Higher-order Concurrency

John Hamilton Reppy
Ph.D Thesis

TR 92-1852
June 1992

Department of Computer Science
Cornell University

Ithaca, NY 14853






HIGHER-ORDER CONCURRENCY

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

by
John Hamilton Reppy
January 1992



COPYRIGHT () John Hamilton Reppy 1992
ALL RIGHTS RESERVED
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John Hamilton Reppy, Ph.D.
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Concurrent programming is a useful technique for structuring many important classes of ap-
plications such as interactive systems. This dissertation presents an approach to concurrent
language design that provides a new form of linguistic support for constructing concurrent
applications. This new approach treats synchronous operations as first-class values in a way
that is analogous to the treatment of functions as first-class values in languages such as M L.
The mechanism is set in the framework of the language Concurrent ML (CML), which
is a concurrent extension of Standard ML. CML has a domain of first-class values, called
events, that represent synchronous operations. Synchronous message passing operations are
provided as the base-event values, and combinators are provided for constructing more com-
plex events from other event values. This mechanism allows programmers to define new
synchronization and communication abstractions that are first-class citizens, which gives
programmers the flexibility to tailor their concurrency abstractions to their applications.

The dissertation is organized into three technical parts. The first part describes the
design and rationale of CML and shows how first-class synchronous operations can be used
to implement many of the communication mechanisms found in other concurrent languages.
The second part presents the formal operational semantics of first-class synchronous oper-
ations and proves that the polymorphic type system used by CML is sound. The third
part addresses practical issues. It describes the use of CML in non-trivial applications,
describes the implementation and performance of CML on a single-processor computer,
and discusses issues related to the use and implementation of CML on a shared-memory
multiprocessor.
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Chapter 1

Introduction

Abstraction is perhaps the most important tool that programmers have for managing the
complexity of software design and implementation. There are various language mechanisms
for promoting abstraction, such as procedures for hiding the details of computation, abstract
data-types for hiding representation information, and modules for grouping related types
and operations with an abstract interface. This dissertation describes a new language
mechanism for supporting abstraction of communication and synchronization in concurrent
programs. My approach is to treat synchronous operations as first-class values in a way that
is analogous to the treatment of functions as first-class values in languages such as ML.
By doing so, a small collection of primitive operations and combinators can support a wide
range of different concurrency paradigms. I call this style of programming “higher-order
concurrent programming,” as an analogy with higher-order programming in languages such
as ML.

This work is set in the context of Standard ML (SML) [MTH90]. I have developed
a language, called Concurrent ML (CML), that extends SML with multiple threads
of control and first-class synchronous operations. CML is implemented on top of the
Standard ML of New Jersey (SML/NJ) system [AM87, AM91]. While the discussion
of this dissertation uses CML as the archetype, the language design principles are easily
applied to other higher-order languages (e.g., Quest [Car89]), and should also be applicable

to object-oriented languages such as Modula-3.

1.1 The case for concurrency

Concurrency is often touted as a source of improved performance and rightly so, but it is a
subtext of this dissertation that concurrency is an important programming tool independent

of the performance benefits from multiprocessing. Certain classes of applications, most



notably interactive applications, are naturally structured as concurrent programs. The
language design presented in this dissertation is motivated by the need to support the

programming of these applications.

Before going any further, it is useful to define a nomenclature. I distinguish between
parallel and concurrent languages by whether they provide implicit or explicit concurrency.
For example, the futures found in some dialects of Lisp are a parallel language feature,
since they only specify the possibility of concurrent computation. Because I am interested in
programming systems with explicit concurrency, the focus of this dissertation is on providing

support for concurrent programming, and not on parallel programming.’

In the remainder of this section, I examine two important classes of applications that
benefit from the use of concurrent programming. These applications share the property that
flexibility in the scheduling of computation is required. Whereas sequential languages force
a total order on computation, concurrent languages permit a partial order, which provides
the needed flexibility.

1.1.1 Interactive systems

Providing a better foundation for programming interactive systems, such as programming
environments, was the original motivation for this line of research [RG86]. Because of
their naturally concurrent structure, interactive systems are one of the most important

application areas for CML. Concurrency arises in several ways in interactive systems:

User interaction. Handling user input is the most complex aspect of an interactive pro-
gram. Most interactive systems use an event-loop and call-back functions. The event-
loop receives input events (e.g., mouse clicks) and passes them to the appropriate
event-handler. This structure is a poor-man’s concurrency: the event-handlers are

coroutines and the event-loop is the scheduler.

Multiple services. For example, consider a document preparation system that provides
both editing and formatting. These two services are independent and can be naturally
organized as two separate threads. Threads also provide easy replication of services;
if the user opens a new document for editing, then the system just spawns a new edit
thread. Multiple views of the same document can also be supported by replicating
threads.

Interleaving computation. A user of a document preparation system may want to edit

one part of a document while another part is being formatted. Since formatting may

'1 do examine some of the issues related to a multiprocessor implementation of CML in Chapter 12.



take a significant amount of time, providing a responsive interface requires interleav-
ing formatting and editing. If the editor and formatter are separate threads, then

interleaving comes for free.

Output-driven applications. Most windowing toolkits (e.g., X1ib [Nye90b]) provide an
input-driven model, in which the application code is occasionally called in response
to some external event. But many applications are output driven. Consider, for
example, a computationally intensive simulation that maintains a graphical display
of its current state. This application must monitor window events, such as refresh
and resize notifications, so that it can redraw itself when necessary. In a sequential
implementation, the handling of these events must be postponed until the simulation
is ready to update the displayed information. By separating the display code and
simulation code into separate threads, the handling of asynchronous redrawing is

easy.

The root cause of these forms of concurrency is computer-human interaction: humans are

asynchronous and slow.

While the use of heavy-weight operating-system processes provides some support for
multiple services and interleaved computation, it does not address the other two sources
of concurrency. Likewise, while event-loops and call-back functions provide flexibility in
reacting to user input, they bias the application towards an input-driven model and do not
provide much support for interleaved computation. A concurrent language, on the other

hand, addresses all of these concerns.

1.1.2 Distributed systems

Another application area in which concurrent programming is useful is distributed systems.
In fact, many existing distributed programming languages and toolkits provide support for
concurrent programming (e.g., Argus [LS83], Isis [BCJT90], and SR [AOCES8]). Con-
currency is needed because interaction with remote processes is slow and naturally asyn-
chronous. Threads provide a useful abstraction for managing outstanding interactions and

for reacting to new requests dynamically [LHG86].

1.2 Overview of this dissertation

I believe that there are three important aspects to good language design. First, there should
be a real problem that needs solving, and a design that solves it. Second, there should be

a firm theoretical foundation for the design. And third, the feasibility and usefulness of the



design should be demonstrated in practice. The organization of this dissertation reflects
this philosophy. It is divided into five parts: introduction, design, theory, practice, and

conclusion, with the middle three parts addressing the above aspects.

The design part presents the rationale and design of my concurrency mechanism; the
theory part provides a formal understanding of the mechanism; and the practice part ad-
dresses the issues of feasibility and usefulness of the mechanism. The other two parts are
less technical: the introduction part includes this chapter and an introduction to SML,
which may be skipped by the reader who is familiar with ML notation; the conclusion part

describes areas for future research and summarizes the results of my research.

1.2.1 Design

The design part starts off with Chapter 3, which surveys existing approaches to concur-
rent language design. Chapter 4 is the heart of the dissertation; it provides the rationale
for first-class synchronous operations and introduces them in the context of CML. The
following chapter provides several substantial examples of the use of first-class synchroniza-
tions to build communication and synchronization abstractions, including several found in
other concurrent languages. This part of the dissertation is fairly self contained, although

familiarity with SML syntax is useful.

1.2.2 Theory

SML has set a precedent of both being a practical language with real implementations
and of having a detailed formal semantics. I have developed a dynamic semantics for a
small language, called A, that models the concurrency features of CML [Rep91b]. This
dissertation extends the work of [Rep91b], by presenting a static semantics for A, and

proving that it is sound with respect to the dynamic semantics.

Following a brief summary of basic notation, Chapter 6 illustrates the style of formal
semantics using a more familiar sequential language, which is a sequential subset of A.,.
Chapter 7 presents the syntax and operational semantics of A.,. The main results of this
part are in Chapter 8, where I present a polymorphic type system for A., and show that
it is sound with respect to the dynamic semantics of Chapter 7. This result is important,
since the implementation of CML uses features of SML/NJ that are not type-safe. To my
knowledge, this is the first proof of the soundness for a polymorphic typing of concurrency

primitives.



1.2.3 Practice

In the final analysis, the true worth of a language design can only be determined “in-the-
field.” Questions about the usefulness and practicality of language features can only be
answered by actual experience. I have developed and distributed an implementation of
CML for single processor computers? [Rep90b], which has been used by myself and others
to implement several non-trivial applications. This experience demonstrates that CML is

a useful programming language and that it can have efficient implementations.

Chapter 9 describes the use of CML to construct a multi-threaded X window system
toolkit, called eXene [GRI1], and its use to build interactive applications on top of eXene.
I also briefly discuss the application of CML to the programming of distributed systems, and
applications of CML by other researchers. In Chapter 10, I describe the implementation
of CML in detail and describe some possible implementation improvements. Chapter 11
presents the results of micro-benchmarks that demonstrate the efficiency of CML (including
a head-to-head comparison with a C thread library). These data support the conclusion that
CML is competitive with thread libraries implemented in lower-level languages. Finally,
Chapter 12 discusses the use of CML for parallel programming, possible extensions to better
support parallel programming, and sketches the design of a shared-memory multiprocessor

implementation of CML.

1.3 History

The ideas in this dissertation have been evolving for several years and there have been
several instantiations of them in language designs. I first developed this approach in the
context of PML [Rep88], an ML-like language used in the Pegasus system at AT&T Bell
Laboratories [RG86, GR92]. I reimplemented the concurrency primitives of PML on top
of SML/NJ at Cornell University [Rep89]. This implementation evolved into the current
version of CML [Rep91a], which is described in this dissertation.

ZThe first version was released in November 1990.



Chapter 2

An Introduction to SML

While the ideas presented in this dissertation are largely language independent, they have
been developed in the context of Standard ML (SML). I use SML both as the sequential
core of my language design and as the implementation language. This chapter provides an
introduction to SML that should allow the reader to follow the examples; for a more
complete introduction see [Har86] or [Pau91]. The formal definition of SML can be found
in [MTH90, MT91].

In the remainder of this chapter, I first introduce the basic features of SML; then I
describe the datatype and pattern matching mechanisms; I follow this by a discussion of

the imperative features of SML; and finally I present a complete example.

2.1 Basics

SML is an expression language: the traditional statement constructs, such as blocks, con-
ditionals, case statements, assignment, etc., are packaged as expressions. Every expression
has a statically determined type and will only evaluate to values of that type (this is called
type soundness). Computation in SML is value oriented. Because of the central role of

values, there is a much larger range of values than found in more conventional languages.

2.1.1 Basic values and expressions

SML provides a fairly standard collection of ground types and values, which are summarized
in Table 2.1. The type unit, which has exactly one value (written ()), is often used as
the result type of functions that are executed for their side effects. Negative numbers are

denoted using using a leading tilde, which is also the unary negation operator.

In imperative languages, such as C, assignment is the principal mechanism used to as-



Table 2.1: SML ground types

Type | Sample literal values

unit O
bool true, false
int ...,72,71,0,1,2,...

string | "abc", "hello world!\n"
real 1.0,1.0E76

sociate values with variables. While SML does provide updatable cells (see Section 2.3.1),
it uses binding as its principal mechanism for associating values with variables. In SML,
variables are used to name values, and are immutable (this is sometimes called single as-

signment). For example, the binding

val x = 1 and y = "I’m a string"

establishes bindings for x and y. The static environment produced by this binding assigns
the type int to x and string to y (the type information is inferred by the compiler). This

static environment can be summarized by the following specification:

val x : int
val y : string

The notation of specifications, which comes from the signatures in the module system, is a

natural and concise way to describe a set of bindings.

2.1.2 Tuples and records

In addition to these ground types and values, SML provides tuples and records. For
example, the expression (1, true) is a pair of the value 1 and true, and has the product
type int * bool. Records are labeled tuples. For example, p1 might be defined to be the
point (1,2) by

val pl = {x =1, y = 2}

in which case p1 has the type {x : int, y : int}. Note that the order in which labeled

fields appear is insignificant, so that

val p2 = {y = 2, x = 1}

defines the same point as p1. A field labeled [ of a record can be selected using the notation

#l. The example in Section 2.4 further illustrates the use of labeled records.



2.1.3 Functions and polymorphism

Functions play a key role in SML. Functions are declared using the leading keyword fun;

for example, the factorial function can be defined as:

fun fact n = if (n = 0) then 1 else n * fact(n-1)

which has the specification:

val fact : int -> int

Tail recursion plays the role of looping in SML.! For example, the iterative form of the

factorial function is written as a tail recursive function:

fun fact n = let
fun loop (i, result) = if (i = 0)
then result
else loop(i-1, i*result)
in
loop (m, 1)
end

This example also introduces the let-expression, which is used for defining local variables
(the function loop in this case). Note that instead of destructive updates to loop variables,
the new values are passed to the next invocation of iterFact; each iteration has its own

copies of i and result.

The SML compiler uses type inference to determine the types of expressions. In the
case of functions, this can often be a family of types. For example, consider the identity

function:

fun identity x = x

The meaning of this function is independent of its argument type. It can be viewed as
a function on integers, or strings, or reals, or pairs of integers, etc. Thus, it has the
polymorphic type Vo.(a — ), where « is a type variable ranging over all types. In SML,
type variables are denoted by a leading apostrophe. For example, the value identity has

the specification:

val identity : ’a -> ’a

!There is a while expression, but it is just syntactic sugar for the application of a tail recursive function.
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where the V is implicit. The SML compiler always infers the most general type for a given

expression.

SML is a higher-order language, which means that functions are first-class values; they
can be passed as arguments, embedded in data structures and returned as results. A simple

example is infix function composition, which is defined in SML as:

fun o (£, g) = fn x => (£ (g x))
infix o

The form “fn x => ...” is the way that function values are written in SML (for those
familiar with the A-calculus, fn can be read as A). The second line declares o to be an
infix operator. An infix operator can be used as a normal identifier by prefixing it with the

keyword op (e.g., op *+). Function composition can also be defined using a curried form:
fun o (£, g) x = (£ (g x))

These two declarations of composition are equivalent, and have the specification:
val o : (’a -> ?’b) * (°c -> ’a) -> ¢ > ’b

As an example of its use, the expression

(fn x => (x*x)) o (fn x => (x-1))

evaluates to a function that computes (z — 1)2.

2.2 Datatypes and pattern matching

In addition to the basic values, SML provides recursive data structures and abstract types.

Structured values are decomposed using a powerful pattern matching notation.

2.2.1 Datatypes

The datatype declaration introduces a new, possibly recursive, type. For example, the

representation of integer binary trees can be defined as:

datatype int_tree
= Empty
| Leaf of int
| Node of (int * int_tree * int_tree)

11



This declaration says that a tree is either empty, a leaf consisting of an integer value, or a
node consisting of an integer and two sub-trees. The identifiers Empty, Leaf and Node are
called constructors, and are used to construct tree values. Datatype declarations can be
parameterized to define type comstructors. For example, we can define a family of binary

tree types by the definition:

datatype ’a tree
= Empty
| Leaf of ’a
| Node of (’a * ’a tree * ’a tree)

In addition to user defined datatypes, SML has a few predefined datatypes. The type
bool is actually defined as

datatype bool = true | false

Another important datatype that is predefined by SML/NJ is the polymorphic option
type:

datatype ’a option = NONE | SOME of ‘a

There is also a list type, which is discussed below.

2.2.2 Pattern matching

The power of the datatype declaration mechanism is enhanced by pattern matching. Pattern
matching is a mechanism for control-flow, value decomposition, and binding. For example,

the boolean negation function can be defined using two clauses:

fun not true = false
| not _ = true

[}

The first clause says that if the argument is true, then return false. The in the second
clause is a wildcard, which matches anything (in this case, false is the only possibility).
Pattern matching is the standard binding and value decomposition mechanism in SML,
and we have already seen some examples of it. For example, the definition of function

composition

fun o (f, g) x = £ (g x)

has a tuple pattern as its first argument, which binds £ to the first element of the pair and
g to the second. A more interesting example is a function to compute the height of a binary

tree:

12



fun height Empty = 0
| height (Leaf _) =1
| height (Node(_, t1, t2)) = max(height t1, height t2) + 1

In the third clause, the variables t1 and t2 are bound to the subtrees. Unlike pattern
matching in Prolog, SML patterns are linear (i.e., a variable can occur at most once in a

pattern).

Pattern matching can be used to extract values from records. For example, the following

function swaps the z and y coordinates of a point:

datatype point = PT of {x : int, y : int}
fun swap (PT{x=x1, y=y1}) = PT{x=y1, y=x1}

The pattern binds x1 to the x field and y1 to the y field. There are two shorthand forms

for pattern matching records, both of which are illustrated in the following example:

fun xCoord (PT{x, ...}) =x

[13 ”

Here the field name x is being used as shorthand for “x=x,” and the is in lieu of the

rest of the fields.

Pattern matching can also be used against literals. For example, the recursive factorial

function can be coded as follows:

fun fact 0
| fact n

1
n * fact(n-1)

In addition to equational definitions of functions, pattern matching is used in a general form

of a case expression.

2.2.3 Lists

One of the most important recursive types is the polymorphic list type, which is defined as

datatype ’a list = nil | :: of (’a * ’a list)
infix 5 ::

The datatype declaration defines a list to be either empty (nil), or the cons of an element
and a list. The infix declaration specifies that the cons operator (::) is a right associative
infix operator with precedence level 5. Because of the importance of lists, SML provides

special syntax for list patterns and expressions. The syntax

[ela €2, .-y en]
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is syntactic sugar for

eriiegi: ... 1iepiinil

and likewise for patterns. The following function, which inserts delimiters between adjacent

list elements, is an example of the use of this notation:

fun insertDelim delim 1 = let
fun insert [1 = []
| insert (s as [_]) = s
| insert (x::r) = x :: delim :: (insert r)
in
insert 1
end

The second clause of this function illustrates the as pattern form, which, in this case, binds

s to the single element list matched by “[_].”

There are a number of standard list functions that are provided by SML/NJ, and used

in this dissertation. These are:

val length : ’a list -> int

val map : (Pa => ’b) -> ’a list -> ’b list
val app : (’a —> ’b) > ’a list —> unit
val rev : ’a list -> ’a list

The function length returns the length of a list; map applies a function to a list, returning
the list of results; app applies a function to a list, discarding the results; and rev reverses

a list.

2.2.4 Abstract types

The abstype declarative form is a variation on the datatype declaration that limits the
visibility of the type’s representation. The time-honored example of an abstract datatype

is the stack:

abstype ’a stack = STK of ’a list
with

val empty = STK[]

fun push (x, STK s) = STK(x::s)

fun pop (STK(x::r)) (x, STK r)
end

The representation of a stack is only visible in between the with and end; outside the type

stack is abstract. I use the abstype mechanism in this dissertation in lieu of the SML
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module facility, since it is easier to understand. A more elaborate example of abstract types

is given in Section 2.4.

In addition to the abstype declaration, the local declaration can be used to limit the

scope of declarations. For example, the stack could be declared as

local

datatype ’a stack = STK of ’a list
in
type ’a stack = ’a stack
val empty = STK[]
fun push (x, STK s)
fun pop (STK(x::r))
end

STK(x::s)
(x, STK r)

There are some technical differences between these two declarations, but they are beyond

the scope of this dissertation.

2.3 Imperative features

Although SML is mostly applicative, it does have a small collection of imperative features.
The most important of these are references and exceptions; in addition, SML/NJ provides

first-class continuations.

2.3.1 References

References are mutable heap cells. They are created by the function ref,? updated using
:=, and examined by the ! function. As an example, the following binds two functions that

share a common reference cell:

val (get, put) = let
val cell = ref O
in
((fn () => tcell), (fn x => cell := x))
end

The reference operations have the following signature:

val ref : ’_a -> ’_a ref
val ! : ’a ref -> ’a
val := (’a ref * ’a) -> unit

2The ref function is really a constructor and can be used in pattern matching, but that feature is not
used in this dissertation.
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The notation “’_a” in the type of ref means that it has an imperative type, which is
“less polymorphic” than a similar applicative (non-imperative) type. This is a technical
restriction that is required to prevent type loopholes. The full technical details of imperative
types is beyond the scope of this introduction; Chapter 8 has some discussion of imperative
types and Tofte describes them in great detail in [Tof88] and [Tof90].

SML/NJ uses a more flexible scheme for typing polymorphic references, called weak
polymorphism. The idea is to assign a rank (or strength) to type variables. Roughly, the
rank of a type variable is the number of abstractions that “protect” a reference value of
that type; normal type variables have rank co. For example, the type of ref in SML/NJ

18

val ref : ’la -> ’la ref

where the integer in the type-variable name denotes its rank. Since CML is implemented
on top of SML/NJ, its interfaces are presented using weak types. The details of weak
polymorphism are not important to this dissertation; it is only necessary to recognize that
functions with weak types are not fully polymorphic. The theoretical treatment (Part III),

however, uses the more standard imperative type system.

2.3.2 Exceptions

SML has an exception mechanism for signaling run-time errors and other exceptional con-
ditions. There are two aspects to the exception mechanism: the representation of exception

packets, and the control-flow of raising and handling exceptions.
The built-in type exn is the type of exception packets, which are created using a special

kind of datatype constructors. The declaration

exception Foo and Bar of int

declares two new exception constructors (exception specifications use the same syntax).

Since exception packets are values of a datatype, the handling of exceptions can use
the pattern matching mechanism to match exceptions. For example, the following is an

implementation of integer division that returns 0 when the divisor is 0:

fun safeDiv (a, b) = (a div b) handle Div => 0

An exception is raised using the raise expression. For example, the following function,
which computes the product of a list of integers, uses the exception Zero to short-circuit

the evaluation if 0 is encountered:
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fun product 1 = let
exception Zero
fun loop ([1, n) =
| loop (0::_, _)
| loop (i::r, mn)
in
(loop (1, 1)) handle Zero => 0
end

=]

raise Zero
loop (r, i*n)

Although this dissertation only uses monomorphic exceptions, it is possible to declare
polymorphic exception constructors. As with references, fully polymorphic exceptions result

in type loopholes; therefore exceptions can only be weakly polymorphic (or have imperative

types).
2.3.3 Continuations

SML/NJ provides first-class continuations as an extension, and I use them heavily in the
implementation of CML (see Chapter 10). A continuation is a function that represents
the “rest of the program” [Gor79]. The programming language Scheme [RC86] makes
continuations accessible to the programmer as first-class values.> The Scheme function call-
with-current-continuation (call/cc for short) calls a function with the current continuation
as the argument. First-class continuations are supported in SML/NJ via an abstract type

and two primitive functions [DHM91]:

type ’a cont
val callcc : (’la cont -> ’la) -> ’la
val throw : ’a cont -> ’a -> ’b

These can be used to implement loops, back-tracking, exceptions and various concurrency
mechanisms, such ascoroutines [Wan80] and engines [DH89]. For example, the following is
a continuation-based version (from [DHM91]) of the product function given in the previous

section:

fun product 1 = callcc (
fn exit => let

fun loop ([1, n) =
| loop (0::_, _)
| loop (i::r, n)

in
loop (1, 1)

end)

=]

throw exit 0
loop (r, i*n)

This function uses the continuation exit to short-circuit the evaluation if 0 is encountered.

3The idea dates back to Landin’s J operator [Lan65], [Fel87b].
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2.4 An example — functional queues

To wrap up this introduction to SML, consider the implementation of an abstract FIFO

queue type. The signature of this abstraction is:

type ’a queue

val empty : ’a queue

val isEmpty : ’a queue -> bool

val insert : ’a * ’a queue -> ’a queue
exception EmptyQ

val remove : ’a queue -> ’a * ’a queue

The value empty is the empty queue; isEmpty returns true if its argument is the empty
queue; insert adds an item to the end of the queue; and remove removes the head of
the queue. The exception EmptyQ is raised if remove is applied to an empty queue. This
abstraction is functional; i.e., instead of mutating a shared queue object, the operations

insert and remove return new queue values as results.

The implementation of this abstraction is given in Figure 2.1. Internally, a queue is

abstype ’a queue = Q of {front : ’a list, rear : ’a list}
with
val empty = Q{front = [], rear = [1}
fun isEmpty (Q{front=[], rear=[1}) = true
| isEmpty _ = false
fun insert (x, Q{front, rearl})
exception EmptyQ
fun remove (Q{front = [1, rear = [1}) = raise EmptyQ
| remove (Q{front [1, rear}) = remove(Q{front = rev rear, rear = [1})
| remove (Q{front = x::r, rear}) = (x, Q{front = r, rear = rear})
end (* abstype *)

Q{front = front, rear = x::rear}

Figure 2.1: A queue implementation.

represented by the constructor Q applied to a record of two fields: front and rear, which
are stacks (represented by lists). The insert operation pushes a value onto the rear stack,
and the remove operation pops a value from the front stack. In the case that the front
is empty, then remove pushes the elements of the rear stack onto the front in reverse

order.
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Part 11

Design
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Chapter 3

Concurrent Programming
Languages

In order to understand the trade-offs in language design, it is necessary to know the alter-
natives. In this chapter, I survey a representative collection of concurrency features and
languages.! For the purpose of this dissertation, the most important language character-
istics are the synchronization and communication primitives. These can be divided into
two main classes: shared memory primitives and distributed memory (or message-passing)
primitives. In this chapter, following a brief discussion of process creation mechanisms, I
focus on these two different classes of concurrent languages, and discuss the appropriateness

of the various design alternatives for adding concurrency to SML.

There are a number of good surveys of concurrent language design. A comparison of
different concurrency mechanisms using two example problems can be found in [BD80]. An-
drews and Schneider [AS83] survey a broad range of concurrency mechanisms; Wegner and
Smolka compare CSP, Ada and monitors in [WS83]; Andrews covers concurrent program-
ming using various different languages in [And91]. And a collection of significant reprints
of papers on concurrent languages and programming (including [AS83] and [WS83]) can be
found in [GM8S].

As discussed in Chapter 1, this dissertation is about concurrent language design, there-
fore I do not survey parallel implementations of lazy languages (e.g., GAML [Mar91]),
parallel languages (e.g., Id [Nik91]), or distributed languages (e.g., Argus [LS83], or SR
[AOCESS]). I also do not discuss concurrent logic-programming and concurrent constraint

languages [SR90].

!There are literally hundreds of different concurrent programming languages, so a complete survey is
impossible.
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3.1 Processes and threads

The specification and creation of processes in a concurrent programming language is usually,
although not always (see Section 3.3.5), orthogonal to the communication and synchroniza-
tion mechanisms. Process creation can be either static, where the set of processes is fixed
by the text of the program, or dynamic, where some mechanism is provided for creating
new processes on the fly. Each process in a concurrent program has an independent thread
of control, hence, the term thread is often used instead of process. This has the added
advantage of avoiding confusion with the other meanings of the word process. I favor the
term thread, except in the context of the formal semantics where process is the conventional

term.

An example of static process creation is the cobegin statement, which has the form?
COBEGIN stmty || stmiy || ... || stmt, COEND

This statement proceeds by executing the n statements in parallel and then synchronizing
on the completion of all of the statements. In a language with recursion this statement can
be used to create dynamic tree parallelism, but it is still limited in that the lifetimes of

processes are tied to their children’s lifetimes.

Dynamic process creation usually involves a fork operation (sometimes called spawn),
which takes a statement (or procedure) as an argument and creates a new process to execute
it. The fork operation is often accompanied by a join operation, which allows the parent
to synchronize on the child’s termination. Using fork and join, the cobegin construct from

above can be implemented as:

FORK stmiq
FORK stmisy

P
p2

pn := FORK simt,
JOIN p1
JOIN p»

JOIN pn

Dynamic process creation allows the flexible use of processes. For example, a server
might want to create a new thread to handle each request. In a language with a static set
of processes, this requires preallocating a pool of server threads and reusing them. This is

awkward and limits the number of simultaneous requests that can be handled, which can

2For most of this chapter, I use an Algol 60 style notation, since most of the languages I discuss have
roots in the Algol family of languages.
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lead to unnecessary delays when handling requests [LHG86]. Writing concurrent programs
in a language with static process creation is similar to the problem of writing programs
with dynamic data structures in a language that only provides static memory allocation.
In conclusion, there does not seem to be any strong reason to use static process creation,

and many reasons in favor of dynamic creation.

3.2 Shared-memory languages

Shared-memory languages use mutable shared state (e.g., shared variables) to implement
process communication. The key problem in these languages is preventing processes from
interfering with each other. This problem can be characterized by the following classic

example:
x := 1; COBEGIN x := x+1 || x := x+1 COEND

Without some guarantee of atomicity, the resulting value of x is undefined. The assignments
are examples of critical regions; that is, regions of code that are potential sources of interfer-
ence without proper concurrency control. Shared-memory languages are distinguished by
the mechanisms they use to provide synchronization and concurrency control. To illustrate

these, I use a unique ID service as a running example.

3.2.1 Low-level synchronization mechanisms

The most basic synchronization mechanism is the semaphore, which is a special integer
variable with two operations: P and V. Given a semaphore s, the execution of P(s) by a
process p forces it to delay until s > 0, at which point p executes s: =s—1 and proceeds; the
test and update of s is done atomically. Execution of V(s) results in the atomic execution

of s : =s+ 1. Using semaphores, the unique ID service can be implemented as

VAR x : INTEGER := 0;
s : SEMAPHORE;

PROCEDURE getUId () : INTEGER =
VAR result : INTEGER

BEGIN
P(s);
result := x; x := x+1;
V(s);
RETURN result
END
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with the semaphore s being used to guarantee mutual exclusion on accesses of x. The
problem with semaphores is that there is no linguistic support for their correct use. For
example, a programmer can easily forget to apply one of the operators, or might forget to
protect shared state. Furthermore, implementing patterns of synchronization that are more

complicated than mutual exclusion can be tricky.

A restricted form of the semaphore is the mutez lock® (also called a binary semaphore),
which is a variable that can be in one of two states, either locked or unlocked. One of
the advantages of mutex locks is that they are naturally supported by the test-and-set
instruction found on many multiprocessors. The language Modula-3 [Nel91] supports the

use of mutex locks with the special syntax.*
LOCK m DO statements END

This statement is executed by first acquiring the mutex lock m, then executing the state-
ments in the body, and then releasing the lock. If an exception occurs during the execution
of the body, the lock is also released. In Modula-3, the unique ID service can be imple-

mented as:

VAR x : INTEGER := 0;
m : MUTEX := NEW(MUTEX);

PROCEDURE getUId () : INTEGER =
VAR result : INTEGER

BEGIN
LOCK m DO
result := x; x := x+1;
END;
RETURN result
END

Each call to getUIAQ first acquires the mutex lock, executes the critical section, and then

releases the lock before returning.

Mutex locks are sufficient for insuring mutual exclusion in critical regions, but do not
provide a general synchronization mechanism. For example, consider producer and con-
sumer processes that share a fixed size buffer. If the buffer is empty, then the consumer
must wait for the producer to add something to it; likewise, if the buffer is full, the producer
must wait for the consumer to remove something. Using mutex locks, this requires polling
the buffer, which is inefficient. To alleviate this problem, Mlodula-3 provides condition vari-

ables, which allow processes to wait for specific conditions (e.g., the buffer is non-empty).

