interact! In such interactions levels merge with other levels, aresent into the garbage limbo, etcetera. To describe the ow of the levels, thecategory-theoretical machinery is tailor-made.3.1 BasicsThis section introduces the basic concepts of category theory. The reader isreferred to [Mac71], [MA75], [BW89] for more information.A category A is a structure hOb;Ar ; id ; dom ; cod ; �i, where:. Ob is a non-empty class, the class of objects. Ar is a class, the class of arrows or homomorphisms. id is a function from Ob to Ar. We will write ida for id (a). dom and cod are functions from Ar to Ob. dom(ida) = cod(ida) = a 18

. � is a partial function from Ar�Ar to Ar. f � g is de�ned i� cod (f) = dom(g). If f � g is de�ned, then dom(f � g) = dom(f) and cod(f � g) = cod(g). iddom(f) � f = f � idcod(f) = f. If (f � g) � h is de�ned, then (f � g) � h = f � (g � h)In what follows, identity between partial terms means: either both sides arede�ned and equal, or both are unde�ned. Thus we have, quite generally: (f �g) � h = f � (g � h). We go against mainstream tradition in category theory,by reading �, in the order of the depicted arrows. Thus our f � g `means' �rstf, then g. The reason for this deviation is that our morphisms often represent`updates'. For representing updates, it is most natural to read composition inthe order of application. (See below for more conventions in a similar spirit.)We will call the set of morphisms between a and b, Hom(a; b), or, if we want toemphasize the dependence on the category, HomA(a; b). A morphism f : a! bis an isomorphism if there is a g : b! a, such that f � g = ida and g � f = id b.A Functor � between A and B is a morphism of categories between Aand B. I.e., � a function mapping ObA to ObB, and ArA to ArB, whichpreserves all categorical structure. So, for example, �(idA;a) = idB;�(a) and�(f �A g) = �(f) �B �(g).Example 3.1 An important example of a category will be the category Set,where we take:. Ob is the class of all sets15. Ar is the class of all functions from sets to sets. idX is the identity function on X. dom(f) is the domain of f and cod (f) is the range of f .. � is function-composition, read in order of applicationIn this category the elements of the sets are treated as featureless objects. Theirincidental features are divided out by the isomorphisms present in the categoryand isomorphism in the category is the intended notion of object identity. Sojust the \sizes" of the sets are counted relevant.15The distinction between large categories, in which the objects or the arrows do not forma set and small ones in which objects and arrows do form sets, plays no role in this pa-per. Categories like Set could, in our applications, always be replaced by appropriate smallcategories. 19

Example 3.2 Another important example of a category is given by a partial(weak) preorder or ppo, hD;�i. Here the Ob = D and the arrows are the\inclusions", inca;b, witnessing that a � b. A prominent example of a categorybased on a ppo is the category Setsub , where the ppo is formed by sets with thesubsetordering. Note that Setsub is a subcategory of Set. The notion of identityin Setsub , however, is completely di�erent. Isomorphism in this category isordinary identity of sets. So, every incidental feature of an element counts.Another example is the category Nat of the natural numbers f0; 1; 2; � � �g, withtheir natural ordering.This point is as good as any to introduce an important convention. We wantto think about updating and interpretation of language fragments. Composi-tion will reect concatenation at the level of surface syntax. Thus, as alreadymentioned above, we read composition in order of application. For the samereason we should use post�x notation to describe function application. How-ever, as so often, it turns out that jede Konsequenz zum Teufel f�uhrt. Thepost�x notations indiscriminately applied look peculiar, certainly in case of bi-nary functions. Moreover, not all functions that appear need to be consideredas update functions. So a hybrid notation seems best. We will write f(x), whenusing pre�x notation, and x[f], when using post�x notation. So for example if� is a functor from A to Set, if f : a! b is a morphism in A, and if x 2 �(a),then: �(f)(x) = x[�(f)] = x[f [�]]. In a suitable context, functions from setsto sets could represent updates, whereas the functor � does not. So, here wewould prefer the notation: x[�(f)]. Another convention that we will use is:hx; hy; zii = hx; y; zi.The objects of our categories are supposed to be informational items. Thearrows ful�ll two important roles. The �rst one is that they represent ways inwhich one piece of information is part of another. The second one is that theisomorphisms present �x what objects and arrows we will count as the same.16We also need an operation merge or � that enables us to glue some pieces ofinformation together. To describe the operation or �, we again need some extramorphisms. To motivate our choices, we �rst look at an example.Example 3.3 We consider what is involved in adding the the monoidal oper-ation disjoint union to Set. In one sense this example is the ur-example of amonoidal operation on a category. In another sense it is somewhat misleading:disjoint union is a bifunctor. Moreover it is the direct sum or co-product ofthe category we are considering. These features will not be incorporated in thegeneral case. We start by �xing a representation of disjoint union.X � Y = (f0g �X)[(f1g � Y):16It could be argued that to assign to the morphisms this double task, is in some senseimpure. The point is strengthened by the fact that our monoidal operation is a bifunctorw.r.t. the categories restricted to isomorphisms, but not w.r.t. the full categories. The reasonthat we have the two roles in one and the same category, is pragmatic: things seem to workout well this way. 20

The elements of X will have descendants in X � Y . This descendancy relationcan be described by a morphism, say in1. For x 2 X , we take: x[in1(X;Y)] :=h0; xi. Similarly y[in2(X;Y)] := h1; yi. The inclusion morphisms keep trackof how levels travel when objects are fused. Disjoint union does not give us amonoid in the strict sense. We have, for example:(fxg � fyg)� fzg = fh0; 0; xi; h0; 1; yi; h1; zigfxg � (fyg � fzg) = fh0; xi; h1; 0; yi; h1; 1; zigHowever, we wish to view the coding machinery we introduced to keep elementsout of each other's way in taking disjoint unions as \inessential". The elementsof (X � Y) � Z are the same as those of X � (Y � Z) modulo some coding.To make this idea explicit we introduce a standard isomorphism �(X;Y; Z)between (X � Y) � Z and X � (Y � Z). In our example we would have:h0; 0; xi[�(fxg; fyg; fzg)] = h0; xi. It is not su�cient that there is some isomor-phism: we want the correct isomorphism. For one thing, � and the in-functionswill have to cooperate in appropriate ways. For example, we expect the followingdiagram to commute. fxg in1 > fxg � fyg_in1 _in1fxg � (fyg � fzg) < � (fxg � fyg)� fzgAn easy check shows that the diagram commutes. Our monoid has a unit id.This is of course the empty set. We see that in1 is an isomorphism between Xand X � ; and that in2 is an isomorphism between Y and ; � Y . The richerstructure built on Set, that we have described is an m-category according tothe de�nition given below. We will call the enriched Set again: Set.After this motivating example we turn to the main de�nition. Our framework isquite similar to the usual notion of monoidal category, the main di�erences be-ing the fact that the monoidal operation is not a functor and the presence of thein-functions. A structure A = hOb;Ar ; id ; dom ; cod ; �; �; id; in1; in2; �i, is an m-category if (i) hOb;Ar ; id ; dom ; cod ; �i is a category and (ii) \hOb; �; id; in1; in2; �idescribes a monoid relative to the category". Our phrase (ii), means that weonly have a monoid modulo the isomorphisms of our category. We spell (ii) outin some detail:. � : Ob �Ob ! Ob. id 2 Ob 21

. ini : Ob � Ob ! Ar , where in i(a1; a2) : ai ! a1 � a2. The ini tell us inwhich way the ai are embedded in a1 � a2 by the operation �.. � : Ob �Ob �Ob ! Ar , where �(a; b; c) : (a � b) � c! a � (b � c). Here:1. in1(a; b) � in1(a � b; c) � �(a; b; c) = in1(a; b � c)2. in2(a; b) � in1(a � b; c) � �(a; b; c) = in1(a; b) � in2(a; b � c)3. in2(a � b; c) � �(a; b; c) = in2(b; c) � in2(a; b � c). in1(a; id) is an isomorphism between a and a � id. Similarly, in2(id; a) isan isomorphism between a and id � a. Finally in1(id; id) = in2(id; id).17How nice it would have been, if these were all the conditions we need to impose.However, to guarantee that everything works smoothly we need some conditionsof a more technical nature. For the record, we give them here.. We need everything to behave well w.r.t. isomorphisms. If, for i = 1; 2, biis isomorphic to b0i, then b1�b2 is isomorphic to b01�b02. The full formulationis as follows. Suppose �i : bi ! b0i is an isomorphism (i = 1; 2). Thenthere is a unique isomorphism �1 � �2 : b1 � b2 ! b01 � b02 such that:in i(b1; b2) � (�1 � �2) = �i � in i(b01; b02):. The conditions on � are not su�cient to ensure that the correct isomor-phisms are generated after repeated applications of associativity. To guar-antee correct behaviour (`coherence'), we have to add an extra condition.We ask that the ini are jointly surjective, i.e., if, for i = 1; 2, ini�f = ini�g,then f = g.18A functor � between m-categories is an m-functor if it preserves the addi-tional structure. E.g. �(in1(a; b)) = in1(�(a);�(b)).Example 3.4 1. We add the monoidal operation plus to Nat. The furtherdetails are �xed by this choice.2. Consider an upper semilattice U, i.e., a structure hD;�; _;?i. Here Dis a non-empty set and � is a partial order, which is closed under tak-ing suprema of �nite sets of elements. _ is the operation of taking thesupremum of two elements, and ? is the bottom. U can be viewed as anm-category, by viewing hD;�i as a category as in example 3.2. We take _as the monoidal operation and ? as id. An important special case of thisexample is Setsub , with union and empty set.Par abus de langage we will call the resulting m-categories again Nat, U andSetsub .17Thus in1(a; id) and in2(id; a) have the role of ��1a , respectively ��1a of [Mac71], p158.18Our conditions imply that an m-category is a monoidal category, when we restrict it toisomorphisms and, thus, that it is coherent. See [Mac71], pp157-166, for further explanation.22

