
Higher-order ConcurrencyJohn Hamilton ReppyPh.D ThesisTR 92-1852June 1992Department of Computer ScienceCornell UniversityIthaca, NY 14853

HIGHER-ORDER CONCURRENCY
A DissertationPresented to the Faculty of the Graduate Schoolof Cornell Universityin Partial Ful�llment of the Requirements for the Degree ofDoctor of Philosophy

byJohn Hamilton ReppyJanuary 1992

COPYRIGHT c
 John Hamilton Reppy 1992ALL RIGHTS RESERVED

HIGHER-ORDER CONCURRENCYJohn Hamilton Reppy, Ph.D.Cornell University 1992Concurrent programming is a useful technique for structuring many important classes of ap-plications such as interactive systems. This dissertation presents an approach to concurrentlanguage design that provides a new form of linguistic support for constructing concurrentapplications. This new approach treats synchronous operations as �rst-class values in a waythat is analogous to the treatment of functions as �rst-class values in languages such asML.The mechanism is set in the framework of the language Concurrent ML (CML), whichis a concurrent extension of Standard ML. CML has a domain of �rst-class values, calledevents, that represent synchronous operations. Synchronous message passing operations areprovided as the base-event values, and combinators are provided for constructing more com-plex events from other event values. This mechanism allows programmers to de�ne newsynchronization and communication abstractions that are �rst-class citizens, which givesprogrammers the
exibility to tailor their concurrency abstractions to their applications.The dissertation is organized into three technical parts. The �rst part describes thedesign and rationale of CML and shows how �rst-class synchronous operations can be usedto implementmany of the communicationmechanisms found in other concurrent languages.The second part presents the formal operational semantics of �rst-class synchronous oper-ations and proves that the polymorphic type system used by CML is sound. The thirdpart addresses practical issues. It describes the use of CML in non-trivial applications,describes the implementation and performance of CML on a single-processor computer,and discusses issues related to the use and implementation of CML on a shared-memorymultiprocessor.

In memory ofDavid A. Reppy1962{1988

AcknowledgementsI would �rst, and foremost, like to thank my parents for all of their support and love duringmy never-ending education.My committee members, Tim Teitelbaum, Bard Bloom and Anil Nerode, provided mewith feedback on this research. I would especially like to thank Tim, my committee chair-man, for teaching me CS100 many years ago; it was this experience that set me on the roadto becoming a computer scientist. Robert Cooper, who was on my committee in all butname also provided useful technical criticism. Emden Gansner, Lal George, Tim Gri�n,Dave MacQueen, and Cynthia McMillin helped with the proof reading of this dissertation.I have bene�ted from a long collaboration with members of the Advanced SoftwareDepartment at AT&T Bell Laboratories. I would like to thank Dave Belanger, ChandraKintala, and David Korn, who provided support for my projects, and Emden Gansner andSteve North, who were my principal collaborators. Many of the ideas in this dissertationwere born out of my work at Bell. I have also spent many hours discussing these, and other,ideas with Andrew Appel, Dave MacQueen, Chet Murthy and Prakash Panangaden. Andmy work on SML implementation has bene�ted from discussions with Bill Aitken.There are many other people who have helped me along the way. Pam and Cli� Surkoprovided me with both encouragement and a home away from home. And I would like tothank Bharati and Chandra Kintala for their hospitality while I was working at Bell Labs.I would like to thank Liz Maxwell for helping me with the di�cult task of tracking myadvisor, and Jan Batzer, who runs interference with the Cornell bureaucracy for all of theComputer Science graduate students.The research presented in this dissertation was supported, in part, by the NSF and ONRunder NSF grant CCR-85-14862, and by the NSF under NSF grant CCR-89-18233.iii

iv

ContentsI Introduction 11 Introduction 31.1 The case for concurrency : 31.1.1 Interactive systems : 41.1.2 Distributed systems : 51.2 Overview of this dissertation : 51.2.1 Design : 61.2.2 Theory : 61.2.3 Practice : 71.3 History : 72 An Introduction to SML 82.1 Basics : 82.1.1 Basic values and expressions : 82.1.2 Tuples and records : 92.1.3 Functions and polymorphism : 102.2 Datatypes and pattern matching : 112.2.1 Datatypes : 112.2.2 Pattern matching : 122.2.3 Lists : 132.2.4 Abstract types : 142.3 Imperative features : 152.3.1 References : 152.3.2 Exceptions : 162.3.3 Continuations : 17v

2.4 An example | functional queues : 18II Design 193 Concurrent Programming Languages 213.1 Processes and threads : 223.2 Shared-memory languages : 233.2.1 Low-level synchronization mechanisms : : : : : : : : : : : : : : : : : 233.2.2 Monitors : 253.2.3 Shared-memory concurrency and ML : : : : : : : : : : : : : : : : : 253.3 Distributed-memory languages : 263.3.1 Asynchronous message passing : 273.3.2 Synchronous message passing : 283.3.3 Asynchronous vs. synchronous message passing : : : : : : : : : : : : 293.3.4 Request-reply message passing : 303.3.5 Futures : 323.3.6 Message passing and ML : 323.4 Summary : 334 First-class Synchronous Operations 344.1 Basic concurrency primitives : 354.2 Selective communication vs. abstraction : 364.3 First-class synchronous operations : 374.4 Other synchronous operations : 394.5 Extending PML events : 404.5.1 Guards : 414.5.2 Abort actions : 434.6 CML summary : 444.6.1 Thread garbage collection : 464.6.2 Stream I/O : 465 Building Concurrency Abstractions 475.1 Bu�ered channels : 475.2 Multicast channels : 49vi

5.3 Condition variables : 505.4 Ada-style rendezvous : 535.5 Futures : 58III Theory 616 Theory Preliminaries 636.1 Notation : 636.2 Formal semantics : 646.2.1 Syntax of �v : 646.2.2 Dynamic semantics of �v : 656.2.3 Typing �v : 676.2.4 Properties of typed �v : 707 The Operational Semantics of �cv 727.1 Syntax : 727.1.1 Syntactic sugar : 747.2 Dynamic semantics : 747.2.1 Sequential evaluation : 747.2.2 Event matching : 767.2.3 Concurrent evaluation : 787.3 Traces : 797.4 Fairness : 817.5 Extending �cv : 827.5.1 Recursion : 837.5.2 References : 837.5.3 Exceptions : 847.5.4 Process join : 877.5.5 Polling : 888 Typing �cv 908.1 Static semantics : 928.1.1 Expression typing rules : 948.1.2 Process typings : 97vii

8.2 Type soundness : 978.2.1 The Substitution and Replacement lemmas : : : : : : : : : : : : : : 988.2.2 Subject reduction : 998.2.3 Stuck expressions : 1038.2.4 Soundness : 103IV Practice 1079 Applications 1099.1 eXene: A multi-threaded X window system toolkit : : : : : : : : : : : : : : 1099.1.1 An overview of eXene : 1109.1.2 An X window system overview : 1109.1.3 The architecture of eXene : 1109.1.4 Promises in eXene : 1149.1.5 Menus : 1169.2 Interactive applications : 1179.3 Distributed systems programming : 1199.3.1 Distributed ML : 1199.4 Other applications of CML : 12010 Implementation 12110.1 The implementation of SML/NJ : 12110.1.1 First-class continuations : 12210.1.2 The compiler : 12210.1.3 The run-time system : 12310.2 Implementing threads : 12510.2.1 Threads : 12510.2.2 Preemptive scheduling : 12610.3 Implementing channels : 12610.4 Implementing events : 12810.4.1 Event value representation : 12910.4.2 Synchronization : 12910.4.3 Base-event constructors : 133viii

10.4.4 Event combinators : 13510.5 Implementing I/O : 13710.5.1 Low-level I/O support : 13710.5.2 Stream I/O : 13810.6 Implementation improvements : 14011 Performance 14211.1 The benchmarks : 14211.1.1 Timing results : 14311.1.2 Instruction counts : 14411.2 Analysis : 14511.2.1 Garbage collection overhead : 14511.3 Comparison with the �System : 14512 Multiprocessors 14712.1 Parallel programming in CML : 14812.1.1 Pipelining and data-
ow : 14812.1.2 Controlling parallelism : 14912.1.3 Speculative parallelism : 15112.1.4 I-structures : 15312.1.5 M-structures : 15312.2 Multiprocessor implementation : 15512.2.1 Concurrency control : 15512.2.2 Generalized selective communication : : : : : : : : : : : : : : : : : : 15512.2.3 Thread scheduling : 15612.2.4 Memory management : 15712.3 The outlook for multiprocessor CML : 158V Conclusion 15913 Future Work 16113.1 Design : 16113.2 Theory : 16213.3 Practice : 162ix

14 Conclusion 164Bibliography 167Appendix 177A Proofs from Chapter 8 179Proofs from Chapter 8 179Proof of Lemma 8.5 : 179Proof of Lemma 8.8 : 185Proof of Lemma 8.12 : 186

x

List of Tables2.1 SML ground types : 94.1 Relating �rst-class functions and events : 3911.1 Benchmark machines : 14211.2 CML benchmarks : 14411.3 MIPS instruction counts : 14411.4 Cost of abstraction : 14511.5 �System benchmarks : 146

xi

List of Figures2.1 A queue implementation. : 183.1 Asynchronous message passing : 273.2 Rendezvous : 283.3 Request-reply rendezvous : 304.1 Basic concurrency primitives : 354.2 Basic event operations : 384.3 Other primitive synchronous operations : 404.4 CML concurrency operations : 445.1 CML implementation of bu�ered channels : : : : : : : : : : : : : : : : : : 485.2 CML implementation of multicast channels : : : : : : : : : : : : : : : : : : 515.3 CML implementation of condition variables : : : : : : : : : : : : : : : : : : 525.4 CML implementation of Ada rendezvous : : : : : : : : : : : : : : : : : : : 535.5 A lock manager using conditional accept : 555.6 CML implementation of conditional entry abstraction : : : : : : : : : : : : 565.7 CML implementation of futures : 596.1 Type inference rules for �v : 697.1 Grammar for �cv : 737.2 Rules for event matching : 777.3 Implementing references : 847.4 Implementing references without recursion : : : : : : : : : : : : : : : : : : : 847.5 Rules for matching events in process sets : 888.1 Core type inference rules for �cv : 95xii

8.2 Other type inference rules for �cv : 969.1 The display message-passing architecture : : : : : : : : : : : : : : : : : : : 1119.2 The screen message-passing architecture : 1129.3 The top-level window message-passing architecture : : : : : : : : : : : : : : 1139.4 The CopyArea operation : 1149.5 Synchronous text scrolling : 1159.6 The implementation of copyArea : 1169.7 Asynchronous text scrolling : 1179.8 Graph-o-matica screen dump : 11810.1 The representation of channels : 12710.2 The implementation of send : 12710.3 The representation of event values : 13010.4 The representation of event status : 13110.5 Event logging : 13210.6 The implementation of always : 13310.7 The implementation of transmit : 13410.8 Low-level I/O support : 13912.1 Work crew job decomposition : 15012.2 CML implementation of M-structure variables : : : : : : : : : : : : : : : : 154
xiii

xiv

Part IIntroduction

1

Chapter 1IntroductionAbstraction is perhaps the most important tool that programmers have for managing thecomplexity of software design and implementation. There are various language mechanismsfor promoting abstraction, such as procedures for hiding the details of computation, abstractdata-types for hiding representation information, and modules for grouping related typesand operations with an abstract interface. This dissertation describes a new languagemechanism for supporting abstraction of communication and synchronization in concurrentprograms. My approach is to treat synchronous operations as �rst-class values in a way thatis analogous to the treatment of functions as �rst-class values in languages such as ML.By doing so, a small collection of primitive operations and combinators can support a widerange of di�erent concurrency paradigms. I call this style of programming \higher-orderconcurrent programming," as an analogy with higher-order programming in languages suchas ML.This work is set in the context of Standard ML (SML) [MTH90]. I have developeda language, called Concurrent ML (CML), that extends SML with multiple threadsof control and �rst-class synchronous operations. CML is implemented on top of theStandard ML of New Jersey (SML/NJ) system [AM87, AM91]. While the discussionof this dissertation uses CML as the archetype, the language design principles are easilyapplied to other higher-order languages (e.g., Quest [Car89]), and should also be applicableto object-oriented languages such as Modula-3.1.1 The case for concurrencyConcurrency is often touted as a source of improved performance and rightly so, but it is asubtext of this dissertation that concurrency is an important programming tool independentof the performance bene�ts from multiprocessing. Certain classes of applications, most3

notably interactive applications, are naturally structured as concurrent programs. Thelanguage design presented in this dissertation is motivated by the need to support theprogramming of these applications.Before going any further, it is useful to de�ne a nomenclature. I distinguish betweenparallel and concurrent languages by whether they provide implicit or explicit concurrency.For example, the futures found in some dialects of Lisp are a parallel language feature,since they only specify the possibility of concurrent computation. Because I am interested inprogramming systems with explicit concurrency, the focus of this dissertation is on providingsupport for concurrent programming, and not on parallel programming.1In the remainder of this section, I examine two important classes of applications thatbene�t from the use of concurrent programming. These applications share the property that
exibility in the scheduling of computation is required. Whereas sequential languages forcea total order on computation, concurrent languages permit a partial order, which providesthe needed
exibility.1.1.1 Interactive systemsProviding a better foundation for programming interactive systems, such as programmingenvironments, was the original motivation for this line of research [RG86]. Because oftheir naturally concurrent structure, interactive systems are one of the most importantapplication areas for CML. Concurrency arises in several ways in interactive systems:User interaction. Handling user input is the most complex aspect of an interactive pro-gram. Most interactive systems use an event-loop and call-back functions. The event-loop receives input events (e.g., mouse clicks) and passes them to the appropriateevent-handler. This structure is a poor-man's concurrency: the event-handlers arecoroutines and the event-loop is the scheduler.Multiple services. For example, consider a document preparation system that providesboth editing and formatting. These two services are independent and can be naturallyorganized as two separate threads. Threads also provide easy replication of services;if the user opens a new document for editing, then the system just spawns a new editthread. Multiple views of the same document can also be supported by replicatingthreads.Interleaving computation. A user of a document preparation system may want to editone part of a document while another part is being formatted. Since formatting may1I do examine some of the issues related to a multiprocessor implementation of CML in Chapter 12.4

take a signi�cant amount of time, providing a responsive interface requires interleav-ing formatting and editing. If the editor and formatter are separate threads, theninterleaving comes for free.Output-driven applications. Most windowing toolkits (e.g., Xlib [Nye90b]) provide aninput-driven model, in which the application code is occasionally called in responseto some external event. But many applications are output driven. Consider, forexample, a computationally intensive simulation that maintains a graphical displayof its current state. This application must monitor window events, such as refreshand resize noti�cations, so that it can redraw itself when necessary. In a sequentialimplementation, the handling of these events must be postponed until the simulationis ready to update the displayed information. By separating the display code andsimulation code into separate threads, the handling of asynchronous redrawing iseasy.The root cause of these forms of concurrency is computer-human interaction: humans areasynchronous and slow.While the use of heavy-weight operating-system processes provides some support formultiple services and interleaved computation, it does not address the other two sourcesof concurrency. Likewise, while event-loops and call-back functions provide
exibility inreacting to user input, they bias the application towards an input-driven model and do notprovide much support for interleaved computation. A concurrent language, on the otherhand, addresses all of these concerns.1.1.2 Distributed systemsAnother application area in which concurrent programming is useful is distributed systems.In fact, many existing distributed programming languages and toolkits provide support forconcurrent programming (e.g., Argus [LS83], Isis [BCJ+90], and SR [AOCE88]). Con-currency is needed because interaction with remote processes is slow and naturally asyn-chronous. Threads provide a useful abstraction for managing outstanding interactions andfor reacting to new requests dynamically [LHG86].1.2 Overview of this dissertationI believe that there are three important aspects to good language design. First, there shouldbe a real problem that needs solving, and a design that solves it. Second, there should bea �rm theoretical foundation for the design. And third, the feasibility and usefulness of the5

design should be demonstrated in practice. The organization of this dissertation re
ectsthis philosophy. It is divided into �ve parts: introduction, design, theory, practice, andconclusion, with the middle three parts addressing the above aspects.The design part presents the rationale and design of my concurrency mechanism; thetheory part provides a formal understanding of the mechanism; and the practice part ad-dresses the issues of feasibility and usefulness of the mechanism. The other two parts areless technical: the introduction part includes this chapter and an introduction to SML,which may be skipped by the reader who is familiar withML notation; the conclusion partdescribes areas for future research and summarizes the results of my research.1.2.1 DesignThe design part starts o� with Chapter 3, which surveys existing approaches to concur-rent language design. Chapter 4 is the heart of the dissertation; it provides the rationalefor �rst-class synchronous operations and introduces them in the context of CML. Thefollowing chapter provides several substantial examples of the use of �rst-class synchroniza-tions to build communication and synchronization abstractions, including several found inother concurrent languages. This part of the dissertation is fairly self contained, althoughfamiliarity with SML syntax is useful.1.2.2 TheorySML has set a precedent of both being a practical language with real implementationsand of having a detailed formal semantics. I have developed a dynamic semantics for asmall language, called �cv that models the concurrency features of CML [Rep91b]. Thisdissertation extends the work of [Rep91b], by presenting a static semantics for �cv andproving that it is sound with respect to the dynamic semantics.Following a brief summary of basic notation, Chapter 6 illustrates the style of formalsemantics using a more familiar sequential language, which is a sequential subset of �cv.Chapter 7 presents the syntax and operational semantics of �cv. The main results of thispart are in Chapter 8, where I present a polymorphic type system for �cv and show thatit is sound with respect to the dynamic semantics of Chapter 7. This result is important,since the implementation of CML uses features of SML/NJ that are not type-safe. To myknowledge, this is the �rst proof of the soundness for a polymorphic typing of concurrencyprimitives. 6

1.2.3 PracticeIn the �nal analysis, the true worth of a language design can only be determined \in-the-�eld." Questions about the usefulness and practicality of language features can only beanswered by actual experience. I have developed and distributed an implementation ofCML for single processor computers2 [Rep90b], which has been used by myself and othersto implement several non-trivial applications. This experience demonstrates that CML isa useful programming language and that it can have e�cient implementations.Chapter 9 describes the use of CML to construct a multi-threaded X window systemtoolkit, called eXene [GR91], and its use to build interactive applications on top of eXene.I also brie
y discuss the application ofCML to the programming of distributed systems, andapplications of CML by other researchers. In Chapter 10, I describe the implementationof CML in detail and describe some possible implementation improvements. Chapter 11presents the results of micro-benchmarks that demonstrate the e�ciency ofCML (includinga head-to-head comparison with aC thread library). These data support the conclusion thatCML is competitive with thread libraries implemented in lower-level languages. Finally,Chapter 12 discusses the use ofCML for parallel programming, possible extensions to bettersupport parallel programming, and sketches the design of a shared-memory multiprocessorimplementation of CML.1.3 HistoryThe ideas in this dissertation have been evolving for several years and there have beenseveral instantiations of them in language designs. I �rst developed this approach in thecontext of PML [Rep88], an ML-like language used in the Pegasus system at AT&T BellLaboratories [RG86, GR92]. I reimplemented the concurrency primitives of PML on topof SML/NJ at Cornell University [Rep89]. This implementation evolved into the currentversion of CML [Rep91a], which is described in this dissertation.
2The �rst version was released in November 1990.7

Chapter 2An Introduction to SMLWhile the ideas presented in this dissertation are largely language independent, they havebeen developed in the context of Standard ML (SML). I use SML both as the sequentialcore of my language design and as the implementation language. This chapter provides anintroduction to SML that should allow the reader to follow the examples; for a morecomplete introduction see [Har86] or [Pau91]. The formal de�nition of SML can be foundin [MTH90, MT91].In the remainder of this chapter, I �rst introduce the basic features of SML; then Idescribe the datatype and pattern matching mechanisms; I follow this by a discussion ofthe imperative features of SML; and �nally I present a complete example.2.1 BasicsSML is an expression language: the traditional statement constructs, such as blocks, con-ditionals, case statements, assignment, etc., are packaged as expressions. Every expressionhas a statically determined type and will only evaluate to values of that type (this is calledtype soundness). Computation in SML is value oriented. Because of the central role ofvalues, there is a much larger range of values than found in more conventional languages.2.1.1 Basic values and expressionsSML provides a fairly standard collection of ground types and values, which are summarizedin Table 2.1. The type unit, which has exactly one value (written ()), is often used asthe result type of functions that are executed for their side e�ects. Negative numbers aredenoted using using a leading tilde, which is also the unary negation operator.In imperative languages, such as C, assignment is the principal mechanism used to as-8

Table 2.1: SML ground typesType Sample literal valuesunit ()bool true, falseint : : : ; ~2; ~1; 0; 1; 2; : : :string "abc", "hello world!\n"real 1.0, 1.0E~6sociate values with variables. While SML does provide updatable cells (see Section 2.3.1),it uses binding as its principal mechanism for associating values with variables. In SML,variables are used to name values, and are immutable (this is sometimes called single as-signment). For example, the bindingval x = 1 and y = "I'm a string"establishes bindings for x and y. The static environment produced by this binding assignsthe type int to x and string to y (the type information is inferred by the compiler). Thisstatic environment can be summarized by the following speci�cation:val x : intval y : stringThe notation of speci�cations, which comes from the signatures in the module system, is anatural and concise way to describe a set of bindings.2.1.2 Tuples and recordsIn addition to these ground types and values, SML provides tuples and records. Forexample, the expression (1, true) is a pair of the value 1 and true, and has the producttype int * bool. Records are labeled tuples. For example, p1 might be de�ned to be thepoint (1; 2) byval p1 = {x = 1, y = 2}in which case p1 has the type {x : int, y : int}. Note that the order in which labeled�elds appear is insigni�cant, so thatval p2 = {y = 2, x = 1}de�nes the same point as p1. A �eld labeled l of a record can be selected using the notation#l. The example in Section 2.4 further illustrates the use of labeled records.9

2.1.3 Functions and polymorphismFunctions play a key role in SML. Functions are declared using the leading keyword fun;for example, the factorial function can be de�ned as:fun fact n = if (n = 0) then 1 else n * fact(n-1)which has the speci�cation:val fact : int -> intTail recursion plays the role of looping in SML.1 For example, the iterative form of thefactorial function is written as a tail recursive function:fun fact n = letfun loop (i, result) = if (i = 0)then resultelse loop(i-1, i*result)inloop (n, 1)endThis example also introduces the let-expression, which is used for de�ning local variables(the function loop in this case). Note that instead of destructive updates to loop variables,the new values are passed to the next invocation of iterFact; each iteration has its owncopies of i and result.The SML compiler uses type inference to determine the types of expressions. In thecase of functions, this can often be a family of types. For example, consider the identityfunction:fun identity x = xThe meaning of this function is independent of its argument type. It can be viewed asa function on integers, or strings, or reals, or pairs of integers, etc. Thus, it has thepolymorphic type 8�:(� ! �), where � is a type variable ranging over all types. In SML,type variables are denoted by a leading apostrophe. For example, the value identity hasthe speci�cation:val identity : 'a -> 'a1There is a while expression, but it is just syntactic sugar for the application of a tail recursive function.10

where the 8 is implicit. The SML compiler always infers the most general type for a givenexpression.SML is a higher-order language, which means that functions are �rst-class values; theycan be passed as arguments, embedded in data structures and returned as results. A simpleexample is in�x function composition, which is de�ned in SML as:fun o (f, g) = fn x => (f (g x))infix oThe form \fn x => : : :" is the way that function values are written in SML (for thosefamiliar with the �-calculus, fn can be read as �). The second line declares o to be anin�x operator. An in�x operator can be used as a normal identi�er by pre�xing it with thekeyword op (e.g., op +). Function composition can also be de�ned using a curried form:fun o (f, g) x = (f (g x))These two declarations of composition are equivalent, and have the speci�cation:val o : ('a -> 'b) * ('c -> 'a) -> 'c -> 'bAs an example of its use, the expression(fn x => (x*x)) o (fn x => (x-1))evaluates to a function that computes (x� 1)2.2.2 Datatypes and pattern matchingIn addition to the basic values, SML provides recursive data structures and abstract types.Structured values are decomposed using a powerful pattern matching notation.2.2.1 DatatypesThe datatype declaration introduces a new, possibly recursive, type. For example, therepresentation of integer binary trees can be de�ned as:datatype int_tree= Empty| Leaf of int| Node of (int * int_tree * int_tree)11

This declaration says that a tree is either empty, a leaf consisting of an integer value, or anode consisting of an integer and two sub-trees. The identi�ers Empty, Leaf and Node arecalled constructors, and are used to construct tree values. Datatype declarations can beparameterized to de�ne type constructors. For example, we can de�ne a family of binarytree types by the de�nition:datatype 'a tree= Empty| Leaf of 'a| Node of ('a * 'a tree * 'a tree)In addition to user de�ned datatypes, SML has a few prede�ned datatypes. The typebool is actually de�ned asdatatype bool = true | falseAnother important datatype that is prede�ned by SML/NJ is the polymorphic optiontype:datatype 'a option = NONE | SOME of 'aThere is also a list type, which is discussed below.2.2.2 Pattern matchingThe power of the datatype declaration mechanism is enhanced by pattern matching. Patternmatching is a mechanism for control-
ow, value decomposition, and binding. For example,the boolean negation function can be de�ned using two clauses:fun not true = false| not _ = trueThe �rst clause says that if the argument is true, then return false. The _" in the secondclause is a wildcard, which matches anything (in this case, false is the only possibility).Pattern matching is the standard binding and value decomposition mechanism in SML,and we have already seen some examples of it. For example, the de�nition of functioncompositionfun o (f, g) x = f (g x)has a tuple pattern as its �rst argument, which binds f to the �rst element of the pair andg to the second. A more interesting example is a function to compute the height of a binarytree: 12

fun height Empty = 0| height (Leaf _) = 1| height (Node(_, t1, t2)) = max(height t1, height t2) + 1In the third clause, the variables t1 and t2 are bound to the subtrees. Unlike patternmatching in Prolog, SML patterns are linear (i.e., a variable can occur at most once in apattern).Pattern matching can be used to extract values from records. For example, the followingfunction swaps the x and y coordinates of a point:datatype point = PT of {x : int, y : int}fun swap (PT{x=x1, y=y1}) = PT{x=y1, y=x1}The pattern binds x1 to the x �eld and y1 to the y �eld. There are two shorthand formsfor pattern matching records, both of which are illustrated in the following example:fun xCoord (PT{x, ...}) = xHere the �eld name x is being used as shorthand for \x=x," and the \..." is in lieu of therest of the �elds.Pattern matching can also be used against literals. For example, the recursive factorialfunction can be coded as follows:fun fact 0 = 1| fact n = n * fact(n-1)In addition to equational de�nitions of functions, pattern matching is used in a general formof a case expression.2.2.3 ListsOne of the most important recursive types is the polymorphic list type, which is de�ned asdatatype 'a list = nil | :: of ('a * 'a list)infix 5 ::The datatype declaration de�nes a list to be either empty (nil), or the cons of an elementand a list. The infix declaration speci�es that the cons operator (::) is a right associativein�x operator with precedence level 5. Because of the importance of lists, SML providesspecial syntax for list patterns and expressions. The syntax[e1; e2; :::; en] 13

is syntactic sugar fore1::e2:: ::: ::en::niland likewise for patterns. The following function, which inserts delimiters between adjacentlist elements, is an example of the use of this notation:fun insertDelim delim l = letfun insert [] = []| insert (s as [_]) = s| insert (x::r) = x :: delim :: (insert r)ininsert lendThe second clause of this function illustrates the as pattern form, which, in this case, bindss to the single element list matched by \[_]."There are a number of standard list functions that are provided by SML/NJ, and usedin this dissertation. These are:val length : 'a list -> intval map : ('a -> 'b) -> 'a list -> 'b listval app : ('a -> 'b) -> 'a list -> unitval rev : 'a list -> 'a listThe function length returns the length of a list; map applies a function to a list, returningthe list of results; app applies a function to a list, discarding the results; and rev reversesa list.2.2.4 Abstract typesThe abstype declarative form is a variation on the datatype declaration that limits thevisibility of the type's representation. The time-honored example of an abstract datatypeis the stack:abstype 'a stack = STK of 'a listwithval empty = STK[]fun push (x, STK s) = STK(x::s)fun pop (STK(x::r)) = (x, STK r)endThe representation of a stack is only visible in between the with and end; outside the typestack is abstract. I use the abstype mechanism in this dissertation in lieu of the SML14

module facility, since it is easier to understand. A more elaborate example of abstract typesis given in Section 2.4.In addition to the abstype declaration, the local declaration can be used to limit thescope of declarations. For example, the stack could be declared aslocaldatatype 'a stack = STK of 'a listintype 'a stack = 'a stackval empty = STK[]fun push (x, STK s) = STK(x::s)fun pop (STK(x::r)) = (x, STK r)endThere are some technical di�erences between these two declarations, but they are beyondthe scope of this dissertation.2.3 Imperative featuresAlthough SML is mostly applicative, it does have a small collection of imperative features.The most important of these are references and exceptions; in addition, SML/NJ provides�rst-class continuations.2.3.1 ReferencesReferences are mutable heap cells. They are created by the function ref,2 updated using:=, and examined by the ! function. As an example, the following binds two functions thatshare a common reference cell:val (get, put) = letval cell = ref 0in((fn () => !cell), (fn x => cell := x))endThe reference operations have the following signature:val ref : '_a -> '_a refval ! : 'a ref -> 'aval := ('a ref * 'a) -> unit2The ref function is really a constructor and can be used in pattern matching, but that feature is notused in this dissertation. 15

The notation \'_a" in the type of ref means that it has an imperative type, which is\less polymorphic" than a similar applicative (non-imperative) type. This is a technicalrestriction that is required to prevent type loopholes. The full technical details of imperativetypes is beyond the scope of this introduction; Chapter 8 has some discussion of imperativetypes and Tofte describes them in great detail in [Tof88] and [Tof90].SML/NJ uses a more
exible scheme for typing polymorphic references, called weakpolymorphism. The idea is to assign a rank (or strength) to type variables. Roughly, therank of a type variable is the number of abstractions that \protect" a reference value ofthat type; normal type variables have rank 1. For example, the type of ref in SML/NJis val ref : '1a -> '1a refwhere the integer in the type-variable name denotes its rank. Since CML is implementedon top of SML/NJ, its interfaces are presented using weak types. The details of weakpolymorphism are not important to this dissertation; it is only necessary to recognize thatfunctions with weak types are not fully polymorphic. The theoretical treatment (Part III),however, uses the more standard imperative type system.2.3.2 ExceptionsSML has an exception mechanism for signaling run-time errors and other exceptional con-ditions. There are two aspects to the exception mechanism: the representation of exceptionpackets, and the control-
ow of raising and handling exceptions.The built-in type exn is the type of exception packets, which are created using a specialkind of datatype constructors. The declarationexception Foo and Bar of intdeclares two new exception constructors (exception speci�cations use the same syntax).Since exception packets are values of a datatype, the handling of exceptions can usethe pattern matching mechanism to match exceptions. For example, the following is animplementation of integer division that returns 0 when the divisor is 0:fun safeDiv (a, b) = (a div b) handle Div => 0An exception is raised using the raise expression. For example, the following function,which computes the product of a list of integers, uses the exception Zero to short-circuitthe evaluation if 0 is encountered: 16

fun product l = letexception Zerofun loop ([], n) = n| loop (0::_, _) = raise Zero| loop (i::r, n) = loop (r, i*n)in(loop (l, 1)) handle Zero => 0endAlthough this dissertation only uses monomorphic exceptions, it is possible to declarepolymorphic exception constructors. As with references, fully polymorphic exceptions resultin type loopholes; therefore exceptions can only be weakly polymorphic (or have imperativetypes).2.3.3 ContinuationsSML/NJ provides �rst-class continuations as an extension, and I use them heavily in theimplementation of CML (see Chapter 10). A continuation is a function that representsthe \rest of the program" [Gor79]. The programming language Scheme [RC86] makescontinuations accessible to the programmer as �rst-class values.3 The Scheme function call-with-current-continuation (call/cc for short) calls a function with the current continuationas the argument. First-class continuations are supported in SML/NJ via an abstract typeand two primitive functions [DHM91]:type 'a contval callcc : ('1a cont -> '1a) -> '1aval throw : 'a cont -> 'a -> 'bThese can be used to implement loops, back-tracking, exceptions and various concurrencymechanisms, such ascoroutines [Wan80] and engines [DH89]. For example, the following isa continuation-based version (from [DHM91]) of the product function given in the previoussection:fun product l = callcc (fn exit => letfun loop ([], n) = n| loop (0::_, _) = throw exit 0| loop (i::r, n) = loop (r, i*n)inloop (l, 1)end)This function uses the continuation exit to short-circuit the evaluation if 0 is encountered.3The idea dates back to Landin's J operator [Lan65], [Fel87b].17

2.4 An example | functional queuesTo wrap up this introduction to SML, consider the implementation of an abstract FIFOqueue type. The signature of this abstraction is:type 'a queueval empty : 'a queueval isEmpty : 'a queue -> boolval insert : 'a * 'a queue -> 'a queueexception EmptyQval remove : 'a queue -> 'a * 'a queueThe value empty is the empty queue; isEmpty returns true if its argument is the emptyqueue; insert adds an item to the end of the queue; and remove removes the head ofthe queue. The exception EmptyQ is raised if remove is applied to an empty queue. Thisabstraction is functional; i.e., instead of mutating a shared queue object, the operationsinsert and remove return new queue values as results.The implementation of this abstraction is given in Figure 2.1. Internally, a queue isabstype 'a queue = Q of {front : 'a list, rear : 'a list}withval empty = Q{front = [], rear = []}fun isEmpty (Q{front=[], rear=[]}) = true| isEmpty _ = falsefun insert (x, Q{front, rear}) = Q{front = front, rear = x::rear}exception EmptyQfun remove (Q{front = [], rear = []}) = raise EmptyQ| remove (Q{front = [], rear}) = remove(Q{front = rev rear, rear = []})| remove (Q{front = x::r, rear}) = (x, Q{front = r, rear = rear})end (* abstype *) Figure 2.1: A queue implementation.represented by the constructor Q applied to a record of two �elds: front and rear, whichare stacks (represented by lists). The insert operation pushes a value onto the rear stack,and the remove operation pops a value from the front stack. In the case that the frontis empty, then remove pushes the elements of the rear stack onto the front in reverseorder. 18

Part IIDesign

19

Chapter 3Concurrent ProgrammingLanguagesIn order to understand the trade-o�s in language design, it is necessary to know the alter-natives. In this chapter, I survey a representative collection of concurrency features andlanguages.1 For the purpose of this dissertation, the most important language character-istics are the synchronization and communication primitives. These can be divided intotwo main classes: shared memory primitives and distributed memory (or message-passing)primitives. In this chapter, following a brief discussion of process creation mechanisms, Ifocus on these two di�erent classes of concurrent languages, and discuss the appropriatenessof the various design alternatives for adding concurrency to SML.There are a number of good surveys of concurrent language design. A comparison ofdi�erent concurrency mechanisms using two example problems can be found in [BD80]. An-drews and Schneider [AS83] survey a broad range of concurrency mechanisms; Wegner andSmolka compare CSP, Ada and monitors in [WS83]; Andrews covers concurrent program-ming using various di�erent languages in [And91]. And a collection of signi�cant reprintsof papers on concurrent languages and programming (including [AS83] and [WS83]) can befound in [GM88].As discussed in Chapter 1, this dissertation is about concurrent language design, there-fore I do not survey parallel implementations of lazy languages (e.g., GAML [Mar91]),parallel languages (e.g., Id [Nik91]), or distributed languages (e.g., Argus [LS83], or SR[AOCE88]). I also do not discuss concurrent logic-programming and concurrent constraintlanguages [SR90].1There are literally hundreds of di�erent concurrent programming languages, so a complete survey isimpossible. 21

