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AIJ, 1991 2AbstractQualitative simulation is a useful method for predicting the possiblequalitatively distinct behaviors of an incompletely known mechanismdescribed by a system of qualitative di�erential equations (QDEs). Un-der some circumstances, sparse information about the derivatives ofvariables can lead to intractable branching (or \chatter") representinguninteresting or even spurious distinctions among qualitative behav-iors. The problem of chatter stands in the way of real applicationssuch as qualitative simulation of models in the design or diagnosis ofengineered systems.One solution to this problem is to exploit information about higher-order derivatives of the variables. We demonstrate automatic methodsfor identi�cation of chattering variables, algebraic derivation of ex-pressions for second-order derivatives, and evaluation and applicationof the sign of second- and third-order derivatives of variables, resultingin tractable simulation of important qualitative models.Caution is required, however, when deriving higher-order derivative(HOD) expressions from models including incompletely known mono-tonic function (M+) constraints, whose derivatives beyond the sign ofthe slope are completely unspeci�ed. We discuss the strengths andweaknesses of several methods for evaluating HOD expressions in thissituation.We also discuss a second approach to intractable branching, inwhich we change the level of description to collapse an in�nite setof distinct behaviors into a few by ignoring certain distinctions.These two approaches represent a trade-o� between generality andpower. Each application of these methods can take a position on thistrade-o� depending on its own critical needs.



AIJ, 1991 31 IntroductionQualitative simulation predicts the possible qualitatively distinct behaviorsof an incompletely known mechanism described by one or more qualitativedi�erential equations (QDEs). The creation and simulation of qualitativemodels plays a critical role in supporting model-based reasoning about phys-ical mechanisms in the face of incomplete knowledge. In diagnosis, the possi-ble behaviors of an incompletely known fault model can be matched againstobservations; in design, the possible behaviors of a partially speci�ed mech-anism can be compared with desirable and undesirable properties of the�nal design. In both diagnosis and design, the strength of the qualitativerepresentation is that a �nite description can capture a state of incompleteknowledge of structure and the set of all possible behaviors.The structure of a mechanism is described by a QDE: a collection ofcontinuous variables and algebraic and di�erential constraints among them.Such a constraint model may be derived from a component-connection de-scription [Sussman and Stallman, 1975; de Kleer and Brown, 1984; Williams,1984a], from a process-view description [Forbus, 1984], or be given as partof the problem-solver's model of the domain [Kuipers, 1984; Kuipers andKassirer, 1984]. One advantage of qualitative reasoning methods is theability to express and reason with incomplete knowledge of functional re-lationships, describing them qualitatively as monotonically increasing ordecreasing, and passing through certain corresponding landmark values.For example, one may say that wind resistance increases monotonicallywith velocity, without needing to know or assume the exact relationship:resistance = M+(velocity).QSIM is a representation for QDEs that has a precise relationship withdi�erential equations, and an algorithm for qualitative simulation with ane�cient implementation [Kuipers, 1986]. QSIM takes as input a QDE (orsystem of QDEs) and a description of its state at time t0. At each pointin time, the value of each variable in a QDE is described qualitatively:its magnitude in terms of ordinal relations with a discrete set of landmarkvalues, and its derivative in terms of direction of change. The fundamentaloperation in qualitative simulation is limit analysis: when several variablesare changing and moving toward landmark values, the constraints in theQDE are analyzed to determine which combinations of limits may be reachedand hence which qualitative states may come next.The possible behaviors of the system are predicted as a (possibly branch-ing) tree of qualitative states. A behavior is a sequence of qualitative de-



AIJ, 1991 4scriptions of states:Behavior = [state(t0); state(t0; t1); state(t1); : : : ; state(tn)]:QSIM predicts a set of possible behaviors, which is interpreted as a disjunc-tion: QSIM : QDE; state(t0) �! or(B1; : : :Bk):That is, starting in state(t0), QSIM predicts that one of the behaviorsB1; : : :Bk will describe the actual behavior of the system. This inferencecan be shown to be sound (i.e. the disjunction will always include the realbehavior), but incomplete (i.e. there may be impossible disjuncts that thealgorithm cannot �lter out) [Kuipers, 1986].The success of diagnostic, design, and other applications of qualitativesimulation rests on the ability to produce a tractably small set of predic-tions including all real possible behaviors of the mechanism. In some cases,simulation of a QDE produces a small set of behaviors, all representingreal possibilities consistent with the available knowledge. However, in othercases, the result may be an intractably branching tree of predicted behav-iors. A few real solutions may be obscured by a forest of non-solutions, orall solutions may be real, but not interestingly distinct.This problem arises from the incomplete qualitative descriptions of vari-able values: an ordinal description of the magnitude with respect to land-mark values, the sign of the �rst derivative, and no information about higherderivatives. With such sparse information, circumstances arise where cer-tain variables \chatter:" their behavior is unconstrained except by continu-ity. The simulation must then branch on every possible number, magnitude,and timing of changes of the chattering variables, resulting in an intractablybranching, and hence useless, set of predictions. Figure 1 shows one be-havior in an intractably branching tree of predictions for a system of twocascaded tanks. The behaviors are distinguished only by the behavior of thevariable netflowB(t), representing the rate of change of the amount in thesecond tank.The presence of an in�nite family of uninteresting behaviors is partic-ularly striking when the set of possible behaviors is represented as a tree,as QSIM does (�g. 1). The same problem arises, however, in the �nitestate-transition-graph (or \total envisionment") representation of qualita-tive behavior [de Kleer and Brown, 1984; Forbus, 1984; Williams, 1984].Once one attempts to interpret the transition graph as predicting speci�c



AIJ, 1991 5behaviors, loops in the graph give rise to in�nite families of paths, and thesame problem of \chatter" arises.In this paper, we present two complementary solutions to the problemof chatter, discuss their limitations and trade-o�s, and present examples oftheir application. The �rst solution exploits higher-order derivative informa-tion implicit in the QDE to eliminate certain predicted behaviors. Deriva-tion of higher-order derivatives in the presence of incomplete knowledge ofmonotonic function constraints requires an additional \sign-equality" as-sumption, assuming that monotonic functions are smooth in a certain way.We discuss this assumption in detail, providing conditions that guaranteethat it is satis�ed, and demonstrating the e�ect on the prediction when itis violated. The second solution changes the granularity of the qualitativedescription, to collapse many behaviors into a few. Changing the level ofdescription avoids the need for an additional assumption, but the predictedbehavior contains less information.This paper is an outgrowth of our previous work [Kuipers & Chiu, 1987;Chiu, 1988; Dalle Molle, 1989a; Throop, 1989]. The methods presented hereeliminate chatter in many realistically complex mechanisms [Dalle Molle,1989b; Fouch�e& Kuipers, 1990], and are a necessary tool for eliminatingspurious predictions generally. However, these methods are fundamentallylocal, constraining branching at particular time-points. There are also non-local sources of spurious predictions, which require correspondingly non-local constraints such as energy and system property constraints [Lee, Chiu,& Kuipers, 1987; Fouch�e& Kuipers, 1990], the qualitative analysis of thephase plane of the solutions to a QDE [Lee & Kuipers, 1988; Struss, 1988],and decomposition of large-scale mechanisms into weakly-interacting com-ponents by time-scale abstraction [Kuipers, 1987b; Simon & Ando, 1961;Iwasaki & Bhandari, 1988]. Kuipers [1989] provides a tutorial overview ofthe current state of qualitative simulation research.The higher-order derivative constraint and all examples discussed in thispaper have been implemented as part of the QSIM program. All of thequalitative graphs in this paper are QSIM output. The QSIM kernel isimplemented in pure CommonLisp, and is available to interested researchersby contacting the �rst author.
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netflowBFigure 1: Intractable branching due to chatterIn a qualitative model of two cascaded tanks (A and B), NetflowB(t) =InflowB(t) �OutflowB(t) is constrained only by continuity as long as it remainsin the interval (0;1). Thus, the simulation branches on all possible trajectories ofNetflowB(t), while all other variables have completely uniform behavior.