3 Mutez is a contraction of mutual ezclusion.
*Modula-3 inherits these primitives from Modula-2+ [RLWS5].
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Condition variables, in effect, reintroduce the counting power of general semaphores that
was lost when moving to mutex locks. The C-threads package built on top of the MACH

operating system also provides this style of concurrency support [CD88].

3.2.2 Monitors

A monitor is a module that encapsulates shared state, providing a set of exported proce-
dures for controlled access to the state [Hoa74]. Monitors provide a more structured form
of mutual exclusion than mutex locks. Each monitor has an implicit mutex lock that is
acquired on entry and released on exit by every monitor procedure. This guarantees that
a monitor-procedure call is mutually exclusive with any other call. Using a monitor, the

unique ID server can be coded as follows:

MONITOR UId IS
VAR x : INTEGER
PROCEDURE getUId () : INTEGER =
VAR result : INTEGER

BEGIN
result := x; x := x+1;
RETURN result
END
BEGIN
x =0
END

The extra syntactic support provided by monitors leaves less room for programmer error
than in the case of semaphores or mutex locks. As with mutex locks, condition variables

are used to avoid polling.

A number of languages, such as Concurrent Pascal [Bri77], Concurrent Euclid
[Hol83b], and Mesa [MMS79, LR80] provide monitors along with condition variables. It is
interesting to note that there is a trend in concurrent language design away from the syn-
tactic sugar of monitors and towards explicit mutex locks (e.g., from Mesa to Modula-2+
and Modula-3). This trend represents a simplification of language design, since it separates

two orthogonal language features (i.e, modules and mutual exclusion).

3.2.3 Shared-memory concurrency and ML

Shared-memory concurrent languages rely on mutable state for inter-process communica-
tion. This leads to an imperative programming style, which goes against the traditional,
mostly applicative, style of ML programs. For this reason, shared-memory primitives are

notationally unsuitable as a general purpose concurrency extension to ML (although they
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are useful for low-level implementation work). In contrast, as I show below, message passing

fits quite naturally with the ML programming style.

Cooper and Morrisett, at Carnegie-Mellon University, have developed a concurrency
package, called ML-threads, which provides threads, mutex locks and condition variables
[CM90]. The design of ML-threads is owed to the C-threads package [CD88], which in
turn owes its design to [RLW85]. The goals and approach of their work are significantly
different from those of my research. For example, one of the principal applications of ML-
threads is the construction of low-level operating system services, which requires heavy
use of shared state [CHL91]. ML-threads has also been used to implement a subset of
CML'’s primitives. There is also an implementation of ML-threads for the SGI 4D /380

multiprocessor [Mor].

3.3 Distributed-memory languages

The other major class of concurrency primitives is distributed-memory (also called message
passing). The basic operations in message passing are “send a message” and “accept a
message,” and are used for both communication and synchronization. Message-passing
languages are distinguished by the naming mechanism for the communication medium and

the amount of synchronization involved in sending a message.

The naming mechanism must specify both ends of the communication (i.e., sender and
receiver). The simplest naming convention uses process names to designate the communi-
cation partner. A slightly more general scheme introduces multiple communication ports
associated with the receiver. This can be further generalized by making port names into
independent values, called channels. Any process that has access to a channel may use
it to send or accept messages (a variant on this scheme differentiates between input and
output access). As with the process structure, the naming mechanism can be either static
or dynamic. Although static naming is common in a number of languages, it has severe
limitations. For example, it is impossible to write procedures parameterized by a sender or
receiver name. When adding message passing to ML the communication medium must be
strongly typed. This requirement means that the use of process names to name communi-
cations is too restrictive, since under such a scheme, each process can only receive messages
of one fixed type. Using ports or channels to name communications avoids this problem,
since each port (or channel) can have its own message type. Given the dynamic nature of

ML values, it seems that a dynamic port or channel creation mechanism is most suitable.

The message accept operation is usually blocking, but some languages and systems

provide a polling mechanism to check for incoming messages. There are three basic choices

26



for message sending semantics: non-blocking send (or asynchronous send), blocking send (or
synchronous send), and send-reply. The first two of these are unidirectional, while the last

is bidirectional. I discuss each of these below in increasing order of synchronization.

3.3.1 Asynchronous message passing

In asynchronous message passing the communication medium is buffered and the send
operation is non-blocking.® Figure 3.1 gives a pictorial description of asynchronous commu-

nication between two processes P and (). In this diagram, each process has a “time-line,”

P Q
send
send
accept
send
accept
accept
A\ 4 Y

Figure 3.1: Asynchronous message passing

running down the page; a communication is represented by an arrow from the sender’s
time-line to the accepter’s time-line. Notice that, in this picture, P and @ have different

views of the order of events.

Actor languages are an example of programming languages based on asynchronous mes-
sage passing [Agh86]. Message passing in distributed systems is also usually asynchronous.
In fact, in systems with arbitrary message delays and failure it is not possible to distin-
guish between the failure of a communication partner and a slow line, and thus synchronous

communication is impossible [FLP85].

5Some systems use finite buffers, in which case the send operation will block if the buffer is full.
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3.3.2 Synchronous message passing

Hoare’s seminal paper [Hoa78] introduced the notion of a set of sequential processes running
in parallel and communicating by synchronous message passing. Hoare’s language, called
CSP (for Communicating Sequential Processes), provides input operations, P?z (read a
value from process P and assign it to z), output operations, Ple (send the value of ex-
pression e to process P), and a labeled cobegin statement for process creation. Both the
process and communication structures in CSP programs are static, since there is no dy-
namic process creation and process names are used to name communications. If a process P
executes Q!v, it must block until process Q executes P?z (and vice versa). The matching of

communications is called rendezvous, and is illustrated in Figure 3.2. The dotted time-lines

P Q P Q
Qlv! Pz
v Pz Qv v
Y Y Y Y
(a) P waits for Q (b) @ waits for P

Figure 3.2: Rendezvous

in this figure represent idle periods while waiting for a matching communication.

One of the key ideas found in CSP is the notion of selective communication (also called
guarded communication). In [HoaT78], selective communication is presented as a general-
ization of Dijkstra’s guarded commands [Dij75], with input operations allowed as guards.
When an input guard is matched, its action may be chosen; if more than one input guard
is matched, then one is chosen nondeterministically. This mechanism provides the ability
for a process to communicate with multiple partners when the order of communications is
unknown. For example, a server process that has multiple clients may not know which client
will send it the next request. Languages can provide polling as an alternative to selective

communication, but the use of polling can result in busy waiting and so should be avoided

[GC84].

A natural generalization of the selective communication mechanism of CSP is to al-

low both input and output operations. This is called generalized (or symmetric) selective
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communication. As a simple example of why this is useful, consider a system with three
processes, A, B and C, where A is supposed to send a message to both B and C. With-
out generalized select, A must a priori choose which process to send the message to first.
If B sends a message to C before accepting a message from A and C is waiting for the
message from A before accepting a message from B, then A must send to C first to avoid
deadlock. In other words, the implementation of A depends on the communication patterns
of B and C. This example illustrates that the lack of generalized selective communication
has a negative impact on program modularity.® Other arguments for the usefulness of se-
lective communication can be found in [Hoa78], [FY85], [Rep91la], and Section 5.1. The
only significant argument against generalized selective communication is the difficulty of
implementing it on multiprocessor machines [KS79] (Section 12.2.2 discusses this problem

in more detail).

The language occam [INM84, Bur88] is derived from CSP, but includes channels and
a limited form of dynamic process creation. And the higher-order language Amber [Car86]
provides generalized selective communication on typed channels, as well as dynamic process
and channel creation. Other languages that owe an intellectual debt to CSP include Joyce
[Bri89] and Pascal-m [AB86]. A pared down version of CSP, called TCSP, has been used

for theoretical study of concurrent systems [Hoa85].

3.3.3 Asynchronous vs. synchronous message passing

At first glance, asynchronous communication may seem to be the best choice for a distributed-
memory concurrent language, since it minimizes interprocess synchronization and does not
restrict parallelism (e.g., in Figure 3.2(a), P must wait for Q). But if the language has
dynamic thread creation, then it is possible to efficiently implement an asynchronous chan-
nel by using a thread to buffer communication (cf., Section 5.1). The big problem with
asynchronous communication is that the sender has no way of knowing when a message has
actually been received; introducing acknowledgement messages loses the parallelism that
was the main benefit of asynchronous communication. In synchronous message passing, the
sender and receiver have common knowledge of the message transmission (e.g., the sender
knows that the receiver knows that the sender knows that the message was accepted). This

property makes synchronous message passing easier to reason about [AS83].

This is also reflected in the typical failure modes of erroneous programs. In asynchronous
systems, the typical failure mode is an overflow of the memory used to buffer messages, which

is likely to be far removed in time (and possibly place) from the source of the problem. In

®In a language with dynamic thread creation, this example could be programmed by A forking two
threads to send the messages, but there are other examples where dynamic process creation is not sufficient.
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synchronous systems, the typical failure mode is deadlock, which is immediate and easily

detected. Thus, detecting and fixing bugs is easier in a synchronous system.”

Using asynchronous message passing also increases the likelihood of timing sensitiv-
ity and race conditions. In a producer-consumer protocol, for example, if the producer is
faster than the consumer, then the number of buffered messages can grow arbitrarily. If
the buffer is finite, the system eventually degrades to a synchronous system; while, if the
buffers are unbounded, memory overflow may occur. This means that additional acknowl-
edgment messages must be used, which reduces the efficiency gains from using asynchronous

communication.

3.3.4 Request-reply message passing

A procedure call style interaction, called remote procedure call [Nel81], can be implemented
using asynchronous or synchronous message passing. The procedure entry corresponds to a
request message from the client to the server and the procedure return corresponds to the
reply message from the server to the client. Figure 3.3 shows the timing diagrams for this

mechanism (assuming synchronous message passing). While the server is handling a call it

Client Server Client Server
callE
request accept cal1l request gaccept
reply reply
Y Y Y
(a) The client waits (b) The server waits

Figure 3.3: Request-reply rendezvous

cannot accept other requests; thus, calls are necessarily mutually exclusive. Some languages,
such as Ada [DoD83] and Concurrent C [GR86], as well as concurrency libraries such as

the uSystem [BS90], use this style of bidirectional message passing as their communication

"The author’s personal experience backs this up. An early version of the Pegasus system [RG86] used
asynchronous message passing, but we had great difficulty in debugging our programs. Our experience with
the implementation of eXene [GR91], on the other hand, demonstrates that large synchronous message-
passing programs can be debugged fairly easily, even without debugging tools.
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mechanism. In these languages, a server thread plays a role very similar to a monitor (see
Section 3.2.2). In Ada, for example, a task (the Ada term for process) exports a collection
of transactions (called entries in Ada) that clients can invoke like normal procedure calls.
The server uses a SELECT statement to enable multiple entries simultaneously (this is similar
to the CSP selective communication in that only input operations are allowed in a select
statement). To illustrate, the unique ID server example from Section 3.2 can be programmed

in Ada as follows:

TASK BODY UniqueId IS

x : INTEGER;
BEGIN
LOOP
SELECT
ACCEPT getUniqueId (result : OUT INTEGER) DO
result := x; x := x+1;
END getUniqueld;
END SELECT;
END LOOP;

END Uniqueld

Since this example only has one operation, the SELECT statement is not really necessary, but

if the server supported other operations, then additional accept clauses would be added.

The language Concurrent C provides a richer form of Ada’s select mechanism. The

syntax of an entry clause in a select statement is
accept entry [ suchthat pred | [by e ] statment

where the phrases enclosed in [ ] are optional, pred is a boolean expression and e is an integer
expression. If the optional suchthat clause is present then only those requests that satisfy
pred are accepted. If the optional by clause is present then the expression e is evaluated for

each outstanding request and the request with the minimum value is selected.

While the request-reply paradigm is quite useful in concurrent programming, I believe
that it is too heavy-weight a mechanism to be the basis of a concurrent language. For exam-
ple, if one needs to program unidirectional communication, then a bidirectional mechanism
is unnatural. Of course, one might argue that programming bidirectional communication
using unidirectional message passing is unnecessarily complex, but, as I show in the next
chapter, it is possible to support higher-level abstractions, such as RPC, as first-class citi-
zens in a language based on unidirectional message passing. The key is to provide a flexible

mechanism for building new communication and synchronization abstractions.

31



3.3.5 Futures

Various concurrent dialects of Lisp and Scheme use a mechanism called futures [Hal85,
KH88| for specifying the parallel evaluation of expressions. Futures combine thread creation,

communication and synchronization into a single mechanism. The Lisp expression

(let
((z (future ezp)))
body)

evaluates by first spawning a thread to evaluate exp and binding a placeholder to z in body.
When the computation of ezp is complete, the result is put into the placeholder. When
a thread attempts to access z (called touching), it must synchronize on the availability of
the value. An important aspect of this mechanism is that any variable can be bound to a
future (i.e., touches are implicit), and thus a run-time check is required on every variable

access (although compiler optimization can reduce this cost).

Futures are not designed to support concurrent programming, rather they are designed
to be a parallel programming mechanism. Their main limitation as a concurrent program-
ming notation is that they only provide one chance for communication and synchronization
between the parent and child threads. Multilisp [Hal85] provides shared memory and low-
level locking mechanisms (essentially test-and-set) for supporting other patterns of commu-
nication and synchronization. Using other communication and synchronization mechanisms
in conjunction with futures can lead to problems, since some implementations consider it
optional as to whether a new thread actually gets spawned for each future (for example,
Mul-T [KHS88]). Although futures might be a useful addition to ML to support parallel
programming (see Chapter 12), they are not a reasonable base for a concurrent language

design.

3.3.6 Message passing and ML

In addition to my own work, there have been several other efforts to integrate message pass-
ing and ML; e.g., [Hol83a], [Mat89] and [Ram90]. All of these have supported CSP-style
message passing (i.e., synchronous). Message passing is a useful base for concurrent pro-
gramming, because it can support the two most common styles of concurrency: pipelining,
in which threads are arranged in a data-flow network [KM77], and server-client interac-
tions. By treating communication channels as infinite streams, the individual threads can
be written in an applicative style (e.g., [AB80]), which is consistent with the ML style of
programming. In fact, CML programs tend to use far fewer references than sequential

SML programs; this point is illustrated in the following two chapters.
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A common argument against message passing is that, compared to shared-memory prim-
itives, it provides inferior performance. While this is true for single-processor systems, there
is recent empirical evidence that suggests message-passing programs can provide better per-
formance on shared-memory multiprocessors [LS90]. The reason for this is that message-
passing programs typically have better locality, and thus map better onto the non-uniform

memory structure of modern shared-memory multiprocessors.

3.4 Summary

There are a number of design criteria that can be drawn from the above discussion. A

concurrent extension to ML should have the following characteristics:

e Dynamic thread creation.

e Synchronous communication on typed channels or ports. Since channels are more

general than ports, we prefer them.
e Dynamic channel creation.

e Support for generalized selective communication.

The way existing languages support these mechanisms is not completely satisfactory. The
problem is that they support communication by special operations (and often with special
syntax) without providing any mechanism for building new communication and synchro-
nization abstractions. In the following chapter, I describe these limitations in more detail,

and present my approach to concurrent language design, which addresses them.
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Chapter 4

First-class Synchronous
Operations

This chapter describes the central result of this dissertation: a new approach to concurrent
language design in which synchronous operations are treated as first-class values. I first de-
veloped this approach as part of the design of the concurrent language PML [Rep88]. PML
provided a collection of concurrency features similar to those found in Amber [Car86]:
typed channels, dynamic thread and channel creation, and rendezvous with generalized
selective communication. The design of PML broke new ground, however, by providing

first-class synchronous operations.

The basic idea of first-class synchronous operations is to introduce a domain of first-
class values, called events, for representing synchronous operations. Constructor functions
are provided to build base-event values that represent primitive operations such as channel
I/O, and combinators are provided to combine event values into higher-level synchronous
operations. The design of CML [Rep90b, Rep91a] builds on this approach by providing a
more powerful version of events. In addition, CML provides a number of other features

not found in PML, such as garbage collection of threads and integrated I/O support.

This chapter is organized chronologically; that is, according to the historical evolution
of the language design. First, I introduce a basic set of concurrency primitives, which are
similar to what is found in Amber. I then motivate and present a subset of CML, called
PML events, that is sufficient to implement the primitives found in CSP-style languages.
The PML subset has limitations, which I use to motivate the extensions that I have de-
veloped as part of CML. Finally, I summarize the features of CML to provide a basis for
the examples found in later chapters. I leave the presentation of extended examples to the
next chapter, where I present a series of examples of the use of events to build higher-level

synchronization and communication abstractions.
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4.1 Basic concurrency primitives

We start with a discussion of the basic concurrency operations provided by CML. A
running CMUL program consists of a collection of threads, which use synchronous message
passing on typed channels to communicate and synchronize. In keeping with the flavor
of SML, both threads and channels are created dynamically (initially, a program consists
of a single thread). The signature of the basic thread and channel operations is given in

Figure 4.1. The function spawn takes a function as an argument and creates a new thread

val spawn : (unit -> unit) -> thread_id
val channel : unit -> ’la chan

val accept : ’a chan -> ’a
val send : (’a chan * ’a) -> unit

Figure 4.1: Basic concurrency primitives

to evaluate the application of the function to the unit value. Channels are also created
dynamically using the function channel, which is weakly polymorphic.! The functions
accept and send are the synchronous communication operations. When a thread wants
to communicate on a channel, it must rendezvous with another thread that wants to do a
complementary communication on the same channel (this is the mechanism described in
Section 3.3.2). SML’s lexical scoping is used to share channels between threads, and to

hide channels from other threads (note, however, that channels can be passed as messages).

A simple example of these primitives is the unique ID service used in the previous

chapter. In CML, this can be implemented as follows:

abstype unique_id_src = UID of int chan
with
fun makeUIdSrc () = let
val ch = channel()
fun loop i = (send(ch, i); loop(i+1))

in
spawn (fn () => loop 0);
UID ch
end
fun getUId (UID ch) = accept ch

end

This abstraction provides a function for creating a new source of unique IDs (makeUIdSrc)

!The weak polymorphism is necessary to avoid loop-holes in the type system (see Chapter 8 for details).
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and an operation for getting a unique ID from a source (getUId). A source of unique IDs is
represented by a channel; the function makeUIdSrc dynamically creates this channel, and
also a thread that sends a stream of unique IDs on the channel. The function getUId reads
the next ID in the stream. The implementation is an example of how threads can be used
to encapsulate state; note that the only side-effects are in the concurrency operations. This
style of programming is much more applicative than that of shared-memory primitives (cf.,
Section 3.2).

4.2 Selective communication vs. abstraction

In Section 3.3, I discussed the arguments for providing generalized selective communication;
in this section, I describe a significant limitation with the forms of selective communication

found in existing languages.

The problem is that there is a fundamental conflict between selective communication and
abstraction. For example, consider a server thread that provides a service via a request-reply

(or RPC) protocol. The server side of this protocol is something like:

fun serverLoop () = if serviceAvailable()

then let
val request = accept reqCh
in

send (replyCh, doit request);
serverLoop ()
end
else doSomethingElse()

where the function doit actually implements the service. Note that the service is not always

available. This protocol requires that clients obey the following two rules:

1. A client must send a request before trying to read a reply.

2. Following a request the client must read exactly one reply before issuing another

request.

If all clients obey these rules, then we can guarantee that each request is answered with the
correct reply, but if a client breaks one of these rules, then the requests and replies will be
out of sync. An obvious way to improve the reliability of programs that use this service is
to bundle the client-side protocol into a function that hides the details, thus ensuring that

the rules are followed. The following code implements this abstraction:

fun clientCall x = (send(reqCh, x); accept replyCh)
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While this insures that the protocol is observed, it hides too much. If a client blocks on
a call to clientCall (e.g., if the server is not available), then it cannot respond to other
communications. Avoiding this situation requires using selective communication, but the
client cannot do this because the function abstraction hides the synchronous aspect of the
protocol. This is the fundamental conflict between selective communication and the existing
forms of abstraction. If we make the operation abstract, we lose the flexibility of selective
communication; but if we expose the protocol to allow selective communication, we lose the
safety and ease of maintenance provided by abstraction. To resolve this conflict requires
introducing a new abstraction mechanism that preserves the synchronous nature of the

abstraction. First-class synchronous operations provide this new abstraction mechanism.

4.3 First-class synchronous operations

The traditional select construct has four facets: the individual I/O operations, the actions
associated with each operation, the nondeterministic choice, and the synchronization. The
approach of this dissertation is to unbundle these facets by introducing a new type of
values, called events, that represent synchronous operations. By starting with base-event
values to represent the communication operations, and providing combinators to associate
actions with events and to build nondeterministic choices of events, a flexible mechanism
for building new synchronization and communication abstractions is realized. Event values
provide a mechanism for building an abstract representation of a protocol without obscuring

its synchronous aspect.

To make this concrete, consider the following loop (using an Amber style select con-
struct [Car86]), which implements the body of an accumulator that accepts either addition
or subtraction input commands and offers its contents:

fun accum sum = (

select addCh?x => accum(sum+x)

or subCh?x => accum(sum-x)
or readCh'!sum => accum sum)

The select construct consists of three I/O operations: addCh?x, subCh?x, and readCh!sum.
For each of these operations there is an associated action on the right hand side of the =>.
Taken together, each I/O operation and associated action define a clause in a nondeter-
ministic synchronous choice. It is also worth noting that the input clauses define a scope;
the input operation binds an identifier to the incoming message, which has the action as its

scope.

Figure 4.2 gives the signature of the event operations corresponding to the four facets

of generalized selective communication. The functions receive and transmit build base-
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val receive : ’a chan -> ’a event
val transmit : (’a chan * ’a) -> unit event

val choose : ’a event list -> ’a event
val wrap : (a event * (’a -> ’b)) -> ’b event
val sync : ’a event -> ’a

Figure 4.2: Basic event operations

event values that represent channel I/O operations. The wrap combinator binds an action,
represented by a function, to an event value. And the choose combinator composes event
values into a nondeterministic choice. The last operation is sync, which forces synchroniza-
tion on an event value. I call this set of operations “PML events,” since they constitute
the mechanism that I originally developed in PML [Rep88].

The simplest example of events is the implementation of the synchronous channel I/0O
operations that were described in the previous section. These are defined using function

composition, sync and the channel I/O event-value constructors:

val accept = sync o receive
val send = sync o transmit

A more substantial example is the accumulator loop from above, which is implemented as:

fun accum sum = sync (
choose [
wrap (receive addCh, fn x => accum (sum+x)),
wrap (receive subCh, fn x => accum (sum-x)),
wrap (transmit (readCh, sum), fn () => accum sum)

D

Notice how wrap is used to associate actions with communications.

The great benefit of this approach to concurrency is that it allows the programmer to
create new first-class synchronization and communication abstractions. For example, we
can define an event-valued function that implements the client-side of the RPC protocol

given in the previous section as follows:

fun clientCallEvt x = wrap (transmit(reqCh, x), fn () => accept replyCh)

Applying clientCallEvt to a value v does not actually send a request to the server, rather
it returns an event value that can be used to send v to the server and then accept the server’s

reply. This event-value can be used in a choose expression with other communications; in
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which case the transmit base-event value is in selecting the event. This example shows
that we can use first-class synchronous operations to abstract away from the details of the

client-server protocol, without hiding the synchronous nature of the protocol.

This approach to synchronization and communication leads to a new programming
paradigm, which I call higher-order concurrent programming. To understand the higher-

order nature of this mechanism, it is helpful to draw an analogy with first-class function

Table 4.1 relates the features of these two higher-order mechanisms. Values of

Table 4.1: Relating first-class functions and events

Property Function values | Event values
Type constructor | -> event
Introduction A-abstraction receive
transmit
etc.
Elimination application sync
Combinators op o choose
map wrap
etc. etc.

function type are introduced by A abstraction, while event values are created by the base-
event constructors. Function values are eliminated by application, analogously event values
are eliminated by the sync operator.? And both types have combinators for building new
values. This analogy does not hold completely, since the various function combinators are

derived forms, while the event-value combinators are primitive.

4.4 Other synchronous operations

The event type provides a natural framework for accommodating other primitive syn-
chronous operations.® There are three examples of this in CML: synchronization on thread
termination (sometimes called process join), low-level /O support and time-outs. Figure 4.3
gives the signature of the CML base-event constructors for these other synchronous opera-
tions. The function wait produces an event for synchronizing on the termination of another
thread. This is often used by servers that need to release resources allocated to a client
in the case that the client terminates unexpectedly. Support for low-level I/O is provided

by the functions syncOnInput and syncOnOutput, which allow threads to synchronize on

2«Introduction” and “elimination” are being used in a type theoretic sense. They refer to the syntactic
constructs that introduce or eliminate the type constructor.

3This is the reason that the I use the term “event” to refer to first-class synchronous operations instead
of using “communication.”
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val wait : thread_id -> unit event

val syncOnInput : int -> unit event
val syncOnOutput : int -> unit event

val waitUntil : time -> unit event
val timeout : time -> unit event

Figure 4.3: Other primitive synchronous operations

the status of file descriptors [UNI86]. These operations are used in CML to implement a
multi-threaded I/O stream library (Section 10.5.2). There are two functions for synchro-
nizing with the clock: waitUntil and timeout. The function waitUntil returns an event
that synchronizes on an absolute time, while timeout implements a relative delay. The
function timeout can be used to implement a timeout in a choice. The following code, for

example, defines an event that waits for up to a second for a message on a channel:

choose [
wrap (receive ch, SOME),
wrap (timeout(TIME{sec=1, usec=0}), fn () => NONE)
]

By having a uniform mechanism for combining synchronous operations, CML provides a
great deal of flexibility with a fairly terse mechanism. As a comparison, Ada has two
different timeout mechanisms: a time entry call for clients and delay statement that servers

can include in a select.

4.5 Extending PML events

Thus far, I have described the PML subset of first-class synchronous operations. In this
section, I motivate and describe two significant extensions to PML events that are provided
in CML.

Consider a protocol consisting of a sequence of communications: c¢y;ca;---;¢,. When
this protocol is packaged up in an event value, one of the ¢; is designated as the commait
point, the communication by which this event is chosen in a selective communication (e.g.,
the message send operation in the clientCallEvt abstraction above). In PML events,
the only possible commit point is ¢;. The wrap construct allows one to tack on ¢3;---; ¢,
after ¢; is chosen, but there is no way to make any of the other ¢; the commit point. This

asymmetry is a serious limitation to the original mechanism.
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A good illustration of this problem is a server that implements an input stream abstrac-
tion. Since this abstraction should be smoothly integrated into the concurrency model, the

input operations should be event-valued. For example, the function

val input : instream -> string event

is used to read a single character. In addition, there are other input operations such as
input_line. Let us assume that the implementation of these operations uses a request-

reply protocol; thus, a successful input operation involves the communication sequence

send (chyeq, REQ_INPUT); accept(chrepiy)

Packaging this up as an event (as we did in Section 4.3) will make the send communication
be the commit point, which is the wrong semantics. To illustrate the problem with this,
consider the case where a client thread wants to synchronize on the choice of reading a

character and a five second timeout:

sync (choose [
wrap (timeout(TIME{sec=5, usec=0}), fn () => raise Timeout),
input instream

D

The server might accept the request within the five second limit, even though the wait for
input might be indefinite. The right semantics for the input operation requires making the
accept be the commit point, which is not possible using only the PML subset of events.

To address this limitation, CML provides the guard combinator.

4.5.1 Guards

The guard combinator is the dual of wrap; it bundles code to be executed before the commit

point; this code can include communications. It has the type

val guard : (unit -> ’a event) -> ’a event

A guard event is essentially a suspension that is forced when sync is applied to it. As
a simple example of the use of guard, the timeout function, described above, is actually

implemented using waitUntil and a guard:

fun timeout t = guard (
fn () => waitUntil (add_time (t, currentTime()))

where currentTime returns the current time. Some languages support guarded clauses in

selective communication, where the guards are boolean expressions that must evaluate to
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true in order that the communication be enabled. CML guards can be used for this purpose

too, as illustrated by the following code skeleton:

sync (choose [

guard (fn () => if pred then evt else choosel[])

D

Here evt is part of the choice only if pred evaluates to true. Note that the evaluation of

pred occurs each time the guard function is evaluated.

Returning to the RPC example from above, we can now build an abstract RPC operation

with the reply as the commit point. The two different versions are:

fun clientCallEvtl x = wrap (transmit(reqCh, x), fn () => accept replyCh)

fun clientCallEvt2 x

guard (fn () => (send(reqCh, x); receive replyCh)

where the clientCallEvt1 version commits on the server’s acceptance of the request, while
the clientCallEvt2 version commits on the server’s reply to the request. Note the duality
of guard and wrap with respect to the commit point. Using guards to generate requests
like this raises a couple of other problems. First of all, if the server cannot guarantee
that requests will be accepted promptly, then evaluating the guard may cause delays. The

solution to this is to spawn a new thread to issue the request asynchronously:

fun clientCallEvt3 x = guard (fn () => (
spawn(fn () => send(reqCh, x));
receive replyCh)

Another alternative is for the server to be a clearing-house for requests; spawning a new

thread to handle each new request.

The other problem is more serious: what if this RPC event is used in a selective com-
munication and some other event is chosen? How does the server avoid blocking forever on
sending a reply? For idempotent services, this can be handled by having the client create
a dedicated channel for the reply and having the server spawn a new thread to send the

reply. The client side of this protocol is

fun clientCallEvt4 x = guard (fn () => let
val replyCh = channel()
in
spawn(fn () => send(reqCh, (replyCh, x)));
receive replyCh
end)
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When the server sends the reply it evaluates

spawn (fn () => send(replyCh, reply))

If the client has already chosen a different event, then this thread blocks and will be garbage
collected. For services that are not idempotent, this scheme is not sufficient; the server needs
a way to abort the transaction. The wrapAbort combinator provides this mechanism and is

described in the next section.

4.5.2 Abort actions

The wrapAbort combinator associates an abort action with an event value. The semantics
are that if the event is not chosen in a sync operation, then a new thread is spawned to

evaluate the abort action. The type of this combinator is:

val wrapAbort : (’a event * (unit -> unit)) -> unit

where the second argument is the abort action. This combinator is the complement of wrap
in the sense that if you view every base event in a choice as having both a wrapper and
an abort action, then, when sync is applied, the wrapper of the chosen event is called and

threads are spawned for each of the abort actions of the other base events.