3.1 Processes and threadsThe speci�cation and creation of processes in a concurrent programming language is usually,although not always (see Section 3.3.5), orthogonal to the communication and synchroniza-tion mechanisms. Process creation can be either static, where the set of processes is �xedby the text of the program, or dynamic, where some mechanism is provided for creatingnew processes on the
y. Each process in a concurrent program has an independent threadof control, hence, the term thread is often used instead of process. This has the addedadvantage of avoiding confusion with the other meanings of the word process. I favor theterm thread, except in the context of the formal semantics where process is the conventionalterm.An example of static process creation is the cobegin statement, which has the form2COBEGIN stmt1 || stmt2 || : : : || stmtn COENDThis statement proceeds by executing the n statements in parallel and then synchronizingon the completion of all of the statements. In a language with recursion this statement canbe used to create dynamic tree parallelism, but it is still limited in that the lifetimes ofprocesses are tied to their children's lifetimes.Dynamic process creation usually involves a fork operation (sometimes called spawn),which takes a statement (or procedure) as an argument and creates a new process to executeit. The fork operation is often accompanied by a join operation, which allows the parentto synchronize on the child's termination. Using fork and join, the cobegin construct fromabove can be implemented as:p1 := FORK stmt1p2 := FORK stmt2� � �pn := FORK stmtnJOIN p1JOIN p2� � �JOIN pnDynamic process creation allows the
exible use of processes. For example, a servermight want to create a new thread to handle each request. In a language with a static setof processes, this requires preallocating a pool of server threads and reusing them. This isawkward and limits the number of simultaneous requests that can be handled, which can2For most of this chapter, I use an Algol 60 style notation, since most of the languages I discuss haveroots in the Algol family of languages. 22

lead to unnecessary delays when handling requests [LHG86]. Writing concurrent programsin a language with static process creation is similar to the problem of writing programswith dynamic data structures in a language that only provides static memory allocation.In conclusion, there does not seem to be any strong reason to use static process creation,and many reasons in favor of dynamic creation.3.2 Shared-memory languagesShared-memory languages use mutable shared state (e.g., shared variables) to implementprocess communication. The key problem in these languages is preventing processes frominterfering with each other. This problem can be characterized by the following classicexample: x := 1; COBEGIN x := x+1 || x := x+1 COENDWithout some guarantee of atomicity, the resulting value of x is unde�ned. The assignmentsare examples of critical regions; that is, regions of code that are potential sources of interfer-ence without proper concurrency control. Shared-memory languages are distinguished bythe mechanisms they use to provide synchronization and concurrency control. To illustratethese, I use a unique ID service as a running example.3.2.1 Low-level synchronization mechanismsThe most basic synchronization mechanism is the semaphore, which is a special integervariable with two operations: P and V. Given a semaphore s, the execution of P(s) by aprocess p forces it to delay until s > 0, at which point p executes s: =s�1 and proceeds; thetest and update of s is done atomically. Execution of V(s) results in the atomic executionof s : = s+ 1. Using semaphores, the unique ID service can be implemented asVAR x : INTEGER := 0;s : SEMAPHORE;� � �PROCEDURE getUId () : INTEGER =VAR result : INTEGERBEGINP(s);result := x; x := x+1;V(s);RETURN resultEND 23

with the semaphore s being used to guarantee mutual exclusion on accesses of x. Theproblem with semaphores is that there is no linguistic support for their correct use. Forexample, a programmer can easily forget to apply one of the operators, or might forget toprotect shared state. Furthermore, implementing patterns of synchronization that are morecomplicated than mutual exclusion can be tricky.A restricted form of the semaphore is the mutex lock3 (also called a binary semaphore),which is a variable that can be in one of two states, either locked or unlocked. One ofthe advantages of mutex locks is that they are naturally supported by the test-and-setinstruction found on many multiprocessors. The language Modula-3 [Nel91] supports theuse of mutex locks with the special syntax.4LOCK m DO statements ENDThis statement is executed by �rst acquiring the mutex lock m, then executing the state-ments in the body, and then releasing the lock. If an exception occurs during the executionof the body, the lock is also released. In Modula-3, the unique ID service can be imple-mented as:VAR x : INTEGER := 0;m : MUTEX := NEW(MUTEX);� � �PROCEDURE getUId () : INTEGER =VAR result : INTEGERBEGINLOCK m DOresult := x; x := x+1;END;RETURN resultENDEach call to getUId �rst acquires the mutex lock, executes the critical section, and thenreleases the lock before returning.Mutex locks are su�cient for insuring mutual exclusion in critical regions, but do notprovide a general synchronization mechanism. For example, consider producer and con-sumer processes that share a �xed size bu�er. If the bu�er is empty, then the consumermust wait for the producer to add something to it; likewise, if the bu�er is full, the producermust wait for the consumer to remove something. Using mutex locks, this requires pollingthe bu�er, which is ine�cient. To alleviate this problem,Modula-3 provides condition vari-ables, which allow processes to wait for speci�c conditions (e.g., the bu�er is non-empty).3Mutex is a contraction of mutual exclusion.4Modula-3 inherits these primitives from Modula-2+ [RLW85].24

Condition variables, in e�ect, reintroduce the counting power of general semaphores thatwas lost when moving to mutex locks. The C-threads package built on top of the Machoperating system also provides this style of concurrency support [CD88].3.2.2 MonitorsA monitor is a module that encapsulates shared state, providing a set of exported proce-dures for controlled access to the state [Hoa74]. Monitors provide a more structured formof mutual exclusion than mutex locks. Each monitor has an implicit mutex lock that isacquired on entry and released on exit by every monitor procedure. This guarantees thata monitor-procedure call is mutually exclusive with any other call. Using a monitor, theunique ID server can be coded as follows:MONITOR UId ISVAR x : INTEGERPROCEDURE getUId () : INTEGER =VAR result : INTEGERBEGINresult := x; x := x+1;RETURN resultENDBEGINx := 0ENDThe extra syntactic support provided by monitors leaves less room for programmer errorthan in the case of semaphores or mutex locks. As with mutex locks, condition variablesare used to avoid polling.A number of languages, such as Concurrent Pascal [Bri77], Concurrent Euclid[Hol83b], and Mesa [MMS79, LR80] provide monitors along with condition variables. It isinteresting to note that there is a trend in concurrent language design away from the syn-tactic sugar of monitors and towards explicit mutex locks (e.g., fromMesa toModula-2+andModula-3). This trend represents a simpli�cation of language design, since it separatestwo orthogonal language features (i.e, modules and mutual exclusion).3.2.3 Shared-memory concurrency and MLShared-memory concurrent languages rely on mutable state for inter-process communica-tion. This leads to an imperative programming style, which goes against the traditional,mostly applicative, style of ML programs. For this reason, shared-memory primitives arenotationally unsuitable as a general purpose concurrency extension to ML (although they25

are useful for low-level implementation work). In contrast, as I show below, message passing�ts quite naturally with the ML programming style.Cooper and Morrisett, at Carnegie-Mellon University, have developed a concurrencypackage, called ML-threads, which provides threads, mutex locks and condition variables[CM90]. The design of ML-threads is owed to the C-threads package [CD88], which inturn owes its design to [RLW85]. The goals and approach of their work are signi�cantlydi�erent from those of my research. For example, one of the principal applications of ML-threads is the construction of low-level operating system services, which requires heavyuse of shared state [CHL91]. ML-threads has also been used to implement a subset ofCML's primitives. There is also an implementation of ML-threads for the SGI 4D/380multiprocessor [Mor].3.3 Distributed-memory languagesThe other major class of concurrency primitives is distributed-memory (also called messagepassing). The basic operations in message passing are \send a message" and \accept amessage," and are used for both communication and synchronization. Message-passinglanguages are distinguished by the naming mechanism for the communication medium andthe amount of synchronization involved in sending a message.The naming mechanism must specify both ends of the communication (i.e., sender andreceiver). The simplest naming convention uses process names to designate the communi-cation partner. A slightly more general scheme introduces multiple communication portsassociated with the receiver. This can be further generalized by making port names intoindependent values, called channels. Any process that has access to a channel may useit to send or accept messages (a variant on this scheme di�erentiates between input andoutput access). As with the process structure, the naming mechanism can be either staticor dynamic. Although static naming is common in a number of languages, it has severelimitations. For example, it is impossible to write procedures parameterized by a sender orreceiver name. When adding message passing to ML the communication medium must bestrongly typed. This requirement means that the use of process names to name communi-cations is too restrictive, since under such a scheme, each process can only receive messagesof one �xed type. Using ports or channels to name communications avoids this problem,since each port (or channel) can have its own message type. Given the dynamic nature ofML values, it seems that a dynamic port or channel creation mechanism is most suitable.The message accept operation is usually blocking, but some languages and systemsprovide a polling mechanism to check for incoming messages. There are three basic choices26

for message sending semantics: non-blocking send (or asynchronous send), blocking send (orsynchronous send), and send-reply. The �rst two of these are unidirectional, while the lastis bidirectional. I discuss each of these below in increasing order of synchronization.3.3.1 Asynchronous message passingIn asynchronous message passing the communication medium is bu�ered and the sendoperation is non-blocking.5 Figure 3.1 gives a pictorial description of asynchronous commu-nication between two processes P and Q. In this diagram, each process has a \time-line,"P
?

Q
?

HHHHHHHHHHjsend accept����������� sendacceptHHHHHHHHHHjsend acceptFigure 3.1: Asynchronous message passingrunning down the page; a communication is represented by an arrow from the sender'stime-line to the accepter's time-line. Notice that, in this picture, P and Q have di�erentviews of the order of events.Actor languages are an example of programming languages based on asynchronous mes-sage passing [Agh86]. Message passing in distributed systems is also usually asynchronous.In fact, in systems with arbitrary message delays and failure it is not possible to distin-guish between the failure of a communication partner and a slow line, and thus synchronouscommunication is impossible [FLP85].5Some systems use �nite bu�ers, in which case the send operation will block if the bu�er is full.27

3.3.2 Synchronous message passingHoare's seminal paper [Hoa78] introduced the notion of a set of sequential processes runningin parallel and communicating by synchronous message passing. Hoare's language, calledCSP (for Communicating Sequential Processes), provides input operations, P?x (read avalue from process P and assign it to x), output operations, P !e (send the value of ex-pression e to process P), and a labeled cobegin statement for process creation. Both theprocess and communication structures in CSP programs are static, since there is no dy-namic process creation and process names are used to name communications. If a process Pexecutes Q!v, it must block until process Q executes P?x (and vice versa). The matching ofcommunications is called rendezvous, and is illustrated in Figure 3.2. The dotted time-linesPQ!v ���������? Q?P?x-v(a) P waits for Q P?Q!v QP?x���������?-v(b) Q waits for PFigure 3.2: Rendezvousin this �gure represent idle periods while waiting for a matching communication.One of the key ideas found in CSP is the notion of selective communication (also calledguarded communication). In [Hoa78], selective communication is presented as a general-ization of Dijkstra's guarded commands [Dij75], with input operations allowed as guards.When an input guard is matched, its action may be chosen; if more than one input guardis matched, then one is chosen nondeterministically. This mechanism provides the abilityfor a process to communicate with multiple partners when the order of communications isunknown. For example, a server process that has multiple clients may not know which clientwill send it the next request. Languages can provide polling as an alternative to selectivecommunication, but the use of polling can result in busy waiting and so should be avoided[GC84].A natural generalization of the selective communication mechanism of CSP is to al-low both input and output operations. This is called generalized (or symmetric) selective28

communication. As a simple example of why this is useful, consider a system with threeprocesses, A, B and C, where A is supposed to send a message to both B and C. With-out generalized select, A must a priori choose which process to send the message to �rst.If B sends a message to C before accepting a message from A and C is waiting for themessage from A before accepting a message from B, then A must send to C �rst to avoiddeadlock. In other words, the implementation of A depends on the communication patternsof B and C. This example illustrates that the lack of generalized selective communicationhas a negative impact on program modularity.6 Other arguments for the usefulness of se-lective communication can be found in [Hoa78], [FY85], [Rep91a], and Section 5.1. Theonly signi�cant argument against generalized selective communication is the di�culty ofimplementing it on multiprocessor machines [KS79] (Section 12.2.2 discusses this problemin more detail).The language occam [INM84, Bur88] is derived from CSP, but includes channels anda limited form of dynamic process creation. And the higher-order languageAmber [Car86]provides generalized selective communication on typed channels, as well as dynamic processand channel creation. Other languages that owe an intellectual debt to CSP include Joyce[Bri89] and Pascal-m [AB86]. A pared down version of CSP, called TCSP, has been usedfor theoretical study of concurrent systems [Hoa85].3.3.3 Asynchronous vs. synchronous message passingAt �rst glance, asynchronous communicationmay seem to be the best choice for a distributed-memory concurrent language, since it minimizes interprocess synchronization and does notrestrict parallelism (e.g., in Figure 3.2(a), P must wait for Q). But if the language hasdynamic thread creation, then it is possible to e�ciently implement an asynchronous chan-nel by using a thread to bu�er communication (cf., Section 5.1). The big problem withasynchronous communication is that the sender has no way of knowing when a message hasactually been received; introducing acknowledgement messages loses the parallelism thatwas the main bene�t of asynchronous communication. In synchronous message passing, thesender and receiver have common knowledge of the message transmission (e.g., the senderknows that the receiver knows that the sender knows that the message was accepted). Thisproperty makes synchronous message passing easier to reason about [AS83].This is also re
ected in the typical failure modes of erroneous programs. In asynchronoussystems, the typical failure mode is an over
ow of the memory used to bu�er messages, whichis likely to be far removed in time (and possibly place) from the source of the problem. In6In a language with dynamic thread creation, this example could be programmed by A forking twothreads to send the messages, but there are other examples where dynamic process creation is not su�cient.29

synchronous systems, the typical failure mode is deadlock, which is immediate and easilydetected. Thus, detecting and �xing bugs is easier in a synchronous system.7Using asynchronous message passing also increases the likelihood of timing sensitiv-ity and race conditions. In a producer-consumer protocol, for example, if the producer isfaster than the consumer, then the number of bu�ered messages can grow arbitrarily. Ifthe bu�er is �nite, the system eventually degrades to a synchronous system; while, if thebu�ers are unbounded, memory over
ow may occur. This means that additional acknowl-edgment messages must be used, which reduces the e�ciency gains from using asynchronouscommunication.3.3.4 Request-reply message passingA procedure call style interaction, called remote procedure call [Nel81], can be implementedusing asynchronous or synchronous message passing. The procedure entry corresponds to arequest message from the client to the server and the procedure return corresponds to thereply message from the server to the client. Figure 3.3 shows the timing diagrams for thismechanism (assuming synchronous message passing). While the server is handling a call itClientcall �������������������?
Server
?accept-request� reply(a) The client waits

Clientcall ���������?
Serveraccept���������?-request� reply(b) The server waitsFigure 3.3: Request-reply rendezvouscannot accept other requests; thus, calls are necessarily mutually exclusive. Some languages,such as Ada [DoD83] and Concurrent C [GR86], as well as concurrency libraries such asthe �System [BS90], use this style of bidirectional message passing as their communication7The author's personal experience backs this up. An early version of the Pegasus system [RG86] usedasynchronous message passing, but we had great di�culty in debugging our programs. Our experience withthe implementation of eXene [GR91], on the other hand, demonstrates that large synchronous message-passing programs can be debugged fairly easily, even without debugging tools.30

mechanism. In these languages, a server thread plays a role very similar to a monitor (seeSection 3.2.2). In Ada, for example, a task (the Ada term for process) exports a collectionof transactions (called entries in Ada) that clients can invoke like normal procedure calls.The server uses a SELECT statement to enable multiple entries simultaneously (this is similarto the CSP selective communication in that only input operations are allowed in a selectstatement). To illustrate, the unique ID server example from Section 3.2 can be programmedin Ada as follows:TASK BODY UniqueId ISx : INTEGER;BEGINLOOPSELECTACCEPT getUniqueId (result : OUT INTEGER) DOresult := x; x := x+1;END getUniqueId;END SELECT;END LOOP;END UniqueIdSince this example only has one operation, the SELECT statement is not really necessary, butif the server supported other operations, then additional accept clauses would be added.The language Concurrent C provides a richer form of Ada's select mechanism. Thesyntax of an entry clause in a select statement isaccept entry [suchthat pred] [by e] statmentwhere the phrases enclosed in [] are optional, pred is a boolean expression and e is an integerexpression. If the optional suchthat clause is present then only those requests that satisfypred are accepted. If the optional by clause is present then the expression e is evaluated foreach outstanding request and the request with the minimum value is selected.While the request-reply paradigm is quite useful in concurrent programming, I believethat it is too heavy-weight a mechanism to be the basis of a concurrent language. For exam-ple, if one needs to program unidirectional communication, then a bidirectional mechanismis unnatural. Of course, one might argue that programming bidirectional communicationusing unidirectional message passing is unnecessarily complex, but, as I show in the nextchapter, it is possible to support higher-level abstractions, such as RPC, as �rst-class citi-zens in a language based on unidirectional message passing. The key is to provide a
exiblemechanism for building new communication and synchronization abstractions.31

3.3.5 FuturesVarious concurrent dialects of Lisp and Scheme use a mechanism called futures [Hal85,KH88] for specifying the parallel evaluation of expressions. Futures combine thread creation,communication and synchronization into a single mechanism. The Lisp expression(let((x (future exp)))body)evaluates by �rst spawning a thread to evaluate exp and binding a placeholder to x in body.When the computation of exp is complete, the result is put into the placeholder. Whena thread attempts to access x (called touching), it must synchronize on the availability ofthe value. An important aspect of this mechanism is that any variable can be bound to afuture (i.e., touches are implicit), and thus a run-time check is required on every variableaccess (although compiler optimization can reduce this cost).Futures are not designed to support concurrent programming, rather they are designedto be a parallel programming mechanism. Their main limitation as a concurrent program-ming notation is that they only provide one chance for communication and synchronizationbetween the parent and child threads. Multilisp [Hal85] provides shared memory and low-level locking mechanisms (essentially test-and-set) for supporting other patterns of commu-nication and synchronization. Using other communication and synchronization mechanismsin conjunction with futures can lead to problems, since some implementations consider itoptional as to whether a new thread actually gets spawned for each future (for example,Mul-T [KH88]). Although futures might be a useful addition to ML to support parallelprogramming (see Chapter 12), they are not a reasonable base for a concurrent languagedesign.3.3.6 Message passing and MLIn addition to my own work, there have been several other e�orts to integrate message pass-ing and ML; e.g., [Hol83a], [Mat89] and [Ram90]. All of these have supported CSP-stylemessage passing (i.e., synchronous). Message passing is a useful base for concurrent pro-gramming, because it can support the two most common styles of concurrency: pipelining,in which threads are arranged in a data-
ow network [KM77], and server-client interac-tions. By treating communication channels as in�nite streams, the individual threads canbe written in an applicative style (e.g., [AB80]), which is consistent with the ML style ofprogramming. In fact, CML programs tend to use far fewer references than sequentialSML programs; this point is illustrated in the following two chapters.32

A common argument against message passing is that, compared to shared-memory prim-itives, it provides inferior performance. While this is true for single-processor systems, thereis recent empirical evidence that suggests message-passing programs can provide better per-formance on shared-memory multiprocessors [LS90]. The reason for this is that message-passing programs typically have better locality, and thus map better onto the non-uniformmemory structure of modern shared-memory multiprocessors.3.4 SummaryThere are a number of design criteria that can be drawn from the above discussion. Aconcurrent extension to ML should have the following characteristics:� Dynamic thread creation.� Synchronous communication on typed channels or ports. Since channels are moregeneral than ports, we prefer them.� Dynamic channel creation.� Support for generalized selective communication.The way existing languages support these mechanisms is not completely satisfactory. Theproblem is that they support communication by special operations (and often with specialsyntax) without providing any mechanism for building new communication and synchro-nization abstractions. In the following chapter, I describe these limitations in more detail,and present my approach to concurrent language design, which addresses them.
33

Chapter 4First-class SynchronousOperationsThis chapter describes the central result of this dissertation: a new approach to concurrentlanguage design in which synchronous operations are treated as �rst-class values. I �rst de-veloped this approach as part of the design of the concurrent language PML [Rep88]. PMLprovided a collection of concurrency features similar to those found in Amber [Car86]:typed channels, dynamic thread and channel creation, and rendezvous with generalizedselective communication. The design of PML broke new ground, however, by providing�rst-class synchronous operations.The basic idea of �rst-class synchronous operations is to introduce a domain of �rst-class values, called events, for representing synchronous operations. Constructor functionsare provided to build base-event values that represent primitive operations such as channelI/O, and combinators are provided to combine event values into higher-level synchronousoperations. The design of CML [Rep90b, Rep91a] builds on this approach by providing amore powerful version of events. In addition, CML provides a number of other featuresnot found in PML, such as garbage collection of threads and integrated I/O support.This chapter is organized chronologically; that is, according to the historical evolutionof the language design. First, I introduce a basic set of concurrency primitives, which aresimilar to what is found in Amber. I then motivate and present a subset of CML, calledPML events, that is su�cient to implement the primitives found in CSP-style languages.The PML subset has limitations, which I use to motivate the extensions that I have de-veloped as part of CML. Finally, I summarize the features of CML to provide a basis forthe examples found in later chapters. I leave the presentation of extended examples to thenext chapter, where I present a series of examples of the use of events to build higher-levelsynchronization and communication abstractions.34

4.1 Basic concurrency primitivesWe start with a discussion of the basic concurrency operations provided by CML. Arunning CML program consists of a collection of threads, which use synchronous messagepassing on typed channels to communicate and synchronize. In keeping with the
avorof SML, both threads and channels are created dynamically (initially, a program consistsof a single thread). The signature of the basic thread and channel operations is given inFigure 4.1. The function spawn takes a function as an argument and creates a new threadval spawn : (unit -> unit) -> thread_idval channel : unit -> '1a chanval accept : 'a chan -> 'aval send : ('a chan * 'a) -> unitFigure 4.1: Basic concurrency primitivesto evaluate the application of the function to the unit value. Channels are also createddynamically using the function channel, which is weakly polymorphic.1 The functionsaccept and send are the synchronous communication operations. When a thread wantsto communicate on a channel, it must rendezvous with another thread that wants to do acomplementary communication on the same channel (this is the mechanism described inSection 3.3.2). SML's lexical scoping is used to share channels between threads, and tohide channels from other threads (note, however, that channels can be passed as messages).A simple example of these primitives is the unique ID service used in the previouschapter. In CML, this can be implemented as follows:abstype unique_id_src = UID of int chanwithfun makeUIdSrc () = letval ch = channel()fun loop i = (send(ch, i); loop(i+1))inspawn (fn () => loop 0);UID chendfun getUId (UID ch) = accept chendThis abstraction provides a function for creating a new source of unique IDs (makeUIdSrc)1The weak polymorphism is necessary to avoid loop-holes in the type system (see Chapter 8 for details).35

and an operation for getting a unique ID from a source (getUId). A source of unique IDs isrepresented by a channel; the function makeUIdSrc dynamically creates this channel, andalso a thread that sends a stream of unique IDs on the channel. The function getUId readsthe next ID in the stream. The implementation is an example of how threads can be usedto encapsulate state; note that the only side-e�ects are in the concurrency operations. Thisstyle of programming is much more applicative than that of shared-memory primitives (cf.,Section 3.2).4.2 Selective communication vs. abstractionIn Section 3.3, I discussed the arguments for providing generalized selective communication;in this section, I describe a signi�cant limitation with the forms of selective communicationfound in existing languages.The problem is that there is a fundamental con
ict between selective communication andabstraction. For example, consider a server thread that provides a service via a request-reply(or RPC) protocol. The server side of this protocol is something like:fun serverLoop () = if serviceAvailable()then letval request = accept reqChinsend (replyCh, doit request);serverLoop ()endelse doSomethingElse()where the function doit actually implements the service. Note that the service is not alwaysavailable. This protocol requires that clients obey the following two rules:1. A client must send a request before trying to read a reply.2. Following a request the client must read exactly one reply before issuing anotherrequest.If all clients obey these rules, then we can guarantee that each request is answered with thecorrect reply, but if a client breaks one of these rules, then the requests and replies will beout of sync. An obvious way to improve the reliability of programs that use this service isto bundle the client-side protocol into a function that hides the details, thus ensuring thatthe rules are followed. The following code implements this abstraction:fun clientCall x = (send(reqCh, x); accept replyCh)36

While this insures that the protocol is observed, it hides too much. If a client blocks ona call to clientCall (e.g., if the server is not available), then it cannot respond to othercommunications. Avoiding this situation requires using selective communication, but theclient cannot do this because the function abstraction hides the synchronous aspect of theprotocol. This is the fundamental con
ict between selective communication and the existingforms of abstraction. If we make the operation abstract, we lose the
exibility of selectivecommunication; but if we expose the protocol to allow selective communication, we lose thesafety and ease of maintenance provided by abstraction. To resolve this con
ict requiresintroducing a new abstraction mechanism that preserves the synchronous nature of theabstraction. First-class synchronous operations provide this new abstraction mechanism.4.3 First-class synchronous operationsThe traditional select construct has four facets: the individual I/O operations, the actionsassociated with each operation, the nondeterministic choice, and the synchronization. Theapproach of this dissertation is to unbundle these facets by introducing a new type ofvalues, called events, that represent synchronous operations. By starting with base-eventvalues to represent the communication operations, and providing combinators to associateactions with events and to build nondeterministic choices of events, a
exible mechanismfor building new synchronization and communication abstractions is realized. Event valuesprovide a mechanism for building an abstract representation of a protocol without obscuringits synchronous aspect.To make this concrete, consider the following loop (using an Amber style select con-struct [Car86]), which implements the body of an accumulator that accepts either additionor subtraction input commands and o�ers its contents:fun accum sum = (select addCh?x => accum(sum+x)or subCh?x => accum(sum-x)or readCh!sum => accum sum)The select construct consists of three I/O operations: addCh?x, subCh?x, and readCh!sum.For each of these operations there is an associated action on the right hand side of the =>.Taken together, each I/O operation and associated action de�ne a clause in a nondeter-ministic synchronous choice. It is also worth noting that the input clauses de�ne a scope;the input operation binds an identi�er to the incoming message, which has the action as itsscope.Figure 4.2 gives the signature of the event operations corresponding to the four facetsof generalized selective communication. The functions receive and transmit build base-37

val receive : 'a chan -> 'a eventval transmit : ('a chan * 'a) -> unit eventval choose : 'a event list -> 'a eventval wrap : ('a event * ('a -> 'b)) -> 'b eventval sync : 'a event -> 'aFigure 4.2: Basic event operationsevent values that represent channel I/O operations. The wrap combinator binds an action,represented by a function, to an event value. And the choose combinator composes eventvalues into a nondeterministic choice. The last operation is sync, which forces synchroniza-tion on an event value. I call this set of operations \PML events," since they constitutethe mechanism that I originally developed in PML [Rep88].The simplest example of events is the implementation of the synchronous channel I/Ooperations that were described in the previous section. These are de�ned using functioncomposition, sync and the channel I/O event-value constructors:val accept = sync o receiveval send = sync o transmitA more substantial example is the accumulator loop from above, which is implemented as:fun accum sum = sync (choose [wrap (receive addCh, fn x => accum (sum+x)),wrap (receive subCh, fn x => accum (sum-x)),wrap (transmit (readCh, sum), fn () => accum sum)])Notice how wrap is used to associate actions with communications.The great bene�t of this approach to concurrency is that it allows the programmer tocreate new �rst-class synchronization and communication abstractions. For example, wecan de�ne an event-valued function that implements the client-side of the RPC protocolgiven in the previous section as follows:fun clientCallEvt x = wrap (transmit(reqCh, x), fn () => accept replyCh)Applying clientCallEvt to a value v does not actually send a request to the server, ratherit returns an event value that can be used to send v to the server and then accept the server'sreply. This event-value can be used in a choose expression with other communications; in38

which case the transmit base-event value is in selecting the event. This example showsthat we can use �rst-class synchronous operations to abstract away from the details of theclient-server protocol, without hiding the synchronous nature of the protocol.This approach to synchronization and communication leads to a new programmingparadigm, which I call higher-order concurrent programming. To understand the higher-order nature of this mechanism, it is helpful to draw an analogy with �rst-class functionvalues. Table 4.1 relates the features of these two higher-order mechanisms. Values ofTable 4.1: Relating �rst-class functions and eventsProperty Function values Event valuesType constructor -> eventIntroduction �-abstraction receivetransmitetc.Elimination application syncCombinators op o choosemap wrapetc. etc.function type are introduced by � abstraction, while event values are created by the base-event constructors. Function values are eliminated by application, analogously event valuesare eliminated by the sync operator.2 And both types have combinators for building newvalues. This analogy does not hold completely, since the various function combinators arederived forms, while the event-value combinators are primitive.4.4 Other synchronous operationsThe event type provides a natural framework for accommodating other primitive syn-chronous operations.3 There are three examples of this in CML: synchronization on threadtermination (sometimes called process join), low-level I/O support and time-outs. Figure 4.3gives the signature of the CML base-event constructors for these other synchronous opera-tions. The function wait produces an event for synchronizing on the termination of anotherthread. This is often used by servers that need to release resources allocated to a clientin the case that the client terminates unexpectedly. Support for low-level I/O is providedby the functions syncOnInput and syncOnOutput, which allow threads to synchronize on2\Introduction" and \elimination" are being used in a type theoretic sense. They refer to the syntacticconstructs that introduce or eliminate the type constructor.3This is the reason that the I use the term \event" to refer to �rst-class synchronous operations insteadof using \communication." 39

val wait : thread_id -> unit eventval syncOnInput : int -> unit eventval syncOnOutput : int -> unit eventval waitUntil : time -> unit eventval timeout : time -> unit eventFigure 4.3: Other primitive synchronous operationsthe status of �le descriptors [UNI86]. These operations are used in CML to implement amulti-threaded I/O stream library (Section 10.5.2). There are two functions for synchro-nizing with the clock: waitUntil and timeout. The function waitUntil returns an eventthat synchronizes on an absolute time, while timeout implements a relative delay. Thefunction timeout can be used to implement a timeout in a choice. The following code, forexample, de�nes an event that waits for up to a second for a message on a channel:choose [wrap (receive ch, SOME),wrap (timeout(TIME{sec=1, usec=0}), fn () => NONE)]By having a uniform mechanism for combining synchronous operations, CML provides agreat deal of
exibility with a fairly terse mechanism. As a comparison, Ada has twodi�erent timeout mechanisms: a time entry call for clients and delay statement that serverscan include in a select.4.5 Extending PML eventsThus far, I have described the PML subset of �rst-class synchronous operations. In thissection, I motivate and describe two signi�cant extensions to PML events that are providedin CML.Consider a protocol consisting of a sequence of communications: c1; c2; � � � ; cn. Whenthis protocol is packaged up in an event value, one of the ci is designated as the commitpoint, the communication by which this event is chosen in a selective communication (e.g.,the message send operation in the clientCallEvt abstraction above). In PML events,the only possible commit point is c1. The wrap construct allows one to tack on c2; � � � ; cnafter c1 is chosen, but there is no way to make any of the other ci the commit point. Thisasymmetry is a serious limitation to the original mechanism.40

A good illustration of this problem is a server that implements an input stream abstrac-tion. Since this abstraction should be smoothly integrated into the concurrency model, theinput operations should be event-valued. For example, the functionval input : instream -> string eventis used to read a single character. In addition, there are other input operations such asinput_line. Let us assume that the implementation of these operations uses a request-reply protocol; thus, a successful input operation involves the communication sequencesend (chreq, REQ_INPUT); accept(chreply)Packaging this up as an event (as we did in Section 4.3) will make the send communicationbe the commit point, which is the wrong semantics. To illustrate the problem with this,consider the case where a client thread wants to synchronize on the choice of reading acharacter and a �ve second timeout:sync (choose [wrap (timeout(TIME{sec=5, usec=0}), fn () => raise Timeout),input instream])The server might accept the request within the �ve second limit, even though the wait forinput might be inde�nite. The right semantics for the input operation requires making theaccept be the commit point, which is not possible using only the PML subset of events.To address this limitation, CML provides the guard combinator.4.5.1 GuardsThe guard combinator is the dual of wrap; it bundles code to be executed before the commitpoint; this code can include communications. It has the typeval guard : (unit -> 'a event) -> 'a eventA guard event is essentially a suspension that is forced when sync is applied to it. Asa simple example of the use of guard, the timeout function, described above, is actuallyimplemented using waitUntil and a guard:fun timeout t = guard (fn () => waitUntil (add_time (t, currentTime()))where currentTime returns the current time. Some languages support guarded clauses inselective communication, where the guards are boolean expressions that must evaluate to41

true in order that the communication be enabled. CML guards can be used for this purposetoo, as illustrated by the following code skeleton:sync (choose [� � �guard (fn () => if pred then evt else choose[])� � �])Here evt is part of the choice only if pred evaluates to true. Note that the evaluation ofpred occurs each time the guard function is evaluated.Returning to the RPC example from above, we can now build an abstract RPC operationwith the reply as the commit point. The two di�erent versions are:fun clientCallEvt1 x = wrap (transmit(reqCh, x), fn () => accept replyCh)fun clientCallEvt2 x = guard (fn () => (send(reqCh, x); receive replyCh)where the clientCallEvt1 version commits on the server's acceptance of the request, whilethe clientCallEvt2 version commits on the server's reply to the request. Note the dualityof guard and wrap with respect to the commit point. Using guards to generate requestslike this raises a couple of other problems. First of all, if the server cannot guaranteethat requests will be accepted promptly, then evaluating the guard may cause delays. Thesolution to this is to spawn a new thread to issue the request asynchronously:fun clientCallEvt3 x = guard (fn () => (spawn(fn () => send(reqCh, x));receive replyCh)Another alternative is for the server to be a clearing-house for requests; spawning a newthread to handle each new request.The other problem is more serious: what if this RPC event is used in a selective com-munication and some other event is chosen? How does the server avoid blocking forever onsending a reply? For idempotent services, this can be handled by having the client createa dedicated channel for the reply and having the server spawn a new thread to send thereply. The client side of this protocol isfun clientCallEvt4 x = guard (fn () => letval replyCh = channel()inspawn(fn () => send(reqCh, (replyCh, x)));receive replyChend) 42

When the server sends the reply it evaluatesspawn (fn () => send(replyCh, reply))If the client has already chosen a di�erent event, then this thread blocks and will be garbagecollected. For services that are not idempotent, this scheme is not su�cient; the server needsa way to abort the transaction. The wrapAbort combinator provides this mechanism and isdescribed in the next section.4.5.2 Abort actionsThe wrapAbort combinator associates an abort action with an event value. The semanticsare that if the event is not chosen in a sync operation, then a new thread is spawned toevaluate the abort action. The type of this combinator is:val wrapAbort : ('a event * (unit -> unit)) -> unitwhere the second argument is the abort action. This combinator is the complement of wrapin the sense that if you view every base event in a choice as having both a wrapper andan abort action, then, when sync is applied, the wrapper of the chosen event is called andthreads are spawned for each of the abort actions of the other base events.Using wrapAbort, we can now implement the RPC protocol for non-idempotent services.The client code for the RPC using abort must allocate two channels; one for the reply andone for the abort message:fun clientCallEvt5 x = guard (fn () => letval replyCh = channel()val abortCh = channel()fun abortFn () = send (abortCh, ())inspawn(fn () => send (reqCh, (replyCh, abortCh, x)));wrapAbort (receive replyCh, abortFn)end)When the server is ready to reply (i.e., commit the transaction), it synchronizes on thefollowing event value:choose[wrap (receive abortCh, fn () => abort the transaction),wrap (transmit (replyCh, reply), fn () => commit the transaction)]This mechanism is used to implement the concurrent stream I/O library in CML (seeSection 10.5.2). 43