AIJ, 1991 7" 	 "	#���3 ��3-QQs(a) " 	 #���3 QQQs(b) " 	 "���3 ���3(c)(a) var(ti) has a three-way branch from a critical point: var0(ti) = 0. (Theinc ! std ! std behavior is only permitted under an option that allowsnon-analytic functions for var(t). See Appendix A.)(b) In case we know that var00(ti) < 0, only one of three branches is consistent.(c) If var00(ti) = var0(ti) = 0, and var000(ti) > 0, then only one branch is consistent.Figure 2: Three-way and one-way branches2 Higher-Order Derivatives2.1 IntroductionThe �rst method for eliminating chatter is based on knowledge of higher-order derivatives, implicit in the QDE, but neglected by the basic limitanalysis methods [de Kleer and Brown, 1984; Forbus, 1984; Kuipers 1984,1986].Suppose that a variable var(t) reaches a critical point: i.e. var0(ti) =0. Qualitatively, over the following qualitatively uniform interval (ti; ti+1),var0(t) could be positive, negative, or zero (�g. 2a). In QSIM terminology,the direction of change qdir(var) could be inc, dec, or std during the time-interval (ti; ti+1).If the derivative of var(t) is not adequately constrained, directly or indi-rectly, none of the three possibilities in �g. 2a can be excluded, so a branchis required. However (�g. 2b), if we have reason to know that var00(ti) < 0,then two of these possibilities can be excluded, leading to a unique descrip-tion of the qualitative state over (ti; ti+1).More generally, at any time-point ti, the sign of the �rst non-zero deriva-tive of var at ti determines the direction of change of var over (ti; ti+1).De�nition 1 Just as qdir(var) represents the sign of the �rst derivative ofvar, written [var0(t)], we de�ne the abbreviations sd2 and sd3 for the signsof the second and third derivatives of var.



AIJ, 1991 8qdir(X; t) = �dXdt (t)� ; sd2(X; t) = �d2Xdt2 (t)� ; sd3(X; t) = �d3Xdt3 (t)� :sd1(var) may be used as a synonym for qdir(var). The value nil repre-sents an ambiguous sign. The second argument, t, to qdir, sd2, and sd3, maybe suppressed when the current time-point is clearly speci�ed by context.We will use the term higher-order derivative (HOD) constraint to referto the use of the �rst non-zero derivative to �lter out impossible behaviorsas in Fig. 2(b,c). In the usual case, it is the second derivative var00(ti) thatprovides the necessary information (�g. 2b), and we may then refer to theHOD constraint as a curvature constraint. In more complex situations (cf.�g. 2c, and section 3.2), third-order derivatives may be required. We do notextend our analysis beyond third-order derivatives, for reasons that will bediscussed in section 4.2.2 Building on Previous WorkHigher-order derivative information was �rst applied in qualitative simu-lation by Williams [1984a, 1984b] and by de Kleer and Bobrow [1984].Williams [1984a, 1984b] showed that knowledge of the higher-order deriva-tives of an input | for example, that an input is not merely positive, but isa linearly increasing ramp | could be e�ectively propagated through con-straints to reduce certain ambiguities. De Kleer and Bobrow [1984] showedhow con
uences representing higher-order derivatives could be derived froman ordinary di�erential equation for a mechanism and applied to reduceambiguity in the prediction.Our approach starts from these correct observations, and extends themin several ways. The most straight-forward approach to higher-order deriva-tives extends the constraint model to include terms for the higher-orderderivatives and constraints linking them to the previous terms. Unfortu-nately, this simply pushes the problem of chatter into the higher-order terms,while adding variables whose distinctions may cause additional branching inthe behavior tree.Our methods are designed to apply to qualitative di�erential equations,representing incomplete knowledge of the structure of a mechanism. Wediscuss the relationship between the strength of conclusion one can draw,and the amount of knowledge one has in the QDE. We present methods



AIJ, 1991 9that can, in many cases, determine when higher-order derivative reasoningis required, and automatically derive the appropriate constraints.The algebraic methods we use to derive expressions for higher-orderderivatives from the QDE are similar in spirit to those used in MINIMA[Williams, 1988]. The shared insight is that qualitative constraints are ab-stractions of constraints on real-valued variables, and so can be manipulatedby traditional algebraic methods before being mapped into qualitative valuespaces. After mapping an expression into a qualitative value space, furthersimpli�cation is possible. Our implementation could be made more powerfulby replacing its simple algebraic manipulator with MINIMA, at the cost ofincorporating Macsyma [Macsyma, 1988] as a subsystem of QSIM.There are three steps to applying the higher-order derivative constraint:1. Identify variables in the QDE likely to chatter.2. Derive algebraic expressions and evaluate them to obtain the signs ofthe second- or third-order derivatives of chattering variables.3. Use the sign of the higher-order derivative to constrain branching.We will discuss steps 1 and 3 before step 2, which raises more complexissues. Section 3 provides detailed examples of each step of the higher-orderderivative (HOD) constraint, as it is applied to two- and three-tank cascadesystems.2.3 Identifying Chattering VariablesDe�nition 2 A variable v appearing in a QDE chatters, starting at a qual-itative time-point ti, if the constraints in the QDE are consistent with anyqualitative value of qdir(v; t), for every t in some open interval (ti; ti+1).It is possible to propose candidate variables that are likely to chatterduring simulation by analysis of the structure of the QDE. We observe, �rst,that if two variables x and y are related by a monotonic function constraint,either both chatter, or neither does. Second, if the derivative x0 of a variablex is explicitly represented in the QDE with su�cient constraints, then thevariable x will not chatter.11Suppose we have the pathological situation that both x and its derivative x0 appearexplicitly in a QDE, but both variables are otherwise unconstrained. According to thede�nition above, x0 will chatter, while x will not. Although x is unconstrained, so QSIMwill eventually predict all possible qualitative behaviors for x, qdir(x) is always constrainedby the sign of x0.