Using wrapAbort, we can now implement the RPC protocol for non-idempotent services.
The client code for the RPC using abort must allocate two channels; one for the reply and

one for the abort message:

fun clientCallEvt5 x = guard (fn () => let

val replyCh = channel()

val abortCh = channel()

fun abortFn () = send (abortCh, ())

in
spawn(fn () => send (reqCh, (replyCh, abortCh, x)));
wrapAbort (receive replyCh, abortFn)

end)

When the server is ready to reply (i.e., commit the transaction), it synchronizes on the

following event value:

choose[
wrap (receive abortCh, fn () => abort the transaction) ,
wrap (transmit (replyCh, reply), fn () => commit the transaction)

]

This mechanism is used to implement the concurrent stream I/O library in CML (see
Section 10.5.2).
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4.6 CML summary

So far, I’ve touched on the highlights of CML’s concurrency mechanisms. In this section,
I give a summary of the features of CML. This provides the background for the rest of
this dissertation. This section is not a language tutorial; for such a discussion see [Rep90b].
Figure 4.4 gives the signature of most of the CML concurrency operations, including those

already described above.
val spawn : (unit -> unit) -> thread_id

val channel : unit -> ’1a chan

val sameThread : (thread_id * thread_id) —-> bool
val sameChannel : (channel * channel) —-> bool

val accept : ’a chan -> ’a

val send : (’a chan * ’a) -> unit

val choose : ’a event list -> ’a event

val guard : (unit -> ’a event) -> ’a event

val wrap : (Pa event * (’a -> ’b)) -> ’b event
val wrapHandler : (’a event * (exn -> ’a)) -> ’a event
val wrapAbort : (’a event * (unit -> unit)) -> ’a event
val sync : ’a event -> ’a

val select : ’a event list -> ’a

val poll : ’a event -> ’a option

val always : ’a -> ’a event

val receive : ’a chan -> ’a event

val transmit : (’a chan * ’a) -> unit event

val waitUntil : time -> unit event
val timeout : time -> unit event

val syncOnInput : int -> unit event
val syncOnOutput : int -> unit event

Figure 4.4: CML concurrency operations
The two functions sameThread and sameChannel can be used to test equality of thread
IDs and channels. In addition to the wrap combinator, the combinator wrapHandler wraps

an exception handler around an event. For example, syncOnInput raises an exception if the

file specified by its argument has been closed. Using wrapHandler, a more robust version
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of syncOnInput is defined as:

fun waitForInput fd = wrapHandler (
wrap (syncOnInput fd, fn () => true),
fn _ => false)

Upon synchronization, this returns true if input is available and false if the file is closed.

The operation select is a short-hand for the common idiom of applying sync to a

choice of events; i.e.,

val select = sync o choose

The operation poll is a non-blocking form of sync; it returns NONE in the case that sync
would have blocked. This form of polling is different from those of [Rep88], [Rep89] and
[Rep9la]. In these earlier versions, polling was handled by constructing polling event

values.*

The semantics of these approaches is more difficult to specify and the imple-
mentation is more complicated; furthermore, in practice, the few rare uses of polling have
always been in combination with immediate application of sync. For these reasons, I have

adopted the simpler polling operation.

The base-event constructor always takes an argument and builds an event that is always
available with the argument as its synchronization result. For example, an infinite stream

of 1s can be implemented as (always 1). It is useful to compare the function

fun poll’ euvt = select [
always NONE,
wrap (evt, SOME)
]

with poll when supplied to the following function:

fun pollLoop pollfn = let
fun loop () = (case (pollfn (always 1))
of NONE => loop ()
| (SOME _) => ())
in
loop )
end

Applying pollLoop to poll’ can result in infinite execution sequences, while applying it to

poll will always terminate. Section 7.5.5 describes the semantics of the poll function.

*Specifically, in [Rep88] and [Rep89] this was done by a special base-event value called anyevent, which
was lower priority than other events. In [Rep91a] this was done by a special event-value constructor.
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4.6.1 Thread garbage collection

An important property of CML programs is the automatic reclamation of concurrency
objects (i.e., threads and channels). In general, a thread that communicates infinitely
often will block and be garbage collected if it is disconnected from the active part of the
system. This property has two benefits. First, it allows threads to be used to implement
objects, such as the unique ID source above, without having to worry about termination
protocols. If the object representation (i.e., the channels connecting to it) are discarded,
then the channels and thread are reclaimed by the garbage collector. Second, it allows use
of speculative message passing in complex protocols; i.e., the spawning of a thread to send a
message that may never be accepted. If the channel is local to the instance of the protocol,

then it is guaranteed to be garbage collected (e.g., clientCallEvt4 in Section 4.5.1).

4.6.2 Stream I/O

CML provides a concurrent version of the SML stream I/O primitives. Input operations
in this version are event-valued, which allows them to be used in selective communication.
For example, an application may give a user at most 60 seconds to supply a password. This

can be programmed as:

fun getpasswd () = sync (choose [
wrap (timeout(TIME{sec=60, usec=0}),
fn () => NONE),
wrap (input_line std_in, SOME)
n

This will return NONE, if the user fails to respond within 60 seconds; otherwise it wraps SOME

around the user’s response.

The I/O streams are implemented on top of the other primitives described in this chap-

ter; Section 10.5.2 describes their implementation in some detail.
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Chapter 5

Building Concurrency
Abstractions

Different applications require different abstractions and programming styles. Modern pro-
gramming languages provide mechanisms that allow programmers to design and implement
the appropriate data and procedural abstractions for their applications, but when it comes
to concurrency operations, programmers are stuck with the decisions of the language de-
signer. First-class synchronous operations allow programmers the flexibility to design and
implement the right concurrency abstractions for their applications. In this chapter, I
demonstrate the utility of first-class synchronous operations by showing how various useful
abstractions can be implemented. These abstractions include mechanisms found in other
languages, such as asynchronous channels, Ada-style rendezvous, and futures. In addition,
I present some other abstractions that have proven useful in real applications. These ex-
amples also provide further illustration of the use of CML as a programming notation.

Chapter 9 includes additional examples from applications that are implemented in CML.

5.1 Buffered channels

Buffered channels provide a mechanism for asynchronous communication that is similar to
the actor mailbox [Agh86]. The source code for this abstraction is given in Figure 5.1.
The function buffer creates a new buffered channel, which consists of a buffer thread, an
input channel and an output channel; the function bufferSend is an asynchronous send
operation; and the function bufferReceive is an event-valued receive operation. The buffer
is represented as a queue of messages, which is implemented as a pair of stacks (lists). This

example illustrates several key points:
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abstype ’a buffer_chan = BC of {
inch : ’a chan,
outch : ’a chan
}
with
fun buffer () = let
val inCh = channel() and outCh = channel()
fun loop ([1, [1) = loop(laccept inCh]l, [])
| loop (front as (x::r), rear) = select [
wrap (receive inCh,
fn y => loop(front, y::rear)),
wrap (transmit(outCh, x),
fn () => loop(r, rear))
]
| loop ([1, rear) = loop(rev rear, []1)
in
spawn (fn () => loop([1, [1));
BC{inch=inCh, outch=outCh}

end
fun bufferSend (BC{inch, ...}, x) = send(inch, x)
fun bufferReceive (BC{outch, ...}) = receive outch

end (* abstype *)
Figure 5.1: CML implementation of buffered channels

e Buffered channels are a new communication abstraction, which have first-class citi-
zenship. A thread can use the bufferReceive function in any context that it could

use the built-in function receive, such as selective communication.

e The buffer loop uses both input and output operations in its selective communication.
This is an example of the necessity of generalized selective communication. If we
have only a multiplexed input construct (e.g., occam’s ALT), then we must to use a
request/reply protocol to implement the server side of the bufferReceive operation
(see pp. 37-41 of [Bur88], for example). But if a request/reply protocol is used, then
the bufferReceive operation cannot be used in a selective communication by the

client.

e The buffer thread is a good example of a common CML programming idiom: using
threads to encapsulate state. This style has the additional benefit of hiding the state
of the system in the concurrency operations, which makes the sequential code cleaner.
These threads serve the same role that monitors do in some shared-memory concurrent

languages.
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e This implementation exploits the fact that unreachable blocked threads are garbage
collected. If the clients of this buffer discard it, then the buffer thread and channels
will be reclaimed by the garbage collector. This improves the modularity of the
abstraction, since clients do not have to worry about explicit termination of the buffer
thread.

A more complete version of this abstraction is included in the CMUL distribution and is

used in a number of applications.

5.2 Multicast channels

Another useful abstraction is a buffered multicast channel, which builds on buffered channels
by providing fan-out. A multicast channel has a number of output ports. When a thread
sends a message on a multicast channel, it is replicated once for each output port. In
addition to the standard channel operations (create, send and accept), there is an operation

to create new ports. The following signature gives the multicast channel interface:

type ’a mchan

val mChannel : unit -> ’la mchan
val newPort : ’a mchan -> ’a event
val multicast : (’a mchan * ’a) -> unit

New multicast channels are created using mChannel and new ports using newPort. The
multicast operation asynchronously broadcasts a message to the ports of a multicast chan-
nel. A port is represented by an event value; synchronizing on a port event will return the

next multicast message.

A multicast channel consists of a server thread, which initiates the broadcast and creates
new ports and a chain of ports. Each port consists of a buffer and a “tee” thread that inserts
the incoming message in the buffer and propagates it to the next port. The port buffer is
implemented using the buffered channel from above. The following picture gives a schematic

view of a multicast channel with four ports:
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The implementation of the multicast abstraction is given in Figure 5.2. The function
mChannel is the most interesting, as it includes the code for the server thread. A multicast
channel value is represented by a request/reply channel pair that provides an interface to
the server thread. A request is either a message to be broadcast, or a request for a new port.
The interface between the server thread and the first port in the chain and the interface
between a tee thread and the next port is an output function. The output function at the

end of the chain is a sink.

5.3 Condition variables

A simple new abstraction is the condition variable, which is a write once variable.! A
condition variable is initially empty; after a thread writes a value to it, it is full. Reading
an empty condition variable is a blocking operation, while writing to a full one is an error.

In CML condition variables have the following interface:
type ’a cond_var
val condVar : unit -> ’1a cond_var

val readVarEvt : ’a cond_var -> ’a event
val readVar : ’a cond_var -> ’a

val writeVar : (’a cond_var * ’a) -> unit
exception WriteTwice

!The name is motivated by the conditions found in some shared-memory concurrent languages.
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abstype ’a mchan = MChan of (’a request chan * ’a event chan)

and ’a request = Message of ’a | NewPort
with
fun mChannel () = let
val reqCh = channel() and respCh = channel()
fun mkPort outFn = let
val buf = buffer()
val inCh = channel()
fun tee () = let val m = accept inCh
in
bufferSend(buf, m);
outFn m;
tee()
end

in
spawn tee;
(fn m => send(inCh, m), bufferReceive buf)

end
fun server outFn = let
fun handleReq NewPort = let
val (outFn’, port) = mkPort outFn
in
send (respCh, port);
outFn’

end
| handleReq (Message m) = (outFn m; outFn)

in
server (sync (wrap (receive reqCh, handleReq)))
end
in
spawn (fn () => server (fn _ => ()));
MChan(reqCh, respCh)
end

fun newPort (MChan(reqCh, respCh)) = (
send (reqCh, NewPort);
accept respCh)

fun multicast (MChan(ch, _), m) = send (ch, Message m)
end

Figure 5.2: CML implementation of multicast channels
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Since reading a condition variable is a synchronous operation, an event-valued form of the

operation is provided. The exception WriteTwice is raised when a thread attempts to write

to a full variable. Condition variables are an example of what are called I-structures in the

parallel language Id [ANP89, Nik91]; they can also be regarded as a weak form of logic

variable.

A condition variable can be implemented in CML using a thread to hold the state of

the variable, as shown in Figure 5.3. Recent versions of CML provide condition variables

datatype ’a cond_var

= CV of {

put_ch : ’a chan,

get_ch : ’a chan

}

fun condVar () = let

val putCh = channel() and getCh = channel()

fun cell () =
val v =

let
accept putCh

fun loop () = (send (getCh, v); loop())

in
loop )
end
in
spawn cell;
CV{put_ch = putCh, get_ch = getCh}
end

exception WriteTwice

fun writeVar (CV{put_ch, get_ch}, x) = select [
wrap (receive get_ch, fn _ => raise WriteTwice),
transmit (put_ch, x)

]

fun readVarEvt (CV{get_ch, ...}) = receive get_ch

fun readVar (CV{get_

ch, ...}) = accept get_ch

Figure 5.3: CML implementation of condition variables

as a primitive concurrency object.

This is in part because they are used internally to

implement threadWait, but also because they provide a significant performance boost (see

Chapter 11) in the case that exactly one message must be sent (e.g., for abort messages,

see Section 10.5.2).
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5.4 Ada-style rendezvous

In this section I describe the implementation of the communication mechanisms found in
Ada and Concurrent C. As described in Section 3.3.4, the basic operation is the extended
rendezvous, which consists of an entry call by a client to a server thread. In Ada (and
Concurrent C) this call is asymmetric; i.e., the server can nondeterministically select
from a choice of accept clauses, but a client’s entry call cannot be involved in a selective
communication. There is no problem with supporting entry calls in selective communication
in CML, but there is the question of which of the two synchronous operations (i.e., sending
the request and accepting the reply) should be the commit point. The various alternatives
are discussed in some detail in Section 4.5; in this example, I arbitrarily choose the sending
of the request as the commit point. Figure 5.4 gives the CML code for an abstraction of

the basic Ada communication mechanism. This implementation is more general than the

abstype (’a, ’b) entry = ENTRY of ((’a * ’b chan) chan)
with
fun entry () = ENTRY(channel())
fun entryCall (ENTRY reqCh) x = guard (fn () => let
val replyCh = channel()
in
wrap (transmit(reqCh, (x, replyCh)), fn () => accept replyCh)
end)
fun entryAccept (ENTRY reqCh) =
wrap (receive reqCh, fn (x, replyCh) => (x, fn y => send(replyCh, y)))
end

Figure 5.4: CML implementation of Ada rendezvous

Ada mechanism in several ways. It allows nested transactions, since the reply channels
are dynamically allocated, and it permits selective entry calls, since entryCall is an event-
valued function. It also allows multiple servers for a given entry. The interface of this

abstraction is

type (Pa,’b) entry

val entry : unit -> (’1la,’1b) entry

val entryCall : (’a,’3b) entry -> ’a -> ’3b event

val entryAccept : (’a,’b) entry -> (Pa * (’b -> unit)) event

Note that the entryAccept function returns the entry-call argument and the reply function.
As an example of the use of this abstraction, the following is the CML version of the

implementation of the unique ID server given in Section 3.3.4:
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fun mkUIdServer () = let
val e = entry()
fun loop x = let
val ((), reply) = sync (entryhAccept e)
in
reply x; loop (x+1)
end
in
spawn (fn () => loop 0);
entryCall e
end

In systems programming it is often necessary to deal with the possibility that some
expected event might not actually occur. To this end, Ada supports several variations on
the basic rendezvous mechanism; namely, a delay clause in the server’s select statement, a
timed entry call, and a conditional entry call. These can be easily implemented in CML.
A timeout event can be used to implement a delay clause; a choice of an entry call and a
timeout event implements a timed entry call; and applying poll to an entry call implements

a conditional entry call.

The language Concurrent C provides a couple of additional twists on Ada’s rendezvous
mechanism. Recall from Section 3.3.4 that Concurrent C entry clauses may include a
predicate on requests and/or a priority ordering of requests. It is possible to implement
these operations in CML, but, for reasons discussed below, it is not possible to do so while
supporting entry calls in generalized selective communication. As an illustration, I describe
the implementation of an entry abstraction that supports conditional acceptance of entry

calls based on the argument value. The signature of this abstraction is:
type (Pa,’b) entry

val entry : unit -> (’1a,’1b) entry

val condAccept : (’3a,’3b) entry -> (’3a -> bool)
-> (’3a * (’3b -> unit)) event

val call : (’a,’2b) entry -> ’a -> ’2b

The function entry builds a new entry object, the function condAccept take an entry object
and a predicate and returns an entry event, and the function call is used by clients to call
an entry. The lock manager given in Figure 5.5 is an example of the use of conditional
accept (taken from [GR86]). A request to acquire a lock is only accepted if the lock is not
currently held. The status of the locks is represented by a list of lock IDs of the currently
held locks.

The implementation of the conditional accept abstraction is given in Figure 5.6. An

entry object is realized as a buffer thread that matches calls with conditional accept offers.
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fun lockServer () = let
val lockEntry = entry()
val lockReqEvt = condAccept lockEntry
fun serverLoop locks = let
fun isLocked id = 4s id in locks?
fun unlock id = remove id from locks.

in
select [
wrap (lockReq isLocked,
fn (id, reply) => (reply(); serverLoop (id::locks))),
wrap (receive unlockCh,
fn id => serverLoop (unlock id))
]
end

in
spawn (fn () => (serverLoop []1));
{ acquirelLock = call lockReqEntry,
releaselock = fn id => send(unlockCh, id) }
end

Figure 5.5: A lock manager using conditional accept

Two channels are used to communicate with the buffer thread: clients use the call_ch to

2 use offer_ch to offer a conditional acceptance. A

request an entry call, and the servers
call consists of an argument and a reply operation (a curried application of send to a reply
channel), while an acceptance offer consists of a predicate, a channel for sending a call to
the server, and an abort event for notifying the buffer that the offer has been withdrawn.
An acceptance offer matches a call if the predicate contained in the offer returns true
when applied to the argument of the call. The buffer keeps a list of outstanding calls and
outstanding offers with the invariant that none of the buffered calls and offers match. When
a new call comes in, an attempt is made to match it against an outstanding offer; likewise,
when a new offer comes in, an attempt is made to match it against an outstanding call. If a
match is actually found, the buffer must also check to see if the offer has been withdrawn.
This is done by the function doMatch, which synchronizes on the choice of the offer’s abort
event and transmitting the call to the server. The semantics of abort actions guarantee that
exactly one of this choices will be available for selection. The other point of interest is that
the buffer thread’s main loop synchronizes on the choice of receiving a new call, receiving

a new offer, or being notified of the withdrawal of an offer.

This implementation can easily be extended to order requests by some priority function.

The timed entry call can also be supported by allowing clients to request that their call be

2This abstraction allows multiple servers to share the same entry object.
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local
datatype (’a, ’b) offer_t = OFFER of {
pred : ’a —> bool,
req_ch : (a *x (°b —> unit)) chan,
abort_evt : unit event
}

in

abstype (’a, ’b) entry = ENTRY of {
accept_ch : (’a, ’b) offer_t chan,
call_ch : (’a * (b —> unit)) chan
T
with
fun entry () = let
val acceptCh = channel() and callCh = channel()
exception NoMatch
fun buffer (calls, offers) = let
fun doMatch (call, OFFER{req_ch, abort_evt, ...}) = select [
wrap(abort_evt, fn () => false),
wrap(transmit(req_ch, call), fn () => true)
]
fun handleOffer (offer as OFFER{pred, ...}) = let
fun matchCall [] = raise NoMatch
| matchCall ((call as (x, _)) :: r) = if (pred x)
then if (doMatch (call, offer)) then r else (matchCall r)
else call :: (matchCall r)
val arg = (matchCall calls, offers)
handle NoMatch => (calls, offers@[offer])

in
buffer arg
end
fun handleCall (call as (x, _)) = let
fun matchOffer [] = raise NoMatch

| matchOffer ((offer as OFFER{pred, ...})::r) =
if (pred x)
then if (doMatch (call, offer))
then r
else (matchOffer r)
else offer :: (matchOffer r)

val arg = (calls, matchOffer offers)
handle NoMatch => (calls@[call], offers)
in
buffer arg
end

continued...

Figure 5.6: CML implementation of conditional entry abstraction
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Figure 5.6 (continued)

fun withdraw (OFFER{req_ch = reqCh, ...}) = let
fun remove ((off as OFFER{req_ch, ...}) :: r) =
if (sameChannel(reqCh, req_ch))
then rest

else off :: (remove r)
in
remove offers
end
fun withdrawEvt (offer as OFFER{abort_evt, ...}) =

wrap (abort_evt,
fn () => buffer (calls, withdraw offer))
in
select [
wrap (receive acceptCh, handleOffer),
wrap (receive callCh, handleCall),
choose (map withdrawEvt offers)
]
end
in
ENTRY{accept_ch = acceptCh, call_ch = callCh}
end

fun condAccept (ENTRY{accept_ch, ...}) pred = guard (
fn () => let
val reqCh = channel() and abortCh = channel()
in
send (accept_ch, OFFER{
pred = pred,
req_ch = reqCh,
abort_evt = receive abortCh
s
wrapAbort (receive reqCh,
fn () => send(abortCh, ()))

end)
fun call (ENTRY{call_ch, ...}) x = let
val replyCh = channel()
in

send (call_ch, (x, fn y => send(replyCh, y)));
accept replyCh
end
end (* abstype *)
end (* local *)
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withdrawn after a timeout. When the buffer receives such a request, if it has not already

matched the call with an offer, then it would discard the outstanding call.

The lock manager example given above is cited in [GR86] as an example of the need for
the suchthat clause. The claim is that without this mechanism, the lock manager requires
a separate thread and several transactions per lock and unlock request. The real problem is
that Concurrent C’s (and Ada’s) rendezvous mechanism does not allow a server thread
to accept more than one entry call at a time. In CML, however, this is not a problem;
the lock server can keep a list of pending lock requests for each lock. Thus, the conditional
entry abstraction is not a particularly useful one, but as an example it illustrates some

interesting points, including the most serious limitation with CML’s primitives.

For the basic Ada rendezvous, it is possible to implement entryCall as an event-valued
function, and it would be nice to do the same for this richer abstraction. Unfortunately, this
requires a way to insure that three threads (i.e., the client, buffer and server) simultaneously
reach agreement (i.e., rendezvous) on the acceptance of a particular call. But, if both the
client and server are involved in selective communication, then either might back out at
the last minute (i.e., by selecting some other choice). This limitation is not inherent in the
mechanism of first-class synchronous operations, but rather is because synchronous channel
communication provides only a 2-way rendezvous. If a primitive synchronous operation is
supplied for multiway rendezvous® [Cha87], then abstractions such as the conditional accept

can be supported for generalized communication.

While I have argued that conditional accept is not a useful abstraction, there are other
examples where this problem arises. Typically, they involve using a thread to implement
a synchronous channel with richer semantics. For example, it might be nice to have a
version of channels that logged all messages for debugging purposes. The natural way to do
this is to use a thread to implement the logging channel abstraction, but without a 3-way
rendezvous the logging channels cannot support generalized selective communication. This

problem is a topic for future research.

5.5 Futures

The final example of this chapter is the future mechanism of Multilisp (see Section 3.3.5).
Since touching a future is a synchronous operation, we represent futures directly as event

values. The future operation has the type:

val future : (’a -> ’2b) -> ’a -> ’2b event

®Multiway rendezvous is an instance of the committee coordination problem [CMS88].
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and sync is the touch operator. The implementation of future (see Figure 5.7) is straight-
forward: we spawn a new thread to evaluate the application and create a condition variable

for reporting the result. Since the evaluation of a future might result in a raised exception,

fun future f x = let
datatype ’a msg_t = RESULT of ’a | EXN of exn
val resVar = condVar()
in
spawn (
fn () => writeVar (resVar, RESULT(f x) handle ex => EXN ex));
wrap (
readVarEvt resVar,
fn (RESULT x) => x | (EXN ex) => raise ex)
end

Figure 5.7: CML implementation of futures

the result condition variable (resVar) holds either the result or an exception.
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Chapter 6

Theory Preliminaries

This part of the dissertation focuses on a small concurrent A-calculus, called A.,, that
models the significant concurrency mechanisms of CML. I present both a dynamic and
static semantics for A, and prove that the static semantics, which is a polymorphic type

discipline, is sound with respect to the dynamic semantics.

Before diving into the semantics of A.,, it is necessary to review notation. This chapter
first describes the basic notation used in this part, a mix of the notations found in [Tof8§]
and [WF91b], and then introduces the style of semantic specification used by defining the

semantics of A,, a sequential subset of A,.

6.1 Notation

If A and B are sets, then AU B is their union, AN B is their intersection, and A\ B is their
difference. The notation 4 % B denotes the set of finite maps from A to B (i.e., partial
functions with finite domains). If f is a map, then the domain and range of f are defined

dom(f) = {z| f(z) is defined}
rg(f) = {f(2) |z € dom(f)}

The notation

{a1|—>b1,...,an|—>bn}

denotes a finite map with domain {as,...,a,}, such that a; is mapped to b;; we write {}
for the map with the empty domain. If f and g are maps, then f o g is their composition,
and f + g, called f modified by g, is a map with domain dom(f) U dom(g), such that

_ (z) if z € dom(g)
(f+g)(=)= { !]]‘(m) otherwise ?
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The symbol =+ is used because something is added and, when dom(g) N dom(f) # 0, some-
thing is taken away [Tof88]. It is sometimes useful to view maps as sets of ordered pairs
and write f C g, if dom(f) C dom(g) and for z € dom(f), f(z) = g(z). In this case, g is
called an eztension of f. If S is a set, then we write S+ for S U {z}. When S is a map,
and z = (a,b), then S+=z is only defined if a ¢ dom(S). The operator + associates to the
left, so S+y+z is read as (S+y)+z. The notation Fin(S) denotes the set of finite subsets
of S (the finite power set of S). If p is a binary relation, then p* is the reflexive transitive

closure of p.

6.2 Formal semantics

To further introduce the notation of the following chapters, as well as to survey the impor-
tant concepts and results related to this style of semantics, the rest of this chapter presents
the syntax and semantics of a simple call-by-value A-calculus. This calculus, which is es-
sentially a polymorphically typed version of Plotkin’s A, calculus [Plo75], forms the core
of the concurrent language presented in the following chapters. I use a style of semantics
developed by Wright and Felleisen [WF91b]; other versions of this presentation can be found
in many places, such as [DM82] and [Tof88]. The presentation proceeds by first defining the
syntax and dynamic semantics of the untyped A, calculus, and then defining the standard
Hindley-Milner polymorphic type inference system for A, [DM82]. Finally, I state, without

proof, the standard theorems that relate the static and dynamic semantics.

6.2.1 Syntax of A,

The ground terms of A, are variables, base constants and function constants:

z € VAR variables

b € Const =BConsTUFCoNsT constants
BConsT = {(), true, false,0,1,...} base constants
FConsT = {+,-,...} function constants

There are two syntactic classes of terms, expressions (e € Exp) and values (v € VAL C Exp),

defined by the following grammar:

e = w value
|  e1en application
| letz=e;iney let
v u= b constant
| variable
| Az(e) A-abstraction
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Values are the irreducible (or canonical) terms in the dynamic semantics. The free variables

of a term are defined inductively:
FV() = 0
FV(z) = {o}
FV(ei e2) = FV(e1) UFV(ep)
FV(let z=e; ine;) = FV(e) U (FV(e2)\ {z})
FV(Az(e)) = FV(e)\{z}

A term e is closed if FV(e) = . A variable is bound in a term if it appears as the variable

of a let or A. We identify terms up to a-conversion of bound identifiers; for example,
Az (z) =, Az’ (2')

The substitution of a term e’ for a variable z' in a term e, where z’ is not bound in e, is

written as e[z’ — €], and is defined inductively as

blz'—e€] = b
'z €] = ¢
ez’ —e] = z (z#£2)
(e1 e)[z' — €] = ez’ — €] es[z’ — €]
(letz=e; iney)[z' > €] = letz=e1[z’ — €'] inexfz’ — €]
Qz(e))z' = €] = Azlez' — €]

Note that, because of the assumption that 2’ is not bound in e, z # z' in the last two
cases. This is a reasonable assumption, since bound variables can be renamed. In general,

to avoid the problems of free variable capture, we adopt Barendregt’s variable convention:

If My, ..., M, occur in a certain mathematical context (e.g., definition, proof),
then in these terms all bound variables are chosen to be different from the free
variables. (p. 26 of [Bar84])

6.2.2 Dynamic semantics of A,

There are a number of different ways to specify the dynamic semantics of programming
languages. I use the style of operational semantics developed by Felleisen and Friedman
[FF86], because it provides a good framework for proving type soundness results [WF91b].

In this approach, the objects of the dynamic semantics are the syntactic terms in EXPp.

The meaning of the function constants is defined by a partial function

0 : (FConsT x BCoNnsT) — CoONST
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For example, assuming that {not,+, 1+} C FCoNsT, then

d(not,true) = false
é(+,1) = 1+
o(1+,1) = 2

Here 1+ is a special function constant that represents the partial application of + to 1.

An evaluation context is a single-hole context where the hole marks the next redex (or
is at the top if the term is irreducible) The evaluation contexts of A, are defined by the
following grammar:

E:=[]| Fe | vE | letz=FE ine

The evaluation relation is defined in terms of these contexts.

Definition 6.1 (—-) The evaluation relation is the smallest relation satisfying the follow-

ing three rules:

E[bv] s E[8(b,v)] (Ap-9)
E[Az(e) v] s Ele[z — v]] (As-B)
E[letz=vine] = Ele[z+ v]] (Ap-let)

It is easily shown that a given expression has a unique evaluation context under these rules,
which results in left-to-right call-by-value evaluation; i.e., a function application is evaluated
by first evaluating the function position, then the argument position and lastly by applying

the function, and similarly for let expressions. For example, in the expression

Az (z 1) Ay (y) Az(2))

the evaluation context is

Az(z 1) (]

and the redex is

Ay(y) Az (2)

As an example of evaluation, consider the following evaluation, where [- -] is used to mark

the context/redex boundary.

Az (1) (Az(z 10) Ay(y)])
o Az (1) (Py(y) 10])
s [Az(1) 10]
s [1]

66



6.2.3 Typing A,

This section describes a standard polymorphic type system for A,. The purpose of the type
system is to provide a static characterization of the possible results of a computation (e.g.,
“the expression e evaluates to an integer”). The type system is a deductive proof system
that assigns types to A, terms. The most interesting aspect of this system is the rule for
let, which is the source of polymorphism. I start by defining the set of types, then I present
the type system and discuss the rule for let. Finally, I describe the standard soundness
results that hold for this system.

Type terms are built up from type constants and type variables:

a € TyVAr type variables
t € TyCoN = {bool,int,...} type constants

The set of types (7 € TY) is defined by:

a type variable

T = 1 type constant
|
| (m — 1) function type

and the set of type schemes (0 € TYSCHEME) is defined by:

The type schema o = Vo .Vay - - - Vau,.T is abbreviated as Vo g - - - . 7. The type variables
ai,...,a, are said to be bound in o. A type variable that occurs in 7 and is not bound
is said to be free in 0. We write FTV (o) for the free type variables of o. If FTV(7) = 0,
then 7 is said to be a monotype. A type environment is a finite map from variables to type
schemes

TE € TYENV = VAR % TySCHEME

It is also useful to view a type environment as a finite set of assumpiions about the types

of variables. The set of free type variables of a type environment TE is defined to be

FTV(TE)= |J FTV(o)
o€rng(TE)

The closure, with respect to a type environment TE, of a type 7 is defined as
Croste(r) =Voy - an.T

where {a1,...,a,} =FTV(r) \FTV(TE).
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A substitution is a map from type variables to types. A substitution S can be naturally

extended to map types to types as follows:

St =
Sa = S(o)
S(T1—>T2) = (ST1—>ST2)

Application of a substitution to a type schema respects bound variables and avoids capture.
It is defined as:

S(Voay -+ -on.m) =V01, ..., Bn.S ([ — Bi])
where 8; ¢ dom(S)U FTV (rng(S)). Application of a substitution S to a type environment
TE is defined as S(TE) = SoTE. A type 7' is an instance of a type scheme 0 = Vo - - - a7,

written o > 7/, if there exists a finite substitution, S, with dom(S) = {a1,...a,} and

St=1'. If 0 = 7/, then we say that o is a generalization of 7'. Some examples are:

Ya.a > 71, forany € Ty
Vo, B.(a = B) > (a— a)
Va,B.(a - B) > (a— int)
The typing system is given as a set of rules from which sentences of the form “TE - e : 77
can be inferred. This sentence is read as “e has the type 7 under the set of typing assump-

tions TE.” We write - e : 7 for {} - e : 7. To associate types with the constants, we assume

the existence of a function
TypeOf : CoNsT — TYSCHEME

Figure 6.1 contains the typing rules for A,. The rule (7-let), called the Milner let rule,
plays an important role in this system. It is the rule that introduces polymorphism (via the
closure operation), which is the reason for including the let construct in A,. For example,

although the operational semantics of A, equates

AFCCE ) 1) dz(e)

with
let f=Ae(z) in (f f) 1

The former is untypable, while the latter has the typing
{} - (et f=Az(z) in (f f) 1) : int

The reason for this is that (7-let) rule assigns to f the type schema Va.(a — «), which is
instantiated to both (int — int) and ((int — int) — (int — int)) in the body of the
let.
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TypeOf(b) >

TEFb: T (r-const)
¢ € dom(TE) TE(z) > 7
TEFz: T (-var)
TEFe :(7"—>7) TEFey:7

TEF e e: 7 (r-app)

TE+{z—1}Fe:7 b
TEFAz(e) : (t = 7') (7-abs)

TEF e :7 TE+ {z+— Croste(r)}Fex: T

(-let)

TEL let z=¢; iney : 7

Figure 6.1: Type inference rules for A,

For this type system to make sense with respect to the set of constants, we place the

following restriction on the definition of 4:
If TypeOf(d) > (7' — 7) and F v : 7/, then §(b, v) is defined and F §(b,v) : 7.