4.6 CML summarySo far, I've touched on the highlights of CML's concurrency mechanisms. In this section,I give a summary of the features of CML. This provides the background for the rest ofthis dissertation. This section is not a language tutorial; for such a discussion see [Rep90b].Figure 4.4 gives the signature of most of the CML concurrency operations, including thosealready described above.val spawn : (unit -> unit) -> thread_idval channel : unit -> '1a chanval sameThread : (thread_id * thread_id) -> boolval sameChannel : (channel * channel) -> boolval accept : 'a chan -> 'aval send : ('a chan * 'a) -> unitval choose : 'a event list -> 'a eventval guard : (unit -> 'a event) -> 'a eventval wrap : ('a event * ('a -> 'b)) -> 'b eventval wrapHandler : ('a event * (exn -> 'a)) -> 'a eventval wrapAbort : ('a event * (unit -> unit)) -> 'a eventval sync : 'a event -> 'aval select : 'a event list -> 'aval poll : 'a event -> 'a optionval always : 'a -> 'a eventval receive : 'a chan -> 'a eventval transmit : ('a chan * 'a) -> unit eventval waitUntil : time -> unit eventval timeout : time -> unit eventval syncOnInput : int -> unit eventval syncOnOutput : int -> unit eventFigure 4.4: CML concurrency operationsThe two functions sameThread and sameChannel can be used to test equality of threadIDs and channels. In addition to the wrap combinator, the combinator wrapHandler wrapsan exception handler around an event. For example, syncOnInput raises an exception if the�le speci�ed by its argument has been closed. Using wrapHandler, a more robust version44

of syncOnInput is de�ned as:fun waitForInput fd = wrapHandler (wrap (syncOnInput fd, fn () => true),fn _ => false)Upon synchronization, this returns true if input is available and false if the �le is closed.The operation select is a short-hand for the common idiom of applying sync to achoice of events; i.e.,val select = sync o chooseThe operation poll is a non-blocking form of sync; it returns NONE in the case that syncwould have blocked. This form of polling is di�erent from those of [Rep88], [Rep89] and[Rep91a]. In these earlier versions, polling was handled by constructing polling eventvalues.4 The semantics of these approaches is more di�cult to specify and the imple-mentation is more complicated; furthermore, in practice, the few rare uses of polling havealways been in combination with immediate application of sync. For these reasons, I haveadopted the simpler polling operation.The base-event constructor always takes an argument and builds an event that is alwaysavailable with the argument as its synchronization result. For example, an in�nite streamof 1s can be implemented as (always 1). It is useful to compare the functionfun poll' evt = select [always NONE,wrap (evt, SOME)]with poll when supplied to the following function:fun pollLoop pollfn = letfun loop () = (case (pollfn (always 1))of NONE => loop ()| (SOME _) => ())inloop ()endApplying pollLoop to poll' can result in in�nite execution sequences, while applying it topoll will always terminate. Section 7.5.5 describes the semantics of the poll function.4Speci�cally, in [Rep88] and [Rep89] this was done by a special base-event value called anyevent, whichwas lower priority than other events. In [Rep91a] this was done by a special event-value constructor.45

4.6.1 Thread garbage collectionAn important property of CML programs is the automatic reclamation of concurrencyobjects (i.e., threads and channels). In general, a thread that communicates in�nitelyoften will block and be garbage collected if it is disconnected from the active part of thesystem. This property has two bene�ts. First, it allows threads to be used to implementobjects, such as the unique ID source above, without having to worry about terminationprotocols. If the object representation (i.e., the channels connecting to it) are discarded,then the channels and thread are reclaimed by the garbage collector. Second, it allows useof speculative message passing in complex protocols; i.e., the spawning of a thread to send amessage that may never be accepted. If the channel is local to the instance of the protocol,then it is guaranteed to be garbage collected (e.g., clientCallEvt4 in Section 4.5.1).4.6.2 Stream I/OCML provides a concurrent version of the SML stream I/O primitives. Input operationsin this version are event-valued, which allows them to be used in selective communication.For example, an application may give a user at most 60 seconds to supply a password. Thiscan be programmed as:fun getpasswd () = sync (choose [wrap (timeout(TIME{sec=60, usec=0}),fn () => NONE),wrap (input_line std_in, SOME)])This will return NONE, if the user fails to respond within 60 seconds; otherwise it wraps SOMEaround the user's response.The I/O streams are implemented on top of the other primitives described in this chap-ter; Section 10.5.2 describes their implementation in some detail.
46

Chapter 5Building ConcurrencyAbstractionsDi�erent applications require di�erent abstractions and programming styles. Modern pro-gramming languages provide mechanisms that allow programmers to design and implementthe appropriate data and procedural abstractions for their applications, but when it comesto concurrency operations, programmers are stuck with the decisions of the language de-signer. First-class synchronous operations allow programmers the
exibility to design andimplement the right concurrency abstractions for their applications. In this chapter, Idemonstrate the utility of �rst-class synchronous operations by showing how various usefulabstractions can be implemented. These abstractions include mechanisms found in otherlanguages, such as asynchronous channels, Ada-style rendezvous, and futures. In addition,I present some other abstractions that have proven useful in real applications. These ex-amples also provide further illustration of the use of CML as a programming notation.Chapter 9 includes additional examples from applications that are implemented in CML.5.1 Bu�ered channelsBu�ered channels provide a mechanism for asynchronous communication that is similar tothe actor mailbox [Agh86]. The source code for this abstraction is given in Figure 5.1.The function buffer creates a new bu�ered channel, which consists of a bu�er thread, aninput channel and an output channel; the function bufferSend is an asynchronous sendoperation; and the function bufferReceive is an event-valued receive operation. The bu�eris represented as a queue of messages, which is implemented as a pair of stacks (lists). Thisexample illustrates several key points: 47

abstype 'a buffer_chan = BC of {inch : 'a chan,outch : 'a chan}withfun buffer () = letval inCh = channel() and outCh = channel()fun loop ([], []) = loop([accept inCh], [])| loop (front as (x::r), rear) = select [wrap (receive inCh,fn y => loop(front, y::rear)),wrap (transmit(outCh, x),fn () => loop(r, rear))]| loop ([], rear) = loop(rev rear, [])inspawn (fn () => loop([], []));BC{inch=inCh, outch=outCh}endfun bufferSend (BC{inch, ...}, x) = send(inch, x)fun bufferReceive (BC{outch, ...}) = receive outchend (* abstype *)Figure 5.1: CML implementation of bu�ered channels� Bu�ered channels are a new communication abstraction, which have �rst-class citi-zenship. A thread can use the bufferReceive function in any context that it coulduse the built-in function receive, such as selective communication.� The bu�er loop uses both input and output operations in its selective communication.This is an example of the necessity of generalized selective communication. If wehave only a multiplexed input construct (e.g., occam's ALT), then we must to use arequest/reply protocol to implement the server side of the bufferReceive operation(see pp. 37{41 of [Bur88], for example). But if a request/reply protocol is used, thenthe bufferReceive operation cannot be used in a selective communication by theclient.� The bu�er thread is a good example of a common CML programming idiom: usingthreads to encapsulate state. This style has the additional bene�t of hiding the stateof the system in the concurrency operations, which makes the sequential code cleaner.These threads serve the same role thatmonitors do in some shared-memory concurrentlanguages. 48

� This implementation exploits the fact that unreachable blocked threads are garbagecollected. If the clients of this bu�er discard it, then the bu�er thread and channelswill be reclaimed by the garbage collector. This improves the modularity of theabstraction, since clients do not have to worry about explicit termination of the bu�erthread.A more complete version of this abstraction is included in the CML distribution and isused in a number of applications.5.2 Multicast channelsAnother useful abstraction is a bu�ered multicast channel, which builds on bu�ered channelsby providing fan-out. A multicast channel has a number of output ports. When a threadsends a message on a multicast channel, it is replicated once for each output port. Inaddition to the standard channel operations (create, send and accept), there is an operationto create new ports. The following signature gives the multicast channel interface:type 'a mchanval mChannel : unit -> '1a mchanval newPort : 'a mchan -> 'a eventval multicast : ('a mchan * 'a) -> unitNew multicast channels are created using mChannel and new ports using newPort. Themulticast operation asynchronously broadcasts a message to the ports of a multicast chan-nel. A port is represented by an event value; synchronizing on a port event will return thenext multicast message.A multicast channel consists of a server thread, which initiates the broadcast and createsnew ports and a chain of ports. Each port consists of a bu�er and a \tee" thread that insertsthe incoming message in the bu�er and propagates it to the next port. The port bu�er isimplemented using the bu�ered channel from above. The following picture gives a schematicview of a multicast channel with four ports:
49

Multicast server

multicast
newPort

B
uffer

Port

B
uffer

Port

B
uffer

Port

B
uffer

PortThe implementation of the multicast abstraction is given in Figure 5.2. The functionmChannel is the most interesting, as it includes the code for the server thread. A multicastchannel value is represented by a request/reply channel pair that provides an interface tothe server thread. A request is either a message to be broadcast, or a request for a new port.The interface between the server thread and the �rst port in the chain and the interfacebetween a tee thread and the next port is an output function. The output function at theend of the chain is a sink.5.3 Condition variablesA simple new abstraction is the condition variable, which is a write once variable.1 Acondition variable is initially empty; after a thread writes a value to it, it is full. Readingan empty condition variable is a blocking operation, while writing to a full one is an error.In CML condition variables have the following interface:type 'a cond_varval condVar : unit -> '1a cond_varval readVarEvt : 'a cond_var -> 'a eventval readVar : 'a cond_var -> 'aval writeVar : ('a cond_var * 'a) -> unitexception WriteTwice1The name is motivated by the conditions found in some shared-memory concurrent languages.50

abstype 'a mchan = MChan of ('a request chan * 'a event chan)and 'a request = Message of 'a | NewPortwithfun mChannel () = letval reqCh = channel() and respCh = channel()fun mkPort outFn = letval buf = buffer()val inCh = channel()fun tee () = let val m = accept inChinbufferSend(buf, m);outFn m;tee()endinspawn tee;(fn m => send(inCh, m), bufferReceive buf)endfun server outFn = letfun handleReq NewPort = letval (outFn', port) = mkPort outFninsend (respCh, port);outFn'end| handleReq (Message m) = (outFn m; outFn)inserver (sync (wrap (receive reqCh, handleReq)))endinspawn (fn () => server (fn _ => ()));MChan(reqCh, respCh)endfun newPort (MChan(reqCh, respCh)) = (send (reqCh, NewPort);accept respCh)fun multicast (MChan(ch, _), m) = send (ch, Message m)end Figure 5.2: CML implementation of multicast channels51

Since reading a condition variable is a synchronous operation, an event-valued form of theoperation is provided. The exception WriteTwice is raised when a thread attempts to writeto a full variable. Condition variables are an example of what are called I-structures in theparallel language Id [ANP89, Nik91]; they can also be regarded as a weak form of logicvariable.A condition variable can be implemented in CML using a thread to hold the state ofthe variable, as shown in Figure 5.3. Recent versions of CML provide condition variablesdatatype 'a cond_var = CV of {put_ch : 'a chan,get_ch : 'a chan}fun condVar () = letval putCh = channel() and getCh = channel()fun cell () = letval v = accept putChfun loop () = (send (getCh, v); loop())inloop ()endinspawn cell;CV{put_ch = putCh, get_ch = getCh}endexception WriteTwicefun writeVar (CV{put_ch, get_ch}, x) = select [wrap (receive get_ch, fn _ => raise WriteTwice),transmit (put_ch, x)]fun readVarEvt (CV{get_ch, ...}) = receive get_chfun readVar (CV{get_ch, ...}) = accept get_chFigure 5.3: CML implementation of condition variablesas a primitive concurrency object. This is in part because they are used internally toimplement threadWait, but also because they provide a signi�cant performance boost (seeChapter 11) in the case that exactly one message must be sent (e.g., for abort messages,see Section 10.5.2). 52

5.4 Ada-style rendezvousIn this section I describe the implementation of the communication mechanisms found inAda and Concurrent C. As described in Section 3.3.4, the basic operation is the extendedrendezvous, which consists of an entry call by a client to a server thread. In Ada (andConcurrent C) this call is asymmetric; i.e., the server can nondeterministically selectfrom a choice of accept clauses, but a client's entry call cannot be involved in a selectivecommunication. There is no problem with supporting entry calls in selective communicationin CML, but there is the question of which of the two synchronous operations (i.e., sendingthe request and accepting the reply) should be the commit point. The various alternativesare discussed in some detail in Section 4.5; in this example, I arbitrarily choose the sendingof the request as the commit point. Figure 5.4 gives the CML code for an abstraction ofthe basic Ada communication mechanism. This implementation is more general than theabstype ('a, 'b) entry = ENTRY of (('a * 'b chan) chan)withfun entry () = ENTRY(channel())fun entryCall (ENTRY reqCh) x = guard (fn () => letval replyCh = channel()inwrap (transmit(reqCh, (x, replyCh)), fn () => accept replyCh)end)fun entryAccept (ENTRY reqCh) =wrap (receive reqCh, fn (x, replyCh) => (x, fn y => send(replyCh, y)))end Figure 5.4: CML implementation of Ada rendezvousAda mechanism in several ways. It allows nested transactions, since the reply channelsare dynamically allocated, and it permits selective entry calls, since entryCall is an event-valued function. It also allows multiple servers for a given entry. The interface of thisabstraction istype ('a,'b) entryval entry : unit -> ('1a,'1b) entryval entryCall : ('a,'3b) entry -> 'a -> '3b eventval entryAccept : ('a,'b) entry -> ('a * ('b -> unit)) eventNote that the entryAccept function returns the entry-call argument and the reply function.As an example of the use of this abstraction, the following is the CML version of theimplementation of the unique ID server given in Section 3.3.4:53

fun mkUIdServer () = letval e = entry()fun loop x = letval ((), reply) = sync (entryAccept e)inreply x; loop (x+1)endinspawn (fn () => loop 0);entryCall eendIn systems programming it is often necessary to deal with the possibility that someexpected event might not actually occur. To this end, Ada supports several variations onthe basic rendezvous mechanism; namely, a delay clause in the server's select statement, atimed entry call, and a conditional entry call. These can be easily implemented in CML.A timeout event can be used to implement a delay clause; a choice of an entry call and atimeout event implements a timed entry call; and applying poll to an entry call implementsa conditional entry call.The languageConcurrent C provides a couple of additional twists onAda's rendezvousmechanism. Recall from Section 3.3.4 that Concurrent C entry clauses may include apredicate on requests and/or a priority ordering of requests. It is possible to implementthese operations in CML, but, for reasons discussed below, it is not possible to do so whilesupporting entry calls in generalized selective communication. As an illustration, I describethe implementation of an entry abstraction that supports conditional acceptance of entrycalls based on the argument value. The signature of this abstraction is:type ('a,'b) entryval entry : unit -> ('1a,'1b) entryval condAccept : ('3a,'3b) entry -> ('3a -> bool)-> ('3a * ('3b -> unit)) eventval call : ('a,'2b) entry -> 'a -> '2bThe function entry builds a new entry object, the function condAccept take an entry objectand a predicate and returns an entry event, and the function call is used by clients to callan entry. The lock manager given in Figure 5.5 is an example of the use of conditionalaccept (taken from [GR86]). A request to acquire a lock is only accepted if the lock is notcurrently held. The status of the locks is represented by a list of lock IDs of the currentlyheld locks.The implementation of the conditional accept abstraction is given in Figure 5.6. Anentry object is realized as a bu�er thread that matches calls with conditional accept o�ers.54

fun lockServer () = letval lockEntry = entry()val lockReqEvt = condAccept lockEntryfun serverLoop locks = letfun isLocked id = is id in locks?fun unlock id = remove id from locks.inselect [wrap (lockReq isLocked,fn (id, reply) => (reply(); serverLoop (id::locks))),wrap (receive unlockCh,fn id => serverLoop (unlock id))]endinspawn (fn () => (serverLoop []));{ acquireLock = call lockReqEntry,releaseLock = fn id => send(unlockCh, id) }end Figure 5.5: A lock manager using conditional acceptTwo channels are used to communicate with the bu�er thread: clients use the call_ch torequest an entry call, and the servers2 use offer_ch to o�er a conditional acceptance. Acall consists of an argument and a reply operation (a curried application of send to a replychannel), while an acceptance o�er consists of a predicate, a channel for sending a call tothe server, and an abort event for notifying the bu�er that the o�er has been withdrawn.An acceptance o�er matches a call if the predicate contained in the o�er returns truewhen applied to the argument of the call. The bu�er keeps a list of outstanding calls andoutstanding o�ers with the invariant that none of the bu�ered calls and o�ers match. Whena new call comes in, an attempt is made to match it against an outstanding o�er; likewise,when a new o�er comes in, an attempt is made to match it against an outstanding call. If amatch is actually found, the bu�er must also check to see if the o�er has been withdrawn.This is done by the function doMatch, which synchronizes on the choice of the o�er's abortevent and transmitting the call to the server. The semantics of abort actions guarantee thatexactly one of this choices will be available for selection. The other point of interest is thatthe bu�er thread's main loop synchronizes on the choice of receiving a new call, receivinga new o�er, or being noti�ed of the withdrawal of an o�er.This implementation can easily be extended to order requests by some priority function.The timed entry call can also be supported by allowing clients to request that their call be2This abstraction allows multiple servers to share the same entry object.55

localdatatype ('a, 'b) offer_t = OFFER of {pred : 'a -> bool,req_ch : ('a * ('b -> unit)) chan,abort_evt : unit event}inabstype ('a, 'b) entry = ENTRY of {accept_ch : ('a, 'b) offer_t chan,call_ch : ('a * ('b -> unit)) chan}withfun entry () = letval acceptCh = channel() and callCh = channel()exception NoMatchfun buffer (calls, offers) = letfun doMatch (call, OFFER{req_ch, abort_evt, ...}) = select [wrap(abort_evt, fn () => false),wrap(transmit(req_ch, call), fn () => true)]fun handleOffer (offer as OFFER{pred, ...}) = letfun matchCall [] = raise NoMatch| matchCall ((call as (x, _)) :: r) = if (pred x)then if (doMatch (call, offer)) then r else (matchCall r)else call :: (matchCall r)val arg = (matchCall calls, offers)handle NoMatch => (calls, offers@[offer])inbuffer argendfun handleCall (call as (x, _)) = letfun matchOffer [] = raise NoMatch| matchOffer ((offer as OFFER{pred, ...})::r) =if (pred x)then if (doMatch (call, offer))then relse (matchOffer r)else offer :: (matchOffer r)val arg = (calls, matchOffer offers)handle NoMatch => (calls@[call], offers)inbuffer argendcontinued...Figure 5.6: CML implementation of conditional entry abstraction56

Figure 5.6 (continued)fun withdraw (OFFER{req_ch = reqCh, ...}) = letfun remove ((off as OFFER{req_ch, ...}) :: r) =if (sameChannel(reqCh, req_ch))then restelse off :: (remove r)inremove offersendfun withdrawEvt (offer as OFFER{abort_evt, ...}) =wrap (abort_evt,fn () => buffer (calls, withdraw offer))inselect [wrap (receive acceptCh, handleOffer),wrap (receive callCh, handleCall),choose (map withdrawEvt offers)]endinENTRY{accept_ch = acceptCh, call_ch = callCh}endfun condAccept (ENTRY{accept_ch, ...}) pred = guard (fn () => letval reqCh = channel() and abortCh = channel()insend (accept_ch, OFFER{pred = pred,req_ch = reqCh,abort_evt = receive abortCh});wrapAbort (receive reqCh,fn () => send(abortCh, ()))end)fun call (ENTRY{call_ch, ...}) x = letval replyCh = channel()insend (call_ch, (x, fn y => send(replyCh, y)));accept replyChendend (* abstype *)end (* local *) 57

withdrawn after a timeout. When the bu�er receives such a request, if it has not alreadymatched the call with an o�er, then it would discard the outstanding call.The lock manager example given above is cited in [GR86] as an example of the need forthe suchthat clause. The claim is that without this mechanism, the lock manager requiresa separate thread and several transactions per lock and unlock request. The real problem isthat Concurrent C's (and Ada's) rendezvous mechanism does not allow a server threadto accept more than one entry call at a time. In CML, however, this is not a problem;the lock server can keep a list of pending lock requests for each lock. Thus, the conditionalentry abstraction is not a particularly useful one, but as an example it illustrates someinteresting points, including the most serious limitation with CML's primitives.For the basicAda rendezvous, it is possible to implement entryCall as an event-valuedfunction, and it would be nice to do the same for this richer abstraction. Unfortunately, thisrequires a way to insure that three threads (i.e., the client, bu�er and server) simultaneouslyreach agreement (i.e., rendezvous) on the acceptance of a particular call. But, if both theclient and server are involved in selective communication, then either might back out atthe last minute (i.e., by selecting some other choice). This limitation is not inherent in themechanism of �rst-class synchronous operations, but rather is because synchronous channelcommunication provides only a 2-way rendezvous. If a primitive synchronous operation issupplied for multiway rendezvous3 [Cha87], then abstractions such as the conditional acceptcan be supported for generalized communication.While I have argued that conditional accept is not a useful abstraction, there are otherexamples where this problem arises. Typically, they involve using a thread to implementa synchronous channel with richer semantics. For example, it might be nice to have aversion of channels that logged all messages for debugging purposes. The natural way to dothis is to use a thread to implement the logging channel abstraction, but without a 3-wayrendezvous the logging channels cannot support generalized selective communication. Thisproblem is a topic for future research.5.5 FuturesThe �nal example of this chapter is the future mechanism of Multilisp (see Section 3.3.5).Since touching a future is a synchronous operation, we represent futures directly as eventvalues. The future operation has the type:val future : ('a -> '2b) -> 'a -> '2b event3Multiway rendezvous is an instance of the committee coordination problem [CM88].58

and sync is the touch operator. The implementation of future (see Figure 5.7) is straight-forward: we spawn a new thread to evaluate the application and create a condition variablefor reporting the result. Since the evaluation of a future might result in a raised exception,fun future f x = letdatatype 'a msg_t = RESULT of 'a | EXN of exnval resVar = condVar()inspawn (fn () => writeVar (resVar, RESULT(f x) handle ex => EXN ex));wrap (readVarEvt resVar,fn (RESULT x) => x | (EXN ex) => raise ex)end Figure 5.7: CML implementation of futuresthe result condition variable (resVar) holds either the result or an exception.

59

60

Part IIITheory

61

Chapter 6Theory PreliminariesThis part of the dissertation focuses on a small concurrent �-calculus, called �cv, thatmodels the signi�cant concurrency mechanisms of CML. I present both a dynamic andstatic semantics for �cv and prove that the static semantics, which is a polymorphic typediscipline, is sound with respect to the dynamic semantics.Before diving into the semantics of �cv, it is necessary to review notation. This chapter�rst describes the basic notation used in this part, a mix of the notations found in [Tof88]and [WF91b], and then introduces the style of semantic speci�cation used by de�ning thesemantics of �v, a sequential subset of �cv.6.1 NotationIf A and B are sets, then A[B is their union, A\B is their intersection, and A nB is theirdi�erence. The notation A �n�! B denotes the set of �nite maps from A to B (i.e., partialfunctions with �nite domains). If f is a map, then the domain and range of f are de�nedas dom(f) = fx j f(x) is de�nedgrng(f) = ff(x) j x 2 dom(f)gThe notation fa1 7! b1; : : : ; an 7! bngdenotes a �nite map with domain fa1; : : : ; ang, such that ai is mapped to bi; we write fgfor the map with the empty domain. If f and g are maps, then f � g is their composition,and f � g, called f modi�ed by g, is a map with domain dom(f) [dom(g), such that(f � g)(x) = (g(x) if x 2 dom(g)f(x) otherwise63

The symbol � is used because something is added and, when dom(g)\ dom(f) 6= ;, some-thing is taken away [Tof88]. It is sometimes useful to view maps as sets of ordered pairsand write f � g, if dom(f) � dom(g) and for x 2 dom(f), f(x) = g(x). In this case, g iscalled an extension of f . If S is a set, then we write S+x for S [fxg. When S is a map,and x = (a; b), then S+x is only de�ned if a 62 dom(S). The operator + associates to theleft, so S+y+z is read as (S+y)+z. The notation Fin(S) denotes the set of �nite subsetsof S (the �nite power set of S). If � is a binary relation, then �� is the re
exive transitiveclosure of �.6.2 Formal semanticsTo further introduce the notation of the following chapters, as well as to survey the impor-tant concepts and results related to this style of semantics, the rest of this chapter presentsthe syntax and semantics of a simple call-by-value �-calculus. This calculus, which is es-sentially a polymorphically typed version of Plotkin's �v calculus [Plo75], forms the coreof the concurrent language presented in the following chapters. I use a style of semanticsdeveloped by Wright and Felleisen [WF91b]; other versions of this presentation can be foundin many places, such as [DM82] and [Tof88]. The presentation proceeds by �rst de�ning thesyntax and dynamic semantics of the untyped �v calculus, and then de�ning the standardHindley-Milner polymorphic type inference system for �v [DM82]. Finally, I state, withoutproof, the standard theorems that relate the static and dynamic semantics.6.2.1 Syntax of �vThe ground terms of �v are variables, base constants and function constants :x 2 Var variablesb 2 Const = BConst[FConst constantsBConst = f(); true; false; 0; 1; : : :g base constantsFConst = f+; -; : : :g function constantsThere are two syntactic classes of terms, expressions (e 2 Exp) and values (v 2 Val � Exp),de�ned by the following grammar:e ::= v valuej e1 e2 applicationj let x = e1 in e2 letv ::= b constantj x variablej �x(e) �-abstraction64

Values are the irreducible (or canonical) terms in the dynamic semantics. The free variablesof a term are de�ned inductively: FV(b) = ;FV(x) = fxgFV(e1 e2) = FV(e1) [FV(e2)FV(let x = e1 in e2) = FV(e1) [(FV(e2) n fxg)FV(�x(e)) = FV(e) n fxgA term e is closed if FV(e) = ;. A variable is bound in a term if it appears as the variableof a let or �. We identify terms up to �-conversion of bound identi�ers; for example,�x(x) =� �x0(x0)The substitution of a term e0 for a variable x0 in a term e, where x0 is not bound in e, iswritten as e[x0 7! e0], and is de�ned inductively asb[x0 7! e0] = bx0[x0 7! e0] = e0x[x0 7! e0] = x (x 6= x0)(e1 e2)[x0 7! e0] = e1[x0 7! e0] e2[x0 7! e0](let x = e1 in e2)[x0 7! e0] = let x = e1[x0 7! e0] in e2[x0 7! e0](�x(e))[x0 7! e0] = �x(e[x0 7! e0])Note that, because of the assumption that x0 is not bound in e, x 6= x0 in the last twocases. This is a reasonable assumption, since bound variables can be renamed. In general,to avoid the problems of free variable capture, we adopt Barendregt's variable convention:If M1; : : : ;Mn occur in a certain mathematical context (e.g., de�nition, proof),then in these terms all bound variables are chosen to be di�erent from the freevariables. (p. 26 of [Bar84])6.2.2 Dynamic semantics of �vThere are a number of di�erent ways to specify the dynamic semantics of programminglanguages. I use the style of operational semantics developed by Felleisen and Friedman[FF86], because it provides a good framework for proving type soundness results [WF91b].In this approach, the objects of the dynamic semantics are the syntactic terms in Exp.The meaning of the function constants is de�ned by a partial function� : (FConst�BConst)! Const65

For example, assuming that fnot; +; 1+g � FConst, then�(not; true) = false�(+; 1) = 1+�(1+; 1) = 2Here 1+ is a special function constant that represents the partial application of + to 1.An evaluation context is a single-hole context where the hole marks the next redex (oris at the top if the term is irreducible) The evaluation contexts of �v are de�ned by thefollowing grammar: E ::= [] j E e j v E j let x =E in eThe evaluation relation is de�ned in terms of these contexts.De�nition 6.1 (v7�!) The evaluation relation is the smallest relation satisfying the follow-ing three rules:E[b v] v7�! E[�(b; v)] (�v-�)E[�x(e) v] v7�! E[e[x 7! v]] (�v-�)E[let x = v in e] v7�! E[e[x 7! v]] (�v-let)It is easily shown that a given expression has a unique evaluation context under these rules,which results in left-to-right call-by-value evaluation; i.e., a function application is evaluatedby �rst evaluating the function position, then the argument position and lastly by applyingthe function, and similarly for let expressions. For example, in the expression�x(x 1)(�y(y) �z(z))the evaluation context is �x(x 1)([])and the redex is �y(y) �z(z)As an example of evaluation, consider the following evaluation, where [� � �] is used to markthe context/redex boundary. �x(1) ([�x(x 10) �y(y)])v7�! �x(1) ([�y(y) 10])v7�! [�x(1) 10]v7�! [1] 66

6.2.3 Typing �vThis section describes a standard polymorphic type system for �v. The purpose of the typesystem is to provide a static characterization of the possible results of a computation (e.g.,\the expression e evaluates to an integer"). The type system is a deductive proof systemthat assigns types to �v terms. The most interesting aspect of this system is the rule forlet, which is the source of polymorphism. I start by de�ning the set of types, then I presentthe type system and discuss the rule for let. Finally, I describe the standard soundnessresults that hold for this system.Type terms are built up from type constants and type variables :� 2 TyVar type variables� 2 TyCon = fbool; int; : : :g type constantsThe set of types (� 2 Ty) is de�ned by:� ::= � type constantj � type variablej (�1 ! �2) function typeand the set of type schemes (� 2 TyScheme) is de�ned by:� ::= �j 8�:�The type schema � = 8�1:8�2 � � � 8�n:� is abbreviated as 8�1�2 � � ��n:� . The type variables�1; : : : ; �n are said to be bound in �. A type variable that occurs in � and is not boundis said to be free in �. We write FTV(�) for the free type variables of �. If FTV(�) = ;,then � is said to be a monotype. A type environment is a �nite map from variables to typeschemes TE 2 TyEnv = Var �n�! TySchemeIt is also useful to view a type environment as a �nite set of assumptions about the typesof variables. The set of free type variables of a type environment TE is de�ned to beFTV(TE) = [�2rng(TE)FTV(�)The closure, with respect to a type environment TE, of a type � is de�ned asClosTE(�) = 8�1 � � ��n:�where f�1; : : : ; �ng = FTV(�) nFTV(TE). 67

A substitution is a map from type variables to types. A substitution S can be naturallyextended to map types to types as follows:S� = �S� = S(�)S(�1 ! �2) = (S�1 ! S�2)Application of a substitution to a type schema respects bound variables and avoids capture.It is de�ned as: S(8�1 � � ��n:�) = 8�1; : : : ; �n:S(� [�i 7! �i])where �i 62 dom(S)[FTV (rng(S)). Application of a substitution S to a type environmentTE is de�ned as S(TE) = S�TE. A type � 0 is an instance of a type scheme � = 8�1 � � ��n:� ,written � � � 0, if there exists a �nite substitution, S, with dom(S) = f�1; : : :�ng andS� = � 0. If � � � 0, then we say that � is a generalization of � 0. Some examples are:8�:� � � , for any � 2 Ty8�; �:(�! �) � (�! �)8�; �:(�! �) � (�! int)The typing system is given as a set of rules fromwhich sentences of the form \TE ` e : �"can be inferred. This sentence is read as \e has the type � under the set of typing assump-tions TE." We write ` e : � for fg ` e : � . To associate types with the constants, we assumethe existence of a function TypeOf : Const! TySchemeFigure 6.1 contains the typing rules for �v. The rule (�-let), called the Milner let rule,plays an important role in this system. It is the rule that introduces polymorphism (via theclosure operation), which is the reason for including the let construct in �v. For example,although the operational semantics of �v equates�f((f f) 1) �x(x)with let f =�x(x) in (f f) 1The former is untypable, while the latter has the typingfg ` (let f =�x(x) in (f f) 1) : intThe reason for this is that (�-let) rule assigns to f the type schema 8�:(�! �), which isinstantiated to both (int ! int) and ((int ! int) ! (int ! int)) in the body of thelet. 68

TypeOf(b) � �TE ` b : � (�-const)x 2 dom(TE) TE(x) � �TE ` x : � (�-var)TE ` e1 : (� 0 ! �) TE ` e2 : � 0TE ` e1 e2 : � (�-app)TE� fx 7! �g ` e : � 0TE ` �x(e) : (� ! � 0) (�-abs)TE ` e1 : � 0 TE� fx 7! ClosTE(� 0)g ` e2 : �TE ` let x = e1 in e2 : � (�-let)Figure 6.1: Type inference rules for �vFor this type system to make sense with respect to the set of constants, we place thefollowing restriction on the de�nition of �:If TypeOf(b) � (� 0 ! �) and ` v : � 0, then �(b; v) is de�ned and ` �(b; v) : � .This restriction insures that any well-typed application of a function constant has a �reduction. Unfortunately, this restriction rules out some useful function constants, suchas integer division, that are not total. In a calculus with exceptions this restriction isunnecessary (see Section 7.5.3 or [WF91b]).It is worth noting that there is exactly one typing rule for each syntactic form; thus, ifwe have a proof of TE ` e : � , for some e, the form of e uniquely speci�es which typing rulewas the last applied in the deduction. This is the formulation of [Tof88] and di�ers fromthe system of [DM82], which has judgements that infer type schemas for expressions andrules for instantiating and generalizing type schemas. A proof of the equivalence of thesetwo systems can be found in [CDDK86].This type inference system is decidable; there exists an algorithm, called algorithmW [DM82] that infers the principal type (i.e., most general under the relation �) of anexpression. AlgorithmW is both sound and complete with respect to the inference system.See [DM82] or [Tof88] for details and proofs.69

6.2.4 Properties of typed �vThe purpose of static typechecking is to provide compile-time guarantees about the run-time behavior of a program. The most important property of the typing system for �v istype soundness; i.e., well-typed programs do not have run-time type errors. As with thedynamic semantics, I follow Wright and Felleisen's approach [WF91b], which is a purelysyntactic treatment (recall that the objects of the dynamic semantics in Section 6.2.2 arethe syntactic terms). Other approaches to this problem can be found in [DM82], [Dam85],and [Tof88]. The key result in the approach of [WF91b] is proving that evaluation preservestypes. This is stated in the following type preservation lemma:Lemma 6.1 (Type preservation) If TE ` e : � and e v7�! e0, then TE ` e0 : � .This lemma is also known as subject reduction.An expression e 62 Val is said to be stuck if there is no e0 such that e v7�! e0. Because thenotion of stuck expressions is a semantic one, Wright and Felleisen de�ne a syntactic notionthat is a conservative approximation of the potentially stuck expressions. An expression isfaulty if it contains a subexpression of the form \b v," where �(b; v) is not de�ned.1 Thefollowing expression is an example of a faulty expression that cannot become stuck:�x(1) �y(true 2)Faulty expressions are shown to be untypable in [WF91b].We say an expression e diverges, written e*, if, for all e0 such that e v7�!� e0, there existsan e00 such that e0 v7�! e00. An expression e converges to a value v, written e+v, if e v7�!� v.Given these de�nitions, the behavior of evaluation is characterized by the following lemma:Lemma 6.2 (Uniform evaluation) For any closed expression e, either e+v, e*, or e v7�!�e0, with e0 being faulty.The subject reduction and uniform evaluation lemmas then give us the following theorem:Theorem 6.3 (Syntactic soundness) If ` e : � , then either e*, or e+v and ` v : � .To state the soundness of the type system in the traditional way, we de�ne the partialfunction eval by:eval(e) = (WRONG if e v7�!� e0, with e0 being faultyv if e+v1Examining the evaluation relation and the de�nition of evaluation contexts, it is clear that the only waythat an expression can be stuck is if it has the form E[b v], where �(b; v) is unde�ned.70

Note that if e*, then eval(e) is unde�ned. Using this de�nition, we can state strong andweak soundness results, which are corollaries of Theorem 6.3.Theorem 6.4 (Soundness) If ` e : � , then the following hold:(Strong soundness) if eval(e) = v, then ` v : �(Weak soundness) eval(e) 6= WRONGThis theorem means that well-typed programs produce results of the right type (if theyterminate) and do not have run-time type errors. See [WF91b] for proof details.

