
Continuous Functions and Parallel Algorithmson Concrete Data StructuresStephen Brookes Shai GevaJuly 1991CMU-CS-91-160School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213To appear in Proceedings of Mathematical Foundations of Programming Semantics,Pittsburgh, 1991 (Springer Verlag Lecture Notes in Computer Science).
This research was supported in part by National Science Foundation grant CCR-9006064 and in part byDARPA/NSF grant CCR-8906483.The views and conclusions contained in this document are those of the authors and should not be interpreted asrepresenting the o�cial policies, either expressed or implied, of DARPA or the U.S. government.

Keywords: theory, applicative (functional) programming, semantics, parallelism, categorytheory

AbstractWe report progress in two closely related lines of research: the semantic study of sequentialityand parallelism, and the development of a theory of intensional semantics. We generalize Kahnand Plotkin's concrete data structures to obtain a cartesian closed category of generalized concretedata structures and continuous functions. The generalized framework continues to support a de�-nition of sequential functions. Using this ccc as an extensional framework, we de�ne an intensionalframework | a ccc of generalized concrete data structures and parallel algorithms. This construc-tion is an instance of a more general and more widely applicable category-theoretic approach tointensional semantics, encapsulating a notion of intensional behavior as a computational comonad,and employing the co-Kleisli category as an intensional framework. We discuss the relationshipbetween parallel algorithms and continuous functions, and supply some operational intuition forthe parallel algorithms. We show that our parallel algorithms may be seen as a generalization ofBerry and Curien's sequential algorithms.

1 IntroductionIn this paper we present progress in two closely related themes of research in programming languagesemantics. The �rst concerns the semantic study of sequentiality and parallelism, and the secondis the development of a general theory of intensional semantics in which one may give a variety ofsemantics to a language, at di�ering levels of intensional detail, and establish natural relationshipsbetween the meanings of terms at each level.There has been much work on the search for a semantic characterization of sequential com-putation. Since the conventional continuous functions semantic model contains inherently parallelfunctions, such as parallel-or, a suitable de�nition of sequential functions is a necessary pre-requisitein the search for a natural (i.e., syntax- and language-independent) fully abstract semantic modelfor sequential programming languages such as PCF [Plo77, Mil77, BCL85, Sto88].A general de�nition of sequential functions has been given by Kahn and Plotkin in the restrictedsetting of concrete data structures [KP78]. Berry and Curien have shown, however, that concretedata structures are not closed under any of the continuous function space, stable function spaceor sequential function space; as a consequence, concrete data structures do not form a ccc whenthe morphisms are taken to be any of the continuous functions, stable functions or sequentialfunctions [BC82]. To date, no sequential extensional model has been found.Our �rst contribution is the de�nition of a new class of generalized concrete data structures,introduced in section 2. Essentially, the generalization consists in adding a poset structure to thecells of a concrete data structure; the original Kahn-Plotkin concrete data structures correspondto cases where the cell poset is discrete. We show that generalized concrete data structures areclosed under the continuous function space, and form a ccc with continuous functions as morphisms.The states of a generalized concrete data structure, ordered by set inclusion, form what we call ageneralized concrete domain. Every generalized concrete domain is also a Scott domain, but theconverse is false. We de�ne distributive generalized concrete data structures, a generalization ofthe deterministic (or stable) concrete data structures, and we show that they form a full sub-cccof the category of generalized concrete data structures. We also sketch the construction of a ccc ofdistributive gCDSs and stable functions, obtained by varying the notion of a state.The generalized concrete data structures continue to support a de�nition of sequentiality, sothat we have signi�cantly expanded the setting where sequential functions may be identi�ed. Webelieve that the category of generalized concrete data structures and continuous functions is the�rst non-trivial ccc in which one may identify the sequential functions between any two objects.The identity function on a generalized concrete data structure is sequential, and the sequentialfunctions between generalized concrete data structures are closed under composition. We do notknow yet if the set of sequential functions between two generalized concrete data structures itselfforms a generalized concrete data structure, so we do not claim (yet) to have produced a satisfactorysequential extensional model.The failure of concrete data structures to support an extensional semantic model has led Berryand Curien to de�ne an intensional semantic model: a cartesian closed category of deterministicconcrete data structures and sequential algorithms [BC82, Cur86]. A sequential algorithm may beseen as a sequential function paired with a sequential computation strategy.The appeal of intensional semantics lies in making it possible to use semantic methods toreason about a broader range of properties of programs. Traditionally, the denotational semanticsapproach focuses on the extensional aspects of programs, and abstracts away all intensional details;other tools must be used to reason about intensional properties. By employing a di�erent levelof abstraction that retains intensional information about programs (at a level appropriate to the1

task at hand), one should be able to use an intensional denotational semantics to reason aboutthe intensional aspects of programs, such as laziness and complexity (see for instance [Col89] for apotential application).One of our initial goals in this study has been the de�nition of a richer intensional semanticmodel by generalizing Berry and Curien's sequential algorithms between concrete data structuresto parallel algorithms. Our thesis is that, by analogy with the characterization of sequentialalgorithms, a parallel algorithm should correspond to a continuous function paired with a parallelcomputation strategy. A previous attempt was our \query model" of parallel algorithms [BG90];although this work has generated some useful insights, it was only partly successful in providingthe desired generalization of sequential algorithms, since we were unable to equip this model witha satisfactory categorical structure. Our continued e�orts to generalize sequential algorithms haveled to the progress reported herein.We have been able to formalize the construction of an intensional semantic framework, givenan extensional semantic framework and a notion of intensional behavior [BG91]. In accordancewith this approach, we use here the terms \extensional" and \intensional" as relative terms { theyserve to identify di�erent levels of abstraction. Category-theoretically speaking, the extensionalframework is a ccc C, the intensional behavior is de�ned by a computational comonad T over C,and the derived intensional framework is the co-Kleisli category CT of C and T . We remark thatif C is a ccc and T preserves products then CT is also a ccc [See89]. This construction is quitegeneral, and completely divorced of the concrete data structures setting where we �rst observed itsapplicability. We believe that this approach can serve as the basis for the development of a rathergeneral theory of intensional semantics.However, since there is no suitable extensional ccc with concrete data structures as objects (andsome class of functions as morphisms), the desired parallel generalization of sequential algorithmscannot be obtained by a direct application of the co-Kleisli construction. Instead, we move tothe setting of generalized concrete data structures, which does not su�er from these limitations.Using the ccc of generalized concrete data structures and continuous functions as an extensionalframework, we de�ne in section 3 a simple and intuitive notion of intensional behavior based onthe idea that a computation is a sequence of incremental evaluation steps. We encapsulate thisnotion in the de�nition of a comonad of paths, and we use the co-Kleisli construction to obtaina ccc of generalized concrete data structures and parallel algorithms. We discuss the relationshipbetween the intensional and extensional categories, by showing that every algorithm determines acontinuous input-output function and that every continuous function is the input-output functionof some algorithm. This shows that a parallel algorithm may indeed be viewed as a continuousfunction paired with a computation strategy. Although we do not give a formal de�nition of thenotion of computation strategy, we do supply some operational intuition.In section 4 we show how our parallel algorithms on generalized concrete data structures gener-alize Berry and Curien's sequential algorithms on concrete data structures. We de�ne an embeddingfunction that takes each Berry-Curien algorithm to its analogue in our model, which may be thoughtof as a degenerate parallel algorithm that operates sequentially.We conclude by outlining a number of directions for further work.In this paper we do not present the details behind the co-Kleisli construction and the relatedcategory-theoretic development. Instead we focus directly on the speci�c case at hand. For anexposition in more general terms, with full explanations of the relevant category-theoretic de�ni-tions and results, we refer the reader to [BG91], which also contains a detailed exploration of therelationships between extensional and intensional semantic models that may be de�ned within theframeworks described here. 2