We are now ready to introduce the last ingredient. Our semantics is intendedto be �le change semantics in the sense of Heim. The objects of our categoriesare dynamic whatshallwecallthems. Using the category we can describe theirinteractions. We will need some way to talk about the �les and the informationstored there. The solution is to extend our categories with a functor R toSet. For each object a, R(a) wil give the set of �les \contained in" a. Thusin our example above we could take R to be the identity functor in (1), thestandard inclusion of Setsub in Set in the special case of (3), and we can takeR(n) := fm2! j m < ng in (2). We do not require that R is an m-functor!In fact, since we want to view the elements of the category under considerationas coordinating possible uni�cations of referents, it is, in general, essential thatR is not an m-functor. The choice of Set as category of sets of �les, reectsthat we view a �le as a featureless object, but for its connection via R with thedynamic machinery.4 The Grothendieck ConstructionThe Grothendieck Construction can be viewed as a de�nitional format. It is away of constructing objects, which carries with it the guarantee, that objectsso constructed have such-and-such properties. In a sense one could say thatthe Construction constitutes a functional role de�nition of what it is to bea context's content and what it is to be a content's context. The most salientingredient here is that contexts transform independently of the content, but thatthe transformation of contents is guided by the context.19 A good discussion ofthe Grothendieck Construction can be found in [BW89] and in [Jac91].Consider an m-category A and a functor � from A to the category m-Cat ofm-categories. The Grothendieck construction allows us to make a new categoryof pairs, ha; ti, where t is an object of �(a). The intuition is this. A is a categoryof contexts. �(a) is the category of contents above a. A pair ha; ti will be acontent at a context. A morphism f from a to b, will be viewed as an embeddingof contexts. When we take the `a-object', t, under our arm, when travellingvia f from a to b, t will be `transformed' into a b-object t0 := (�(f))(t). So(�(f))(t) is the canonical image of t via f .Before giving the de�nition let us give a kind of ur-example, that well conveysthe avour of what is going on.Example 4.1 Consider a model of predicate logic with domain D. Usually themeanings of formulas are de�ned as sets of assignments from the set of variablesVAR to D. However we could also wish to work with local assignments actingonly on the (free) variables that are `present'. Meanings now will be pairs of a19The Grothendieck Construction is, thus, reminiscent of the `central dogma of moleculargenetics', viz., that information can ow from nucleic acids to proteins, but cannot ow fromprotein to nucleic acid. 23

�nite set of variables V and a set, F , of assignments from V to D. Thus, e.g.,the meaning of P (v1; � � � ; vn) would be hV; ff2DV j hf(v1); � � � ; f(vn)i 2 I(P)giwhere V = fv1; � � � ; vng and I is the interpretation function associated with themodel. The �rst component, V , of such a pair is viewed as the context, thesecond component, F , as the content. The m-category of contexts here has asobjects �nite sets, V , of variables, and as arrows the inclusion functions incV;V 0 ,signalling that V � V 0. The monoidal operation is union. Above each contextV we have a category, �(V) of contents. The contents above V are the setsof assignments from V to D. The arrows of this category are the oppositesof the inclusion functions, say, cniF;F 0 , signalling that F � F 0. The monoidaloperation is intersection.Suppose V � V 0 and F is a set of assignments on V . How is F going toappear if we transport it to V 0. Well, we want F to decribe the same constraintat the new context. In other words, we want F 's `successor' to be the leastinformative object in the new context, which is constrained in the same waywith respect to the old variables. Thus we take:F [�(incV;V 0)] := hV 0; ff2DV 0 j f�V 0 2 FgiHow are we going to de�ne the meaning of A^B, say kA^Bk? Suppose kAkis hV; F i and kBk is hW;Gi. If the contexts V and W were the same this wouldbe simple: kA^Bk = hV; F\Gi. If V andW are unequal, however, F and G livein di�erent worlds and cannot be intersected in a sensible way. What we do istake them under the arm and take them to the nearest world where both canbreathe, the world above context V [W . In this world we can intersect. So ournew conjunction will be as follows:kAk^kBk := hV [W;F [�(incV;V[W]\G[�(incW;V[W)]iDe�nition 4.2 Let an m-category A and an m-functor � : A ! m-Cat begiven. Then we de�ne a new m-category B :=Pa2A�(a) as follows:. The objects of B are the pairs ha; ti where t is an object of �(a). The morphisms between ha; ti and hb; si are the pairs hf; ui such thatf 2 ArA and f : a! b and u 2 Ar�(b) and u : t[�(f)]! s. Composition of arrows is de�ned as follows: if hf; ui : ha; ti ! hb; si andhg; vi : hb; si ! hc; ri, then hf; ui � hg; vi : ha; ti ! hc; ri is the pairhf � g; u[�(g)] � vi.. idB = hidA; id�(idA)i 24

f ’

ΘΘ

Θ

f

f

m’

m n

Θ Θ(m) (n)

n’

Figure 4: The Grothendieck constructionWe introduce the new monoidal operator and the new in-functions. We wantto de�ne ha; ti � hb; si. On the �rst components, we take the obvious operations,sending a and b to a � b. In going from a via in1(a; b), to a � b, the objectt is transformed to t0 := t[�(in1(a; b))]. Similarly s is transformed to s0 :=s[�(in2(a; b))]. Finally |on the second component| we take t0 � s0. Thus:. ha; ti � hb; si) = ha � b; t0 � s0i. ini(ha; ti; hb; si) = hin i(a; b); ini(t0; s0)iThe new � is de�ned in a similar way.It requires quite a bit of tedious work to check in detail that the Grothendieckconstruction really preserves m-categories.Example 4.3 Consider any two m-categories A and B. We confuse B withthe following functor from A to m-Cat: B(a) := B and B(f) := IDB, whereIDB is the identity functor on B. Then Pa2AB(a) is (isomorphic to) A�B.A somewhat larger example is worked out in Appendix A. An important pointis the fact that the m-category A reoccurs as a sub-m-category of Pa2A�(a).Consider the following mapping �:. �(a) := ha; id�(a)i. �(f) := hf; id id�(b)i 25

1in 2in

1in 2in

m n

m n

m’ n’

1 2in’ in’

Θ Θ

Θ Θ

Θ

.

Figure 5: m-structure under the Grothendieck constructionIt is not di�cult to see that � is an injective m-functor. Thus we are licencedto identify objects and morphisms of A, with their images under �.We give three particularly useful specializations of the Grothendieck con-struction.4.1 Adding contents to contextsLet an m-category A, a functor R from A to Set and a non-empty domainD be given. Remember that R need not be an m-functor. We generalize theconstruction of the meanings of example 4.1. De�ne the functor Ass as follows.. Ass(a) is the following m-category.� The objects are sets of functions from R(a) to D.� The arrows are given by the partial ordering �.� The monoidal operation is intersection of sets.� The rest of our category is �xed by the above.. Let f : a! b be an A-morphism. We de�ne the functor Ass(f) as follows.� G[Ass(f)] := fh2DR(b) j 9g2G8r2R(a) h(r[R(f)]) = g(r)g.� The application of R(f) on the morphisms is �xed by the precedingitem.It is easy to verify that Ass is a functor. We put:26

. Cont(A;R; D) :=Pa2A Ass(a).We de�ne a new R on the new category by: R(hu; vi) := R(u).20 It is notdi�cult to see that our example 4.1 can be obtained by taking A the categoryof �nite sets of variables, with the inclusion functions as morphisms and unionas monoidal operator. The functor R of this m-category is the standard in-clusion in Set. Note that via the standard embedding of the contexts into thecontext/content pairs we can identify a �nite set of variables V with hV;DV i.One could think of all kinds of variants of our construction. E.g., instead ofworking with sets of assignments, we could work with relational databases overthe given set of referents.4.2 Synchronic identi�cationIt will happen often that we want to say of two inhabitants of di�erent partsof the (linguistic) structure that they are really the same. A familiar exampleis formed by re-entrancies in feature structures, where we want to express thattwo distinct expressions share some feature. We have not included any featureinformation in our linguistic examples, but already in our naive example a sim-ilar phenomenon pops up: in the interpretation of the relative `that'. We wantto say that `that' shares its denotation with an expression that lives in someother constituent. Consider:wanted (the rabbit ((that) ran)))Here `that' points to the same object as `the rabbit'. We keep score of informa-tion concerning such identities by working with an equivalence relation on allthe objects that occur somewhere in the relevant stacking cell.So we will have, in the semantics, as one of the informational items anequivalence relation on a set of objects. The Grothendieck construction can beused to describe the dividing out of equivalence relations. Let R be any binaryrelation on a set X . We write R� for the transitive, reexive, symmetric closureof R (in X). Thus R� is the least, or �nest, equivalence relation containing R.Let A be an m-category and let R be a functor from A to Set. We describe thefunctor E.. E(a) is the following category.� The objects are the equivalence relations on R(a).� The morphisms are given by the subset ordering on equivalence re-lations considered as sets of pairs. So, we have arrows from �ner tocoarser equivalence relations.� E �E0 := (E[E0)�.20In a more de�nitive treatment we should expect to derive the new R systematically. Inthis paper we will content ourselves by introducing them ad hoc.27