71

Chapter 7The Operational Semantics of �cvIn this chapter, I present the syntax and dynamic semantics of a small concurrent languagewith �rst-class synchronous operations. This language, which I call �cv, is �v (from theprevious chapter) extended with pairs and the concurrency primitives of CML. While�cv lacks a number of features of SML (and thus of CML), it embodies the essentialconcurrency mechanisms of CML. In particular, it includes events, channels, the channelI/O event constructors, and the choose, wrap, guard, wrapAbort combinators. I alsodiscuss how �cv might be extended to model additional features found in CML, such asexceptions and polling. In Chapter 8, I present the static semantics of �cv.7.1 SyntaxAs with �v, the ground terms consist of variables, base constants and function constants;in addition there are channel names. The ground terms are:x 2 Var variablesb 2 Const = BConst[FConst constantsBConst = f(); true; false; 0; 1; : : :g base constantsFConst = f+; -; fst; snd; : : :g function constants� 2 Ch channel namesThe sets Var, Const, and Ch are assumed to be pairwise disjoint. The set FConstincludes the following event-valued combinators and constructors:choose; guard; never; receive; transmit; wrap; wrapAbortIn addition to the syntactic classes of expressions, e 2 Exp, and values, v 2 Val, �cvhas a syntactic class of event values, ev 2 Event � Val. The terms of �cv are de�ned bythe grammar in Figure 7.1. Pairs have been included to make the handling of two-argument72

e ::= v valuej e1 e2 applicationj (e1.e2) pairj let x = e1 in e2 letj chan x in e channel creationj spawn e process creationj sync e synchronizationv ::= b constantj x variablej (v1.v2) pair valuej �x(e) �-abstractionj � channel namej ev event valuej (G e) guarded event functionev ::= � neverj �!v channel outputj �? channel inputj (ev) v) wrapperj (ev1 � ev2) choicej (ev j v) abort wrapperFigure 7.1: Grammar for �cvfunctions easier. Note that the syntactic class of the term (v1.v2) is either Exp or Val;this ambiguity is resolved in favor of Val. There are three binding forms in this termlanguage: let binding, �-abstraction and channel creation. Unlike CML, new channels areintroduced by the special binding form for channel creation. This is done to simplify thepresentation of the next chapter, and the channel function ofCML can be de�ned in termsof �cv (see Section 7.1.1). The set Val� is the set of closed value terms (i.e., those withoutfree variables); note, however, that closed values may contain free channel names. The freechannel names of an expression e are denoted by FCN(e). Note that, since there are nochannel name binding forms, FCN(e) is exactly the set of channel names that appear in e.Channel names and event values are not part of the concrete syntax of the language;rather, they appear as the intermediate results of evaluation. A program is a closed term,which does not contain any guarded event functions (i.e., (G e) terms), or any subterms inthe syntactic classes Event or Ch. In other words, programs do not contain intermediatevalues. 73

7.1.1 Syntactic sugarThe syntax of �cv di�ers from CML in several ways, but in many cases the CML syntaxcan be viewed as syntactic sugar for �cv terms.CML uses the function channel to allocate new channels and provides the more tradi-tional synchronous operations send and accept. These functions can be used by embeddinga �cv term e in the following context:let channel = �x(chan k in k) inlet send = �x(sync (transmit x)) inlet accept = �x(sync (receive x)) in[e]The choose and select functions ofCML work on lists of events (instead of just pairs).Although �cv does not have SML's recursive datatypes, event lists can be implementedusing the following translation: [[nil]] = never()[[ev::r]] = choose (ev.[[r]])There is no term for sequencing, but we use \(e1; e2)" as syntactic sugar for the term\snd (e1.e2)." Since �cv uses a left-to-right call-by-value evaluation order, this has thedesired semantics.7.2 Dynamic semanticsThe dynamic semantics of �cv is de�ned by two evaluation relations: a sequential evaluationrelation \7�!," and a concurrent evaluation relation \=)." The relation \ 7�!" is \ v7�!"with a richer � function and a reduction rule for pairs. Concurrent evaluation is an extensionof sequential evaluation to �nite sets of processes.7.2.1 Sequential evaluationAs before, the meaning of the function constants is given by the partial function� : FConst�Val� ! Val�Since a closed value v 2 Val� can have free channel names in it, we require, that if b 2FConst and �(b; v) is de�ned, thenFCN(�(b; v))� FCN(v)74

In other words, � is not allowed to introduce new channel names. For the standard built-infunction constants, the meaning of � is the expected one. For example:�(+; (0.1)) = 1�(+; (1.1)) = 2�(fst; (v1.v2)) = v1�(snd; (v1.v2)) = v2The meaning of � is straightforward for most of the event-valued combinators and construc-tors: �(never; ()) = ��(transmit; (�.v)) = �!v�(receive; �) = �?�(wrap; (ev.v)) = (ev) v)�(choose; (ev1.ev2)) = (ev1 � ev2)�(wrapAbort; (ev.v)) = (ev j v)The only complication arises in the case of guarded-event values:�(guard; v) = (G (v ()))�(wrap; ((Ge).v)) = (G (wrap (e.v)))�(choose; ((Ge1).(G e2))) = (G (choose (e1.e2)))�(choose; ((G e1).ev2)) = (G (choose (e1.ev2)))�(choose; (ev1.(G e2))) = (G (choose (ev1.e2)))�(wrapAbort; ((Ge).v)) = (G (wrapAbort (e.v)))These rules re
ect guard's role as a delay operator; when another event constructor isapplied to a guarded event value, then the guard operator (G) is pulled out to delay theevent construction.1Like �v, evaluation of �cv is call-by-value, but there is the additional constraint thatpairs are evaluated left-to-right. This leads to the following grammar for the evaluationcontexts of �cv : E ::= [] j E e j v E j (E.e) j (v.E)j let x =E in e j spawn E j sync EThe following fact about terms and contexts is useful in Chapter 8:Lemma 7.1 If E[e] is a closed term, then e is a closed term.Proof. Examining the above de�nition, it is clear that if x is free in e, then x must alsobe free in E[e]. Hence, FV(e) � FV(E[e]) = ;. �De�nition 7.1 (7�!) The sequential evaluation relation is the smallest relation \7�!"satisfying the following four rules:1In Algol 60 terminology, (G e) is a thunk. 75

E[b v] 7�! E[�(b; v)] (�cv-�)E[�x(e) v] 7�! E[e[x 7! v]] (�cv-�)E[let x = v in e] 7�! E[e[x 7! v]] (�cv-let)E[sync (G e)] 7�! E[sync e] (�cv-guard)Note that the rule (�cv-guard) forces the expression delayed by guard. As usual, 7�!� isthe transitive closure of 7�!. The evaluation of the other new forms (e.g., spawn) is de�nedas part of the concurrent evaluation relation in Section 7.2.3.7.2.2 Event matchingThe key concept in the semantics of concurrent evaluation is the notion of event matching,which captures the semantics of rendezvous and communication. Informally, if two processessynchronize on matching events, then they can exchange values and continue evaluation.Before we can make this more formal, we need an auxiliary de�nitionDe�nition 7.2 The abort action of an event value ev is an expression, which, when eval-uated, spawns the abort wrappers of ev . The mapAbortAct : Event! Expmaps an event value to its abort action, and is de�ned inductively as follows:AbortAct(�) = ()AbortAct(�?) = ()AbortAct(�!v) = ()AbortAct(ev) e) = AbortAct(ev)AbortAct(ev1 � ev2) = (AbortAct(ev1); AbortAct(ev2))AbortAct(ev j v) = (AbortAct(ev); spawn v)With this de�nition we can formally de�ne the matching of event values:De�nition 7.3 (Event matching) The matching of event values is de�ned as a family ofbinary symmetric relations (indexed by Ch). For � 2 Ch, de�neev1 �_̂ ev2 with (e1; e2)(pronounced \ev1 matches ev2 on channel � with respective results e1 and e2) as the smallestrelation satisfying the six inference rules given in Figure 7.2. This relation is abbreviatedto ev1 �_̂ ev2 when the results are unimportant.An example of event matching is:(�?) �x((x.x))) �_̂ (�!17� (�?) �x())) with (�x((x.x)) 17; ())76

�!v �_̂ �? with ((); v)ev1 �_̂ ev2 with (e1; e2)ev2 �_̂ ev1 with (e2; e1)ev1 �_̂ ev2 with (e1; e2)ev1 �_̂ (ev2) v) with (e1; v e2)ev1 �_̂ ev2 with (e1; e2)ev1 �_̂ (ev2 � ev3) with (e1; (AbortAct(ev3); e2))ev1 �_̂ ev2 with (e1; e2)ev1 �_̂ (ev3 � ev2) with (e1; (AbortAct(ev3); e2))ev1 �_̂ ev2 with (e1; e2)ev1 �_̂ (ev2 j v) with (e1; e2)Figure 7.2: Rules for event matchingInformally, if two processes attempt to synchronize on matching event values, then we canreplace the applications of sync with the respective results. This is made more precise inthe next section where the concurrent evaluation relation is de�ned.Note that event matching is nondeterministic; for example, both�? �_̂ (�!17� �!29) with (17; ())and �? �_̂ (�!17� �!29) with (29; ())It is also worth noting that even if one of the wrappers of an event value is non-terminating, the necessary abort actions for that event will be executed (assuming fairevaluation). This property is important because a common CML idiom is to have tail-recursive calls in wrappers (e.g., the bu�ered channel abstraction in Section 5.1).77

7.2.3 Concurrent evaluationConcurrent evaluation is de�ned as a transition system between �nite sets of process states.This is similar to the style of the \Chemical Abstract Machine" [BB90], except that there areno \cooling" and \heating" transitions (the process sets of this semantics can be thoughtof as perpetually \hot" solutions). The concurrent evaluation relation extends \7�!" to�nite sets of terms (i.e., processes) and adds additional rules for process creation, channelcreation, and communication. We assume a set of process identi�ers, and de�ne the set ofprocesses and process sets as:� 2 ProcId process IDsp = h�; ei 2 Proc = (ProcId �Exp) processesP 2 Fin(Proc) process setsWe often write a process as h�; E[e]i, where the evaluation context serves the role of theprogram counter, marking the current state of evaluation.De�nition 7.4 A process set P is well-formed if for all h�; ei 2 P the following hold:� FV(e) = ; (e is closed), and� there is no e0 6= e, such that h�; e0i 2 P .It is occasionally useful to view well-formed process sets as �nite maps from ProcId toExp. If P is a �nite set of process states and K is a �nite set of channel names, then K;Pis a con�guration.De�nition 7.5 A con�guration K;P is well-formed, if FCN(P) � K and P is well-formed.The concurrent evaluation relation \=)" extends \7�!" to con�gurations, with addi-tional rules for the concurrency operations. It is de�ned by four inference rules that de�nesingle step evaluations. Each concurrent evaluation step a�ects one or two processes, calledthe selected processes. I �rst describe each of these rules independently, and then state theformal de�nition.The �rst rule extends the sequential evaluation relation (7�!) to con�gurations:e 7�! e0K;P+h�; ei =) K;P+h�; e0i (�cv-7!)The selected process is �.The creation of channels requires picking a new channel name and substituting for thevariable bound to it: � 62 KK;P+h�; E[chan x in e]i =) K+�;P+h�; E[e[x 7! �]]i (�cv-chan)78

Again, � is the selected process.Process creation requires picking a new process identi�er:�0 62 dom(P)+�K;P+h�; E[spawn v]i =) K;P+h�; E[()]i+h�0; v ()i (�cv-spawn)This rule has two selected processes: � and �0.The most interesting rule describes communication and synchronization. If two processesare attempting synchronization on matching events, then they may rendezvous | i.e.,exchange a message and continue evaluation:ev1 �_̂ ev2 with (e1; e2)K;P+h�1; E1[sync ev1]i+h�2; E2[sync ev2]i=) K;P+h�1; E1[e1]i+h�2; E2[e2]i (�cv-sync)The selected processes for this rule are �1 and �2. We say that � is used in this transition.More formally, concurrent evaluation is de�ned as follows:De�nition 7.6 (=)) The concurrent evaluation relation is the smallest relation \=)"satisfying the rules: (�cv-7!), (�cv-chan), (�cv-spawn), and (�cv-sync).Under these rules, processes live forever; i.e., if a process evaluates to a value, it willnever again be selected, but it remains in the process set. We could add the following rule,which is similar to the evaporation rule of [BB90]:K;P+h�; [v]i =) K;PThis rule is not included because certain results are easier to state and prove if the processset is monotonicly increasing.7.3 TracesUnlike in the sequential semantics of Section 6.2.2, a program can have many (often in�nitelymany) di�erent evaluations. Furthermore, there are many interesting programs that do notterminate. Thus some new terminology and notation for describing evaluation sequencesis required. This is used to describe some reasonable fairness constraints (see Section 7.4)and to state type soundness results for �cv (see Chapter 8).First we note the following properties of =):Lemma 7.2 If K;P is well-formed and K;P =) K0;P 0 then the following hold:79

1. K0;P 0 is well-formed2. K � K03. dom(P) � dom(P 0)Proof. By examination of the rules for =). �Corollary 7.3 The properties of Lemma 7.2 hold for =)�.Proof. By induction on the length of the evaluation sequence. �Note that property (1) implies that evaluation preserves closed terms.De�nition 7.7 A trace T is a (possibly in�nite) sequence of well-formed con�gurationsT = hhK0;P0; K1;P1; : : : iisuch that Ki;Pi =) Ki+1;Pi+1 (for i < n, if T is �nite with length n). The head of T isK0;P0.Note that if a con�guration K0;P0 is well-formed, then any sequence of evaluation stepsstarting with K0;P0 is a trace (by Corollary 7.3).The possible states of a process with respect to a con�guration are given by the followingde�nition.De�nition 7.8 Let P be a well-formed process set and let p 2 P , with p = h�; ei. Thestate of � in P is either zombie, blocked, or ready, depending on the form of e:� if e = [v], then p is a zombie,� if e = E[sync ev] and there does not exist a h�0; E 0[sync ev 0]i 2 (P n fpg), such thatev �_̂ ev 0, then � is blocked in P .� otherwise, � is ready in P .We de�ne the set of ready processes in P byRdy(P) = f� j � is ready in PgA con�guration K;P is terminal if Rdy(P) = ;. A terminal con�guration with blockedprocesses is said to be deadlocked. 80

De�nition 7.9 A trace is a computation if it is maximal; i.e., if it is in�nite or if it is �niteand ends in a terminal con�guration. If e is a program, then we de�ne the computations ofe to be Comp(e) = fT jT is a computation with head h�0; eigNote, I follow the convention of using �0 as the process identi�er of the initial process in acomputation of a program.De�nition 7.10 The set of processes of a trace T is de�ned asProcs(T) = f� j 9Ki;Pi 2 T with � 2 dom(Pi)gSince a given program can evaluate in di�erent ways, the sequential notions of conver-gence and divergence are inadequate. Instead, we de�ne convergence and divergence relativeto a particular computation of a program.De�nition 7.11 A process � 2 Procs(T) converges to a value v in T , written �+Tv, ifK;P+h�; vi 2 T . We say that � diverges in T , written �*T , if for every K;P 2 T , with� 2 dom(P), � is ready or blocked in P .Divergence includes deadlocked processes and terminating processes that are not evaluatedoften enough to reach termination, as well as those with in�nite loops. It does not includeprocesses with run-time type errors, which are called stuck (see Section 8.2.3).7.4 FairnessThe semantics presented above admits unfair traces, and thus is not adequate as a spec-i�cation of CML implementations. It is necessary to distinguish the acceptable traces.Informally, we require that ready processes make progress and that communication on asingle channel is fair (see [Kwi89] for a survey of fairness issues).A couple of de�nitions are required before formalizing the notions of fairness. I havealready de�ned the notion of a process being ready in a con�guration; a similar de�nitionis required for channels.De�nition 7.12 A channel � is enabled in a con�guration K;P if there are two distinctprocesses h�; E[sync ev]i 2 P and h�0; E 0[sync ev 0]i 2 P , such that ev �_̂ ev 0.The acceptable computations of a program are de�ned in terms of fairness restrictions.81

De�nition 7.13 A computation T is acceptable if it ends in a terminal con�guration, or ifT satis�es the following fairness constraints:(1) Any process that is enabled in�nitely often is selected in�nitely often.(2) Any channel that is enabled in�nitely often is used in�nitely often.In the taxonomy of [Kwi89], the �rst restriction is strong process fairness and the second isstrong event fairness.An implementation of CML should prohibit the possibility of unacceptable computa-tions. In practice this requires that an implementation satisfy some stronger property on�nite traces. As an example, consider the following property.De�nition 7.14 A �nite trace T of length n is k{bounded fair (for k a �xed positiveinteger), if every intermediate con�guration Ki;Pi, satis�es one of the following (wherem = i+ k jRdy(Pi)j):� m > n, or� for every � 2 Rdy(Pi), � is a selected process at least once in the evaluation subse-quence Ki;Pi =) � � � =) Km;Pm.An in�nite trace T is k{bounded fair, if every �nite pre�x of T is k{bounded fair.A k{bounded fair trace obviously satis�es restriction (1) (but not necessarily (2)). The k{bounded fairness restriction is realizable using fairly standard implementation techniques.For example, an implementation that uses fair preemptive scheduling2 and FIFO queues forthe process ready queue and for channel waiting queues will produce only k{bounded fairsequences, where k is determined by the length of the time-slice and speed of the processor.Similar notions can be de�ned for event fairness.7.5 Extending �cvThe language �cv lacks a number of features found in CML; in this section I show how �cvmight be extended to model some of these features. This is not meant to be a completedevelopment of the formal semantics of a more complicated language, rather it is to illustratethat a formal treatment of full CML is possible.2By fair, I mean that a thread is guaranteed some progress before being preempted.82

7.5.1 RecursionDynamic process and channel creation is powerful enough to implement the call-by-valueYv combinator. This combinator has the following evaluation rule:E[Yv v] 7�! E[v �x((Yv v) x)]The followingCML code implementsYv using only those features found in �cv (it is adoptedfrom [GMP89]):val Yv = fn f => letval a = channel()val g = fn v => let val h' = accept ainspawn (fn () => send(a, h'));f h' vendinspawn (fn () => send(a, g));let val h = accept ainspawn (fn () => send(a, h));f hendendThis code is somewhat mysterious, but what it actually does is fairly simple. The channela is used to cache the function g for the next iteration of f; each time g (renamed h) is readfrom a, a new thread is spawned to send the copy for the next iteration. For CML, whichis statically typed (see Chapter 8), this de�nition implements recursion at all imperativetypes. As an alternative, we could add the Yv combinator as a built-in term constructor (asis done in [WF91b]), which would provide recursion at all types.7.5.2 ReferencesIt is well-known that processes and channels can be used to mimic updatable references.The standard technique is to use a process (or thread) to hold the state of the reference cell,with messages to implement reading and writing of the cell. Figure 7.3 gives the CML codefor this. One can de�ne a formal translation from programs with references to programsusing this scheme. This is done in [BMT92], and the translation is shown to be faithful tothe expected semantics of references.The implementation of Yv described in Section 7.5.1 is similar to the imperative Y{combinator (Y!) de�ned by Felleisen [Fel87a]. This suggests the following implementation83

datatype 'a ref = REF of ('a chan * 'a chan)fun mkRef initX = letval inCh = channel() and outCh = channel()fun cell x = sync (choose [wrap (transmit (outCh, x), fn () => cell x),wrap (receive inCh, fn newX => cell newX)])inspawn (fn () => cell initX);REF(inCh, outCh)endfun assign (REF(inCh, _), x) = send (inCh, x)fun deref (REF(_, outCh)) = accept outChFigure 7.3: Implementing referencesof references, which uses channels to represent references directly and does not requireexplicit recursion. Figure 7.4 gives this alternative representation of references. Note thatthis version of references can be directly coded in �cv .fun mkRef initX = let val ch = channel()inspawn (fn () => send (ch, initX));chendfun assign (ch, x) = (accept ch; spawn (fn () => send (ch, x)))fun deref ch = let val x = accept chinspawn (fn () => send (ch, x));xend Figure 7.4: Implementing references without recursion7.5.3 ExceptionsOne of the most important features of SML (andCML) is the exception mechanism. CMLadds further support for exceptions with the wrapHandler event-value combinator, which84

handles exceptions that are raised during evaluation of an event's wrappers. Exceptions areanother feature that requires imperative types to achieve sound typing.Wright and Felleisen provide a semantics of SML's exception mechanism in [WF91b],but applying this technique to �cv requires some care. The problem is that the soundnessof their semantics relies on limiting the scope of exception identi�ers to within the scopeof their binding site (the rewrite rules allow the binding sites to migrate up to the top ofthe term, thus expanding the scope of the binding). Since processes can include exceptionsin messages, and thus send them out of scope, a di�erent approach is needed. The bestapproach seems to be to bind exception identi�ers in an implicit global environment (as isdone with channel names). In the remainder of this section, I sketch the changes to thesyntax and semantics of �cv that are required to support exceptions.Adding exceptions to �cv requires a set of exception names :ex 2 ExnNameThe syntax of �cv must be extended to support the declaration, raising, and handlingof exceptions. A raised exception is represented by an exception packet (Exn � Exp).Exception packets are irreducible terms, but for technical reasons they are not values. Thesyntactic extensions are:e ::= exception x in e exception bindingj raise e1 e2 raise exceptionj e1 handle x with e2 exception handlerj exn exception packetj : : :exn ::= [ex ; v] exception packetv ::= ex exception namej : : :ev ::= (evH v) wrapped handlerj : : :The terms for exception packets, exception names and wrapped handlers are intermediateforms; i.e., they do not appear in programs.Sequential evaluation is extended in several ways. Since there is no pattern matching in�cv, exception matching must be explicitly coded in the semantics. For wrapHandler, thismeans that the wrapper is a pair of the exception name and the handler. This is re
ectedin the �{rule for wrapHandler:�(wrapHandler; (ev.(ex.v))) = (evH (ex.v))85

The presence of an exception mechanism means that function constants such as div can besupported. Assuming the existence of the exception name Div 2 ExnName, then integerdivision can be de�ned by: �(div; (x.0)) = [Div ; ()]�(div; (x.y)) = jxy kAdditional evaluation contexts for the new syntactic terms are required:E ::= raise E e j raise ex Ej e handle ex with E j E handle ex with vj : : :Note that the handler of a handle term is evaluated before the body. The sequentialevaluation relation (De�nition 7.1) must be extended. Most of the new clauses for \7�!"are for short circuiting evaluation when an exception is raised and propagating the resultingpacket up to a handler. A sampling of these is:E[exn e] 7�! E[exn]E[v exn] 7�! E[exn]E[e handle ex with exn] 7�! E[exn]There are similar rules for pairs, let, sync and raise. The other new clauses have to dowith the raising and catching of exception packets:E[raise ex v] 7�! E[[ex ; v]]E[[ex ; v] handle ex with v0] 7�! E[v0 v]E[[ex ; v] handle ex 0 with v0] 7�! E[[ex ; v]] (ex 6= ex 0)As is the case with channel names, the binding of new exception names is left to theconcurrent evaluation relation.The event matching relation (De�nition 7.3) must be extended with a clause for wrappedhandlers: ev1 �_̂ ev2 with (e1; e2)ev1 �_̂ (ev2H (ex.v)) with (e1; e2 handle ex with v)Con�gurations must now include a set of bound exception names. They have the formK;X ;P , where X � ExnName is a �nite set of exception names. A con�guration K;X ;Pis well-formed, if FCN(P) � K, P is well-formed, and any exception name that occurs in Pis in X .The inference rules for concurrent evaluation relation (De�nition 7.6) are modi�ed inlight of the new form of con�gurations. In addition, the concurrent evaluation relation isextended to allow the declaration of exceptions:ex 62 XK;X ;P+h�; E[exception x in e]i =) K;X+ex ;P+h�; E[e[x 7! ex]]i86

7.5.4 Process joinCML provides the event constructor threadWait that creates an event for synchronizingon the termination of a given thread. There are a couple of ways to extend �cv to modelthis. One approach is to de�ne a distinguished set of channel names, f�� j � 2 ProcIdg,to represent process IDs in the dynamic semantics. In this approach, the rule for processcreation wraps the body of a process � with code to repeatedly send () on the channel ��:�0 62 dom(P)K;P+h�; E[spawn v]i =) K+��0 ;P+h�; E[��0]i+h�0; Fork(�0; v)iwhere Fork(�; v) = (v (); Yv �f(send (��.()); f ()) ())Waiting for a process' termination is implemented in this scheme by waiting for a messageon the process' channel; i.e., threadWait is implemented directly by receive. While thisis a reasonable implementation technique, it has the disadvantage that it becomes hard todistinguish the zombie processes.A better approach is to support threadWait directly. As a side e�ect of this approach,the event constructor always can be directly supported. The direct approach requiresadding ProcId to the domain of values and adding two new event value terms:v ::= � j � � �ev ::= (W �) j A j � � �The implementation of the always function is de�ned by the following �{rule:�(always; v) = (A) �x(v))Matching a base event created by threadWait or always di�ers from rendezvous in thatonly one process is selected. This requires a new relation between an event and a set ofprocesses.De�nition 7.15 De�ne the ternary relationev PB e(pronounced as \ev is matched in P with result e") as the smallest relation satisfying theinference rules in Figure 7.5.The concurrent evaluation relation is changed slightly in the case of spawn, which nowreturns the identi�er of the new process:�0 62 dom(P)K;P+h�; E[spawn v]i =) K;P+h�; E[�0]i+h�0; v ()i87

A PB ()h�; [v]i 2 P(W �) PB ()ev PB e(ev) v) PB (v e)ev PB e(ev � ev 0) PB (AbortAct(ev 0); e)ev PB e(ev 0 � ev) PB (AbortAct(ev 0); e)ev PB e(ev j v) PB eFigure 7.5: Rules for matching events in process setsAnd there is an additional concurrent evaluation rule for sync that handles the matchingof threadWait and always events: ev PB eK;P+h�; sync evi =) K;P+h�; ei7.5.5 PollingAs noted in Section 4.6,CML supports a pollingmechanism. Recall that the poll operationis a non-blocking form of sync, which returns NONE if sync would have blocked, and SOMEwrapped around the synchronization result otherwise.It is fairly straightforward to add poll to �cv. To start with, the syntax of expressionsand the de�nition of evaluation contexts is extended with a new form:e ::= poll e j � � �E ::= poll E j � � �88

Since �cv does not have the option datatype, we need another way to encode the result ofpolling an event value. To do this, the poll operation takes two arguments: an event valueto poll and a pair of functions. Informally, the evaluation of poll(ev.(f.g)) will eitherapply f to the result of matching ev , or else it will apply g to ().Since polling is supposed to be non-blocking, we need a formal notion of when synchro-nizing on an event would block. The following two de�nitions do this.De�nition 7.16 An event value ev is o�ered by � in a con�guration K;P , if P(�) is of theform E[sync ev] or E[poll(ev.v)]. The set of o�ered events in P is de�ned to beO�ered(P) = fev j 9� 2 dom(P) such that � o�ers ev in PgDe�nition 7.17 The set of matched events in a set of processes P is de�ned to beMatch(P) = fev j 9ev 0 2 O�ered(P) such that ev �_̂ ev 0, for some � gAnd, we need three additional concurrent evaluation rules. The �rst two handle the transi-tion in which the event is matched by some other process, the third handles the transitionfor when sync would have blocked: ev �_̂ ev 0 with (e; e0)K;P+h�; E[poll(ev.(v1.v2))]i+h�0; E 0[sync ev 0]i=) K;P+h�; E[v1 e]i+h�0; E 0[e0]iev �_̂ ev 0 with (e; e0)K;P+h�; E[poll(ev.(v1.v2))]i+h�0; E 0[poll(ev 0.(v01.v02))]i=) K;P+h�; E[v1 e]i+h�0; E 0[v01 e0]iev 62 Match(P)K;P+h�; E[poll(ev.(v1.v2))]i =) K;P+h�; E[v2 ()]iTo make these rules sensible requires the following fairness constraint:If p = h�; E[poll(ev.v)]i, then a transition K;P+p =) K0;P 0+p, is acceptableif: � ev 2 Match(P) and ev 2 Match(P 0), or� ev 62 Match(P) and ev 62 Match(P 0).This constraint captures the notion that poll is non-blocking by forcing the polling opera-tion to complete before the state of the polled event can change.89

Chapter 8Typing �cvIn this chapter, I present a polymorphic type discipline for �cv and prove that it is soundwith respect to the operational semantics presented in the previous chapter. Proofs ofthe main results are provided in this chapter; additional proof details can be found in theappendix.CML uses SML's polymorphic type inference system, which is an extension of the onepresented in Section 6.2.3 for �v. It has been long known that the na��ve extension of thissystem for polymorphic references is unsound [GMW79, Dam85, Tof88]. For example, underthe assumptions ref 7! 8�:(�! � ref):= 7! 8�:((�� � ref)! unit)! 7! 8�:(� ref! �)the following erroneous program has the type bool:let val r = ref (fn x => x)inr := (fn x => x + 1);(! r) trueendTofte, in [Tof88] and [Tof90], shows that the source of the problem is the rule for letbindings. Recall from Figure 6.1 that this rule isTE ` e1 : � 0 TE� fx 7! ClosTE(� 0)g ` e2 : �TE ` let x = e1 in e2 : � (�-let)Tofte points out that the closure operation generalizes too many type variables. In partic-ular, there are type variables that are free in the implicit typing of the store, but which arebeing generalized in the rule for let. For example, in the code above, closure causes r tobe assigned the type scheme 8�:(�! �) ref in the body of the let, which is instantiatedto both (int! int) ref and (bool! bool) ref.90

Since the typing of the store is undecidable at compile time, a more conservative schemeis necessary to avoid generalization of variables that are free in the store typing. Tofteproposed a system that distinguishes between applicative and imperative type variables,and between let bindings that are expansive (i.e., may introduce new store objects) andthose that are not. Expansiveness is a syntactic property that conservatively approximatesthose expressions that introduce new store objects. Basically, irreducible terms, such asabstractions and constants, are non-expansive, and all other terms are expansive. Forexample, using SML notation,let val x = ref 1 in ... endandlet val x = 1 + 2 in ... endare both expansive let bindings, whilelet val x = fn x => ref x in ... endis a non-expansive binding. There are two typing rules for let: when the binding is ex-pansive, then only the applicative type variables can be generalized; when the binding isnon-expansive, then any variable can be generalized.SML/NJ uses a scheme developed by Dave MacQueen, called weak types, to deal withimperative features. The basic idea is to assign a rank to each type variable, which is anapproximation of the number of levels of abstraction protecting the variable. When the rankof a variable gets to zero, it must be instantiated to a monotype. Applicative type variableshave a rank of in�nity, and thus are not weak. It is conjectured, although not proven, thatMacQueen's scheme is sound and strictly more polymorphic than Tofte's. Although CMLinherits this typing scheme from SML/NJ, I use Tofte's scheme in this chapter, because ithas a well-de�ned inference system and because it is the type system used in the de�nitionof SML [MTH90].Since channels and processes can be used to implement references (as shown in Sec-tion 7.5.2), it is clear that the typing problems of polymorphic references also exist forpolymorphic channels. One might na��vely view the implementation of CML as a proofof the soundness of polymorphic channels, since it is written in SML (plus callcc) andit typechecks, but it has recently been discovered that the typing rules given for callccin SML/NJ are not sound (Bob Harper, personal communication, July 1991). A simplecounter-example (owed to Harper and Lillibridge) is the expression:91

let val (a, b) = (callcc (fn k =>(fn x => x, fn f => throw k (f, fn f => ()))))inprint (a "hello");b (fn x => x+2)endThe typing of callcc has been changed in SML/NJ to �x this problem (the correcttyping is given in Section 2.3.3). The implementation of CML, however, uses the unsoundtyping,1 which means that the soundness of polymorphic channels is a serious concern. Theremainder of this chapter presents the type system for �cv and proves it sound.8.1 Static semanticsThe type terms of �cv are richer than those of �v. Let � 2 TyCon = fint; bool; : : :gdesignate the type constants. Type variables are partitioned into two sets:u 2 ImpTyVar imperative type variablest 2 AppTyVar applicative type variables�; � 2 TyVar = ImpTyVar [AppTyVar type variablesThe set of types, � 2 Ty, is de�ned by� ::= � type constantsj � type variablesj (�1 ! �2) function typesj (�1 � �2) pair typesj � chan channel typesj � event event typesand the set of type schemes, � 2 TyScheme, are de�ned by� ::= �j 8�:�As with �v, we write 8�1 � � ��n:� for the type scheme � = 8�1 � � �8�n:� , and write FTV(�)for the free type variables of �. We de�ne the set of imperative types by� 2 ImpTy = f� j FTV(�) � ImpTyVargNote that all of the free type variables in an imperative type are imperative.As with �v, type environments assign type schemes to variables in terms. Since we areinterested in assigning types to intermediate stages of evaluation, channel names also need1The reasons for this are discussed in Section 10.1.1.92

to be assigned types. Therefore, a typing environment is a pair of �nite maps: a variabletyping and a channel typing : VT 2 VarTy = Var �n�! TySchemeCT 2 ChanTy = Ch �n�! ImpTyTE = (VT;CT) 2 TyEnv = (VarTy�ChanTy)We use FTV(VT) and FTV(CT) to denote the sets of free type variables of variable andchannel typings, and FTV(TE) = FTV(VT) [FTV(CT)where TE = (VT;CT). Note that there are no bound type variables in a channel typing,and that FTV(CT) � ImpTyVar. The following shorthand is useful for type environmentmodi�cation: TE� fx 7! �g �def (VT� fx 7! �g;CT)TE� f� 7! �g �def (VT;CT� f� 7! �g)where x 2 Var, � 2 Ch, and TE = (VT;CT).Because of the need to preserve imperative types, we require that substitutions mapimperative type variables to imperative types. As before, we allow substitutions to beapplied to types and type environments.De�nition 8.1 A type � 0 is an instance of a type scheme � = 8�1 � � ��n:� , written � � � 0,if there exists a �nite substitution, S, with dom(S) = f�1; : : : ; �ng and S� = � 0. If � � � 0,then we say that � is a generalization of � 0. We say that � � �0 if whenever �0 � � , then� � � .De�nition 8.2 The closure of a type � with respect to a type environment TE is de�nedas: ClosTE(�) = 8�1 � � ��n:� , wheref�1; : : : ; �ng = FTV(�) n FTV(TE)And the applicative closure of � is de�ned as: AppClosTE(�) = 8�1 � � ��n:� , wheref�1; : : : ; �ng = (FTV(�) n FTV(TE))\AppTyVarThe following important facts about type closure and generalization are used later:Lemma 8.1 The following two properties hold for any TE, �, �0, � , and x:� If � � �0, then ClosTE�fx7!�g(�) � ClosTE�fx7!�0g(�).93

� If x 62 dom(TE), then ClosTE(�) � ClosTE�fx7!�g(�).Proof. These both follow from the observation that if FTV(TE) � FTV(TE0) thenClosTE(�) � ClosTE'(�) �8.1.1 Expression typing rulesAs before, the function TypeOf assigns types to the constants. For the concurrency relatedconstants, TypeOf assigns the following type schemes:never : 8�:(unit! � event)receive : 8�:(� chan! � event)transmit : 8�:((� chan� �)! unit event)wrap : 8��:((� event� (�! �))! � event)choose : 8�:((� event� � event)! � event)guard : 8�:((unit! � event)! � event)wrapAbort : 8�:((� event� (unit! unit))! � event)We also assume that there are no event-valued constants. More formally, we require thatthere does not exist any b such that TypeOf(b) = � event, for some type � .The typing rules for �cv are divided into two groups. The core rules are given inFigure 8.1. These are a modi�cation of the rules in Figure 6.1. There are two rules for let:the rule (�-app-let) applies in the non-expansive case (in the syntax of �cv , this is when thebound expression is in Val); the rule (�-imp-let) applies when the expression is expansive(not a value). There are also rules for typing channel names, and pair expressions. Therule (�-chan) restricts the type of the introduced channel to be imperative. In addition tothese core typing rules, there are rules for the other syntactic forms (see Figure 8.2). Giventhe appropriate environment, these rules can be derived from rule (�-app) (rule (�-const)in the case of �). It is useful, however, to include them explicitly. As before, it is worthnoting that the syntactic form of a term uniquely determines which typing rule applies.In order that the typing of constants be sensible, we impose a typability restriction on thede�nitions of � and TypeOf. If TypeOf(b) � (� 0 ! �) and TE ` v : � 0, then �(b; v) is de�nedand TE ` �(b; v) : � . It is worth noting that the � rules we de�ned for the concurrencyconstants respect this restriction.The following lemma de�nes a derived typing rule for the sequencing syntax:Lemma 8.2 The typing rule for the sequencing isTE ` e1 : �1 TE ` e2 : �2TE ` (e1; e2) : �294