AIJ, 1991 10The algorithm for proposing candidate variables is as follows:1. Group the variables in the QDE into equivalence classes according thefollowing criteria: equiv(x; y)  M+(x; y)equiv(x; y)  M�(x; y)We may exploit the fact that other explicit constraints in the QDEimply the weaker M+ or M� constraints [Kuipers, 1984, AppendixD]. For example,equiv(x; y)  MINUS(x; y)equiv(x; z)  ADD(x; y; z) and constant(y)equiv(x; y)  ADD(x; y; z) and constant(z)equiv(x; z)  MULT (x; y; z) and constant(y)equiv(x; y)  MULT (x; y; z) and constant(z)equiv(w; z)  ADD(x; y; z) and M+(w; x) and M+(w; y)equiv(w; x)  ADD(x; y; z) and M+(w; z) and M�(w; y)2. Eliminate the equivalence class containing a variable x if� x is constant.� The QDE includes an explicit derivative constraint x0 = ddtx.3. Variables in the remaining equivalence classes may chatter. Only onevariable in each equivalence class needs a HOD constraint.The ability of this algorithm to identify exactly the chattering variablesis limited by the ability of an algebraic manipulator to recognize expressionsthat imply monotonic function constraints. If some complex expression im-plying equiv(x; y) goes unrecognized, then the algorithm might determinethat x does not chatter, but leave y unnecessarily on the list of potentiallychattering variables. Even in such a case, the derivation and application ofan unnecessary HOD constraint for y has a negligable e�ect on the perfor-mance of the algorithm.It is also possible for the QSIM model-builder to assert explicitly whichvariables require higher-order derivative constraints. Statistics on the branch-ing behavior of a simulation tree can be automatically collected to guidethese assertions.



AIJ, 1991 112.4 Applying the Higher-Order Derivative ConstraintThe QSIM qualitative simulation algorithm operates by proposing all possi-ble qualitative state transitions, then �ltering out those that are inconsistentwith available information.De�nition 3 A �lter on a set of candidates is conservative if it only �ltersout candidates that are provably inconsistent.As long as each �lter is conservative, the algorithm preserves the guar-antee that all real behaviors are predicted [Kuipers, 1986]. The higher-orderderivative constraint is applied within this framework to �lter out certain se-quences of qualitative states. As we shall see (section 4), the HOD constraintmay fail to be conservative in the presence of M+ or M� constraints.Figure 3 shows which sequences of states are consistent, and which can be�ltered out, given an unambiguously determined sign for var00(t) or var000(t).There are two times at which the HOD constraint can be applied: when thecritical point is being generated (the pre-�lter), and when its successors arebeing generated (the post-�lter).The behavior in �gure 2a, in which var(t) becomes constant over aninterval, is �ltered out by the analytic-function constraint (Appendix A): ifvar(t) is constant over any interval, it must be constant everywhere.Proposition 1 If v(t) is a non-constant analytic function in the neighbor-hood of t = ti, where v0(ti) = 0, then Figure 3 shows which sequences ofqualitative directions of change are consistent (or inconsistent) with knowl-edge of the signs of v00(ti) and v000(ti).Proof: Since we are assuming that a variable v(t) is analytic around acritical point ti, in the neighborhood of ti, the qualitative properties of v aredetermined by the �rst non-zero terms of the Taylor series:v(t) � v(ti) + v0(ti)(t� ti) + v00(ti)2 (t� ti)2 + v000(ti)3! (t � ti)3:At a critical point, v0(ti) = 0, if v00(ti) 6= 0,v(t) � v(ti) + v00(ti)2 (t� ti)2:In this case, the qualitative behavior of v(t) is that of t2; that is, dec !std! inc or inc! std! dec.



AIJ, 1991 12Where v00(ti) = v0(ti) = 0, but v000(ti) 6= 0,v(t) � v(ti) + v000(ti)3! (t � ti)3;so the qualitative behavior of v(t) is that of t3; that is, inc! std! inc ordec! std! dec.This leaves us with the problem of determining the sign of v00(ti), andperhaps v000(ti), from information in the QDE and the qualitative behaviorup to ti. If v is a variable appearing in an ordinary di�erential equation,its higher-order derivatives can be derived by repeatedly di�erentiating theoriginal equation [de Kleer and Bobrow, 1984]. However, when dealing withincomplete knowledge, as represented by a qualitative di�erential equation,the problem becomes more di�cult. Because of the assumptions requiredto derive higher-order derivatives in the presence of incompletely knownmonotonic function constraints (discussed in more detail in section 4), ourimplementation of the HOD constraint is restricted to second- and third-order derivatives.2.5 Deriving an Expression for sd2(var; t)As we have seen, chattering arises because the qualitative representation ex-plicitly describes the magnitude of var(t) and the sign of its �rst derivative,qdir(var; t), but not the signs of its higher derivatives. However, the QDEprovides a set of algebraic and di�erential constraints that can be used tosolve for sd2(var; t) in terms of values which are explicitly represented.An explicit expression for sd2(x; ti) valid for ti such that qdir(x; ti) = 0 isfound using a limited algebraic manipulator that searches a space of expres-sions generated by equivalence-preserving transformation rules. The follow-ing list illustrates the essential rules; the complete set is given in AppendixB. M+(x; y) ! [sd2(x; ti) = sd2(y; ti)]x = y + z ! [sd2(x; ti) = sd2(y; ti) + sd2(z; ti)]constant(x) ! [sd2(x; ti) = 0]y = ddtx ! [sd2(x; ti) = qdir(y; ti)]chattering variable(x) ! [qdir(x; ti) = 0]



AIJ, 1991 13Consistent Inconsistent Inconsistent(Pre-�lter) (Post-�lter)if sd2(var; ti) = +# 	 "QQQ ��� " 	��� # 	 #QQQ QQQif sd2(var; ti) = �" 	 #��� QQQ # 	QQQ " 	 "��� ���if sd2(var; ti) = 0 and sd3(var; ti) = +" 	 "��� ��� # 	QQQ " 	 #��� QQQif sd2(var; ti) = 0 and sd3(var; ti) = �# 	 #QQQ QQQ " 	��� # 	 "QQQ ���Figure 3: Consistent and Inconsistent sequences of qualitative values.In the neighborhood of a time-point ti such that v0(ti) = 0, knowledge of the signsof v00(ti) and v000(ti) can be used to determine sequences of qualitative states thatare inconsistent, and can therefore be �ltered out.