� The other data on the category are �xed by the preceding items.. Let f : a! b be an A-morphism. We put: E[E(f)] := (E[R(f)])�, whereE[R(f)] := fhr[R(f)]; r0[R(f)]i j hr; r0i 2 EgWe may check that E is, indeed, an m-functor. Take: Eq(A;R) :=Pa2A E(a).We may chose the new R as follows.. R(ha;Ei) := R(a)=E ,. Let hf; f 0i:ha;Ei!ha0; E0i, then: (r=E)[R(hf; f 0i)] := (r[R(f)])=E0 .It is easy to see that this de�nition is correct.Example 4.4 Let A and B be m-categories and let RA and RB be the corre-sponding functors. The Cartesian product of A and B is de�ned in the obviousway. E.g., ha; bi�ha0; b0i = ha�a0; b�b0i. Take: RA�B(ha; bi) := RA(a)�RB(b).Here � stands for disjoint union. The RA�B(hf; gi) are de�ned in the obvi-ous way. Now the Cartesian product can be viewed as two forms of dynamicmachinery A and B running in parallel, without any connection. Now we mayde�ne AkB := Eq(A �B;RA�B). The new R is de�ned in the obvious way.The result of our construction enables two di�erent machineries to contributeto the identi�cation of the same �les. We will use this construction to link theglobal anaphoric way of identifying referents and the local grammatical way.4.3 Storing dynamic objects on levelsWe turn to our �nal subconstruction. The idea here is to store the elementsof an m-category in the �les of another m-category. Let A and B be two m-categories and let R and S be the corresponding functors. Suppose that for allA-morphisms f , R(f) is injective. We specify the functor Q. Let a 2 ObA.. Q(a) is the following category.� The objects are functions from R(a) to the objects of B. We will use�, � , : : : for the objects.� A morphism � : � ! � is a function from R(a) to the morphisms ofB, such that: �(r) : �(r) ! �(r).� � � �(r) := �(r) � �(r).� The further de�nitions are similar.. Suppose f : a! a0. We de�ne Q(f) : Q(a)! Q(a0).� (�[Q(f)])(r) := � �(r[(R(f))�1]) if r is in the range of R(f)idB otherwise28

� (�[Q(f)])(r) := � �(r[(R(f))�1]) if r is in the range of R(f)id idB otherwiseNote that in these de�nitions the injectivity of R is essential.We de�ne Store(A;R;B;S), or, briey, B�A, as Pa2AQ(a). In the last nota-tion we take R and S to be given with the m-categories.21 The constructiongives us pairs ha; �i, where � stores an object of B on each referent in R(a).We de�ne the new functor, say T, to Set, as follows.. T(ha; �i) := fhr; si j r2R(a) and s2S(�(r))g. Suppose hf; �i : ha; �i ! ha0; �0i. Let's put r0 := r[R(f)]. Then we mayde�ne: hr; si[T(hf; �i)] := hr0; s[S(�(r0))]iThus T(ha; �i) gives the disjoint union of the S(�(r)) for r 2 R(a). A variant ofthis construction is the �nitized version, Store�n (A;R;B;S), where we restrictthe � to functions that are almost everywhere, i.e., for all but �nitely manyarguments, equal to idB and the � to functions that are almost everywhereequal to id idB .Example 4.5 We give a useful application of our construction. The referents or�les in our applications sometimes only have an \internal" or \virtual" function.They function as indicators of places in a structure or whatever, but they arenot used for further storage. It is often pleasant and even necessary to makesuch �les invisible in the �nal stage. The following construction, Pres, does justthis. We will use the construction in the next section.Consider the m-category True. This is the m-category based on the uppersemilattice h}f+g;�;[; ;i, where + is an arbitrary object. RTrue is the standardinclusion of our m-category in Set. Consider an m-category A, with associatedfunctor R. De�ne: Pres(A) := True�A. The objects of this m-category arepairs ha; �i. Here � is a function from R(a) to f;; f+gg. Thus � functions as acharacteristic function on R(a), representing a set X� � R(a). Here X� is theset of elements of R(a) that are \present". We have: T(ha; �i) = fhx;+i jx 2X�g. We will also write A+ for Pres(A). If we want the �nitized version of ourconstruction we add the subscript �n in the obvious way.Example 4.6 Let True be as in example 4.5. Consider A�True. The objectsare of the form h;; ;i or hf+g; �i. Since, in the second case, dom(�) = f+g, wemay identify �, with �(+). Hence, the objects can be viewed as pairs h+; ai.Thus, the result of our construction is adding a new unit to A.Example 4.7 Let A be a �nite set of items. We de�ne multisets of the items inA, as follows. We associate an m-category A to A. A is the category consistingof A as its single object, with as unique morphism the identity witnessing the21Note that the operation is not exponentiation, even if there are some similarities.29

standard inclusion of A in itself. Our monoidal operation we cannot but choose\union". The functor R is the obvious inclusion of A in Set. We take ascategory of multisets of items from A: Store(A;Setfin). The objects of ournew category are in essence functions f from A to �nite sets. (We may omit thecontext, since it is �xed.) Moreover, e.g., f � g(a) is the disjoint union of f(a)and g(a). The new functor, say T, sends f to fha; xi j a 2 A; x 2 f(a)g.In table 1 we repeat the most important constructions introduced in thissection.Cont(A;R; D) This operation was introduced in subsection 4.1. Itputs sets of assignments from R(a) to D above eachcontext a.Eq(A;R) This operation was introduced in subsection 4.2. Itadds equivalence relations on R(a) above each con-text a. The new referents assigned to a are equiva-lence classes of the old ones.AkB This operation was introduced in subsection 4.2, ex-ample 4.4. The new objects are pairs ha; bi, where a,b are from A, respectivelyB, together with an equiv-alence relation E on the disjoint union of R(a) andR(b). The new referents are the equivalence classesof E.Store(A;R;B;S) This operation was introduced in subsection 4.3. Itstores an element of B above each r2R(a).Store(A;B) The same as Store(A;R;B;S), where we assume Rand S to be given with A and B.B�A The same as Store(A;B).Pres(A) This operation was introduced in subsection 4.3, ex-ample 4.5. It stores f+g, for present, or ;, for absent,on each r2R(a).Table 1: Special cases of the Grothendieck construction5 Category of stacking cellsIn this section we look at stacking cells once again. But this time we look atthem in a (m-)categorical setting, adding the appropriate notions of morphismand embedding.Recall that it is necessary/handy to enrich simple stacking cells with garbagelevels. Adding the garbage levels is one of the things we have to do in order30

to keep track of how levels travel. So, instead of working with SSC's we willhave to work with pairs ha;Xi consisting of a SSC a and an appropriate set ofgarbage levels X . The resulting objects will then have as levels the levels of theSSC, as we introduced them above, as well as the garbage levels that we haveadded to them.But before we de�ne the m-category of stacking cells (with garbage), we �rstintroduce the m-category of simple stacking cells, without garbage.5.1 The category of simple stacking cellsIn what follows it will be convenient to use the following notation:we write a � b for a � b (as partial functions ! �!� !) and a^ forthe converse of a (as a partial function). id is the unit of SSC.We collect the following useful facts (notation as on page 10).Fact 5.1. a � b i� na � nb = a(na)� b(nb) � 0. na^ = a(na) and a^(na^) = na. (:)^ is monotonic (w.r.t. �) and� is monotonic in both arguments (w.r.t. �). (a � b)^ = b^ � a^. a^^ = a. a � a^ � id and a^ � a � idNow we are ready to introduce SSC, the category of simple stacking cells. Wealready know the objects of this category, the simple stacking cells, and also themerger has been discussed above. So the crucial thing to add is an appropriatenotion of morphism. Here we are led by the following minimal requirement: wewant to know how levels travel when simple stacking cells are merged, so wewill need to keep trace of the way that stacking cells get merged in betweenother stacking cells. This means that whenever a stacking cell a gets embeddedin some context b1 � � � b2, then we want to have a morphism from a to theresulting stacking cell b1 � a � b2 that witnesses this embedding. Therefore wewill at least need a morphism:�a;b1;b2 : a! b1 � a � b2 31

for any choice of b1 and b2. We will denote such a morphism �a;b1;b2 by hb1̂ ; b2ito limit the use of subscripts in our notation.22 The morphisms hb1̂ ; b2i will bethe only morphisms in the category of simple stacking cells SSC. Now we cande�ne:De�nition 5.2 SSC, the m-category of simple stacking cells, has as objectsthe simple stacking cells and as morphisms � : a ! a0 pairs hb; b0i such thatb^ � a � b0 = a0. Composition and identities are as follows:. for each a hid; idi : a! a is the identity on a. for hb; b0i : a! a0 and hc; c0i : a0 ! a00, hb; b0i � hc; c0i : a! a00 is given byhb � c; b0 � c0i.. in1(a; a0) = hid; a0i. in2(a; a0) = ha^; idi. �(a; a0; a00) = hid; idi : (a � a0) � a00 ! a � (a0 � a00)We leave it to the reader to check in detail that this does indeed de�ne an m-category. As an example we consider the composition of morphisms: givenhb; b0i : a ! a0 and hc; c0i : a0 ! a00, we know that a0 = b^ � a � b0 anda00 = c^ � a0 � c0. Substitution now gives: a00 = c^ � b^ � a � b0 � c0. By fact5.1 this can be written as (b � c)^ � a � b0 � c0 as required.It may be useful to note that � : a! a0 is an isomorphism of SSC i� a = a0and � = hid; idi. So SSC has very few isomorphisms.In what follows we will use � as a variable over morphisms in SSC.5.2 How some levels travelBefore we go on to extend the stacking cells with garbage levels, we take sometime to check how the non-garbage levels travel when we merge two stackingcells. For each morphism hb; b0i : a ! a0 we give a corresponding mappingL(hb; b0i) : L(a) ! L(a0) as follows:for an arbitrary level hn; n0i 2 L(a) we sethn; n0i[L(hb; b0i)] = hb(n); b0(n0)i,where we read b(n) = ? if n 62 dom(b) and b0(n0) = ? if n0 62 dom(b0)Of course it has to be checked that this does indeed de�ne a mapping L(a) !L(a0). This is a matter of case-checking.Intuitively L(hb; b0i) has to describe what happens to the levels of L(a) whena gets merged with b^ and b0. In this process lots of things can happen: for22This notation is very convenient, but please keep in mind that there is a di�erence betweenhb1̂ ; b2i : a ! a0 and hb1̂ ; b2i : c! c0. 32