TypeOf(b) � �TE ` b : � (�-const)x 2 dom(VT) VT(x) � �(VT;CT) ` x : � (�-var)CT(�) = �(VT;CT) ` � : � (�-chvar)TE ` e1 : (� 0 ! �) TE ` e2 : � 0TE ` e1 e2 : � (�-app)TE� fx 7! �g ` e : � 0TE ` �x(e) : (� ! � 0) (�-abs)TE ` e1 : �1 TE ` e2 : �2TE ` (e1.e2) : (�1 � �2) (�-pair)TE ` v : � 0 TE� fx 7! ClosTE(� 0)g ` e : �TE ` let x = v in e : � (�-app-let)TE ` e1 : � 0 TE� fx 7! AppClosTE(� 0)g ` e2 : �TE ` let x = e1 in e2 : � (�-imp-let)TE� fx 7! � chang ` e : �TE ` chan x in e : � (�-chan)Figure 8.1: Core type inference rules for �cv
95

TE ` e : (unit! �)TE ` spawn e : unit (�-spawn)TE ` e : � eventTE ` sync e : � (�-sync)TE ` e : � eventTE ` (G e) : � event (�-guard)8�:� event � �TE ` � : � (�-never)TE ` � : � chan TE ` v : �TE ` �!v : unit event (�-output)TE ` � : � chanTE ` �? : � event (�-input)TE ` ev : � 0 event TE ` e : (� 0 ! �)TE ` (ev) e) : � event (�-wrap)TE ` ev1 : � event TE ` ev2 : � eventTE ` (ev1 � ev2) : � event (�-choice)TE ` ev : � event TE ` v : (unit! unit)TE ` (ev j v) : � event (�-abort)Figure 8.2: Other type inference rules for �cv
96

Proof. This follows from the de�nition of sequencing and the type rules above:TypeOf(snd) � ((�1 � �2)! �2)TE ` snd : ((�1 � �2)! �2) TE ` e1 : �1 TE ` e2 : �2TE ` (e1.e2) : (�1 � �2)TE ` snd (e1.e2) : �2 �8.1.2 Process typingsA process typing is a �nite map from process identi�ers to types:PT 2 ProcTy = ProcId �n�! TyTyping judgements are extended to process con�gurations by the following de�nition.De�nition 8.3 A well-formed con�guration K;P has type PT under a channel typing CT,written CT ` K;P : PTif the following hold:� K � dom(CT),� dom(P) � dom(PT), and� for every h�; ei 2 P , (fg;CT) ` e : PT(�).For CML, where spawn requires a (unit! unit) argument, the process typing is PT(�) =unit for all � 2 dom(P).8.2 Type soundnessThis section presents a proof of the soundness of the type system given in Section 8.1 withrespect to the dynamic semantics of Section 7.2. As discussed in Section 6.2.4, I use theapproach of [WF91b]. The basic idea is to show that evaluation preserves types (also calledsubject reduction); then characterize run-time type errors (called \stuck states") and showthat stuck states are untypable. This allows us to conclude that well-typed programs cannotgo wrong. 97

8.2.1 The Substitution and Replacement lemmasBefore we can prove the main results, we need several important lemmas. The followinglemma states that any variable or channel name in the domain of a typing environment,which is not free in an expression e, can be ignored in the typing of e.Lemma 8.3 If x 62 FV(e), then TE ` e : � i� TE� fx 7! �g ` e : � . Likewise, if � 62FCN(e), then TE ` e : � i� TE� f� 7! �g ` e : � .Proof. The proof is a straightforward induction on the height of the typing deduction. �Note that the variable convention insures that x 62 FV(e) whenever this lemma applies.The following lemma is very important; it allows us to replace a subexpression withanother expression of the same type, without a�ecting the type of the whole term.Lemma 8.4 (Replacement) Let C[] be a single-hole context. If the following hold:1. D is a type deduction concluding TE ` C[e1] : � ,2. D1 is a subdeduction of D, which concludes TE0 ` e1 : � 0,3. D1 occurs in D in the position corresponding to the hole in C, and4. TE0 ` e2 : � 0,then TE ` C[e2] : � .Proof. The basic idea is that the term C[e1] and type deduction D have isomorphicstructure, thus the replacement of e1 by e2 is paralleled by a replacement of the deductionof TE0 ` e1 : � 0 by the deduction of TE0 ` e2 : � , giving the deduction of TE ` C[e2] : � .This is proven by induction on the structure of the deduction. See [HS86] or [WF91b] fordetailed proofs. �The following lemma essentially says that �-reduction preserves types.Lemma 8.5 (Substitution) If x 62 FV(v), TE ` v : � , andTE� fx 7! 8�1 � � ��n:�g ` e : � 0with f�1; : : : ; �ng \ FTV(TE) = ;, then TE ` e[x 7! v] : � 0.Proof. The proof is by induction on the height of the typing deduction; the detailed proofis given in the appendix. �98

The following lemma is useful in showing that spawn preserves types.Lemma 8.6 If (VT;CT) ` e : � and FV(e) = ;, then (fg;CT) ` e : � .Proof. This is a more speci�c version of Lemma 8.3 and follows immediately. �8.2.2 Subject reductionWe are now ready to state and prove the �rst subject reduction theorem, which says thatsequential evaluation preserves types.Theorem 8.7 (Sequential type preservation) For any type environment TE, expres-sion e1 and type � , such that TE ` e1 : � , if e1 7�! e2 then TE ` e2 : � .Proof. Let E[e] = e1 and E[e0] = e2, and assume that TE0 ` e : � 0 with TE0 = (VT0;CT).Then, by the Replacement Lemma (8.4), it is su�cient to show that TE0 ` e0 : � 0. This isdone by case analysis of the de�nition of 7�! (i.e., the structure of e).Case E[b v] 7�! E[�(b; v)].Rules (�-app) and (�-const) apply:TypeOf(b) � (� ! � 0)TE0 ` b : (� ! � 0) TE0 ` v : �TE0 ` b v : � 0Thus, by the typability restriction on �, we have TE0 ` �(b; v) : � 0.Case E[�x(e) v] 7�! E[e[x 7! v]].Rules (�-app) and (�-abs) apply:TE0 � fx 7! � 00g ` e : � 0TE0 ` �x(e) : (� 00 ! � 0) TE0 ` v : � 00TE0 ` �x(e) v : � 0Applying the Substitution Lemma (8.5), gives usTE0 ` e[x 7! v] : � 0Case E[let x = v in e] 7�! E[e[x 7! v]].Rule (�-app-let) applies:TE0 ` v : � 00 TE0 � fx 7! ClosTE0(� 00)g ` e : � 0TE0 ` let x = v in e : � 099

Let ClosTE0(� 00) = 8�1 � � ��n:� 00, then, by de�nition,f�1; : : : ; �ng \ FTV(TE0) = ;Then, by the Substitution Lemma (8.5), we getTE0 ` e[x 7! v] : � 0Case E[sync (G e)] 7�! E[sync e].Rules (�-sync) and (�-guard) apply:TE0 ` e : � 0 eventTE0 ` (G e) : � 0 eventTE0 ` sync (G e) : � 0Hence, by rule (�-sync), TE0 ` e : � 0 eventTE0 ` sync e : � 0 �Lemma 8.8 If ev1 �_̂ ev2 with (e1; e2) and TE ` ev i : �i event, then TE ` ei : �i (for i 2f1; 2g).Proof. This is proved by induction on the de�nition of event matching; the details aregiven in the appendix. �We are now ready to prove the second subject reduction theorem, which says that concurrentevaluation preserves process typing.Theorem 8.9 (Concurrent type preservation) If a con�guration K;P is well-formedwith K;P =) K0;P 0and, for some channel typing CT, CT ` K;P : PTThen there is a channel typing CT0 and a process typing PT0, such that the following hold:� CT � CT0,� PT � PT0, and 100

� CT0 ` K0;P 0 : PT0.� CT0 ` K;P : PT0.Proof. The fourth property follows from the others; the proof of the �rst three propertiesproceeds by case analysis of the left hand side of the =) relation.Case CT ` K;P+h�; ei : PT.If e 7�! e0, then, by sequential type preservation (Theorem 8.7), we have(fg;CT) ` e0 : PT(�)and hence CT ` K;P+h�; e0i : PTLetting CT0 = CT and PT0 = PT satis�es the theorem.Case CT ` K;P+h�; E[chan x in e]i : PT.Then there is a type environment TE = (VT;CT) and types � and � (with � 2ImpTy), such that ...TE� fx 7! � chang ` e : �TE ` chan x in e : �...(fg;CT) ` E[chan x in e] : PT(�)Let � be the name of the new channel (hence � 62 K) and de�ne CT0 = CT � f� 7!� chang (obviously CT � CT0). Then, by Lemma 8.3,(fg;CT0) ` E[chan x in e] : PT(�)Thus, by the Replacement and Substitution lemmas,(fg;CT0) ` E[e[x 7! �]] : PT(�)and, therefore, CT0 ` K+�; h�; E[e[x 7! �]]i : PT. Letting PT0 = PT satis�es thetheorem.Case CT ` K;P+h�; E[spawn v]i : PT.Then there is a variable typing VT and a type � , such that...(VT;CT) ` v : (unit! �)(VT;CT) ` spawn v : unit...(fg;CT) ` E[spawn v] : PT(�)101

By Lemma 7.1, we know that FV(v) = ;, and thus, by Lemma 8.6,(fg;CT) ` v : (unit! �)Applying rule (�-app), we get (fg;CT) ` (v ()) : �Let �0 be the process identi�er of the new process (hence �0 62 dom(P)), thenCT ` K;P+h�; E[()]i+h�0; v ()i : PT� f�0 7! �gLetting PT0 = PT� f�0 7! �g and CT0 = CT satis�es the theorem.Case CT ` K;P+h�1; E1[sync ev1]i+h�2; E2[sync ev2]i : PT.Then, for i 2 f1; 2g, there is a type environment TEi and a type �i, such that...TEi ` ev i : �i eventTEi ` sync ev i : �i...(fg;CT) ` Ei[sync ev i] : PT(�i)If ev1 �_̂ ev2 with (e1; e2), then, by Lemma 8.8,TEi ` ei : �iThus, by the Replacement Lemma (8.4), we have(fg;CT) ` Ei[ei] : PT(�i)hence, CT ` K;P+h�1; E1[e1]i+h�2; E2[e2]i : PTLetting CT0 = CT and PT0 = PT satis�es the theorem. �This theorem leads immediately to the following fact about traces:Corollary 8.10 Let hhK1;P1; : : : ; Kn;Pnii be a �nite trace, withCT ` K1;P1 : PTThen there is a channel typing CT0 and process typing PT0, such that:� CT � CT0,� PT � PT0, and� for i 2 f1; : : : ; ng, CT0 ` Ki;Pi : PT0.Proof. This follows by a simple induction on n. �102

8.2.3 Stuck expressionsIn order to show that well-typed programs do not have run-time type errors, we �rst needto characterize such errors.De�nition 8.4 A process p = h�; ei is stuck if e is not a value and there do not exist well-formed con�gurations K;P+p and K0;P 0 such that K;P+p =) K0;P 0, with � a selectedprocess. A well-formed con�guration is stuck if one or more or its processes are stuck.The notion of being stuck is a semantic one; in Section 6.2.4 and [WF91b], this is con-servatively approximated by the syntactic notion of faulty expressions. For �cv , I take asomewhat di�erent approach that focuses more on stuck expressions.Lemma 8.11 (Uniform evaluation) Let e be a program, T 2 Comp(e), and � 2Procs(T), then either �*T , �+Tv, or Pi(�) is stuck for some Ki;Pi 2 T .Proof. This follows immediately from the de�nitions. �It remains to show that stuck expressions are untypable.Lemma 8.12 (Untypability of stuck con�gurations) If � is stuck in a well-formedcon�guration K;P , then there do not exist CT 2 ChanTy and PT 2 ProcTy, such that(fg;CT) ` P(�) : PT(�)In other words, K;P is untypable.Proof. The proof is given in the appendix. �8.2.4 SoundnessWe are now in a position to state the main result of this chapter: that well-typed programsdo not go wrong. This result is stated in terms of the computations of a program. (recallfrom Section 7.3 that a computation is a maximal trace).Theorem 8.13 (Syntactic soundness) Let e be a program, with ` e : � . Then, for anyT 2 Comp(e), � 2 Procs(T), with Ki;Pi the �rst occurrence of � in T , there exists a CTand PT, such that CT ` Ki;Pi : PTand PT(�0) = � . And either 103

� �*T , or� �+Tv and there exists an extension CT0 of CT with (fg;CT0) ` v : PT(�).Proof. The existence of CT and PT follows from Concurrent Type Preservation (Theo-rem 8.9). By Uniform evaluation (Lemma 8.11), we know that either �*T , �+Tv, or Pj(�)is stuck for some Kj ;Pj 2 T .Assume that � is stuck in Kj ;Pj. By Lemma 7.2, Kj ;Pj is well-formed and, byLemma 8.12, it must be untypable. But, since the con�guration fg; fh�0; eig is typable,by Concurrent Type Preservation (Theorem 8.9), there is a CT0 2 ChanTy and PT0 2ProcTy such that CT0 ` Kj ;Pj : PT0. Which means that (fg;CT0) ` Pj(�) : PT0(�), hence� cannot be stuck and either �*T or �+Tv.If �*T then we are done.Assume that �+Tv and let Kj ;Pj 2 T such that Pj(�) = v. Concurrent Type Preser-vation means that there exists an extension CT0 of CT and an extension PT0 of PTsuch that CT0 ` Pj : PT0. Since PT0 is an extension of PT, PT0(�) = PT(�), and hence(fg;CT0) ` v : PT(�). �To state more traditional soundness results, we �rst need to de�ne a notion of evaluationthat distinguishes those processes that have run-time type errors.De�nition 8.5 For a computation T , de�ne the evaluation of a process � in T asevalT (�) = (WRONG if Pi(�) is stuck for some Ki;Pi 2 Tv if �+TvNote that for sequential programs, this is essentially the same as the de�nition on page 71.Using this de�nition we can now state weak and strong soundness results for �cv.Theorem 8.14 (Soundness) If e is a program with ` e : � , then for any T 2 Comp(e)and any � 2 Procs(T), the following hold:(Strong soundness) If evalT (�) = v, and Ki;Pi is the �rst occurrence of � in T , then forany CT and PT, such that CT ` Ki;Pi : PT and PT(�0) = � , there is an extensionCT0 of CT, such that (fg;CT0) ` v : PT(�).(Weak soundness) evalT (�) 6= WRONGProof. This follows immediately from Syntactic soundness (Theorem 8.13) and the de�ni-tion of eval. �104

In other words, a well-typed CML program can never have a run-time type error. It is alsoworth noting that for the sequential subset of �cv, Theorem 8.14 reduces to the Soundnesstheorem of Section 6.2.4 (Theorem 6.4).

105

106

Part IVPractice

107

Chapter 9ApplicationsThis part of this dissertation addresses the question of the usefulness and practicality ofthe proposed language mechanisms. While Chapter 5 describes a number of abstractionsthat can be implemented using CML, it does not fully address the question of how usefulCML is for real applications and whether it can be e�ciently implemented.To address these questions, I have implemented CML on top of SML/NJ. This im-plementation has been used by a number of people, including myself, for various di�erentapplications. This practical experience demonstrates the validity and usefulness of my de-sign as well as the e�ciency of my implementation. In this chapter, I describe some ofthese applications. I describe the implementation in Chapter 10, and its performance inChapter 11. The �nal chapter of this part (Chapter 12) describes further research relatedto the implementation and use of CML on multiprocessors.9.1 eXene: A multi-threaded X window system toolkitAs argued in Section 1.1, concurrency is a useful tool for structuring interactive applica-tions. To this end, Emden Gansner of AT&T Bell Laboratories and I have been developinga multi-threaded X window system toolkit [SG86], called eXene [GR91], which is imple-mented using CML. This implementation serves two roles: it provides a strenuous test ofthe performance of CML in a real-world setting, and it serves as a platform for interac-tive applications (discussed in Section 9.2). Because the X window system is a distributedsystem, the implementation of eXene also involves distributed systems programming (dis-cussed in Section 9.1.4). This section describes the architecture of eXene and gives a coupleof examples of the use of CML primitives in its implementation.109

9.1.1 An overview of eXeneEXene provides a similar level of function as Xlib [Nye90b], but with a substantiallydi�erent model of user interaction. Windows in eXene have an environment, consistingof three streams of input from the window's parent (mouse, keyboard and control), andone output stream for requesting services from the window's parent. For each child of thewindow, there are corresponding output streams and an input stream. The input streamsare represented by event values and the output streams by event valued functions. A windowis responsible for routing messages to its children, but this can almost always be done usinga generic router function provided by eXene. Typically, each window has a separate threadfor each input stream as well as a thread, or two, for managing state and coordinating theother threads. By breaking the code up this way, each individual thread is quite simple.This event-handling model is similar to those of [Pik89] and [Haa90].There are other di�erences between eXene and more traditional X toolkits. For ex-ample, eXene uses immutable pens to specify the semantics of drawing operations, insteadof the mutable graphics contexts provided by the X-protocol. Since pens are immutable,concurrency control issues are avoided when two threads share the same pen.9.1.2 An X window system overviewThe X window system is a distributed system with the application clients communicatingwith the X server process. The core X-protocol consists of 211 di�erent messages, dividedinto 119 request messages, of which 42 have replies, 33 event messages and 17 error messages[Nye90a]. Each request to the server has an implicit sequence number (i.e., the �rst messagesent is number 1, etc.). Messages from the server to the client are tagged with the sequencenumber of the last request processed by the server; this is used to match replies withrequests.9.1.3 The architecture of eXeneUnlike some non-C language bindings for X, eXene is implemented directly on top ofthe X-protocol. The only non-CML code involved is the run-time system's support forsocket communication. This implementation approach has the advantage of avoiding the Clanguage bias of Xlib. Furthermore, it provides a demonstration that CML can be usedto implement low-level systems programs without signi�cant loss of performance.A connection to an X-server is called a display. In eXene a display consists of seventhreads; Figure 9.1 gives the message-passing architecture of these threads. The input andoutput threads provide bu�ering of the communication with the server. The sequencer110

X ServerSocket
Sequencer ErrorHandlerOutputBu�erInputBu�er

FontServerEventBu�erTop-levelWindowRegistry KeymapServer

Display ?6? 6? 6- ?6?? -?: : :: : : ?WindowEvent Streams 6?KeySymTranslations
6

?Request/Reply 66FontRequestsFigure 9.1: The display message-passing architecture111

thread generates sequence numbers and matches replies with requests. All error messagesare logged with the error handler; in addition, errors on requests that expect a reply areforwarded to the requesting thread. The sequencer sends X-events to the event bu�er,which decodes and bu�ers them. The top-level window registry is a thread that keeps trackof the top-level windows in the application and their descendants. It manages a stream ofevents for each top-level window in the application. The other two display threads manageglobal resources: the keymap server provides translations from keycodes to keysyms; thefont server keeps track of the open fonts used by the application.A display has one or more screens, each of which can support di�erent visuals anddepths (e.g., black and white or 8-bit color). Each visual and depth combination of a screenis supported by two threads; Figure 9.2 shows the message architecture for these. The drawDisplayRequest/Reply FontRequestsDrawMaster GCServer
Screen 6 ?� ?6

6PixmapDraw Requests 6?GC RequestsFigure 9.2: The screen message-passing architecturemaster is a thread that encodes and batches drawing requests for a particular visual anddepth combination; the draw masters at the screen level are used for operations on pixmaps(o� screen rectangles of pixels). The GC server handles the mapping of eXene's immutable112

pens to X's mutable graphics contexts.1Windows are displayed with a particular visual and depth on a screen. Internally,windows are organized into a tree hierarchy with a top-level window at the root. Figure 9.3gives the message-passing architecture for the top-level window threads. As described above,

�������� SSSSSSSSWindowTree Hierarchy???6Top-levelWindowRouter DrawMaster
ScreenGC RequestsDisplayEventStream KeysymTranslations Request/Reply? 6? - 6�

� -
�������6���
6�
���=

?
Window Tree

Figure 9.3: The top-level window message-passing architectureeach top-level window in an application has a dedicated stream ofX-events from the display.This stream is monitored by the top-level window router thread. This thread provides thetransition from the X view of events to the eXene view (i.e., a window environment).There is a draw master thread for each window tree as well.1It is an unpleasant artifact of X that pixmaps and graphics contexts must be associated with a particularscreen, visual and depth. 113

9.1.4 Promises in eXeneThe CopyArea operation in the X11 protocol can be used to copy a rectangle of pixelsfrom one place on the screen to another. A complication arises if a portion of the sourcerectangle is obscured by another window. For example, Figure 9.4 shows a use of CopyAreato translate a rectangle on the screen; here the cross-hatched region of the destinationcorresponds to the obscured region of the source. While some window system maintain a
ObscuringWindow

Destination rectangleSource rectangle ������������������������������������@@ @@@ @@@ @@@ @@�������������
Figure 9.4: The CopyArea operationbacking store (or virtual bitmap) to handle these situations, the standardX policy is to notifythe client that the CopyArea operation was not able to completely �ll in the destination.2This policy is called damage control, since it is up to the client to repair the damage.A typical use of CopyArea is in inserting a line of text. In this case the client threadmight issue the following sequence of operations: a CopyArea to create space for the newtext, followed by a ClearArea to erase the old text and lastly a DrawText to insert the newline. The following picture illustrates these steps:2Some X servers do support backing store as an option, but applications must be designed to functioncorrectly when it is not available. 114

THIS ISTEXT =)CopyArea THIS ISTEXTTEXT =)ClearArea THIS ISTEXT =)DrawText THIS ISSOMETEXTIt is important that the user of the system see this sequence as a single smooth transition.This has implications for the implementation of operations using CopyArea.If CopyArea is treated as a normal X RPC, which returns a list of damaged rectangles,then the user is subjected to screen
icker. To understand the reasons for this examineFigure 9.5, which shows the timing information for the client doing the text scrolling, thethread handling the bu�ering of communication with the server,3 and theX-server. BecauseClient
?

Bu�er
?

X Server
?

-CopyArea XXXXXXXXXXXXXXXz���������������9� CopyAck -ClearArea -DrawText XXXXXXXXXXXXXXXz
6Display intransition?Figure 9.5: Synchronous text scrollingthe other drawing operations are postponed until an acknowledgement of the copyArea isreceived, the period of time the display is in transition can be quite lengthy.Because of these performance concerns, the X protocol does not use the standard replymechanism for CopyArea. Instead there are two special X-events, GraphicsExpose andNoExpose, which are used to notify the client of the result of a CopyArea request.4 For single-3For purposes of this discussion, I have collapsed the bu�er and sequencer threads into a single thread.4Things are a little more complicated, since multiple GraphicsExpose events can be generated for a single115

threaded C clients (which make up the vast majority ofX clients), this means that the codeusing the CopyArea operation must also scan the event stream for the acknowledgement. IneXene, where we have concurrency and events, we can handle this operation in a muchmoreelegant way. Our solution is to implement CopyArea as an asynchronous RPC operation,also known as a promise [LS88]. EXene provides an event-valued function with the typeval copyArea : arg-type -> rect_t list eventwhere arg-type is the type of the arguments that specify the actual operation. The event thatis returned is the promise of the result. Figure 9.6 gives the implementation sketch of thisoperation, where request sends the operation to the bu�er thread and flush tells the bu�erthread to
ush any bu�ered messages to the server. The guard is optimized to �rst check tofun copyArea arg = letval replyCh = channel()inspawn (fn () => request (COPY_AREA(reply_ch, arg)));guard (fn () => (case (poll (receive replyCh))of (SOME rects) => always rects| NONE => (flush(); receive replyCh)(* end case *))end Figure 9.6: The implementation of copyAreasee if the acknowledgement is already available. The bu�er code is more complicated, sinceit must match the acknowledgements with outstanding CopyArea requests. The advantageof this approach can be seen by comparing its timing diagram, given in Figure 9.7, withFigure 9.5.9.1.5 MenusAnother example of the way concurrency is used in eXene is in the way that popup menusare attached to windows. This is done by interposing a thread on the window's mousestream. When the thread sees a down transition on the appropriate mouse button, itcreates the menu window and starts tracking the mouse (the X semantics cause all mouseevents until the up transition to be directed at the window). Other mouse events are passedthrough without action. This is a form of delegation, and the window wrapped by the menuthread can be viewed as a \sub-class" of the window.CopyArea request. 116

Client
?

Bu�er
?

X Server
?

-CopyArea -ClearArea -DrawText -Flush XXXXXXXXXXXXXXXz���������������9� CopyAck 6Display intransition?Figure 9.7: Asynchronous text scrolling9.2 Interactive applicationsThe combination of eXene and CML provides a foundation for building interactive appli-cations in the spirit of Pegasus [RG86, GR92]. In this section, I describe an application ofeXene and how it uses the features of CML.Currently, the most sophisticated application built on top of eXene is Graph-o-matica, which is an interactive tool for viewing and analyzing directed graphs.5 Graph-o-matica was originally implemented on top of Pegasus by Emden Gansner and SteveNorth at AT&T Bell Laboratories; Emden Gansner ported it to eXene.Graph-o-matica provides the user with two kinds of windows: command windows,which provide a terminal-style, language interface to a command shell, and viewers, whichprovide a view on a 2D layout of a graph. At any time a user can have multiple commandwindows and multiple viewers. Each viewer is associated with a particular layout of aparticular abstract graph. Di�erent graphs can have di�erent layouts, and each layout canhave multiple views. Figure 9.8 is a screen dump from a sample session with Graph-o-matica. The bottom window is a command window; the two windows above provide twoviews of a single layout of a graph. A viewer allows the user to pan and zoom (using menus5Huimin Lin at the University of Sussex has built an interactive theorem prover on top of eXene, but Ido not know the details of its implementation. 117

Figure 9.8: Graph-o-matica screen dumpand the scrollbars) over the particular layout. The user can manually change a layout usingediting operations such as moving a node, or elision of a subgraph.The implementation of Graph-o-matica exploits the features of CML in several ways.If a graph is edited, this information needs to be propagated to the layouts and views of thegraph. We use the multicast channel abstraction (described in Section 5.2) to manage thepropagation of update noti�cations to the layouts and from the layouts to the views. Thissimpli�es the implementation of the graph object, since it does not need to know anythingabout multiple layouts. The layout objects, if they decide a given change a�ects them, can118

query the graph object for more detailed information.The command shell is a thread that communicates with a virtual terminal (vtty) widget.The vtty widget is a good example of the need for both communication abstraction andselective communication. At any time, the vtty must be able to handle both input fromthe user and output from its client (the command shell). EXene provides an abstractinterface to the input stream, but since it is event-valued, it can still be used in selectivecommunication.Concurrency is also used in the structuring of the application code. Layout algorithms,for example, run as separate threads, thus allowing the user to continue other activitieswhile waiting for a new layout.9.3 Distributed systems programmingMany distributed programming languages have concurrent languages at their core (e.g.,SR [AOCE88]), and distributed programming toolkits often include thread packages (e.g.,Isis [BCJ+90]). This is because threads provide a needed
exibility for dealing with theasynchronous nature of distributed systems.The
exibility provided by CML is a good base for distributed programming. Itssupport for low-level I/O is su�cient to build a structured synchronous interface to networkcommunication (as was done in eXene). Higher-level linguistic support for distributedprogramming, such as the promise mechanism described in Section 9.1.4, can be built usingevents to de�ne the new abstractions.Another example is Chet Murthy's reimplementation of theNuprl environment [Con86]using CML. His implementation is structured as a collection of \proof servers" running ondi�erent workstations. When an expensive operation on a proof tree is required, it can bedecomposed and run in parallel on several di�erent workstations. This system uses CMLto manage the interactions between the di�erent workstations.9.3.1 Distributed MLAnother project involving CML is the development of a distributed programming toolkitfor ML that is being done at Cornell University [Kru91]. This work builds on the mecha-nisms prototyped in Murthy's distributed Nuprl and on the protocols developed for Isis[BCJ+90]. A new abstraction, called a port group has been developed to model distributedcommunication. The communication operations provided by port groups are representedby event-value constructors. For details see [Kru91].119

9.4 Other applications of CMLCML has been used by various people for a number of other purposes. Andrew Appel hasused it to teach concurrent programming to undergraduates at Princeton University (Appel,personal communication, January 1991). Gary Lindstrom and Lal George have used it toexperiment with functional control of imperative programs for parallel programming [GL91].And Cl�ement Pellerin has implemented a compiler from a concurrent constraint languageto CML.

120

Chapter 10ImplementationThere have been several implementations of �rst-class synchronous operations. I wrote the�rst implementation inC as part of thePegasus/PML run-time system [Rep88]. I later im-plemented the concurrency mechanisms of PML on top of SML/NJ in a coroutine1 library[Rep89], and Norman Ramsey has implemented a similar system at Princeton [Ram90].More recently, I implemented CML on top of SML/NJ [Rep91a]. Of these implementa-tions, CML provides the richest programming notation and the best performance. It iswritten entirely in SML, using two non-standard extensions provided by SML/NJ, �rst-class continuations [DHM91] and asynchronous signals [Rep90a], and one minor compilermodi�cation. This chapter describes the implementation of CML in some detail (a briefsketch was given in [Rep91a]), and discusses implementation techniques that might furtherimprove performance. Some speci�c performance measurements of this implementation arereported in the next chapter. This implementation runs on single processor computers; theissues related to a multiprocessor implementation of CML are discussed in the Chapter 12.10.1 The implementation of SML/NJSML/NJ is a high-performance implementation of SML [AM87, AM91]; it uses a combi-nation of sophisticated compiler techniques and clever run-time system support to providea level of performance that is competitive with C on large examples. In this section, Idescribe the aspects of SML that have a direct bearing on the implementation of CML.1By \coroutine," I mean that this system does not use preemptive thread scheduling.121