AIJ, 1991 14Proposition 2 Suppose a chattering variable z has a critical point at ti,i.e. sd1(z; ti) = 0. If we assume that, for any variables x and y,M+(x; y)! [sd2(x; ti) = sd2(y; ti)];then each transformation in Appendix B is validity-preserving when appliedat ti.Using this Proposition, we derive an expression for sd2(z; ti) by search-ing a space of expressions produced by sequences of transformations fromAppendix B (along with validity-preserving algebraic simpli�cation rules).The goal of the search is an expression that can be evaluated using the QSIMdescription of State(ti); i.e. no sd2 terms. Even then, of course, evaluationof the curvature expression may be ambiguous.The \sign-equality" assumption embedded in this proposition is criti-cal to higher-order derivative reasoning in the face of unknown monotonicfunction constraints. In section 4, we will examine this assumption in moredetail, showing how to prove it is valid, and the circumstances under whichit is violated.Proof of the Proposition: The transformations involving monotonicfunction constraints are a restatement of the sign-equality assumption. Therule that, where z is the chattering variable, qdir(z) ! 0, is valid becausethe rules are only applied at a critical point of the chattering variable.The addition transformation requires a bit of re
ection. In the algebraof signs, the transformation [A + B] ! [A] + [B] preserves validity, butmay yield a weaker description when [A] = �[B], because [A+B] has somede�nite sign, while [A] + [B] = [?]. This allows us to conclude:sd2(x; t) = [x00(t)] = [y00(t) + z00(t)]! [y00(t)] + [z00(t)] = sd2(y; t) + sd2(z; t):The remainder of the transformation rules are straight-forward consequencesof the addition transformation, the identity [A �B] = [A] � [B], and the rulesfor di�erentiation.A simple algebraic manipulator based on the rules presented in this sec-tion and in Appendix B has been adequate for the examples presented inthis paper, and many others. However, manual derivation of curvature con-straint expressions can apply substitutions and other algebraic methods thatare beyond the power of this simple program (cf. [Dalle Molle, 1989b]). TheQSIM program allows the user to assert curvature constraint expressions



AIJ, 1991 15explicitly. The algebraic manipulator is independent of the rest of the qual-itative simulator, so derivation of curvature constraint expressions could bemade more powerful by incorporating a more powerful algebra package suchas Macsyma [Macsyma, 1988], Mathematica [Wolfram, 1988], or MINIMA[Williams, 1988] (which is built on top of Macsyma).2.6 Determining the Value of sd3(var; t)Consideration of the second derivative allows many mechanisms, such asthe two-tank cascade, to be simulated that would otherwise have been in-tractable. However, there are also situations where sd2(var; t) = 0, so thethird- or higher-order derivative is necessary to apply the HOD constraint.Important examples of this are the cascaded systems of three or more tanks,for which spurious behaviors are generated when only the second-orderderivative is considered, but which yield unique predictions when third-orderderivatives are taken into account.While it would be possible to construct a table of transformations forsd3(var; t) analogous to the one for sd2(var; t), this table would be quitecomplex, and turns out to be unnecessary. We may exploit the fact thatsd3(var; ti) is only needed when sd2(var; ti) = sd1(var; ti) = 0. sd3(var; t)can be evaluated as the derivative of the expression derived and stored forsd2(var; t): sd3(var; t) = ddtsd2(var; t)Inspection of the algebraic transformations in Appendix B reveals thatthe expressions that can be derived for sd2(var; t) have a very restrictedform. This allows us to evaluate the derivative of the expression stored forsd2(x; t) using the following transformations:ddthnumberi = 0ddtx = qdir(x)ddt(x+ y) = dxdt + dydtddt(x� y) = dxdt � dydtddt(x � y) = y dxdt + xdydt



AIJ, 1991 16ddt(x=y) = 1y dxdt � xy2 dydtddtsd1(x) = sd2(x)There are two ways to evaluate terms of the form sd2(x) resulting fromthese transformations. If the derivative x0 of such a variable x is explicitlyrepresented in the QDE, then sd2(x; t) = sd1(x; t). Otherwise, if the cur-vature expression sd2(x; t) was previously asserted or derived for x, it cansimply be retrieved.The rationale for the last rule is somewhat subtle, since the expressionstored for sd2(x; ti) is based on the assumption that sd1(x; ti) = 0. Whenevaluating sd3(y; ti), where x and y are di�erent variables, we may assumethat sd2(y; ti) = sd1(y; ti) = 0, but it is not clear that we may safely assumethat sd1(x; ti) = 0.� Suppose we are attempting to evaluatesd3(y; ti) = ddtsd2(y; ti)and we encounter the term sd1(x; t) in the expression stored for sd2(y),where x and y stand for di�erent variables in the QDE.� We only evaluate sd3(y; ti) when sd2(y; ti) = 0. This will let us drawconclusions about the signs of terms embedded in the expression forsd2(y; ti).� Since curvature expressions are evaluated using an algebra of signs, ifthe expression A + B evaluates to 0, it must be because A = 0 andB = 0. (In the algebra of signs it is consistent to have A+B = 0 whenA = + and B = �, but in that case the evaluation of A + B wouldhave been indeterminate, not zero.)� The same rationale applies to A � B and A=B, since inspection ofthe rules in Appendix B reveals that a sd1(x; t) term can only appearin the numerator of a quotient, and not at all in an exponential An.(Exponentials only arise in the quotient rules.)� If a product A�sd1(x; ti) evaluates to zero, either A = 0 or sd1(x; ti) =0. Note that sd1(x; ti) = qdir(x; ti), so its value is explicitly availablein the QSIM representation of State(ti). The product rule gives usddt(A � sd1(x; ti)) = sd1(x; ti) � ddtA+ A � ddtsd1(x; ti):



AIJ, 1991 17{ If sd1(x; ti) = 0, this is the assumption under which sd2(x; ti)was derived, so the rule ddtsd1(x; ti) = sd2(x; ti) is legitimate.{ If sd1(x; ti) 6= 0 then A = 0, so the value (and validity) of theddtsd1(x; ti) term resulting from the product rule is irrelevant.The same reasoning applies to a product A �B, where sd1(x; ti)is embedded within A or B.We summarize this discussion as the following Proposition.Proposition 3 Under the assumption that M+(x; y) implies that sd2(x; ti) =sd2(y; ti) and sd3(x; ti) = sd3(y; ti), the transformations applied in evaluat-ing sd3(x; ti) are all validity-preserving.Thus, the above set of rules will give us a legitimate value for sd3(x; ti),modulo the sign-equality assumption, to be discussed in section 4.



AIJ, 1991 183 Examples: Two- and Three-Tank Cascades3.1 Higher-Order Derivative Constraints in the Two-TankCascadeThe system of two cascaded tanks (Figure 4) is one of the simplest to exhibitchatter. A0 = in� f(A)B0 = f(A)� g(B)f; g 2M+Figure 1 shows one behavior of this system simulated without the HODconstraint.3.1.1 Identifying Chattering VariablesThe variables in the QDE for the two-tank cascade form equivalence classesas shown. If any variable in an equivalence class has an explicit derivativein the QDE, none of the variables in the class exhibit chatter.fing no chatter, because in is constant.fA; f(A); A0g no chatter, because A0 = dA=dt.fB; g(B)g no chatter, because B0 = dB=dt.fB0g chattersTherefore, the variable B0 (named netflowB in the QSIM code) chatters,so we need to apply the HOD constraint (Figure 1).3.1.2 Deriving the Curvature ConstraintThe derivation of the curvature constraint is the following. Recall that weonly apply the value of sd2(B0) when qdir(B0) = 0.sd2(B0) = sd2(f(A))� sd2(g(B))= sd2(A)� sd2(B)= qdir(A0)� qdir(B0)= qdir(A0)



AIJ, 1991 19��A B A0 = in� f(A)B0 = f(A)� g(B)f; g 2M+(define-QDE Two-Tank-Cascade(quantity-spaces(inflowa (0 inf)) ; in(amounta (0 inf)) ; A(outflowa (0 inf)) ; f(A)(netflowa (minf 0 inf)) ; A'(amountb (0 inf)) ; B(outflowb (0 inf)) ; g(B)(netflowb (minf 0 inf))) ; B'(constraints((M+ amounta outflowa) (0 0) (inf inf))((add outflowa netflowa inflowa))((d/dt amounta netflowa))((M+ amountb outflowb) (0 0) (inf inf))((add outflowb netflowb outflowa))((d/dt amountb netflowb))((constant inflowa)))Figure 4: The two-tank cascade and its QDE model in algebraic and QSIMforms.