2 Generalized Concrete Data StructuresDe�nition 2.1 A Generalized Concrete Data Structure or gCDS (C;V;E;`) consists of� A countable poset (C;�) of cells.� A countable set V of values.� A set E � C�V of events.The set of events must be upwards-closed with respect to the cell ordering: if (c; v) 2 E andc � c0 then (c0; v) 2 E.� An enabling relation ` between �nite sets of events and cells.The enabling relation must be upwards-closed with respect to the cell ordering: if y ` c andc � c0 then y ` c0.The enabling relation de�nes a precedence relation � over cells: c � c0 i� y [f(c; v)g ` c0for some v and y. We require that the precedence relation be well-founded.Let M , M 0, etc., denote gCDSs in the following discussion. �We say that a cell c is �lled in a set y of events i� (c; v) 2 y for some v; we write F(y) for thecells �lled in y. If y0 ` c we say that y0 is an enabling of c. A cell c is enabled in y i� there existsan enabling y0 � y of c. We write this as y0 `y c, and we let E(y) be the set of cells enabled in y.A cell is accessible from y i� it is enabled in y but not �lled; we let A(y) = E(y) n F(y). A cell isinitial i� it is enabled by the empty set of events.De�nition 2.2 A state of M is a set x � E with the following three properties:� Functional: if (c; v1); (c; v2) 2 x then v1 = v2.� Safe: every cell �lled in x has an enabling in x.� Upwards-closed with respect to the cell ordering: if (c; v) 2 x and c � c0 then (c0; v) 2 x.Equivalently, this property may be stated as the requirement that x = up(x), where up is theupwards-closure operation over sets of events:up(x) = f(c0; v) j 9c � c0 . (c; v) 2 xg :We write D(M) for the poset of states of M , ordered by set inclusion. We say that this is thedomain generated byM . We refer to the domains generated by generalized concrete data structuresas generalized concrete domains. �Example 2.3 The gCDS Null has no cells, values, events or enablings. It has a single state, theempty set.The gCDS Two has a single cell *, which is initial and may be �lled with the value *. It generates(a domain isomorphic to) the two point domain, with states ; and > = f(*;*)g.The gCDS Bool has a single cell b, which is initial and may be �lled with either of the valuestt or ff. It generates (a domain isomorphic to) the usual boolean domain, with states ;, f(b;tt)gand f(b;ff)g. 3

The gCDS Vnat has the natural numbers as cells, ordered discretely. Each cell may be �lledwith the value *. The cell 0 is initial, and for every k, f(k;*)g ` k + 1. The domain D(Vnat) isisomorphic to the vertical ordering of the natural numbers (i.e., n < n + 1), with a limit pointadded at in�nity: an integer n corresponds to the state f(k;*) j k < ng, and ! corresponds to thestate f(k;*) j k 2 INg. We may use the integers and ! to denote the states of Vnat. �2.1 Generalized Concrete DomainsWe now give a partial domain-theoretic characterization of the generalized concrete domains.Proposition 2.4 Generalized concrete domains are Scott domains, i.e., consistently complete, di-rected complete !-algebraic posets. The empty set is the least element, and the lub of an upper-bounded or directed set of states is given by its union. The �nite elements (i.e., isolated elements)of a generalized concrete domain are states that are the upwards-closure of some �nite set of events.Not all Scott domains are generalized concrete domains. This is because all generalized concretedomains have property (Q!), the uniqueness part of property (Q) enjoyed by CDSs [KP78].For x and y elements of a domain D, we say that y covers x i� x < y and there is no z suchthat x < z < y. We say that a domain D has property (Q!) i�:(Q!) For any x; y; z1; z2 2 D, if y, z1 and z2 cover x, y is inconsistent with both of z1 and z2, andz1 and z2 are consistent, then z1 = z2.Proposition 2.5 Every generalized concrete domain has property (Q!).Proof: For a generalized concrete domain D(M), if x is covered by y then there exists some event(c; v) (with c maximal in the cell ordering) such that y = x [f(c; v)g.Moreover, if x is covered by y and z, and y and z are inconsistent, then y = x [f(c; v)g andz = x [f(c; v0)g for some c (again, maximal) and v 6= v0.It follows that D(M) has property (Q!).2.2 The Continuous Functions CategoryWe de�ne the category gCDScont with gCDSs as objects and continuous functions between D(M)and D(M 0) as the morphisms betweenM andM 0. Composition is taken to be function composition,and the identity morphisms are just the identity functions. An equivalent category is the categoryof generalized concrete domains and continuous functions, a full sub-category of the category ofScott domains and continuous functions. We now show that gCDScont is cartesian closed.The gCDS Null is a terminal object in gCDScont.The product construction is a straightforward generalization of the product for concrete datastructures [Cur86]. We write c:i for the pair (c; i), where c is a cell and i is a tag { we use 1 and2 as tags for the product. For a set of cells C and a set of events y, we write C:i and y:i forfc:i j c 2 Cg and f(c:i; v) j (c; v) 2 yg, respectively. We build the product of two gCDSs by taking adisjoint union of the two posets of cells, of the two sets of events, and of the two enabling relations.De�nition 2.6 The product of two gCDSs M1 and M2 is de�ned by:� CM1�M2 = CM1 :1[CM2 :2, ordered by: c:i �M1�M2 c0:i0 i� c �Mi c0 and i = i0.� VM1�M2 = VM1 [VM2. 4