10.1.1 First-class continuationsAs discussed in Section 2.3.3, SML/NJ provides continuations as �rst-class values. Untilrecently the type of callcc was fully polymorphic; i.e.,val callcc : ('a cont -> 'a) -> 'aAs discussed in Chapter 8 (p. 92), it has been discovered that this typing of �rst-classcontinuations is unsound. The type of callcc in SML/NJ is now:val callcc : ('1a cont -> '1a) -> '1awhich corrects the soundness problem [WF91a]. Unfortunately, using this weakly polymor-phic type has the e�ect of reducing the polymorphism of the CML primitives. For example,the type of sync isval sync : '1a event -> '1ausing the weakly polymorphic version of callcc. For this reason, I use the unsafe, fullypolymorphic, version of callcc in my implementation. The typing of the resulting primi-tives, however, is proven sound in Chapter 8.10.1.2 The compilerThe SML/NJ compiler is a multi-pass compiler. The front-end is fairly conventional (scan-ning, parsing, type-checking, etc.); it is the back-end (optimization and code generation)that interests us. The back-end uses a representation called continuation-passing style, orCPS for short [Ste78, KKR+86, AJ89, App92]. The CPS representation is a specializedform of �-calculus that has a uniform representation for all transfers of control (conditionalbranches, loops, function calls and function returns). This representation is a \goto witharguments," better known as a tail-recursive call. Since a function return is representedas a tail-recursive call, functions must be parameterized by the return continuation. It isfrom this explicit passing of continuations that CPS gets its name. The advantage of thisapproach is that the compiler can concentrate on making function calls as fast as possible,which is one of the keys to good performance for languages like SML and Scheme. Unlikeother continuation-passing style compilers, such as [Ste78] and [KKR+86], the code gener-ated by the SML/NJ compiler does not use a run-time stack; instead, return continuationsare heap allocated. This means that the code generated for callcc and throw is essentiallythe same as that for function calls. The only di�erence is that the current continuationcreated by callcc must restore the current enclosing exception handler. Unfortunately,122

this means that callcc breaks tail-recursion (in the same way that exception handlers do),which has implications for the implementation of sync (see Section 10.4).10.1.3 The run-time systemThe SML/NJ run-time system provides automatic memory management, an interface tothe underlying operating system (Unix), and a mechanism for building stand-alone MLworlds. An older version of the run-time system is described in [App90], but I and othershave revised it several times since then.The run-time system is logically divided into two coroutines: the ML program and theC program that provides run-time support. The actual implementation uses procedure calland return to implement the coroutine switches, with a global C struct used to hold theML state in the run-time system.2 Two assembly routines, restoreregs and saveregs,are used to (respectively) call and return from the ML program. When the ML programneeds a service from the run-time system, it loads the global variable request with nameof the needed service and jumps to saveregs.Memory managementEach object has a one-word descriptor at its beginning that contains the object's length anda 4-bit tag. There are four kinds of objects: tuples, arrays, strings and bytearrays (mutablestrings). Code objects in the heap are represented by strings. A single code object is usedto hold all of the code for a compilation unit (e.g.,ML structure or functor), which requiresa mechanism for supporting pointers into the middle of strings. This is accomplished byan embedded-string descriptor, which is used to mark substrings of a code object; precedingthe embedded-string descriptor is a back-pointer descriptor, which tells the garbage collectorhow to �nd the beginning of the code object. For more details on run-time representationssee [App90].Memory allocation is the dominating cost of ML execution, thus it must be as cheapas possible. SML/NJ uses inline allocation with minimal overhead (allocation of a tuplerequires 3 or 4 instructions over the cost of object initialization). The run-time system usestwo dedicated registers to support allocation: the allocation pointer, which points to thestart of the next object to be allocated; and the heap-limit pointer, which is used to test forthe need for garbage collection. Instead of testing the heap-limit on every allocation, thecompiler tests only at the beginning of an extended basic block.3 The compiler computes2For releases of SML/NJ since 0.70, the ML state is no longer global. Instead, each run-time routinetakes it as an argument, which allows multiple ML states to exist (e.g., on a multiprocessor).3An extended basic block is an acyclic graph of basic blocks with a single entry-point, but multiple exit-123

the maximum possible allocation in an extended basic block and generates a heap-limit testat the root, which will insure that the execution of the block does not run out of allocationspace (allocation of dynamic sized objects, such as arrays, is done by hand-coded assemblyroutines in the run-time system). To simplify the test, the heap limit is set at 4096 bytesbelow the actual top of the allocation space, so that the test for any block that allocates lessthan 4096 bytes only involves a pointer comparison. On many machines, this can be cleverlycoded using one register-register instruction; for blocks that might allocate more than 4096bytes, a more expensive test involving pointer arithmetic is required. When a heap-limitover
ow is detected a trap is generated, which the operating system maps to a Unix signal[UNI86] that is caught by a handler in the run-time system. The signal handler saves theprogram counter of theML program, replaces it with the address of saveregs, and returnsto the operating system, which causes program execution to resume in saveregs. Thistechnique of using a Unix signal handler to vector to an assembly routine that saves theregister state is owed to Cormack [Cor88]. The compiler generates an embedded-stringdescriptor prior to the entry-point of each extended basic block, thus the program counterat the heap-limit test is treated like a normalML value by the garbage collector.SignalsSML/NJ provides an asynchronous signal mechanism [Rep90a], which has semantics sim-ilar to that of Unix signals [UNI86]. When a signal occurs, the current continuation isgrabbed and passed to the appropriate ML signal handler. The signal handler executesatomically with respect to signals; it returns a continuation that is used to resume exe-cution. Signal handlers provide a natural mechanism for implementing preemptive threadscheduling (see below).The actual translation of a Unix signal to an ML signal is more complicated thandescribed. The principal di�culty is that constructing a continuation to pass to the signalhandler at any arbitrary point in the execution is not feasible. The solution to this problemis to delay capturing the continuation to a safe point where the state of execution canbe easily captured. The heap-limit checks used to trigger garbage collection convenientlyprovide such safe points. Thus, when a Unix signal occurs, the Unix signal handler inthe run-time system records it and modi�es the heap-limit pointer to insure that the nextheap-limit check will trigger a garbage collection. The garbage collector then recognizesthat the request for garbage collection is actually a pending signal, builds a continuationclosure out of theML state,4 and passes the signal and continuation to anML routine thatpoints [Ros81].4Recall from above that the heap-limit check is preceded by a descriptor, thus the garbage collector willbe able to deal with the code address of the continuation built by the run-time system.124

dispatches the appropriate ML signal handler. The use of heap-limit checks as safe pointsis similar to the preemption technique used in Argus [LCJS87]. For a complete descriptionof the SML/NJ signal mechanism, see [Rep90a].10.2 Implementing threadsThe implementation of threads exploits the fact that �rst-class continuations are exactlythe thread state that needs to be saved and restored on context switches [Wan80]. Thissection describes the implementation of threads and preemptive scheduling.10.2.1 ThreadsInternally, a thread is represented by two pieces of information: a thread ID and a contin-uation. The thread ID serves as a unique identi�er for the thread, as well as providing ahandle for implementing the threadWait operation, while the continuation represents thesuspended state of the thread's computation. Threads are either ready (able to execute) orblocked (waiting to synchronize on some event). At any time, one of the ready threads isdesignated as the currently running thread; the IDs and current continuations of the otherready threads are kept in the ready queue. The global variable runningThreadId is used torefer to the currently running thread's ID.5 Switching thread contexts involves putting thecurrent thread's continuation and ID into the ready queue and dispatching the next threadin the queue. The following code illustrates the mechanics of a context switch:fun contextSwitch runningK = letval _ = rdyQInsert (!runningThreadId, runningK)val (newId, newK) = rdyQRemove ()inrunningThreadId := newId;throw newK ()end)where runningK is bound to the running thread's current continuation. Variations on thisscheme are used throughout the implementation.Although the SML/NJ compiler knows nothing about threads and concurrency, thefact that callcc and throw are used to implement threads means that the implementa-tion gets many of the bene�ts of specialized compiler support for free. In particular, thecompiler knows exactly which registers are live at the point of a context switch, thus onlythe minimum amount of thread state required is actually saved and restored. Furthermore,5In the most recent version of CML (0.9.6), I switched to using the varptr register to refer to the currentthread's ID. This register is a dedicated per-processor register provided by the compiler.125

the fact that continuations are heap allocated means that thread creation is a very fast,constant time, operation.6 For the MIPS processor, a thread context switch is about 190instructions, and thread creation is about 490 instructions; there is some hope that thesenumbers can be substantially reduced (see Section 11.1.2 for more details).10.2.2 Preemptive schedulingIn order to prevent a thread that is executing a long (or in�nite) computation from monop-olizing the processor, CML uses preemptive thread scheduling. This is done in a straight-forward manner using the Unix interval timer [UNI86] and the signal mechanism describedabove. The interval timer is set to generate a SIGALRM every n milliseconds (n is typicallyin the range from 10 to 50), and a signal handler that forces a context switch is installedfor SIGALRM. The only complication is the possible interference between the running threadand signal handler. To avoid this problem, a global
ag is used to mark when execution isin a critical region:datatype atomic_state = NonAtomic | Atomic | SignalPendingval atomicState : atomic_state refval atomicBegin : unit -> unitval atomicEnd : unit -> unitThe function atomicBegin, which sets the
ag to Atomic, is called just prior to entering acritical region, and the function atomicEnd, which resets the
ag to NonAtomic, is calledon exit. If a signal occurs while atomic_state is Atomic, then the signal handler doesnot force a context switch. Instead it sets atomic_state to SignalPending and returns.The function atomicEnd checks the
ag before resetting it; if it is SignalPending, then acontext switch is performed.7 Note that this mechanism is internal to the implementationof CML; user programmers have no access to these operations.10.3 Implementing channelsChannels are represented by a pair of queues; one for threads waiting for input and onefor threads waiting for output (see Figure 10.1). Each item in a channel queue is a triple,6While constant time callcc is possible in stack based implementations (e.g. [HDB90]), it is not clearthat these techniques are fast enough to implement true light-weight threads on today's hardware. Forexample, Haahr reports that a number of Scheme implementations were unsatisfactory for anything morethan prototypes of his multi-threaded window system [Haa90].7The reader may recognize that there is a potential race when exiting a critical region between the timeof the test for a pending signal and the resetting of the
ag. The delaying of signals to heap-limit checkpoints, however, means that this race can not occur in practice, since the test and resetting of the
ag isdone without any intervening heap-limit checks. 126

type 'a chanq = (bool ref * thread_id * 'a) queuedatatype 'a chan = CHAN of {inq : 'a cont chanq,outq : ('a * unit cont) chanq} Figure 10.1: The representation of channelsconsisting of a dirty
ag (described below), a thread ID, and an o�ered communication.In the input queue (inq), an o�ered communication is represented by a continuation thatwill accept a message; in the output queue (outq), an o�ered communication consists ofthe message being sent and the continuation to resume the thread when the message isaccepted. As an example, the implementation of send is given in Figure 10.2. This codefun send (CHAN{inq, outq}, msg) = callcc (fn send_k => (atomicBegin();case (cleanAndRemove inq)of SOME(rid, rkont) => (rdyQInsert (!runningThreadId, send_k);runningThreadId := rid;atomicEnd();throw rkont msg)| NONE => (insert(outq, (ref false, getTid(), (msg, send_k)));atomicDispatch())(* end case *)))Figure 10.2: The implementation of sendworks by �rst capturing the rendezvous point continuation using callcc. Since the channelqueue and ready queue are going to be manipulated, atomicBegin is called to mark thestart of a critical region. The call to cleanAndRemove returns the ID and communicationof the �rst \clean" item from the input queue8 if one is available, otherwise it returns NONE.If there is an o�ered communication available (i.e., matching accept or receive), then thesending thread is added to the ready queue and the message is thrown to the receivingthread's continuation. If no matching communication is available, then the sender is addedto the output waiting queue, and another thread is dispatched (atomicDispatch dispatchesa thread while exiting the critical region). The implementation of accept is essentially amirror image of send.8The notion of cleanliness is related to the dirty
ag and is explained below.127

10.4 Implementing eventsThe implementation of events is moderately complex, so it is useful to �rst consider a verysimple subset of events without choice, guards or abort actions. In particular, consider theP operation on binary semaphores, which is one of the simplest synchronous operation. Animplementation of binary semaphores (ignoring issues of atomic regions and thread IDs) isquite simple:datatype semaphore = SEMAPHORE of {flg : bool ref,waitq : unit cont list ref}fun V (SEMAPHORE{flg, waitq}) = (case !waitqof [] => flg := true| (k::r) => (waitq := r; enqueue k))fun P (SEMAPHORE{flg, waitq}) = letfun Pbody resumek = if (!flg)then (flg := false)else (waitq := !waitq @ [resumek]; dispatch())incallcc Pbodyendwhere the body of the P operation is factored out for pedagogical reasons. The thing tonotice about this code is that the resumption continuation of the calling process is a freevariable in the body of the operation. This observation, which holds for all synchronousoperations, is the key to the implementation of events. In this simple setting, it means thatevent values can be represented astype 'a event = 'a cont -> 'aUsing this representation, the event-valued implementation of P is:fun P (SEMAPHORE{flg, waitq}) = letfun Pbody resumek = if (!flg)then (flg := false)else (waitq := !waitq @ [resumek]; dispatch())inPbodyendIt follows that sync is implemented directly by callcc. The implementation of wrap mustfeed the value produced by synchronizing on its �rst argument to its second argument,which is done as follows: 128

fun wrap (evt, f) = fn k => (throw k (f (callcc evt)))The continuation that applies f to its argument is passed to the event value being wrapped;the result of evaluating f is then thrown to the continuation that is the argument to theevent value constructed by wrap. The astute reader will recognize this as a convoluted formof function composition.10.4.1 Event value representationUnfortunately, this simple representation of events is unable to support choice, guards orabort actions. In the more general setting of CML events, there are �ve distinct aspectsto a thread synchronizing on an event values:Forcing. If the event is a guard event, then it must be forced (i.e., the guard function isapplied).Polling. For a non-guard event, the �rst step is to poll the base events to see if any ofthem are immediately satis�able.Selection. If one or more of the base events is immediately satis�able, then one of theseis selected and executed.Logging. If there are no immediately satis�able events, then the synchronizing thread mustbe added to the waiting queues of the base events.Unlogging. Once one of the base events is satis�ed, the thread must be removed from theother base events' waiting queues and their abort actions (if any) must be spawned.Figure 10.3 gives the representation of event values, which re
ects the �ve aspects describedabove. An event value is either a guard function, or a list of base-event descriptors. A base-event descriptor is a record of four �elds: the function pollfn is used to test if the baseevent is immediately satis�ed; the function dofn is used to execute the base event if it isselected; the function blockfn is used to log the base-event value; and the �eld abortfn iseither NO_ABORT or the abort action. In [Rep88], the informal semantics of PML events isde�ned in terms of a rewriting system that converts events to a \canonical" form; this formis essentially the above representation and the rewrite rules are the implementation of thevarious combinators.10.4.2 SynchronizationAs described above, there are �ve aspects to applying sync to an event value. These canbe divided into two phases. The �rst phase is forcing guards, and corresponds to the129

datatype abort_fn = NO_ABORT | ABORT of (unit -> unit)datatype 'a base_evt = BASE_EVT of {pollfn : unit -> bool,dofn : abort_fn -> 'a,blockfn : (bool ref * abort_fn * (unit -> unit)) -> 'a,abortfn : abort_fn}datatype 'a event= EVT 'a base_evt list| GUARD of (unit -> 'a event)Figure 10.3: The representation of event valuessequential evaluation rule for \sync (G e)" in Chapter 7. The second phase corresponds tothe notion of event matching (De�nition 7.3), and consists of polling and either selectionor logging (unlogging is done as part of the selection step). This involves accessing shareddata structures and so must be done inside an atomic region. The fact that the secondphase is done as an atomic operation greatly simpli�es the implementation of sync (cf.,Section 12.2.2). The actual implementation of the second phase is tuned for various commonspecial cases, such as singleton events and events without any abort actions, but, to simplifythe discussion, I describe the general case.Forcing guardsThe recursive forcing of guards is done by the following function:fun forceGuard (GUARD g) = forceGuard (g ())| forceGuard (EVT evts) = evtsOnce the guards (if any) have been forced, forceGuard returns a list of base-event descrip-tors (evts).PollingPolling the base events involves traversing the base-event list and calling the pollfn foreach element, while extracting the abort action. The polling step produces a status valuefor each base event in the list. A base event's status is either ready or blocked, and eitherwith or without an abort action (see Figure 10.4). If one or more of the base events is ready,then the blocked base events are irrelevant. Thus, once the polling loop sees a ready base130

type 'a block_fn = (bool ref * abort_fn * (unit -> unit)) -> 'adatatype 'a bevt_status= BLK of 'a block_fn| BLK_ABORT of ('a block_fn * (unit -> unit))| RDY of (abort_fn -> 'a)| RDY_ABORT of ((abort_fn -> 'a) * (unit -> unit))Figure 10.4: The representation of event statusevent, it can discard the status of any blocked base events. The polling of an individualbase event's status is done by the following function:fun pollBaseEvt (BASE_EVT{pollfn, dofn, blockfn, abortfn}) = (case (pollfn(), abortfn)of (false, NO_ABORT) => BLK blockfn| (false, ABORT a) => BLK_ABORT(blockfn, a)| (true, NO_ABORT) => RDY dofn| (true, ABORT a) => RDY_ABORT(dofn, a))SelectionIf the resulting list of base-event statuses includes one or more ready base events, then oneof these is selected. The implementation uses a pseudo-random selection policy that givesprobabilistic guarantee of fairness. A global counter is maintained; its value modulo thenumber of ready events is used to select one of the events. The counter is incremented aftereach selection and by the preemptive scheduler; the latter introduces a random elementthat helps avoid any kind of resonance in the selection patterns. Once a ready base eventis selected, the abort actions of the other base events must be spawned and the dofn ofthe selected base event must be executed. The order in which this is done is tricky, sincethe dofn must be executed before leaving the atomic region and there is no guaranteethat it will ever return (e.g., if a tail-recursive wrapper is involved). The solution is topass the abort actions as an argument to the dofn, which invokes them immediately afterleaving the atomic region. The actual argument is a single abort action that spawns all ofthe required abort actions. Section 10.4.3 describes the internals of the dofns of severalbase-event constructors.LoggingIf no base event is ready then the base events must be logged. Logging a base event requirescapturing a continuation that, when thrown to, will spawn the abort actions of the other131

base events and apply the base event's wrapper functions. The base event, thread ID, andcontinuation together constitute a base-event instance. In order to understand the loggingprocess it is also necessary to see how the blocking function works. Figure 10.5 gives thecode for the logging loop and the skeleton of a typical blocking function. The logging loop(* Logging loop *)System.Unsafe.capture (fn k => letval escape = System.Unsafe.escape kval dirtyFlg = ref falsefun log ([], _) = atomicDispatch ()| log ((BLK bfn) :: r, i) = escape (bfn (dirtyFlg, allAborts, fn () => (log(r, i); error "[log]")))| log ((BLK_ABORT(bfn, _)) :: r, i) = escape (bfn (dirtyFlg, mkAbortFn i, fn () => (log(r, i+1); error "[log]")))| log _ = error "[log]"inlog (sts, 0)end)� � �(* A typical blocking function *)fun blockFn (dirty, abort, next) = letfun block k = (add the thread to the waiting list;next())incase abortof NO_ABORT => (callcc block)| (ABORT a) => ((callcc block) before (a ()))end Figure 10.5: Event loggingis implemented in continuation-passing style; the third argument to a block function, callednext in the skeleton version, is a function that continues the logging loop. The functionerror reports an internal error by raising an exception; its principal purpose is to make thetypes work out. The functions capture and escape are unsafe versions of callcc that donot save or restore the exception handler continuation. They are required here in order thatthe logging of base events not break tail recursion, which is important since the wrapperfunctions often contain tail-recursive calls (e.g., the bu�ered channel in Section 5.1).132

UnloggingOnce a particular base-event instance of an event is selected, the other base-event instancesof that event must be unlogged. To support unlogging there is a boolean reference, calledthe dirty
ag, for each event instance that is shared by its base-event instances. When oneof the base-event instances is chosen, the
ag is set to true, which marks all of the instancesas being dirty. For the channel operations, the marking of the
ag is done by the functionsthat remove items from the waiting queues (e.g., cleanAndRemove).This trick of using a shared reference to mark the dirty instances was invented by NormanRamsey [Ram90]. The reason for using this technique, instead of an explicit unlogging loop,is that it is simple and is constant time (since the cleaning of dirty items can be chargedto their insertion operation). Unfortunately, there are certain situations in which this trickcan result in unbounded heap growth. For example, if a thread is continuously selectingbetween communication on two channels, where one of the channels is never used, then theunused channel's waiting queue will be �lled with dirty requests that are never removed. Toavoid this problem, the channel must be cleaned when items are inserted, which destroys theconstant-time bound on cleaning overhead. The dirty-
ag technique still has the advantageof simplicity.10.4.3 Base-event constructorsThe simplest example of a base-event constructor is always, which builds an event that isalways ready for synchronization. Its implementation is given in Figure 10.6. As expected,fun always x = letfun doFn abortAct = (atomicEnd();case abortAct of (ABORT a) => a() | _ => ();x)inEVT[BASE_EVT{pollfn = (fn () => true),dofn = doFn,blockfn = (fn _ => error "[always]"),abortfn = NO_ABORT}]endFigure 10.6: The implementation of alwaysthe pollfn always returns true. The dofn is minimal; it leaves the atomic region, spawnsthe abort action (if any), and returns the argument with which the event value was created.133

Since pollfn always returns true, blockfn is never called, and since this is a base event,there is no abort action.A more complicated base-event constructor is transmit; the code for this is given inFigure 10.7. The implementation of transmit should be compared to the implementationfun transmit (CHAN{inq, outq}, msg) = letfun pollFn () = (clean inq; isEmpty inq)fun doFn abortfn = letval (rid, rkont) = remove inqfun doit k = (rdyQInsert (!runningThreadId, k);runningThreadId := rid;atomicEnd();throw rkont msg)incase abortfnof NO_ABORT => callcc doit| (ABORT f) => (callcc doit; f())endfun blockFn (flg, abortfn, next) = letfun block k = (insert(outq, flg, (getTid(), msg, k));next(); error "[transmit]")incase abortfnof NO_ABORT => (callcc block)| (ABORT f) => (callcc block; f())endinEVT[BASE_EVT{pollfn = pollFn,dofn = doFn,blockfn = blockFn,abortfn = NO_ABORT}]endFigure 10.7: The implementation of transmitof send in Figure 10.2. The pollfn plays the role of the case in send; it cleans an thehead of the channel's inq and returns true if there is an outstanding input request. Thedofn corresponds to the case in send where there is a clean item in the queue; the sendingthread is enqueued in the ready queue, a request is removed from the queue (note thatremove takes care of marking the dirty
ag) and the message is thrown to the accepter. Ifthere are abort actions, then they are spawned by the sending thread's continuation. Theblockfn corresponds to the case in send where there are no pending input requests. The134

blockfn inserts its continuation (which embodies any wrappers) in to the channel's outqand continues the logging loop. As with the dofn, any abort actions are spawned by thesender's continuation.10.4.4 Event combinatorsIn terms of implementation, the simplest combinator is guard, which has the implementa-tion:val guard = GUARDThe implementations of the various other event combinators must deal with guarded eventvalues. As discussed in Sections 4.5.1 and 7.2, the guard function is essentially a delayoperation. When an event combinator is applied to a guard event, the guard is lifted to thetop level. For example, the implementation of the wrap combinator handles the GUARD caseas follows:fun wrap (GUARD g, f) = GUARD(fn () => wrap (g(), f))| wrap : : :When the guarded wrapper is forced, g() will be evaluated to an event value that will bewrapped by f. The implementations of wrapHandler and wrapAbort handle GUARD in asimilar fashion. The implementation of choose is a little more complicated and is discussedbelow.The actual implementation of the wrap combinator is semantically similar to that de-scribed previously, but the implementation details are quite di�erent. The wrapper functionmust be composed with the dofn and blockfn �elds of each base-event descriptor. This isdone by mapping the following function across the list of base-event descriptors:fun wrapBaseEvt (BASE_EVT{pollfn, dofn, blockfn, abortfn}) =BASE_EVT{pollfn = pollfn,dofn = (f o dofn),blockfn = (f o blockfn),abortfn = abortfn}where f is the wrapper function.The wrapHandler combinatormust also compose its wrapper with the dofn and blockfn�elds of each base event, but the composition involves interjecting an exception handler.The function for wrapping a handler is: 135

fun wrapHBaseEvt (BASE_EVT{pollfn, dofn, blockfn, abortfn}) =BASE_EVT{pollfn = pollfn,dofn = fn x => ((dofn x) handle e => h e),blockfn = fn x => ((blockfn x) handle e => h e),abortfn = abortfn}where h is the handler function being wrapped.The choose combinator is fairly straightforward to implement. It essentially takes a listof lists and
attens them into a single list. If any one of the events in the argument listpassed to choose is a guard event, then the guard is lifted to the top-level. Also, care mustbe taken to preserve the left-to-right order of evaluation of guards.fun choose l = letfun f ([], el, []) = EVT el| f ([], el, gl) = letval applyGuards = revmap (fn g => (g ()))inGUARD(fn () =>choose ((EVT el) :: (applyGuards gl)))end| f ((EVT el') :: r, el, gl) = f (r, el' @ el, gl)| f ((GUARD g) :: r, el, gl) = f (r, el, g::gl)inf (l, [], [])endThe implementation of wrapAbort is the most interesting of the combinators. WhenwrapAbort is applied to a singleton event (i.e., an event consisting of exactly one baseevent), the implementation simply adds the abort action to the base event, which is doneby the following function:fun addAbortFn (BASE_EVT{pollfn, dofn, blockfn, abortfn}, a) =BASE_EVT{pollfn = pollfn,dofn = dofn,blockfn = blockfn,abortfn = (case abortfnof NO_ABORT => a| (ABORT a') => fn () => (spawn a'; a()))}The more complicated case is when wrapAbort is applied to an event value consisting of nbase events, where n > 1. The semantics of wrapAbort require that the abort action bespawned only in the case that none of the base events is chosen. This must be implemented136

in terms of the individual base-event abort actions, which are spawned if their base eventis not chosen. In other words, the abort functions of the base events must coordinate toimplement the abort action of the wrapped event. The way this works is that the abortactions are partitioned into a single leader action and n � 1 follower actions. A specialchannel is allocated for these threads to communicate by. Each follower sends an \I amhere" message to the leader; the leader attempts to read n� 1 messages and then executesthe abort action. If any one of the base-event actions is not spawned, i.e., because thecorresponding base event is the selected one, then the abort action does not get executed.The channel used by these threads must be allocated anew for each synchronization attempt,so the creation of the abort actions is protected by a guard. The actual implementation ofthe resulting event value is:GUARD(fn () => letval ackCh = channel()fun addFollowerAbortFn b =addAbortFn (b, fn () => send(ackCh, ()))val n = length followersfun leaderAbort 0 = abort()| leaderAbort i = (accept ackCh; leaderAbort(i-1))inEVT((addAbortFn (leader, fn () => (leaderAbort n))):: (map addFollowerAbortFn followers))end)where leader and followers are, respectively, the base-event descriptors of the leader andfollower abort actions.10.5 Implementing I/OI/O operations pose two problems for concurrent programming systems: �rst, the I/Odevices (�le descriptors in Unix systems) are a form of shared state, and thus requireconcurrency control; and, second, input operations (and in some cases output operations)have the potential to block. As described in Sections 4.4 and 4.6, the implementation ofCML supports I/O at two levels: synchronization on Unix �le descriptor conditions and aconcurrent version of the SML stream I/O interface.10.5.1 Low-level I/O supportThe low-level I/O base-event constructors (e.g., syncOnInput) provide a mechanism similarto that of the Unix system call select [UNI86], and, in fact, are implemented using this137

system call.A global I/O waiting list is maintained by the implementation, with each entry corre-sponding to a particular instance of an I/O base-event value. Each time the preemptivescheduler is called, it dispatches a continuation that checks the status of the �le descriptorsin the I/O waiting list. This is done by projecting out the �le descriptors of the non-dirtyevent instances in the waiting list and building the corresponding �le descriptor sets. Acall to the select system call is made to poll the �le descriptors, which returns the setof ready descriptors. The threads waiting on the ready descriptors are then added to theready queue.The only complication to this scheme is handling I/O errors; e.g., if one of the �les hasbeen closed. In such a case, the system call select returns an error code, but no speci�cationof which �le descriptor is the source of the error. Since this situation is relatively rare, amoderately expensive, but simple, linear search for the bad �le descriptors is used. Each �ledescriptor is tested by a call to the ftype system call, which returns an error if, and only if,the �le descriptor is the source of the error. This error is then mapped back to the blockedthread by raising an exception in its context. This requires saving two continuations in theblock function; one for successful synchronization and one for error condition. To make thisall concrete, the I/O waiting list data structure and the synchOnInput event constructor'sblock function are given in Figure 10.8. Each io_item in the waiting list corresponds toa pending I/O base-event instance, and contains the �le descriptor, type of operation, thewaiting thread ID and the two possible continuations.10.5.2 Stream I/OCML includes a structure CIO, which implements a concurrent version of SML I/O streams(see [Rep90b] for a complete description). There are two types of I/O streams, in-streamsand out-streams, which provide bu�ered input and output operations. Each open streamis represented by a thread, which implements the bu�ering. For out-streams, the protocolis straightforward and uninteresting.9 The in-stream protocols, however, are an example ofthe advanced use of events to build complex communication abstractions.Because input operations might block inde�nitely (e.g., while waiting for the user toenter a line of text), it is necessary to provide an event-valued interface to in-streams. TheCIO structure includes the following operations:val inputEvt : instream * int -> string eventval inputLineEvt : instream -> string eventval lookaheadEvt : instream -> string event9The implementation makes the simplifying assumption that write operations are non-blocking.138

datatype io_operation_t = IO_RD | IO_WRtype io_item = {fd : int, (* the file descriptor *)io_op : io_operation_t, (* the kind of operation *)id : thread_id, (* the waiting thread's id *)kont : unit cont, (* the successful continuation *)err_kont : unit cont, (* the error continuation *)dirty : bool ref (* the dirty bit *)}val ioWaitList = ref ([] : io_item list)� � �fun inputBlockFn (flg, abort, next) = (callcc (fn okay_k => (callcc (fn err_k => (ioWaitList := {fd=fd, io_op=IO_RD, dirty=flg, kont=okay_k,err_kont=err_k, id=getTid()} :: !ioWaitList;next()));(* continue here on an error *)applyAbortFn abort;raise (InvalidFileDesc fd)));(* continue here on success *)applyAbortFn abort)Figure 10.8: Low-level I/O supportThe function inputEvt builds an event value for reading a speci�ed number of characters,inputLineEvt builds an event value for reading a line of input, and lookaheadEvt builds anevent value for examining the next character to be read from the bu�er. As an illustration,the following function either reads a line of input or times out:fun getAnswer t = select [wrap (inputLineEvt std_in, SOME),wrap (timeout t, fn () => NONE)]In order for code of this sort to work properly, the implementation of the in-stream eventconstructors must satisfy the following two requirements:(1) The commit point of the event must correspond to the availability of input thatsatis�es the request.(2) Input must never be lost or discarded.The implementation uses a request-reply protocol (a simple version of this is described in139

Section 4.5). In order to meet requirement (1), the commit point must be the server'sreply, which means that the request must be generated by a guard. Meeting requirement(2) means that the server thread must be informed that the request has been aborted.This is the scenario discussed in Section 4.5.2, and the client-side code is similar to that ofclientCallEvt5. For example, the client-side implementation of inputLineEvt is:10fun inputLineEvt (INSTRM{req_ch, ...}) = guard (fn () => letval abortCh = channel() and replyCh = channel()inspawn (fn () =>send (req_ch, INPUT_LN(receive abortCh, replyCh)))wrapAbort (receive replyCh, fn () => send(abortCh, ()))end)The event value constructed by this function is a guard that sends a request to the serverconsisting of the operation, an abort event and a reply channel. The commit point of thisevent is receiving a reply from the server. If the client synchronizes on some other event,then the abort action sends an abort message to the server. On the server side, when arequest comes in the server attempts to satisfy it | either from the input bu�er or byrequesting input from the operating system. Once the server can satisfy the request, itsynchronizes on the choice of sending the input as a reply and receiving an abort messageon the abort channel. In the latter case, the input is reinserted into the bu�er.10.6 Implementation improvementsThe current implementation of CML uses practically no specialized run-time or compilersupport. There are a number of techniques that could be used in the run-time system andcompiler that would improve performance.A very simple modi�cation, which requires little work, is to introduce a dedicated registerfor referring to the thread ready queue. This would have two bene�ts: it would reducememory tra�c, and it would eliminate the store-list allocations associated with ready queueupdates. Using the varptr register to refer to the current thread ID, instead of a global refvariable, improved the speed of thread context switching by over 10%. This suggests thatthread context switching might improve by as much as 20% by use of a dedicated readyqueue register. And as the clock speed of RISC processors increases, the potential savingsbecome larger.In the PML compiler, the event-value constructors and channel operations are explicitlyrepresented by primops. The PML compiler does very aggressive intermodule inlining, thus10The actual implementation uses a condition variable for the abort message (see Section 5.3).140

it is able to recognize applications of sync to static event values, which can be optimized intomore e�cient operations. For example, sync (receive ch) can be replaced by accept ch,which is about 40% faster. A more modest improvement (about 5%) is achieved by inlineexpansion of sync, transmit and receive.It is also possible for compilers to recognize more complex communication patterns. Acommon example is the use of a thread to encapsulate state, with an RPC interface. Inthis case, each time the server thread is dispatched to handle some operation, there is aclient thread that is suspended, waiting for the reply. A more e�cient implementationof this pattern is to use a monitor (see Section 3.2.2) to encapsulate the state.11 Whenthere is no contention, monitors avoid the necessity of context switches on entry and exit;a comparison of the costs in the context of Ada can be found in [EHP80]. Instead ofproviding monitors at the language level, it may be possible for the compiler to detect whena monitor is suitable and translate the RPC operations to monitor calls; this has been donefor Ada rendezvous [HN80]. Unlike Ada, CML does not have the syntactic signpoststhat mark RPC-style interactions, since they are derived operations. Thus, automaticallyrecognizing that an RPC operation can be single-threaded is a very di�cult problem. Othercommunication patterns that might be recognized by the compiler include channels thatare used exactly once and channels that are used for point-to-point communication. Forexample, consider an RPC protocol in which the reply channel is dynamically allocated foreach request (e.g., the implementation of input streams described in Section 10.5.2). If thereply channel is used exactly once, then it can be replaced with a condition variable, whichreduces communication overhead by 30%.
11This may not be the case on non-uniform memory access multiprocessors, where the client and encap-sulated data are on di�erent processors (see Chapter 12).141

Chapter 11PerformanceIn the previous chapter, I described the implementation of CML in detail; in this chapter,I report various performance measurements that I have made of this implementation. Themeasurements include timing results for a collection of small benchmarks on three di�erentworkstations, and instruction counts for these benchmarks on the MIPS R3000 processor. Inaddition, I compare the performance ofCML with the �System, aC-based thread package.These measurements show that CML provides a high-level notation at a competitive price.11.1 The benchmarksI have conducted a series of benchmarks on three di�erent machines, representing threedi�erent processor architectures. Table 11.1 summarizes the features of these computers.The benchmarks measure the cost of low-level concurrency operations, such as sending aTable 11.1: Benchmark machinesNeXT SPARC 2 DEC 5000Full name NeXT Cube SPARCstation 2 DECstation 5000/120Processor 25MHz 68040 40MHz SPARC 20MHz R3000Memory 24Mb 64Mb 16MbOperating System NeXTstep 2.1 SunOS 4.1.1 ULTRIX 4.2message, so to get accurate numbers I measured the time to perform 100; 000 operations.1For each benchmark, I measured the CPU time spent executing the program (both userand system) and the time spent in the garbage collector. All times are in micro-seconds.The benchmarks were run using version 0.75 of SML/NJ (released November 11, 1991),and version 0.9.6 of CML (released October 11, 1991).110; 000 iterations of a loop of 10 operations. 142

The benchmarks are logically divided into two groups; the �rst measure the basic con-currency primitives:Thread switch. This measures the cost of an explicit context switch.Thread spawn/exit. This measures the time it takes to spawn and run a null thread. Itincludes the cost of two context switches: the spawn operation switches control to thenewly spawned thread and a terminating thread must dispatch a new thread.Rendezvous. This measures the cost of a send/accept rendezvous between two threads.Event rendezvous. This is an implementation of the rendezvous benchmark using synccomposed with transmit and receive, instead of send and accept.The second group measures the cost of several di�erent versions of an RPC implementationof a simple service. The service is essentially a memory cell; a transaction sets a new valueand returns the old value.RPC. This uses send and accept to implement the protocol. The client-side code is:fun call x = (send (reqCh, x); accept replyCh)Event RPC. This implements the protocol as an event value. The client-side code is:fun call x = sync (wrap (transmit(reqCh, x), fn () => accept replyCh))Fast RPC. This uses a condition variable (see Section 5.3) to implement a fast, asyn-chronous reply. The client-side code for a call is:fun call x = let val replyVar = condVar()insend (reqCh, (x, replyVar));readVar replyChend11.1.1 Timing resultsThe measured times for all of the benchmarks are given in Table 11.2. Each entry has theform t + g, where t is the combined user and system time for the operation and g is theamortized garbage collection overhead. Each entry is the average of �ve test runs, and therewas little deviation between runs. Real-time measurements were only slightly higher thanthan the CPU time measurements. 143

Table 11.2: CML benchmarksTime in �S / Operation(program + garbage collection)Operation NeXT SPARC 2 DEC 5000Thread switch 23+4 18+4 15+7Thread spawn/exit 47+7 46+7 42+13Rendezvous 54+10 50+7 49+20Event rendezvous 110+12 90+9 88+23RPC 105+20 95+15 90+38Event RPC 171+21 134+15 125+39Fast RPC 79+11 68+9 65+2311.1.2 Instruction countsAndrew Appel modi�ed the MIPS code generator to generate instrumentation that countsthe number of executed instructions. Using this mechanism, I measured the instructioncounts for the various benchmarks. Table 11.3 gives the results of these measurements.These numbers do not include the loop or garbage collection overhead.Table 11.3: MIPS instruction countsOperation Instructions / OperationThread switch 197Thread spawn/exit 483Rendezvous 558Event rendezvous 934RPC 1; 008Event RPC 1; 346Fast RPC 711These numbers are higher than one might expect (particularly for the thread switchand creation operations). In [Rep91a], I reported that a thread switch required around100 instructions on the SPARC processor, which is about half of what I measured for theMIPS. Since the MIPS and SPARC are both RISC processors, the di�erence is not oneof instruction sets, but rather is because of changes in the SML/NJ compiler (Appel,personal communication, December 1991). There is some hope that future improvementsin the compiler will reduce the instruction counts to more reasonable values (for example,a thread context switch should require no more than 75 instructions).144

11.2 AnalysisThe measurements show that the penalty for using abstract interfaces (i.e., hiding channelcommunication in event values) is acceptable. Table 11.4 gives the ratio between the non-GC time of the event version and the non-event version of the two communication protocolsI benchmarked. For a simple rendezvous, the performance cost of using events is about 80%;Table 11.4: Cost of abstractionProtocolRendezvous RPCMachine cost (�S) ratio cost (�S) ratioSPARC 2 40 1:8 39 1:4DEC 5000 39 1:8 35 1:4for the RPC it is 40%. The reason for the lower impact on the RPC protocol cost is thatonly one of the two communications is being represented by an event value. In general, onlythe communication that is the commit point needs to be implemented using an event value;communications in the guard and wrapper can be implemented using send and accept.11.2.1 Garbage collection overheadThe high garbage collection overhead in these benchmarks is mostly a result of the way thecurrent SML/NJ collector, which is a simple generational collector, keeps track of inter-generational references [App89]. Each time a mutable object is updated, a record of thatupdate is added to the store list. This store list is examined for potential roots at the begin-ning of each garbage collection. The implementation of CML uses a small number of veryfrequently updated objects: the thread ready queue, current thread pointer and channelwaiting queues. This \hot-spot" behavior is the worst-case scenario for SML/NJ's col-lector, destroying the O(jLIVEj) normally expected from copying collection. The collectoralso su�ers from the problem of poor \real-time" responsiveness.11.3 Comparison with the �SystemTo put these measurements into perspective, I implemented a similar set of benchmarks inversion 4.4 of the �System, which is aC light-weight process library [BS90]. The �Systemprovides threads and a request/reply communication primitive (it also has shared-memoryprimitives), but it does not have selective communication. It runs on the SPARCstationand DECstation, but not on the NeXT. Table 11.5 reports the results for the SPARCstation145

Table 11.5: �System benchmarksSPARC 2 DEC 5000Operation Time (�S) Ratio Time (�S) RatioTask switch 62 2:8 13 0:6Task create 161 3:0 59 1:1Send/receive 127 2:2 42 0:6Send/receive/reply 128 1:7 43 0:5and DECstation. As before, the times are given in micro-seconds and represent the sumof the user and system CPU times; obviously there is no garbage collection overhead. Thecolumn labeled \ratio" gives the ratio of the �System and CML times (including garbagecollection overhead); a ratio greater than 1:0 means that CML is faster.On the SPARCstation, CML is uniformly faster than the �System. The principalreason for this is that SML/NJ does not use the SPARC's register windows, and thus doesnot have to
ush them on a thread switch. The comparison for the DECstation is not asfavorable, but CML is still competitive, even though the �System provides a lower-levelconcurrency model (no selective communication, for example). This shows that we can havethe advantages of the higher-level language without sacri�cing performance.