example, a push-level h?; ni 2 L(a) could simply become a push-level h?; b0(n)i 2L(a � b0) and then stay a push-level h?; b0(n)i 2 L(b^ � a � b0). But it can alsohappen that a push level h?; ni 2 L(a) gets popped in a � b0. Then it will bemapped to the garbage level, h?; ?i, of a � b0 and then to the garbage level ofb^�a�b0. For stem- and pop-levels we have to distinguish similar cases. It turnsout that the formula hb(n); b0(n0)i (with the notation convention as indicated)gives a concise presentation of all the cases.23Note that all the levels that `disappear' in the merger b^ � a � b0 are sentto the garbage level h?; ?i. If we had not added this garbage level, we wouldnot know where to send such `disappearing levels' which would force us to workwith partial functions at this point. But by the introduction of h?; ?i we cankeep all the functions total. Now it is easy to check that:Fact 5.3 L as de�ned above is a functor from SSC to Set, the category of sets(with arbitrary mappings as morphisms).5.3 Travelling with garbageNow we come to the crucial step of adding more garbage (levels) to the picture.By adding a set of garbage levels we make a real stacking cell out of a simplestacking cell.Above we have already smuggled in one garbage level, which enabled us tokeep working with total mappings in the category of sets. The trick was to mapall levels that were in danger of getting lost to the garbage level. This way noinformation needs to get lost, since it can all be sent to the garbage level. Soin a sense information can be preserved, but as all the information ends up onthe same level, we will get confused as to which information belongs together.In order to keep the information from di�erent `disappearing levels' separate weneed more than one garbage level.So we start using pairs ha;Xi where a is a simple stacking cell, as before,and X is a �nite set of garbage levels. We simply call such pairs (not-so-simple)stacking cells.Important examples of such stacking cells will be:. push = hh0; 1i; ;i. pop = hh1; 0i; ;i. garb = hid; fh�; 0igiThese three are about the most basic stacking cells one can think of: pushconsists of just one push level and no garbage. Similarly pop consists of justone pop level without any garbage. garb is the stacking cell that just has onegarbage level and no real `structural' contribution. We have called the garbage23Note that the convention ensures that b(?) and b0(?) are read as ?.33

level of garb h�; 0i, a pair consisting of the empty string � and the naturalnumber 0. Later on it will become clear why it is convenient to assume thatgarbage levels have this kind of shape.Whenever we merge two stacking cells ha;Xi and ha0; X 0i, the result is ofthe form ha � a0; Y i. Here Y contains (i) the garbage levels X , (ii) the garbagelevels X 0 and (iii) new garbage levels that are produced by the merger a � a0.The new garbage levels are the levels that `disappear' in the merging process.This happens when a push level h?; ni of a meets a pop level hn; ?i of a0. Eachtime this happens, we introduce a new garbage level and call it h�; ni.Since it is essential that we keep distinct garbage levels distinct, we willalways have to take the disjoint union of garbage sets. There are, of course,several implementations of disjoint union around, each of which would do equallywell for our purposes. But to keep things readable we prefer an implementationthat does not introduce a lot of confusing brackets. To achieve this we assumethat all garbage levels are pairs h�; xi, where � is some string of 0's and 1's. Weintroduce the two shift operations Sh0 and Sh1 on sets of such elements. Theseoperations are de�ned by:Shi(X) = fhi�; xij h�; xi 2 XgThe shift operations allow us to discriminate between elements of di�erent originwithout introducing lots of brackets. This is a clear advantage in the examplesthat follow later. Now we can implement disjoint union of garbage sets X andY as follows:X � Y = Sh0(X)[Sh1(Y)This gives us all the (notational) ingredients we need to introduce the garbagelevels properly.De�nition 5.4 For each a, a0 we de�ne G(a; a0), the garbage introduced bymerging a and a0:G(a; a0) = fh�; nij h?; ni 2 L(a) & hn; ?i 2 L(a0) & n 2 !gFor a morphism � = hb1̂ ; b2i : a ! b1 � a � b2 we de�ne G(�), the garbageintroduced by � as:G(�) = G(b1; a � b2) [Sh1(G(a; b2))Note that in de�ning G(�) we have |as it were| chosen a bracketing forb1 � a � b2. Here we see why we need to worry about the presence of suitableisomorphism: the existence of a `coherent' isomorphism � implies that suchchoices do not really matter in the end.2424We have chosen to take the garbage produced by the merger as the basic notion and tode�ne the garbage introduced by a morphism as a derived notion. But this is merely a matterof choice: it can be checked that G(�) consists of all the levels that are sent to h?; ?i by L(�).To be precise: there is a bijection between G(�) and h?; ?i[L(�)]�1nfh?; ?ig. This suggests analternative way of introducing garbage formally, where the garbage produced by a morphismis the basic notion and the garbage introduced by the merger is de�ned in terms of it.34

<a,X> <a’,X’> <a’’,X’’>

<*,0> <0,*>

<3,2> <2,*><*,3>

<σ, >l Figure 6: Merging with garbageThroughout this section it will be helpful to keep �gure 6 in mind. Therewe see three stacking cells ha;Xi, ha0; X 0i and ha00; X 00i. The sets X , X 0 andX 00 are indicated by the little clouds below the simple stacking cells. Now whenwe merge ha0; X 0i and ha00; X 00i, for example, this will produce as new garbagefh�; 0ig.Now we can take as morphisms in the category of stacking cells, SC, pairs:h�; fi : ha;Xi ! ha0; X 0isuch that � : a ! a0 is a morphism of SSC and f : G(�) � X ! X 0. Theidentity arrows simply are:hida; {;�Xi : ha;Xi ! ha;Xiwhere {;�X : ; �X ! X is de�ned by {;�X(h1�; xi) = h�; xiand composition of arrows is de�ned as:h�; fi � h ; gi = h� � ; hiwhere h : G(� �)�X ! X 00 is speci�ed as follows:We may assume that � == hb1̂ ; b2i : a ! b1 � a � b2 and = hc1̂ ; c2i :b1�a�b2 ! c1�b1�a�b2�c2. SoG(��) = G(c1�b1; a�b2�c2) [Sh1(G(a; b2�c2)).Now we distinguish the following cases:. h(h1�; xi) = g(h1�0; x0i)Here we write: h�0; x0i = f(h1�; xi)(in this case h�; xi 2 X). h(h0; ni) = g(h1�0; x0i)in case h0; ni 2 dom(f) 35

Here we write: h�0; x0i = f(h0; ni)(in this case h�; ni 2 G(b1; a � b2)). h(h0; ni) = g(h0; ni) in case h0; ni 62 dom(f)(in this case h�; ni 2 G(c1 � b1; a � b2 � c2)nG(b1; a � b2)). h(h01; ni) = g(h1�0; x0i)in case h01; ni 2 dom(f)Here we write: h�0; x0i = f(h01; ni)(in this case h�; ni 2 G(a; b2)). h(h01; ni) = g(h01; ni) in case h01; ni 62 dom(f)(in this case h�; ni 2 G(a; b2 � c2)nG(a; b2))Here the �rst case de�nes h on levels that initiate from X , the second and thirdclause consider garbage levels that are produced in the merger of c1 � b1 anda � b2 � c2. The fourth and �fth clause take care of the garbage that originatesfrom merging a with b2 � c2. Basically what we have to do is to keep in mindwhat could happen if we merge the �ve (!) simple stacking cells a, bi and ci intwo di�erent ways: either we �rst merge a with the bi's and then later add theci's. This is what happens if we do � �rst and then . Or else we �rst mergethe bi's with the ci's and then merge the result with a. This is what happens ifwe compute � � `right away'. The de�nition is hard to read and perhaps it isgood advice to skip it and concentrate on our discussion of �gure 6 in section5.5, where we see a case where three stacking cells are merged. However it canbe checked that our de�nition does indeed produce a category:Fact 5.5 We have de�ned a category of stacking cells SC.It is important to note that the isomorphisms h�; fi : ha;Xi ! ha0; X 0iof this category are of the form: h�; fi = hida; fi, where f is a bijection f :Sh1(X) ! X 0. This shows that isomorphism conditions (`coherence') in thiscategory only arise at the level of the garbage sets: we only have to check thatappropriate canonical bijections of garbage sets can be de�ned (cf. section 5.5for more details).To extend this category into an m-category we have to specify the merger,the embeddings and the appropriate isomorphisms. We will not do this in fulldetail here: we just specify the merger of stacking cells and leave the otherdetails to section 5.5:ha;Xi � ha0; X 0i = ha � a0; G(a; a0) [(X �X 0)i
36