AIJ, 1991 20In terms of the QSIM variables,qdir(netflowB; ti) = 0! [sd2(netflowB; ti) = qdir(netflowA; ti)]:.3.1.3 Applying the Curvature ConstraintConsider the behavior of netflowB illustrated in Figure 1, and consider thecritical points at t1 and t2, where qdir(netflowB; t) = 0.� At t1, we know that sd2(netflowB; t1) = qdir(netflowA; t1) = �, sothe concave-down behavior at netflowB(t1) is acceptable (Figure 3).� At t2, we know that sd2(netflowB; t2) = qdir(netflowA; t2) = �, butthe predicted behavior of netflowB(t2) is concave-up, so this behavioris inconsistent (Figure 3, pre-�lter).With the curvature constraint, instead of the intractable branching ofFigure 1, QSIM predicts the two-tank cascade to have a unique qualitativebehavior (Figure 5).
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AIJ, 1991 223.2 Third-Order Derivatives: the Three-Tank CascadeThe three-tank cascade is structurally similar to the two-tank cascade, butit is no longer possible to eliminate all spurious behaviors with the second-order derivative alone. We will require a third-order derivative. Fortunately,second- and third-order derivatives are adequate for cascades of any length.In algebraic form, the QDE for the three-tank cascade is:A0 = in� f(A)B0 = f(A)� g(B)C 0 = g(B)� h(C)f; g; h 2M+3.2.1 Identifying Chattering VariablesThe equivalence classes for the variables in the three-tank cascade are thefollowing. fing no chatter because in is constant.fA; f(A); A0g no chatter, because A0 = dA=dt.fB; g(B)g no chatter, because B0 = dB=dt.fB0g chattersfC; h(C)g no chatter, because C 0 = dC=dt.fC0g chattersThus, we will need expressions for higher-order derivatives of B0 and C 0.3.2.2 Deriving and Applying Curvature ConstraintsUsing the same method as for the two-tank cascade, we derive expressionsfor sd2(B0) and sd2(C 0):sd2(netflowB) = qdir(netflowA)sd2(netflowC) = qdir(netflowB)Application of these constraints eliminates many branches, but still leavestwo spurious behaviors. For example, in the two behaviors shown in �gure6, the critical points at netflowC(t1) are not possible in actual behaviors,but could not be eliminated by sd2 alone, becausesd2(netflowC; t1) = qdir(netflowB; t1) = 0:
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AIJ, 1991 243.2.3 Evaluating the sd3 ConstraintWe determine sd3(netflowC; t) by di�erentiating the expression stored forsd2(netflowC; t).sd3(netflowC) = ddtsd2(netflowC)= ddtqdir(netflowB)= sd2(netflowB)= qdir(netflowA)Thus, in the two spurious behaviors shown in �gure 6, sd3(netflowC; t1) =qdir(netflowA; t1) = �. Consulting the table of acceptable qualitative tran-sitions in �gure 3 demonstrates that both behaviors in �gure 6 will be �lteredout by the pre-�lter. Figure 7 then shows the single behavior resulting fromsimulation using both sd2 and sd3 in the HOD constraint.
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AIJ, 1991 264 Monotonic Function ConstraintsA major strength of qualitative reasoning is the ability to obtain useful pre-dictions in the face of incomplete knowledge of the structure of a mechanism.A key method for expressing this knowledge in QSIM is the monotonic func-tion constraint, allowing one to assert that two variables are related by somefunction which is only known to be monotonically increasing or decreasing.For example, the following constraints could appear in QDE models of aliquid-tank or a spring, respectively.M+(liquid-level; out
ow-rate)M�(spring-displacement; restoring-force)When it is desirable to provide a name for a monotonic function, we mayuse an alternate notation:out
ow-rate = f(liquid-level); f 2M+restoring-force = �g(spring-displacement); g 2M+The function f 2M+ is known to satisfy f 0 > 0 everywhere on the inte-rior of its domain, so it is strictly monotonically increasing [Kuipers, 1986].2However, f 00 is unspeci�ed. Monotonic function constraints are useful forexpressing incomplete knowledge, but they raise important problems whenreasoning about higher-order derivatives [Crawford, Farquhar & Kuipers,1990]..4.1 The Sign-Equality AssumptionThe constraint M+(x; y) means that there is some f 2M+ such that for allt, y(t) = f(x(t)). (M� constraints are handled similarly, with certain termsnegated.) We can take the �rst derivative of this expression, to gety0(t) = f 0(x(t)) � x0(t):2The QSIM constraintM+(x; y) is closely related to, but not identical to, the con
uence@x = @y [de Kleer and Brown, 1984] or the qualitative proportionality y �Q+ x [Forbus,1984]. The con
uence is weaker than the M+ constraint in that it does not imply thatthere is a function underlying the relationship. Qualitative proportionality is an \open-world" assertion that must be combined with all other in
uences on the same variables toproduce a constraint [Crawford, Farquhar & Kuipers, 1990].



AIJ, 1991 27Since f 0 > 0, this tells us that [y0(t)] = [x0(t)], or qdir(y; t) = qdir(x; t).However, f 00 is unspeci�ed, so the second-derivative relationship is weaker:y00(t) = f 0(x(t)) � x00(t) + f 00(x(t)) � (x0(t))2:The rule for solving for sd2(var; t) in the presence of monotonic functionconstraints relies on the sign-equality assumption, that:[y00(t)] = [x00(t)]:The sign-equality assumption is correct whenever x00(t) and f 00 have thesame sign, or when f 2 M+ is linear, so f 00 = 0. Because of the role of thesign-equality assumption, the higher-order derivative constraint is poten-tially not a conservative �lter, when the QDE includes monotonic functionconstraints.Proposition 4 If every monotonic function constraint M+(x; y) in a QDEsatis�es sd2(x; ti) = sd2(y; ti) at a qualitative time-point ti, then �lteringaccording to the sd2 constraint is conservative at ti.Proposition 5 Suppose that a QDE contains a monotonic function con-straint M+(x; y) representing an unknown function f 2 M+ such that y =f(x), and suppose the sd2 constraint is being applied at qualitative time-point ti. Then sd2(x; ti) = sd2(y; ti) in case any of the following conditionshold:1. The function f 2M+ is linear;2. x0(ti) = 0;3. [x00(ti)] = [f 00(x(ti))];4. [y00(ti)] = �[f 00(x(ti))];5. [x00(ti)] = �[f 00(x(ti))] and jf 00(x(ti))(x0(ti))2j < jf 0(x(ti))x00(ti)j.Proof: y00(ti) = f 0(x(ti)) � x00(ti) + f 00(x(ti)) � (x0(ti))2, and f 0 > 0, and(x0(t))2 � 0. .The �rst four conditions in this Proposition rely on the availability of ad-ditional qualitative knowledge, such as the sign of f 00. The �fth condition isa quantitative criterion, and cannot be established using a purely qualitativedescription of a system. Kuipers and Berleant (1988) present a method for



