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Abstract

Qualitative simulation is a useful method for predicting the possible
qualitatively distinct behaviors of an incompletely known mechanism
described by a system of qualitative differential equations (QDEs). Un-
der some circumstances, sparse information about the derivatives of
variables can lead to intractable branching (or “chatter”) representing
uninteresting or even spurious distinctions among qualitative behav-
iors. The problem of chatter stands in the way of real applications
such as qualitative simulation of models in the design or diagnosis of
engineered systems.

One solution to this problem is to exploit information about higher-
order derivatives of the variables. We demonstrate automatic methods
for identification of chattering variables, algebraic derivation of ex-
pressions for second-order derivatives, and evaluation and application
of the sign of second- and third-order derivatives of variables, resulting
in tractable simulation of important qualitative models.

Caution is required, however, when deriving higher-order derivative
(HOD) expressions from models including incompletely known mono-
tonic function (M) constraints, whose derivatives beyond the sign of
the slope are completely unspecified. We discuss the strengths and
weaknesses of several methods for evaluating HOD expressions in this
situation.

We also discuss a second approach to intractable branching, in
which we change the level of description to collapse an infinite set
of distinct behaviors into a few by ignoring certain distinctions.

These two approaches represent a trade-off between generality and
power. Each application of these methods can take a position on this
trade-off depending on its own critical needs.
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1 Introduction

Qualitative simulation predicts the possible qualitatively distinct behaviors
of an incompletely known mechanism described by one or more qualitative
differential equations (QDEs). The creation and simulation of qualitative
models plays a critical role in supporting model-based reasoning about phys-
ical mechanisms in the face of incomplete knowledge. In diagnosis, the possi-
ble behaviors of an incompletely known fault model can be matched against
observations; in design, the possible behaviors of a partially specified mech-
anism can be compared with desirable and undesirable properties of the
final design. In both diagnosis and design, the strength of the qualitative
representation is that a finite description can capture a state of incomplete
knowledge of structure and the set of all possible behaviors.

The structure of a mechanism is described by a QDE: a collection of
continuous variables and algebraic and differential constraints among them.
Such a constraint model may be derived from a component-connection de-
scription [Sussman and Stallman, 1975; de Kleer and Brown, 1984; Williams,
1984a], from a process-view description [Forbus, 1984], or be given as part
of the problem-solver’s model of the domain [Kuipers, 1984; Kuipers and
Kassirer, 1984]. One advantage of qualitative reasoning methods is the
ability to express and reason with incomplete knowledge of functional re-
lationships, describing them qualitatively as monotonically increasing or
decreasing, and passing through certain corresponding landmark values.
For example, one may say that wind resistance increases monotonically
with velocity, without needing to know or assume the exact relationship:
resistance = M (velocity).

QSIM is a representation for QDEs that has a precise relationship with
differential equations, and an algorithm for qualitative simulation with an
efficient implementation [Kuipers, 1986]. QSIM takes as input a QDE (or
system of QDEs) and a description of its state at time #;. At each point
in time, the value of each variable in a QDE is described qualitatively:
its magnitude in terms of ordinal relations with a discrete set of landmark
values, and its derivative in terms of direction of change. The fundamental
operation in qualitative simulation is limit analysis: when several variables
are changing and moving toward landmark values, the constraints in the
QDE are analyzed to determine which combinations of limits may be reached
and hence which qualitative states may come next.

The possible behaviors of the system are predicted as a (possibly branch-
ing) tree of qualitative states. A behavior is a sequence of qualitative de-
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scriptions of states:
Behavior = [state(ty), state(to, ty), state(ty), ..., state(t,)].

QSIM predicts a set of possible behaviors, which is interpreted as a disjunc-
tion:
QSIM : QDE, state(ty) — or(By,...By).

That is, starting in state(ty), QSIM predicts that one of the behaviors
Bi,...B; will describe the actual behavior of the system. This inference
can be shown to be sound (i.e. the disjunction will always include the real
behavior), but incomplete (i.e. there may be impossible disjuncts that the
algorithm cannot filter out) [Kuipers, 1986].

The success of diagnostic, design, and other applications of qualitative
simulation rests on the ability to produce a tractably small set of predic-
tions including all real possible behaviors of the mechanism. In some cases,
simulation of a QDE produces a small set of behaviors, all representing
real possibilities consistent with the available knowledge. However, in other
cases, the result may be an intractably branching tree of predicted behav-
iors. A few real solutions may be obscured by a forest of non-solutions, or
all solutions may be real, but not interestingly distinct.