5.4 Levels againNow all that remains to be done is to extend the level functor L : SSC! Setto a level functor SC ! Set. We will use L as notation for both functors. Onobjects we simply take:L(ha;Xi) = X � (L(a)nfh?; ?ig)So we collect the `real' levels of a and the garbage levels X of ha;Xi.On morphisms h�; fi : ha;Xi ! ha0; X 0i we take:L(h�; fi) : L(ha;Xi) ! L(ha0; X 0i). h1n;mi[L(h�; fi)] = h1n0;m0iin case hn;mi 2 L(hai) and hn;mi[L(h�i)] = hn0;m0i 6= h?; ?i. h1n;mi[L(h�; fi)] = h0�0; k0iin case hn;mi 2 L(hai), hn;mi[L(h�i)] = h?; ?i Now hn;mi gives rise to atuple h�; ki 2 G(�), where h�; ki[f] = h�0; k0i. h0�; xi[L(h�; fi)] = h0�0; x0iin case h�; xi 2 X and h�; xi[f] = h�0; x0iIt can be checked that this does indeed make L into a functor SC ! Set. Inother words, we can check that:Fact 5.6 h�; fi � h ; gi[L] = h�; fi[L] � h ; gi[L] and idha;Xi[L] = idha;Xi[L]Note that both ha;Xi and h�; fi are determined by their L-images. So wecan regard SC as a subcategory of Set.5.5 How levels really travelFinally we look at our example again to see in some more detail how levels reallytravel when three stacking cells are merged in the category SC. We recall thefollowing observation about SC.Fact 5.7 The isomorphisms h�; fi : ha;Xi ! ha0; X 0i of SC are of the form:h�; fi = hida; fi, where f is a bijection f : Sh1(X)! X 0.So to check that suitable isomorphisms are present, we only have to look at themappings of the garbage levels. This can be illustrated with our example 6.There are two di�erent ways of merging these three stacking cells,. We caneither �rst merge the two leftmost stacking cells and then merge the resultwith ha00; X 00i, or we can �rst merge the two rightmost stacking cells and mergethe result with ha;Xi. In the stacking cell component we will not notice anydi�erence between the two approaches, since a � (a0 � a00) = (a � a0) � a00. But37

there will be a di�erence in terms of the garbage sets produced. To ensure thepresence of suitable isomorphisms (`coherence'), we need a canonical bijectionbetween the two garbage sets that the two di�erent bracketings produce. (Recallthat hb; Y i�hb0; Y 0i = hb�b0; G(b; b0)[(Y �Y 0)i.) Let's say that Xl is the garbageset obtained by left association of the brackets and Xr the set obtained by rightassociation. We need a bijection � : Xl ! Xr.Here it helps to distinguish the following four cases:1. x 2 Xl originates from one of the garbage sets X , X 0 or X 00.2. x 2 Xl originates from a push level of a0 that becomes garbage when a0and a00 are merged3. x 2 Xl originates from a pop level of a0 that becomes garbage when a anda0 are merged4. x 2 Xl originates from a stem level of a0 that does not become garbagepopped until the second merge stepAn example of case 1 is given in the picture by the element h�; li 2 X . Thiswill end up as h00�; li 2 Xl, but as h0�; li 2 Xr. So the bijection � will have tomap h00�; li to h0�; li. The general prescription for levels of type 1 is:h00�; li ;� h0�; lih01�; li ;� h10�; lih1�; li ;� h11�; liAn example of an element of type 2 is given in the picture by h?; 0i. Thiswill end up in Xl as h�; 0i, but in Xr it will appear as h1; 0i. So � will have tomap h�; ni to h1; ni in such a case.By duality we need not consider 3 as a separate case.The fourth case arises for the level h3; 2i in the picture. This will end up ash�; 2i 2 Xl, but as h�; 3i 2 Xr. So � will have to map elements of the formh�; ni to h�; a0(n)i in these cases.This gives a complete description of � : Xl ! Xr. We will not go into thebusiness of proving that this does indeed induce all the isomorphisms that arerequired.6 Constructing meaningful monoidsIn this section we will put the machinery to work to construct some usefulmonoids. Remember that the Store-construction only works if the R-imagesof the morphisms of the context category are injective. Let's say that suchcategories have the injectivity property. We will start our constructions withSc and with categories of sets where the morphisms correspond to the subsetordering. The images of the morphisms of these categories are surely injective.38

It is not di�cult to check that Cont, and Store preserve the property. On theother hand Eq does not preserve the injectivity property. Thus, we have to takecare not to apply Store after Eq!6.1 Managing variablesIn this subsection we study a semantics for toy languages corresponding to the^9-fragment of Predicate Logic. In particular, we indicate how to use this se-mantics both to simulate the ^9-fragment of of Vermeulen's Sequence Semanticsand of Vermeulen's Referent Systems . See [Ver93], [Ver91] and [HV94]. Westart by introducing some auxiliary objects and some useful notational conven-tions. Consider the m-categorySc�n;+ of stacking cells where only �nitely manylevels are present. Remember that, via the standard embedding, we considerthe objects of Sc as occurring in Sc�n;+. Note that for a 2 Sc, we have thatRSc(a) is an in�nite set, but that RSc�n ;+(a) = ;. We de�ne (suppressing theobvious subscripts): id+ := hid; �i, where �(h0; 0i) := f+g and �(hn; ni) := ;for n 6= 0.In the de�nitional format we use the foregoing de�nition looks like this:id+ := hs id; fh0; 0i : f+gg si:The salient points are these. First we indexed our brackets to indicate therelevant instance of the Grothendieck Construction. We use c for Cont, e forEq, and s for Store. Secondly we use an alternative notation for pairing in thedescription of the function �. Finally we suppress both the constructions thatadd a unit of the relevant category and the function assignments of units: theyare the default. De�ne further:. push+ := push � id+. pop+ := id+ � pop. garb+ := push � id+ � pop. block := pop � pushNote that garb+ is id plus one garbage level, where the garbage level is the onlylevel present. We proceed by considering the categoryVarstack := (Sc�n;+)�Var�n :Here Var�n is the m-category of �nite sets of variables with the subsetorderingand union and as associated functor the obvious inclusion in Set.25 For any25There is a slight inelegance to using Var�n in the de�nition of Varstack. It is that avariable v can be \absent" in two ways in hV; �i, viz., either if v 62 V or if v 2 V , but if�(v) = id. We can get around this defect as follows. Start with as contexts the m-categoryhaving the set of all variables as single element, with subset and union and with as associatedfunctor the usual inclusion in Set. Then apply the Store�n construction with as singlecontext the set of variables and as stored objects the elements of Scfin;+.39

x
1

x
2

x
3

x
4

+

+
+

+

+

+

D

F

R

aFigure 7: An object of Varmana2Sc�n;+, de�ne ax := hs fxg; fx : ag si. Let x+ := (id+)x. Finally weintroduce the category of meanings for our fragment of Predicate Logic. Let Dbe any non-empty set. We take: Varman := Cont(Varstack; D). This categoryis designed to handle variable management. Its elements are of the form ha; F i,where a is an element of Varstack and where F is a set of assignments fromR(a) to D. The (�nitely many) referents of ha; F i are located above variablesx in the outer context of a. They occur at levels of a stacking cell, which formsthe inner context. The general form of the referents |in our standard way ofcoding| is hx; hhu; vi;+ii or, briey, hx; hu; vi;+i, where x is a variable and u,v are in ![f�g, so that hu; vi is the level of a stacking cell.We describe the language of the ^9-fragment corresponding to SequenceSemantics. To simplify inessentially, we only consider a language with a binarypredicate symbol P and a unary predicate symbol Q. The atomic formulasare [x, x], P (x; y) and Q(x), where x and y are variables. The language L isthe smallest set containing the atomic formulas, such that if A2L and B2L,then A:B2L. An example of a formulas is: [x:Q(x):[y :P (x; y):x]:Q(y):y]. Let astandard �rst order model M = hD; Ii for our language be given. [x, the \leftsquare bracket for x", is going to mean: create a discourse environment in whichan occurence of a �le labeled x will be counted as new. Counting as new, here,means that the �le is not going to be identi�ed with the current �le |if thereis one| labeled x. To put it in a di�erent way: [x means declare x. Similarlyx] will mean end the discourse environment in which the current �le (if any)for x is active. We specify the DRT-style meanings corresponding to SequenceSemantics for our fragment. Remember our convention that ha; hb; cii = ha; b; ci,40

etcetera. We put rx := hx; h0; 0i;+i. Thus rx is the unique discourse referentof x+.. [[[x]] := pushx. [[x]]] := popx. [[P (x; y)]] := hc x+ � y+; ff2Dfrx;ryg j hf(rx); f(ry)i 2 I(P)g ci. [[Q(x)]] := hc x+; ff2Dfrxg j hf(rx)i 2 I(Q)g ci. [[A:B]] := [[A]] � [[B]]Note that where pushx represents declare x, push+x , would rather represent de-clare and initialize x. We will not give the precise correspondence of our seman-tics as presented here to Sequence Semantics as de�ned in [Ver93].26 SequenceSemantics as de�ned there cannot make the distiction between declaring andinitializing, so in one respect our present semantics is more re�ned. We givetwo examples of interpretations. Let gx := hx; h�; 0i;+i. Thus gx is the uniquediscourse referent of garb+x . We have[[[x:Q(x):x]]] = hc garb+x ; ff2Dfgxg j hf(gx)i 2 I(Q)g ciNote that gx, the �le \containing" possible witnesses for the truth of our formulais a hidden, non interactive level for possible texts surrounding the formula.Thus we simulate the usual hiding of quanti�ed formulas. Still in our set-up theinformation stored in gx is not really thrown away.27 We turn to our secondexample. Let:. ry := hy; h0; 0i;+i. sx := hx; h�; 0i;+i. tx := hx; h�; 1i;+i. (push+)2 := push+ � push+ = hs hh0; 2i; ;i; fh�; 0i:f+g; h�; 1i:f+gg siWe have:[[[xQ(x)[xP (x; y)]] =hchsfx; yg; f x:(push+)2; y:id+ gsi;ff2Dfry;sx;txg j hf(tx)i2I(Q) and hf(sx); f(ry)i2I(P)gci26We hope to elaborate on this elsewhere. In fact, one can show that under quite generalconditions the Cont construction yields a semantics from which a relational DPL-style se-mantics can be derived in a natural way. To do this we need the additional notion of state,which is developped in [Vis94].27A garbage disposal construction would be a useful addition to our framework.41

