
J. Functional Programming 1 (1): 1{000, May 1995 c
 1995 Jeremy Gibbons 1FUNCTIONAL PEARLSThe Third Homomorphism TheoremJeremy GibbonsDepartment of Computer ScienceUniversity of AucklandPrivate Bag 92019, Auckland, New Zealand.Email: jeremy@cs.auckland.ac.nzAbstractThe Third Homomorphism Theorem is a folk theorem of the constructive algorithmicscommunity. It states that a function on lists that can be computed both from left to rightand from right to left is necessarily a list homomorphism|it can be computed accordingto any parenthesization of the list.We formalize and prove the theorem, and use it to improve an O(n2) sorting algorithmto O(n log n). 1 IntroductionList homomorphisms are those functions on �nite lists that promote through listconcatenation|that is, functions h for which there exists a binary operator � suchthat, for all �nite lists x and y ,h (x ++ y) = h x � h ywhere `++' denotes list concatenation. Such functions are ubiquitous in functionalprogramming. Some examples of list homomorphisms are:� the identity function id ;� the map function map f , which applies a given function f to every element ofa list;� the function concat , which concatenates a list of lists into a single long list;� the function head , which returns the �rst element of a list;� the function length , which returns the length of a list;� the functions sum , min and all , which return the sum, the smallest and theboolean conjunction of the elements of a list, respectively.However, there are also many useful list functions that are not list homomor-phisms. One example is the function lsp, which returns the longest sorted pre�x of

2 Jeremy Gibbonsa list. Knowing lsp x and lsp y is not enough to allow computation of lsp (x ++ y).This function is a typical example of a leftwards function|one which can be com-puted from right to left. Dually, the rightwards functions can be computed fromleft to right.One obvious relationship between homomorphisms and leftwards and rightwardsfunctions is known as the Specialization Theorem (Bird, 1987): all homomorphismsare also leftwards and rightwards functions. In the Constructive Algorithmics com-munity, this has become known as the `Second Homomorphism Theorem'. (The`First Homomorphism Theorem' states that a homomorphism can be factored intothe composition of reduction|a homomorphism whose value on a singleton list isthe sole element of that list|with a map, and conversely that any such compositionis a homomorphism.)The subject of this paper is another relationship between homomorphisms andleftwards and rightwards functions. This relationship is much less obvious, but isequally useful. It is the converse of the Specialization Theorem, and states thatany function that is both leftwards and rightwards is also a homomorphism. Thistheorem is fairly well-known in the Constructive Algorithmics community, bearingthe name `The Third Homomorphism Theorem'. However, it has somewhat thestatus of a `folk theorem' (Harel, 1980). It was conjectured by Richard Bird andproved by Lambert Meertens during a train journey across the Netherlands in 1989(Meertens, 1995); the theorem has been published only in non-archival sources(Barnard et al., 1991; Gibbons, 1993), and we feel that it deserves wider recognition.In this paper we formalize and prove this theorem, and use it to derive `mergesort'from `insertsort'. The remainder of this paper is structured as follows. In Section 2,we introduce the necessary notation. In Section 3, we state the First and SecondHomomorphism Theorems, for completeness' sake. Section 4 contains the mainresult of the paper, the Third Homomorphism Theorem. In Section 5, we use thetheorem to derive mergesort from insertsort.An earlier version of this paper appeared as (Gibbons, 1994).2 NotationIn this section, we introduce the notation used in the rest of the paper.Functions: Function application is denoted by juxtaposition, is tightest binding,and associates to the left. Function composition is written `�'.Lists: For the purposes of this paper, lists are �nite sequences of elements, all ofthe same type. A list is either empty, a singleton, or the concatenation of twoother lists. We write `[]' for the empty list, `[a]' for the singleton list withelement a (and `[�]' for the function taking a to [a]), and `x ++ y ' for theconcatenation of x and y . Concatenation is associative, and [] is its unit. Forexample, the term [a1] ++ [a2] ++ [a3] denotes a list with three elements, oftenwritten in the abbreviated form [a1; a2; a3]. We also write `a : x ' for [a] ++ x ;the operator `:' associates to the right.