This problem arises from the incomplete qualitative descriptions of vari-
able values: an ordinal description of the magnitude with respect to land-
mark values, the sign of the first derivative, and no information about higher
derivatives. With such sparse information, circumstances arise where cer-
tain variables “chatter:” their behavior is unconstrained except by continu-
ity. The simulation must then branch on every possible number, magnitude,
and timing of changes of the chattering variables, resulting in an intractably
branching, and hence useless, set of predictions. Figure 1 shows one be-
havior in an intractably branching tree of predictions for a system of two
cascaded tanks. The behaviors are distinguished only by the behavior of the
variable net flowB(t), representing the rate of change of the amount in the
second tank.

The presence of an infinite family of uninteresting behaviors is partic-
ularly striking when the set of possible behaviors is represented as a tree,
as QSIM does (fig. 1). The same problem arises, however, in the finite
state-transition-graph (or “total envisionment”) representation of qualita-
tive behavior [de Kleer and Brown, 1984; Forbus, 1984; Williams, 1984].
Once one attempts to interpret the transition graph as predicting specific
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behaviors, loops in the graph give rise to infinite families of paths, and the
same problem of “chatter” arises.

In this paper, we present two complementary solutions to the problem
of chatter, discuss their limitations and trade-offs, and present examples of
their application. The first solution exploits higher-order derivative informa-
tion implicit in the QDE to eliminate certain predicted behaviors. Deriva-
tion of higher-order derivatives in the presence of incomplete knowledge of
monotonic function constraints requires an additional “sign-equality” as-
sumption, assuming that monotonic functions are smooth in a certain way.
We discuss this assumption in detail, providing conditions that guarantee
that it is satisfied, and demonstrating the effect on the prediction when it
is violated. The second solution changes the granularity of the qualitative
description, to collapse many behaviors into a few. Changing the level of
description avoids the need for an additional assumption, but the predicted
behavior contains less information.

This paper is an outgrowth of our previous work [Kuipers & Chiu, 1987;
Chiu, 1988; Dalle Molle, 1989a; Throop, 1989]. The methods presented here
eliminate chatter in many realistically complex mechanisms [Dalle Molle,
1989b; Fouché& Kuipers, 1990], and are a necessary tool for eliminating
spurious predictions generally. However, these methods are fundamentally
local, constraining branching at particular time-points. There are also non-
local sources of spurious predictions, which require correspondingly non-
local constraints such as energy and system property constraints [Lee, Chiu,
& Kuipers, 1987; Fouché& Kuipers, 1990], the qualitative analysis of the
phase plane of the solutions to a QDE [Lee & Kuipers, 1988; Struss, 1988],
and decomposition of large-scale mechanisms into weakly-interacting com-
ponents by time-scale abstraction [Kuipers, 1987b; Simon & Ando, 1961;
Iwasaki & Bhandari, 1988]. Kuipers [1989] provides a tutorial overview of
the current state of qualitative simulation research.

The higher-order derivative constraint and all examples discussed in this
paper have been implemented as part of the QSIM program. All of the
qualitative graphs in this paper are QSIM output. The QSIM kernel is
implemented in pure CommonLisp, and is available to interested researchers
by contacting the first author.
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Figure 1: Intractable branching due to chatter
In a qualitative model of two cascaded tanks (A and B), NetflowB(t) =
InflowB(t) — Out flowB(t) is constrained only by continuity as long as it remains
in the interval (0, 00). Thus, the simulation branches on all possible trajectories of
Net flowB(t), while all other variables have completely uniform behavior.
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(a) var(t;) has a three-way branch from a critical point: wvar’'(t;) = 0. (The
tnc — std — std behavior is only permitted under an option that allows
non-analytic functions for var(t). See Appendix A.)

(b) In case we know that var”(t;) < 0, only one of three branches is consistent.

(¢) Tfwar"(t;) = var'(t;) = 0, and var (t;) > 0, then only one branch is consistent.
Figure 2: Three-way and one-way branches

2 Higher-Order Derivatives

2.1 Introduction

The first method for eliminating chatter is based on knowledge of higher-
order derivatives, implicit in the QDE, but neglected by the basic limit
analysis methods [de Kleer and Brown, 1984; Forbus, 1984; Kuipers 1984,
1986].