We close this subsection with a brief look at Referent Systems (see [Ver91]).Referent Systems can be simulated by replacing [x and x] in our languageby a single symmetric bracket kx. The semantics is as before, except that:[[kx]] := blockx. So, when using [[kx]] to declare x, we simultaneously pop thecurrent discourse environment (if any) in which x may have a value. Thus in theReferent Systems semantics, stacking never happens. We leave it to the readerto compute, e.g., [[kx:Q(x):kx]] and [[kxQ(x)kxP (x; y)]] . In the last examplethe �le/discourse referent corresponding to the �rst occurrence of kx will be agarbage level. This in contrast to the second example for Sequence Semantics,where the �le corresponding to the �rst occurrence of [x was tx, a visible �le.6.2 Managing argument structureIn this subsection we treat a version of the ^9-fragment of Predicate Logic thatlooks suspiciously like a fragment of English. We call our fragment: Semanticsfor Argument Management, or, briey, SAM. Suppose we would like to representthe meaning of a natural language like anaphor, say hex=shex=itx , in our versionof Sequence Semantics as described above. It would seem that x+ is the perfectcandidate for the job. It is a \free oating" variable, that signals the presenceof an object labelled x. On closer inspection, however, this object would notreally have a sensible role to play. How could x+ ever interact in an interestingway with the meanings of a text? We have for example:x+ � [[Q(x)]] = [[Q(x)]] � x+ = [[Q(x)]] :One could say that (the interpretation of) the internal x of Q(x) already doesthe work. Note also that x+ = [[x = x]] . Thus, naively, we seem to be closeto providing anaphor like meanings, but we just cannot reach our goal. Thismalaise is shared by theories like DPL and DRT. It is curious that, where thesetheories are advertized as providing a semantics for anaphoric reference, theyfail to give a semantics that represents the role of anaphors, like hex=shex=itx .The reason they cannot do it is simple. The speci�cation language takes itsformat for handling arguments from Predicate Logic. This format itself is al-ready a solution of the problem that anaphors solve in natural language, namelyto link up local and global information management. Since in Predicate Logicthe problem is already solved, one cannot well represent an alternative solutionin the same language. In predicate language the arguments of a predicate arealways speci�ed in �xed places immediately following it. There can be no inter-vening material or changes of order (salva signi�catione). The meaning of, e.g.,P (x; y) is speci�ed as one package. There is no further analysis of the way P ,x and y interact in terms of representable semantical operations. Thereby wemiss the chance to tell the story about anaphors, about how they provide a linkbetween the local and the global : : : . We will now give a semantics in which theway arguments are treated is more like the way it happens in natural language.42

Let a �nite set AH be given. The elements of this set are the argumenthandlers: sub, ob, val, with, of : : : . Let AH be the m-category of subsetsof AH with subset and union. It's associated functor is the inclusion in Set.We build up our target category in steps. First we make: AH�Sc in whichsets of sets of argument handlers are stored on levels of stacking cells. Thiscategory represents the local grammatical structure of sentences together withthe arguments present at the various sentential levels. The discourse referentsare arguments on levels. De�ne for X � AH :idX := hs id; f h0; 0i:X g siSometimes |as discussed in the introduction| the same object occurs on dif-ferent levels. Thus we need the category Loc := Eq(AH�Sc). This category willbe su�cient to handle local, sentential structure. To handle global, anaphoric,structure we use Varman. Finally local and global have to be linked. To do thiswe work in the category: Sam := VarmankLoc (see example 4.4).28The language L is de�ned as follows. The atomic formulas are:Brac (,)Link who, that, sub, ob, of, with, : : :Phor ax, thex, hex, shex, itx, Maryx, : : : (for x2VAR)CN mother, father, child, horse, knife, : : :Adj angry, brown, : : :Verb cuts, sees, walks, is, : : :Formulas are the smallest class containing the atomic formulas and closed underthe rule: if A and B are formulas, then so is A:B. In other words, formulas arestrings of atomic formulas with separating dots. To increase readability we willoften omit the dots. Let an ordinary �rst order model M = hD; Ii, be given. Iassigns relations to the elements of CN, Adj and Verb. E.g., I(mother) could bea binary relation, representing x is the mother of y. I(cuts) could be a ternaryrelation, representing x cuts y with z. We could as well take I(cuts) to be a5-ary relation, representing x cuts y with z in place p at time t, etcetera. Theelements of Brac, Phor and Link are treated as logical constants: their meaningsare at most dependent on the domain of the model.29Before we can proceed to specify the interpretations of the CN, the Adj andthe Verb, we have to introduce some notational conventions and simpli�cations.If one of the components of a pair from the Cartesian product underlying the28In fact, it su�ces to apply the construction Eq only once. We prefer the current set-up,because it allows us to consider the local identi�cations in isolation of the global anaphoricmachinery.29We will also treat is as a logical constant.43

k-construction is a unit of the appropriate kind, then we will omit it and justexhibit the other component. This cannot lead to confusion, since the \innercontext" of the �rst component always is a set of variables and the \inner"context of the second component always is a stacking cell. Moreover, |in virtueof the speci�c categories going into this product| if a component is a unit, thenits contribution to the ultimate set of referents is empty. Thus, a fortiori, Eqrestricted to this contribution to the referents can only be trivial. We will assumethat an element x2X , goes to h0; xi2X � Y . Similarly y2Y goes to h1; yi. Wewill often omit singleton parentheses. Finally fr = sg := fhr; sig�, where wetake the (:)� in the appropriate set. fr = s; t = ug, etcetera, is similarly de�ned.We give sample interpretations of the atoms of our language in table 2. The(push) popwho he hs id; fh0; 0i:val ; h2; 2i:valg si; fr1 = r2g eir1 := hh0; 0i; val i; r2 := hh2; 2i; valiof he hs id; fh0; 0i:val ; h1; 1i:of g si; fr1 = r3g eir3 := hh1; 1i; of iax he hpush+x ; idfvalgi; fr4 = r5g eir4 := h0; x; h�; 0i;+i; r5 := h1; h0; 0i; valithex he hid+x ; idfvalgi; fr6 = r5g eir6 := h0; x; h0; 0i;+imother hc idf0;of g; ff2Dfr5;r7g j hf(r5); f(r7)i 2 I(mother)g cir7 := h1; h0; 0i; of iknife hc idfvalg; ff2Dfr5g j hf(r5)i 2 I(knife)g ciangry hc idfvalg; ff2Dfr5g j hf(r5)i 2 I(angry)g cicuts hc idfsub;ob;withg; ff2Dfr8;r9;r10g j hf(r8); f(r9); f(r10)i 2 I(cuts)g cir8 := h1; h0; 0i; subi; r9 := h1; h0; 0i; obi; r10 := h1; h0; 0i;withiis hc idfsub;obg; ff2Dfr8;r9g j f(r8) = f(r9)g ciTable 2: SAM's atomic interpretationsrecursive clause for interpretation is as expected: [[A:B]] := [[A]] � [[B]] .We explain the de�nitions of table 2. The brackets are easy: they push or poplevels of the local grammatical structure. Let's look atmother. [[mother]] , has nolinks to the global anaphorical machinery and doesn't change local syntacticalstructure. Thus the set of variables in the �rst component of the context isempty and the stacking cell in the second is the unit.30 The argument handlers30 Sam-meanings of which all embedded simple stacking cells are the unit (i.e., the embeddedstacking cells are unit plus garbage) are called conditions. Sam-expressions, whose meaningsare conditions are likewise called conditions. Thus mother is a condition, but (is not. When44