This restriction insures that any well-typed application of a function constant has a é
reduction. Unfortunately, this restriction rules out some useful function constants, such
as integer division, that are not total. In a calculus with exceptions this restriction is
unnecessary (see Section 7.5.3 or [WF91b]).

It is worth noting that there is exactly one typing rule for each syntactic form; thus, if
we have a proof of TE I e : 7, for some e, the form of e uniquely specifies which typing rule
was the last applied in the deduction. This is the formulation of [Tof88] and differs from
the system of [DM82], which has judgements that infer type schemas for expressions and
rules for instantiating and generalizing type schemas. A proof of the equivalence of these
two systems can be found in [CDDKS86].

This type inference system is decidable; there exists an algorithm, called algorithm
W [DM82] that infers the principal type (i.e., most general under the relation >) of an
expression. Algorithm W is both sound and complete with respect to the inference system.
See [DM82] or [Tof88] for details and proofs.
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6.2.4 Properties of typed A,

The purpose of static typechecking is to provide compile-time guarantees about the run-
time behavior of a program. The most important property of the typing system for A, is
type soundness; i.e., well-typed programs do not have run-time type errors. As with the
dynamic semantics, I follow Wright and Felleisen’s approach [WF91b], which is a purely
syntactic treatment (recall that the objects of the dynamic semantics in Section 6.2.2 are
the syntactic terms). Other approaches to this problem can be found in [DM82], [Dam85],
and [Tof88]. The key result in the approach of [WF91b] is proving that evaluation preserves

types. This is stated in the following type preservation lemma:
Lemma 6.1 (Type preservation) If TE-e:7 and e — ¢/, then TEF ¢ : 7.

This lemma is also known as subject reduction.

An expression e ¢ VAL is said to be stuck if there is no e’ such that e —+ ¢’. Because the
notion of stuck expressions is a semantic one, Wright and Felleisen define a syntactic notion
that is a conservative approximation of the potentially stuck expressions. An expression is
faulty if it contains a subexpression of the form “b v,” where §(b,v) is not defined.! The

following expression is an example of a faulty expression that cannot become stuck:
Az (1) Ay(true 2)

Faulty expressions are shown to be untypable in [WF91b].

. . . . v ¥ .
We say an expression e diverges, written ef}, if, for all ¢’ such that e — €', there exists
v . . . v ¥
an e’ such that ¢’ —— ¢”. An expression e converges to a value v, written ellv, if e — w.

Given these definitions, the behavior of evaluation is characterized by the following lemma:

Lemma 6.2 (Uniform evaluation) For any closed expression e, either elv, ef}, or e T

e', with €’ being faulty.
The subject reduction and uniform evaluation lemmas then give us the following theorem:
Theorem 6.3 (Syntactic soundness) If - e : 7, then either ef}, or elv and v : 7.

To state the soundness of the type system in the traditional way, we define the partial

function eval by:

_ | WRONG ife+%" ¢, with ¢’ being faulty
eval(e) = v if ellv

! Examining the evaluation relation and the definition of evaluation contexts, it is clear that the only way
that an expression can be stuck is if it has the form E[b v], where §(b,v) is undefined.
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Note that if ef}, then eval(e) is undefined. Using this definition, we can state strong and

weak soundness results, which are corollaries of Theorem 6.3.
Theorem 6.4 (Soundness) If I e : 7, then the following hold:

(Strong soundness) if eval(e) = v, then Fv : 7

(Weak soundness) eval(e) # WRONG

This theorem means that well-typed programs produce results of the right type (if they

terminate) and do not have run-time type errors. See [WF91b] for proof details.
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Chapter 7

The Operational Semantics of )y

In this chapter, I present the syntax and dynamic semantics of a small concurrent language
with first-class synchronous operations. This language, which I call A, is A, (from the
previous chapter) extended with pairs and the concurrency primitives of CML. While
Aev lacks a number of features of SML (and thus of CML), it embodies the essential
concurrency mechanisms of CML. In particular, it includes events, channels, the channel
I/O event constructors, and the choose, wrap, guard, wrapAbort combinators. I also
discuss how A., might be extended to model additional features found in CML, such as

exceptions and polling. In Chapter 8, I present the static semantics of A.,.

7.1 Syntax

As with A,, the ground terms consist of variables, base constants and function constants;

in addition there are channel names. The ground terms are:

z € VAR variables

b € Const =BConsTUFCoNsT constants
BConsT = {(), true, false,0,1,...} base constants
FConsT = {+,-,fst,snd,...} function constants

k € CH channel names

The sets VAR, CoNsT, and CH are assumed to be pairwise disjoint. The set FCONSsT

includes the following event-valued combinators and constructors:

choose, guard, never, receive, transmit, wrap, wrapAbort

In addition to the syntactic classes of expressions, e € EXP, and values, v € VAL, A,
has a syntactic class of event values, ev € EVENT C VAL. The terms of A., are defined by

the grammar in Figure 7.1. Pairs have been included to make the handling of two-argument
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e = v value
|  e1en application
| (er.e3) pair
| letz=e; iney let
| chanzine channel creation
| spawne process creation
| synce synchronization
v = b constant
| variable
| (v1.v9) pair value
| Az(e) A-abstraction
| & channel name
| ev event value
| (Ge) guarded event function
ev = A never
| klv channel output
| k? channel input
| (ev =) wrapper
| (evi @ evs) choice
| (ev]|wv) abort wrapper

Figure 7.1: Grammar for A,

functions easier. Note that the syntactic class of the term (v;.v3) is either EXP or VAL;
this ambiguity is resolved in favor of VAL. There are three binding forms in this term
language: let binding, A-abstraction and channel creation. Unlike CML, new channels are
introduced by the special binding form for channel creation. This is done to simplify the
presentation of the next chapter, and the channel function of CML can be defined in terms
of Acy (see Section 7.1.1). The set VAL® is the set of closed value terms (i.e., those without
free variables); note, however, that closed values may contain free channel names. The free
channel names of an expression e are denoted by FCN(e). Note that, since there are no

channel name binding forms, FCN(e) is exactly the set of channel names that appear in e.

Channel names and event values are not part of the concrete syntax of the language;
rather, they appear as the intermediate results of evaluation. A program is a closed term,
which does not contain any guarded event functions (i.e., (G e) terms), or any subterms in
the syntactic classes EVENT or CH. In other words, programs do not contain intermediate

values.
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7.1.1 Syntactic sugar

The syntax of A, differs from CML in several ways, but in many cases the CML syntax

can be viewed as syntactic sugar for A., terms.

CML uses the function channel to allocate new channels and provides the more tradi-
tional synchronous operations send and accept. These functions can be used by embedding

a Ay term e in the following context:
let channel = Az(chan k in k) in

let send = Az(sync (transmit z)) in
let accept = Az(sync (receivez)) in

[e]

The choose and select functions of CML work on lists of events (instead of just pairs).
Although A., does not have SML’s recursive datatypes, event lists can be implemented

using the following translation:
[nil] = mnever()

[ev::r] = choose (ev.[r])

There is no term for sequencing, but we use “(e;; e3)” as syntactic sugar for the term
“snd (ej.ep).” Since A, uses a left-to-right call-by-value evaluation order, this has the

desired semantics.

7.2 Dynamic semantics

The dynamic semantics of A., is defined by two evaluation relations: a sequential evaluation
. . . . . v

relation “—,” and a concurrent evaluation relation “=—.” The relation “+—" is “—”

with a richer § function and a reduction rule for pairs. Concurrent evaluation is an extension

of sequential evaluation to finite sets of processes.

7.2.1 Sequential evaluation

As before, the meaning of the function constants is given by the partial function
d : FCoNsT x VAL® — VAL®

Since a closed value v € VAL® can have free channel names in it, we require, that if b €

FConsT and é(b, v) is defined, then

FCN(6(b, v)) C FCN(v)
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In other words, § is not allowed to introduce new channel names. For the standard built-in
function constants, the meaning of & is the expected one. For example:

é(+,(0.1)) =1

o(+,(1.1)) = 2

d(fst, (v1.v2)) = vy

d(snd, (v1.v2)) = w2

The meaning of § is straightforward for most of the event-valued combinators and construc-

tors:
d(never,)) = A
d(transmit, (k.v)) = &kl
d(receive,k) = k?
d(wrap, (ev.v)) = (ev = v)
d(choose, (evy.evy)) = (evy @ evy)
d(wrapAbort, (ev.v)) = (ev|w)

The only complication arises in the case of guarded-event values:

G (v ())
G (wrap (e.v)))

d(guard,v) = E
(G (choose (e1.€3)))
(
(

d(wrap, ((Ge).v))
d(choose, ((Gey).(Gez)))
d(choose, ((Gey).evy))

)

))

G (choose (e1.ev2)))
G (choose (evy.e2)))
= (G (wrapAbort (e.v)))

d(choose, (ev; . (G ez))
d(wrapAbort, ((Ge).v

These rules reflect guard’s role as a delay operator; when another event constructor is
applied to a guarded event value, then the guard operator (G) is pulled out to delay the

event construction.!

Like A,, evaluation of A., is call-by-value, but there is the additional constraint that
pairs are evaluated left-to-right. This leads to the following grammar for the evaluation

contexts of A.y:
E = []| FEe|vE | (E.e) | (v.E)
| letz=Fine | spawn E | sync E

The following fact about terms and contexts is useful in Chapter 8:
Lemma 7.1 If Ele] is a closed term, then e is a closed term.

Proof. Examining the above definition, it is clear that if  is free in e, then z must also

be free in Efe]. Hence, FV(e) C FV(E[e]) = 0. |

Definition 7.1 (——) The sequential evaluation relation is the smallest relation “—”

satisfying the following four rules:

'In Algol 60 terminology, (Ge) is a thunk.
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E[bv] —  E[6(b,v)] (Acy-6)
E[Az(e) v] —  Ele[z — v]] (Aew-B)
E[letz=vine] +—— Ele[z— v]] (Acv-let)
E[sync (G e)] +— FE[sync e (Acy-guard)

Note that the rule (A.,-guard) forces the expression delayed by guard. As usual, —* is
the transitive closure of —. The evaluation of the other new forms (e.g., spawn) is defined

as part of the concurrent evaluation relation in Section 7.2.3.

7.2.2 Event matching

The key concept in the semantics of concurrent evaluation is the notion of event maiching,
which captures the semantics of rendezvous and communication. Informally, if two processes
synchronize on matching events, then they can exchange values and continue evaluation.

Before we can make this more formal, we need an auxiliary definition

Definition 7.2 The abort action of an event value ev is an expression, which, when eval-

uated, spawns the abort wrappers of ev. The map
AbortAct : EVENT — EXP

maps an event value to its abort action, and is defined inductively as follows:

AbortAct(A) = Q)

AbortAct(k?) = O
AbortAct(klv) = ()
AbortAct(ev = e) = AbortAct(ev)
AbortAct(ev, @ eva) = (AbortAct(ev;); AbortAct(evy))
AbortAct(ev | v) = (AbortAct(ev); spawn v)

With this definition we can formally define the matching of event values:

Definition 7.3 (Event matching) The matching of event values is defined as a family of

binary symmetric relations (indexed by CH). For k& € CH, define
K .
evy C evy with (e, e3)

(pronounced “evy, matches evy on channel k with respective results e; and ey) as the smallest
relation satisfying the six inference rules given in Figure 7.2. This relation is abbreviated

K
to evy Z evy when the results are unimportant.

An example of event matching is:

(7= Az ((z.2))) 2 (117 @ (,? = Az ())) with Az ((z.2)) 17, O)
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k!v O k? with (O,v)

evy C evy with (e, e3)

K
~
~—

K
~
~—

evs Z ev; with (e, e1)

ev; 5 evy with (e, ea)

evy O (evy = v) with (eq, v e3)

ev; 5 evy with (e, ea)

K

evy C (evz @ evs) with (e1, (AbortAct(evs); e2))

ev; 5 evy with (e, ea)

K

evy Z (evs @ evs) with (e1, (AbortAct(evs); e2))

ev; 5 evy with (e, ea)

evy O (evy | v) with (eq, e3)
Figure 7.2: Rules for event matching

Informally, if two processes attempt to synchronize on matching event values, then we can
replace the applications of sync with the respective results. This is made more precise in

the next section where the concurrent evaluation relation is defined.

Note that event matching is nondeterministic; for example, both
K
k? C (k117 @ £!129) with (17, ()

and
K? S (K17 & K129) with (29, )

It is also worth noting that even if one of the wrappers of an event value is non-
terminating, the necessary abort actions for that event will be executed (assuming fair
evaluation). This property is important because a common CML idiom is to have tail-

recursive calls in wrappers (e.g., the buffered channel abstraction in Section 5.1).

7



7.2.3 Concurrent evaluation

Concurrent evaluation is defined as a transition system between finite sets of process states.
This is similar to the style of the “Chemical Abstract Machine” [BB90], except that there are
no “cooling” and “heating” transitions (the process sets of this semantics can be thought
of as perpetually “hot” solutions). The concurrent evaluation relation extends “—” to
finite sets of terms (i.e., processes) and adds additional rules for process creation, channel
creation, and communication. We assume a set of process identifiers, and define the set of

processes and process sets as:

m € Proclbp process IDs
p={(m;e) € Proc=(Proclp x Exp) processes
P € Fin(Proc) process sets

We often write a process as (m; E[e]), where the evaluation context serves the role of the

program counter, marking the current state of evaluation.

Definition 7.4 A process set P is well-formed if for all (m; e) € P the following hold:
e FV(e) =0 (e is closed), and
e there is no ¢’ # e, such that (m; e’) € P.

It is occasionally useful to view well-formed process sets as finite maps from ProclIp to
Exp. If P is a finite set of process states and K is a finite set of channel names, then K, P

is a configuration.
Definition 7.5 A configuration K, P is well-formed, if FCN(P) C K and P is well-formed.

The concurrent evaluation relation “=—>" extends “—" to configurations, with addi-
tional rules for the concurrency operations. It is defined by four inference rules that define
single step evaluations. Each concurrent evaluation step affects one or two processes, called
the selected processes. I first describe each of these rules independently, and then state the

formal definition.

The first rule extends the sequential evaluation relation (—) to configurations:

er— e
K,P+{m; ey = K, P+(m; €'

(Acv)

The selected process is .

The creation of channels requires picking a new channel name and substituting for the
variable bound to it:
kg K
K,P+(r; E[chan z in e]) = K+&, P+(r; Ele[z — £]])

(Acy-chan)
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Again, 7 is the selected process.
Process creation requires picking a new process identifier:

7' ¢ dom(P)+n
K, P+(r; E[spawn v]) = K, P+(m; E[O))+(n'; v O)

(Acr-spawn)

This rule has two selected processes: m and «’.

The most interesting rule describes communication and synchronization. If two processes
are attempting synchronization on matching events, then they may rendezvous — i.e.,

exchange a message and continue evaluation:

ev; 5 evy with (e, e3)
K, P+{(m1; Ei[sync evi])+{me; Ea[sync evy]) (Aco-sync)
= K, P+(m1; Erler])+(ma; Ezlea])

The selected processes for this rule are m; and m5. We say that & is used in this transition.

More formally, concurrent evaluation is defined as follows:

Definition 7.6 (=) The concurrent evaluation relation is the smallest relation “=—”"

satisfying the rules: (Ag-—), (Aey-chan), (Ac,-spawn), and (Aq,-sync).

Under these rules, processes live forever; i.e., if a process evaluates to a value, it will
never again be selected, but it remains in the process set. We could add the following rule,

which is similar to the evaporation rule of [BB90]:
K, P+(m; [v]) = K, P

This rule is not included because certain results are easier to state and prove if the process

set is monotonicly increasing.

7.3 Traces

Unlike in the sequential semantics of Section 6.2.2, a program can have many (often infinitely
many) different evaluations. Furthermore, there are many interesting programs that do not
terminate. Thus some new terminology and notation for describing evaluation sequences
is required. This is used to describe some reasonable fairness constraints (see Section 7.4)

and to state type soundness results for A, (see Chapter 8).

First we note the following properties of —:
Lemma 7.2 If K, P is well-formed and K,P — K', P’ then the following hold:
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1. K',P'is well-formed
2. KCK'

3. dom(P) C dom(P’)
Proof. By examination of the rules for —. |

Corollary 7.3 The properties of Lemma 7.2 hold for —*.

Proof. By induction on the length of the evaluation sequence. |

Note that property (1) implies that evaluation preserves closed terms.

Definition 7.7 A trace T is a (possibly infinite) sequence of well-formed configurations
T = <<K0, Po; Kl, Pl; .. >>

such that K;, P; = K;y1, Piy1 (for 2 < m, if T is finite with length n). The head of T is
’CO, PO-

Note that if a configuration Ko, Po is well-formed, then any sequence of evaluation steps

starting with Ko, Py is a trace (by Corollary 7.3).

The possible states of a process with respect to a configuration are given by the following

definition.

Definition 7.8 Let P be a well-formed process set and let p € P, with p = (m; e). The

state of w in P is either zombie, blocked, or ready, depending on the form of e:

e if e = [v], then p is a zombte,

e if e = E[sync ev] and there does not exist a (n'; E'[sync ev']) € (P \ {p}), such that

K
ev Z ev’, then 7 is blocked in P.

e otherwise, 7 is ready in P.
We define the set of ready processes in P by
Rdy(P) = {r | 7 is ready in P}

A configuration K, P is terminal if Rdy(P) = 0. A terminal configuration with blocked

processes is said to be deadlocked.
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Definition 7.9 A trace is a computation if it is maximal; i.e., if it is infinite or if it is finite
and ends in a terminal configuration. If e is a program, then we define the computations of
e to be

Comp(e) = {T'|T is a computation with head (mo; €)}

Note, I follow the convention of using 7o as the process identifier of the initial process in a

computation of a program.

Definition 7.10 The set of processes of a trace T is defined as

Procs(T) = {n | 3K;,P; € T with w € dom(P;)}

Since a given program can evaluate in different ways, the sequential notions of conver-
gence and divergence are inadequate. Instead, we define convergence and divergence relative

to a particular computation of a program.

Definition 7.11 A process m € Procs(T") converges to a value v in T, written 7l v, if
K,P+{m;v) € T. We say that 7 diverges in T, written n{}y, if for every K,P € T, with
m € dom(P),  is ready or blocked in P.

Divergence includes deadlocked processes and terminating processes that are not evaluated
often enough to reach termination, as well as those with infinite loops. It does not include

processes with run-time type errors, which are called stuck (see Section 8.2.3).

7.4 Fairness

The semantics presented above admits unfair traces, and thus is not adequate as a spec-
ification of CML implementations. It is necessary to distinguish the acceptable traces.
Informally, we require that ready processes make progress and that communication on a

single channel is fair (see [Kwi89] for a survey of fairness issues).

A couple of definitions are required before formalizing the notions of fairness. I have
already defined the notion of a process being ready in a configuration; a similar definition

is required for channels.

Definition 7.12 A channel & is enabled in a configuration K, P if there are two distinct

processes (m; E[sync ev]) € P and (n’; E'[sync ev']) € P, such that ev 2 ev'.

The acceptable computations of a program are defined in terms of fairness restrictions.
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Definition 7.13 A computation T is acceptable if it ends in a terminal configuration, or if

T satisfies the following fairness constraints:

(1) Any process that is enabled infinitely often is selected infinitely often.

(2) Any channel that is enabled infinitely often is used infinitely often.

In the taxonomy of [Kwi89)], the first restriction is strong process fairness and the second is

strong event fairness.

An implementation of CML should prohibit the possibility of unacceptable computa-
tions. In practice this requires that an implementation satisfy some stronger property on

finite traces. As an example, consider the following property.

Definition 7.14 A finite trace T of length n is k-bounded fair (for k a fixed positive
integer), if every intermediate configuration XC;, P;, satisfies one of the following (where

m = i+ k [Rdy(Py)]):

e m >n,or

e for every m € Rdy(P;), 7 is a selected process at least once in the evaluation subse-

quence K;,P; —= - - = K, P
An infinite trace T is k—bounded fair, if every finite prefix of T is k—bounded fair.

A k-bounded fair trace obviously satisfies restriction (1) (but not necessarily (2)). The k-
bounded fairness restriction is realizable using fairly standard implementation techniques.
For example, an implementation that uses fair preemptive scheduling? and FIFO queues for
the process ready queue and for channel waiting queues will produce only k-bounded fair
sequences, where k is determined by the length of the time-slice and speed of the processor.

Similar notions can be defined for event fairness.

7.5 Extending A,

The language A., lacks a number of features found in CML; in this section I show how A,
might be extended to model some of these features. This is not meant to be a complete
development of the formal semantics of a more complicated language, rather it is to illustrate
that a formal treatment of full CML is possible.

2By fair, I mean that a thread is guaranteed some progress before being preempted.
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7.5.1 Recursion

Dynamic process and channel creation is powerful enough to implement the call-by-value

Y, combinator. This combinator has the following evaluation rule:
E[Y,v] — E[v Az ((Y, v) 2)]

The following CML code implements Y, using only those features found in A, (it is adopted
from [GMP89)):

val Y, = fn f => let
val a = channel()

val g = fn v => let val h’ = accept a
in
spawn (fn () => send(a, h’));
fh v
end
in

spawn (fn () => send(a, g));
let val h = accept a
in
spawn (fn () => send(a, h));
fh
end
end

This code is somewhat mysterious, but what it actually does is fairly simple. The channel
a is used to cache the function g for the next iteration of £; each time g (renamed h) is read
from a, a new thread is spawned to send the copy for the next iteration. For CML, which
is statically typed (see Chapter 8), this definition implements recursion at all imperative
types. As an alternative, we could add the Y, combinator as a built-in term constructor (as

is done in [WF91b]), which would provide recursion at all types.

7.5.2 References

It is well-known that processes and channels can be used to mimic updatable references.
The standard technique is to use a process (or thread) to hold the state of the reference cell,
with messages to implement reading and writing of the cell. Figure 7.3 gives the CML code
for this. One can define a formal translation from programs with references to programs
using this scheme. This is done in [BMT92|, and the translation is shown to be faithful to

the expected semantics of references.

The implementation of Y, described in Section 7.5.1 is similar to the imperative Y—

combinator (Y;) defined by Felleisen [Fel87a]. This suggests the following implementation
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datatype ’a ref = REF of (’a chan * ’a chan)

fun mkRef initX = let
val inCh = channel() and outCh = channel()
fun cell x = sync (choose [
wrap (transmit (outCh, x), fn () => cell x),
wrap (receive inCh, fn newX => cell newX)
D)
in
spawn (fn () => cell initX);
REF(inCh, outCh)
end

fun assign (REF(inCh, _), x) = send (inCh, x)

fun deref (REF(_, outCh)) = accept outCh

Figure 7.3: Implementing references

of references, which uses channels to represent references directly and does not require
explicit recursion. Figure 7.4 gives this alternative representation of references. Note that

this version of references can be directly coded in A, .

fun mkRef initX = let val ch = channel()
in
spawn (fn () => send (ch, initX));
ch
end

fun assign (ch, x) = (accept ch; spawn (fn () => send (ch, x)))
fun deref ch = let val x = accept ch
in
spawn (fn () => send (ch, x));

X
end

Figure 7.4: Implementing references without recursion

7.5.3 Exceptions

One of the most important features of SMIL (and CML) is the exception mechanism. CML

adds further support for exceptions with the wrapHandler event-value combinator, which
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handles exceptions that are raised during evaluation of an event’s wrappers. Exceptions are

another feature that requires imperative types to achieve sound typing.

Wright and Felleisen provide a semantics of SML’s exception mechanism in [WF91b],
but applying this technique to A., requires some care. The problem is that the soundness
of their semantics relies on limiting the scope of exception identifiers to within the scope
of their binding site (the rewrite rules allow the binding sites to migrate up to the top of
the term, thus expanding the scope of the binding). Since processes can include exceptions
in messages, and thus send them out of scope, a different approach is needed. The best
approach seems to be to bind exception identifiers in an implicit global environment (as is
done with channel names). In the remainder of this section, I sketch the changes to the

syntax and semantics of A, that are required to support exceptions.

Adding exceptions to A., requires a set of exception names:
er € EXNNAME

The syntax of A, must be extended to support the declaration, raising, and handling
of exceptions. A raised exception is represented by an ezception packet (EXN C EXP).
Exception packets are irreducible terms, but for technical reasons they are not values. The

syntactic extensions are:

e 1= exceptionz ine exception binding
| raisee; ey raise exception
| e; handle z with ey exception handler
| ern exception packet
exn = [ex, v] exception packet
v = ex exception name
ev == (evHw) wrapped handler

The terms for exception packets, exception names and wrapped handlers are intermediate

forms; i.e., they do not appear in programs.

Sequential evaluation is extended in several ways. Since there is no pattern matching in
Acw, exception matching must be explicitly coded in the semantics. For wrapHandler, this
means that the wrapper is a pair of the exception name and the handler. This is reflected

in the é-rule for wrapHandler:

d(wrapHandler, (ev.(ez.v))) = (evH (ez.v))
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The presence of an exception mechanism means that function constants such as div can be
supported. Assuming the existence of the exception name Div € EXNNAME, then integer
division can be defined by:

d(div, (z.0)) = [Div, )]

é(div, (z.y)) = FJ

Yy

Additional evaluation contexts for the new syntactic terms are required:

E

= raise Fe | raiseez F
| ehandle ex with E | E handle ez withv
|

Note that the handler of a handle term is evaluated before the body. The sequential
evaluation relation (Definition 7.1) must be extended. Most of the new clauses for “—”
are for short circuiting evaluation when an exception is raised and propagating the resulting

packet up to a handler. A sampling of these is:

Elezn €] +— Elezn]
E[v ezn] +— Elezn]
FElehandle ez with exn] +—— E|ezn]

There are similar rules for pairs, let, sync and raise. The other new clauses have to do
with the raising and catching of exception packets:

E[raise ez v] —  E|[exz, v]]

E[[ez, v] handle ez withv'] +— E[v'v]

E[[ez, v] handle ez’ withv'] —— E[[ez, vl] (ex # ez’)
As is the case with channel names, the binding of new exception names is left to the

concurrent evaluation relation.

The event matching relation (Definition 7.3) must be extended with a clause for wrapped

handlers:
K
evy C evy with (e, e3)

evy O (eva H (ex.v)) with (e, e handle ez with v)

Configurations must now include a set of bound exception names. They have the form
K,X,P, where X C EXNNAME is a finite set of exception names. A configuration K, X', P
is well-formed, if FCN(P) C K, P is well-formed, and any exception name that occurs in P
isin X.

The inference rules for concurrent evaluation relation (Definition 7.6) are modified in
light of the new form of configurations. In addition, the concurrent evaluation relation is
extended to allow the declaration of exceptions:

ex ¢ X
K,X,P+(m; Elexceptionz in e]) = K, X+ex, P+(r; Ele[z — ex]])
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7.5.4 Process join

CML provides the event constructor threadWait that creates an event for synchronizing
on the termination of a given thread. There are a couple of ways to extend A., to model
this. One approach is to define a distinguished set of channel names, {x, | # € ProcIp},
to represent process IDs in the dynamic semantics. In this approach, the rule for process
creation wraps the body of a process = with code to repeatedly send () on the channel k,:
7' ¢ dom(P)
K,P+(r; E[spawn v]) = K+K, P+(r; E[kn])+{n'; Fork(n', v))

where

Fork(m,v) = (v O; Y, Af(send (k-.0); f ) O))

Waiting for a process’ termination is implemented in this scheme by waiting for a message
on the process’ channel; i.e., threadWait is implemented directly by receive. While this
is a reasonable implementation technique, it has the disadvantage that it becomes hard to

distinguish the zombie processes.

A better approach is to support threadWait directly. As a side effect of this approach,
the event constructor always can be directly supported. The direct approach requires

adding ProcID to the domain of values and adding two new event value terms:
v on= |-
ev == (Wm) | A ---
The implementation of the always function is defined by the following d—rule:
d(always,v) = (A = Az (v))
Matching a base event created by threadWait or always differs from rendezvous in that

only one process is selected. This requires a new relation between an event and a set of

processes.

Definition 7.15 Define the ternary relation
ev e

(pronounced as “ev is matched in P with result ¢”) as the smallest relation satisfying the

inference rules in Figure 7.5.

The concurrent evaluation relation is changed slightly in the case of spawn, which now
returns the identifier of the new process:
7' ¢ dom(P)
K, P4(m; E[spawn v]) = K, P+(r; E[x'])+(r'; v ))
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(ev = v) £ (ve)

P
ev > e

(ev @ ev’) S (AbortAct(ev’); e)

P
ev e

(ev' @ ev) S (AbortAct(ev’); e)

P
ev e

P
(ev|v) > e
Figure 7.5: Rules for matching events in process sets

And there is an additional concurrent evaluation rule for sync that handles the matching

of threadWait and always events:

P
ev e

K,P+(r; sync ev) = K, P+(rm; e)

7.5.5 Polling

As noted in Section 4.6, CML supports a polling mechanism. Recall that the poll operation
is a non-blocking form of sync, which returns NONE if sync would have blocked, and SOME

wrapped around the synchronization result otherwise.

It is fairly straightforward to add poll to A.,. To start with, the syntax of expressions

and the definition of evaluation contexts is extended with a new form:

e == polle | ---
E == pollE | ---
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Since A, does not have the option datatype, we need another way to encode the result of
polling an event value. To do this, the poll operation takes two arguments: an event value
to poll and a pair of functions. Informally, the evaluation of poll(ev.(f.g)) will either
apply f to the result of matching ev, or else it will apply g to ().

Since polling is supposed to be non-blocking, we need a formal notion of when synchro-

nizing on an event would block. The following two definitions do this.

Definition 7.16 An event value ev is offered by « in a configuration K, P, if P(r) is of the
form E[sync ev] or E[poll(ev.v)]. The set of offered events in P is defined to be

Offered(P) = {ev | 37 € dom(P) such that = offers ev in P}

Definition 7.17 The set of matched events in a set of processes P is defined to be

Match(P) = {ev | Jdev’ € Offered(P) such that ev 2 ev’, for some & }

And, we need three additional concurrent evaluation rules. The first two handle the transi-
tion in which the event is matched by some other process, the third handles the transition

for when sync would have blocked:

ev O ev’ with (e, €')
K,P+(m; E[poll(ev. (v1.v2))])+(x'; E'[sync ev'])
= K, P+(r; E[v, e])+(n"; E'[e])

ev 2 ev' with (e, €')
K,P+{(m; E[poll(ev. (v1.v2))])+(r'; E'[poll(ev’. (v].v5))])
= K, P+(m; Elvy e))+(x"; E'[v €'])
ev ¢ Match(P)
K,P+(m; E[poll(ev.(v1.v3))]) = K,P+{m; E[vy Q)

To make these rules sensible requires the following fairness constraint:

If p = (r; E[poll(ev.v)]), then a transition K, P4+p —> K', P'+p, is acceptable
if:

e ev € Match(P) and ev € Match(P'), or
e cv ¢ Match(P) and ev ¢ Match(P’).