Suppose that a variable var(t) reaches a critical point: ie. var'(t;) =
0. Qualitatively, over the following qualitatively uniform interval (¢;,¢;41),
var'(t) could be positive, negative, or zero (fig. 2a). In QSIM terminology,
the direction of change gdir(var) could be inc, dec, or std during the time-
interval (¢;,%;41).

If the derivative of var(t) is not adequately constrained, directly or indi-
rectly, none of the three possibilities in fig. 2a can be excluded, so a branch
is required. However (fig. 2b), if we have reason to know that var”(t;) < 0,
then two of these possibilities can be excluded, leading to a unique descrip-
tion of the qualitative state over (¢;,¢;41).

More generally, at any time-point ¢;, the sign of the first non-zero deriva-
tive of var at ¢; determines the direction of change of var over (¢;,t;1).

Definition 1 Just as qdir(var) represents the sign of the first derivative of
var, written [var'(t)], we define the abbreviations sd2 and sd3 for the signs
of the second and third derivatives of var.
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gdir(X, 1) = [%(t)] L sd2(X 1) = [d;t)f (t)] . sd3(X, 1) = [d;;( (t)] .

sd1(var) may be used as a synonym for ¢dir(var). The value nil repre-
sents an ambiguous sign. The second argument, ¢, to gdir, sd2, and sd3, may
be suppressed when the current time-point is clearly specified by context.

We will use the term higher-order derivative (HOD) constraint to refer
to the use of the first non-zero derivative to filter out impossible behaviors
as in Fig. 2(b,c). In the usual case, it is the second derivative var”(t;) that
provides the necessary information (fig. 2b), and we may then refer to the
HOD constraint as a curvature constraint. In more complex situations (cf.
fig. 2c, and section 3.2), third-order derivatives may be required. We do not
extend our analysis beyond third-order derivatives, for reasons that will be
discussed in section 4.

2.2 Building on Previous Work

Higher-order derivative information was first applied in qualitative simu-
lation by Williams [1984a, 1984b] and by de Kleer and Bobrow [1984].
Williams [1984a, 1984b] showed that knowledge of the higher-order deriva-
tives of an input — for example, that an input is not merely positive, but is
a linearly increasing ramp — could be effectively propagated through con-
straints to reduce certain ambiguities. De Kleer and Bobrow [1984] showed
how confluences representing higher-order derivatives could be derived from
an ordinary differential equation for a mechanism and applied to reduce
ambiguity in the prediction.

Our approach starts from these correct observations, and extends them
in several ways. The most straight-forward approach to higher-order deriva-
tives extends the constraint model to include terms for the higher-order
derivatives and constraints linking them to the previous terms. Unfortu-
nately, this simply pushes the problem of chatter into the higher-order terms,
while adding variables whose distinctions may cause additional branching in
the behavior tree.

Our methods are designed to apply to qualitative differential equations,
representing incomplete knowledge of the structure of a mechanism. We
discuss the relationship between the strength of conclusion one can draw,
and the amount of knowledge one has in the QDE. We present methods
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that can, in many cases, determine when higher-order derivative reasoning
is required, and automatically derive the appropriate constraints.

The algebraic methods we use to derive expressions for higher-order
derivatives from the QDE are similar in spirit to those used in MINIMA
[Williams, 1988]. The shared insight is that qualitative constraints are ab-
stractions of constraints on real-valued variables, and so can be manipulated
by traditional algebraic methods before being mapped into qualitative value
spaces. After mapping an expression into a qualitative value space, further
simplification is possible. Our implementation could be made more powerful
by replacing its simple algebraic manipulator with MINIMA, at the cost of
incorporating Macsyma [Macsyma, 1988] as a subsystem of QSIM.

There are three steps to applying the higher-order derivative constraint:

1. Identify variables in the QDE likely to chatter.

2. Derive algebraic expressions and evaluate them to obtain the signs of
the second- or third-order derivatives of chattering variables.

3. Use the sign of the higher-order derivative to constrain branching.

We will discuss steps 1 and 3 before step 2, which raises more complex
issues. Section 3 provides detailed examples of each step of the higher-order
derivative (HOD) constraint, as it is applied to two- and three-tank cascade
systems.

2.3 Identifying Chattering Variables

Definition 2 A variable v appearing in a QDE chatters, starting at a qual-
itative time-point t;, if the constraints in the QDFE are consistent with any
qualitative value of qdir(v,t), for every t in some open interval (t;,t;11).