val and of are stored at the top level of the unit stacking cell in the secondcomponent of the context. These argument handlers give the roles of thingsstandardly associated with motherhood. First there is the value, mother herself,tagged val. Then there are her children, tagged of.31 E.g., the discourse referenth1; h0; 0i; of i can be understood as follows. The �rst component 1 signals thatwe are in the second, the \local" component of the context. The h0; 0i signalsthat we are at the top level of the unit. The of shows that we are looking at theargument of, stored at the top level.Using the meanings introduced so far, we can already interpret a child recit-ing consecutively things she sees.(:horse:):(:mother:):(:dog:):(:cat:)The interpretation will have the e�ect of there is a horse, there is a mother, thereis a dog, there is a cat. We don't analyse the deixis present in the child's words inour interpretation |our framework is too poor for that|, but just the fact thatshe notes the existence of the consecutive items. The argument of, associatedwith mother, does not occur in the childs utterance. In the interpretation thishas the e�ect of existentially quantifying out the argument. Thus,mother meansmother of someone. If we would have omitted the brackets, separating the items,the e�ect would have been to identify the items. E.g. (.mother.horse.), saysthat something is both a mother and a horse.The interpretations of knife and angry do not bring anything new. In theinterpretation of cuts and is, we have the special roles sub and ob of subject andobject. We turn to the interpretations of the links. These interpretations serveto identify �les across syntactical levels.32 that is like who, and sub, ob, with,etcetera, are like of. We illustrate the way the linking works by means of anexample.Example 6.1 We assume that runs corresponds to a unary predicate. Let'sconsider the term U:=(man ((who sub) runs)). who occurs in a term T:=(whosub). T occurs inside the sentence S:=((who sub) runs). S occurs, in its turn,in U. To each of these components correspond \levels" of the stacking cell inthe interpretation. These levels are introduced by the three left brackets andpopped into garbage by the corresponding right brackets. Let's call these levels:the embedded simple stacking cell of a �rst component is the unit, we speak of a globalcondition and when the embedded simple stacking cell of a second component is the unit of alocal condition. Thus, sentences and terms are/stand for local conditions.31A disadvantage of our framework in its present form is that we have to choose the argu-ments associated with a given word in advance. E.g., not every horse has an owner, but tomake sense of the horse of Sir John, we would have to add an argument of to the interpreta-tion of horse. But, adding the argument licences the inference of the existence of an owner,whenever we speak of a horse. We feel con�dent that it will be possible to manufacture moreexible versions of our framework lacking this defect.32The meaning of e.g. who is a condition according to the de�nition of footnote 30. Notethat this usage does not quite correspond to the usual idea of a condition as a test.45

t, corresponding to T , s, corresponding to S, and u corresponding to U . Ont, a referent val is stored. This referent is the result of the dynamic fusing ofthe referent val stored on the upper level of [[who]] and the referent val storedon the upper level of [[sub]] . On s we �nd the referent sub. It is the result offusing the referent sub on the level h1; 1i of [[sub]] with the referent sub of thetop level of [[man]] . In [[sub]] the referent val of the top level is \synchronically"identi�ed with the referent sub one level below. So the referents val on t and subon s are identi�ed. On the level u, we �nd again a referent val. It is the resultof fusing the referent val of the top level of [[man]] , with the referent val of thelevel h2; 2i of [[who]] . Moreover by synchronic identi�cation, the referent val onh2; 2i in [[who]] is identi�ed with the referent on h0; 0i in [[who]] . Hence val ont, sub on s and val on u are identi�ed. We give the result of computing themeaning of U incrementally from left to right. Remember that di�erent waysof computing the semantics of our sentence will give di�erent representations ofthe discourse referents. The existence of the isomorphisms � guarantees thatthis is harmless. De�ne:. r1 := h000; 0i, r2 := h0; 0i, r3 := h�; 0i. X := fr1; r2; r3g. � := fr1:fvalg; r2:fsubg; r3 : fvalgg. r4 := hr1; vali, r5 := hr2; subi, r6 := hr3; vali. E := fr4 = r5; r4 = r6g. r7 := fh1; fr4; r5; r6gig. F := ff2Dfr7g j f(r7) 2 I(man)\I(runs)gWe have: [[U]] = hc he hs hh0; 0i; Xi; � si; E ei; F ci: By our conventions wesuppressed the �rst component of the context. If we would have alternativelycomputed [[U]] as [[(man ((who sub]] � [[) runs))]] , the result would have beenthe same, but for the fact that, for i=1,2,3, ri would have been h�; i� 1i.The phores operate like the links, only they link �les or discourse referentsof the global machinery to �les or discourse referents of the local machinery.On the global side the machinery is simply Sequence Semantics. The meaningof hex, shex and itx is taken the same as the meaning of thex. Our choice oftreating the as an anaphor is not undisputed. There are plenty of examples thatseem to undermine this theory.33 We will not go into that discussion here. Howdo we treat names? In fact our semantics provides various options. The one weprefer is viewing names as \frozen anaphors". So the meaning of a name is likethe meaning of he. Our present framework is too poor to model the frozenness33For example: the winner will get one thousand guilders.46

of names fully. For that we would need the notion of state, which is not treatedin this paper. We can, however, make one simple adaptation to get part of thedesired e�ect. We set aside some labels for variables to function as subscriptsof names. We exclude these labels from occurring as subscripts of a and the.They can occur as subscripts of he, she and it.34Claim We submit that we are the �rst to describe correctly in the semanticsthe role of the phores as links. This does not mean, however, that we claim thatour solution is a fully correct representation of the meanings of phores in naturallanguage. First, it seems that Sequence Semantics allows lots of structure onenever meets in natural language. For example, nothing seems to correspond tothe stacking under x in: ((sub ax dog) sees (ob ax cat)). Secondly, it could wellbe that fusing in natural language happens more by higher order inference thanby label. These defects are a problem for all approaches we know.We have described the various meanings provided by our semantics and wehave touched briey on some further topics such as the problem of de�nitedescriptions and the proper treatment of names. It is time to have a look atsome sample sentences in our language.(a) ((sub Maryx) cuts (they ob bread) (with az sharp knife))(b) ((with az knife sharp) cuts (ob they bread) (Maryx sub))(c) ((sub Maryx) cuts (they ob bread))(d) ((sub Maryx) cuts (with az sharp knife))(e) ((ax woman sub) sees (ay horse ob)) ((shex sub) beats (ity ob))(f) ((thex sub man ((who sub) sees (they ob brown horse)) cuts (thez obbread))(g) ((Maryx sub) ((shex sub) is (ob angry)) ((shex sub) is (hungry ob)) cuts(they bread ob))Example (a) illustrates one advantage of our approach: the interpretation ofsuch a sentence can proceed in the order in which it is given. (a) and (b) areequivalent in meaning, since we may interchange, salva signi�catione (modulosome speci�able isomorphism), the order of items as long as no bracket (localor global) intervenes to which these items are sensitive. Leaving out argumentplaces as in (c) or (d) has the e�ect of having a hidden existentially quanti�edargument. Thus (c) means something like: Mary cuts the bread with something.34Note that the meaning of ((sub Hesperusx) is (ob Hesperusx)) is di�erent from the mean-ing of ((sub Hesperusx) is (ob Phosphorusy)), since fusion of discourse referents is di�erentfrom contentual identity. 47

Note that we can as well suppress the subject, which is less usual in English(but it is in Latin). (e) works like the usual DPL/DRT-example of anaphoricreference. E.g., in the interpretation, the horse will be fused with it. Example(g) illustrates the fact that in our approach sentences can be interrupted forother sentences. These will be \laid over" the interrupted sentence.We end this section with a brief remark on one possible extension of thefragment and its problems.35 We could try to add a semantics for himself.One possible interpretation of himself could be to make it just a link betweensubject and object. So: [[himself]] := hs id; fh0; 0i:fsub; obgg si. Under thisanalysis, we would represent Johns cuts himself as: ((Johnx sub) cuts himself).Alternatively, we could make himself a term. Thus, we could take: [[himself]] :=[[sub]] . Under this analysis, we would represent our sample sentence by: ((Johnxsub) cuts (himself ob)). However, consider such sentences as John sees a pictureof himself and John sees a picture of a picture of himself. Here it seems that themeaning of himself is able to search for the appropriate level for linking. Ourapproach in its present form allows us only to build links across a speci�ed �xednumber of levels. One possible way out is as follows. We change our semanticsin such a way that we can put sentences always between lazy brackets (seesubsection 2.3). Thus we would rewrite the above example (f) as:. [thex sub man [who sub) sees (they ob brown horse] cuts (thez ob bread]Obviously, we should make adaptations for e.g. the meaning of who. (Thesecond term-label val should be stored on h!; !i instead of on h2; 2i.) We treathimself as a term and store sub in its interpretation on all levels hi; ii for i<!.Moreover by Eq, we identify these subs. Obviously, our operation will causespurious subs to occur on various term levels, but these can do harm, since theywill not fuse with other labels on the term levels. Consider the sentence:. [Johnx sub) sees (ay picture ob (of az picture (of himself]We obtain the e�ect that we search on each lower level for something to fusewith sub until we reach the sentence level. Hence we will correctly identify Johnwith himself. Note that our \theory" predicts that himself is always fused withthe subject of the nearest sentence level below. E.g. himself will be fused withthe man in: the woman, whom the man gave a picture of himself, smiled. Thepoint of our elaboration is, however, not that this theory is correct but, rather,that such a theory can be implemented in our framework.7 Concluding RemarksThis paper describes some techniques to construct meaning-objects for monoidalprocessing. One starts with simple objects |like �nite sets or stacking cells. By35We were made aware of the problems concerning himself by Claire Gardent.48