Functional pearls 3Homomorphisms: For a binary operator �, the list function h is �-homomorphici�, for all lists x and y , h (x ++ y) = h x � h yFor example, the functions length and sum are both +-homomorphic, sincesum (x ++ y) = sum x + sum ylength (x ++ y) = length x + length yNote that � is necessarily associative on the range of h, because ++ is asso-ciative. Moreover, h [] is necessarily the unit of � on the range of h (if itexists), because [] is the unit of ++. If � has no unit, then h [] is not de�ned.For example, head is �-homomorphic where a � b = a, but because � hasno unit, head [] is unde�ned.For associative operator � with unit e, we write `hom (�) f e' for the (unique)�-homomorphic function h for which h � [�] = f . For example,sum = hom (+) id 0length = length = hom (+) one 0where one a = 1 for all a.Leftwards and rightwards functions: The list function h is �-leftwards for bi-nary operator � i�, for all elements a and lists y ,h ([a] ++ y) = a � h yHere, � need not be associative. The (unique) �-leftwards function h forwhich h [] = e is written `foldr (�) e'. For example, the function lsp referredto earlier is �-leftwards wherea � [] = [a]a � (b : x) = � a : b : x ; if a � b[a]; otherwiseSince lsp [] = [], we have lsp = foldr (�) [] with the above de�nition of �.Expanding the de�nition of a leftwards function reveals the signi�cance of thename. For example:foldr (�) e [a1; a2; a3] = a1 � (a2 � (a3 � e))and so its computation proceeds from right to left. In general:foldr (�) e (x ++ y) = foldr (�) (foldr (�) e y) x (1)(The name `foldr' is unfortunate for a right-to-left computation, but it is wellestablished.)Symmetrically, the list function h is
-rightwards for binary operator
 i�,for all lists x and elements a,h (x ++ [a]) = h x
 aAgain, the operator
 need not be associative. We write `foldl (
) e' for the

4 Jeremy Gibbonsunique
-rightwards function h for which h [] = e. Expanding the de�nitionreveals a left-to-right pattern of computation. For example:foldl (
) e [a1; a2; a3] = ((e
 a1)
 a2)
 a3and in general:foldl (
) e (x ++ y) = foldl (
) (foldl (
) e x) y (2)3 The First and Second Homomorphism TheoremsFor the sake of completeness, we state without proof the First and Second Homo-morphism Theorems.De�nition 3.1A function of the form hom (�) id e for some � is called a reduction.De�nition 3.2For given f , the function hom (++) ([�] � f) [] is written `map f ' and called a map.Theorem 3.3 (First Homomorphism Theorem)Every homomorphism can be written as the composition of a reduction and a map:hom (�) f e = hom (�) id e � map fConversely, every such composition is a homomorphism.Theorem 3.4 (Second Homomorphism Theorem, or Specialization Theorem)Every homomorphism is both a leftwards and a rightwards function. That is, if �is associative, thenhom (�) f e = foldr (�) e where a � s = f a � s= foldl (
) e where r
 a = r � f a4 The Third Homomorphism TheoremThis section contains the main result of the paper, the statement and proof of theThird Homomorphism Theorem.Theorem 4.1 (Third Homomorphism Theorem)If h is leftwards and rightwards, then h is a homomorphism.

Functional pearls 5In fact, we will show that h is �-homomorphic wheret � u = h (g t ++ g u)for some g such that h � g � h = h. Such a g exists, as the following lemma shows.Lemma 4.2For every computable total function h with enumerable domain, there is a com-putable (but possibly partial) function g such that h � g � h = h.ProofHere is one suitable de�nition of g . To compute g t for some t , simply enumeratethe domain of h and return the �rst x such that h x = t . If t is in the range of h,then this process terminates.The proof of the Third Homomorphism Theorem relies on the following lemma:Lemma 4.3The list function h is a homomorphism i� the implicationh v = h x ^ h w = h y) h (v ++ w) = h (x ++ y) (3)holds for all lists v ;w ; x ; y .(We note in passing an interesting corollary to Lemma 4.3: any injective functionis homomorphic.)ProofThe `only if' is obvious: if h is a homomorphism, then there is a � such thath (x ++ y) = h x � h y for all lists x and y . Now consider the `if' part.Assume that h satis�es (3). Choose a g such that h �g �h = h, and de�ne operator� by the equation t � u = h (g t ++ g u)(as in the statement of the Third Homomorphism Theorem). We show that h is�-homomorphic.Because of the way we chose g , h x = h (g (h x)) and h y = h (g (h y)), and so,by (3) (with v = g (h x) and w = g (h y)), we haveh (x ++ y) = h (g (h x) ++ g (h y))= h x � h yWe now prove the Third Homomorphism Theorem.ProofWe show that, if h is leftwards and rightwards, then h satis�es (3).

