
MiND: An Environment for the Development, Integration, andAcceleration of Connectionist Systems1Gerd KockGMD FIRST BerlinRudower Chaussee 512489 Berlin, Germany Thomas BecherINCO Systeme GmbHSt�ohrerstrasse 1704347 Leipzig, GermanyKeywords: Arti�cial Neural Networks, Simulation, Hardware, SoftwareABSTRACTThe system MiND (Multipurpose integrated Neural Device) is a development system for ar-ti�cial neural networks. It includes a neuroboard based on the new neuroprocessor SAND(Simple Applicable Neural Device), which can be used to accelerate networks like Backpropa-gation, Radial-Basis-Function or Kohonen networks (up to 800 MCPS). The user interface ofMiND is menu and graphic oriented. The system is supplied with many "prede�ned" simula-tors. However, based on the speci�cation language CONNECT and on abstract C++ graphicand menu classes a user can easily adapt prede�ned simulators or develop own ones.The language CONNECT is based on a generic connectionist model. It allows to specifyconnectionist systems in an abstract and, at the same time, complete way. I.e., all relevantaspects (e.g. learning algorithms) are given explicitely, but in a compact and readable way.A CONNECT speci�cation is translated into a C++ network class and then can easily beglued together with the graphic and menu classes to constitute a simulator. All "prede�ned"simulators of the MiND system are based on this mechanism. However, this mechanism canalso be exploited by a user to de�ne his own simulators and to develop custom applications.The MiND system will be available on di�erent platforms. The current version is running onPCs under Windows 95 and Windows NT, and includes a PCI board with the neuroprocessor.INTRODUCTIONThe demands on simulation tools for arti�cial neural networks are manifold. Most users askfor a comfortable graphical interface aiding in developing, analysing, and applying networks.In this, standard network models should be provided as prede�ned components of the system.For other users, exibility and extendability is essential. E.g., it should be possible to modifyexisting learning algorithms or to include selfde�ned ones. If a tool is used in the context ofa complex project development, support for custom applications should be given. E.g., afterhaving trained and tested a neural component, it should be easy to integrate this compo-nent into an external environment. Last but not least, pragmatic aspects like scalability andperformance play a role. The latter aspect may be supported well by speci�c hardware only.The simultaneous ful�lment of the items from above is a non trivial task. For discussingthis matter in more detail, let us, at �rst, observe that simulation tools for arti�cial neuralnetworks roughly can be divided into three categories [3,4]: (1) systems, the �rst design goalof which have been a comfortable graphical user interface, (2) systems which provide a userwith a large library of modules written in languages like C or C++, and, �nally, (3) systemswhich o�er a special programming language for arti�cial neural networks.1IMACS'97, 15th World Congress 1997 on Scienti�c Computation, Modelling and Applied Mathematics,August 24{29, 1997, Berlin, Germany 1

Figure 1: The MiND systemA fundamental problem with many systems is exibility and extendability. The systems ofthe �rst category are build around internal data structures which, when new models have tobe supported, may turn out to be too restrictive. Anyway, for a user, in general, it is a toocomplex task to deal with the structures behind the graphical user interface. Libraries of C orC++ modules conceptually are exible and extendable. However, to exploit this advantage,detailed knowledge is necessary, the development of which takes time. Systems based on spe-cial neural network programming languages may be a good solution, if the language is basedon an appropriate generic connectionist model, and if networks easily can be equipped with agraphical interface. However, some languages are not based on a connectionist model, but infact are vector and matrix manipulation languages, and in other cases the underlying connec-tionist model is too restrictive or the programming language concepts used to \implement" alanguage model are too low level.The goal in the development of the MiND system was to ful�l all demands from above.The system includes the neural network speci�cation language CONNECT [2], a library ofgraphical user interface classes, and a PCI neuroboard based on the neurochip SAND [1]. Inthe next section, the overall structure of the MiND system is explained. After that, the SANDneurochip and the PCI neuroboard are outlined. Then, the CONNECT language is presentedin more detail. The paper is closed by an evaluation of the MiND system.MIND OVERVIEWThe components of the MiND system are: (1) the MiND PCI neuroboard which is equippedwith up to four SAND neurochips, (2) the CONNECT speci�cation language and a compilerwhich generates C++ classes from CONNECT speci�cations, (3) a collection of abstractgraphical user interface (GUI) classes, and (4) the MiND manager which administrates thepool of prede�ned and selfde�ned simulators.The MiNDmanager and each simulator administrated by the MiND manager have comfortable2