AIJ, 1991 28reasoning with incomplete quantitative information in a qualitative frame-work. Their method can be extended to evaluate such a condition, wherequantitative bounds on f 0, f 00, x0, and x00 can be obtained.One can, however, construct examples where the f 00(x(t)) � (x0(t))2 termmakes a signi�cant contribution to the sign relationship, so the sign-equalityassumption is violated.4.2 Example: Violating The Sign-Equality AssumptionWe have already seen, in �gure 5, the predicted qualitative behavior of atwo-tank cascade. Notice that netflowB(t) rises monotonically from zeroto its maximum value, then falls monotonically back to zero. Suppose weconsider an actual pair of tanks such that the upper tank has a stack (�g.8a), so that the monotonic relationshipoutflowA = f(amountA)has a sharp bend (�g. 8b). In this case, amountA(t) is concave down, butf 00 is large and positive, with the net result that outflowA(t) is actuallyconcave up at this point.Numerical simulation of a model of this situation gives the behaviorshown in �gure 9. All variables are consistent with the qualitative predictionexcept for netflowB, which includes a signi�cant dip.We can perform a numerical sensitivity analysis on the curvature ofM+(amountA; outflowA). As the curvature in M+(amountA; outflowA)becomes smoother, the unpredicted dip in netflowB(t) becomes smaller,and the actual behavior converges to the qualitative prediction (Figure 10).Traditional Taylor series methods make it possible to estimate the magni-tude of the error as a function of the magnitudes of the derivatives of themonotonic function, but they are outside the scope of this paper.
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AIJ, 1991 314.3 Avoiding Prediction FailureOne of the attractive features of qualitative simulation is the ability to pre-dict all possible behaviors consistent with incomplete knowledge. Thus, theprospect of failing to predict actual behaviors, due to the use of a non-conservative �lter, is quite troubling. However, a deeper analysis of theseprediction failures demonstrates that, while the phenomenon is real, thereare a number of e�ective strategies for avoiding or minimizing problems dueto it.� These prediction failures only occur in the presence of monotonic func-tion constraints. Although avoiding monotonic function constraintssacri�ces an important part of the expressive power for incompleteknowledge, qualitative simulation of ordinary di�erential equations canstill provide valuable insight into the set of all possible behaviors of asystem.� Prediction failures arise because the derived higher-order derivativeconstraint eliminates a genuine behavior of a chattering variable. Thequalitative predictions about non-chattering variables are completelyreliable. If a variable V (t) is predictively important, one may includean explicit variable for its derivative V 0(t), along with derived con-straints on that variable. The problem of chatter will still need to besolved at the level of V 0(t), and may be more di�cult to solve, butpredictions about the behavior of V (t) will be reliable.� It may be possible to extend the representation for higher-order deriva-tive expressions to record their dependency on monotonic functions.If qualitative or quantitative information is available about the slopesand curvatures of monotonic functions, the possibility and magni-tude of violations of the sign-equality assumption can be determined[Kuipers and Berleant, 1988], to more fully exploit the conditions inProposition 5.An alternate method of eliminating the phenomenon of chatter is tochange the level of qualitative description, accepting a weaker description ofthe predicted behaviors, and a lesser degree of �ltering of spurious predic-tions, in return for the guarantee that all real behaviors are predicted. Thisis the method we turn to in the next section.



AIJ, 1991 325 Changing Level of DescriptionIn this section, we develop an alternate solution to the problem of un-constrained, chattering variables. The two solutions each have their ownstrengths and weaknesses, and each technique suggests a direction for fur-ther developments in qualitative reasoning methods.Consider the two cascaded tanks (�gure 4). As we have seen, the chat-tering variable netflowB(t) = outflowA(t)� outflowB(t)is the di�erence between two other variables, both of which are increasingmonotonically with time in this situation (�gure 1b). Thus, the direction ofchange, qdir(netflowB; t), is constrained only by continuity. In a particularinstance of this model, the details of how netflowB(t) behaves are deter-mined by the detailed behavior of outflowA(t) and outflowB(t). These,in turn, are determined by the particular monotonic functions described bythe constraints, outflowA(t) = M+(amountA(t))outflowB(t) = M+(amountB(t)):Depending on how the two monotonic functions interact, the actual behaviorof netflowB(t) may rise and fall any number of times. I.e., the \spurious"prediction in �gure 1b accurately describes the behavior in �gure 9 of areal system. Therefore, we must accept the conclusion that the intractablybranching tree of predicted behaviors represents an in�nite collection ofreal possibilities: the set of all possible behaviors violating the sign-equalityassumption.5.1 Collapsing DescriptionsHowever, even though the behaviors are genuine, and qualitatively distinct,the distinctions between them may be uninteresting to a problem-solver.An e�ective approach in this situation is to adopt an alternate level of de-scription that collapses an in�nite set of possible behaviors into a singledescription, while preserving validity.In the case of the two-tank cascade, netflowB(t) is the chattering vari-able, and the distinctions among behaviors can be attributed to changes inqdir(netflowB; t). If we replace the distinctions between inc, std, and dec
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(a)h+; igni h0; igni h�; igni- -�� (b)� (a) The full qualitative transition graph is adequate to capture continuityconstraints, but permits \chattering" behaviors.� (b) The collapsed transition graph, ignoring direction of change, eliminateschatter, but fails to detect discontinuous change.Figure 12: Transition graphs for a single unconstrained qualitative variablearound the landmark 0.