This constraint captures the notion that poll is non-blocking by forcing the polling opera-

tion to complete before the state of the polled event can change.

89



Chapter 8
Typing \ey

In this chapter, I present a polymorphic type discipline for A., and prove that it is sound
with respect to the operational semantics presented in the previous chapter. Proofs of
the main results are provided in this chapter; additional proof details can be found in the

appendix.

CML uses SML’s polymorphic type inference system, which is an extension of the one
presented in Section 6.2.3 for A,. It has been long known that the naive extension of this
system for polymorphic references is unsound [GMW79, Dam85, Tof88]. For example, under

the assumptions
ref — Vo.(oo — aref)
:= +— VYo.((a X aref) — unit)
! = Va.(aref — )

the following erroneous program has the type bool:

let val r = ref (fn x => x)

in
r := (fn x => x + 1);
(' r) true

end

Tofte, in [Tof88] and [Tof90], shows that the source of the problem is the rule for let
bindings. Recall from Figure 6.1 that this rule is
TEF e 7 TE+ {z+— Croste(r)}Fes: T
TEL let z=¢; iney : 7

(-let)

Tofte points out that the closure operation generalizes too many type variables. In partic-
ular, there are type variables that are free in the implicit typing of the store, but which are
being generalized in the rule for let. For example, in the code above, closure causes r to
be assigned the type scheme Vo.(a — o) ref in the body of the let, which is instantiated
to both (int — int) ref and (bool — bool) ref.
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Since the typing of the store is undecidable at compile time, a more conservative scheme
is necessary to avoid generalization of variables that are free in the store typing. Tofte
proposed a system that distinguishes between applicative and imperative type variables,
and between let bindings that are ezpansive (i.e., may introduce new store objects) and
those that are not. Expansiveness is a syntactic property that conservatively approximates
those expressions that introduce new store objects. Basically, irreducible terms, such as
abstractions and constants, are non-expansive, and all other terms are expansive. For

example, using SML notation,

let val x ref 1 in ... end

and

let val x 1 +2 in ... end

are both expansive let bindings, while

let val x = fn x => ref x in ... end

is a non-expansive binding. There are two typing rules for let: when the binding is ex-
pansive, then only the applicative type variables can be generalized; when the binding is

non-expansive, then any variable can be generalized.

SML/NJ uses a scheme developed by Dave MacQueen, called weak types, to deal with
imperative features. The basic idea is to assign a rank to each type variable, which is an
approximation of the number of levels of abstraction protecting the variable. When the rank
of a variable gets to zero, it must be instantiated to a monotype. Applicative type variables
have a rank of infinity, and thus are not weak. It is conjectured, although not proven, that
MacQueen’s scheme is sound and strictly more polymorphic than Tofte’s. Although CML
inherits this typing scheme from SML/NJ, I use Tofte’s scheme in this chapter, because it
has a well-defined inference system and because it is the type system used in the definition

of SML [MTH90].

Since channels and processes can be used to implement references (as shown in Sec-
tion 7.5.2), it is clear that the typing problems of polymorphic references also exist for
polymorphic channels. One might naively view the implementation of CML as a proof
of the soundness of polymorphic channels, since it is written in SML (plus callcc) and
it typechecks, but it has recently been discovered that the typing rules given for callcc
in SML/NJ are not sound (Bob Harper, personal communication, July 1991). A simple

counter-example (owed to Harper and Lillibridge) is the expression:
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let val (a, b) = (callcc (fn k =>
(fn x => x, fn £ => throw k (f, fn £ => ()))))
in
print (a "hello");
b (fn x => x+2)
end

The typing of callcc has been changed in SML/NJ to fix this problem (the correct
typing is given in Section 2.3.3). The implementation of CML, however, uses the unsound
typing,! which means that the soundness of polymorphic channels is a serious concern. The

remainder of this chapter presents the type system for A., and proves it sound.

8.1 Static semantics

The type terms of A, are richer than those of A,. Let ¢« € TyCon = {int,bool,...}

designate the type constants. Type variables are partitioned into two sets:

u € IMPTYVAR imperative type variables
t € AppTyYVar applicative type variables
a,8 € TyVar =IMPTYVARU APPTYVAR type variables

The set of types, 7 € TY, is defined by

T type constants

=

| « type variables
| (m — 7) function types
| (71 X 7T2) pair types

| 7 chan channel types
| T event event types

and the set of type schemes, o € TYSCHEME, are defined by

o = T
| Voo

As with A, we write Yoy - - - o, .7 for the type scheme o = Vo - - -Va,.7, and write FTV(o)

for the free type variables of 0. We define the set of imperative types by
6 € ImpTY = {7 | FTV(r) C IMPTYVAR}

Note that all of the free type variables in an imperative type are imperative.

As with A, type environments assign type schemes to variables in terms. Since we are

interested in assigning types to intermediate stages of evaluation, channel names also need

! The reasons for this are discussed in Section 10.1.1.
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to be assigned types. Therefore, a typing environment is a pair of finite maps: a wariable

typing and a channel typing:

VT ¢ VARTY = VAR =% TySCHEME

CT € CHANTY= CH % ImpTy
TE = (VT,CT) € TYENv = (VARTY x CHANTY)

We use FTV(VT) and FTV(CT) to denote the sets of free type variables of variable and
channel typings, and
FTV(TE) = FTV(VT) UFTV(CT)

where TE = (VT, CT). Note that there are no bound type variables in a channel typing,
and that FTV(CT) C IMpTYVAR. The following shorthand is useful for type environment

modification:

TE+ {z— o0} =44 (VI L {2z~ 0}, CT)
TE+{k+ 8} =as (VT,CT{xws 6})

where z € VAR, k € CH, and TE = (VT, CT).

Because of the need to preserve imperative types, we require that substitutions map
imperative type variables to imperative types. As before, we allow substitutions to be

applied to types and type environments.

Definition 8.1 A type 7’ is an instance of a type scheme o = Va; - - - a,.7, written o > 7/,
if there exists a finite substitution, S, with dom(S) = {a,...,on} and ST =7'". If 0 > 7/,
then we say that o is a generalization of 7/. We say that o > ¢’ if whenever o' > 7, then

o>T.

Definition 8.2 The closure of a type 7 with respect to a type environment TE is defined
as: CLostg(T) =Voy - - - op,.T, where

{a1,...,0,} =FTV(r)\ FTV(TE)
And the applicative closure of T is defined as: ApPCLOSTE(T) = Va1 - - - a7, Where
{a1,...,a,} = (FTV(r) \ FTV(TE)) N AppTYVAR
The following important facts about type closure and generalization are used later:
Lemma 8.1 The following two properties hold for any TE, o, ¢/, 7, and z:

o If 0 > 0", then CLOSTE:I:{:D!—)G’}(T) > CLOSTE:I:{::»—)G-’}(T)'
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e If z  dom(TE), then CLostg(T) > CLOSTEL{z50}(T)-

Proof. These both follow from the observation that if FTV(TE) C FTV(TE') then
CLOSTE(T) b CLOSTE7(T) [ |

8.1.1 Expression typing rules

As before, the function TypeOf assigns types to the constants. For the concurrency related

constants, TypeOf assigns the following type schemes:

never Va.(unit — o event)

receive : Va.(a chan — o event)

transmit Va.((a chan X a) — unit event)

wrap : Vaf.((a event x (o — 3)) — B event)
choose Va.((a event X o event) — a event)
guard : Va.((unit — o event) — a event)
wrapAbort Va.((a event X (unit — unit)) — o event)

We also assume that there are no event-valued constants. More formally, we require that

there does not exist any b such that TypeOf(d) = 7 event, for some type 7.

The typing rules for A., are divided into two groups. The core rules are given in
Figure 8.1. These are a modification of the rules in Figure 6.1. There are two rules for let:
the rule (r-app-let) applies in the non-expansive case (in the syntax of A.,, this is when the
bound expression is in VAL); the rule (7-imp-let) applies when the expression is expansive
(not a value). There are also rules for typing channel names, and pair expressions. The
rule (7-chan) restricts the type of the introduced channel to be imperative. In addition to
these core typing rules, there are rules for the other syntactic forms (see Figure 8.2). Given
the appropriate environment, these rules can be derived from rule (7-app) (rule (7-const)
in the case of A). It is useful, however, to include them explicitly. As before, it is worth

noting that the syntactic form of a term uniquely determines which typing rule applies.

In order that the typing of constants be sensible, we impose a typability restriction on the
definitions of § and TypeOf. If TypeOf(b) > (' — 7) and TE - v : 7/, then §(b, v) is defined
and TEF é(b,v): 7. It is worth noting that the § rules we defined for the concurrency

constants respect this restriction.

The following lemma defines a derived typing rule for the sequencing syntax:

Lemma 8.2 The typing rule for the sequencing is

TEFe;:m TEFes:m
TE & (e1; e3) :
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TypeOf(b) >

TEFb:T (7-const)
¢ € dom(VT) VT(z) >
(VI,CT)Fz: 7 (7-var)
CT(k)=196
(VT,CT)F & : 6 (7-chvar)
TEF e :("—7) TEley:7’

TEFe ex:T (-app)
TE+{z—7}Fe:7 b
TEF Az(e) : (r — 1) (T-abs)

TELe;:m TEFRey:m .
TEF (e1.e3) : (11 X T2) (7-pair)
TEFv:7 TE4{z — Croste(r')}Fe:T
(r-app-let)

TEF letz=vine: T

TEFe : 7 TE+ {z+— AppCroste(r)}Fex: 7
TEL let z=¢; iney : 7

(r-imp-let)

TE+ {z+— 6 chan}te: 7
TEF chanz ine: T

(r-chan)

Figure 8.1: Core type inference rules for A,
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TEtF e: (unit — 7)
TE |- spawn e : unit

TEFe: T event
TE - synce: T

TEFe: T event
TEF (Ge): T event

VYoa.oa event > 1

TEFA:T

TEFk:7chan TEFRwv: 7
TE F k!v : unit event

TE F k : 7 chan
TEF k? : 7 event

TEF ev:7' event TEFe:(r'— 1)
TEF (ev = e) : T event

TEF evy; : 7Tevent TEL evy: 7 event
TE | (evy @ evy) : T event

TEF ev:7event TEF v:(unit — unit)
TEF (ev | v) : 7 event

Figure 8.2: Other type inference rules for A,
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(r-guard)

(T-never)
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( put)

(T-input)
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Proof. This follows from the definition of sequencing and the type rules above:

TypeOf(snd) > ((11 X 72) > 72) TEle;:m TEFes:m
TE F snd : ((11 X 72) — 72) TEF (ey.e3) : (11 X 2)
TE |- snd (e;.e3) : 7

8.1.2 Process typings
A process typing is a finite map from process identifiers to types:
PT € ProcTy = ProcIp *% Ty

Typing judgements are extended to process configurations by the following definition.

Definition 8.3 A well-formed configuration /C, P has type PT under a channel typing CT,
written

CTFK,P:PT
if the following hold:
e I C dom(CT),
e dom(P) C dom(PT), and

o for every (m; e) € P, ({},CT) - e: PT(x).

For CML, where spawn requires a (unit — unit) argument, the process typing is PT(7) =
unit for all m € dom(P).

8.2 Type soundness

This section presents a proof of the soundness of the type system given in Section 8.1 with
respect to the dynamic semantics of Section 7.2. As discussed in Section 6.2.4, I use the
approach of [WF91b]. The basic idea is to show that evaluation preserves types (also called
subject reduction); then characterize run-time type errors (called “stuck states”) and show
that stuck states are untypable. This allows us to conclude that well-typed programs cannot

go wrong.
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8.2.1 The Substitution and Replacement lemmas

Before we can prove the main results, we need several important lemmas. The following
lemma states that any variable or channel name in the domain of a typing environment,

which is not free in an expression e, can be ignored in the typing of e.

Lemma 8.3 If ¢ ¢ FV(e), then TEtFe:7 iff TExX{z — o} Fe:7. Likewise, if & ¢
FCN(e), then TEFe: 7 iff TExX {x — 6}t e: 7.

Proof. The proof is a straightforward induction on the height of the typing deduction. W

Note that the variable convention insures that ¢ ¢ FV(e) whenever this lemma applies.

The following lemma is very important; it allows us to replace a subexpression with

another expression of the same type, without affecting the type of the whole term.
Lemma 8.4 (Replacement) Let C[] be a single-hole context. If the following hold:

1. D is a type deduction concluding TE - Cleq] : T,
2. D, is a subdeduction of D, which concludes TE' I e; : 7/,
3. Dy occurs in D in the position corresponding to the hole in C', and
4. TE F ey : 7/,
then TE F Cles] : 7.

Proof. The basic idea is that the term C[e;] and type deduction D have isomorphic
structure, thus the replacement of e; by e is paralleled by a replacement of the deduction
of TE'e; : 7 by the deduction of TE' |- ey : 7, giving the deduction of TE F Cles] : 7.
This is proven by induction on the structure of the deduction. See [HS86] or [WF91b] for
detailed proofs. |

The following lemma essentially says that 8-reduction preserves types.

Lemma 8.5 (Substitution) If z ¢ FV(v), TEF v : 7, and
TE+{z— Vo1 - ap.t}rFe:7

with {ai,...,a,} NFTV(TE) = 0, then TE}F e[z — v] : 7'.

Proof. The proof is by induction on the height of the typing deduction; the detailed proof

is given in the appendix. |

98



The following lemma is useful in showing that spawn preserves types.
Lemma 8.6 If (VT,CT) e : 7 and FV(e) = 0, then ({},CT) Fe: 7.

Proof. This is a more specific version of Lemma 8.3 and follows immediately. |

8.2.2 Subject reduction

We are now ready to state and prove the first subject reduction theorem, which says that

sequential evaluation preserves types.

Theorem 8.7 (Sequential type preservation) For any type environment TE, expres-

sion e; and type 7, such that TEFe; : 7, if e; —— ey then TE | e5 : 7.

Proof. Let E[e] = e; and E[e'] = ey, and assume that TE' - e : 7/ with TE' = (VT', CT).
Then, by the Replacement Lemma (8.4), it is sufficient to show that TE'F ¢’ : 7/. This is

done by case analysis of the definition of — (i.e., the structure of e).

Case E[bv] — E[6(b,v)].
Rules (r-app) and (7-const) apply:
TypeOf(d) > (7 — 1)
TE'Fb:(r—7) TEFw:r
TE' Fbv: 7

Thus, by the typability restriction on §, we have TE' - §(b,v) : 7.

Case E[Az(e) v] — Ele[z — v]].
Rules (r-app) and (7-abs) apply:
TE' £ {z— 1"} Fe:7
TE' FXz(e) : (7" = 7') TE bwv:7"
TE' - Az(e) v: 7'

Applying the Substitution Lemma (8.5), gives us

TE' + e[z — v] : 7/

Case E[let z=v in e] — Ele[z — v]].
Rule (r-app-let) applies:
TE'Fv:7" TE' 4 {z — Crospg/(7")}Fe: 7
TE':-letz=vine: 7’
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Let CLostg/ (") = Vou - - - o, 7", then, by definition,
{o1,...,0,} NFTV(TE) = 0
Then, by the Substitution Lemma (8.5), we get
TE' e[z — v]: 7/
Case E[sync (Ge)] — E[sync e].
Rules (7-sync) and (7-guard) apply:
TE' e : 7 event

TE' (Ge) : 7/ event
TE' I sync (Ge) : 7/

Hence, by rule (7-sync),
TE' e : 7' event
TE'+ synce: 7

Lemma 8.8 If ev; 5 evs with (e1,e2) and TE |- ev; : 7; event, then TEF ¢; : 7 (for @ €

{1,2}).

Proof. This is proved by induction on the definition of event matching; the details are

given in the appendix. |

We are now ready to prove the second subject reduction theorem, which says that concurrent

evaluation preserves process typing.

Theorem 8.9 (Concurrent type preservation) If a configuration K, P is well-formed
with
K,P=K',P

and, for some channel typing CT,
CTHK,P:PT

Then there is a channel typing CT' and a process typing PT’, such that the following hold:

e CT C CT,

e PT C PT’, and
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o CT' KXK', P': PT.
o CT'K,P:PT.

Proof. The fourth property follows from the others; the proof of the first three properties
proceeds by case analysis of the left hand side of the = relation.

Case CT F IC,P+(x; e) : PT.
If e — €, then, by sequential type preservation (Theorem 8.7), we have

({},CT) k¢ :PT(m)
and hence
CTFK,P+(m; ey : PT
Letting CT' = CT and PT' = PT satisfies the theorem.

Case CT F K,P+(m; E[chan z in e]) : PT.
Then there is a type environment TE = (VT,CT) and types 7 and 8 (with § €
IMPTY), such that

TE:i:{;cn—)O'chan}l—e:T
TEF chanz ine: T

({},CT) +- E[cha:n:t: ine] : PT(n)

Let k be the name of the new channel (hence k& ¢ K) and define CT' = CT + {x —
6 chan} (obviously CT C CT’). Then, by Lemma 8.3,

({},CT') b E[chan z ine] : PT(x)
Thus, by the Replacement and Substitution lemmas,
({},CT) F Ele[z — &]] : PT(x)

and, therefore, CT' - K+«, (m; Ele[z — &]]) : PT. Letting PT' = PT satisfies the

theorem.

Case CT + K, P+(r; E[spawn v]) : PT.
Then there is a variable typing VT and a type 7, such that

(VI,CT) +- v: (unit — 7)
(VT,CT) + spawn v : unit

({},CT) +- E[siawn v] : PT(m)
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By Lemma 7.1, we know that FV(v) = 0, and thus, by Lemma 8.6,
({},CT)F v : (unit — 7)
Applying rule (7-app), we get
{}LCT)F(w Q)7
Let ©’ be the process identifier of the new process (hence 7’ ¢ dom(P)), then
CTHK,P+{m; E[OD+(r";v Q) : PT+ {rx' — 7}
Letting PT' = PT + {n’ — 7} and CT’ = CT satisfies the theorem.

Case CT - K, P+(my; E1[sync evi])+(me; Ea[sync evy]) : PT.
Then, for i € {1, 2}, there is a type environment TE; and a type 7;, such that

TE; - e’ui': T; event
TE; - sync ev; : 7;

({},CT) - Ez-[s;nc ev;] : PT(m;)
If ev, o evs with (e, e2), then, by Lemma 8.8,
TE; Fe;:7;
Thus, by the Replacement Lemma (8.4), we have
({},CT) - Ejle;] : PT(m;)

hence,
CTH K,P+<Wl; E1[€1]>—|—<ﬂ'2; E2[€2]> :PT
Letting CT' = CT and PT' = PT satisfies the theorem.

This theorem leads immediately to the following fact about traces:

Corollary 8.10 Let (K1, Ps; ...; Ky, Prn)) be a finite trace, with
CTFK.,P:PT
Then there is a channel typing CT’ and process typing PT’, such that:
e CT C CT/,
e PT C PT’, and

o foriec {1,...,n}, CT'+K;,P; : PT".

Proof. This follows by a simple induction on n.
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8.2.3 Stuck expressions

In order to show that well-typed programs do not have run-time type errors, we first need

to characterize such errors.

Definition 8.4 A process p = (m; e) is stuck if e is not a value and there do not exist well-
formed configurations K, P+p and K’, P’ such that K,P+p — K', P’, with m a selected

process. A well-formed configuration is stuck if one or more or its processes are stuck.

The notion of being stuck is a semantic one; in Section 6.2.4 and [WF91b], this is con-
servatively approximated by the syntactic notion of faulty expressions. For A.,, I take a

somewhat different approach that focuses more on stuck expressions.

Lemma 8.11 (Uniform evaluation) Let e be a program, T' € Comp(e), and 7 €
Procs(T'), then either nfty, wlrv, or P;(m) is stuck for some K;, P; € T

Proof. This follows immediately from the definitions. |
It remains to show that stuck expressions are untypable.

Lemma 8.12 (Untypability of stuck configurations) If 7 is stuck in a well-formed
configuration K, P, then there do not exist CT € CHANTY and PT € ProcTY, such that

({},CT) FP(n) : PT(m)
In other words, KC, P is untypable.

Proof. The proof is given in the appendix. |

8.2.4 Soundness

We are now in a position to state the main result of this chapter: that well-typed programs
do not go wrong. This result is stated in terms of the computations of a program. (recall

from Section 7.3 that a computation is a maximal trace).

Theorem 8.13 (Syntactic soundness) Let e be a program, with |- e : 7. Then, for any
T € Comp(e), m € Procs(T'), with K;, P; the first occurrence of 7 in T, there exists a CT
and PT, such that

CTHK;,P;:PT

and PT(mg) = 7. And either
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® T, OT

e m|rv and there exists an extension CT' of CT with ({},CT') F v : PT(n).

Proof. The existence of CT and PT follows from Concurrent Type Preservation (Theo-
rem 8.9). By Uniform evaluation (Lemma 8.11), we know that either 7f}¢, m{ v, or P;(7)

is stuck for some IC;,P; € T.

Assume that 7 is stuck in K;,P;. By Lemma 7.2, K;,P; is well-formed and, by
Lemma 8.12, it must be untypable. But, since the configuration {}, {(mo; €)} is typable,
by Concurrent Type Preservation (Theorem 8.9), there is a CT' € CHANTY and PT' €
ProcTY such that CT' - K;, P; : PT’. Which means that ({}, CT') F P;(x) : PT/(x), hence

7 cannot be stuck and either w{}y or w{zv.
If m{}r then we are done.

Assume that 7l}rv and let K;, P; € T such that P;(m) = v. Concurrent Type Preser-
vation means that there exists an extension CT’ of CT and an extension PT’ of PT
such that CT'F P; : PT'. Since PT' is an extension of PT, PT'(r) = PT(n), and hence
({},CT) v : PT(n). |

To state more traditional soundness results, we first need to define a notion of evaluation

that distinguishes those processes that have run-time type errors.

Definition 8.5 For a computation T, define the evaluation of a process 7w in T as

WRONG if P;(r) is stuck for some K;,P; € T

v if m{lpv

evaly(m) = {

Note that for sequential programs, this is essentially the same as the definition on page 71.

Using this definition we can now state weak and strong soundness results for A.,.

Theorem 8.14 (Soundness) If e is a program with I e : 7, then for any T € Comp(e)
and any 7 € Procs(T'), the following hold:

(Strong soundness) If evaly(7) = v, and K;, P; is the first occurrence of w in T, then for
any CT and PT, such that CT - K;, P; : PT and PT(m) = 7, there is an extension
CT’ of CT, such that ({},CT') F v : PT(x).

(Weak soundness) evaly(r) # WRONG

Proof. This follows immediately from Syntactic soundness (Theorem 8.13) and the defini-

tion of eval. [ |
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In other words, a well-typed CML program can never have a run-time type error. It is also
worth noting that for the sequential subset of A.,, Theorem 8.14 reduces to the Soundness
theorem of Section 6.2.4 (Theorem 6.4).
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Part IV

Practice
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Chapter 9

Applications

This part of this dissertation addresses the question of the usefulness and practicality of
the proposed language mechanisms. While Chapter b describes a number of abstractions
that can be implemented using CML, it does not fully address the question of how useful
CML is for real applications and whether it can be efficiently implemented.

To address these questions, I have implemented CML on top of SML/NJ. This im-
plementation has been used by a number of people, including myself, for various different
applications. This practical experience demonstrates the validity and usefulness of my de-
sign as well as the efficiency of my implementation. In this chapter, I describe some of
these applications. I describe the implementation in Chapter 10, and its performance in
Chapter 11. The final chapter of this part (Chapter 12) describes further research related

to the implementation and use of CML on multiprocessors.

9.1 eXene: A multi-threaded X window system toolkit

As argued in Section 1.1, concurrency is a useful tool for structuring interactive applica-
tions. To this end, Emden Gansner of AT&T Bell Laboratories and I have been developing
a multi-threaded X window system toolkit [SG86], called eXene [GR91], which is imple-
mented using CML. This implementation serves two roles: it provides a strenuous test of
the performance of CML in a real-world setting, and it serves as a platform for interac-
tive applications (discussed in Section 9.2). Because the X window system is a distributed
system, the implementation of eXene also involves distributed systems programming (dis-
cussed in Section 9.1.4). This section describes the architecture of eXene and gives a couple

of examples of the use of CML primitives in its implementation.
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9.1.1 An overview of eXene

EXene provides a similar level of function as Xlib [Nye90b], but with a substantially
different model of user interaction. Windows in eXene have an environment, consisting
of three streams of input from the window’s parent (mouse, keyboard and control), and
one output stream for requesting services from the window’s parent. For each child of the
window, there are corresponding output streams and an input stream. The input streams
are represented by event values and the output streams by event valued functions. A window
is responsible for routing messages to its children, but this can almost always be done using
a generic router function provided by eXene. Typically, each window has a separate thread
for each input stream as well as a thread, or two, for managing state and coordinating the
other threads. By breaking the code up this way, each individual thread is quite simple.
This event-handling model is similar to those of [Pik89] and [Haa90].

There are other differences between eXene and more traditional X toolkits. For ex-
ample, eXene uses immutable pens to specify the semantics of drawing operations, instead
of the mutable graphics contexts provided by the X-protocol. Since pens are immutable,

concurrency control issues are avoided when two threads share the same pen.

9.1.2 An X window system overview

The X window system is a distributed system with the application clients communicating
with the X server process. The core X-protocol consists of 211 different messages, divided
into 119 request messages, of which 42 have replies, 33 event messages and 17 error messages
[Nye90a]. Each request to the server has an implicit sequence number (i.e., the first message
sent is number 1, etc.). Messages from the server to the client are tagged with the sequence
number of the last request processed by the server; this is used to match replies with

requests.

9.1.3 The architecture of eXene

Unlike some non-C language bindings for X, eXene is implemented directly on top of
the X-protocol. The only non-CMUL code involved is the run-time system’s support for
socket communication. This implementation approach has the advantage of avoiding the C
language bias of Xlib. Furthermore, it provides a demonstration that CML can be used

to implement low-level systems programs without significant loss of performance.

A connection to an X-server is called a display. In eXene a display consists of seven
threads; Figure 9.1 gives the message-passing architecture of these threads. The input and

output threads provide buffering of the communication with the server. The sequencer
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Figure 9.1: The display message-passing architecture
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thread generates sequence numbers and matches replies with requests. All error messages
are logged with the error handler; in addition, errors on requests that expect a reply are
forwarded to the requesting thread. The sequencer sends X-events to the event buffer,
which decodes and buffers them. The top-level window registry is a thread that keeps track
of the top-level windows in the application and their descendants. It manages a stream of
events for each top-level window in the application. The other two display threads manage
global resources: the keymap server provides translations from keycodes to keysyms; the

font server keeps track of the open fonts used by the application.

A display has one or more screens, each of which can support different visuals and
depths (e.g., black and white or 8-bit color). Each visual and depth combination of a screen

is supported by two threads; Figure 9.2 shows the message architecture for these. The draw

Screen

Reguest/ Font
Reply Reguests

S e

Draw GC
Master Server
) il
Pizmap GC Requests

Draw Requests

Figure 9.2: The screen message-passing architecture

master is a thread that encodes and batches drawing requests for a particular visual and
depth combination; the draw masters at the screen level are used for operations on pizmaps

(off screen rectangles of pixels). The GC server handles the mapping of eXene’s immutable
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pens to X’s mutable graphics contexts.?

Windows are displayed with a particular visual and depth on a screen. Internally,
windows are organized into a tree hierarchy with a top-level window at the root. Figure 9.3

gives the message-passing architecture for the top-level window threads. As described above,

Window Tree
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| |
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| . |
: Display :
| = Screen |
| H |
i Keysym Reguest/ :
: ﬁgg;m Translations Reply H H GC Regquests H :
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| |
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: Window :
| |
| |
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| |
| |

Figure 9.3: The top-level window message-passing architecture

each top-level window in an application has a dedicated stream of X-events from the display.
This stream is monitored by the fop-level window router thread. This thread provides the
transition from the X view of events to the eXene view (i.e., a window environment).

There is a draw master thread for each window tree as well.

It is an unpleasant artifact of X that pixmaps and graphics contexts must be associated with a particular
screen, visual and depth.
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9.1.4 Promises in eXene

The CopyArea operation in the X11 protocol can be used to copy a rectangle of pixels
from one place on the screen to another. A complication arises if a portion of the source
rectangle is obscured by another window. For example, Figure 9.4 shows a use of CopyArea
to translate a rectangle on the screen; here the cross-hatched region of the destination

corresponds to the obscured region of the source. While some window system maintain a

N K
A\ A\

A\ A\
A\ A\

Destination rectangle
A

A\ A\

A\ A\
A\ \V

|
|
I Source rectangle
|
|

L - -1 - - - - 3

Obscuring

Window

Figure 9.4: The CopyArea operation

backing store (or virtual bitmap) to handle these situations, the standard X policy is to notify
the client that the CopyArea operation was not able to completely fill in the destination.?

This policy is called damage control, since it is up to the client to repair the damage.

A typical use of CopyArea is in inserting a line of text. In this case the client thread
might issue the following sequence of operations: a CopyArea to create space for the new
text, followed by a ClearArea to erase the old text and lastly a DrawText to insert the new

line. The following picture illustrates these steps:

2Some X servers do support backing store as an option, but applications must be designed to function
correctly when it is not available.
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THIS IS | copyarea |THIS IS | cleararea |THIS IS | prayrext |THIS IS
TEXT = |TEXT == — |SOME
TEXT TEXT TEXT

It is important that the user of the system see this sequence as a single smooth transition.

This has implications for the implementation of operations using CopyArea.

If CopyArea is treated as a normal X RPC, which returns a list of damaged rectangles,
then the user is subjected to screen flicker. To understand the reasons for this examine
Figure 9.5, which shows the timing information for the client doing the text scrolling, the

thread handling the buffering of communication with the server,® and the X-server. Because

Client Buffer X Server
Copylrea
CopyAck
ClearArea Dlsplqy m
transition
DrawText
A\ 4 4 v

Figure 9.5: Synchronous text scrolling

the other drawing operations are postponed until an acknowledgement of the copyArea is

received, the period of time the display is in transition can be quite lengthy.

Because of these performance concerns, the X protocol does not use the standard reply
mechanism for CopyArea. Instead there are two special X-events, GraphicsExpose and

NoExpose, which are used to notify the client of the result of a CopyArea request.* For single-

3For purposes of this discussion, I have collapsed the buffer and sequencer threads into a single thread.
*Things are a little more complicated, since multiple GraphicsExpose events can be generated for a single
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threaded C clients (which make up the vast majority of X clients), this means that the code
using the CopyArea operation must also scan the event stream for the acknowledgement. In
eXene, where we have concurrency and events, we can handle this operation in a much more
elegant way. Our solution is to implement CopyArea as an asynchronous RPC operation,

also known as a promise [LS88]. EXene provides an event-valued function with the type

val copyArea : arg-type -> rect_t list event

where arg-type is the type of the arguments that specify the actual operation. The event that
is returned is the promise of the result. Figure 9.6 gives the implementation sketch of this
operation, where request sends the operation to the buffer thread and f1ush tells the buffer

thread to flush any buffered messages to the server. The guard is optimized to first check to

fun copyArea arg = let
val replyCh = channel()
in
spawn (fn () => request (COPY_AREA(reply_ch, arg)));
guard (fn () => (
case (poll (receive replyCh))
of (SOME rects) => always rects
| NONE => (flush(); receive replyCh)
(* end case *))
end

Figure 9.6: The implementation of copyArea

see if the acknowledgement is already available. The buffer code is more complicated, since
it must match the acknowledgements with outstanding CopyArea requests. The advantage
of this approach can be seen by comparing its timing diagram, given in Figure 9.7, with

Figure 9.5.