� EM1�M2 = EM1 :1[EM2 :2.� y:i `M1�M2 c:i i� y `Mi c. �Proposition 2.7 The product is well de�ned, i.e., events and enablings are upwards closed, andcountability and well foundedness are preserved.We de�ne pairing and projections. For x 2 D(M1 �M2) and xi 2 D(Mi) for i = 1; 2,hx1; x2i = x1:1 [x2:2�i(x) = f(c; v) j (c:i; v) 2 xg :Proposition 2.8 The domain D(M1�M2) is isomorphic to D(M1)�D(M2) (ordered componen-twise).Corollary 2.9 The gCDS product is a categorical product in gCDScont.De�nition 2.10 Given two gCDSs M and M 0, we de�ne the gCDS M !M 0 by:� CM!M 0 = D�n(M)� CM 0 where D�n(M) consists of the �nite elements of D(M), orderedby inclusion, and the poset product is ordered componentwise.We use juxtaposition for the cells of an exponentiation, writing xc0 for the cell (x; c0).� VM!M 0 = VM 0 .� EM!M 0 = f(xc0; v0) 2 CM!M 0 �VM!M 0 j (c0; v0) 2 EM 0g.� f(xjc0j ; v0j) j 1 � j � lg `M!M 0 xc0 i� f(c0j; v0j) j 1 � j � lg `M 0 c0 and 8j � l, xj � x. �Essentially, the cells ofM !M 0 are cells ofM 0 tagged with (�nite) information about the input,represented as a �nite state of M . The enabling relation ensures the appropriate combination ofthis input information. There is a very close correspondence between our de�nition of M ! M 0for gCDSs and the extensional components (the output values) of Berry and Curien's sequentialalgorithms exponentiation of CDSs [Cur86] (see the de�nition in section 4).Proposition 2.11 For all gCDSs M and M 0, M !M 0 is well de�ned: i.e., events and enablingsare upwards closed, and countability and well foundedness are preserved.Proposition 2.12 The domain D(M ! M 0) is isomorphic to the continuous function space be-tween D(M) and D(M 0), ordered pointwise.The isomorphism is given, for a 2 D(M !M 0) and f : D(M)! D(M 0), by:a 7! �z 2 D(M) . f(c0; v0) j 9x � z . (xc0; v0) 2 agf 7! f(xc0; v0) 2 EM!M 0 j (c0; v0) 2 f(x)g :Given the isomorphism, it is clear that the morphisms fromM toM 0 may equivalently be takento be the states of M ! M 0. Since application is continuous and currying is well behaved, it isclear that M !M 0 is in fact an exponentiation object for M and M 0 in the category gCDScont.Corollary 2.13 gCDScont is a cartesian closed category.Example 2.14 The gCDS Vnat ! Two has cells fn* j n 2 INg, ordered vertically (i.e., n* <n + 1*). Each cell may be �lled with the value *. The isomorphism between D(Vnat! Two) andthe continuous function space from D(Vnat) to D(Two) may be easily discerned. �5

2.3 Distributive gCDSsDe�nition 2.15 We extend the cell ordering to events as follows: (c; v) � (c0; v0) i� c � c0 andv = v0. We then extend the ordering to �nite sets of events by: y � y0 i� there exists a bijection� : y ! y0 such that (c; v) � �(c; v), for all (c; v) 2 y. �De�nition 2.16 A gCDS M is distributive i� for all states x of M , if y1 `x c and y2 `x c thenthere exists y such that yi � y, for i = 1; 2. �This property is a generalization of the stability and determinism properties of concrete datastructures [Cur86], and similar results follow. We recall that Berry and Curien's sequential algo-rithms model was limited to deterministic CDSs.Proposition 2.17 If M is distributive then the glb in D(M) of any two consistent states is theirintersection.Proof: Let M be a distributive gCDS, and let x1 and x2 a consistent pair of states of M . Clearlyx1 \ x2 is their glb as sets of events, so we only need to show that it is a state. Theintersection clearly preserves functionality and upwards-closure. To show that it preservessafety, let c 2 F(x1 \ x2). For i = 1; 2, c 2 F(xi), so that there exists yi `xi c, and thereforeyi `x1[x2 c. Now, by distributivity there exists y such that, for i = 1; 2, yi � y, and byupwards closure y `xi c, and, �nally, y `x1\x2 c. It follows that x1 \ x2 is a state.De�nition 2.18 A consistently-complete poset is distributive i� for all x and all consistent pairsx1 and x2, (x^ x1)_ (x ^ x2) = x ^ (x1 _ x2). �Proposition 2.19 If M is distributive then D(M) is distributive.Proof: An immediate corollary of 2.17.Proposition 2.20 The category of distributive gCDSs and continuous functions is a full sub-category of gCDScont, and it is cartesian closed.Proof: Null is distributive and product and exponentiation preserve distributivity.To see that the exponentiation preserves distributivity, let a 2 D(M !M 0) and assume that,for i = 1;2, f(xijc0ij ; v0ij) j 1 � j � lig `a xc0; then, for i = 1; 2, f(c0ij; v0ij) j 1 � j � lig `a(x) c0,where a(x) 2 D(M 0) is the value on x of the continuous function corresponding to a (bythe isomorphism of proposition 2.12). By distributivity of M 0 there must be an enablingf(c0j; v0j) j 1 � j � lg `a(x) c0, where l = l1 = l2, and for j � l, v0j = v0ij and c0ij � c0j { withoutloss of generality assume that the bijections are identities. But now f(xc0j; v0j) j 1 � j � lgserves as an upper-bound in the extended cell ordering of the two enablings of xc0 in a, sothat we may conclude that M !M 0 is distributive.2.4 Relationship to Original De�nitionProposition 2.21 Kahn and Plotkin's original de�nition of concrete data structures and theirgenerated domains [KP78, Cur86] can be obtained by considering gCDSs with a discrete cell ordering(i.e., c � c0 i� c = c0). 6

Proof: Under the discreteness assumption all upwards-closure requirements are vacuously satis�ed,and our de�nition collapses to the original de�nition.Note that the gCDS product preserves discreteness: if the cells of M1 and M2 are ordereddiscretely, then so are the cells of their product. As a corollary, the gCDS product is a conservativeextension of CDS product.Importantly, the exponentiation does not preserve discreteness; even if M and M 0 are discrete,D�n(M) will not be discrete in general, so that the cells of the exponentiation will not be ordereddiscretely. This is of course necessary for our purposes, since (discrete generalized) concrete datastructures are not closed under continuous function space.The intuition behind the introduction of an ordering on cells may perhaps be explained thus:in the concrete data structures setting, a cell corresponds to a
at domain { a choice between anumber of (mutually inconsistent) ways to increase information. An appropriate domain may be\decomposed" into such atomic choices. The notion of cell may itself be seen as a generalization ofan argument position, the notion used by early approaches to de�ning sequentiality [Vui73, Mil77].Once we introduce an ordering on cells, it is possible to talk not only of a discrete choice betweenalternatives for a given cell, but also of the extent to which the choice must be pursued. This seemsto be essential if higher-order domains are to be represented using this approach to decomposition.The concrete domains are the domains generated by concrete data structures (or, equivalently,discrete generalized concrete data structures). Kahn and Plotkin's representation theorem charac-terizes concrete domains as Scott domains satisfying a number of axioms. In particular, concretedomains satisfy axiom (I):(I) Every �nite element dominates �nitely many elements.But the continuous function space does not, in general, preserve property (I), and this is the key toBerry and Curien's proof that concrete domains and continuous functions do not form a cartesianclosed category [BC82]. Our generalization of concrete domains must not, in general, satisfy axiom(I). See example 2.14 for a continuous function space and a gCDS that violate (I).2.5 Stable Functions on gCDSsWe have concentrated so far on continuous functions, and de�ned a ccc gCDScont of gCDSs andcontinuous functions. Other classes of functions may be considered, by varying the de�nitions ofa state and the domain generated by a gCDS. We will now introduce the category gCDSstab ofdistributive gCDSs and stable functions, a full sub-ccc of dI-domains and stable functions.First, a few de�nitions are needed.De�nition 2.22 A function f between two domains D and E is said to be stable i� it is continuousand for every d 2 D and e � f(d) the set fd0 j d0 � d & e � f(d0)g has a least element, denotedM(f; d; e).For stable functions f; g from D to E, f is below g in the stable ordering i� f is pointwise belowg and, for each d 2 D and e � f(d), M(f; d; e) = M(g; d; e). �A dI-domain is a distributive Scott domain that has property (I). It is well known that thecategory of dI-domains and stable functions is a ccc. See [Ber78] for a fuller treatment, as well asalternative (but equivalent) de�nitions of stability and the stable ordering.We qualify the states introduced so far as being ct-states, and use Dct(M) for the domain of ct-states of M , ordered by set inclusion { we call this the ct-domain generated by M . (In particular,7