146

Chapter 12MultiprocessorsWhile the main thrust of this dissertation is the study of concurrency as a tool for structur-ing programs, it is worth considering the issues associated with a possible multiprocessorimplementation of CML. In this chapter, I survey various parallel language features andparallel programming techniques and discuss how they might apply to parallel programmingin CML. I also discuss the implementation issues that must be addressed in a multipro-cessor implementation of CML, and �nally summarize the prospects for multiprocessorCML.For purposes of this chapter, I assume a multiple-instruction multiple-data (MIMD)machine with a shared address space. There are many experimental and commercial ex-amples of these machines, and it is reasonable to expect that they will appear on desksin the near future. Although these machines provide a shared-memory model, they usu-ally also have non-uniform memory access (NUMA); e.g., each processor may have a localmemory or at least a cache. Because of NUMA, maintaining locality is important for goodperformance, and as the number of processors increases NUMA e�ects become more pro-nounced. Programs written in a message-passing language typically have good locality, andcan out-perform the shared-memory versions [LS90].There are several bene�ts to be obtained from a multiprocessor implementation ofCML.Although most existing applications, such as eXene, have fairly limited amounts of par-allelism (typically only a few ready threads at a time), a multiprocessor implementationshould result in noticeable performance improvements for many existing applications. Ow-icki reports improvements for these kinds of applications written in Modula-2+ runningon a Fire
y multiprocessor [Owi89]. In particular, she mentions that the Trestle windowsystem exploits the multiprocessor by pipelining graphics operations. EXene is designedwith some pipelining, so that running on a multiprocessor should improve its performance.And, of course, all programs, including highly sequential ones, will bene�t from parallel147

garbage collection.With a multiprocessor implementation available, it becomes reasonable to implementparallel algorithms. Some examples are parallel attribute grammar evaluation [Zar90], par-allel theorem provers [BCLM89], and parallel graphics algorithms [Gre91].12.1 Parallel programming in CMLThis section examines the use of CML as a parallel programming language. There are twoparts to this discussion: �rst, I discuss several parallel programming techniques and howthey might apply to CML; and second, I describe possible extensions to provide bettersupport for parallel programming. The proposed extensions do not represent changes inthe semantics of CML; rather, my approach is to de�ne new communication operationsthat can be derived from the CML primitives, but that are also amenable to e�cientimplementation on multiprocessors.12.1.1 Pipelining and data-
owOne class of parallel programs naturally expressed in CML are those programs that canbe structured as data-
ow networks [KM77]. A data-
ow network consists of a graph ofcomputation nodes, where the edges are communication links (Landin's streams [Lan65] area precursor to this). A data-
ow graph does not have to be static; a computation node canbe replaced by subgraph having the same I/O interface.Data-
ow graphs provide parallelism in two ways. If two computation nodes do notdepend on each other for data, then they can compute in parallel. Even if there is adependency, if they operate on a sequence of values then they form a pipeline. In order fora data-
ow network to be e�cient, the granularity of the operations at individual nodesmust be large enough to compensate for the communication overhead.Using threads for the computation nodes and channels for the edges, a data-
ow networkcan be directly implemented in CML. For example, eXene's thread network is essentiallya data-
ow network (see Section 9.1.3). Another example is given in [Rep90b], where Idescribe a pipelined implementation of the Sieve of Eratosthenes using CML.A nice illustration of the use of data-
ow networks is given by McIlroy in [McI90], wherehe describes the use of processes and channels to compute power series (this was actuallysuggested in [KM77], but without implementation details). McIlroy represents a powerseries as a stream of rational coe�cients. For example, the power series for the exponential148

function ex = 1Xi=0 xii! = 1 + x+ 12x2 + 16x3 + � � �can be implemented in CML as follows:fun e () = letval ch = channel()fun loop (i, ifact) = (send(ch, {num=1, denom=ifact});loop(i+1, (i+1)*ifact))inspawn (fn () => loop(0, 1));chendUsing this representation, operations such as addition and multiplication of power seriescan be coded up as networks of threads (see [McI90] for details).12.1.2 Controlling parallelismOne of the key problems in writing parallel programs is avoiding excessive parallelism. Abasic technique in many parallel programs is to divide a problem into two or more pieces andto spawn a thread for each piece. If there are many more pieces than processors, then thistechnique leads to excessive parallelism and the cost of thread management can dominatethe execution time. Premature limiting of parallelism, however, can result in starvation;i.e., idle processors without any work.Work crewsOne approach to limiting excessive parallelism in concurrent programs is the work crewabstraction [RV89]. In this scheme, a �xed set of threads, called workers, execute jobstaken from a queue,1 where a job is a piece of computation. When a worker gets a job thatcan be computed in n parallel pieces, it chooses one piece for itself and generates n � 1help requests for the remainder. When the worker �nishes the its piece of work, it thenchecks to see if the help requests have been answered. If not, then the worker computes thenext piece of the job, and so on until the job is completed. After completing the job, theworker looks for help requests from other workers; if it �nds one, that becomes its next job.Figure 12.1 sketches the code for a job consisting of three pieces. In addition to providing amechanism for limiting parallelism, work crews also have the important property of breadth-�rst parallel decomposition, which results in coarse-grain parallelism. And, since jobs are1In [RV89], the term tasks is used to refer to jobs.149

fun job () = (requestHelp (job2);requestHelp (job3);do job1;if noHelp(job2) then do job2 else ();if noHelp(job3) then do job3 else ())Figure 12.1: Work crew job decompositiondecomposed eagerly, worker starvation is avoided. When no extra workers are available fora job, execution reduces to the standard sequential order.The structuring of job decomposition in a breadth-�rst manner is probably the mostimportant bene�t that work crews would provide CML. Since thread creation and spaceoverhead are low, a CML implementation of work crews could use a thread for each job,but only enable a subset of threads to run at any time. A \token" mechanism could beused for this, where each job (i.e., thread) would wait for a token before executing, andwould pass the token to the next job when it completed. In this scheme, a token holdercorresponds to a worker.FuturesThe semantics of futures in concurrent Lisp systems provide another opportunity for lim-iting parallelism. Consider the general form of a future creation:K (future e)where K is the context of the future call. The keyword future can be viewed as anannotation, which tells the compiler that e is a good candidate for parallel evaluation. Theactual evaluation of e, however, can be immediate (called inline evaluation), in parallel withK, or when K demands its value. One approach is to choose dynamically between inlineand parallel evaluation of e based on the current load; this is called load-based inlining[KH88, MKH91]. A problem with this approach is that the rate of thread creation in aprogram may not be uniform, so a decision to inline a future at one point may lead tostarvation later. Furthermore, load-based inlining can introduce deadlock [MKH91].An alternative to load-based inlining is lazy task creation, which is is a scheme thatalways inlines the evaluation of e, but saves enough information to spawn a thread toevaluate K in parallel if the number of ready tasks falls below the number of processors[MKH91]. This scheme is quite similar to work crews in its e�ect, but requires less e�ort150

by the programmer. Futures with lazy task creation can be implemented in CML fairlyeasily. Assuming that we have a global channelval continue : unit chanfor sparking new threads, then the future operation is implemented as follows:2fun future f x = letval resVar = condVar()inspawn (fn () => writeVar (resVar, f x));select [receive continue,wrap (readVarEvt resVar, fn _ => ())];readVarEvt resVarendThe idea is that an idle processor sends a message on the continue channel to wake upsome waiting thread. Since channel communication is FIFO, this results in the desiredbreadth-�rst problem decomposition. Of course, it would be much more e�cient to directlyimplement futures and lazy task creation using callcc and the techniques of [MKH91]. ForCML, a principal advantage of lazy task creation is that it doesn't introduce deadlock; evenin the case when the body of a future attempts to synchronize with the future's parent.12.1.3 Speculative parallelismCertain classes of parallel programs, such as parallel search, use speculative parallelism toimprove performance [Osb89]. For example, consider the problem of �nding an item in abalanced binary tree; by searching subtrees in parallel, the running time of the search isreduced from O(n) to O(logn), given a su�cient supply of processors. Although this exam-ple is trivial, it is illustrative of problems arising in applications such as theorem provers.In addition to the problem of controlling excessive parallelism (discussed in Section 12.1.2),there is the problem of terminating unnecessary computations (e.g., once one thread hasfound the item, there is no reason for the others to keep searching). CML does not cur-rently support the asynchronous termination of threads, thus it would be necessary to addkill operation on thread IDs. The other aspect of thread termination is recognizing whichthreads need to be killed. It is also important to note that the speculative threads must bereferentially transparent, otherwise killing them changes the semantics of the program.2Note that this version is simpli�ed by ignoring the issue of exceptions (cf., Section 5.5).151

One attractive, but tricky, approach is to garbage collect those threads that are able torun, but are irrelevant to the future execution of the program.3 One way to do this is to givethe garbage collector special knowledge about channel and thread objects, which allows itto trace thread interconnections [BH77, KNW90]. The problem with using this techniquefor CML is that it does not interact well with the implementation of threads as ordinarySML values. Another strategy, which might be more suitable for CML, is judicious useof weak pointers in the representations of some of the concurrency objects [ME89]. Weakpointers, which are already supported by SML/NJ, are a way to hold a reference to anobject while allowing the garbage collector the option of collecting it. If, during a garbagecollection, the only references to an object are weak pointers, then the garbage collectorcollects the object and nulli�es the weak pointers that refer to it. Using weak pointers,a future mechanism can be implemented that gives the parent thread a strong pointer tothe future object and gives the child thread a weak pointer to it. If the parent discards itsreference to the future object, then the child's weak pointer is nulli�ed, and, using object�nalization [Rov85], the child thread is collected. A similar scheme is described in [ME89].A simple technique, which has similar utility to the weak pointer scheme above, is toexploit the guard and wrapAbort combinators to implement a speculative fork operation:fun fork f x = guard (fn () => letval cv = condVar()val id = spawn (fn () => writeVar(cv, f x))inwrapAbort (readVarEvt cv, fn () => kill id)end)Using multiple instances of this in a select implements or-parallelism. The �rst thread to�nish provides the answer and triggers the abort actions of the other choices, which kill theother threads. For example, the following function sorts a list while testing to see if it isalready sorted in parallel:fun fastSort l = select [fork (fn () => sort l),fork (fn () => if (isOrdered l) then l else exit())]where sort is some sorting function and isOrdered tests a list to see if it is sorted.3The CML implementation collects unreachable blocked threads, but not threads that are ready (i.e.,threads that are reachable via the ready queue). 152

12.1.4 I-structuresThe parallel programming functional language Id provides a form a mutable state calledI-structures [ANP89, Nik91]. I-structures come in various
avors, including aggregate struc-tures such as arrays.Condition variables are essentially the value-return mechanism of a future. Futures havebeen promoted as a useful mechanism for parallel programming by the Lisp community(e.g., [Hal85] and [KH88]). Although, as discussed in Section 5.5, futures can be imple-mented using channels, an implementation based on condition variables has the signi�cantadvantage of avoiding a context switch each time the value of the future is read.4Condition variables are an example of what are called I-structures in the parallel lan-guage Id [ANP89, Nik91]. Id provides I-structures in various
avors, including aggregatestructures such as arrays. A discussion of the use of I-structures in parallel programs andsome small example programs can be found in [ANP89].12.1.5 M-structuresAnother form of state supported by Id is the M-structure [BNA91]. Like I-structures, M-structures are either empty or full. There are two basic operations on M-structures: put,which initializes a cell and, like I-structures, raises an exception if the cell already has avalue; and take, which removes and returns the contents of a cell (making it empty). Thetake operation forces synchronization, since a thread may have to wait for another threadto put a value into the cell. This is similar to the \I/O ports with memory" describedin [KS79]. M-structures can also be viewed as �nitely bu�ered asynchronous channel withonly one slot. In CML, M-structured variables have the following interface:type 'a mstructval mstruct : unit -> '1a mstructval put : ('a mstruct * 'a) -> unitexception Putval takeEvt : 'a mstruct -> 'a eventval take : 'a mstruct -> 'aSince M-structures are mutable, the allocation function is weakly polymorphic. As men-tioned above, the take operation involves synchronization, so an event-valued form is alsoprovided. If a put is attempted on a full cell, the exception Put is raised.4Condition variables have proved quite useful in CML programs when \single-shot" communication isrequired (e.g., for abort messages, see Section 10.5.2).153

M-structures can be updated atomically if threads use the following update protocol:put (m, f (take m))where f computes the new value of m from the previous value. The reason why thisupdate is atomic is that the take operation locks the variable against take operations byother threads (this is similar to the safety of shared request-reply channels discussed inSection 4.2). Paul Barth at MIT has developed a number of parallel algorithms in Id usingM-structures (Barth, personal communication, August 1991); some examples can be foundin [BNA91].M-structures can be de�ned as a derived feature in CML; Figure 12.2 gives an imple-mentation of the above interface. In a parallel implementation ofCML, M-structures mightdatatype 'a mstruct = M of {full_ch : unit chan,take_ch : 'a chan,put_ch : 'a chan}fun mstruct () = letval fullCh = channel()val takeCh = channel() and putCh = channel()fun undefined () = defined (accept putCh)and defined v = select [wrap (transmit(takeCh, v), fn () => undefined()),wrap (transmit(fullCh, ()), fn () => defined v)]inspawn undefined;M{full_ch = fullCh, take_ch = takeCh, put_ch = putCh}endfun takeEvt (M{take_ch, ...}) = receive take_chfun take (M{take_ch, ...}) = accept take_chexception Putfun put (M{full_ch, put_ch, ...}, x) = select [wrap (receive full_ch, fn () => raise Put),transmit (put_ch, x)]Figure 12.2: CML implementation of M-structure variablesbe implemented directly on top of the low-level shared-memory primitives, making themvery e�cient. Other operations that Id supports on M-structures, such as a non-destructiveread operation, could also be directly supported.154

12.2 Multiprocessor implementationDesigning and building a high-performance multiprocessorCML implementation is a majorresearch project in its own right, and I leave it for future work. It is possible, however, toidentify and discuss some of the major implementation issues.12.2.1 Concurrency controlThe uniprocessor implementation described in Section 10.4 relies on a single global mutexlock for guaranteeing atomic access to the channel and thread data structures (see Sec-tion 3.2.1 for a description of mutex locks). On a uniprocessor, using a global lock is themost e�cient approach, since it reduces locking overhead and does not cause any loss ofparallelism. For multiprocessors, however, a single global lock is likely to cause contentionand idle processors. For example, on a four processor machine (Pf1;2;3;4g), a thread on P1should be able to communicate with a thread on P2 in parallel with communication betweenthreads on P3 and P4. This means that channels must be locked independently.Di�erent multiprocessors provide di�erent kinds of support for locking. A commonmechanism is the test-and-set instruction, which atomically applies the following functionto a word:fun testAndSet w = if !w then true else (w := true; false)This operation can be used to implement a spin-lock, which is busy-waiting mutex lock:fun aquireSpinLock w = if (testAndSet w)then (aquireSpinLock w)else ()fun releaseSpinLock w = (w := false)A more sophisticated implementation might use exponential back-o� or other techniquesto improve performance (see [And89] and [CS91] for a comparison of locking techniques).Some multiprocessors do not provide hardware support for locking, but Lamport has de-veloped an algorithm for these cases, which is optimal in the number of memory reads andwrites [Lam87]. Other machines only provide test-and-set on a limited number of mem-ory locations, in which case software locks must be implemented on top of the hardwaresupported spin-locks.12.2.2 Generalized selective communicationWith the introduction of a separate lock on each channel's data structure, the implemen-tation of sync applied to a choice of multiple communications becomes signi�cantly more155

complicated. For example, a na��ve implementation of select on a list of communicationsis to �rst grab the locks of all the channels and then do the operation. This fails in thefollowing situation. Assume there are two threads t1 and t2, running on di�erent processors,with t1 attemptingselect [receive c1, transmit (c2, v)]while simultaneously t2 attemptsselect [receive c2, receive c1]This can result in a situation in which t1 holds a lock on c1 and needs a lock on c2, whilet2 holds a lock on c2 and needs a lock on c1 | i.e., deadlock. There are various knownalgorithms for this problem (e.g., see [BS83], [Bor86], or [Bag89]). The basic strategy is to�rst make tentative o�ers of communication; when two tentative o�ers match, one threadmust freeze its state until the other thread either commits or rejects the communication. Thechoice of which thread will �x its state is based the order of the threads' IDs; this avoids thepossibility of cyclic dependencies and deadlock. Greg Morrisett has implemented a protocolsimilar to [Bor86] on top of ML-threads (Greg Morrisett, personal communication, July1991).12.2.3 Thread schedulingThe techniques and data structures used for thread scheduling can have a signi�cant im-pact on multiprocessor performance, because of contention for thread queues and cacheconsistency e�ects.A single global scheduling queue would be a signi�cant source of contention. Further-more, a single queue does not provide any mechanism for keeping a thread on a singleprocessor, which is important for preserving cache consistency. Accordingly, as a �rst cut,it is clear that each processor should have its own queue of ready threads. Some policyis needed to balance out the load. One possibility is to balance the scheduling queues atgarbage collection time. Since typical memory allocation rates in ML programs are high(on the order of 5 to 10 megabytes per second on a SPARCstation-2), a processor that runsout of work would not have to wait long for load balancing. A fall-back would be to allowan idle processor to force a garbage collection if it has been idle for more than a few millisec-onds. This scheme has the advantage of insuring that the scheduling queue is only accessedby its processor (except during load balancing), which means that a light-weight lockingmechanism, such as that used in the single processor implementation (see Section 10.2.2),can be used to protect the queue. Since the scheduling queue is the single most heavily156

accessed shared data structure, this scheme might provide good performance. The questionthat needs to be answered by empirical tests is how often do processors run out of threadsto schedule?The implementation of Mul-T uses two thread queues per processor; one for threadsthat have never run, called the new thread queue, and one for threads that have beensuspended, called the suspended thread queue. When selecting a new thread to dispatch,the processor's scheduler �rst looks in its own suspended thread queue, then in its own newthread queue, then in other processors' new thread queue and lastly, if it has not found athread, it looks in the other processors' suspended thread queues. By selecting new threadsover suspended threads when migrating threads, the impact on cache consistency of threadmigration is reduced.12.2.4 Memory managementImplementations of heap-based languages, such as SML or CML, live or die by the per-formance of their memory allocation and garbage collection techniques. An e�cient multi-processor implementation of CML must address several memory management issues. Themost important of these is avoiding contention during memory allocation. The standardscheme to address this problem is to divide the allocation space into multiple chunks and togive each processor its own allocation chunk (e.g., [AEL88], [KH88], [ME89] and [Mar91]).When a processor �lls its allocation chunk, it grabs another from the global list of freechunks. The only source of allocation contention are the accesses to the global chunk list,which are relatively rare.When the allocation chunks are exhausted, it is necessary to perform a garbage collec-tion. For a \stop-the-world" collector, this �rst requires synchronizing the processors, sothat they are all in collection state. One possible technique to force synchronization is tohave the processor that notes the need for garbage collection use a Unix signal to notifythe other processors [KH88]. Another approach is to wait for the other processors to ex-haust their allocation chunks [Mar91]. To avoid problems in the unlikely case of an in�nite,non-allocating, computation, a global
ag is set that is checked by the SIGINT signal han-dler. Since allocation rates in SML/NJ are very high (typically one 4-byte word per 5-10instructions), the idle-time of the processor that initiated the garbage collection might beless costly than the overhead of using signals to interrupt the other processors.Once all of the processors are in collection state, the garbage collection can begin. Thesimplest technique is to run a standard collection algorithm on a single processor. This hasthe clear disadvantage, however, of increasing the cost of garbage collection relative to therest of the program. A sequential collector is a performance bottleneck; it is much more157

desirable to garbage collect in parallel. There are a number of systems using parallel garbagecollection (e.g., [KH88], [ME89] and [Mar91]). The techniques of [Mar91] seem to �t theSML/NJ memory management system fairly well. In this scheme, each processor has itsown to-space. When a collector process encounters a reference to a from-space object whilesweeping its to-space, it examines the object's descriptor. If the descriptor is a forwardpointer, then the collector process updates the reference in its to-space. If the object hasnot been forwarded, then the collector process locks the descriptor word, allocates space inits to-space, sets the forward pointer, unlocks the descriptor, and then copies the object. Formachines, like the SGI 4D/380, which have a limited number of hardware locks, a hashingscheme on the object's address can be used to multiplex the hardware locks. Since the lockon the object's descriptor is only held for a few instructions, contention should be rare.These techniques still su�er from the problem that they stop the world during garbagecollection. Although the use of generational techniques reduces the frequency of noticeablepauses [Ung84], providing uniform responsiveness for real-time applications, such as userinterfaces, requires interleaving garbage collection activities with mutator computation. Ona multiprocessor, the most obvious approach is to dedicate one or more processors to thetask of garbage collection. The principal technical problem with interleaving mutator andgarbage collection activity is synchronization. If synchronization overhead is high, then anyperformance bene�ts will be lost. In lieu of special purpose hardware, the virtual memorysystem can be used to implement synchronization [AEL88].12.3 The outlook for multiprocessor CMLThis chapter has described a number of issues related to the implementation and use ofa multiprocessor version of CML. Some work has already been done towards supportingCML on multiprocessors. Greg Morrisett has implemented a low-level library of multipro-cessing primitives, such as spin-locks, for SML/NJ on the SGI 4D/380 [Mor]. This shouldprovide a suitable base for implementing a multiprocessor version of CML.Once a multiprocessor implementation exists, it will be possible to experiment withdi�erent styles of parallel programming. The
exibility provided by �rst-class synchronousoperations means that CML can accommodate di�erent parallel programming paradigmswithout serious disruption or incompatibilities with existing code. Condition variables andsome form of M-structures should provide the right primitives for programming parallelalgorithms, while being semantically consistent with CML's other primitives, and the tech-niques of work crews and lazy futures should provide reasonable mechanisms for controllingparallelism. 158

Part VConclusion

159

Chapter 13Future WorkAlthough this dissertation is a comprehensive treatment of the design, semantics, applicationand implementation of a concurrent language, there is still room for additional research andimplementation. Following the structure of this dissertation, the topics for future researchare divided into design, theory and practice.13.1 DesignThe design of CML has evolved for a number of years based on practical experience andis now fairly mature. Given the amount of practical experience with the mechanisms, it isunlikely that CML will change in any radical way. There are, however, a couple of areasfor exploration.One of the attractive aspects of CML is that it supports a wide range of concurrencymechanisms using a small set of core primitives. A possible area of exploration is to take areductionist approach in the choice of primitives. CML uses synchronous message passingas the basic synchronous operation, but perhaps there are other, more primitive, choices.For example, some variation on low-level shared-memory primitives might be possible. Thiswould factor out the communication from the primitive synchronous operations. While thisexercise would be intellectually interesting, I suspect that the resulting language designwould be too low-level. Synchronous message passing seems to provide a happy mediumbetween low-level performance and high-level abstraction.As I discussed in Section 5.4, choosing synchronous message passing as the primitivesynchronization mechanism limits rendezvous to two threads. This limitation interfereswith a potentially useful class of abstractions | the use of threads to implement activechannels. An example of an active channel is a channel that logs all message tra�c fordebugging purposes. One approach to supporting such abstractions is to add a multiway161

rendezvous primitive [Cha87]. The implementation details remain to be worked out, butsolutions to this problem are discussed in Chapter 14 of [CM88], where it is called thecommittee coordination problem.The original prototype of �rst-class synchronous operations was implemented in C andincluded support for using events in C programs. The lack of closures, however, limitedthe usefulness of events in C. Adding events to a language such as Modula-3 might provemore satisfactory, since objects can be used to provide a closure-like mechanism1 [Nel91].13.2 TheoryIn Section 7.5, I described a number of ways to enrich the �cv calculus to more fully modelCML. It remains to prove type soundness results for the extended calculus. In particular,the combination of exceptions and channels, both potential sources of type system loopholes,should be shown to be sound.The operational semantics that I presented in Chapter 7 could be used as the basis fora \theory" of �rst-class synchronous operations. There are a number of transformations onevent values that should be shown to be semantics preserving. For example, the representa-tion of event values in the implementation can be described by a rewriting system of eventvalues. Showing that the rewriting of an event value preserves its meaning would be a sig-ni�cant step toward showing that the implementation is correct. In Section 10.6, a numberof optimizations are suggested (e.g., replacing use-once channels with condition variables).A theory of events would provide a framework for showing that these optimizations are\safe."Proving such results requires a notion of event value equivalence: the obvious de�nitionis that two event values are equivalent if they are indistinguishable in all contexts. Thisde�nition requires, in turn, some notion of process equivalence. This is an active area oftheoretical research (e.g., [Blo89]) and there are many di�erent notions of what it meansfor two processes to be equivalent. For various reasons, I think that a modi�ed notion oftesting equivalence [Hen88] is the most suitable for developing these results.13.3 PracticeAs we gain more experience with CML, certain common abstractions may emerge. Bysupporting these abstractions directly as primitives, performance can be improved substan-tially. The condition variables discussed in Section 5.3 is an example of this; using them for1In fact, a closure in Modula-3 is an object type with an apply method.162

replys in an RPC abstraction reduces overhead by about 30% (see Chapter 11). Anotherpossible candidate is bu�ered channels, which are often used in interactions with externalprocesses (e.g., the X-server). It is important to note that adding these new primitive op-erations does not change the semantics of CML, since semantically they are still derivedoperations.The most glaring weakness of CML is the lack of debugging facilities. A short termsolution is to provide a version of the CML primitives that allows monitoring of com-munication, thread scheduling, etc. A more ambitious scheme is to provide an interactivedebugger. Andrew Tolmach, who is responsible for the SML/NJ debugger [TA90], is work-ing on a concurrent version for a \safe" version of ML-threads [TA91]. It is likely that hiswork can be adapted to CML; in fact, CML may be a better target than ML-threads,since the shared state is more clearly de�ned.Chapter 12 discussed many of the issues relating to the implementation and use ofCMLon multiprocessors. I view this as the most important direction for future implementationwork. Multiprocessor server machines are already common, and that technology is likelyto trickle down to single-user workstations in the next few years. CML provides a naturalmigration path for SML applications to bene�t from the parallel processing capabilities ofmultiprocessor workstation.There are a number of active ongoing projects that are using CML. Emden Gansnerand I are continuing to develop eXene and plan use it as part of a foundation for interac-tive programming environments [RG86, GR92]. The DML project at Cornell University isexploring issues in distributed systems, using CML as starting point [Kru91]. These appli-cations and others will help to guide future evolution of CML and its implementation.
163

Chapter 14ConclusionConcurrent programming is an area of growing importance, but there has been little recentprogress in the design of concurrent languages. For example,Modula-3 encompasses manyrecent ideas in sequential language design, but uses concurrency features that date back tothe 1970s [Nel91]. In this dissertation, I have presented a new approach to concurrentlanguage design that supports a higher level of concurrent programming. The key newidea is to treat synchronous operations as �rst-class values that can be composed intonew synchronous operations. This allows many di�erent styles of communication to besupported in the same linguistic framework. I call this new style of programming \higher-order concurrent programming," as an analogy with higher-order programming in languagessuch asML. This dissertation is a broad look at this new approach to concurrent languagedesign, exploring the design, theory and practice of �rst-class synchronous operations.The ideas of this thesis are presented in the context of the language CML, which isan extension of SML that supports �rst-class synchronous operations. I use CML toillustrate the usefulness and practicality of my approach. In Chapter 5, I show how anumber of synchronization and communication abstractions found in other languages canbe implemented in CML as �rst-class citizens. This demonstrates that CML can supportdi�erent concurrent paradigms in a single linguistic framework.I have also developed the formal underpinnings of �rst-class synchronous operations. InChapter 7, I give the operational semantics of a simple untyped language, called �cv, that has�rst-class synchronous operations. This language includes most of the concurrency featuresof CML, and is a substantial step toward a formal de�nition of CML. In Chapter 8, Ide�ne a polymorphic type discipline for �cv that is in the tradition of ML type systems,and I prove that this type system is sound with respect to the operational semantics of �cv.To my knowledge, this is the �rst proof of type soundness for a polymorphic concurrentlanguage. 164

CML has been implemented and has been used to build several non-trivial applica-tions. The most signi�cant of these is eXene, which is a multi-threaded X window systemtoolkit. EXene and some other applications of CML are described in Chapter 9. CMLhas also been publically distributed since November of 1991, and is being used by a num-ber of other researchers. The implementation of CML is described in Chapter 10 andperformance measurements are reported in Chapter 11. The use of CML to implementsubstantial applications, as well as the performance of the implementation (which is com-petitive with lower-level concurrency packages), demonstrates that CML is a useful andpractical language for systems programming. In many respects, the CML system is themost important result of this research, and I expect that it will provide a solid basis forother research and development for years to come. In the future, I plan to implementCMLon a shared-memory multiprocessor (Chapter 12 discusses issues related to this).

165

166

Bibliography[AB80] Arvind and J. D. Brock. Streams and managers. In Operating Systems Engi-neering; Proceedings of the 14th IBM Computer Science Symposium, vol. 143 ofLecture Notes in Computer Science. Springer-Verlag, October 1980, pp. 452{465.[AB86] Abramsky, S. and R. Bornat. Pascal-m: A language for loosely coupled dis-tributed systems. In Y. Paker and J.-P. Verjus (eds.), Distributed ComputingSystems, pp. 163{189. Academic Press, New York, N.Y., 1986.[AEL88] Appel, A. W., J. R. Ellis, and K. Li. Real-time concurrent collection on stockmultiprocessors. In Proceedings of the SIGPLAN'88 Conference on Program-ming Language Design and Implementation, June 1988, pp. 11{20.[Agh86] Agha, G. Actors: A Model of Concurrent Computation in Distributed Systems.The MIT Press, Cambridge, Mass., 1986.[AJ89] Appel, A. W. and T. Jim. Continuation-passing, closure-passing style. In Con-ference Record of the 16th Annual ACM Symposium on Principles of Program-ming Languages, January 1989, pp. 293{302.[AM87] Appel, A. W. and D. B. MacQueen. A Standard ML compiler. In FunctionalProgramming Languages and Computer Architecture, vol. 274 of Lecture Notesin Computer Science. Springer-Verlag, September 1987, pp. 301{324.[AM91] Appel, A. W. and D. B. MacQueen. Standard ML of New Jersey. In Pro-gramming Language Implementation and Logic Programming, vol. 528 of LectureNotes in Computer Science. Springer-Verlag, August 1991, pp. 1{26.[And89] Anderson, T. E. The performance of spin lock alternatives for shared-memorymultiprocessors. Technical Report 89-04-03, Department of Computer Science,University of Washington, August 1989.[And91] Andrews, G. R. Concurrent Programming: Principles and Practice. Ben-jamin/Cummings, Redwood City, California, 1991.[ANP89] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures for parallelcomputing. ACM Transactions on Programming Languages and Systems, 11(4),October 1989, pp. 598{632. 167

[AOCE88] Andrews, G. R., R. A. Olsson, M. Co�n, and I. Elsho�. An overview of the SRlanguage and implementation. ACM Transactions on Programming Languagesand Systems, 10(7), January 1988, pp. 51{86.[App89] Appel, A. W. Simple generational garbage collection and fast allocation. Soft-ware { Practice and Experience, 19(2), February 1989, pp. 275{279.[App90] Appel, A. W. A runtime system. Lisp and Symbolic Computation, 4(3), Novem-ber 1990, pp. 343{380.[App92] Appel, A. W. Compiling with Continuations. Cambridge University Press, NewYork, N.Y., 1992.[AS83] Andrews., G. R. and F. B. Schneider. Concepts and notations for concurrentprogramming. ACM Computing Surveys, 15(1), March 1983, pp. 3{43.[Bag89] Bagrodia, R. Synchronization of asynchronous processes in CSP. ACM Trans-actions on Programming Languages and Systems, 11(4), October 1989, pp. 585{597.[Bar84] Barendregt, H. P. The Lambda Calculus, vol. 103 of Studies in Logic and theFoundations of Mathematics. North-Holland, revised edition, 1984.[BB90] Berry, G. and G. Boudol. The chemical abstract machine. In Conference Recordof the 17th Annual ACM Symposium on Principles of Programming Languages,January 1990, pp. 81{94.[BCJ+90] Birman, K., R. Cooper, T. A. Joseph, K. Marzullo, M. Makpangou, K. Kane,F. Schmuck, and M. Wood. The ISIS system manual, version 2.0. ComputerScience Department, Cornell University, Ithaca, N.Y., March 1990.[BCLM89] Bose, S., E. M. Clarke, D. E. Long, and S. Michaylov. Parthenon: A parallel the-orem prover for non-horn clauses. In Proceedings of the 4th Annual Symposiumon Logic in Computer Science, June 1989, pp. 80{89.[BD80] Bryant, R. and J. B. Dennis. Concurrent programming. In Operating SystemsEngineering; Proceedings of the 14th IBM Computer Science Symposium, vol.143 of Lecture Notes in Computer Science. Springer-Verlag, October 1980, pp.426{451.[BH77] Baker, Jr., H. G. and C. Hewitt. The incremental garbage collection of processes.In Proceedings of the Symposium on Arti�cial Intelligence and ProgrammingLanguages, August 1977, pp. 55{59.[Blo89] Bloom, B. Ready Simulation, Bisimulation, and the Semantics of CCS-likeLanguages. Ph.D. dissertation, Massachusetts Institute Technology, Laboratoryfor Computer Science, October 1989. Available as MIT/LCS/TR-491.[BMT92] Berry, D., R. Milner, and D. N. Turner. A semantics for ML concurrency prim-itives. In Conference Record of the 19th Annual ACM Symposium on Principlesof Programming Languages, January 1992. To appear.168

[BNA91] Barth, P., R. S. Nikhil, and Arvind. M-structures: Extending a parallel, non-strict, functional language with state. In Functional Programming Languagesand Computer Architecture, vol. 523 of Lecture Notes in Computer Science.Springer-Verlag, August 1991, pp. 538{568.[Bor86] Bornat, R. A protocol for generalized occam. Software { Practice and Experi-ence, 16(9), September 1986, pp. 783{799.[Bri77] Brinch Hansen, P. The Architecture of Concurrent Programs. Prentice-Hall,Englewood Cli�s, N.J., 1977.[Bri89] Brinch Hansen, P. The Joyce language report. Software { Practice and Experi-ence, 19(6), June 1989, pp. 553{578.[BS83] Buckley, G. N. and A. Silberschatz. An e�ective implementation for the gen-eralized input-output construct of CSP. ACM Transactions on ProgrammingLanguages and Systems, 5(2), April 1983, pp. 223{235.[BS90] Buhr, P. A. and R. A. Stroobosscher. The �System: Providing light-weight con-currency on shared-memory multiprocessor computers running UNIX. Software{ Practice and Experience, 20(9), September 1990, pp. 929{963.[Bur88] Burns, A. Programming in occam 2. Addison-Wesley, Reading, Mass., 1988.[Car86] Cardelli, L. Amber. In Combinators and Functional Programming Languages,vol. 242 of Lecture Notes in Computer Science. Springer-Verlag, July 1986, pp.21{47.[Car89] Cardelli, L. Typeful programming. Technical Report 45, DEC Systems ResearchCenter, May 1989.[CD88] Cooper, E. C. and R. P. Draves. C threads. Technical Report CMU-CS-88-54,School of Computer Science, Carnegie Mellon University, February 1988.[CDDK86] Cl�ement, D., J. Despeyroux, T. Despeyroux, and G. Kahn. A simple applicativelanguage: Mini-ML. In Conference record of the 1986 ACM Conference on Lispand Functional Programming, August 1986, pp. 13{27.[Cha87] Charlesworth, A. The multiway rendezvous. ACM Transactions on Program-ming Languages and Systems, 9(2), July 1987, pp. 350{366.[CHL91] Cooper, E. C., R. Harper, and P. Lee. The Fox project: Advanced developmentof system software. Technical Report CMU-CS-91-178, School of ComputerScience, Carnegie Mellon University, August 1991.[CM88] Chandy, K. M. and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, Reading, Mass., 1988.[CM90] Cooper, E. C. and J. G. Morrisett. Adding threads to Standard ML. TechnicalReport CMU-CS-90-186, School of Computer Science, Carnegie Mellon Univer-sity, December 1990. 169