Selfdefined
 Simulator Simulator

 BP
 Simulator
 Kohonen

 Manager
 MiND

CONNECT
Definition Definition

Interface
MiND PCI Neuroboard

C Interface of the Driver

 BP_Net
 C++ Class C++ Class

 RBF_Net

 Simulator
 BP

 Simulator
 RBF

Figure 2: MiND architecture and software layers for the PCI neuroboardgraphical user interfaces. Each simulator is constituted by a CONNECT de�nition and aninterface de�nition script (Figure 2). The CONNECT de�nition describes a neural network.The interface de�nition is build on the C++ class generated from the CONNECT de�nitionand on the MiND GUI classes. Among the GUI classes, there are classes for menus, dialogueboxes, panels, and monitors for observing elements like network weights etc.A user is allowed to modify or extend CONNECT network speci�cations and interface scripts.This speci�cally opens up the way for extending the pool of prede�ned simulators by selfde�nedneural algorithms. The development of custom applications is supported twofold. It is possibleto export a generated C++ network class or to develop a (prototype) application by modifyingthe graphical user interface of a simulator.Figure 2 also shows the software layers for the PCI neuroboard. The driver's C interface o�ersdirect access to the functionality of the MiND PCI neuroboard. From the user's point of viewit is a simple to use software interface and hides all hardware speci�c aspects. In addition, forall networks supported by the neurochip, the corresponding simulators can be used to exploitthe PCI neuroboard via a graphical user interface. This is achieved by adapting the generatedC++ network classes on the base of the driver's C interface. Note that a C++ network classusing the neuroboard can be exported like any other C++ network class.THE SAND NEUROCHIP AND THE PCI NEUROBOARDThe SAND neurochip [1] supports fully connected feedforward networks, RBF networks, andKohonen feature maps. To give an impression about what calculations are performed bySAND, the organization of the neural processor for feedforward networks is outlined.The calculations performed by a complete layer can be described as a matrix/vector multipli-cation of form y = f(W �x). In this, x is the input vector of the layer, W is the weight matrixholding all connection weights between two consecutive layers, f is the activation function,and y is the output of the complete layer. If, instead of one input activation vector x, anumber of vectors is considered, then the equation from above turns into a matrix/matrixmultiplication Y = f(W �X). And this is what SAND does: it is a systolic array with fourprocessing elements (PEs) and treats four neurons and four input activation vectors at thesame time.Every cycle, one weight and one activation are transfered. Each PE is working four cycleswith the same weight. The activations are transfered through registers from one PE to thenext. As a result, four PEs compute 16 multiplications within 4 cycles. There is a continuous3