our partial domain-theoretic characterization of generalized concrete domains only applies to thect-domains). We now de�ne the \stable states" of a gCDS.De�nition 2.23 A st-state of M is a set of events x � EM with the following three properties:� Functional: if (c; v1); (c; v2) 2 x then v1 = v2.� Safe: every cell �lled in x has an enabling in x.� Stable: if c1 and c2 are �lled in x and c1 and c2 have an upper bound in the cell ordering,then c1 = c2.Let Dst(M) be the domain of st-states of M , ordered by set inclusion { we say that this is thest-domain generated by M . �The di�erence between ct-states and st-states amounts to the replacement of the upwards-closure requirement of ct-states by a \stability" condition.Proposition 2.24 For a distributive M , Dst(M) is a dI-domain. The empty set is the leastelement, and the lub of an upper-bounded or directed set of states is given by its union. The �niteelements (i.e., isolated elements) are states that are �nite sets of events.We now emulate the development carried out above for gCDScont.De�nition 2.25 The category gCDSstab has distributive gCDSs as objects, and the stable func-tions from Dst(M) to Dst(M 0) as the morphisms from M to M 0. �Proposition 2.26 The product of gCDSs de�ned above is a product in gCDSstab, and Null isa terminal object.Proposition 2.27 The de�nition of M !M 0 given above, modi�ed so that Dst�n(M) is used in-stead of Dct�n(M) in constructing the cells of M !M 0, produces an exponentiation in gCDSstab.There is an isomorphism between Dst(M ! M 0) and the stable function space between Dst(M)and Dst(M 0), ordered by the stable ordering. The category gCDSstab is a full sub-ccc of the cccof dI-domains and stable functions.Seen from a di�erent angle, inclusion on st-states corresponds to the stable ordering on sta-ble functions, while inclusion on ct-states corresponds to the pointwise ordering on continuousfunctions.Note that for discrete gCDSs the stability requirement is vacuously satis�ed, as is the upwards-closure requirement, so that the ct-domain Dct(M) and the st-domain Dst(M) coincide when Mis a discrete gCDS. The two notions diverge, however, on gCDSs with non-trivial cell ordering(such as exponentiations). Moreover, the classes of (distributive) ct-domains and st-domains areincomparable { we have shown that property (I) holds for st-domains, but is violated by ct-domains;on the other hand, property (Q!) holds for ct-domains, but not for st-domains.Example 2.28 For an example of a st-domain which violates (Q!), consider Dst(Bool ! Two),shown in �gure 1. This example is also used by Berry and Curien [BC82] to show that (deter-ministic) CDSs are not closed under the stable function space. Contrast this st-domain with thect-domain Dct(Bool! Two), shown in �gure 2. �We will not delve deeper here into the category gCDSstab, and we will consider exclusivelygCDScont and ct-domains in the remainder of the development. However, we point out thatmost of the ensuing development may be carried out with gCDSstab replacing gCDScont as theextensional framework. 8

;n(f(b;tt)g � ; �)o n(f(b;ff)g � ; �)o((f(b;tt)g � ; �)(f(b;ff)g � ; �)) n(;� ; �)o@@@@@@@ ������������ @@@@@���������������������Figure 1: Hasse diagram of Dst(Bool! Two)

;n(f(b;tt)g � ; �)o n(f(b;ff)g � ; �)o((f(b;tt)g � ; �)(f(b;ff)g � ; �))8><>:(;� ; �)(f(b;tt)g � ; �)(f(b;ff)g � ; �)9>=>;
@@@@@@@ ������������ @@@@@

Figure 2: Hasse diagram of Dct(Bool! Two)9

2.6 Sequential Functions on gCDSsKahn and Plotkin's de�nition of sequential functions between CDSs may be stated unchanged forgCDSs, since one may still use the cells to de�ne sequentiality indices:De�nition 2.29 A function f : D(M) ! D(M 0) is sequential at x 2 D(M) for c0 2 A(f(x)) i�A(x) = ; or there exists c 2 A(x) such that c is �lled in all supersets y of x for which c0 is �lled inf(y). In this case c is said to be an index of sequentiality of f at x for c0.f is sequential i� it is continuous and it is sequential at all x 2 D(M), for all c0 2 A(f(x)). �While this de�nition still makes sense in our generalized setting, it remains to be shown thatour class of sequential functions is well behaved. Some elementary properties are easy to establish:Proposition 2.30 For all gCDSs M , the identity function on M is sequential. The compositionof two sequential functions between gCDSs is again sequential.Many more properties remain to be checked. We are currently investigating whether the setof sequential functions between two gCDSs itself forms (the states of) a gCDS. If so, we might�nally obtain a ccc of gCDSs and sequential functions. Even if this fails with the above de�nitionof sequentiality, we may be able to generalize the de�nition to take more explicit account of the cellordering (while collapsing onto the original de�nition when the cell ordering is discrete). We arealso trying to discover whether, following the general approach exempli�ed by the construction ofgCDScont and gCDSstab, one may de�ne a notion of \sequential state" and use this to generatea third kind of domain from a gCDS, ideally to yield a class of domains closed under the sequentialfunction space.3 Parallel Algorithms on Generalized Concrete Data StructuresIn this section we present the category gCDSalg of gCDSs and parallel algorithms, using paths asa notion of intensional behavior with respect to gCDScont. We do not present the constructionin its full generality { this may be found in [BG91], where a similar construction is carried out overthe category of Scott domains and continuous functions.3.1 PathsDe�nition 3.1 Given a gCDS M , we de�ne the path gCDS PM to be Vnat ! M , and we referto D(PM) as the domain of paths over M . �The path domain over M is isomorphic to the continuous function space from Vnat to M ,ordered pointwise. Yet another equivalent way of viewing paths is as in�nite non-decreasing se-quences of states of M , ordered componentwise. We work freely with the di�erent representationsof paths, omitting explicit mention of the isomorphisms. We write, e.g., ti for the application of(the function corresponding to) the path t to (the state of Vnat corresponding to) the integer i,leaving the various isomorphisms implicit.We will use paths over M to represent computations over M . Events are regarded as quanta ofinformation produced by the computation, so that ti is the information known about the computedvalue by time point i+1, starting with no information at all at time point 0. The ordering of pathsmay be viewed as comparing paths by their eagerness: t � t0 i� for every i, ti � t0i, i.e., for every(c; v) 2 ti we also have (c; v) 2 t0i. Informally, t � t0 if the computation represented by t0 computeseverything that t computes, and each event in t occurs no later than it does in t0.10