It is possible to propose candidate variables that are likely to chatter
during simulation by analysis of the structure of the QDE. We observe, first,
that if two variables # and y are related by a monotonic function constraint,
either both chatter, or neither does. Second, if the derivative ' of a variable
x is explicitly represented in the QDE with sufficient constraints, then the
variable x will not chatter.!

!Suppose we have the pathological situation that both x and its derivative &’ appear
explicitly in a QDE, but both variables are otherwise unconstrained. According to the
definition above, 2’ will chatter, while x will not. Although & is unconstrained, so QSIM
will eventually predict all possible qualitative behaviors for z, gdir(x) is always constrained
by the sign of .
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The algorithm for proposing candidate variables is as follows:

1. Group the variables in the QDE into equivalence classes according the
following criteria:

equiv(z,y) <+ M*(z,y)
equiv(z,y) <+ M~(z,y)

We may exploit the fact that other explicit constraints in the QDE
imply the weaker Mt or M~ constraints [Kuipers, 1984, Appendix
D]. For example,

equiv(z,y) < MINUS(z,y)

equiv(z,z) < ADD(z,y,z) and constant(y)

equiv(z,y) < ADD(z,y,z) and constant(z)

equiv(z,z) < MULT(z,y,z) and constant(y)
equiv(z,y) < MULT(z,y,z) and constant(z)
equiv(w,z) + ADD(z,y,z) and M*(w,z) and M*(w,y)
equiv(w,z) + ADD(z,y,z)and Mt (w,z) and M~ (w,y)

2. Eliminate the equivalence class containing a variable z if

e 1 is constant.

e The QDE includes an explicit derivative constraint 2’ = 2.

3. Variables in the remaining equivalence classes may chatter. Only one
variable in each equivalence class needs a HOD constraint.

The ability of this algorithm to identify exactly the chattering variables
is limited by the ability of an algebraic manipulator to recognize expressions
that imply monotonic function constraints. If some complex expression im-
plying equiv(z,y) goes unrecognized, then the algorithm might determine
that z does not chatter, but leave y unnecessarily on the list of potentially
chattering variables. Even in such a case, the derivation and application of
an unnecessary HOD constraint for y has a negligable effect on the perfor-
mance of the algorithm.

It is also possible for the QSIM model-builder to assert explicitly which
variables require higher-order derivative constraints. Statistics on the branch-
ing behavior of a simulation tree can be automatically collected to guide
these assertions.
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2.4 Applying the Higher-Order Derivative Constraint

The QSIM qualitative simulation algorithm operates by proposing all possi-
ble qualitative state transitions, then filtering out those that are inconsistent
with available information.

Definition 3 A filter on a set of candidates is conservative if it only filters
out candidates that are provably inconsistent.

As long as each filter is conservative, the algorithm preserves the guar-
antee that all real behaviors are predicted [Kuipers, 1986]. The higher-order
derivative constraint is applied within this framework to filter out certain se-
quences of qualitative states. As we shall see (section 4), the HOD constraint
may fail to be conservative in the presence of M+ or M~ constraints.

Figure 3 shows which sequences of states are consistent, and which can be
filtered out, given an unambiguously determined sign for var”(t) or var”'(t).
There are two times at which the HOD constraint can be applied: when the
critical point is being generated (the pre-filter), and when its successors are
being generated (the post-filter).

The behavior in figure 2a, in which var(t) becomes constant over an
interval, is filtered out by the analytic-function constraint (Appendix A): if
var(t) is constant over any interval, it must be constant everywhere.

Proposition 1 [fv(t) is a non-constant analytic function in the neighbor-
hood of t = t;, where v'(t;) = 0, then Figure 3 shows which sequences of
qualitative directions of change are consistent (or inconsistent) with knowl-
edge of the signs of v"'(t;) and v"'(t;).

Proof: Since we are assuming that a variable v(t) is analytic around a
critical point ¢;, in the neighborhood of ¢;, the qualitative properties of v are
determined by the first non-zero terms of the Taylor series:

,U// (tz)

o(t) = ot + ' (L)t~ )+ — (0= 1) + ol

T)(t —t;)°.

At a critical point, v'(¢;) =0, if v/ (¢;) # 0,

o) ~ ot + T g g

In this case, the qualitative behavior of v(t) is that of ¢?; that is, dec —
std — inc or tnc — std — dec.
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Where v"(t;) = v'(t;) = 0, but v"'(¢;) # 0,
/U///(ti)
3!
so the qualitative behavior of v(t) is that of ¢*; that is, inc — std — inc or

dec — std — dec.