9.1.5 Menus

Another example of the way concurrency is used in eXene is in the way that popup menus
are attached to windows. This is done by interposing a thread on the window’s mouse
stream. When the thread sees a down transition on the appropriate mouse button, it
creates the menu window and starts tracking the mouse (the X semantics cause all mouse
events until the up transition to be directed at the window). Other mouse events are passed
through without action. This is a form of delegation, and the window wrapped by the menu

thread can be viewed as a “sub-class” of the window.

CopyArea request.
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Figure 9.7: Asynchronous text scrolling
9.2 Interactive applications

The combination of eXene and CML provides a foundation for building interactive appli-
cations in the spirit of Pegasus [RG86, GR92]. In this section, I describe an application of
eXene and how it uses the features of CML.

Currently, the most sophisticated application built on top of eXene is Graph-o-
matica, which is an interactive tool for viewing and analyzing directed graphs.® Graph-
o-matica was originally implemented on top of Pegasus by Emden Gansner and Steve
North at AT&T Bell Laboratories; Emden Gansner ported it to eXene.

Graph-o-matica provides the user with two kinds of windows: command windows,
which provide a terminal-style, language interface to a command shell, and viewers, which
provide a view on a 2D layout of a graph. At any time a user can have multiple command
windows and multiple viewers. Each viewer is associated with a particular layout of a
particular abstract graph. Different graphs can have different layouts, and each layout can
have multiple views. Figure 9.8 is a screen dump from a sample session with Graph-o-
matica. The bottom window is a command window; the two windows above provide two

views of a single layout of a graph. A viewer allows the user to pan and zoom (using menus

5Huimin Lin at the University of Sussex has built an interactive theorem prover on top of eXene, but I
do not know the details of its implementation.
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Figure 9.8: Graph-o-matica screen dump

and the scrollbars) over the particular layout. The user can manually change a layout using

editing operations such as moving a node, or elision of a subgraph.

The implementation of Graph-o-matica exploits the features of CML in several ways.
If a graph is edited, this information needs to be propagated to the layouts and views of the
graph. We use the multicast channel abstraction (described in Section 5.2) to manage the
propagation of update notifications to the layouts and from the layouts to the views. This
simplifies the implementation of the graph object, since it does not need to know anything

about multiple layouts. The layout objects, if they decide a given change affects them, can
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query the graph object for more detailed information.

The command shell is a thread that communicates with a virtual terminal (vtty) widget.
The vtty widget is a good example of the need for both communication abstraction and
selective communication. At any time, the vtty must be able to handle both input from
the user and output from its client (the command shell). EXene provides an abstract
interface to the input stream, but since it is event-valued, it can still be used in selective

communication.

Concurrency is also used in the structuring of the application code. Layout algorithms,
for example, run as separate threads, thus allowing the user to continue other activities

while waiting for a new layout.

9.3 Distributed systems programming

Many distributed programming languages have concurrent languages at their core (e.g.,
SR [AOCESS]), and distributed programming toolkits often include thread packages (e.g.,
Isis [BCJ190]). This is because threads provide a needed flexibility for dealing with the

asynchronous nature of distributed systems.

The flexibility provided by CML is a good base for distributed programming. Its
support for low-level I/O is sufficient to build a structured synchronous interface to network
communication (as was done in eXene). Higher-level linguistic support for distributed
programming, such as the promise mechanism described in Section 9.1.4, can be built using

events to define the new abstractions.

Another example is Chet Murthy’s reimplementation of the Nuprl environment [Con86]
using CML. His implementation is structured as a collection of “proof servers” running on
different workstations. When an expensive operation on a proof tree is required, it can be
decomposed and run in parallel on several different workstations. This system uses CML

to manage the interactions between the different workstations.

9.3.1 Distributed ML

Another project involving CML is the development of a distributed programming toolkit
for ML that is being done at Cornell University [Kru91]. This work builds on the mecha-
nisms prototyped in Murthy’s distributed Nuprl and on the protocols developed for Isis
[BCJT90]. A new abstraction, called a port group has been developed to model distributed
communication. The communication operations provided by port groups are represented

by event-value constructors. For details see [Kru91].
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9.4 Other applications of CML

CML has been used by various people for a number of other purposes. Andrew Appel has
used it to teach concurrent programming to undergraduates at Princeton University (Appel,
personal communication, January 1991). Gary Lindstrom and Lal George have used it to
experiment with functional control of imperative programs for parallel programming [GL91].
And Clément Pellerin has implemented a compiler from a concurrent constraint language

to CML.
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Chapter 10

Implementation

There have been several implementations of first-class synchronous operations. I wrote the
first implementation in C as part of the Pegasus/PML run-time system [Rep88]. I later im-
plemented the concurrency mechanisms of PML on top of SML/NJ in a coroutine! library
[Rep89], and Norman Ramsey has implemented a similar system at Princeton [Ram90].
More recently, I implemented CML on top of SML/NJ [Rep91a]. Of these implementa-
tions, CML provides the richest programming notation and the best performance. It is
written entirely in SML, using two non-standard extensions provided by SML/NJ, first-
class continuations [DHM91] and asynchronous signals [Rep90a], and one minor compiler
modification. This chapter describes the implementation of CML in some detail (a brief
sketch was given in [Rep91la]), and discusses implementation techniques that might further
improve performance. Some specific performance measurements of this implementation are
reported in the next chapter. This implementation runs on single processor computers; the

issues related to a multiprocessor implementation of CML are discussed in the Chapter 12.

10.1 The implementation of SML/NJ

SML/NT is a high-performance implementation of SML [AM87, AM91]; it uses a combi-
nation of sophisticated compiler techniques and clever run-time system support to provide
a level of performance that is competitive with C on large examples. In this section, I

describe the aspects of SML that have a direct bearing on the implementation of CML.

!By “coroutine,” I mean that this system does not use preemptive thread scheduling.
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10.1.1 First-class continuations

As discussed in Section 2.3.3, SML/NJ provides continuations as first-class values. Until

recently the type of callcc was fully polymorphic; i.e.,

val callcc : (’a cont -> ’a) —-> ’a

As discussed in Chapter 8 (p. 92), it has been discovered that this typing of first-class

continuations is unsound. The type of callcc in SML/NJ is now:

val callcc : (’la cont -> ’la) -> ’la

which corrects the soundness problem [WF91a]. Unfortunately, using this weakly polymor-
phic type has the effect of reducing the polymorphism of the CML primitives. For example,
the type of sync is

val sync : ’la event -> ’la

using the weakly polymorphic version of callcc. For this reason, I use the unsafe, fully
polymorphic, version of callcc in my implementation. The typing of the resulting primi-

tives, however, is proven sound in Chapter 8.

10.1.2 The compiler

The SML/NJ compiler is a multi-pass compiler. The front-end is fairly conventional (scan-
ning, parsing, type-checking, etc.); it is the back-end (optimization and code generation)
that interests us. The back-end uses a representation called continuation-passing style, or
CPS for short [Ste78, KKR186, AJ89, App92]. The CPS representation is a specialized
form of A-calculus that has a uniform representation for all transfers of control (conditional
branches, loops, function calls and function returns). This representation is a “goto with
arguments,” better known as a tail-recursive call. Since a function return is represented
as a tail-recursive call, functions must be parameterized by the return continuation. It is
from this explicit passing of continuations that CPS gets its name. The advantage of this
approach is that the compiler can concentrate on making function calls as fast as possible,
which is one of the keys to good performance for languages like SML and Scheme. Unlike
other continuation-passing style compilers, such as [Ste78] and [KKR186], the code gener-
ated by the SML/NJ compiler does not use a run-time stack; instead, return continuations
are heap allocated. This means that the code generated for callcc and throw is essentially
the same as that for function calls. The only difference is that the current continuation

created by callcc must restore the current enclosing exception handler. Unfortunately,
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this means that callcc breaks tail-recursion (in the same way that exception handlers do),

which has implications for the implementation of sync (see Section 10.4).

10.1.3 The run-time system

The SML/NJ run-time system provides automatic memory management, an interface to
the underlying operating system (UNIX), and a mechanism for building stand-alone ML
worlds. An older version of the run-time system is described in [App90], but I and others

have revised it several times since then.

The run-time system is logically divided into two coroutines: the ML program and the
C program that provides run-time support. The actual implementation uses procedure call
and return to implement the coroutine switches, with a global C struct used to hold the
ML state in the run-time system.? Two assembly routines, restoreregs and saveregs,
are used to (respectively) call and return from the ML program. When the ML program
needs a service from the run-time system, it loads the global variable request with name

of the needed service and jumps to saveregs.

Memory management

Each object has a one-word descriptor at its beginning that contains the object’s length and
a 4-bit tag. There are four kinds of objects: tuples, arrays, strings and bytearrays (mutable
strings). Code objects in the heap are represented by strings. A single code object is used
to hold all of the code for a compilation unit (e.g., ML structure or functor), which requires
a mechanism for supporting pointers into the middle of strings. This is accomplished by
an embedded-string descriptor, which is used to mark substrings of a code object; preceding
the embedded-string descriptor is a back-pointer descriptor, which tells the garbage collector
how to find the beginning of the code object. For more details on run-time representations
see [App90].

Memory allocation is the dominating cost of ML execution, thus it must be as cheap
as possible. SML/NJ uses inline allocation with minimal overhead (allocation of a tuple
requires 3 or 4 instructions over the cost of object initialization). The run-time system uses
two dedicated registers to support allocation: the allocation pointer, which points to the
start of the next object to be allocated; and the heap-limit pointer, which is used to test for
the need for garbage collection. Instead of testing the heap-limit on every allocation, the

compiler tests only at the beginning of an extended basic block.® The compiler computes

%For releases of SML/NJ since 0.70, the ML state is no longer global. Instead, each run-time routine
takes it as an argument, which allows multiple ML states to exist (e.g., on a multiprocessor).
3An extended basic block is an acyclic graph of basic blocks with a single entry-point, but multiple exit-
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the maximum possible allocation in an extended basic block and generates a heap-limit test
at the root, which will insure that the execution of the block does not run out of allocation
space (allocation of dynamic sized objects, such as arrays, is done by hand-coded assembly
routines in the run-time system). To simplify the test, the heap limit is set at 4096 bytes
below the actual top of the allocation space, so that the test for any block that allocates less
than 4096 bytes only involves a pointer comparison. On many machines, this can be cleverly
coded using one register-register instruction; for blocks that might allocate more than 4096
bytes, a more expensive test involving pointer arithmetic is required. When a heap-limit
overflow is detected a trap is generated, which the operating system maps to a UNIX signal
[UNI86] that is caught by a handler in the run-time system. The signal handler saves the
program counter of the ML program, replaces it with the address of saveregs, and returns
to the operating system, which causes program execution to resume in saveregs. This
technique of using a UNIX signal handler to vector to an assembly routine that saves the
register state is owed to Cormack [Cor88]. The compiler generates an embedded-string
descriptor prior to the entry-point of each extended basic block, thus the program counter

at the heap-limit test is treated like a normal ML value by the garbage collector.

Signals

SML/NJ provides an asynchronous signal mechanism [Rep90a], which has semantics sim-
ilar to that of UNIX signals [UNI86]. When a signal occurs, the current continuation is
grabbed and passed to the appropriate ML signal handler. The signal handler executes
atomically with respect to signals; it returns a continuation that is used to resume exe-
cution. Signal handlers provide a natural mechanism for implementing preemptive thread

scheduling (see below).

The actual translation of a UNIX signal to an ML signal is more complicated than
described. The principal difficulty is that constructing a continuation to pass to the signal
handler at any arbitrary point in the execution is not feasible. The solution to this problem
is to delay capturing the continuation to a safe point where the state of execution can
be easily captured. The heap-limit checks used to trigger garbage collection conveniently
provide such safe points. Thus, when a UNIX signal occurs, the UNIX signal handler in
the run-time system records it and modifies the heap-limit pointer to insure that the next
heap-limit check will trigger a garbage collection. The garbage collector then recognizes
that the request for garbage collection is actually a pending signal, builds a continuation

closure out of the ML state,* and passes the signal and continuation to an ML routine that

points [Ros81].
*Recall from above that the heap-limit check is preceded by a descriptor, thus the garbage collector will
be able to deal with the code address of the continuation built by the run-time system.
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dispatches the appropriate ML signal handler. The use of heap-limit checks as safe points
is similar to the preemption technique used in Argus [LCJS87]. For a complete description
of the SML/NJ signal mechanism, see [Rep90al.

10.2 Implementing threads

The implementation of threads exploits the fact that first-class continuations are exactly
the thread state that needs to be saved and restored on context switches [Wan80]. This

section describes the implementation of threads and preemptive scheduling.

10.2.1 Threads

Internally, a thread is represented by two pieces of information: a thread ID and a contin-
uation. The thread ID serves as a unique identifier for the thread, as well as providing a
handle for implementing the threadWait operation, while the continuation represents the
suspended state of the thread’s computation. Threads are either ready (able to execute) or
blocked (waiting to synchronize on some event). At any time, one of the ready threads is
designated as the currently running thread; the IDs and current continuations of the other
ready threads are kept in the ready queue. The global variable runningThreadId is used to
refer to the currently running thread’s ID.® Switching thread contexts involves putting the
current thread’s continuation and ID into the ready queue and dispatching the next thread

in the queue. The following code illustrates the mechanics of a context switch:

fun contextSwitch runningK = let

val _ = rdyQInsert (!'runningThreadId, runningK)
val (newlId, newK) = rdyQRemove ()
in
runningThreadId := newld;
throw newK ()
end)

where runningK is bound to the running thread’s current continuation. Variations on this

scheme are used throughout the implementation.

Although the SML/NJ compiler knows nothing about threads and concurrency, the
fact that callcc and throw are used to implement threads means that the implementa-
tion gets many of the benefits of specialized compiler support for free. In particular, the
compiler knows exactly which registers are live at the point of a context switch, thus only

the minimum amount of thread state required is actually saved and restored. Furthermore,

®In the most recent version of CML (0.9.6), I switched to using the varptr register to refer to the current
thread’s ID. This register is a dedicated per-processor register provided by the compiler.
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the fact that continuations are heap allocated means that thread creation is a very fast,
constant time, operation.® For the MIPS processor, a thread context switch is about 190
instructions, and thread creation is about 490 instructions; there is some hope that these

numbers can be substantially reduced (see Section 11.1.2 for more details).

10.2.2 Preemptive scheduling

In order to prevent a thread that is executing a long (or infinite) computation from monop-
olizing the processor, CML uses preemptive thread scheduling. This is done in a straight-
forward manner using the UNIX interval timer [UNI86] and the signal mechanism described
above. The interval timer is set to generate a SIGALRM every n milliseconds (n is typically
in the range from 10 to 50), and a signal handler that forces a context switch is installed
for STGALRM. The only complication is the possible interference between the running thread
and signal handler. To avoid this problem, a global flag is used to mark when execution is
in a critical region:

datatype atomic_state = NonAtomic | Atomic | SignalPending
val atomicState : atomic_state ref

val atomicBegin : unit -> unit
val atomicEnd : unit -> unit

The function atomicBegin, which sets the flag to Atomic, is called just prior to entering a
critical region, and the function atomicEnd, which resets the flag to NonAtomic, is called
on exit. If a signal occurs while atomic_state is Atomic, then the signal handler does
not force a context switch. Instead it sets atomic_state to SignalPending and returns.
The function atomicEnd checks the flag before resetting it; if it is SignalPending, then a
context switch is performed.” Note that this mechanism is internal to the implementation

of CML; user programmers have no access to these operations.

10.3 Implementing channels

Channels are represented by a pair of queues; one for threads waiting for input and one

for threads waiting for output (see Figure 10.1). Each item in a channel queue is a triple,

®While constant time callcc is possible in stack based implementations (e.g. [HDB90]), it is not clear
that these techniques are fast enough to implement true light-weight threads on today’s hardware. For
example, Haahr reports that a number of Scheme implementations were unsatisfactory for anything more
than prototypes of his multi-threaded window system [Haa90].

"The reader may recognize that there is a potential race when exiting a critical region between the time
of the test for a pending signal and the resetting of the flag. The delaying of signals to heap-limit check
points, however, means that this race can not occur in practice, since the test and resetting of the flag is
done without any intervening heap-limit checks.
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type ’a chanq = (bool ref * thread_id * ’a) queue
datatype ’a chan = CHAN of {

inqgq : ’a cont changqg,

outq : (’a * unit cont) chang

}
Figure 10.1: The representation of channels

consisting of a dirty flag (described below), a thread ID, and an offered communication.
In the input queue (inqg), an offered communication is represented by a continuation that
will accept a message; in the output queue (outq), an offered communication consists of
the message being sent and the continuation to resume the thread when the message is

accepted. As an example, the implementation of send is given in Figure 10.2. This code

fun send (CHAN{ing, outq}, msg) = callcc (fn send_k => (
atomicBegin();
case (cleanAndRemove ing)
of SOME(rid, rkont) => (
rdyQInsert (!runningThreadIld, send_k);
runningThreadId := rid;
atomicEnd();
throw rkont msg)
| NONE => (

insert(outq, (ref false, getTid(), (msg, send_k)));
atomicDispatch())

(* end case *)))

Figure 10.2: The implementation of send

works by first capturing the rendezvous point continuation using callcc. Since the channel
queue and ready queue are going to be manipulated, atomicBegin is called to mark the
start of a critical region. The call to cleanAndRemove returns the ID and communication
of the first “clean” item from the input queue® if one is available, otherwise it returns NONE.
If there is an offered communication available (i.e., matching accept or receive), then the
sending thread is added to the ready queue and the message is thrown to the receiving
thread’s continuation. If no matching communication is available, then the sender is added
to the output waiting queue, and another thread is dispatched (atomicDispatch dispatches
a thread while exiting the critical region). The implementation of accept is essentially a

mirror image of send.

8The notion of cleanliness is related to the dirty flag and is explained below.
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10.4 Implementing events

The implementation of events is moderately complex, so it is useful to first consider a very
simple subset of events without choice, guards or abort actions. In particular, consider the
P operation on binary semaphores, which is one of the simplest synchronous operation. An
implementation of binary semaphores (ignoring issues of atomic regions and thread IDs) is
quite simple:
datatype semaphore = SEMAPHORE of {
flg : bool ref,

waitq : unit cont list ref

}

fun V (SEMAPHORE{flg, waitq}) = (case !waitq
of [1 => flg := true
| (k::r) => (waitq := r; enqueue k))

fun P (SEMAPHORE{flg, waitql}) = let
fun Pbody resumek = if (!flg)
then (flg := false)
else (waitq := l!waitq @ [resumek]; dispatch())
in
callcc Pbody
end

where the body of the P operation is factored out for pedagogical reasons. The thing to
notice about this code is that the resumption continuation of the calling process is a free
variable in the body of the operation. This observation, which holds for all synchronous
operations, is the key to the implementation of events. In this simple setting, it means that

event values can be represented as

type ’a event = ’a cont -> ’a

Using this representation, the event-valued implementation of P is:

fun P (SEMAPHORE{flg, waitql}) = let
fun Pbody resumek = if (!flg)
then (flg := false)
else (waitq := l!waitq @ [resumek]; dispatch())
in
Pbody
end

It follows that sync is implemented directly by callcc. The implementation of wrap must
feed the value produced by synchronizing on its first argument to its second argument,

which is done as follows:
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fun wrap (evt, f) = fn k => (throw k (f (callcc evt)))

The continuation that applies f to its argument is passed to the event value being wrapped,;
the result of evaluating f is then thrown to the continuation that is the argument to the
event value constructed by wrap. The astute reader will recognize this as a convoluted form

of function composition.

10.4.1 Event value representation

Unfortunately, this simple representation of events is unable to support choice, guards or
abort actions. In the more general setting of CML events, there are five distinct aspects

to a thread synchronizing on an event values:

Forcing. If the event is a guard event, then it must be forced (i.e., the guard function is

applied).

Polling. For a non-guard event, the first step is to poll the base events to see if any of

them are immediately satisfiable.

Selection. If one or more of the base events is immediately satisfiable, then one of these

is selected and executed.

Logging. If there are no immediately satisfiable events, then the synchronizing thread must

be added to the waiting queues of the base events.

Unlogging. Once one of the base events is satisfied, the thread must be removed from the

other base events’ waiting queues and their abort actions (if any) must be spawned.

Figure 10.3 gives the representation of event values, which reflects the five aspects described
above. An event value is either a guard function, or a list of base-event descriptors. A base-
event descriptor is a record of four fields: the function pollfn is used to test if the base
event is immediately satisfied; the function dofn is used to execute the base event if it is
selected; the function blockfn is used to log the base-event value; and the field abortfn is
either NO_ABORT or the abort action. In [Rep88], the informal semantics of PML events is
defined in terms of a rewriting system that converts events to a “canonical” form; this form
is essentially the above representation and the rewrite rules are the implementation of the

various combinators.

10.4.2 Synchronization

As described above, there are five aspects to applying sync to an event value. These can

be divided into two phases. The first phase is forcing guards, and corresponds to the
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datatype abort_fn = NO_ABORT | ABORT of (unit -> unit)

datatype ’a base_evt = BASE_EVT of {
pollfn : unit -> bool,
dofn : abort_fn -> ’a,
blockfn : (bool ref * abort_fn * (unit -> unit)) -> ’a,
abortfn : abort_fn

datatype ’a event
= EVT ’a base_evt list
| GUARD of (unit -> ’a event)

Figure 10.3: The representation of event values

sequential evaluation rule for “sync (Ge)” in Chapter 7. The second phase corresponds to
the notion of event matching (Definition 7.3), and consists of polling and either selection
or logging (unlogging is done as part of the selection step). This involves accessing shared
data structures and so must be done inside an atomic region. The fact that the second
phase is done as an atomic operation greatly simplifies the implementation of sync (cf.,
Section 12.2.2). The actual implementation of the second phase is tuned for various common
special cases, such as singleton events and events without any abort actions, but, to simplify

the discussion, I describe the general case.

Forcing guards

The recursive forcing of guards is done by the following function:

fun forceGuard (GUARD g) = forceGuard (g ())
| forceGuard (EVT evts) = evts

Once the guards (if any) have been forced, forceGuard returns a list of base-event descrip-

tors (evts).

Polling

Polling the base events involves traversing the base-event list and calling the pollfn for
each element, while extracting the abort action. The polling step produces a status value
for each base event in the list. A base event’s status is either ready or blocked, and either
with or without an abort action (see Figure 10.4). If one or more of the base events is ready,

then the blocked base events are irrelevant. Thus, once the polling loop sees a ready base
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type ’a block_fn = (bool ref #* abort_fn * (unit -> unit)) -> ’a
datatype ’a bevt_status

= BLK of ’a block_fn

| BLK_ABORT of (’a block_fn * (unit -> unit))

| RDY of (abort_fm -> ’a)

| RDY_ABORT of ((abort_fm -> ’a) * (unit -> unit))

Figure 10.4: The representation of event status

event, it can discard the status of any blocked base events. The polling of an individual

base event’s status is done by the following function:

fun pollBaseEvt (BASE_EVT{pollfn, dofn, blockfn, abortfn}) = (
case (pollfn(), abortfmn)
of (false, NO_ABORT) => BLK blockfn
| (false, ABORT a) => BLK_ABORT(blockfn, a)
| (true, NO_ABORT) => RDY dofn
| (true, ABORT a) => RDY_ABORT(dofn, a))

Selection

If the resulting list of base-event statuses includes one or more ready base events, then one
of these is selected. The implementation uses a pseudo-random selection policy that gives
probabilistic guarantee of fairness. A global counter is maintained; its value modulo the
number of ready events is used to select one of the events. The counter is incremented after
each selection and by the preemptive scheduler; the latter introduces a random element
that helps avoid any kind of resonance in the selection patterns. Once a ready base event
is selected, the abort actions of the other base events must be spawned and the dofn of
the selected base event must be executed. The order in which this is done is tricky, since
the dofn must be executed before leaving the atomic region and there is no guarantee
that it will ever return (e.g., if a tail-recursive wrapper is involved). The solution is to
pass the abort actions as an argument to the dofn, which invokes them immediately after
leaving the atomic region. The actual argument is a single abort action that spawns all of
the required abort actions. Section 10.4.3 describes the internals of the dofns of several

base-event constructors.

Logging

If no base event is ready then the base events must be logged. Logging a base event requires

capturing a continuation that, when thrown to, will spawn the abort actions of the other
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base events and apply the base event’s wrapper functions. The base event, thread ID, and
continuation together constitute a base-event instance. In order to understand the logging
process it is also necessary to see how the blocking function works. Figure 10.5 gives the

code for the logging loop and the skeleton of a typical blocking function. The logging loop

(* Logging loop *)
System.Unsafe.capture (fn k => let
val escape = System.Unsafe.escape k
val dirtyFlg = ref false
fun log ([1, _) = atomicDispatch ()
| log ((BLK bfn) :: r, 1) = escape (
bfn (dirtyFlg, alldborts, fn () => (log(r, i); error "[logl")))
| log ((BLK_ABORT(bfn, _)) :: r, i) = escape (
bfn (dirtyFlg, mkAbortFn i, fn () => (log(r, i+1); error "[logl")))
| log _ = error "[logl"
in
log (sts, 0)
end)

(* A typical blocking function *)
fun blockFn (dirty, abort, next) = let
fun block k = (
add the thread to the waiting list;
next())
in
case abort
of NO_ABORT => (callcc block)
| (ABORT a) => ((callcc block) before (a ()))
end

Figure 10.5: Event logging

is implemented in continuation-passing style; the third argument to a block function, called
next in the skeleton version, is a function that continues the logging loop. The function
error reports an internal error by raising an exception; its principal purpose is to make the
types work out. The functions capture and escape are unsafe versions of callcc that do
not save or restore the exception handler continuation. They are required here in order that
the logging of base events not break tail recursion, which is important since the wrapper

functions often contain tail-recursive calls (e.g., the buffered channel in Section 5.1).
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Unlogging

Once a particular base-event instance of an event is selected, the other base-event instances
of that event must be unlogged. To support unlogging there is a boolean reference, called
the dirty flag, for each event instance that is shared by its base-event instances. When one
of the base-event instances is chosen, the flag is set to true, which marks all of the instances
as being dirty. For the channel operations, the marking of the flag is done by the functions

that remove items from the waiting queues (e.g., cleanAndRemove).

This trick of using a shared reference to mark the dirty instances was invented by Norman
Ramsey [Ram90]. The reason for using this technique, instead of an explicit unlogging loop,
is that it is simple and is constant time (since the cleaning of dirty items can be charged
to their insertion operation). Unfortunately, there are certain situations in which this trick
can result in unbounded heap growth. For example, if a thread is continuously selecting
between communication on two channels, where one of the channels is never used, then the
unused channel’s waiting queue will be filled with dirty requests that are never removed. To
avoid this problem, the channel must be cleaned when items are inserted, which destroys the
constant-time bound on cleaning overhead. The dirty-flag technique still has the advantage

of simplicity.

10.4.3 Base-event constructors

The simplest example of a base-event constructor is always, which builds an event that is

always ready for synchronization. Its implementation is given in Figure 10.6. As expected,

fun always x = let

fun doFn abortAct = (
atomicEnd();
case abortAct of (ABORT a) => a() | _ => ();
x)

in

EVT[BASE_EVT{

pollfn = (fn () => true),

dofn = doFn,
blockfn = (fn _ => error "[always]"),
abortfn = NO_ABORT

H

end

Figure 10.6: The implementation of always

the pollfn always returns true. The dofn is minimal; it leaves the atomic region, spawns

the abort action (if any), and returns the argument with which the event value was created.
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Since pollfn always returns true, blockfn is never called, and since this is a base event,

there is no abort action.

A more complicated base-event constructor is transmit; the code for this is given in

Figure 10.7. The implementation of transmit should be compared to the implementation

fun transmit (CHAN{ing, outq}, msg) = let
fun pollFn () = (clean ing; isEmpty inq)
fun doFn abortfn = let
val (rid, rkont) = remove inq
fun doit k = (
rdyQInsert (!runningThreadld, k);
runningThreadId := rid;
atomicEnd();
throw rkont msg)
in
case abortfn
of NO_ABORT => callcc doit
| (ABORT f£) => (callcc doit; £())
end
fun blockFn (flg, abortfn, next) = let
fun block k = (
insert(outq, flg, (getTid(), msg, k));
next(); error "[transmit]")
in
case abortfn
of NO_ABORT => (callcc block)
| (ABORT f) => (callcc block; £())
end
in
EVT[BASE_EVT{
pollfn = pollFn,
dofn = doFn,
blockfn = blockFn,
abortfn = NO_ABORT
H

end

Figure 10.7: The implementation of transmit

of send in Figure 10.2. The pollfn plays the role of the case in send; it cleans an the
head of the channel’s inq and returns true if there is an outstanding input request. The
dofn corresponds to the case in send where there is a clean item in the queue; the sending
thread is enqueued in the ready queue, a request is removed from the queue (note that
remove takes care of marking the dirty flag) and the message is thrown to the accepter. If
there are abort actions, then they are spawned by the sending thread’s continuation. The

blockfn corresponds to the case in send where there are no pending input requests. The
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blockfn inserts its continuation (which embodies any wrappers) in to the channel’s outq
and continues the logging loop. As with the dofn, any abort actions are spawned by the

sender’s continuation.

10.4.4 Event combinators

In terms of implementation, the simplest combinator is guard, which has the implementa-

tion:

val guard = GUARD

The implementations of the various other event combinators must deal with guarded event
values. As discussed in Sections 4.5.1 and 7.2, the guard function is essentially a delay
operation. When an event combinator is applied to a guard event, the guard is lifted to the
top level. For example, the implementation of the wrap combinator handles the GUARD case

as follows:

fun wrap (GUARD g, f£) = GUARD(fn () => wrap (g(), £))
| wrap ...

When the guarded wrapper is forced, g() will be evaluated to an event value that will be
wrapped by f. The implementations of wrapHandler and wrapAbort handle GUARD in a
similar fashion. The implementation of choose is a little more complicated and is discussed

below.

The actual implementation of the wrap combinator is semantically similar to that de-
scribed previously, but the implementation details are quite different. The wrapper function
must be composed with the dofn and blockfn fields of each base-event descriptor. This is

done by mapping the following function across the list of base-event descriptors:

fun wrapBaseEvt (BASE_EVT{pollfn, dofn, blockfn, abortfn}) =
BASE_EVT{
pollfn = pollfnm,
dofn = (f o dofmn),
blockfn = (f o blockfn),
abortfn = abortfn

}

where f is the wrapper function.

The wrapHandler combinator must also compose its wrapper with the dofn and blockfn
fields of each base event, but the composition involves interjecting an exception handler.

The function for wrapping a handler is:
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fun wrapHBaseEvt (BASE_EVT{pollfn, dofn, blockfn, abortfn}) =
BASE_EVT{
pollfn = pollfnm,
dofn = fn x => ((dofn x) handle e => h e),
blockfn = fn x => ((blockfn x) handle e => h e),
abortfn

abortfn

where h is the handler function being wrapped.