h?;?i!h>;?i! h?;>i!h>;?i h>;>i! h?;>i h>;>i!h>;>i!bb """" bb
Figure 3: A partial Hasse diagram of D(P (Two� Two))Example 3.2 Figure 3 presents a partial Hasse diagram of paths over Two � Two. We presentpaths as in�nite sequences of states, using the notation x! for a constant x su�x. �De�nition 3.3 We complete P to a functor P : gCDScont! gCDScont by setting Pf = map ffor any continuous function f :M !M 0, where map f : PM ! PM 0 is de�ned bymap f = �t 2 D(PM) . �i . f(ti):It is easy to verify that map f and map itself are continuous. �Proposition 3.4 The functor P preserves product in gCDScont, i.e., P (M1�M2) is a product,with projections map�i for i = 1; 2. We therefore obtain the following natural isomorphisms:splitM1;M2 : P (M1 �M2)! PM1 � PM2splitM1;M2 = hmap�1;map�2imergeM1;M2 : PM1 � PM2 ! P (M1 �M2)mergeM1;M2 = �t 2 D(PM1 � PM2) . �i . h(�1 t)i; (�2 t)ii :In other words, there is a uniform way of converting back and forth between a pair of computationsand a computation of a pair.De�nition 3.5 For each M , de�ne the following:valM = �t 2 D(PM) . S fti j i 2 D(Vnat)gpreM = �t 2 D(PM) . �i . �j . tmin(i; j)pathM = �x 2 D(M) . �i . x: �Intuitively, valM t is the value computed by t; preM t is the computation built from the pre�xes oft; and pathM x is the constant path to x, regarded as a canonical \degenerate" computation of x.Proposition 3.6 valM , preM and pathM are continuous functions, and val : P :! Id, pre : P :! P 2and path : Id :! P are natural transformations. The following identities hold:(mappreM) � preM = prePM � preMvalPM � preM = idPM(mapvalM) � preM = idPMvalM � pathM = idMpathPM � pathM = preM � pathM : 11

The �rst three identities assert that (P; val; pre) is a comonad over gCDScont. The remaining twoassert that (P; val; pre; path) is a computational comonad (in the sense of [BG91]).An additional inequality that stems from the choice of canonical computations isidPM � pathM � valM :3.2 The Category of AlgorithmsDe�nition 3.7 The category gCDSalg has gCDSs as objects, and continuous functions from PMto M 0 as the morphisms from M to M 0. We de�ne an algorithm to be a morphism in this category,and we will write M)M 0 for the set of all algorithms from M to M 0. Composition of algorithmsa :M)M 0 and a0 :M 0)M 00, written a0 �� a, is de�ned by:a0 �� a = a0 � (mapa) � preM :The identity algorithm from M to M is valM . �In words, the algorithm composition of a and a0 applies a0 to the computation produced by mappinga over the pre�xes of the argument computation. The identity algorithm disregards everythingexcept the value computed by its argument, and it returns this value.Algorithm composition is a continuous function on algorithms. It is straightforward to verify, us-ing the algebraic identities given earlier, that gCDSalg is indeed a category: with these de�nitionscomposition is associative and the identity algorithm is a unit for composition. In fact, gCDSalg isjust the co-Kleisli category of gCDScont and the comonad (P; val; pre) [ML71, BG91]. For clarityand ease of comparison with the underlying category, we use) for morphisms in gCDSalg, andwe retain ! for morphisms in gCDScont.Since gCDScont has �nite products, it is easy to show that:Proposition 3.8 The algorithms category gCDSalg has �nite products. If M1�M2 is a productin gCDScont with projections �i (i = 1; 2), then M1�M2 is a product in gCDSalg with projectionalgorithms given byb�i = �i � valM1�M2 :Equivalently, by naturality of val and the de�nition of split,b�i = valMi ��i � splitM1;M2 :The pairing of algorithms a1 : M) M1 and a2 : M) M2, denoted ha1; a2i : M) M1 �M2,is their pairing as continuous functions, i.e., ha1; a2i = �t 2 D(M) . ha1t; a2ti. The product of thealgorithms a1 : M1)M 01 and a2 :M2)M 02, denoted a1 �� a2 :M1 �M2)M 01 �M 02, is given bya1 �� a2 = ha1 �� b�1; a2 �� b�2i = ha1 �map�1; a2 �map�2i = (a1 � a2) � split :Null is a terminal object in gCDSalg, since it is terminal in gCDScont.Proposition 3.9 The category gCDSalg has exponentiations. The exponentiation of M and M 0in gCDSalg is the gCDS M)M 0 = PM !M 0, with the application algorithm given bydappM;M 0 = appPM;M 0 �(valM)M 0 �� idPM):Currying and uncurrying of algorithms are given by the following continuous functions:curry = �a :M1 �M2)M 0 . curry(a �mergeM1;M2)uncurry = �a :M1) (M2)M 0) . uncurry(a) � splitM1�M2 :12

Intuitively, algorithm application disregards the computation of the algorithm being applied, andis only concerned with the actual algorithm and the computation of its argument. Currying anduncurrying are simple adaptations of the standard currying and uncurrying operations on functionsto take account of the structure of paths. The fact that P preserves product is used crucially here.Putting these results together, we have:Proposition 3.10 gCDSalg is cartesian closed.See [BG91] for a more detailed category-theoretic treatment from which these results follow.Example 3.11 Figure 4 presents a partial Hasse diagram of the algorithm space from Two�Two toTwo. We present each algorithm by its action on the paths of Two� Two in �gure 3, a shaded circlefor a result of > (with actions on other paths determined by monotonicity). We present below theoperational intuition behind these algorithms. �3.3 Relating the CategoriesWe de�ne the input-output function fun(a) of an algorithm a, and the canonical algorithm alg(f)for a continuous function f . These turn out to be the morphism parts of a pair of functors betweenthe two categories.De�nition 3.12 For any gCDSs M and M 0, de�nefun : (M)M 0)! (M !M 0)fun = �a :M)M 0 . a � pathMalg : M !M 0 !M) M 0alg = �f :M !M 0 . f � valM : �Proposition 3.13 fun and alg satisfy the following conditions:fun(idM) = valMalg(valM) = idMfun(a0 �� a) = fun a0 � fun aalg(f 0 � f) = alg f 0 �� alg f:Thus, fun and alg are the morphism parts of a pair of functors fun : gCDSalg ! gCDScontand alg : gCDScont ! gCDSalg, each of which is just the identity on objects (in the respectivecategory).Proposition 3.14 For every f :M !M 0, fun(alg f) = f .Thus, alg f has f as its input-output function, and every continuous function between gCDSs isthe input-output function of some algorithm between gCDSs.De�nition 3.15 For a1; a2 : M) M 0, we say that a1 input-output approximates a2, writtena1 �io a2 i� fun a1 pointwise approximates fun a2, i.e., fun a1 � fun a2. We say that a1 and a2 areinput-output equivalent, written a1 =io a2, i� fun(a1) = fun(a2). �In words, two algorithms are input-output equivalent i� they have the same input-output function;this is the equivalence relation induced by the input-output approximation pre-order.13