This leaves us with the problem of determining the sign of v”(¢;), and
perhaps v”'(¢;), from information in the QDE and the qualitative behavior
up to t;. If v is a variable appearing in an ordinary differential equation,
its higher-order derivatives can be derived by repeatedly differentiating the
original equation [de Kleer and Bobrow, 1984]. However, when dealing with
incomplete knowledge, as represented by a qualitative differential equation,
the problem becomes more difficult. Because of the assumptions required
to derive higher-order derivatives in the presence of incompletely known
monotonic function constraints (discussed in more detail in section 4), our
implementation of the HOD constraint is restricted to second- and third-

o(t) = v(t;) + (t —t;)?,

order derivatives.

2.5 Deriving an Expression for sd2(var,t)

As we have seen, chattering arises because the qualitative representation ex-
plicitly describes the magnitude of var(t) and the sign of its first derivative,
gdir(var,t), but not the signs of its higher derivatives. However, the QDE
provides a set of algebraic and differential constraints that can be used to
solve for sd2(var,t) in terms of values which are explicitly represented.

An explicit expression for sd2(z, ;) valid for ¢; such that ¢dir(z,t;) = 0is
found using a limited algebraic manipulator that searches a space of expres-
sions generated by equivalence-preserving transformation rules. The follow-
ing list illustrates the essential rules; the complete set is given in Appendix

B.

Mt (z,y) — [sd2(z,t;) = sd2(y,t;)]
r=y+z — [sd2(z,t;) = sd2(y,t;) + sd2(z,t;)]
constant(z) — [sd2(z,t;) = 0]
d
y= o = [sd2(x,t) = qdir(y, )]
chattering_variable(z) — [qdir(z,t;) = 0]
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Consistent Inconsistent Inconsistent
(Pre-filter) (Post-filter)
if sd2(var,t;) = +
l - T + .
- /@ - \
1 !
if sd2(var,t;) = —
/l\

PN ¢ L
) { \ /

s T

if sd2(var,t;) = 0 and sd3(var,t;) = +

T
7 ¢ PN
- . 1 !

T S
if sd2(var,t;) = 0 and sd3(var,t;) = —

v ! 0
N . N,
\¢ T/

Figure 3: Consistent and Inconsistent sequences of qualitative values.
In the neighborhood of a time-point #; such that +(¢;) = 0, knowledge of the signs
of v"/(¢;) and v'"'(¢;) can be used to determine sequences of qualitative states that
are inconsistent, and can therefore be filtered out.
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Proposition 2 Suppose a chattering variable z has a critical point at t;,
i.e. sdl(z,t;) = 0. If we assume that, for any variables x and y,

MY (z,y) — [sd2(z,t;) = sd2(y, t;)],

then each transformation in Appendiz B is validity-preserving when applied
at tz

Using this Proposition, we derive an expression for sd2(z,t;) by search-
ing a space of expressions produced by sequences of transformations from
Appendix B (along with validity-preserving algebraic simplification rules).
The goal of the search is an expression that can be evaluated using the QSIM
description of State(t;); i.e. no sd2 terms. Even then, of course, evaluation
of the curvature expression may be ambiguous.

The “sign-equality” assumption embedded in this proposition is criti-
cal to higher-order derivative reasoning in the face of unknown monotonic
function constraints. In section 4, we will examine this assumption in more
detail, showing how to prove it is valid, and the circumstances under which
it is violated.

Proof of the Proposition: The transformations involving monotonic
function constraints are a restatement of the sign-equality assumption. The
rule that, where z is the chattering variable, ¢dir(z) — 0, is valid because
the rules are only applied at a critical point of the chattering variable.

The addition transformation requires a bit of reflection. In the algebra
of signs, the transformation [A + B] — [A] + [B] preserves validity, but
may yield a weaker description when [A] = —[B], because [A + B] has some
definite sign, while [A] 4+ [B] = [?]. This allows us to conclude:

sd2(z,t) = [2" ()] = [y" () + " (O] = W' (O] + [2"(D)] = sd2(y, 1) + sd2(z, ).

The remainder of the transformation rules are straight-forward consequences
of the addition transformation, the identity [A - B] = [A]-[B], and the rules
for differentiation. I

A simple algebraic manipulator based on the rules presented in this sec-
tion and in Appendix B has been adequate for the examples presented in
this paper, and many others. However, manual derivation of curvature con-
straint expressions can apply substitutions and other algebraic methods that
are beyond the power of this simple program (cf. [Dalle Molle, 1989b]). The
QSIM program allows the user to assert curvature constraint expressions
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explicitly. The algebraic manipulator is independent of the rest of the qual-
itative simulator, so derivation of curvature constraint expressions could be
made more powerful by incorporating a more powerful algebra package such
as Macsyma [Macsyma, 1988], Mathematica [Wolfram, 1988], or MINIMA
[Williams, 1988] (which is built on top of Macsyma).