iterating the Grothendieck construction more elaborate objects are constructed.The great advantage of the Grothendieck construction is that the appropriatemonoidal behaviour is automatically preserved. We introduced stacking cellsas an interpretation of bracket structures. Subsequently, we outlined the in-terpretation of a fragment using the construction methods of the paper. Thisfragment incorporates a linking mechanism to describe what anaphors do. Weclaim that only some such mechanism can pretend to truly constitute a seman-tics of anaphoric reference. If this claim is correct, we have given an examplethat monoidal semantics can provide faithful modeling of meanings.The purpose of our paper is more to point in the right direction, than toestablish a de�nitive, rigid framework once and for all. More questions areevoked than answered. We distinguish three kinds of extension of our work:(i) mathematical improvement of the framework as it stands, (ii) extendingthe fragment developped here within the boundaries of the present frameworkand (iii) extending the framework with essentially new elements both to increaseexpressive power and to incorporate some further philosophical ideas. We brieysketch some ideas for extensions of the three di�erent kinds.We mention some directions of local improvement of the framework as itstands. First, one would like to incorporate a smooth construction of the \�le-set functor" R. Secondly, it would be good to be able to construct stackingcells from even simplerobjects. One of the authors (Albert Visser) is currentlyworking on a proposal to represent stacking cells as multisets of morphisms ofan appropriate category.We mention some ideas for extending the fragment that seem to be in thescope of the methods developped so far. There are many interesting phenomenathat we would like to include. For example, we would like to have a way ofworking with an expandable number of argument places (cf. the horse of SirJohn in subsection 6.2). Currently we are working on a uniform treatment ofthe semantics of and in sentences such as John eats the bread with a fork and thepudding with a spoon and John hates and Mary loves Marc, etcetera. Anotherextension of the fragment could consist of a treatment of error messages toensure the propagation of information about local errors in the syntax, e.g., incases where term levels are erroneously fused with sentence levels.Finally, we discuss some possible extensions of the framework. The presentpaper is a study in Dynamics. Therefore we would like to include into our frame-work more of the salient ingredients occurring in the literature on Dynamics.First, and foremost, we can extend our framework with a good notion of stateand state transition so that a formulation of our semantics in update style (cf.[Vel91]) and in the relational format ([GS91]) becomes available. There is anelegant way to do this, which will be presented elsewhere. Another importantingredient we intend to include is a rational reconstruction of dynamic implica-tion. It is our prejudice that (dynamic) implication should be an adjunction inan appropriate category of partial information states. We suspect that �ndingthis category will become possible once a proper notion of presuppositional or-49

dering (in which presuppositions are counted as negative information) has beenadded to the framework (cf. [Vis94] for preliminary investigations).Clearly, our work is just an initial step towards the grand aim of a theoryof monoidal processing. But, we think that it exhibits very well the sort ofthing one has to do and the sort of question one has to answer. We submitthat we have shown |by means of examples| that such a theory can provide apowerful setting in which the phenomena of discourse processing can be fruitfullydiscussed.AcknowledgementsBoth during the process of theory formation and that of document preparationwe bene�ted from the help and inuence of colleagues and friends. We thankPatrick Blackburn, Jan van Eijck, Tim Fernando, Claire Gardent, Marco Hollen-berg, Marcus Kracht, and Henk Zeevat for enlightening discussions. We foundintellectual inspiration in the work of Johan van Benthem, Jeroen Groenendijk,Remco Scha, Martin Stokhof, Frank Veltman, and Henk Zeevat. We were helpedboth with matters of notation and matters of LaTEX by Jan Friso Groote, KarstKoymans, Jaco van de Pol, Alex Sellink, Jan Springintveld and Freek Wiedijk.We thank Maarten de Rijke and Patrick Blackburn for encouraging us to writethe paper and for their comments on the penultimate version.References[BW89] M. Barr and C. Wells. Category Theory for Computing Science. Pren-tice Hall, New York, 1989.[GS91] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguisticsand Philosophy, 14:39{100, 1991.[Hei83] I. Heim. File change semantics and the familiarity theory of de�nite-ness. In R. B�auerle, C. Schwarze, and A. von Stechow, editors, Mean-ing, Use and Interpretation of Language, pages 164{189. De Gruyter,Berlin, 1983.[Hei90] I. Heim. E-type pronouns and donkey anaphora. Linguistics andPhilosophy, 13:137{178, 1990.[Hof79] D.R. Hofstadter. G�odel, Esher, Bach: an eternal golden Braid. BasicBooks, Inc., New York, 1979.[HV94] M. Hollenberg and C.F.M. Vermeulen. Counting variables in a dy-namic setting. Logic Group Preprint Series LGPS-125, Departmentof Philosophy, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht,the Netherlands, December 1994.50

[Jac91] B.P.F Jacobs. Categorical Type Theory. PhD thesis, Catholic Univer-sity Nijmegen, 1991.[Kam81] H. Kamp. A theory of truth and semantic representation. In J. Groe-nendijk et al., editors, Formal Methods in the Study of Language, Am-sterdam, 1981. Mathematisch Centrum.[KR93] H. Kamp and U. Reyle. From Discourse to Logic, volume I, II. Kluwer,Dordrecht, 1993.[MA75] E. Manes and M. Arbib. Arrows, Structures and Functors: the Cate-gorical Imperative. Academic Press, New York, 1975.[Mac71] S. MacLane. Categories for the Working Mathematician. Number 5in Graduate Texts in Mathematics. Springer, 1971.[Mil92] D. Milward. Dynamics, dependency grammar and incremental inter-pretation. In Proceedings of COLING 92, 1992.[Mil94] David Milward. Dynamic dependency grammar. Linguistics and Phi-losophy, 17(6):561{606, 1994.[MO94] M.J. Moortgat and R. Oehrle. Adjacency, dependency and order. InProceedings of 9th Amsterdam Colloquium, pages 447{466, 1994.[Pra91] V. Pratt. Action logic and pure induction. In J. van Eijck, editor,Logics in AI | European Workshop JELIA '90, pages 97{120. JELIA,Springer, Berlin, 1991.[Seu85] P. Seuren. Discourse Semantics. Blackwell, Oxford, 1985.[Vel91] F. Veltman. Defaults in update semantics. In H. Kamp, editor, Con-ditionals, Defaults and Belief Revision. Dyana Deliverable R2.5A, Ed-inburgh, 1991.[Ver91] C.F.M. Vermeulen. Merging without mystery, variables in dynamicsemantics. Technical Report OTS-WP-CL-91-003, O.T.S. (ResearchInstitute for Language and Speech), Utrecht University, Trans 10, 3512JK Utrecht, the Netherlands, December 1991. To appear in: Journalof Philosophical Logic, 1995.[Ver93] C.F.M. Vermeulen. Sequence semantics for dynamic predicate logic.Journal of Logic, Language and Information, 2:217{254, 1993.[Vis92] A. Visser. Lazy and quarrelsome brackets. Logic Group Preprint Se-ries 82, Department of Philosophy, Utrecht University, Heidelberglaan8, 3584 CS Utrecht, the Netherlands, November 1992.51

[Vis94] A. Visser. Actions under presuppositions. In J. van Eijck andA. Visser, editors, Logic and Information Flow. MIT Press, Cam-bridge, Mass., 1994.[Zee91] H. Zeevat. A compositional approach to DRT. Linguistics and Phi-losophy, 12:95{131, 1991.[Zei90] L. Zeinstra. Reasoning as discourse. Master's thesis, Philosophy De-partment Utrecht University, 1990.A Semantics for binary notationsIn this appendix we show how to use the Grothendieck construction to give asemantics for binary notations.36 Binary notations are the usual designationsof numbers in binary, like \101", which stands for �ve. Our problem is that wewant to assign meanings to these notations that make concatenation of notationsa meaningful operation. So consider a language containing binary notations plusa symbol � for concatenation. Let's �rst consider the option of interpreting anotation as the number it designates. E.g., [[101]] = 3. The problem is that wewould have to put, e.g., [[01]] = [[1]] = 1. But,[[11 � 01]] = [[1101]] = 13 6= 7 = [[111]] = [[11 � 1]] :So we cannot interpret � compositionally under this semantics. At the otherextreme we could interpret binary strings autologically: as themselves. Thiswould surely lead to a compositional semantics. Only we would lose the centralidea that these notations are supposed to stand for numbers. Our solution is tointerpret notations as pairs hm;ni, where m is the length of the notation andwhere n is its customary value. We show how this semantics can be assembledusing the Grothendieck construction.We start by specifying our m-category of contexts. This is the m-categoryNatloc of located unary strings or located tally numbers.. The objects are natural numbers f0; 1; 2; � � �g. These can be viewed asunary strings or tally numbers.. The morphisms are tripels hm;n; ki, withm+n � k. A morphism hm;n; kitells us that m is embedded in k at location n. Here n is the number of1's in k occurring after m. Like this:1 � � � 1 mz }| {1 � � � 1 nz }| {1 � � � 1| {z }k :36The appendix is our answer to a question posed by Theo Janssen.52

. dom(hm;n; ki) = m, cod(hm;n; ki) = k, idm = hm; 0;mi. hm;n; ki � hk; p; qi = hm;n+ p; qi1 � � � 1 1 � � � 1 mz }| {1 � � �1 nz }| {1 � � � 1| {z }k pz }| {1 � � � 1| {z }q. m � n = m+ n, in1(m;n) = hm;n;m+ ni, in2 = hn; 0;m+ nimz }| {1 � � � 1 nz }| {1 � � � 1| {z }m+n :. � is just the appropriate identity, since + gives us a standard monoid.. id = 0Take �(n) = Nat and p[�(hn;m; ki)] = p � 2m. It is easy to see that thisde�nes an m-functor. We get:hi; ni � hj;mi = hi+ j; n[�(in1(i; j))] +m[�(in2(i; j))]i= hi+ j; n[�(hi; j; i+ ji)] +m[�(hj; 0; i+ ji)]i= hi+ j; n � 2j +miA good alternative way of representing the objects we constructed is asfollows. Consider the pair hi; ni. Write n in binary and precede it by in�nitelymany 0's. Put a pointer above the place followed by i digits. We represent,for example, h3; 41i by: � � � 00010#1001. Note that, e.g., h4; 9i � h3; 41i can becomputed by: #0 0 0 1 0 1 0 0 1#0 0 0 1 0 0 1#0 0 0 1 1 1 0 0 0 1Thus the context of the second component of the merge has the e�ect of ashift. We interpret binary notations by the pair of their length and their value.The second component is the classical content, the �rst a dynamic context thatcauses a shift in interaction. Evidently, [[� � �]] = [[�]] � [[�]] . So our semanticsproduces the desired e�ect. Note that id = h0; 0i 6= h1; 0i = [[0]] .53