�� �� ��bb """" bb' $& %;�� �� ��bb """" bb' $& %pb�� �� ��bb """" bb' $& %lb �� �� ��bb """" bb' $& %rb�� �� ��bb """" bb' $& %db�� �� ��bb """" bb' $& %sl �� �� ��bb """" bb' $& %sr�� �� ��bb """" bb' $& %pl �� �� ��bb """" bb' $& %pr�� �� ��bb """" bb' $& %poll�� �� ��bb """" bb' $& %>

@@ ��@@ �� @@ ���� @@ �� @@�� @@

Figure 4: A partial Hasse diagram of D(Two� Two) Two)14

Proposition 3.16 If f1 � f2 then alg f1 � alg f2. If a1 � a2 then a1 �io a2, but the converse isnot generally true.This indicates that the pointwise ordering on algorithms (as continuous functions) takes into ac-count intensional aspects of algorithms that are disregarded by the input-output approximationordering.Proposition 3.17 The quotient of the domain D(M) M 0) by input-output equivalence is iso-morphic to the domain D(M !M 0), with the isomorphism induced by fun and alg:D(M)M 0)==io �= D(M !M 0):Consider now the input-output equivalence class of algorithms that share an input-output func-tion f . Since idPM � pathM � valM we have idM)M 0 � alg � fun. That is, the canonical algorithmalg f is maximal among the algorithms with input-output function f . Intuitively this means thatthe canonical algorithm is the \laziest" algorithm with input-output function f ; it provides a resultbased solely on the input value, independent of the way in which the value is computed. This maybe contrasted with the behavior of the algorithm minalg f , de�ned byminalg = �f :M !M 0 . �t 2 D(PM) . f (t0):It is easy to see that fun �minalg = idM!M 0 , but minalg � fun � idM)M 0 , and therefore minalg fis the least algorithm with input-output function f . Intuitively, this is the \most eager" algorithmwith input-output function f , since it speci�es that the computation of the input value must becompleted in one time step. (Note, however, that minalg does not de�ne a functor.)Proposition 3.18 For every continuous function f : M !M 0, the set of algorithms in M)M 0with input-output function f , ordered pointwise, forms a complete lattice.Proof: The domain D(M) M 0) is consistently complete, and a has input-output function f i�minalg(f) � a � alg(f).3.4 Remarks on CanonicityNote that the identity algorithm valM is canonical: valM = alg idM . The projection algorithms arealso canonical, b�i = alg �i. The application algorithm dapp, however, is not canonical. Let app bethe input-output function for dapp. We have:dappM;M 0 = appPM;M 0 �(valM)M 0 � idM) � split= (�(s; t) . (valM)M 0 s)t) � split= (uncurry valM)M 0) � split= uncurry valM)M 0appM;M 0 = fundappM;M 0= dappM;M 0 � pathM)M 0�M= appPM;M 0 �(valM)M 0 � idM) � splitM)M 0 ;M � pathM)M 0�M= appPM;M 0 �(valM)M 0 � idM) � (pathM)M 0 � pathM)= appPM;M 0 �(idM)M 0 � pathM)= �(a; x) 2 D(M) M 0 �M) . a(pathM x)= uncurry(fun)alg appM;M 0 = appM;M 0 � valM)M 0�M= (�(s; t) . (valM)M 0 s)(pathM(valM t))) � split :15

That is, the application algorithm is uniquely determined as the uncurrying of the identityalgorithm, and in general it is not maximal in its input-output equivalence class (nor is it minimal).This re
ects the fact that dapp ignores the computation of the algorithm to be applied, but does payattention to the computation of the argument of the application, while the algorithm applicationfunction ignores the computation of both the applied algorithm and its argument.

�� ��@@ ���� @@' $& %?�� ��@@ ���� @@' $& %b�� ��@@ ���� @@' $& %l �� ��@@ ���� @@' $& %r�� ��@@ ���� @@' $& %poll�� ��@@ ���� @@' $& %>
@@ ���� @@

Figure 5: D(Two� Two! Two)Example 3.19 In table 1 we list input-output functions for some of algorithms of Two�Two) Two,shown in �gure 4. The corresponding function space, Two� Two ! Two, is shown in �gure 5. Weuse identical names for some of the algorithms and functions, such as poll and >, but it should beclear from the context whether we refer to the algorithm or to the function.We take this opportunity to give an operational intuition, in lieu of a formalization of whatconstitutes a computation strategy, or a detailed discussion of an operational semantics for algo-rithms.We take a coroutine-like view of the computation, much as in Berry and Curien's operationalsemantics for sequential algorithms [Cur86]. Computation is demand driven: a request for the valueof a cell in the result may lead the algorithm to issue sub-computations until enough information16

a fun(a) Termination Step 1 Step 2pb b h>;>i l; rlb b h>;>i l rrb b h>;>i r ldb b h>;>i l or r l; rpl l h>; ;i l or r lsl l h>; ;i lpr r h;;>i l or r rsr r h;;>i rpoll poll h>; ;i or h;;>i l or r> > h;; ;i; ?Table 1: Input-output Functions and Operational Intuition for Algorithms in D(Two� Two) Two)has been gathered about the input value for an output value to be determined. In the sequentialcase, only one sub-computation may be active at any point in time, and hence the coroutine
avor.In the parallel case, sub-computations may be issued in parallel, and several sub-computations (atdi�ering levels) may be active simultaneously. Note that we assume some discrete global clock,with respect to which all computations are synchronized.In the above example, one may ask for the value �lling the cell * in the application of oneof these algorithms to an argument. A sub-computation of the left argument to an algorithmcorresponds to a computation of the cell *.1 of the argument. Returning to the table, under theTermination heading we give the least value on which the algorithm will produce a result >, i.e.,�ll the cell *; this is of course determined by the input-output function. Under Step 1 and Step2 we list the sub-computations that must be performed by the (end of the) �rst or second step ofthe computation, respectively, if the algorithm is to �ll *. In this speci�c case, only terminationof the sub-computations matters, since there is only one way to �ll any cell; in general, the valuewith which a computation terminates will also be important.For instance, the algorithms that compute the function b (standing for both, the doubly strictfunction) can be characterized as follows:� The algorithm pb speci�es that both the left component and the right component of theargument must be computed by the �rst time point. This is the most eager algorithm for b.� The algorithm lb speci�es that the left component must be computed by the �rst time point,and that the right component must be computed by the second time point.� The algorithm db speci�es that either the left or the right component must be computed bythe �rst time point, and both must be computed by the second time point. �3.5 Intensional and Extensional Aspects of AlgorithmsProperties of functions, such as stability and sequentiality, apply to algorithms in several ways. Wesay that properties of an algorithm's input-output function are (input-output) extensional properties17