AIJ, 1991 35variables must change continuously. For example, although the transitionh+; igni �! h0; igniis apparently consistent (Fig. 12b), the more speci�c transitionh+; igni �! h0; inciis inconsistent with the requirement that variables in QDEs be continuouslydi�erentiable.To recapture the constraint that the derivative of a variable must changecontinuously, we apply a global satis�ability �lter to each state where theign direction of change was used. The satis�ability �lter determines whetherthere is a complete, consistent state in which each occurrence of ign isreplaced by one of finc; std; decg, and which is a consistent successor of theprevious state. The satis�ability �lter is clearly conservative.Proposition 6 The set of behaviors predicted by QSIM, applying the \ignore-qdir" description to any subset of variables in the QDE, includes every con-sistent behavior predicted by QSIM using the standard qualitative descrip-tion.Proof sketch: We know that the set of qualitative value transitionsprovided in [Kuipers, 1986] includes every possible transition. As illustratedby �gure 12, the set of possible transitions under the ignore-qdir descrip-tion encompasses each of those transitions, so all possible qualitative statechanges are proposed. Since the satis�ability �lter eliminates only inconsis-tent states, every actual behavior must remain.The satis�ability �lter is a weaker constraint than simulation with thelarger set of distinctions, finc; std; decg. For example, it may be possible fora sequence of qualitative statesS1 �! S2 �! S3to survive the satis�ability �lter because one set of substitutions is consistentwith S1! S2, while another is consistent with S2 ! S3, although no oneset of substitutions is consistent with both transitions.5.3 Strengths and WeaknessesChanging level of description has two advantages over the explicit higher-order derivative constraint:



AIJ, 1991 36� It makes no assumptions about the M+=M� functions, and thus pre-serves the desirable property that all real behaviors are predicted.� It can be implemented within the constraint-�ltering computationalframework of existing qualitative simulation algorithms, rather thanrequiring a possibly elaborate algebraic manipulation package (see Ap-pendix B).However, there are two signi�cant disadvantages as well.� The coarser level of description makes it impossible to derive infor-mation about higher-order derivatives that could be used to �lter outgenuinely spurious behaviors [Dalle Molle, 1989b]. Figure 13 showssuch an example.� The coarser level of description produces a weaker prediction, andhence is less useful for explaining observations or for hypothesis-testing.Thus, the choice of method for handling chatter depends on which vari-ables must be described to what degree of detail. In complex models, it maybe appropriate to determine higher-order derivative constraints for certainvariables, while ignoring qdirs on others [Dalle Molle, 1989b].



AIJ, 1991 37
←

↓ .....↓ .....↓ .....↓ .....↓ .....↓ .....°

INF

A-0

0

T0 T1 T2 T3

amountA

↑ .....↑ .....↑ .....↑ .....↑ .....↑ .....°
INF

0

N-0

MINF

T0 T1 T2 T3

netflowA

↑ .....↑
.....°.....↓ .....↓ .....↓ .....°

INF

A-1

0

T0 T1 T2 T3

amountB

*.....*.....*.....*.....*.....*.....*

INF

N-1

0

MINF

T0 T1 T2 T3

netflowB

°.
....↑ .....↑ .....↑ .....°.....↓ .....°

INF

A-4

0

T0 T1 T2 T3

amountC

*.....*
.....*.....*.....*.....*.....*

INF

0

MINF

T0 T1 T2 T3

netflowC

←

↓ . . . . .↓ . . . . .↓ . . . . .↓ . . . . .°

INF

A-0

0

T0 T1 T2

amountA

↑ . . . . .↑ . . . . .↑ . . . . .↑ . . . . .°
INF

0

N-0

MINF

T0 T1 T2

netflowA

↑ . . . . .↑ . . . . .° . . . . .↓ . . . . .°

INF

A-2

0

T0 T1 T2

amountB

*. . . . .*. . . . .*. . . . .*. . . . .*

INF

N-1

0

MINF

T0 T1 T2

netflowB

° . . . . .↑ . . . . .° . . . . .↓ . . . . .°

INF

A-3

0

T0 T1 T2

amountC

*. . . . .*. . . . .*. . . . .*. . . . .*

INF

0

MINF

T0 T1 T2

netflowCFigure 13: Our behavior is genuine; the other is not.Consider the three-tank cascade, initialized with tank A �lled, and draining throughtanks B and C until all tanks are empty. It is not possible for both B(t) and C(t)to have critical points at the same time, tibut the information required to �lter outthis possibility is not available when ignoring qdirs.



AIJ, 1991 386 ConclusionsAs we have seen, an important source of intractable branching in qualitativesimulation is lack of constraint on the direction of change of certain vari-ables, due to lack of information about the higher-order derivatives of thosevariables.One method for eliminating this type of branching is to derive and ap-ply the required information about higher-order derivatives: the HOD con-straint. It is possible to do this while focusing attention on the higher-orderderivatives only at those isolated points where branching takes place. Thedisadvantage of this approach is that it requires certain assumptions aboutthe behavior of monotonic function constraints which may not, in general,be warranted. This sign-equality assumption means that certain qualita-tive behaviors may be �ltered out, in spite of being genuine possibilities. Auseful direction for future research would be the determination of when theprediction is quantitatively \close enough" to the actual behavior.A second method for eliminating this branching is to collapse the de-scriptions of certain directions of change, to avoid representing unimpor-tant distinctions. This method avoids reliance on added assumptions aboutmonotonic function constraints. However, this conservative approach pro-duces a slightly weaker description of the predicted behavior, and the abilityto �lter out spurious predictions is reduced.Thus, we observe another instance of the classic trade-o� between gen-erality and power (or false-negative versus false-positive error rates). Whichmethod is most appropriate depends on the details of the pragmatic contextwithin which the simulation is being used. For example, one must ask howmuch knowledge is actually available to bound the curvature of unknownmonotonic functions, and how serious a deviation between prediction andobservation (e.g. the \dip" in �g. 9) can be tolerated at what cost.These higher-order derivative constraint methods have been su�cientto allow tractable predictions of the possible behaviors of open and closedtwo-tank systems, cascades of any number of tanks, and numerous othermechanisms drawn from chemical engineering [Dalle Molle, 1989b]. Thesetypes of multi-compartment models are generic instances of such systemsas chemical reaction kinetics [Dalle Molle and Edgar, 1989a], physiologicalmechanisms [Jacquez, 1985], ecological systems [Puccia and Levins, 1985],etc.There are many other important qualitative mechanism models for whichthe higher-order derivative constraints are a necessary, but not su�cient,



AIJ, 1991 39source of constraint to obtain a tractable behavior. For example, a dampedoscillatory system such as the PI controller requires the local constraintprovided by the higher-order derivative constraint, but also requires non-local constraints such as energy and system property constraints [Lee, Chiu,and Kuipers, 1987; Fouch�eand Kuipers, 1990], and the non-intersection con-straint in qualitative phase space [Lee and Kuipers, 1988; Struss, 1988; DalleMolle and Edgar, 1989b].Thus, the higher-order derivative constraints are essential pieces in thepuzzle. The overall picture, at least as far as qualitative simulation goes, isapproximately the following:� Limit analysis algorithms [de Kleer and Brown, 1984; Forbus, 1984;Kuipers, 1984, 1986] predict the local transitions from one qualitativestate to its immediate successors, and can be constructed to guaranteethat all possible behaviors are predicted, although it is not possibleto guarantee the elimination of all spurious behaviors [Struss, 1988a;Kuipers, 1988].� Higher-order derivative constraints can be applied to eliminate an im-portant class of intractable branching, as described in this paper andin [de Kleer and Bobrow, 1984; Williams, 1984b; Kuipers and Chiu,1987; Chiu, 1988].� Quantitative information, in the form of measurements or a prioriknowledge, can be combined with qualitative predictions to determinewhich qualitative behaviors are consistent with the quantitative knowl-edge [Forbus, 1983, 1986; Kuipers and Berleant, 1988].� Non-local constraints obtainable from the energy and system prop-erty constraints [Lee, Chiu, and Kuipers, 1987], and the qualitativephase space can eliminate other spurious behaviors [Lee and Kuipers,1988; Struss, 1988b]. An analysis based on the Kinetic Energy The-orem [Fouch�eand Kuipers, 1990] now makes it possible to produce atractable simulation of the non-linear monotonic damped spring andhence such industrially signi�cant mechanisms as PI controllers.� Hierarchical decomposition methods will be usable to decompose cer-tain complex systems into weakly-coupled subsystems [Kuipers, 1987;Simon and Ando, 1961; Iwasaki and Bhandari, 1988], ideally to thepoint that the subsystems are small enough for the previous methodsto be e�ective.