2.6 Determining the Value of sd3(var,t)

Consideration of the second derivative allows many mechanisms, such as
the two-tank cascade, to be simulated that would otherwise have been in-
tractable. However, there are also situations where sd2(var,t) = 0, so the
third- or higher-order derivative is necessary to apply the HOD constraint.
Important examples of this are the cascaded systems of three or more tanks,
for which spurious behaviors are generated when only the second-order
derivative is considered, but which yield unique predictions when third-order
derivatives are taken into account.

While it would be possible to construct a table of transformations for
sd3(var,t) analogous to the one for sd2(var,t), this table would be quite
complex, and turns out to be unnecessary. We may exploit the fact that
sd3(var,t;) is only needed when sd2(var,t;) = sd1l(var,t;) = 0. sd3(var,t)
can be evaluated as the derivative of the expression derived and stored for
sd2(var,t):

sd3(var,t) = %sdQ(uar, t)

Inspection of the algebraic transformations in Appendix B reveals that
the expressions that can be derived for sd2(var,t) have a very restricted
form. This allows us to evaluate the derivative of the expression stored for
sd2(x,t) using the following transformations:

—{number) = 0
dit b
%x = qdir(z)

d dr dy
%(90 +y) = TR
Dy o i
a Y T w T w
d dx dy
%(95 xy) = U + Cn
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%(ﬂf/y) = ya S
%sdl(x) = sd2(z)

There are two ways to evaluate terms of the form sd2(z) resulting from
these transformations. If the derivative 2’ of such a variable x is explicitly
represented in the QDE, then sd2(z,t) = sd1(z,t). Otherwise, if the cur-
vature expression sd2(z,t) was previously asserted or derived for z, it can
simply be retrieved.

The rationale for the last rule is somewhat subtle, since the expression
stored for sd2(z,t;) is based on the assumption that sd1(z,t;) = 0. When
evaluating sd3(y,t;), where 2 and y are different variables, we may assume
that sd2(y,t;) = sd1(y,t;) = 0, but it is not clear that we may safely assume
that sd1(z,t;) = 0.

e Suppose we are attempting to evaluate
d
SdS(y7 tz) = %SdQ(yv tz)

and we encounter the term sd1(z,t) in the expression stored for sd2(y),
where z and y stand for different variables in the QDE.

e We only evaluate sd3(y,t;) when sd2(y,¢;) = 0. This will let us draw
conclusions about the signs of terms embedded in the expression for
sd2(y, t;).

e Since curvature expressions are evaluated using an algebra of signs, if
the expression A 4+ B evaluates to 0, it must be because A = 0 and
B = 0. (In the algebra of signs it is consistent to have A4+ B = 0 when
A =+ and B = —, but in that case the evaluation of A + B would
have been indeterminate, not zero.)

e The same rationale applies to A — B and A/B, since inspection of
the rules in Appendix B reveals that a sd1(z,?) term can only appear
in the numerator of a quotient, and not at all in an exponential A™.
(Exponentials only arise in the quotient rules.)

o If a product Axsdl(z,t;) evaluates to zero, either A = 0 or sd1(z,t;) =
0. Note that sdl(z,t;) = qdir(z,t;), so its value is explicitly available
in the QSIM representation of State(t;). The product rule gives us

%(A « sdl(z,t;)) = sdl(z,t;) * %A + A x %sdl(x,ti).
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— If sdl(z,t;) = 0, this is the assumption under which sd2(z,t;)
was derived, so the rule £sd1(z,t;) = sd2(z,t;) is legitimate.

— If sd1(z,t;) # 0 then A = 0, so the value (and validity) of the
Lsdl(z,t;) term resulting from the product rule is irrelevant.

The same reasoning applies to a product A « B, where sd1(z,;)
is embedded within A or B.

We summarize this discussion as the following Proposition.

Proposition 3 Under the assumption that M*(x,y) implies that sd2(z,t;) =
sd2(y,t;) and sd3(z,t;) = sd3(y, t;), the transformations applied in evaluat-
ing sd3(z,t;) are all validity-preserving.