of the algorithm, and properties of the algorithm itself, regarded as a function on paths, areintensional properties of the algorithm.As an example, of the algorithms in �gure 4, poll is neither extensionally nor intensionally stableand neither extensionally nor intensionally sequential; db, pl and pr are extensionally stable (andsequential) and are not intensionally stable (or sequential); and all other algorithms are stable(and sequential), both intensionally and extensionally. It is not by chance that some possiblecombinations of properties are not represented:Proposition 3.20 The input-output function of a stable (respectively, sequential) algorithm isstable (respectively, sequential).A function is stable (respectively, sequential) i� it the input-output function of some stable(respectively, sequential) algorithm.Proof: If a is stable then fun(a) is stable, because any counter-example to the stability of fun(a)generates a counter-example to the stability of a. Similarly if f is stable then minalg(f) isstable. The proofs for sequentiality are analogous.Therefore there can be no algorithm that is extensionally, but not intensionally stable (orsequential). The function poll, for instance, has no sequential or stable algorithm.4 Relationship to Berry and Curien's Sequential AlgorithmsWe discuss now the strong connections between the work presented here and Berry and Curien'ssequential algorithms [Cur86]. Although we will not discuss them in detail, similar relationships canbe established between our earlier attempts to de�ne parallel algorithms [BG90] and the currentwork. We believe that these connections show how our view of intensionality as a computationalcomonad is a natural outcome of the earlier lines of research.4.1 Berry-Curien Sequential Algorithms on CDSsWe �rst present some relevant de�nitions concerning Berry-Curien sequential algorithms. Thereader is referred to [Cur86] for a complete exposition.De�nition 4.1 Given (discrete generalized) deterministic CDSs M and M 0, the Berry-Curiensequential exponentiation, or sequential algorithm space, M)y M 0, is de�ned (as in [Cur86]) by:� CM)yM 0 = D�n(M)�CM 0 where D�n(M) consists of the �nite elements ofD(M) { which, fora discrete M , are just states that are �nite as sets of events. The cells are ordered discretely.� VM)yM 0 = foutput v0 j v0 2 VM 0g [fvalof c j c 2 CMg.� EM)yM 0 = f(xc0;output v0) 2 CM)yM 0 �VM)yM 0 j (c0; v0) 2 EM 0g[f(xc0;valof c) 2 CM)yM 0 �VM)yM 0 j c 2 A(x)g :� f(xjc0j ;output v0j) j 1 � j � lg `M)yM 0 xc0 i� f(c0j; v0j) j 1 � j � lg `M 0 c0and x = S fxj j 1 � j � lg.f(x1c0;valof c)g `M)yM 0 xc0 i� there exists an event (c; v) of M such that x = x1 [f(c; v)g.The states of M)y M 0 are the sequential algorithms from M to M 0. �18

The following results are shown in [Cur86]: the category of (discrete generalized) deterministicCDSs and sequential algorithms is a ccc; the product is the product of gCDSs given above andNull is a terminal object; the exponentiation object of M and M 0 is M)y M 0.De�nition 4.2 The input-output function funy b of an algorithm b is given (as in [Cur86]) by:funy = �b 2 D(M)y M 0) . �x 2 D(M) . f(c0; v0) j 9y � x . (yc0;output v0) 2 bg : �There is no analogue in the Berry-Curien model to our de�nition of the alg map on parallelalgorithms, since there is no uniform way to pick a canonical sequential algorithm for a sequentialfunction with more than one sequentiality index (such as the doubly-strict-or function and thefunction b). Nevertheless, Berry and Curien have shown that each element of the sequential functionspace is the input-output function of some sequential algorithm. Moreover, the quotient of D(M)yM 0) by input-output equivalence (having the same input-output function) is isomorphic to thesequential function space from D(M) to D(M 0), ordered by the stable ordering.
;lby = 8><>:(h;; ;i � ; valof �:1)(h>; ;i � ; valof �:2)(h>;>i� ; output �)9>=>; rby = 8><>:(h;; ;i � ; valof �:2)(h;;>i � ; valof �:1)(h>;>i � ; output �)9>=>;sly = ((h;; ;i � ; valof �:1)(h>; ;i � ; output �)) sry = ((h;; ;i� ; valof �:2)(h;;>i � ; output �))>y = n(h;; ;i � ; output �)o

HHHHHHHHHHH �����������AAAAAAAAAAAAA
A

�������������
�

Figure 6: The Berry-Curien sequential algorithm space D(Two� Two)y Two).Example 4.3 Figure 6 presents D(Two � Two)y Two), and table 2 presents the operational in-tuition for those algorithms. Note that, of the continuous functions in �gure 5, only poll is notsequential. Also, the sequential functions of this type yield a
at domain when ordered by thestable order.The operational behavior of sequential algorithms is more straightforward than for the parallelalgorithms. Computation is again demand-driven, based on a coroutine-like but sequential oper-ational semantics. For instance, when the algorithm lby is applied to some input and a request is19

b funy(b) Termination Step 1 Step 2 embed(b)lby b h>;>i l r lbrby b h>;>i r l rbsly l h>; ;i l slsry r h;;>i r sr>y > h;; ;i >; ? ;Table 2: Input-output Functions and Operational Intuition for D(Two� Two)y Two)made for the value of the result cell *, the algorithm speci�es that a sub-computation of the leftinput argument (the cell *.1) must be issued �rst; if this cell is �lled with the value *, the rightargument is similarly computed; if this too is �lled, the algorithm speci�es that result cell * canthen be �lled, with the value *. �Our example is limited in that only one value may �ll each of the cells. In the presence ofseveral values, branching may take place, based on the value, and the enabling structure of thealgorithm takes on a tree shape (a linear list in this example). A computation simply determinesa path in this tree { a sequence of (strictly increasing) states, serving as (�nite) approximationsto the input. This is the basic intuition which may be carried over to our formulation of parallelalgorithms.4.2 Embedding Berry-Curien Algorithms into Parallel AlgorithmsWe sketch how the Berry-Curien sequential algorithms space D(M)y M 0) may be embeddedinto the parallel algorithm space D(M) M 0) in a way that preserves the input-output functionand the computation strategy. The embedding also respects the ordering (set inclusion) of theBerry-Curien model.De�nition 4.4 For b 2 D(M)y M 0) and xc0 2 F(b), de�ne (by induction on the enabling of xc0):hist(b;xc0) = (hist(b; x0c0)x if f(x0c0;valof c)g `b xc0W fhist(b;xjc0j) j 1 � j � lg if f(xjc0j ;output vj) j 1 � j � lg `b xc0: �Intuitively, hist(b;xc0) is a �nite sequence of states of M , that may be seen as a computationundertaken when b is applied to an argument approximated by x, trying to �ll the cell c0 in theresult. We use juxtaposition for concatenation of �nite sequences. The lub WS of a set S of �nitesequences is obtained by a componentwise lub (i.e., componentwise union) of the sequences, withlast components of repeated as necessary to obtain sequences as long as the longest one1. Thelub of the empty set of sequences is the empty sequence, and the empty sequence is extended byrepeating ; as often as necessary.1It would also make sense to work with a pre-order on events, rather than a linear order implied by the pathscomonad, with WS given by the pre-order union of elements of S. We return to this alternative in the conclusion,when considering alternate notions of comonads. 20