6 Jeremy GibbonsSuppose that h = foldr (�) e = foldl (
) e, and that h v = h x and h w = h y .Then: h (v ++ w)= f treating h as a leftwards function gfoldr (�) e (v ++ w)= f (1) gfoldr (�) (foldr (�) e w) v= f since h w = h y gfoldr (�) (foldr (�) e y) v= f (1) gfoldr (�) e (v ++ y)= f treating h as a leftwards function gh (v ++ y)= f symmetrically, treating h as a rightwards function gh (x ++ y)Hence, by Lemma 4.3, h is a homomorphism.5 Application: sortingWe now use the Third Homomorphism Theorem to derive the O(n logn) sortingalgorithm `mergesort' from the O(n2) `insertsort'. (In fact, the Third Homomor-phism Theorem yields only an ine�cient homomorphic sorting algorithm; we haveto do a little more work to derive mergesort itself.)The function sort, which sorts a list, is leftwards, since it can be writtensort = foldr ins []where ins a [] = [a]ins a (b : x) = � a : b : x ; if a � bb : (ins a x); otherwiseThis is just traditional `insertsort', and takes O(n2) time to sort n elements.The same function is also rightwards, since it can be written as a `backwardsinsertsort': sort = foldl ins 0 [] (4)where ins 0 x a = ins a x

Functional pearls 7The Third HomomorphismTheorem concludes that sort is therefore homomorphic.The homomorphism constructed by the proof is hom (�) [�] [] whereu � v = sort (unsort u ++ unsort v)for some function unsort such that sort�unsort �sort = sort, that is, which permutesthe elements of a list.We pick unsort = id for simplicity, givingu � v = sort (u ++ v) (5)This gives us a homomorphic method of sorting, but clearly it is very ine�cient.To sort x ++ y , we sort x and y (yielding u and v), concatenate u and v , and then(presumably using some other sorting method, such as insertsort) sort the resultu++v . However, we can improve this algorithm, by capitalizing on the fact that|inthe context of evaluating hom (�) [�] []|the arguments u and v to � will be sorted.This improvement takes us directly to the traditional `mergesort' algorithm, whichis O(n logn).Suppose �rst that u is sorted, that is, that u = sort u. Thenu � v= f (5) gsort (u ++ v)= f (4) gfoldl ins 0 [] (u ++ v)= f (2) gfoldl ins 0 (foldl ins 0 [] u) v= f (4) gfoldl ins 0 (sort u) v= f u is sorted gfoldl ins 0 u v= f let merge = foldl ins 0 gmerge u vWe have picked a suggestive name in the last step, but it is justi�ed by theobservation that merge u [] = foldl ins 0 u []= uand merge u (b : v) = foldl ins 0 u (b : v)= foldl ins 0 (ins 0 u b) v= merge (ins 0 u b) vThis is a straightforward method of merging two lists, the �rst one already sorted, to