ow of data on both the activity and the weight bus.To support data and command handling in the way described above, each PE needs a multiplierand an adder for the calculations sketched above. For RBF networks and Kohonen networksit is necessary to calculate the Euklidean distance between two vectors. Therefore SAND'sPEs are equipped with a second adder. The two adders and the multiplier are placed in apipeline.The MiND PCI neuroboard contains up to four SAND chips running at 50 MHz. The per-formance can be scaled from 200 MCPS (one SAND processor) up to 800 MCPS (four SANDprocessors). Beside the neurochips the board is equipped with memory blocks for activitiesand weights, with a lookup table to store the activation functions and with controllers.Figure 3 sketches the simplicity in whichthe neuroboard can be applied. At �rst, asigmoidal function is used to initialize thelookup table. Then, a feedforward network(size i-h-o) with one hidden layer is laoded; SAND_Load_LUT(sigmoid);SAND_Load_MLP1(i, h, o, ws_h, ws_o, bs_h, bs_o);SAND_Apply_Net(n, x);while (!SAND_Read_MLP(y)) { ... }Figure 3: The driver's C interfacews_h, ws_o, bs_h, and bs_o are pointers to �elds of weights or bias variables, respectively.After that, the network is applied to the �eld x containing n input vectors. At the end, theresults are written into the �eld y.THE CONNECT DEFINITION OF A RBF NETWORKThe CONNECT language is based on a generic connectionist model. Each CONNECT spec-i�cation consists of a number of unit type de�nitions followed by a network type de�nition.In addition, procedures, functions, and relations can be de�ned. Unit and network types arede�ned in an object oriented manner, relations and functions are de�ned in a functional style.Relations are collections of index pairs used for connecting (and disconnecting) layers of units.A unit type is de�ned from a \local" point of view. Fanout signals, input and output vectorsdescribe the I/O behaviour of a unit, local variables are used to provide for local memory(e.g. for weights), and unit activation procedures are used to de�ne the possible activations ofunits. On the other hand, a network type is de�ned from a \global" point of view. It consistsof a number of layers, which are (multidimensional) arrays of units, other variables, networkactivation procedures, and an initialization part, which can be considered as a special networkactivation procedure. Connect and disconnect statements can be used to dynamically establishand modify topologies. During the execution of these statements, I/O entities of units are(dis)related with each other. Using a dot notation, a network activation procedure can executea certain unit activation procedure for all units of a layer. Similarly, a certain I/O entity orvariable de�ned in a unit type can be accessed simultaneously for all units of a layer.As an example, consider the Radial{Basis{Function network RBF_Net in Figure 4. The train-ing procedures of this network are de�ned according to [5], except for the fact that RBF_Netprovides for online learning instead of batch learning. The speci�cation starts with the dec-laration of some functions and a relation. Function dist computes the Euklidean distance,function min extracts the minimal component of a vector, gauss implements a Gaussian kernel,sum accumulates vector components, and relation Full relates all pairs of indices.RBF_Net has three layers Inp, Hid, and Out. An input unit has a fanout signal y only (outgoingsignal for hidden units). A hidden RBF unit has connections with input units (port I) andoutput units (port O). In addition, hidden units are connected with each other (via fanoutsignals d and input vectors ds). The input vector I.x (incoming signals from the input units)4

is accompanied by the vector I.c standing for the center of the RBF unit. The center andwidth w characterize an RBF unit. Fanout signal O.y (outgoing signal for output units) isaccompanied by an input vector O.err (incoming error signals from output units). An outputunit is simpler than a RBF unit. It has a fanout signal y (network result) and a port I usedfor connections with the hidden layer. Here, input vector I.x is accompanied by an outputvector I.err (outgoing error signals for the hidden units) and a weight vector I.w. The weightvector and the bias b are the coe�cients of the linear mapping performed by the output unit.Variable t is used for storing the training target. The runtime parameter eta of both thehidden and output units stands for the learning rate.// functions and relationsfunction dist: vector of real,vector of real -> real;...function min: vector of real -> real;...function gauss: real, real -> real;gauss(d,w) = exp(-(d*d)/(w*w));function sum: vector of real -> real;sum(<>) = 0;sum(<x:xs>) = x + sum(xs);relation Full;x Full y;// unit typesunit Inp_Unit isfanout y : real;end Inp_Unit;unit RBF_Unit(rt eta: real) isport O isfanout y : real;input err : vector of real;end O;fanout d : real;input ds : vector of real;port I isinput x : vector of real;var c : vector of real;end I;var w : real;procedure Distance isd := dist(I.x, I.c);end Distance;procedure Adapt isif (d = min(ds)) thenI.c := I.c + eta*(I.x-I.c);w := (1-eta)*w + eta*2*d;end;end Adapt;procedure Forward isd := dist(I.x, I.c);O.y := gauss(d, w);end Forward;procedure Backward isvar delta : real;begindelta := 2*O.y*sum(O.err);I.c := I.c + (eta*delta)/(w*w)*(I.x-I.c);w := w + (eta*delta*d*d)/(w*w*w);end Backward;end RBF_Unit;