The choose combinator is fairly straightforward to implement. It essentially takes a list
of lists and flattens them into a single list. If any one of the events in the argument list
passed to choose is a guard event, then the guard is lifted to the top-level. Also, care must

be taken to preserve the left-to-right order of evaluation of guards.

fun choose 1 = let
fun £ ([1, el, [1) = EVT el
| £ ([, el, gl) = let
val applyGuards = revmap (fn g => (g ()))
in
GUARD(fn () =>
choose ((EVT el) :: (applyGuards gl)))
end
| £ ((EVT el’) :: r, el, gl)
| £ ((GUARD g) :: r, el, gl)

f (r, el’ @ el, gl)
f (r, el, g::gl)

in
£ (1, [0,

end

The implementation of wrapAbort is the most interesting of the combinators. When
wrapAbort is applied to a singleton event (i.e., an event consisting of exactly one base

event), the implementation simply adds the abort action to the base event, which is done

by the following function:

fun addAbortFn (BASE_EVT{pollfn, dofn, blockfn, abortfn}, a) =

BASE_EVT{
pollfn = pollfnm,
dofn = dofn,

blockfn = blockfn,
abortfn = (case abortfn
of NO_ABORT => a
| (ABORT a’) => fn () => (spawn a’; a()))

The more complicated case is when wrapAbort is applied to an event value consisting of n
base events, where n > 1. The semantics of wrapAbort require that the abort action be

spawned only in the case that none of the base events is chosen. This must be implemented
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in terms of the individual base-event abort actions, which are spawned if their base event
is not chosen. In other words, the abort functions of the base events must coordinate to
implement the abort action of the wrapped event. The way this works is that the abort
actions are partitioned into a single leader action and n — 1 follower actions. A special
channel is allocated for these threads to communicate by. Each follower sends an “I am
here” message to the leader; the leader attempts to read n — 1 messages and then executes
the abort action. If any one of the base-event actions is not spawned, i.e., because the
corresponding base event is the selected one, then the abort action does not get executed.
The channel used by these threads must be allocated anew for each synchronization attempt,
so the creation of the abort actions is protected by a guard. The actual implementation of

the resulting event value is:

GUARD(fn () => 1let
val ackCh = channel()
fun addFollowerdAbortFn b =
addAbortFn (b, fn () => send(ackCh, ()))
val n = length followers
fun leaderAbort O = abort()
| leaderAbort i = (accept ackCh; leaderAbort(i-1))
in
EVT(
(addAbortFn (leader, fn () => (leaderiAbort n)))
:: (map addFollowerAbortFn followers))
end)

where leader and followers are, respectively, the base-event descriptors of the leader and

follower abort actions.

10.5 Implementing I/0

I/O operations pose two problems for concurrent programming systems: first, the I/O
devices (file descriptors in UNIX systems) are a form of shared state, and thus require
concurrency control; and, second, input operations (and in some cases output operations)
have the potential to block. As described in Sections 4.4 and 4.6, the implementation of
CML supports I/O at two levels: synchronization on UNIX file descriptor conditions and a

concurrent version of the SML stream I/O interface.

10.5.1 Low-level I/O support

The low-level I/O base-event constructors (e.g., syncOnInput) provide a mechanism similar

to that of the UNIX system call select [UNI86], and, in fact, are implemented using this
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system call.

A global I/O waiting list is maintained by the implementation, with each entry corre-
sponding to a particular instance of an I/O base-event value. Each time the preemptive
scheduler is called, it dispatches a continuation that checks the status of the file descriptors
in the I/O waiting list. This is done by projecting out the file descriptors of the non-dirty
event instances in the waiting list and building the corresponding file descriptor sets. A
call to the select system call is made to poll the file descriptors, which returns the set
of ready descriptors. The threads waiting on the ready descriptors are then added to the

ready queue.

The only complication to this scheme is handling I/O errors; e.g., if one of the files has
been closed. In such a case, the system call select returns an error code, but no specification
of which file descriptor is the source of the error. Since this situation is relatively rare, a
moderately expensive, but simple, linear search for the bad file descriptors is used. Each file
descriptor is tested by a call to the ftype system call, which returns an error if, and only if,
the file descriptor is the source of the error. This error is then mapped back to the blocked
thread by raising an exception in its context. This requires saving two continuations in the
block function; one for successful synchronization and one for error condition. To make this
all concrete, the I/O waiting list data structure and the synchOnInput event constructor’s
block function are given in Figure 10.8. Each io_item in the waiting list corresponds to
a pending I/O base-event instance, and contains the file descriptor, type of operation, the

waiting thread ID and the two possible continuations.

10.5.2 Stream I/0

CML includes a structure CI0, which implements a concurrent version of SML I/O streams
(see [Rep90b] for a complete description). There are two types of I/O streams, in-streams
and out-streams, which provide buffered input and output operations. Each open stream
is represented by a thread, which implements the buffering. For out-streams, the protocol
is straightforward and uninteresting.® The in-stream protocols, however, are an example of

the advanced use of events to build complex communication abstractions.

Because input operations might block indefinitely (e.g., while waiting for the user to
enter a line of text), it is necessary to provide an event-valued interface to in-streams. The

CIO structure includes the following operations:

val inputEvt : instream * int -> string event
val inputLineEvt : instream -> string event
val lookaheadEvt : instream -> string event

°The implementation makes the simplifying assumption that write operations are non-blocking.
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datatype io_operation_t = IO_RD | IO_WR
type io_item = {

fd : int, (* the file descriptor *)

io_op : io_operation_t, (* the kind of operation *)

id : thread_id, (* the waiting thread’s id *)
kont : unit comnt, (* the successful continuation *)
err_kont : unit cont, (* the error continuation *)
dirty : bool ref (* the dirty bit *)

}

val ioWaitList = ref ([] : io_item list)

fun inputBlockFn (flg, abort, next) = (
callcc (fn okay_k => (
callcc (fn err_k => (
ioWaitList := {
fd=fd, io_op=IO0_RD, dirty=flg, kont=okay_k,
err_kont=err_k, id=getTid()
} :: 'ioWaitList;
next()));
(* continue here on an error *)
applyAbortFn abort;
raise (InvalidFileDesc fd)));
(* continue here on success *)
applyAbortFn abort)

Figure 10.8: Low-level I/O support

The function inputEvt builds an event value for reading a specified number of characters,
inputLineEvt builds an event value for reading a line of input, and lookaheadEvt builds an
event value for examining the next character to be read from the buffer. As an illustration,
the following function either reads a line of input or times out:
fun getAnswer t = select [
wrap (inputLineEvt std_in, SOME),

wrap (timeout t, fn () => NONE)
]

In order for code of this sort to work properly, the implementation of the in-stream event

constructors must satisfy the following two requirements:

(1) The commit point of the event must correspond to the availability of input that

satisfies the request.

(2) Input must never be lost or discarded.
The implementation uses a request-reply protocol (a simple version of this is described in
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Section 4.5). In order to meet requirement (1), the commit point must be the server’s
reply, which means that the request must be generated by a guard. Meeting requirement
(2) means that the server thread must be informed that the request has been aborted.
This is the scenario discussed in Section 4.5.2, and the client-side code is similar to that of

clientCallEvt5. For example, the client-side implementation of inputLineEvt is:'®

fun inputLineEvt (INSTRM{req_ch, ...}) = guard (fn () => let
val abortCh = channel() and replyCh = channel()
in

spawn (fn () =>
send (req_ch, INPUT_LN(receive abortCh, replyCh)))
wrapAbort (receive replyCh, fn () => send(abortCh, ()))
end)

The event value constructed by this function is a guard that sends a request to the server
consisting of the operation, an abort event and a reply channel. The commit point of this
event is receiving a reply from the server. If the client synchronizes on some other event,
then the abort action sends an abort message to the server. On the server side, when a
request comes in the server attempts to satisfy it — either from the input buffer or by
requesting input from the operating system. Once the server can satisfy the request, it
synchronizes on the choice of sending the input as a reply and receiving an abort message

on the abort channel. In the latter case, the input is reinserted into the buffer.

10.6 Implementation improvements

The current implementation of CML uses practically no specialized run-time or compiler
support. There are a number of techniques that could be used in the run-time system and

compiler that would improve performance.

A very simple modification, which requires little work, is to introduce a dedicated register
for referring to the thread ready queue. This would have two benefits: it would reduce
memory traffic, and it would eliminate the store-list allocations associated with ready queue
updates. Using the varptr register to refer to the current thread ID, instead of a global ref
variable, improved the speed of thread context switching by over 10%. This suggests that
thread context switching might improve by as much as 20% by use of a dedicated ready
queue register. And as the clock speed of RISC processors increases, the potential savings

become larger.

In the PML compiler, the event-value constructors and channel operations are explicitly

represented by primops. The PML compiler does very aggressive intermodule inlining, thus

1%The actual implementation uses a condition variable for the abort message (see Section 5.3).
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it is able to recognize applications of sync to static event values, which can be optimized into
more efficient operations. For example, sync (receive ch) can be replaced by accept ch,
which is about 40% faster. A more modest improvement (about 5%) is achieved by inline

expansion of sync, transmit and receive.

It is also possible for compilers to recognize more complex communication patterns. A
common example is the use of a thread to encapsulate state, with an RPC interface. In
this case, each time the server thread is dispatched to handle some operation, there is a
client thread that is suspended, waiting for the reply. A more efficient implementation
of this pattern is to use a monitor (see Section 3.2.2) to encapsulate the state.’’ When
there is no contention, monitors avoid the necessity of context switches on entry and exit;
a comparison of the costs in the context of Ada can be found in [EHP80]. Instead of
providing monitors at the language level, it may be possible for the compiler to detect when
a monitor is suitable and translate the RPC operations to monitor calls; this has been done
for Ada rendezvous [HN80]. Unlike Ada, CML does not have the syntactic signposts
that mark RPC-style interactions, since they are derived operations. Thus, automatically
recognizing that an RPC operation can be single-threaded is a very difficult problem. Other
communication patterns that might be recognized by the compiler include channels that
are used exactly once and channels that are used for point-to-point communication. For
example, consider an RPC protocol in which the reply channel is dynamically allocated for
each request (e.g., the implementation of input streams described in Section 10.5.2). If the
reply channel is used exactly once, then it can be replaced with a condition variable, which

reduces communication overhead by 30%.

1 This may not be the case on non-uniform memory access multiprocessors, where the client and encap-
sulated data are on different processors (see Chapter 12).
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Chapter 11

Performance

In the previous chapter, I described the implementation of CMUL in detail; in this chapter,
I report various performance measurements that I have made of this implementation. The
measurements include timing results for a collection of small benchmarks on three different
workstations, and instruction counts for these benchmarks on the MIPS R3000 processor. In
addition, I compare the performance of CML with the uSystem, a C-based thread package.

These measurements show that CML provides a high-level notation at a competitive price.

11.1 The benchmarks

I have conducted a series of benchmarks on three different machines, representing three
different processor architectures. Table 11.1 summarizes the features of these computers.

The benchmarks measure the cost of low-level concurrency operations, such as sending a

Table 11.1: Benchmark machines

NeXT SPARC 2 DEC 5000
Full name NeXT Cube | SPARCstation 2 | DECstation 5000/120
Processor 25MHz 68040 | 40MHz SPARC 20MHz R3000
Memory 24Mb 64Mb 16Mb
Operating System | NeXTstep 2.1 SunOS 4.1.1 ULTRIX 4.2

message, so to get accurate numbers I measured the time to perform 100, 000 operations.!

For each benchmark, I measured the CPU time spent executing the program (both user
and system) and the time spent in the garbage collector. All times are in micro-seconds.
The benchmarks were run using version 0.75 of SML/NJ (released November 11, 1991),
and version 0.9.6 of CML (released October 11, 1991).

110, 000 iterations of a loop of 10 operations.
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The benchmarks are logically divided into two groups; the first measure the basic con-

currency primitives:

Thread switch. This measures the cost of an explicit context switch.

Thread spawn/exit. This measures the time it takes to spawn and run a null thread. It
includes the cost of two context switches: the spawn operation switches control to the

newly spawned thread and a terminating thread must dispatch a new thread.
Rendezvous. This measures the cost of a send/accept rendezvous between two threads.

Event rendezvous. This is an implementation of the rendezvous benchmark using sync

composed with transmit and receive, instead of send and accept.

The second group measures the cost of several different versions of an RPC implementation
of a simple service. The service is essentially a memory cell; a transaction sets a new value

and returns the old value.

RPC. This uses send and accept to implement the protocol. The client-side code is:

fun call x = (send (reqCh, x); accept replyCh)

Event RPC. This implements the protocol as an event value. The client-side code is:

fun call x = sync (
wrap (transmit(reqCh, x), fn () => accept replyCh))

Fast RPC. This uses a condition variable (see Section 5.3) to implement a fast, asyn-

chronous reply. The client-side code for a call is:

fun call x = let val replyVar = condVar()
in
send (reqCh, (x, replyVar));
readVar replyCh
end

11.1.1 Timing results

The measured times for all of the benchmarks are given in Table 11.2. Each entry has the
form t + g, where t is the combined user and system time for the operation and g is the
amortized garbage collection overhead. Each entry is the average of five test runs, and there
was little deviation between runs. Real-time measurements were only slightly higher than

than the CPU time measurements.
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Table 11.2: CML benchmarks

Time in xS / Operation
(program + garbage collection)

Operation NeXT SPARC 2 DEC 5000
Thread switch 2344 18+4 1547
Thread spawn/exit 4747 4647 42413
Rendezvous 54410 5047 494-20
Event rendezvous 110412 9049 88+23
RPC 1054-20 95+15 90+38
Event RPC 171421 134+15 125+39
Fast RPC 79411 6849 65123

11.1.2 Instruction counts

Andrew Appel modified the MIPS code generator to generate instrumentation that counts
the number of executed instructions. Using this mechanism, I measured the instruction
counts for the various benchmarks. Table 11.3 gives the results of these measurements.

These numbers do not include the loop or garbage collection overhead.

Table 11.3: MIPS instruction counts

Operation Instructions / Operation
Thread switch 197
Thread spawn/exit 483
Rendezvous 558
Event rendezvous 934
RPC 1,008
Event RPC 1,346
Fast RPC 711

These numbers are higher than one might expect (particularly for the thread switch
and creation operations). In [Rep9la], I reported that a thread switch required around
100 instructions on the SPARC processor, which is about half of what I measured for the
MIPS. Since the MIPS and SPARC are both RISC processors, the difference is not one
of instruction sets, but rather is because of changes in the SML/NJ compiler (Appel,
personal communication, December 1991). There is some hope that future improvements
in the compiler will reduce the instruction counts to more reasonable values (for example,

a thread context switch should require no more than 75 instructions).
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11.2 Analysis

The measurements show that the penalty for using abstract interfaces (i.e., hiding channel
communication in event values) is acceptable. Table 11.4 gives the ratio between the non-
GC time of the event version and the non-event version of the two communication protocols

I benchmarked. For a simple rendezvous, the performance cost of using events is about 80%;

Table 11.4: Cost of abstraction

Protocol
Rendezvous RPC
Machine | cost (uS) | ratio | cost (uS) | ratio
SPARC 2 40 1.8 39 1.4
DEC 5000 39 1.8 35 1.4

for the RPC it is 40%. The reason for the lower impact on the RPC protocol cost is that
only one of the two communications is being represented by an event value. In general, only
the communication that is the commit point needs to be implemented using an event value;

communications in the guard and wrapper can be implemented using send and accept.

11.2.1 Garbage collection overhead

The high garbage collection overhead in these benchmarks is mostly a result of the way the
current SMIL/NJ collector, which is a simple generational collector, keeps track of inter-
generational references [App89]. Each time a mutable object is updated, a record of that
update is added to the store list. This store list is examined for potential roots at the begin-
ning of each garbage collection. The implementation of CML uses a small number of very
frequently updated objects: the thread ready queue, current thread pointer and channel
waiting queues. This “hot-spot” behavior is the worst-case scenario for SML/NJ’s col-
lector, destroying the O(|LIVE|) normally expected from copying collection. The collector

also suffers from the problem of poor “real-time” responsiveness.

11.3 Comparison with the uSystem

To put these measurements into perspective, I implemented a similar set of benchmarks in
version 4.4 of the uSystem, which is a C light-weight process library [BS90]. The uSystem
provides threads and a request/reply communication primitive (it also has shared-memory
primitives), but it does not have selective communication. It runs on the SPARCstation
and DECstation, but not on the NeXT. Table 11.5 reports the results for the SPARCstation
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Table 11.5: uSystem benchmarks

SPARC 2 DEC 5000
Operation Time (pS) | Ratio | Time (uS) | Ratio
Task switch 62 2.8 13 0.6
Task create 161 3.0 59 1.1
Send/receive 127 2.2 42 0.6
Send/receive/reply 128 1.7 43 0.5

and DECstation. As before, the times are given in micro-seconds and represent the sum
of the user and system CPU times; obviously there is no garbage collection overhead. The
column labeled “ratio” gives the ratio of the uSystem and CML times (including garbage

collection overhead); a ratio greater than 1.0 means that CML is faster.

On the SPARCstation, CML is uniformly faster than the pSystem. The principal
reason for this is that SML/NJ does not use the SPARC’s register windows, and thus does
not have to flush them on a thread switch. The comparison for the DECstation is not as
favorable, but CML is still competitive, even though the uSystem provides a lower-level
concurrency model (no selective communication, for example). This shows that we can have

the advantages of the higher-level language without sacrificing performance.
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Chapter 12

Multiprocessors

While the main thrust of this dissertation is the study of concurrency as a tool for structur-
ing programs, it is worth considering the issues associated with a possible multiprocessor
implementation of CML. In this chapter, I survey various parallel language features and
parallel programming techniques and discuss how they might apply to parallel programming
in CML. I also discuss the implementation issues that must be addressed in a multipro-

cessor implementation of CML, and finally summarize the prospects for multiprocessor

CML.

For purposes of this chapter, I assume a multiple-instruction multiple-data (MIMD)
machine with a shared address space. There are many experimental and commercial ex-
amples of these machines, and it is reasonable to expect that they will appear on desks
in the near future. Although these machines provide a shared-memory model, they usu-
ally also have non-uniform memory access (NUMA); e.g., each processor may have a local
memory or at least a cache. Because of NUMA, maintaining locality is important for good
performance, and as the number of processors increases NUMA effects become more pro-
nounced. Programs written in a message-passing language typically have good locality, and

can out-perform the shared-memory versions [LS90].

There are several benefits to be obtained from a multiprocessor implementation of CML.
Although most existing applications, such as eXene, have fairly limited amounts of par-
allelism (typically only a few ready threads at a time), a multiprocessor implementation
should result in noticeable performance improvements for many existing applications. Ow-
icki reports improvements for these kinds of applications written in Modula-2+4 running
on a Firefly multiprocessor [Owi89]. In particular, she mentions that the Trestle window
system exploits the multiprocessor by pipelining graphics operations. EXene is designed
with some pipelining, so that running on a multiprocessor should improve its performance.

And, of course, all programs, including highly sequential ones, will benefit from parallel
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garbage collection.

With a multiprocessor implementation available, it becomes reasonable to implement
parallel algorithms. Some examples are parallel attribute grammar evaluation [Zar90], par-

allel theorem provers [BCLM89], and parallel graphics algorithms [Gre91].

12.1 Parallel programming in CML

This section examines the use of CML as a parallel programming language. There are two
parts to this discussion: first, I discuss several parallel programming techniques and how
they might apply to CML; and second, I describe possible extensions to provide better
support for parallel programming. The proposed extensions do not represent changes in
the semantics of CML; rather, my approach is to define new communication operations
that can be derived from the CML primitives, but that are also amenable to efficient

implementation on multiprocessors.

12.1.1 Pipelining and data-flow

One class of parallel programs naturally expressed in CML are those programs that can
be structured as data-flow networks [KM77]. A data-flow network consists of a graph of
computation nodes, where the edges are communication links (Landin’s streams [Lan65] are
a precursor to this). A data-flow graph does not have to be static; a computation node can

be replaced by subgraph having the same I/O interface.

Data-flow graphs provide parallelism in two ways. If two computation nodes do not
depend on each other for data, then they can compute in parallel. Even if there is a
dependency, if they operate on a sequence of values then they form a pipeline. In order for
a data-flow network to be efficient, the granularity of the operations at individual nodes

must be large enough to compensate for the communication overhead.

Using threads for the computation nodes and channels for the edges, a data-flow network
can be directly implemented in CML. For example, eXene’s thread network is essentially
a data-flow network (see Section 9.1.3). Another example is given in [Rep90b], where I
describe a pipelined implementation of the Sieve of Eratosthenes using CML.

A nice illustration of the use of data-flow networks is given by Mcllroy in [McI90], where
he describes the use of processes and channels to compute power series (this was actually
suggested in [KM77], but without implementation details). Mecllroy represents a power

series as a stream of rational coeflicients. For example, the power series for the exponential
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can be implemented in CML as follows:

fun e () = let
val ch = channel()
fun loop (i, ifact) = (
send(ch, {num=1, denom=ifactl});
loop(i+1l, (i+1)*ifact))
in
spawn (fn () => loop(0, 1));
ch
end

Using this representation, operations such as addition and multiplication of power series
can be coded up as networks of threads (see [McI90] for details).

12.1.2 Controlling parallelism

One of the key problems in writing parallel programs is avoiding excessive parallelism. A
basic technique in many parallel programs is to divide a problem into two or more pieces and
to spawn a thread for each piece. If there are many more pieces than processors, then this
technique leads to excessive parallelism and the cost of thread management can dominate
the execution time. Premature limiting of parallelism, however, can result in starvation;

i.e., idle processors without any work.

Work crews

One approach to limiting excessive parallelism in concurrent programs is the work crew
abstraction [RV89]. In this scheme, a fixed set of threads, called workers, execute jobs
taken from a queue,! where a job is a piece of computation. When a worker gets a job that
can be computed in n parallel pieces, it chooses one piece for itself and generates n — 1
help requests for the remainder. When the worker finishes the its piece of work, it then
checks to see if the help requests have been answered. If not, then the worker computes the
next piece of the job, and so on until the job is completed. After completing the job, the
worker looks for help requests from other workers; if it finds one, that becomes its next job.
Figure 12.1 sketches the code for a job consisting of three pieces. In addition to providing a
mechanism for limiting parallelism, work crews also have the important property of breadth-

first parallel decomposition, which results in coarse-grain parallelism. And, since jobs are

'In [RV89], the term tasks is used to refer to jobs.
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fun job () = (
requestHelp (joby);
requestHelp (jobs);
do joby;
if noHelp(job,) then do job, else ();
if noHelp(joby) then do jobs else ())

Figure 12.1: Work crew job decomposition

decomposed eagerly, worker starvation is avoided. When no extra workers are available for

a job, execution reduces to the standard sequential order.

The structuring of job decomposition in a breadth-first manner is probably the most
important benefit that work crews would provide CML. Since thread creation and space
overhead are low, a CML implementation of work crews could use a thread for each job,
but only enable a subset of threads to run at any time. A “token” mechanism could be
used for this, where each job (i.e., thread) would wait for a token before executing, and
would pass the token to the next job when it completed. In this scheme, a token holder

corresponds to a worker.

Futures

The semantics of futures in concurrent Lisp systems provide another opportunity for lim-

iting parallelism. Consider the general form of a future creation:

K (future e)

where K is the context of the future call. The keyword future can be viewed as an
annotation, which tells the compiler that e is a good candidate for parallel evaluation. The
actual evaluation of e, however, can be immediate (called inline evaluation), in parallel with
K, or when K demands its value. One approach is to choose dynamically between inline
and parallel evaluation of e based on the current load; this is called load-based inlining
[KH88, MKH91]. A problem with this approach is that the rate of thread creation in a
program may not be uniform, so a decision to inline a future at one point may lead to

starvation later. Furthermore, load-based inlining can introduce deadlock [MKH91].

An alternative to load-based inlining is lazy task creation, which is is a scheme that
always inlines the evaluation of e, but saves enough information to spawn a thread to
evaluate K in parallel if the number of ready tasks falls below the number of processors

[MKH91]. This scheme is quite similar to work crews in its effect, but requires less effort
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by the programmer. Futures with lazy task creation can be implemented in CML fairly

easily. Assuming that we have a global channel

val continue : unit chan

for sparking new threads, then the future operation is implemented as follows:?

fun future £ x = let
val resVar = condVar()

in
spawn (fn () => writeVar (resVar, f x));
select [
receive continue,
wrap (readVarEvt resVar, fn _ => ())
1;
readVarEvt resVar
end

The idea is that an idle processor sends a message on the continue channel to wake up
some waiting thread. Since channel communication is FIFO, this results in the desired
breadth-first problem decomposition. Of course, it would be much more efficient to directly
implement futures and lazy task creation using callcc and the techniques of [MKH91]. For
CML, a principal advantage of lazy task creation is that it doesn’t introduce deadlock; even

in the case when the body of a future attempts to synchronize with the future’s parent.

12.1.3 Speculative parallelism

Certain classes of parallel programs, such as parallel search, use speculative parallelism to
improve performance [Osb89]. For example, consider the problem of finding an item in a
balanced binary tree; by searching subtrees in parallel, the running time of the search is
reduced from O(n) to O(logn), given a sufficient supply of processors. Although this exam-
ple is trivial, it is illustrative of problems arising in applications such as theorem provers.
In addition to the problem of controlling excessive parallelism (discussed in Section 12.1.2),
there is the problem of terminating unnecessary computations (e.g., once one thread has
found the item, there is no reason for the others to keep searching). CML does not cur-
rently support the asynchronous termination of threads, thus it would be necessary to add
kill operation on thread IDs. The other aspect of thread termination is recognizing which
threads need to be killed. It is also important to note that the speculative threads must be

referentially transparent, otherwise killing them changes the semantics of the program.

?Note that this version is simplified by ignoring the issue of exceptions (cf., Section 5.5).
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One attractive, but tricky, approach is to garbage collect those threads that are able to
run, but are irrelevant to the future execution of the program.® One way to do this is to give
the garbage collector special knowledge about channel and thread objects, which allows it
to trace thread interconnections [BH77, KNW90]. The problem with using this technique
for CML is that it does not interact well with the implementation of threads as ordinary
SML values. Another strategy, which might be more suitable for CML, is judicious use
of weak pointers in the representations of some of the concurrency objects [ME89]. Weak
pointers, which are already supported by SML/NJ, are a way to hold a reference to an
object while allowing the garbage collector the option of collecting it. If, during a garbage
collection, the only references to an object are weak pointers, then the garbage collector
collects the object and nullifies the weak pointers that refer to it. Using weak pointers,
a future mechanism can be implemented that gives the parent thread a strong pointer to
the future object and gives the child thread a weak pointer to it. If the parent discards its
reference to the future object, then the child’s weak pointer is nullified, and, using object
finalization [Rov85], the child thread is collected. A similar scheme is described in [ME89].

A simple technique, which has similar utility to the weak pointer scheme above, is to

exploit the guard and wrapAbort combinators to implement a speculative fork operation:

fun fork £ x

guard (fn () => let

val cv = condVar()
val id = spawn (fn () => writeVar(cv, f x))
in

wrapAbort (readVarEvt cv, fn () => kill id)
end)

Using multiple instances of this in a select implements or-parallelism. The first thread to
finish provides the answer and triggers the abort actions of the other choices, which kill the
other threads. For example, the following function sorts a list while testing to see if it is

already sorted in parallel:

fun fastSort 1 = select [
fork (fn () => sort 1),
fork (fn () => if (isOrdered 1) then 1 else exit())
]

where sort is some sorting function and isOrdered tests a list to see if it is sorted.

3The CML implementation collects unreachable blocked threads, but not threads that are ready (i.e.,
threads that are reachable via the ready queue).
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12.1.4 I-structures

The parallel programming functional language Id provides a form a mutable state called
I-structures [ANP89, Nik91]. I-structures come in various flavors, including aggregate struc-

tures such as arrays.

Condition variables are essentially the value-return mechanism of a future. Futures have
been promoted as a useful mechanism for parallel programming by the Lisp community
(e.g., [Hal85] and [KH88]). Although, as discussed in Section 5.5, futures can be imple-
mented using channels, an implementation based on condition variables has the significant

advantage of avoiding a context switch each time the value of the future is read.*

Condition variables are an example of what are called I-structures in the parallel lan-
guage Id [ANP89, Nik91]. Id provides I-structures in various flavors, including aggregate
structures such as arrays. A discussion of the use of [-structures in parallel programs and

some small example programs can be found in [ANP89].

12.1.5 M-structures

Another form of state supported by Id is the M-structure [BNA91]. Like I-structures, M-
structures are either empty or full. There are two basic operations on M-structures: put,
which initializes a cell and, like I-structures, raises an exception if the cell already has a
value; and take, which removes and returns the contents of a cell (making it empty). The
take operation forces synchronization, since a thread may have to wait for another thread
to put a value into the cell. This is similar to the “I/O ports with memory” described
in [KS79]. M-structures can also be viewed as finitely buffered asynchronous channel with

only one slot. In CML, M-structured variables have the following interface:
type ’a mstruct
val mstruct : unit -> ’la mstruct

val put : (’a mstruct * ’a) -> unit
exception Put

val takeEvt : ’a mstruct -> ’a event
val take : ’a mstruct -> ’a

Since M-structures are mutable, the allocation function is weakly polymorphic. As men-
tioned above, the take operation involves synchronization, so an event-valued form is also

provided. If a put is attempted on a full cell, the exception Put is raised.

*Condition variables have proved quite useful in CML programs when “single-shot” communication is
required (e.g., for abort messages, see Section 10.5.2).
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M-structures can be updated atomically if threads use the following update protocol:

put (m, f (take m))

where f computes the new value of m from the previous value. The reason why this
update is atomic is that the take operation locks the variable against take operations by
other threads (this is similar to the safety of shared request-reply channels discussed in
Section 4.2). Paul Barth at MIT has developed a number of parallel algorithms in Id using

M-structures (Barth, personal communication, August 1991); some examples can be found

in [BNA91].

M-structures can be defined as a derived feature in CML; Figure 12.2 gives an imple-

mentation of the above interface. In a parallel implementation of CML, M-structures might

datatype ’a mstruct = M of {
full_ch : unit chan,
take_ch : ’a chan,
put_ch : ’a chan

}

fun mstruct () = let
val fullCh = channel()
val takeCh = channel() and putCh = channel()
fun undefined () = defined (accept putCh)
and defined v = select [
wrap (transmit(takeCh, v), fn () => undefined()),
wrap (transmit(fullCh, ()), fn () => defined v)
]
in
spawn undefined;
M{full_ch = fullCh, take_ch = takeCh, put_ch = putCh}

end
fun takeEvt (M{take_ch, ...}) = receive take_ch
fun take (M{take_ch, ...}) = accept take_ch

exception Put

fun put (M{full_ch, put_ch, ...}, x) = select [
wrap (receive full_ch, fn () => raise Put),
transmit (put_ch, x)

]

Figure 12.2: CML implementation of M-structure variables

be implemented directly on top of the low-level shared-memory primitives, making them
very efficient. Other operations that Id supports on M-structures, such as a non-destructive

read operation, could also be directly supported.
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12.2 Multiprocessor implementation

Designing and building a high-performance multiprocessor CML implementation is a major
research project in its own right, and I leave it for future work. It is possible, however, to

identify and discuss some of the major implementation issues.