Thus, the above set of rules will give us a legitimate value for sd3(z,t;),
modulo the sign-equality assumption, to be discussed in section 4.
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3 Examples: Two- and Three-Tank Cascades

3.1 Higher-Order Derivative Constraints in the Two-Tank
Cascade

The system of two cascaded tanks (Figure 4) is one of the simplest to exhibit
chatter.

A = in— f(A)
B = f(A)-9(B)
fge Mt

Figure 1 shows one behavior of this system simulated without the HOD
constraint.

3.1.1 Identifying Chattering Variables

The variables in the QDE for the two-tank cascade form equivalence classes
as shown. If any variable in an equivalence class has an explicit derivative
in the QDE, none of the variables in the class exhibit chatter.

{in} no chatter, because in is constant.
{4, f(A), A’} no chatter, because A’ = dA/dt.
{B,¢(B)} no chatter, because B’ = dB/dt.
{B'} chatters

Therefore, the variable B’ (named netflowB in the QSIM code) chatters,
so we need to apply the HOD constraint (Figure 1).

3.1.2 Deriving the Curvature Constraint

The derivation of the curvature constraint is the following. Recall that we
only apply the value of sd2(B’) when ¢dir(B’) = 0.

S2(B) = sd2(f(A)) — sd2(g(B))
= sd2(A) — sd2(B)
= qdir(A") — qdir(B')
= qdir(A")
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(define-QDE Two-Tank-Cascade
(quantity-spaces

(inflowa
(amounta
(outflowa
(netflowa
(amountb
(outflowb
(netflowb

(constraints

(o
(o
(o
(minf O
(o
(o
(minf O

inf))
inf))
inf))
inf))
inf))
inf))
inf)))

((M+ amounta outflowa)

((add outflowa netflowa inflowa))

((d/dt amounta netflowa))
((M+ amountb outflowb)

((add outflowb netflowb outflowa))

((d/dt amountb netflowb))
((constant inflowa)))

B/

in — f(A)
f(A) - g(B)
figeM*

in
A
£(4)
A’
B
g(B)
B’

(0 0) (inf inf))

(0 0) (inf inf))

Figure 4: The two-tank cascade and its QDE model in algebraic and QSIM

forms
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In terms of the QSIM variables,

qdir(net flowB,t;) = 0 — [sd2(net flowB,t;) = qdir(net flowA,t;)].

3.1.3 Applying the Curvature Constraint

Consider the behavior of net flowB illustrated in Figure 1, and consider the
critical points at ¢; and ts, where gdir(net flowB,t) = 0.

o At ¢, we know that sd2(netflowB,t,) = qdir(net flowA,t;) = —, so
the concave-down behavior at net flowB(t;) is acceptable (Figure 3).

e At ¢y, we know that sd2(net flowB, t5) = qdir(net flowA,t5) = —, but
the predicted behavior of net flowB(t,) is concave-up, so this behavior
is inconsistent (Figure 3, pre-filter).

With the curvature constraint, instead of the intractable branching of
Figure 1, QSIM predicts the two-tank cascade to have a unique qualitative
behavior (Figure 5).
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Figure 5: Unique qualitative behavior predicted for the two-tank cascade
with sd2 constraint.

Only a single behavior out of the intractably branching tree in figure 1 satisfies the
sd2 constraint

qdir(net flowB,t;) = 0 — [sd2(net flow B, t;) = qdir(net flow A, t;)].
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3.2 Third-Order Derivatives: the Three-Tank Cascade

The three-tank cascade is structurally similar to the two-tank cascade, but

it is no longer possible to eliminate all spurious behaviors with the second-

order derivative alone. We will require a third-order derivative. Fortunately,

second- and third-order derivatives are adequate for cascades of any length.
In algebraic form, the QDE for the three-tank cascade is:

A" = in— f(A)

B" = [f(A)-g(B)

¢ = g¢(B) - h(C)
f.g,he Mt

3.2.1 Identifying Chattering Variables

The equivalence classes for the variables in the three-tank cascade are the
following.

{in} no chatter because in is constant.
{4, f(A), A’} no chatter, because A’ = dA/dt.
{B,¢(B)} no chatter, because B’ = dB/dt.

{B'} chatters
{C,h(C)} no chatter, because C’ = dC'/dt.
{C"} chatters

Thus, we will need expressions for higher-order derivatives of B’ and (".