AIJ, 1991 40� Comparative analysis methods [Forbus, 1984; Weld, 1987; Chiu andKuipers, 1989] make it possible to determine the e�ects on an individ-ual qualitative behavior of perturbations to variables, and to determinerelations among \adjacent" behaviors.As these pieces of the puzzle are �lled in, we expect that qualitativesimulation will be adequate for model-based reasoning about realisticallycomplex systems in the presence of incomplete knowledge.
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AIJ, 1991 45A The Analytic Function RestrictionThe basic limit analysis algorithms for qualitative simulation, QSIM forexample, require that variables be continuously di�erentiable functions oftime. That is, for any variable v, v(t) must be continuous, and its derivativev0(t) must be de�ned and continuous. Because of this restriction, we candepend on the qualitative description of v(t) changing in orderly transitionsfrom one state to adjacent ones (in both magnitude and direction of change).Higher-order derivative constraints impose stronger requirements on thedi�erentiability of the underlying functions of time described by qualitativebehaviors. However, since HOD constraints are only applied at isolatedcritical points of the behavior, strictly speaking, such a variable v(t) needsonly to be di�erentiable to the degree necessary to determine the �rst non-zero derivative, and then only at the isolated point ti.Under many circumstances in analysis, for example whenever using Tay-lor series, one restricts one's attention to analytic functions: functions whosehigher-order derivatives exist for all orders, over the domain of interest. For-tunately, most of the familiar mathematical functions | polynomials, ex-ponentials, trigonometric functions, etc. | are analytic at all points wherethey are de�ned. However, an important fact is that, if a function is ana-lytic over an interval, and is constant over any open sub-interval, it must beconstant over the entire interval.In the examples in this paper, QSIM restricts its attention to analyticfunctions, by �ltering out any behavior which is constant over an intervalwithout being constant everywhere. Thus, the only consistent behaviors forthe two-tank cascade (�gs. 5, 11) has both tanks reaching their �nal valuessimultaneously at t =1.However, if we allow non-analytic solutions, we obtain a �nite numberof additional intuitively reasonable solutions. For example, in the two-tankcascade, we obtain a solution in which the level of water in tank A reachesits �nal value at �nite time, and remains constant while tank B continuesto �ll (�g. 14).This prediction corresponds intuitively with real-world observations ofprocesses acting at di�erent time scales: the faster one apparently reaches itslimit signi�cantly before the slower one. Two variables may be approachingtheir limits exponentially and asymptotically, but the more rapidly converg-ing of two exponentials will pass below the level of observability very swiftly,and thereafter appear constant for all practical purposes.The following table shows the number of predicted behaviors for the
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Figure 14: A non-analytic qualitative behavior.Without the restriction to analytic functions, QSIM predicts a second behavior forthe two-tank cascade in which tank A reaches its limit before tank B. While thisbehavior is not strictly consistent with a linear model, note how closely it resemblesthe numerically simulated behavior of such a system.N-tank cascades, with and without the analytic function restriction:Mechanism Analytic functions only? States createdYes Notwo-tank cascade 1 2 9three-tank cascade 1 8 38four-tank cascade 1 40 189�ve-tank cascade 1 224 1044While this method provides an indication of the possible time-scale rela-tions in a mechanism, more rigorous methods are available [Kuipers, 1987b]for expressing time-scale abstraction in complex mechanisms.



AIJ, 1991 47B Deriving the Curvature Constraint; These rules do the transformations for the curvature constraint.; - The first clause in the rule is matched against the sd2 expression.; - Additional clauses before "->" are matched against QDE constraints,; after substitutions.; - The clause after the "->" has bindings substituted, and is returned.(defparameter *transformation-rules*'(((sd2 ?x) (M+ ?x ?y) -> (sd2 ?y))((sd2 ?y) (M+ ?x ?y) -> (sd2 ?x)) ;((sd2 ?x) (M- ?x ?y) -> (- 0 (sd2 ?y)))((sd2 ?y) (M- ?x ?y) -> (- 0 (sd2 ?x))) ;((sd2 ?z) (add ?x ?y ?z) -> (+ (sd2 ?x) (sd2 ?y)))((sd2 ?x) (add ?x ?y ?z) -> (- (sd2 ?z) (sd2 ?y)))((sd2 ?y) (add ?x ?y ?z) -> (- (sd2 ?z) (sd2 ?x)));((sd2 ?z) (mult ?x ?y ?z) -> (+ (* ?y (sd2 ?x))(+ (* ?x (sd2 ?y))(* 2 (* (sd1 ?x) (sd1 ?y))))))((sd2 ?x) (mult ?x ?y ?z) -> (- (/ (sd2 ?z) ?y)(- (* 2 (* (sd1 ?z)(/ (sd1 ?y) (^ ?y 2))))(- (* 2 (* ?z (/ (^ (sd1 ?y) 2)(^ ?y 3))))(* ?z (/ (sd2 ?z) (^ ?y 2)))))))((sd2 ?y) (mult ?x ?y ?z) -> (- (/ (sd2 ?z) ?x)(- (* 2 (* (sd1 ?z)(/ (sd1 ?x) (^ ?x 2))))(- (* 2 (* ?z (/ (^ (sd1 ?x) 2)(^ ?x 3))))(* ?z (/ (sd2 ?z) (^ ?x 2)))))));((sd2 ?x) (minus ?x ?y) -> (- 0 (sd2 ?y)))((sd2 ?y) (minus ?x ?y) -> (- 0 (sd2 ?x))) ;((sd2 ?x) (d/dt ?x ?y) -> (sd1 ?y))((sd2 ?x) (independent ?x) -> 0)((sd1 ?x) (chattering-variable ?x) -> 0)))Inspection of these algebraic transformations reveals that the expressions



AIJ, 1991 48that can be derived for sd2(var; t) have a very restricted form. In BNF:hexpi ::= hprimitivei j hcompoundihprimitivei ::= hnumberi j hvariablei j (qdir hvariablei)hcompoundi ::= (hbin opi hexpi hexpi) j (̂ hexpi hnumberi)hbin opi ::= + j � j � j =In particular, there are no explicit derivative or monotonic function con-straints in the expression, and an expression may only be raised to a constantpower.