[Con86] Constable, R. et al. Implementing Mathematics with The Nuprl DevelopmentSystem. Prentice-Hall, Englewood Cli�s, N.J., 1986.[Cor88] Cormack, G. V. A micro-kernel for concurrency in C. Software { Practice andExperience, 18(5), May 1988, pp. 485{491. Short Communication.[CS91] Crummey, J. M. M. and M. L. Scott. Algorithms for scalable synchronizationon shared-memory multiprocessors. ACM Transactions on Computer Systems,9(1), February 1991, pp. 21{65.[Dam85] Damas, L. M. M. Type assignment in programming languages. Ph.D. disserta-tion, Department of Computer Science, University of Edinburgh, April 1985.[DH89] Dybvig, R. K. and R. Hieb. Engines from continuations. Computing Languages,14(2), 1989, pp. 109{123.[DHM91] Duba, B., R. Harper, and D. MacQueen. Type-checking �rst-class continuations.In Conference Record of the 18th Annual ACM Symposium on Principles ofProgramming Languages, January 1991, pp. 163{173.[Dij75] Dijkstra, E. W. Guarded commands, nondeterminacy, and formal derivation ofprograms. Communications of the ACM, 18(8), August 1975, pp. 453{457.[DM82] Damas, L. and R. Milner. Principal types for functional programs. In Confer-ence Record of the 9th Annual ACM Symposium on Principles of ProgrammingLanguages, January 1982, pp. 207{212.[DoD83] Reference Manual for the Ada Programming Language, January 1983.[EHP80] Evento�, W., D. Harvey, and R. J. Price. The rendezvous and monitor con-cepts: Is there an e�ciency di�erence? In Proceedings of the ACM-SIGPLANSymposium on the Ada Programming Language, December 1980, pp. 156{165.[Fel87a] Felleisen, M. The Calculi of Lambda-v-CS Conversion in Imperative Higher-order programming languages. Ph.D. dissertation, Computer Science Depart-ment, Indiana University, 1987. Available as Technical Report Nr. 226.[Fel87b] Felleisen, M. Re
ections on Landin's J-operator: A partly historical note. Com-puter Languages, 12(3/4), 1987, pp. 197{207.[FF86] Felleisen, M. and D. P. Friedman. Control operators, the SECD-machine, andthe �-calculus. In M. Wirsing (ed.), Formal Description of Programming Con-cepts { III, pp. 193{219. North-Holland, New York, N.Y., 1986.[FLP85] Fischer, M. J., N. A. Lynch, and M. S. Paterson. Impossibility of distributedconsensus with one faulty process. Journal of the ACM, 32(2), April 1985, pp.374{382.[FY85] Francez, N. and S. A. Yemini. Symmetric intertask communication. ACMTransactions on Programming Languages and Systems, 7(4), October 1985, pp.622{636. 170

[GC84] Gehani, N. H. and T. A. Cargill. Concurrent programming in the Ada language:The polling bias. Software { Practice and Experience, 14(5), May 1984, pp. 413{427.[GL91] George, L. and G. Lindstrom. Using a functional language and graph reductionto program multiprocessor machines. Technical Report UUCS-91-020, Depart-ment of Computer Science, University of Utah, October 1991.[GM88] Gehani, N. H. and A. D. McGettrick (eds.). Concurrent Programming. Addison-Wesley, Reading, Mass., 1988.[GMP89] Giacalone, A., P. Mishra, and S. Prasad. Facile: A symemetric integration ofconcurrent and functional programming. In TAPSOFT'89 (vol. 2), vol. 352 ofLecture Notes in Computer Science. Springer-Verlag, March 1989, pp. 184{209.[GMW79] Gordon, M. J., R. Milner, and C. P. Wadsworth. Edinburgh LCF, vol. 72 ofLecture Notes in Computer Science. Springer-Verlag, New York, N.Y., 1979.[Gor79] Gordon, M. J. C. The Denotational Description of Programming Languages.Springer-Verlag, New York, N.Y., 1979.[GR86] Gehani, N. H. and W. D. Roome. Concurrent C. Software { Practice andExperience, 16(9), September 1986, pp. 821{844.[GR91] Gansner, E. R. and J. H. Reppy. eXene. In Third International Workshop onStandard ML, Carnegie Mellon University, September 1991.[GR92] Gansner, E. R. and J. H. Reppy. A foundation for user interface construction.In B. A. Myers (ed.), Languages for Developing User Interfaces, pp. 239{260.Jones & Bartlett, Boston, Mass., 1992.[Gre91] Green, S. Parallel Processing for Computer Graphics. The MIT Press, Cam-bridge, Mass, 1991.[Haa90] Haahr, D. Montage: Breaking windows into small pieces. In USENIX SummerConference, June 1990, pp. 289{297.[Hal85] Halstead, Jr., R. H. Multilisp: A language for concurrent symbolic computa-tion. ACM Transactions on Programming Languages and Systems, 7(4), October1985, pp. 501{538.[Har86] Harper, R. Introduction to Standard ML. Technical Report ECS-LFCS-86-14,Laboratory for Foundations of Computer Science, Computer Science Depart-ment, Edinburgh University, August 1986.[HDB90] Hieb, R., R. K. Dybvig, and C. Bruggeman. Representing control in the presenceof �rst-class continuations. In Proceedings of the SIGPLAN'90 Conference onProgramming Language Design and Implementation, June 1990, pp. 66{77.[Hen88] Hennessy, M. Algebraic Theory of Processes. The MIT Press, Cambridge, Mass.,1988. 171

[HN80] Habermann, A. N. and I. R. Nassi. E�cient implementation of Ada tasks. Tech-nical Report CMU-CS-80-103, Computer Science Department, Carnegie MellonUniversity, January 1980.[Hoa74] Hoare, C. A. R. Monitors: An operating system concept. Communications ofthe ACM, 17(10), October 1974, pp. 549{557.[Hoa78] Hoare, C. A. R. Communicating sequential processes. Communications of theACM, 21(8), August 1978, pp. 666{677.[Hoa85] Hoare, C. A. R. Communicating Sequential Processes. Prentice-Hall, EnglewoodCli�s, N.J., 1985.[Hol83a] Holmstr�om, S. PFL: A functional language for parallel programming. In Declar-ative programming workshop, April 1983, pp. 114{139.[Hol83b] Holt, R. C. Concurrent Euclid, the UNIX System, and Tunis. Addison-Wesley,Reading, Mass., 1983.[HS86] Hindley, R. J. and J. P. Seldin. Introduction to Combinators and the �-calculus.Cambridge University Press, New York, N.Y., 1986.[INM84] INMOS Limited. Occam Programming Manual. Prentice-Hall, Englewood Cli�s,N.J., 1984.[KH88] Kranz, D. A. and R. H. Halstead, Jr. Mul-T: A high-performance parallelLisp. In Proceedings of the SIGPLAN'89 Conference on Programming LanguageDesign and Implementation, June 1988, pp. 81{90.[KKR+86] Kranz, D., R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. Orbit: Anoptimizing compiler for Scheme. In Proceedings of the SIGPLAN'86 Symposiumon Compiler Construction, July 1986, pp. 219{233.[KM77] Kahn, G. and D. B. MacQueen. Coroutines and networks of parallel processes.In Information Processing 77, August 1977, pp. 993{998.[KNW90] Kafura, D., J. Nelson, and D. Washabaugh. Garbage colection of actors. InOOPSLA/ECOOP'90 Proceedings, October 1990, pp. 126{134.[Kru91] Krumvieda, C. D. DML: Packaging high-level distributed abstractions in SML.In Proceedings of the 1991 CMU Workshop on Standard ML, September 1991.[KS79] Kieburtz, R. B. and A. Silberschatz. Comments on `Communicating sequentialprocesses'. ACM Transactions on Programming Languages and Systems, 1(2),April 1979, pp. 218{225.[Kwi89] Kwiatkowska, M. Z. Survey of fairness notions. Information and Software Tech-nology, 31(7), September 1989, pp. 371{386.[Lam87] Lamport, L. A fast mutual exclusion algorithm. ACM Transactions on Com-puter Systems, 5(1), February 1987, pp. 1{11.172

[Lan65] Landin, P. J. A correspondence between Algol 60 and Churh's lambda notation:Part I. Communications of the ACM, 8(2), February 1965, pp. 89{101.[LCJS87] Liskov, B., D. Curtis, P. Johnson, and R. Schei
er. Implementation of Argus.In Proceedings of the 11th ACM Symposium on Operating System Principles,November 1987, pp. 111{122.[LHG86] Liskov, B., M. Herlihy, and L. Gilbert. Limitations of synchronous communi-cation with static process structure in langauges for distributed programming.In Conference Record of the 13th Annual ACM Symposium on Principles ofProgramming Languages, January 1986, pp. 150{159.[LR80] Lampson, B. W. and D. D. Redell. Experience with processes and monitors inMesa. Communications of the ACM, 23(2), February 1980, pp. 105{116.[LS83] Liskov, B. and R. Schei
er. Guardians and actions: Linguistic support forrobust, distributed programs. ACM Transactions on Programming Languagesand Systems, 5(3), July 1983, pp. 381{404.[LS88] Liskov, B. and L. Shrira. Promises: Linguistic support for e�cient asynchronousprocedure calls in distributed systems. In Proceedings of the SIGPLAN'88 Con-ference on Programming Language Design and Implementation, June 1988, pp.260{267.[LS90] Lin, C. and L. Snyder. A comparison of programmingmodels for shared memorymultiprocessors. In 1990 International Conference on Parallel Processing, vol. 2,1990, pp. 163{170.[Mar91] Maranget, L. GAML: A parallel implementation of lazy ML. In FunctionalProgramming Languages and Computer Architecture, vol. 523 of Lecture Notesin Computer Science. Springer-Verlag, August 1991, pp. 102{123.[Mat89] Matthews, D. C. J. Processes for Poly and ML. In Papers on Poly/ML, TechnicalReport 161. University of Cambridge, February 1989.[McI90] McIlroy, M. D. Squinting at power series. Software { Practice and Experience,20(7), July 1990, pp. 661{683.[ME89] Miller, J. S. and B. S. Epstein. Garbage collection in multischeme (preliminaryversion). In Parallel Lisp: Languages and Systems, vol. 441 of Lecture Notes inComputer Science. Springer-Verlag, June 1989, pp. 138{160.[MKH91] Mohr, E., D. A. Kranz, and R. H. Halstead, Jr. Lazy task creation: A techniquefor increasing the granularity of parallel programs. IEEE Transactions on Par-allel and Distributed Systems, 2(3), July 1991, pp. 264{280. A longer version isavailable as DEC CRL report 90/7, November 1990.[MMS79] Mitchell, J. G., W. Maybury, and R. Sweet. Mesa Language Manual (Version5.0). Xerox PARC, April 1979. 173

[Mor] Morrisett, J. G. A multi-processor interface for SML. CMU technical report (inpreparation).[MT91] Milner, R. and M. Tofte. Commentary on Standard ML. The MIT Press,Cambridge, Mass, 1991.[MTH90] Milner, R., M. Tofte, and R. Harper. The De�nition of Standard ML. The MITPress, Cambridge, Mass, 1990.[Nel81] Nelson, B. J. Remote Procedure Call. Ph.D. dissertation, Computer ScienceDepartment, Carnegie Mellon University, May 1981. Available as Xerox PARCReport CSL-81-9.[Nel91] Nelson, G. (ed.). Systems Programming with Modula-3. Prentice-Hall, Engle-wood Cli�s, N.J., 1991.[Nik91] Nikhil, R. S. ID Language Reference Manual. Laboratory for Computer Science,MIT, Cambridge, Mass., July 1991.[Nye90a] Nye, A. X Protocol Reference Manual, vol. 0. O'Reilly & Associates, Inc., 1990.[Nye90b] Nye, A. Xlib Programming Manual, vol. 1. O'Reilly & Associates, Inc., 1990.[Osb89] Osborne, R. B. Speculative computation in Multilisp. In Parallel Lisp: Lan-guages and Systems, vol. 441 of Lecture Notes in Computer Science. Springer-Verlag, June 1989, pp. 101{137.[Owi89] Owicki, S. Experience with the �re
y multiprocessor workstation. TechnicalReport 51, DEC Systems Research Center, September 1989.[Pau91] Paulson, L. C. ML for the Working Programmer. Cambridge University Press,New York, N.Y., 1991.[Pik89] Pike, R. A concurrent window system. Computing Systems, 2(2), 1989, pp.133{153.[Plo75] Plotkin, G. D. Call-by-name, call-by-value and the �-calculus. Theoretical Com-puter Science, 1, 1975, pp. 125{159.[Ram90] Ramsey, N. Concurrent programming in ML. Technical Report CS-TR-262-90,Department of Computer Science, Princeton University, April 1990.[RC86] Rees, J. and W. Clinger (Eds.). The revised3 report on the algorithmic languageScheme. SIGPLAN Notices, 21(12), December 1986, pp. 37{43.[Rep88] Reppy, J. H. Synchronous operations as �rst-class values. In Proceedings of theSIGPLAN'88 Conference on Programming Language Design and Implementa-tion, June 1988, pp. 250{259.[Rep89] Reppy, J. H. First-class synchronous operations in Standard ML. Technical Re-port TR 89-1068, Computer Science Department, Cornell University, December1989. 174

[Rep90a] Reppy, J. H. Asynchronous signals in Standard ML. Technical Report TR 90-1144, Computer Science Department, Cornell University, August 1990.[Rep90b] Reppy, J. H. Concurrent programming with events { The Concurrent ML man-ual. Computer Science Department, Cornell University, Ithaca, N.Y., November1990. (Last revised October 1991).[Rep91a] Reppy, J. H. CML: A higher-order concurrent language. In Proceedings of theSIGPLAN'91 Conference on Programming Language Design and Implementa-tion, June 1991, pp. 293{305.[Rep91b] Reppy, J. H. An operational semantics of �rst-class synchronous operations.Technical Report TR 91-1232, Computer Science Department, Cornell Univer-sity, August 1991.[RG86] Reppy, J. H. and E. R. Gansner. A foundation for programming environments. InProceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposiumon Practical Software Development Environments, December 1986, pp. 218{227.[RLW85] Rovner, P., R. Levin, and J. Wick. On extending Modula-2 for building large,integrated systems. Technical Report 3, DEC Systems Research Center, January1985.[Ros81] Rosen, B. K. Degrees of availability as an introduction to the general theoryof data
ow analysis. In S. S. Muchnick and N. D. Jones (eds.), Program FlowAnalysis: Theory and Applications, pp. 55{76. Prentice-Hall, Englewood Cli�s,N.J., 1981.[Rov85] Rovner, P. On adding garbage collection and runtime types to a strongly-typed,statically-check, concurrent language. Technical Report CSL-84-7, Xerox PARC,July 1985.[RV89] Roberts, E. S. and M. T. Vandevoorde. WorkCrews: An abstraction for con-trolling parallelism. Technical Report 42, DEC Systems Research Center, April1989.[SG86] Schei
er, R. W. and J. Gettys. The X window system. ACM Transactions onGraphics, 5(2), April 1986, pp. 79{109.[SR90] Saraswat, V. A. and M. Rinard. Concurrent constraint programming. In Confer-ence Record of the 17th Annual ACM Symposium on Principles of ProgrammingLanguages, January 1990, pp. 232{245.[Ste78] Steele Jr., G. L. Rabbit: A compiler for Scheme. Master's dissertation, MIT,May 1978.[TA90] Tolmach, A. P. and A. W. Appel. Debugging Standard ML without reverseengineering. In Conference record of the 1990 ACM Conference on Lisp andFunctional Programming, June 1990, pp. 1{12.175

[TA91] Tolmach, A. P. and A. W. Appel. Debuggable concurrency extensions for Stan-dard ML. In Proceedings of the ACM/ONR Workshop on Parallel and Dis-tributed Debugging, May 1991, pp. 120{131.[Tof88] Tofte, M. Operational semantics and polymorphic type inference. Ph.D. disser-tation, Department of Computer Science, University of Edinburgh, May 1988.[Tof90] Tofte, M. Type inference for polymorphic references. Information and Compu-tation, 89, 1990, pp. 1{34.[Ung84] Ungar, D. Generation scavenging: A non-disruptive high-performance storagereclamation algorithm. In Proceedings of the ACM SIGSOFT/SIGPLAN Soft-ware Engineering Symposium on Practical Software Development Environments,April 1984, pp. 157{167.[UNI86] University of California, Berkeley. UNIX Programmer's Reference Manual(4.3bsd), 1986.[Wan80] Wand, M. Continuation-based multiprocessing. In Conference Record of the1980 Lisp Conference, August 1980, pp. 19{28.[WF91a] Wright, A. and M. Felleisen. Corrigendum to \A syntactic approach to typesoundness", July 1991.[WF91b] Wright, A. and M. Felleisen. A syntactic approach to type soundness. TechnicalReport TR91-160, Department of Computer Science, Rice University, April 1991.[WS83] Wegner, P. and S. A. Smolka. Processes, tasks and monitors: A comparativestudy of concurrent programming primitives. IEEE Transactions on SoftwareEngineering, 9(4), July 1983, pp. 446{462.[Zar90] Zaring, A. K. Parallel Evaluation in Attribute Grammar-based Systems. Ph.D.dissertation, Computer Science Department, Cornell University, August 1990.Available as Technical Report 90-1149.
176

Appendix

177

Appendix AProofs from Chapter 8This appendix contains the detailed proofs of some of the lemmas in Chapter 8. It alsoincludes some additional de�nitions and lemmas needed for these proofs.Proof of Lemma 8.5Before proving the Substitution Lemma, we need a couple of minor lemmas. The followinglemma extends substitution to type judgements.Lemma A.1 If S is a substitution and TE ` e : � , then S(TE) ` e : S� .Proof. Proofs of this for a similar system can be found in [Tof88] (Lemma 5.2, p. 48) andin [Tof90] (Lemma 4.2, p. 18). �The following lemma says that the typing assumptions (i.e., the type environment) of atype derivation can be generalized without a�ecting the result.Lemma A.2 If TE� fx 7! �g ` e : � and �0 � �, then TE� fx 7! �0g ` e : � .Proof. The proof is by induction on the height of the deduction ofTE� fx 7! �g ` e : �and by case analysis of the last step (i.e., analysis of the shape of e). The interestingcases are those involving the variable typing component of TE. Recall that the variableconvention means that x is not bound in e.Case e = x0.If x 6= x0, then Lemma 8.3 means that TE ` x : � . Applying Lemma 8.3 again, we getTE� fx 7! �0g ` x0 : � . 179

If x = x0, then � � � , and since �0 � �, �0 � � . Then TE� fx 7! �0g ` x : � , byrule (�-var).Case e = �x0(e0).Rule (�-abs) applies: TE� fx 7! �; x0 7! � 0g ` e0 : �TE� fx 7! �g ` �x0(e0) : (� 0 ! �)So, by the induction hypothesis,TE� fx 7! �0; x0 7! � 0g ` e0 : �And, thus, applying rule (�-abs), we getTE� fx 7! �0g ` �x0(e0) : (� 0 ! �)Case e = let x0 = v in e0.Rule (�-app-let) applies:TE� fx 7! �g ` v : � 0 TE� fx 7! �; x0 7! ClosTE�fx7!�g(� 0)g ` e : �TE� fx 7! �g ` let x0 = v in e : �Then, by the induction hypothesis,TE� fx 7! �0g ` v : � 0and TE� fx 7! �0; x0 7! ClosTE�fx7!�g(� 0)g ` e : �Since �0 � �, Lemma 8.1 gives usClosTE�fx7!�0g(� 0) � ClosTE�fx7!�g(� 0)We can then apply the induction hypothesis again to getTE� fx 7! �0; x0 7! ClosTE�fx7!�0g(� 0)g ` e : �And then, by rule (�-app-let), we getTE� fx 7! �0g ` let x0 = v in e : �Case e = let x0 = e1 in e2.This follows the argument of the previous case.180

Case e = chan x0 in e0.This case is similar to the case e = �x0(e0) above. �Lemma 8.5 (Substitution) If x 62 FV(v), TE ` v : � , andTE� fx 7! 8�1 � � ��n:�g ` e : � 0with f�1; : : : ; �ng \ FTV(TE) = ;, then TE ` e[x 7! v] : � 0.Proof. The proof is mostly from [WF91b], and proceeds by induction on the height of thededuction of TE� fx 7! 8�1 � � ��n:�g ` e : � 0and by case analysis of the last step. Let TE = (VT;CT), VT0 = VT�fx 7! 8�1 � � ��n:�g,and TE0 = (VT0;CT) in the following discussion. We skip the cases for the terms coveredby the rules in Figure 8.2, since these cases follow those for (�-app) and (�-const). Asbefore, recall that the variable convention means that x is not bound in e.Case e = b.The last step is rule (�-const), so TypeOf(b) � � 0. Applying rule (�-const), we getTE ` b : � 0. Since b[x 7! v] = b, we are done.Case e = x0.If x0 6= x, then, by rule (�-var), VT0(x0) � � 0. Since x0[x 7! v] = x0 and VT(x0) � � 0,TE ` x0 : � 0.If x0 = x, then VT0(x) = 8�1 � � ��n:� . By rule (�-var), 8�1 � � ��n:� � � 0, whichmeans that there is a substitution S, such that dom(S) = f�1; : : : ; �ng and S� =� 0. Lemma A.1 gives us S(TE) ` v : S� , which implies that S(TE) ` v : � 0. Sincedom(S)\ FTV(TE) = ;, we have S(TE) = TE; thus, TE ` v : � 0.Case e = �.Rule (�-chvar) applies, thus CT(�) = � 0. Since �[x 7! v] = �, we can apply (�-chvar)to get TE ` �[x 7! v] : � 0.Case e = e1 e2.Rule (�-app) applies, so we haveTE0 ` e1 : (� 00 ! � 0) TE0 ` e2 : � 00TE0 ` e1 e2 : � 0181

By the induction hypothesis and rule (�-app), we haveTE ` e1[x 7! v] : (� 00 ! � 0) TE ` e2[x 7! v] : � 00TE ` e1[x 7! v] e2[x 7! v] : � 0Therefore, TE ` e1 e2[x 7! v] : � 0.Case e = (e1.e2).This case is very similar to the previous case.Case e = �x0(e0).Rule (�-abs) applies: TE0 � fx0 7! �1g ` e0 : �2TE0 ` �x0(e0) : � 0with � 0 = (�1 ! �2). Let S be the substitutionf�1 7! �1; : : : ; �n 7! �ngwhere the �i, �i and FTV(TE) are all distinct. Then, by Lemma A.1,S(TE0)� fx0 7! S�1g ` e0 : S�2Note that S(TE0) = TE0, since dom(S)\ FTV(TE0) = ;, henceTE0 � fx0 7! S�1g ` e0 : S�2The variable convention insures x0 62 FV(v), so Lemma 8.3 gives usTE� fx0 7! S�1g ` v : �And the choice of S means thatFTV(TE� fx0 7! S�1g) \ f�1; : : : ; �ng = ;These facts, coupled with the induction hypothesis gives usTE� fx0 7! S�1g ` e0[x 7! v] : S�2The substitution S is a bijection, so S�1 exists; hence, by Lemma A.1,S�1(TE� fx0 7! S�1g) ` e0[x 7! v] : S�1S�2simplifying, we get TE� fx0 7! �1g) ` e0[x 7! v] : �2thus, applying (�-abs), we getTE� fx0 7! �1g ` e0[x 7! v] : �2TE ` �x0(e0[x 7! v]) : (�1 ! �2)and therefore, TE ` (�x0(e0))[x 7! v] : (�1 ! �2).182

Case e = let x0 = v0 in e0.This is the case of a non-expansive let, so the �rst step of the type deduction mustbe rule (�-app-let):TE0 ` v0 : � 00 TE0 � fx0 7! ClosTE0(� 00)g ` e0 : � 0TE0 ` let x0 = v0 in e0 : � 0Since TE ` v : � , Lemma 8.3 gives usTE� fx0 7! ClosTE0(� 00)g ` v : � (�)Recall that f�1; : : : ; �ng \ FTV(TE) = ; in the following:f�1; : : : ; �ng \ FTV(TE� fx0 7! ClosTE0(� 00)g)= f�1; : : : ; �ng \ (FTV(TE) [FTV(ClosTE0(� 00)))= f�1; : : : ; �ng \ FTV(ClosTE0(� 00))= f�1; : : : ; �ng \ (FTV(� 00) n (FTV(� 00) n FTV(TE0)))= f�1; : : : ; �ng \ FTV(� 00) \ FTV(TE0)= f�1; : : : ; �ng \ FTV(� 00) \ (FTV(TE) [FTV(8�1 � � ��n:�))= f�1; : : : ; �ng \ FTV(� 00) \ FTV(8�1 � � ��n:�)= f�1; : : : ; �ng \ FTV(� 00) \ (FTV(�) n f�1; : : : ; �ng)= ;The second premise of (�-app-let) and (�) with the induction hypothesis give us:TE� fx0 7! ClosTE0(� 00)g ` e0[x 7! v] : � 0Note that ClosTE(� 00) � ClosTE0(� 00), so we can apply Lemma A.2 to get:TE� fx0 7! ClosTE(� 00)g ` e0[x 7! v] : � 0Thus, by the induction hypothesis and (�-app-let), we have:TE ` v0[x 7! v] : � 00 TE� fx0 7! ClosTE(� 00)g ` e0[x 7! v] : � 0TE ` let x0 = v0[x 7! v] in e0[x 7! v] : � 0and, therefore, TE ` (let x0 = v0 in e0)[x 7! v] : � 0.Case e = let x0 = e1 in e2.This is the case of an expansive let, so rule (�-imp-let) applies:TE0 ` e1 : � 00 TE0 � fx0 7! AppClosTE0(� 00)g ` e2 : � 0TE0 ` let x0 = e1 in e2 : � 0Choose a substitutionS : (f�1; : : : ; �ng \ ImpTyVar)! fu1; : : : ; umg183

such that u1; : : : ; um are distinct imperative type variables, S is a bijection, andfu1; : : : ; umg \ (FTV(TE) [FTV(�)[f�1; : : : ; �ng) = ;Then, Lemma A.1 tells us thatS(TE0 � fx0 7! AppClosTE0(� 00)g) ` e2 : S� 0Since dom(S)\ FTV(TE0) = ; and dom(S) � ImpTy, we haveTE0 � fx0 7! AppClosTE0(S� 00)g ` e2 : S� 0 (�)Since x0 62 FV(v) and since TE ` v : � , we haveTE� fx0 7! AppClosTE0(S� 00)g ` v : � (��)Let AppClosTE0(S� 00) = 8t1; � � � ; tl:S� 00; i.e.,ft1; : : : ; tlg = (FTV(S� 00) n FTV(TE0)) \AppTyVarthen f�1; : : : ; �ng \ FTV(TE� fx0 7! 8t1; � � � ; tl:S� 00g)= f�1; : : : ; �ng \ (FTV(TE) [FTV(8t1; � � � ; tl:S� 00))= f�1; : : : ; �ng \ (FTV(S� 00) n ft1; : : : ; tlg)= ;By the inductive hypothesis with (�) and (��), we haveTE� fx0 7! AppClosTE0(S� 00)g ` e2[x 7! v] : S� 0Since S was chosen to be a bijection, S�1 exists, so by Lemma A.1, we haveS�1(TE� fx0 7! AppClosTE0(S� 00)g) ` e2[x 7! v] : S�1(S� 0)simplifying, we getTE� fx0 7! AppClosTE0(� 00)g ` e2[x 7! v] : � 0Since AppClosTE(� 00) � AppClosTE0(� 00), Lemma A.2 applies:TE� fx0 7! AppClosTE(� 00)g ` e2[x 7! v] : � 0By the induction hypothesis, we haveTE ` e1[x 7! v] : � 00and, thus, we can apply (�-app-let):TE ` e1[x 7! v] : � 00 TE� fx0 7! AppClosTE0(� 00)g ` e2[x 7! v] : � 0TE ` let x0 = e1[x 7! v] in e2[x 7! v] : � 0and, therefore, TE ` (let x0 = e1 in e2)[x 7! v] : � 0.184

Case e = chan x0 in e0.Rule (�-chan) applies: TE0 � fx0 7! � chang ` e0 : � 0TE0 ` chan x0 in e0 : � 0By the variable convention, x0 62 FV(v), so Lemma 8.3 gives usTE� fx0 7! � chang ` v : �Thus, by the induction hypothesis and rule (�-chan)TE� fx0 7! � chang ` e0[x 7! v] : � 0TE ` chan x0 in e0[x 7! v] : � 0and therefore, (VT;CT) ` chan x0 in e0[x 7! v] : � 0. �Proof of Lemma 8.8In this section, I show that the matching of event values preserves the parameter type ofthe events. This requires the following fact about abort actions:Lemma A.3 If TE ` ev : � event, then TE ` AbortAct(ev) : unit.Proof. The proof is by induction on the structure of event values and the de�nition ofAbortAct. �Lemma 8.8 If ev1 �_̂ ev2 with (e1; e2) and TE ` ev i : �i event, then TE ` ei : �i (for i 2f1; 2g).Proof. This is proved by induction on the de�nition of event matching. Let TE = (VT;CT)below.Base case: �!v �_̂ �? with ((); v). For i = 1, the claim follows immediately from the typeof () and rule (�-output). For i = 2, we must examine the type of �. We have thefollowing judgements: TE ` �!v : unit event (1)TE ` �? : � event (2)By rule (�-input) and (2), we have TE ` � : � chan, thus, the deduction of (1) byrule (�-output) requires that TE ` v : � .185

Inductive cases. For the inductive cases, the i = 1 case follows immediately from theinduction hypothesis. The i = 2 case is proven by case analysis:Case ev2 �_̂ ev1 with (e2; e1).This case follows immediately.Case ev1 �_̂ (ev 0) v) with (e1; v e0).Rule (�-wrap) applies:TE ` ev 0 : � 0 event TE ` v : (� 0 ! �2)TE ` (ev 0) v) : �2 eventThus, applying the induction hypothesis and rule (�-app) we get:TE ` e0 : � 0 TE ` v : (� 0 ! �2)TE ` v e0 : �2Case ev1 �_̂ (ev2 � ev3) with (e1; (AbortAct(ev3); e2)).Rule (�-choice) applies:TE ` ev2 : �2 event TE ` ev3 : �2 eventTE ` (ev2 � ev3) : �2 eventThen, by the induction hypothesis, and Lemmas 8.2 and A.3, we getTE ` AbortAct(ev3) : unit TE ` e2 : �2TE ` (AbortAct(ev3); e2) : �2Case ev1 �_̂ (ev3 � ev2) with (e1; (AbortAct(ev3); e2)).This is the same as the previous case.Case ev1 �_̂ (ev2 j v) with (e1; e2).This case follows immediately from the induction hypothesis. �Proof of Lemma 8.12In this section, I show that stuck expressions are untypable. First, we need to characterizethe syntactic form of stuck expressions.De�nition A.1 The set of acceptable arguments to sync is de�ned asSyncArg = Event[f(G e) j e 2 Expg186

Lemma A.4 A process h�; ei, with e closed, is stuck i� e has one of the following forms:(1) E[b v], such that �(b; v) is unde�ned.(2) E[v v0], where v has the form (v1.v2), �, ev , or (G e0).(3) E[sync v], such that v 62 SyncArg.Proof.()) Let E[e0] = e, then this direction proceeds by case analysis of the possible forms of e0.Case e0 = v.Then E[e0] = [v], thus � it is not stuck.Case e0 = v v0.This case proceeds by analysis of the form of v:Case v = b.If �(b; v) is de�ned, then � is not stuck, otherwise it is stuck and has form 1.Case v = x.Then e is not closed, which is a contradiction.Case v = �x(e00).In this case, � is not stuck.Otherwise.In the other cases, e is stuck and has form 2.Case e0 = let x = v in e00.In this case, � is not stuck.Case e0 = sync v.This case proceeds by analysis of the form of v:Case v = ev .� is not stuck.Case v = (G e00).� is not stuck.Otherwise.In the other cases, e is stuck and has form 3.Case e0 = spawn v.In this case, � is not stuck.Case e0 = chan x in e00.In this case, � is not stuck. 187

Thus, for each possible form of e0, either � is not stuck (a contradiction), or the lemmaholds.(() This direction follows immediately from the de�nitions. �Before we can prove that stuck con�gurations are untypable, we need a lemma that char-acterizes the values that have event types.Lemma A.5 If TE ` v : � , for v 62 Var, then � = � 0 event, for some � 0, i� v 2 SyncArg.Proof.()) This direction proceeds by examination of the terms in the setVal n (Var [SyncArg)None of these terms has an inference rule that can derive a judgement of the formTE ` ev : � 0 event. Thus, since v 62 Var, v 2 SyncArg.(() This direction is by examination of the terms in SyncArg. The inference rules forthese terms are (�-never), (�-output), (�-input), (�-wrap), (�-choice), (�-abort),and (�-guard), all of which derive judgements of the formTE ` ev : � 0 eventThus, � = � 0 event, for some � 0. �Finally, we are ready to the main proof.Lemma 8.12 (Untypability of stuck con�gurations) If � is stuck in a well-formedcon�guration K;P , then there do not exist CT 2 ChanTy and PT 2 ProcTy, such that(fg;CT) ` P(�) : PT(�)In other words, K;P is untypable.Proof. Let � be stuck in K;P , with P(�) = E[e0], and assume that there exist CT 2ChanTy and PT 2 ProcTy, such that (fg;CT) ` P(�) : PT(�). It su�ces to show thate0 is untypable, which is a contradiction. Let � be the type of e0; i.e., TE0 ` e0 : � , forsome TE0. Note that since K;P is well-formed, e0 is closed; and thus Lemma A.4 gives thepossible forms of e0. The proof proceeds by case analysis of e0, showing that e0 is untypablein each case. 188

Case e0 = v v0. Rule (�-app) applies:TE0 ` v : (� 0 ! �) TE0 ` v0 : � 0TE0 ` v v0 : � (�)There are �ve subcases, depending on the structure of v.Case v = b; with �(b; v0) unde�ned.By the �{typability restriction, �(b; v0) is de�ned, which contradicts e0 beingstuck.Case v = (v2.v3).Rule (�-pair) requires thatTE0 ` (v1.v2) : (�1 � �2)where TE0 ` vi : �i, which contradicts the �rst premise of (�), thus e0 is untypable.Case v = ev .By Lemma A.5, TE0 ` ev : �1 eventbut this contradicts the �rst premise of (�), thus e0 is untypable.Case v = �.Rule (�-chvar) requires that � have the type �1 chan, for some �1, but thiscontradicts the �rst premise of (�), thus e0 is untypable.Case v = (G e00).By Lemma A.5, TE0 ` (G e00) : �1 eventbut this contradicts the �rst premise of (�), thus e0 is untypable.Case e0 = sync v; with v 62 SyncArg.Rule (�-sync) applies: TE0 ` v : � 0 eventTE0 ` sync v : � 0but, by Lemma A.5, v 2 SyncArg, which is a contradiction. �189