12.2.1 Concurrency control

The uniprocessor implementation described in Section 10.4 relies on a single global mutex
lock for guaranteeing atomic access to the channel and thread data structures (see Sec-
tion 3.2.1 for a description of mutex locks). On a uniprocessor, using a global lock is the
most efficient approach, since it reduces locking overhead and does not cause any loss of
parallelism. For multiprocessors, however, a single global lock is likely to cause contention
and idle processors. For example, on a four processor machine (P 33 4}), a thread on P,
should be able to communicate with a thread on P, in parallel with communication between

threads on P3 and P,. This means that channels must be locked independently.

Different multiprocessors provide different kinds of support for locking. A common
mechanism is the test-and-set instruction, which atomically applies the following function

to a word:

fun testAndSet w = if !w then true else (w := true; false)

This operation can be used to implement a spin-lock, which is busy-waiting mutex lock:

fun aquireSpinlock w = if (testAndSet w)
then (aquireSpinLock w)
else ()

fun releaseSpinLock w = (w := false)

A more sophisticated implementation might use exponential back-off or other techniques
to improve performance (see [And89] and [CS91] for a comparison of locking techniques).
Some multiprocessors do not provide hardware support for locking, but Lamport has de-
veloped an algorithm for these cases, which is optimal in the number of memory reads and
writes [Lam87]. Other machines only provide test-and-set on a limited number of mem-
ory locations, in which case software locks must be implemented on top of the hardware

supported spin-locks.

12.2.2 Generalized selective communication

With the introduction of a separate lock on each channel’s data structure, the implemen-

tation of sync applied to a choice of multiple communications becomes significantly more
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complicated. For example, a naive implementation of select on a list of communications
is to first grab the locks of all the channels and then do the operation. This fails in the
following situation. Assume there are two threads ¢; and £, running on different processors,

with ¢; attempting

select [receive ¢y, transmit (cz, v)]

while simultaneously £, attempts

select [receive cy, receive ci]

This can result in a situation in which #; holds a lock on ¢; and needs a lock on ¢s, while
ty holds a lock on ¢s and needs a lock on ¢; — i.e., deadlock. There are various known
algorithms for this problem (e.g., see [BS83], [Bor86], or [Bag89]). The basic strategy is to
first make tentative offers of communication; when two tentative offers match, one thread
must freeze its state until the other thread either commits or rejects the communication. The
choice of which thread will fix its state is based the order of the threads’ IDs; this avoids the
possibility of cyclic dependencies and deadlock. Greg Morrisett has implemented a protocol

similar to [Bor86] on top of ML-threads (Greg Morrisett, personal communication, July
1991).

12.2.3 Thread scheduling

The techniques and data structures used for thread scheduling can have a significant im-
pact on multiprocessor performance, because of contention for thread queues and cache

consistency effects.

A single global scheduling queue would be a significant source of contention. Further-
more, a single queue does not provide any mechanism for keeping a thread on a single
processor, which is important for preserving cache consistency. Accordingly, as a first cut,
it is clear that each processor should have its own queue of ready threads. Some policy
is needed to balance out the load. One possibility is to balance the scheduling queues at
garbage collection time. Since typical memory allocation rates in ML programs are high
(on the order of 5 to 10 megabytes per second on a SPARCstation-2), a processor that runs
out of work would not have to wait long for load balancing. A fall-back would be to allow
an idle processor to force a garbage collection if it has been idle for more than a few millisec-
onds. This scheme has the advantage of insuring that the scheduling queue is only accessed
by its processor (except during load balancing), which means that a light-weight locking
mechanism, such as that used in the single processor implementation (see Section 10.2.2),

can be used to protect the queue. Since the scheduling queue is the single most heavily
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accessed shared data structure, this scheme might provide good performance. The question
that needs to be answered by empirical tests is how often do processors run out of threads

to schedule?

The implementation of Mul-T uses two thread queues per processor; one for threads
that have never run, called the new thread queue, and one for threads that have been
suspended, called the suspended thread queue. When selecting a new thread to dispatch,
the processor’s scheduler first looks in its own suspended thread queue, then in its own new
thread queue, then in other processors’ new thread queue and lastly, if it has not found a
thread, it looks in the other processors’ suspended thread queues. By selecting new threads
over suspended threads when migrating threads, the impact on cache consistency of thread

migration is reduced.

12.2.4 Memory management

Implementations of heap-based languages, such as SML or CML, live or die by the per-
formance of their memory allocation and garbage collection techniques. An efficient multi-
processor implementation of CML must address several memory management issues. The
most important of these is avoiding contention during memory allocation. The standard
scheme to address this problem is to divide the allocation space into multiple chunks and to
give each processor its own allocation chunk (e.g., [AEL88], [KH88], [ME89] and [Mar91]).
When a processor fills its allocation chunk, it grabs another from the global list of free
chunks. The only source of allocation contention are the accesses to the global chunk list,

which are relatively rare.

When the allocation chunks are exhausted, it is necessary to perform a garbage collec-
tion. For a “stop-the-world” collector, this first requires synchronizing the processors, so
that they are all in collection state. One possible technique to force synchronization is to
have the processor that notes the need for garbage collection use a UNIX signal to notify
the other processors [KH88]. Another approach is to wait for the other processors to ex-
haust their allocation chunks [Mar91]. To avoid problems in the unlikely case of an infinite,
non-allocating, computation, a global flag is set that is checked by the SIGINT signal han-
dler. Since allocation rates in SML/NJ are very high (typically one 4-byte word per 5-10
instructions), the idle-time of the processor that initiated the garbage collection might be

less costly than the overhead of using signals to interrupt the other processors.

Once all of the processors are in collection state, the garbage collection can begin. The
simplest technique is to run a standard collection algorithm on a single processor. This has
the clear disadvantage, however, of increasing the cost of garbage collection relative to the

rest of the program. A sequential collector is a performance bottleneck; it is much more
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desirable to garbage collect in parallel. There are a number of systems using parallel garbage
collection (e.g., [KH88], [ME89] and [Mar91]). The techniques of [Mar91] seem to fit the
SML/NJ memory management system fairly well. In this scheme, each processor has its
own to-space. When a collector process encounters a reference to a from-space object while
sweeping its to-space, it examines the object’s descriptor. If the descriptor is a forward
pointer, then the collector process updates the reference in its to-space. If the object has
not been forwarded, then the collector process locks the descriptor word, allocates space in
its to-space, sets the forward pointer, unlocks the descriptor, and then copies the object. For
machines, like the SGI 4D /380, which have a limited number of hardware locks, a hashing
scheme on the object’s address can be used to multiplex the hardware locks. Since the lock

on the object’s descriptor is only held for a few instructions, contention should be rare.

These techniques still suffer from the problem that they stop the world during garbage
collection. Although the use of generational techniques reduces the frequency of noticeable
pauses [Ung84], providing uniform responsiveness for real-time applications, such as user
interfaces, requires interleaving garbage collection activities with mutator computation. On
a multiprocessor, the most obvious approach is to dedicate one or more processors to the
task of garbage collection. The principal technical problem with interleaving mutator and
garbage collection activity is synchronization. If synchronization overhead is high, then any
performance benefits will be lost. In lieu of special purpose hardware, the virtual memory

system can be used to implement synchronization [AEL8S].

12.3 The outlook for multiprocessor CML

This chapter has described a number of issues related to the implementation and use of
a multiprocessor version of CML. Some work has already been done towards supporting
CML on multiprocessors. Greg Morrisett has implemented a low-level library of multipro-
cessing primitives, such as spin-locks, for SML/NJ on the SGI 4D /380 [Mor|. This should

provide a suitable base for implementing a multiprocessor version of CML.

Once a multiprocessor implementation exists, it will be possible to experiment with
different styles of parallel programming. The flexibility provided by first-class synchronous
operations means that CML can accommodate different parallel programming paradigms
without serious disruption or incompatibilities with existing code. Condition variables and
some form of M-structures should provide the right primitives for programming parallel
algorithms, while being semantically consistent with CML’s other primitives, and the tech-
niques of work crews and lazy futures should provide reasonable mechanisms for controlling

parallelism.
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Part V

Conclusion
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Chapter 13

Future Work

Although this dissertation is a comprehensive treatment of the design, semantics, application
and implementation of a concurrent language, there is still room for additional research and
implementation. Following the structure of this dissertation, the topics for future research

are divided into design, theory and practice.

13.1 Design

The design of CML has evolved for a number of years based on practical experience and
is now fairly mature. Given the amount of practical experience with the mechanisms, it is
unlikely that CML will change in any radical way. There are, however, a couple of areas

for exploration.

One of the attractive aspects of CML is that it supports a wide range of concurrency
mechanisms using a small set of core primitives. A possible area of exploration is to take a
reductionist approach in the choice of primitives. CML uses synchronous message passing
as the basic synchronous operation, but perhaps there are other, more primitive, choices.
For example, some variation on low-level shared-memory primitives might be possible. This
would factor out the communication from the primitive synchronous operations. While this
exercise would be intellectually interesting, I suspect that the resulting language design
would be too low-level. Synchronous message passing seems to provide a happy medium

between low-level performance and high-level abstraction.

As 1 discussed in Section 5.4, choosing synchronous message passing as the primitive
synchronization mechanism limits rendezvous to two threads. This limitation interferes
with a potentially useful class of abstractions — the use of threads to implement active
channels. An example of an active channel is a channel that logs all message traffic for

debugging purposes. One approach to supporting such abstractions is to add a multiway

161



rendezvous primitive [Cha87]. The implementation details remain to be worked out, but
solutions to this problem are discussed in Chapter 14 of [CM88], where it is called the

committee coordination problem.

The original prototype of first-class synchronous operations was implemented in C and
included support for using events in C programs. The lack of closures, however, limited
the usefulness of events in C. Adding events to a language such as Modula-3 might prove

more satisfactory, since objects can be used to provide a closure-like mechanism?! [Nel91].

13.2 Theory

In Section 7.5, I described a number of ways to enrich the A., calculus to more fully model
CML. It remains to prove type soundness results for the extended calculus. In particular,
the combination of exceptions and channels, both potential sources of type system loopholes,

should be shown to be sound.

The operational semantics that I presented in Chapter 7 could be used as the basis for
a “theory” of first-class synchronous operations. There are a number of transformations on
event values that should be shown to be semantics preserving. For example, the representa-
tion of event values in the implementation can be described by a rewriting system of event
values. Showing that the rewriting of an event value preserves its meaning would be a sig-
nificant step toward showing that the implementation is correct. In Section 10.6, a number
of optimizations are suggested (e.g., replacing use-once channels with condition variables).
A theory of events would provide a framework for showing that these optimizations are

“safe.”

Proving such results requires a notion of event value equivalence: the obvious definition
is that two event values are equivalent if they are indistinguishable in all contexts. This
definition requires, in turn, some notion of process equivalence. This is an active area of
theoretical research (e.g., [Blo89]) and there are many different notions of what it means
for two processes to be equivalent. For various reasons, I think that a modified notion of

testing equivalence [Hen88] is the most suitable for developing these results.

13.3 Practice

As we gain more experience with CML, certain common abstractions may emerge. By
supporting these abstractions directly as primitives, performance can be improved substan-

tially. The condition variables discussed in Section 5.3 is an example of this; using them for

'In fact, a closure in Modula-3 is an object type with an apply method.

162



replys in an RPC abstraction reduces overhead by about 30% (see Chapter 11). Another
possible candidate is buffered channels, which are often used in interactions with external
processes (e.g., the X-server). It is important to note that adding these new primitive op-
erations does not change the semantics of CML, since semantically they are still derived

operations.

The most glaring weakness of CML is the lack of debugging facilities. A short term
solution is to provide a version of the CML primitives that allows monitoring of com-
munication, thread scheduling, etc. A more ambitious scheme is to provide an interactive
debugger. Andrew Tolmach, who is responsible for the SML/NJ debugger [TA90], is work-
ing on a concurrent version for a “safe” version of ML-threads [TA91]. It is likely that his
work can be adapted to CML; in fact, CML may be a better target than ML-threads,

since the shared state is more clearly defined.

Chapter 12 discussed many of the issues relating to the implementation and use of CML
on multiprocessors. I view this as the most important direction for future implementation
work. Multiprocessor server machines are already common, and that technology is likely
to trickle down to single-user workstations in the next few years. CML provides a natural
migration path for SML applications to benefit from the parallel processing capabilities of

multiprocessor workstation.

There are a number of active ongoing projects that are using CML. Emden Gansner
and I are continuing to develop eXene and plan use it as part of a foundation for interac-
tive programming environments [RG86, GR92]. The DML project at Cornell University is
exploring issues in distributed systems, using CML as starting point [Kru91]. These appli-

cations and others will help to guide future evolution of CML and its implementation.
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Chapter 14

Conclusion

Concurrent programming is an area of growing importance, but there has been little recent
progress in the design of concurrent languages. For example, Modula-3 encompasses many
recent ideas in sequential language design, but uses concurrency features that date back to
the 1970s [Nel91]. In this dissertation, I have presented a new approach to concurrent
language design that supports a higher level of concurrent programming. The key new
idea is to treat synchronous operations as first-class values that can be composed into
new synchronous operations. This allows many different styles of communication to be
supported in the same linguistic framework. I call this new style of programming “higher-
order concurrent programming,” as an analogy with higher-order programming in languages
such as ML. This dissertation is a broad look at this new approach to concurrent language

design, exploring the design, theory and practice of first-class synchronous operations.

The ideas of this thesis are presented in the context of the language CML, which is
an extension of SML that supports first-class synchronous operations. I use CML to
illustrate the usefulness and practicality of my approach. In Chapter 5, I show how a
number of synchronization and communication abstractions found in other languages can
be implemented in CML as first-class citizens. This demonstrates that CML can support

different concurrent paradigms in a single linguistic framework.

I have also developed the formal underpinnings of first-class synchronous operations. In
Chapter 7, I give the operational semantics of a simple untyped language, called A.,, that has
first-class synchronous operations. This language includes most of the concurrency features
of CML, and is a substantial step toward a formal definition of CML. In Chapter 8, I
define a polymorphic type discipline for A, that is in the tradition of ML type systems,
and I prove that this type system is sound with respect to the operational semantics of A.,,.
To my knowledge, this is the first proof of type soundness for a polymorphic concurrent

language.
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CML has been implemented and has been used to build several non-trivial applica-
tions. The most significant of these is eXene, which is a multi-threaded X window system
toolkit. EXene and some other applications of CML are described in Chapter 9. CML
has also been publically distributed since November of 1991, and is being used by a num-
ber of other researchers. The implementation of CML is described in Chapter 10 and
performance measurements are reported in Chapter 11. The use of CML to implement
substantial applications, as well as the performance of the implementation (which is com-
petitive with lower-level concurrency packages), demonstrates that CML is a useful and
practical language for systems programming. In many respects, the CML system is the
most important result of this research, and I expect that it will provide a solid basis for
other research and development for years to come. In the future, I plan to implement CML

on a shared-memory multiprocessor (Chapter 12 discusses issues related to this).
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Appendix A

Proofs from Chapter 8

This appendix contains the detailed proofs of some of the lemmas in Chapter 8. It also

includes some additional definitions and lemmas needed for these proofs.

Proof of Lemma 8.5

Before proving the Substitution Lemma, we need a couple of minor lemmas. The following

lemma extends substitution to type judgements.
Lemma A.1 If S is a substitution and TE F e : 7, then S(TE) e : S7.

Proof. Proofs of this for a similar system can be found in [Tof88] (Lemma 5.2, p. 48) and
in [Tof90] (Lemma 4.2, p. 18). |

The following lemma says that the typing assumptions (i.e., the type environment) of a

type derivation can be generalized without affecting the result.
Lemma A2 If TE+ {z—~ o}t e:7and ¢’ > o, then TE+ {z — o'} Fe:T.

Proof. The proof is by induction on the height of the deduction of
TE+{z—o}le:T

and by case analysis of the last step (i.e., analysis of the shape of e). The interesting
cases are those involving the variable typing component of TE. Recall that the variable

convention means that # is not bound in e.

Case e = z'.
If £ # z', then Lemma 8.3 means that TE - z : 7. Applying Lemma 8.3 again, we get
TE+{z— o'}z’ 7.
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If 2 = 2/, then o > 7, and since ¢’ > o, ¢’ > 7. Then TE+{z — o'} -z : 7, by

rule (7-var).
Case e = Az'(e").
Rule (7-abs) applies:

TEt{z— o2 =7} 7
TE+ {z— o} FAz'(e) : (7' — 7)

So, by the induction hypothesis,
TE+{z— o, 2’ = 7}Fe 7
And, thus, applying rule (7-abs), we get
TE+ {z — o'} Az/(e) : (7' = 1)

Case e = let z'=vine'.

Rule (r-app-let) applies:

TEx{z—o}Fv:7 TEx{z— 0,2’ — CLOSTEL{z0o}(T)} e T
TE+{z—o}rletz’=vine: T

Then, by the induction hypothesis,
TE+{z+— o'} Fv:7

and

TE+{z — o, ¢' = CLOSTRL{rso} (T)} Fe: T
Since ¢/ > o, Lemma 8.1 gives us
CLOSTE+{zrs0'} (T') = CLOSTEL {2130} (T')
We can then apply the induction hypothesis again to get
TE + {z — o', ' = CLOSTR {pso} (T)} F e T
And then, by rule (r-app-let), we get

TE+{z+— o'} Flete’=vine:r

Case e = let z'=e; in es.

This follows the argument of the previous case.
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Case e = chan z’/ in €'.

This case is similar to the case e = Az’ (e’) above.

Lemma 8.5 (Substitution) If z ¢ FV(v), TEF v : 7, and
TE+{z — Vo - -ap1}Fe:7
with {ai,...,a,} NFTV(TE) = 0, then TE}F e[z — v] : 7'.

Proof. The proof is mostly from [WF91b], and proceeds by induction on the height of the
deduction of
TE+{z— Vo1 - ap.t}rFe:7

and by case analysis of the last step. Let TE = (VT,CT), VI' = VT + {z — Va; - - - a,. 7},
and TE' = (VT’,CT) in the following discussion. We skip the cases for the terms covered
by the rules in Figure 8.2, since these cases follow those for (r-app) and (7-const). As

before, recall that the variable convention means that  is not bound in e.

Case e = b.
The last step is rule (7-const), so TypeOf(b) > 7'. Applying rule (7-const), we get
TE b : 7. Since b[z — v] = b, we are done.

Case e = z'.
If ' # z, then, by rule (r-var), VT'(z’) > 7’. Since [z — v] = 2’ and VT(z') > 7/,
TEFz' :7'.
If 2 = z, then VI'(z) = Va; - -o.7. By rule (r-var), Va; - --op,.7 > 7', which
means that there is a substitution S, such that dom(S) = {oy,...,,} and ST =
7'. Lemma A.l gives us S(TE) F v : S, which implies that S(TE) v :7'. Since
dom(S)NFTV(TE) = 0, we have S(TE) = TE; thus, TEF v : 7'.

Case e = k.
Rule (7-chvar) applies, thus CT(k) = 7'. Since k[z — v] = &, we can apply (7-chvar)
to get TEF k[z — v] : 7.

Case ¢ = e ey,
Rule (r-app) applies, so we have

TE' e : (7" = 7') TE' Fep:7"
TE'Fej eq: 7
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By the induction hypothesis and rule (7-app), we have
TEF e[z —v]: (7" = 7') TEF es[z— v]:7"
TE F ei[z — v] ex[z — v] : 7'

Therefore, TE F e; e[z — v] : 7',

Case e = (e;.¢e3).

This case is very similar to the previous case.

Case e = Az'(¢').
Rule (7-abs) applies:
TE £+ {z' —»m}Fe:m
TE' - Az'(e’) : 7/
with 7/ = (11 — 7). Let S be the substitution

{o1 = B, ..., om — B}
where the o;, 8; and FTV(TE) are all distinct. Then, by Lemma A.1,
S(TE )+ {2’ — St} F e : 5
Note that S(TE') = TE', since dom(S) N FTV(TE') = 0, hence
TE £ {2’ — St} e :5m
The variable convention insures ¢’ ¢ FV(v), so Lemma 8.3 gives us
TE+ {z'— Sn}tov:T
And the choice of S means that
FTV(TE+ {z' — Sm}) N{a1,...,an} =0
These facts, coupled with the induction hypothesis gives us
TE+ {2’ — St} €[z — v]: Smy
The substitution S is a bijection, so S~! exists; hence, by Lemma A.1,
STHTE+ {z' = St} Fe[e— v]: S7'Sm

simplifying, we get
TE+{z' > n})Fezc—v]:m
thus, applying (7-abs), we get

TE+{z' —»m}Fez—v]:mn
TE F A2/ (e'[z — v]) : (11 — 72)

and therefore, TE - (Az'(e/)) [z — v] : (11 = 72).
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Case e = let z’=v'in¢€'.
This is the case of a non-expansive let, so the first step of the type deduction must

be rule (T-app-let):

TE'Fo : 7" TE +{z'— Crospg/(7")} e : 7

TE'F let 2'=v' ine : 7/

Since TE |- v : 7, Lemma 8.3 gives us
TE + {z' = Crostg/(7")}Fv: 7 (%)
Recall that {a4,...,a,} NFTV(TE) = { in the following:

{ai,..., 0o} NFTV(TE £ {¢' — Crostg:(7")})
= {oq,...,o0,} N (FTV(TE) UFTV(CrosTg/(7")))
{a1,...,a,} NFTV(CLOSTg (7))
{o1,..., 0.} N(FTV(r")\ (FTV(r") \ FTV(TE")))
{01,...,an} NFTV(r") NFTV(TE)
{a1, ..., e} NFTV(r")N(FTV(TE)UFTV(Voy - - - oy, 7))
{a1,...,an} NFIV(r"YNFTIV(Va; - - - a,.T)
éal, oo NFTV(EE")N(FTV(T)\ {oa, ..., 0n})

The second premise of (7-app-let) and (*) with the induction hypothesis give us:
TE + {2’ = Crosyg/ (")} F €[z — v] : 7/

Note that Crostg(r") > CLoSg/(7"), so we can apply Lemma A.2 to get:
TE + {z' — Crostg(7")} F €'[z — v] : 7/

Thus, by the induction hypothesis and (7-app-let), we have:

TEF [z —v]:7" TE+{z'— Crostr(r")}F e[z — v]: 7
TEF let 2'=v'[z — v]ine [z — v]: 7’

and, therefore, TE - (let z'=v' ine') [z — v] : 7.
Case e = let z'=e; in es.
This is the case of an expansive let, so rule (7-imp-let) applies:

TE e : 7" TE + {2’ — ArPCLOSyg/(7")}Fes: 7’
TE' F let z'=e; ines : 7

Choose a substitution

S:({oa,...,an} NIMPTYVAR) — {u1,...,Unm}
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such that uy, ..., u,, are distinct imperative type variables, S is a bijection, and
{u1, .., um} N(FTV(TE) UFTV(T)U{ai,...,an}) =0
Then, Lemma A.1 tells us that
S(TE' £+ {z' = ArPCLOSyg/(7")}) F ez : ST’
Since dom(S) N FTV(TE') = 0 and dom(S) C IMPTY, we have
TE' 4+ {z' = APPCLOSTg/ (ST")} F €3 : ST’ (%)
Since ' ¢ FV(v) and since TE - v : 7, we have
TE + {2’ — ApPCLOSpg/ (ST} Fv: T (x%)
Let APPCLOSR/(ST") = Vi1, -+, 41.57"; i.e,,
{t1,..., 41} = (FTV(ST")\ FTV(TE')) N ApPTYVAR
then
{a1,...,an} NFTV(TE + {&' — Vt1,---,4.57"})
= {o,...,an} N(FTV(TE) UFTV(Vty,---,4.57"))

— éal, o} N (ETV(ST)\ {t1, ..., t1})

By the inductive hypothesis with () and (**), we have
TE + {z' — AprPCLOSTg/(ST")} F e3[z — v] : ST/
Since S was chosen to be a bijection, S~ exists, so by Lemma A.1, we have
S™HTE 4 {z' — ArpPCLOSTg/(ST")}) I ez[z — v] : S1(ST")

simplifying, we get

TE + {2’ — ApPCLOSTg/(7")} I ea[z — v] : 7/
Since ApPCLOSTE(7T") > APPCLOSTR/ (7"), Lemma A.2 applies:

TE + {z' — ApPCrosTg(7")} F es[z — v] : 7/
By the induction hypothesis, we have

TEF ei[z — v]: 7"

and, thus, we can apply (T-app-let):

TEF ei[z — v]: 7" TE+ {2’ — ApPCLOSyg/(7")} F ez[z — v] : 7'
TEF let 2'=ej[z — v] ines[z — v] : 7/

and, therefore, TE | (let 2'=e; in ey) [z — v] : 7.
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Case ¢ = chanz’ in €.
Rule (7-chan) applies:
TE' + {z' +— 6 chan} ¢’ : 7’

TE'F chan 2’ in e’ : 7

By the variable convention, ' ¢ FV(v), so Lemma 8.3 gives us
TE+ {z'+— 0 chan} Fv: T

Thus, by the induction hypothesis and rule (7-chan)

TE + {2’ — 0 chan} I e'[z — v] : 7/
TEF chanz’ ine'lz — v] : 7'

and therefore, (VT,CT) F chan ¢’ in €[z — v] : 7.

Proof of Lemma 8.8

In this section, I show that the matching of event values preserves the parameter type of

the events. This requires the following fact about abort actions:
Lemma A.3 If TEF ev: 7 event, then TE - AbortAct(ev) : unit.

Proof. The proof is by induction on the structure of event values and the definition of

AbortAct. [ |

Lemma 8.8 If ev; 5 evy with (e1,e2) and TE I~ ev; : 7; event, then TE -e; : 7; (for ¢ €

{1,2}).

Proof. This is proved by induction on the definition of event matching. Let TE = (VT, CT)

below.

Base case: klv 5 k? with ((),v). For ¢ = 1, the claim follows immediately from the type
of () and rule (T-output). For ¢ = 2, we must examine the type of k. We have the

following judgements:
TE F k!v : unit event (1)
TEF k? : T event (2)

By rule (7-input) and (2), we have TE - & : 7 chan, thus, the deduction of (1) by
rule (T-output) requires that TEF v : 7.
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Inductive cases. For the inductive cases, the ¢ — 1 case follows immediately from the

induction hypothesis. The ¢ = 2 case is proven by case analysis:
Case evs 5 evy with (eg, e1).

This case follows immediately.
Case evy O (ev' = v) with (eq,v €').

Rule (r-wrap) applies:

TEF ev' : 7' event TEF v: (7' — )
TE | (ev' = v) : 73 event

Thus, applying the induction hypothesis and rule (r-app) we get:

TEFe :7 TEFwv: (7= )
TEFve :my

Case ev; 5 (eva @ evs) with (e;, (AbortAct(evs); e2)).
Rule (7-choice) applies:

TE | evy: 79 event TE I evs : 79 event
TE - (evy @ ev3) : T event

Then, by the induction hypothesis, and Lemmas 8.2 and A.3, we get

TE F AbortAct(evs) :unit TEF ey :
TE - (AbortAct(evs); e2) : T2

Case ev; 2 (evs @ evy) with (e1, (AbortAct(evs); e)).

This is the same as the previous case.

Case ev; O (evy | v) with (eq, e2).

This case follows immediately from the induction hypothesis.

Proof of Lemma 8.12

In this section, I show that stuck expressions are untypable. First, we need to characterize

the syntactic form of stuck expressions.

Definition A.1 The set of acceptable arguments to sync is defined as

SyNcARG = EVENT U {(Ge) | e € Exp}
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Lemma A.4 A process (m; e), with e closed, is stuck iff e has one of the following forms:

(1) E[bv], such that (b, v) is undefined.
(2) E[v v'], where v has the form (v;.v2), &, ev, or (G¢').

(3) E[sync v], such that v ¢ SYNCARG.

Proof.

(=) Let E[e'] = e, then this direction proceeds by case analysis of the possible forms of e'.

Case ¢’ = v.
Then E[e'] = [v], thus 7 it is not stuck.
Case ¢/ = v v,
This case proceeds by analysis of the form of v:
Case v = b.
If §(b, v) is defined, then = is not stuck, otherwise it is stuck and has form 1.

Case v = z.

Then e is not closed, which is a contradiction.
Case v = Az (e").
In this case, 7 is not stuck.
Otherwise.
In the other cases, e is stuck and has form 2.
Case ¢/ = let z=v in €".
In this case, 7 is not stuck.

Case ¢/ = sync v.

This case proceeds by analysis of the form of v:

Case v = ev.
« is not stuck.
Case v = (G e").
« is not stuck.
Otherwise.
In the other cases, e is stuck and has form 3.
Case ¢/ = spawn v.

In this case, 7 is not stuck.

Case ¢/ = chan z in €”.

In this case, 7 is not stuck.
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Thus, for each possible form of ¢/, either 7 is not stuck (a contradiction), or the lemma

holds.

(<) This direction follows immediately from the definitions.
|

Before we can prove that stuck configurations are untypable, we need a lemma that char-

acterizes the values that have event types.
Lemma A.5 If TEF v : 7, for v € VAR, then 7 = 7/ event, for some 7/, iff v € SYNCARG.

Proof.

(=) This direction proceeds by examination of the terms in the set
VAL \ (VAR U SYNCARG)

None of these terms has an inference rule that can derive a judgement of the form

TEl ev : 7’ event. Thus, since v ¢ VAR, v € SYNCARG.

(<) This direction is by examination of the terms in SYNCARG. The inference rules for
these terms are (T-never), (T-output), (7-input), (r-wrap), (7-choice), (T-abort),

and (7-guard), all of which derive judgements of the form
TEF ev: 7’ event

Thus, 7 = 7’ event, for some 7'.

Finally, we are ready to the main proof.

Lemma 8.12 (Untypability of stuck configurations) If 7 is stuck in a well-formed
configuration K, P, then there do not exist CT € CHANTY and PT € ProcTY, such that

({},CT) FP(n) : PT(m)

In other words, KC, P is untypable.

Proof. Let 7 be stuck in K, P, with P(n) = E[e'], and assume that there exist CT €
CHANTY and PT € ProcTy, such that ({},CT) F P(x) : PT(n). It suffices to show that
e’ is untypable, which is a contradiction. Let 7 be the type of ¢’; i.e., TE' ¢’ : 7, for
some TE'. Note that since K, P is well-formed, e’ is closed; and thus Lemma A.4 gives the
possible forms of e’. The proof proceeds by case analysis of €/, showing that €’ is untypable

in each case.
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Case ¢ = v v'. Rule (7-app) applies:

TE' Fv:(r'"—=7) TE' R .7
TE'Fovd @7

There are five subcases, depending on the structure of v.

Case v = b, with §(b, v') undefined.
By the é-typability restriction, §(b,v’) is defined, which contradicts e’ being
stuck.

Case v = (vy.v3).

Rule (7-pair) requires that
TE' + (v1.v2) : (11 X 72)

where TE' F v; : 7, which contradicts the first premise of (%), thus €’ is untypable.

Case v = ev.
By Lemma A.5,

TE' I ev : 7 event

but this contradicts the first premise of (x), thus e’ is untypable.

Case v = k.
Rule (r-chvar) requires that x have the type 7 chan, for some 7, but this

contradicts the first premise of (), thus ¢’ is untypable.

Case v = (Ge¢").
By Lemma A.5,
TE' + (Ge") : 7 event

but this contradicts the first premise of (x), thus e’ is untypable.

Case ¢’ = sync v, with v ¢ SYNCARG.

Rule (7-sync) applies:
TE' v : 7’ event
TE'+ syncv: 7'

but, by Lemma A.5, v € SYNCARG, which is a contradiction.
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