De�nition 4.5 The embedding function embed : D(M)y M 0)! D(M)M 0) is given by:embed = �b 2 D(M)y M 0) . up(f(hist(b; xc0)c0; v0) j (xc0;output v0) 2 bg):Here we implicitly extend the �nite sequences hist(b; xc0) to in�nity by repeating their lastcomponent, with the convention that the empty sequence represents ;!. �Embedding preserves the input-output function:Proposition 4.6 For any b 2 D(M)y M 0), fun(embed b) = funy b.Example 4.7 The embedding of �gure 6 into �gure 4 is straightforward, shown in the embed(b)column in table 2. It is easy to see that the (informally given) computation strategy is preserved.The image of D(Two�Two)y Two) under embedding is a proper subset of the intensionally sequen-tial algorithms in D(Two� Two! Two). While pb is intensionally sequential, it does not impose alinear order of evaluation on the two sequentiality indices and therefore does not correspond to aBerry-Curien algorithm. �Although we cannot give a rigorous proof without �rst formalizing the notion of computationstrategy, it should be intuitively clear that the embedding function always preserves the computa-tion strategy of its argument.It is easy to show that embedding preserves order, in the following sense:Proposition 4.8 For all (discrete generalized) deterministic CDSs M and M 0, and all b1; b2 2D(M)y M 0), if b1 � b2 then embed(b1) approximates embed(b2) in the stable ordering.5 Directions for Further ResearchIn this paper we have introduced a generalization of concrete data structures and concrete domains,and parallel algorithms between generalized concrete data structures. We would like to demonstratethe utility of our new structures in supporting the development of a theory of sequentiality andparallelism and in the development of a framework for intensional semantics. The results of thispaper constitute a foundation on which to build, but there are many topics for further investigationand several directions for us to follow.We have presented a cartesian closed category of gCDSs and continuous functions, and wediscussed brie
y a ccc of distributive gCDSs and stable functions. These two categories employa common underlying concrete representation { the gCDS { but use di�erent notions of states toobtain di�erent notions of generated domains. We would like to give a domain-theoretic charac-terization to both families of domains. We have made a start in this direction, with the partialcharacterization of the domains generated by the continuous notion of state.It seems likely that some other natural classes of functions may yield to an analogous develop-ment. In particular, we would like to try to use the same approach to de�ne a category of gCDSsand sequential functions, centered on a suitable notion of a sequential state. This task is harder,since we cannot rely on the desired category being a full sub-category of some already known ccc,such as Scott domains and continuous functions or dI-domains and stable functions. Nevertheless,our initial investigations in this direction are encouraging. We have pointed out that a de�nitionof sequentiality may be formulated in the gCDS setting. We intend to study the implications ofsuch a de�nition, and whether it proves useful in obtaining sequential semantic models. We havealready made some remarks concerning these issues in section 2.6.21

We have presented an intensional semantic model { the category of gCDSs and parallel algo-rithms, obtained by the co-Kleisli category construction from the ccc of gCDSs and continuousfunctions and the comonad of paths. Since the paths comonad preserves product the obtainedintensional category is a ccc, so that it may be used in a standard way to provide an (intensional)model for the simply-typed lambda calculus. This choice of comonad is not the only reasonableone. Indeed, for some purposes the paths comonad may be regarded as too detailed. For instance,if one is not interested in the number of steps between successive increments in a computation,but only in the relative order in which the increments occur, it would seem appropriate to usethe comonad of strictly increasing (rather than non-decreasing) paths2. Another possible choiceof comonad might be obtained by regarding events not as linearly ordered but merely as partiallyordered or even pre-ordered, so that we may dispense with any assumption of a global clock.However, comonads based on strictly increasing paths or on pre- or partial orders on eventsdo not preserve �nite products. This means that the intensional category for these notions ofintensional behavior will not normally be a ccc, even if the underlying extensional category iscartesian closed. Nevertheless, we believe that algorithm categories built with such comonads maystill provide sensible intensional models for the �-calculus, and we will report on this separately.As an aside, the reasoning here helps to explain the shortcomings of our earlier \query model"[BG90]; in our current terminology, we were attempting there to obtain a ccc (with currying built-in), using (the analogue of) the non-product preserving comonad of strictly increasing paths. Wenow realize that this combination does not yield a ccc.We have exhibited a generalization of Berry and Curien's sequential algorithms into parallelalgorithms, together with an embedding of the former into the latter. Essentially the same em-bedding should also work when we consider comonads based on strictly increasing paths, or onpartial orders, or on pre-orders over events. A \tighter" embedding could be obtained into the sta-ble algorithms, which we may construct as the co-Kleisli category of gCDSstab, using any of theabove variations on the paths comonad. We would now like to understand better the Berry-Curienconstruction itself. On the face of it, the Berry-Curien category of deterministic concrete datastructures and sequential algorithms is not attainable as an application of the co-Kleisli construc-tion, since there is no underlying extensional category of concrete data structures. We conjecture,however, that there are strong connections between the Berry-Curien category and an intensionalcategory of gCDSs employing a suitable notion of sequential algorithms. In order to establishthis conjecture we must �rst, of course, exhibit an appropriate extensional category of gCDSs andsequential functions, one of the goals listed above.Once we have a su�ciently established theory of intensional semantics, we would like to turnto its application to reasoning about intensional properties of programs, such as e�ciency.References[BC82] G. Berry and P.-L. Curien. Sequential algorithms on concrete data structures. TheoreticalComputer Science, 20:265{321, 1982.[BCL85] G. Berry, P.-L. Curien, and J.-J. L�evy. Full abstraction for sequential languages: thestate of the art. In M. Nivat and J. C. Reynolds, editors, Algebraic Methods in Semantics,chapter 3, pages 89{132. Cambridge University Press, 1985.2In diagrams 3 and 4 we only listed explicitly the strictly increasing paths, and algorithms that are de�ned bytheir actions on strictly increasing paths. There are many paths containing repeated \idle steps" between successiveincrements, and hence many more algorithms than those listed.22

[Ber78] G. Berry. Stable models of typed �-calculi. In Proc. 5th Coll. on Automata, Languages andProgramming, number 62 in Lecture Notes in Computer Science, pages 72{89. Springer-Verlag, July 1978.[BG90] S. Brookes and S. Geva. Towards a theory of parallel algorithms on concrete data struc-tures. In Semantics for Concurrency, Leicester 1990, pages 116{136. Springer-Verlag,1990. Expanded and improved version to appear in Theoretical Computer Science.[BG91] S. Brookes and S. Geva. A cartesian closed category of parallel algorithms between Scottdomains. Submitted for publication in Semantics of Programming Languages and ModelTheory, Dagstuhl Castle, June 1991, Algebra, Logic and Applications, London, 1991.Gordon and Breach Science Publishers.[Col89] L. Colson. About primitive recursive algorithms. In Proceedings of ICALP89, volume 372of Lecture Notes in Computer Science, pages 194{206. Springer-Verlag, 1989.[Cur86] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Program-ming. Research Notes in Theoretical Computer Science. Pitman, 1986.[KP78] G. Kahn and G. D. Plotkin. Domaines concrets. Rapport 336, IRIA-LABORIA, 1978.[Mil77] R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer Science,4:1{22, 1977.[ML71] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,5(3):223{255, 1977.[See89] R. A. G Seely. Linear logic, *-autonomous categories and cofree coalgebras. ContemporaryMathematics, 92:371{382, 1989.[Sto88] A. Stoughton. Fully Abstract Models of Programming Languages. Research Notes inTheoretical Computer Science. Pitman, 1988.[Vui73] J. Vuillemin. Proof techniques for recursive programs. PhD thesis, Stanford University,1973.
23