unit Out_Unit(rt eta: real) isfanout y : real;port I isinput x : vector of real;output err : vector of real;var w : vector of real;end I;var b, t : real;procedure Init isI.w := 0; b := 0;end Init;procedure Forward isy := I.w*I.x + b;end Forward;procedure Backward isI.err := (t-y)*I.w;I.w := I.w + eta*(t-y)*I.x;b := b + eta*(t-y);end Backward;end Out_Unit;// network type RBF_Netnetwork RBF_Net (i, h, o : nat) isvar eta : real;layerInp : array[i] of Inp_Unit;Hid : array[h] of RBF_Unit(eta);Out : array[o] of Out_Unit(eta);procedure Init_Hidden(i: int; x: array of real) isHid[i].I.c := x; Hid[i].w := 0.1;end Init_Hidden;procedure Init_Output isOut.Init()end Init_Output;procedure Adapt_Hidden(x : array of real) isInp.y := x;Hid.Distance(); Hid.Adapt();end Adapt_Hidden;procedure Adapt_Output(x,t : array of real) isInp.y := x; Out.t := t;Hid.Forward(); Out.Forward();Out.Backward(); Hid.Backward();end Adapt_Output;procedure Apply(x: array of real):array of real isInp.y := x;Hid.Forward(); Out.Forward();return Out.y;end Apply;beginconnect Hid.d with Hid.ds using Full;connect Hid.I with Inp.y using Full;connect Out.I with Hid.O using Full;end RBF_Net;Figure 4: CONNECT de�nition of a RBF networkThe network topology is established in the initialization part of network RBF_Net. The �rst5

connect statement means that fanout signal d of unit Hidden[i] is connected to input vectords of unit Hidden[j], i� relation [i] Full [j] is ful�lled | which for Full always is thecase. Accordingly, the other connect statements have to be understood. Note that connect(and disconnect) statements can be executed in network activation procedures.RBF_Net contains �ve network activation procedures. Init_Hidden can be used to initializethe centers of RBF units with di�erent input examples. Init_Output initializes the outputlayer. In this, the call Out.Init() executes the unit activation procedure Init for all outputunits. There are two training procedures. At �rst, Adapt_Hidden can be used to estimate thecenters and width factors of the RBF units. The centers are calculated by a LVQ1 algorithmand the width of a unit is taken to be twice the \mean distance" between the center and thoseinput vectors \belonging" to the unit. Secondly, Adapt can be used to tune the centers andwidth factors of the hidden and the coe�cients of the output units by gradient descent.The CONNECT compiler generates a C++ class RBF_Net. This class can be instantiated (e.g.RBF_Net net(10,100,3)), and then its methods can be called (e.g. net.Adapt(x,t)).DISCUSSIONThe MiND manager and the simulators administrated by the MiND manager have comfortablegraphical user interfaces. Flexibility and extendability is supported by the concept that eachsimulator is described by a CONNECT network de�nition and an interface de�nition basedon the generated C++ network class and on abstract GUI classes. The two de�nition scriptsconstitute a level of abstraction which enables a user to de�ne own neural algorithms andinterfaces for his needs. The development of custom applications is supported speci�callyby the possibility to export the generated C++ classes. Using these classes, an applicationnot only can apply a trained network, but also can retrain it etc. Finally, the integratedPCI neuroboard can be used to accelerate networks. Three software layers encapsulate theneuroboard: the driver's C interface, C++ network classes, and MiND simulators built onthese classes.It can be concluded that the MiND system ful�ls the demands on neural network simulatorsestablished above, and that it is a useful tool for education, research, and industry.ACKNOWLEDGEMENTSMany thanks go to K. Tiedemann (involved in the CONNECT development), D. Heinrich(GUI classes and MiND manager), for the SAND neurochip H. Gemmeke, W. Eppler, T.Fischer (all from FZK) and S. Neusser (IMS), and for the PCI neuroboard H. Runkewitz.REFERENCES[1] H. Gemmeke; W. Eppler; T. Fischer; A. Menchikov; S. Neusser: Neural Network Chipsfor Trigger Purposes in High Energy Physics, Proceedings of Nuclear Science Symposium(NSS) (1996).[2] G. Kock; N.B. �Serbed�zija: Arti�cial Neural Networks: From Compact Descriptions toC++, Proc. of the Int. Conf. on Arti�cial Neural Networks, pp. 1372{1375 (1994).[3] G. Kock; N.B. �Serbed�zija: Simulation of Arti�cial Neural Networks, Systems Analysis| Modelling | Simulation (SAMS) 27(1):15{59 (1996).[4] J.M.J. Murre: Neurosimulators, The Handbook of Brain Theory and Neural Networks(Michael A. Arbib, Ed.), MIT Press (1995).[5] M. Verleysen; K. Hlavackova: An optimized RBF network for approximation of functions,Proc. of the European Symposium on Arti�cial Neural Networks, ESANN'94 (1994).6