8 Jeremy Gibbonsproduce a sorted list. Note, however, that it takes quadratic time, and so computinghom merge [�] [] also takes quadratic timey. We can make a further improvementby assuming that the second argument to merge is also sorted.We use the following lemma,which is easily proved by induction. We write `a � v 'to denote that a � b for every element b of list v .Lemma 5.1If a � x and a � y , thenfoldl ins 0 (a : x) y = a : foldl ins 0 x ySuppose that v is sorted. Thenmerge [] v= f de�nition of merge gfoldl ins 0 [] v= f (4) gsort v= f v is sorted gvNow suppose that a : u and b : v are sorted. Thenmerge (a : u) (b : v)= f de�nition of merge gfoldl ins 0 (a : u) (b : v)= f de�ning property of foldl gfoldl ins 0 (ins 0 (a : u) b) vWe now consider the cases a < b and a � b separately.Case a < b: Since a : u and b : v are sorted, we have a � u and a � v ; hencea � ins 0 u b also. Then foldl ins 0 (ins 0 (a : u) b) v= f ins 0; a < b gfoldl ins 0 (a : ins 0 u b) v= f Lemma 5.1 ga : foldl ins 0 (ins 0 u b) v= f de�ning property of foldl ga : foldl ins 0 u (b : v)= f de�nition of merge ga : merge u (b : v)y because Plog ni=0 2i(n2i)2 ' 2n2

Functional pearls 9Case a � b: Since a : u and b : v are sorted, we have b � a : u and b � v . Thenfoldl ins 0 (ins0 (a : u) b) v= f ins 0; a � b gfoldl ins 0 (b : a : u) v= f Lemma 5.1 gb : foldl ins 0 (a : u) v= f de�nition of merge gb : merge (a : u) vWe have just derived the following characterization of merge, when both of itsarguments are sorted:merge [] v = vmerge u [] = umerge (a : u) (b : v) = � a : merge u (b : v); if a < bb : merge (a : u) v ; otherwisewhich is the standard way of merging two sorted lists (except that the comparisonis usually `a � b' rather than `a < b'). This version of merge takes linear time,and yields the well-known mergesort algorithm, which is O(n logn) when the listis decomposed in a balanced fashion. Green and Barstow (1978) describe a similarderivation of merge and mergesort.6 ConclusionTo summarize, we have presented and proved Bird and Meertens' Third Homomor-phism Theorem, stating that any function on lists that can be computed both fromleft to right and from right to left is necessarily a list homomorphism. We gavean example of its use|deriving `mergesort' from `insertsort'|illustrating that thetheorem does not usually give an e�cient characterization of the homomorphism;further development must be done to produce this.Further applications of the Third HomomorphismTheorem are given by Barnardet al. (1991), Gibbons (1993), and Gorlatch (1995).AcknowledgementsMurray Cole, Rod Downey, Sergei Gorlatch, Lindsay Groves, Lambert Meertens,the participants of the Computing|the Australian Theory Seminar in Sydney inDecember 1994, and especially Richard Bird have all made comments to improvethe presentation and content of this paper. Thanks are also due to Sue Gibbons,for her energetic red pen. The research reported here has been partially supportedby University of Auckland Research Committee grant number 3414013.

10 Jeremy GibbonsReferencesBarnard, D. T., Schmeiser, J. P. and Skillicorn, D. B. 1991. Deriving associativeoperators for language recognition. Bulletin of the European Association forTheoretical Computer Science, 43: pp. 131{139.Bird, R. S. 1987. An introduction to the theory of lists. In M. Broy (editor), Logic ofProgramming and Calculi of Discrete Design, pp. 3{42. Springer-Verlag. Also availableas Technical Monograph PRG-56, from the Programming Research Group, OxfordUniversity.Gibbons, J. 1993. Computing downwards accumulations on trees quickly. In G. Gupta,G. Mohay, and R. Topor (editors), 16th Australian Computer Science Conference,pp. 685{691, Brisbane. Available by anonymous ftp asout/jeremy/papers/quickly.ps.Z on ftp.cs.auckland.ac.nz.Gibbons, J. 1994. The Third Homomorphism Theorem. In C. Barry Jay (editor),Computing: The Australian Theory Seminar. University of Technology, Sydney.Gorlatch, S. 1995. Constructing List Homomorphisms. Technical Report MIP-9512,Fakult�at f�ur Mathematik und Informatik, Universit�at Passau.Green, C. and Barstow, B. 1978. On program synthesis knowledge. Arti�cialIntelligence, 10: pp. 241{279.Harel, D. 1980. On folk theorems. Communications of the ACM, 23(7): pp. 379{389.Meertens, L. G. L. T. 1995. Personal communication.