3.2.2 Deriving and Applying Curvature Constraints
Using the same method as for the two-tank cascade, we derive expressions
for sd2(B') and sd2(C"):
sd2(net flowB) = qdir(netflowA)
sd2(net flowC) = qdir(netflowB)
Application of these constraints eliminates many branches, but still leaves
two spurious behaviors. For example, in the two behaviors shown in figure

6, the critical points at net flowC'(t,) are not possible in actual behaviors,
but could not be eliminated by sd2 alone, because

sd2(net flowC, t,) = qdir(net flowB,t;) = 0.
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After deriving and applying the sd2 constraints

qdir(net flowB, t;)
qdir(net flowC| ;)

=0 —
=0 —

Figure 6: The three-tank cascade with sd2 constraints.

[sd2(net flowB,t;) = qdir(net flowA,t;)]
[sd2(net flowC t;) = qdir(net flowB, ;)]

intractable branching has been prevented, but two of the three predicted behaviors

are still spurious. They cannot be filtered because sd2(net flowC, t1) = 0.
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3.2.3 Evaluating the sd3 Constraint

We determine sd3(netflowC,t) by differentiating the expression stored for
sd2(net flowC t).

sd3(net flowC) = %sdQ(netﬂowC)

= %qdir(netflowB)

= sd2(netflowB)
= qdir(netflowA)

Thus, in the two spurious behaviors shown in figure 6, sd3(net flowC, t,) =
gdir(net flowA, t;) = —. Consulting the table of acceptable qualitative tran-
sitions in figure 3 demonstrates that both behaviors in figure 6 will be filtered
out by the pre-filter. Figure 7 then shows the single behavior resulting from
simulation using both sd2 and sd3 in the HOD constraint.
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Figure 7: Unique qualitative behavior predicted for the three-tank cascade
with sd2 and sd3 constraints.
By deriving and applying the constraint for sd3,

sd2(net flowC\ ;) = qdir(net flowC t;) = 0 = [sd3(net flowC, t;) = qdir(net flowA, ;]

the two spurious behaviors in figure 6 are filtered out, and this unique prediction
remains
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4 Monotonic Function Constraints

A major strength of qualitative reasoning is the ability to obtain useful pre-
dictions in the face of incomplete knowledge of the structure of a mechanism.
A key method for expressing this knowledge in QSIM is the monotonic func-
tion constraint, allowing one to assert that two variables are related by some
function which is only known to be monotonically increasing or decreasing.
For example, the following constraints could appear in QDE models of a
liquid-tank or a spring, respectively.

M (liquid-level, outflow-rate)

M~ (spring-displacement, restoring-force)

When it is desirable to provide a name for a monotonic function, we may
use an alternate notation:

outflow-rate = f(liquid-level), f € M™*

restoring-force = —g(spring-displacement), g € M™*

The function f € MT is known to satisfy f’ > 0 everywhere on the inte-
rior of its domain, so it is strictly monotonically increasing [Kuipers, 1986].2
However, f” is unspecified. Monotonic function constraints are useful for
expressing incomplete knowledge, but they raise important problems when
reasoning about higher-order derivatives [Crawford, Farquhar & Kuipers,
1990]..

4.1 The Sign-Equality Assumption

The constraint M*(z, y) means that there is some f € M* such that for all
t,y(t) = f(x(t)). (M~ constraints are handled similarly, with certain terms
negated.) We can take the first derivative of this expression, to get

y'(t) = f'(2(t))  2'(t).

2The QSIM constraint M+t (z, y) is closely related to, but not identical to, the confluence
Oz = 9y [de Kleer and Brown, 1984] or the qualitative proportionality y ag+ = [Forbus,
1984]. The confluence is weaker than the M™% constraint in that it does not imply that
there is a function underlying the relationship. Qualitative proportionality is an “open-
world” assertion that must be combined with all other influences on the same variables to
produce a constraint [Crawford, Farquhar & Kuipers, 1990].
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Since f’ > 0, this tells us that [y/(¢)] = [2'(¢)], or qdir(y,t) = qdir(z,t).
However, f" is unspecified, so the second-derivative relationship is weaker:

y'(t) = f(x(t) * 2" (t) + f"(2(1)) * (2' (1)

The rule for solving for sd2(var,t) in the presence of monotonic function
constraints relies on the sign-equality assumption, that:

[y" ()] = [2" ()]

The sign-equality assumption is correct whenever z”(t) and f” have the
same sign, or when f € M is linear, so f” = 0. Because of the role of the
sign-equality assumption, the higher-order derivative constraint is poten-
tially not a conservative filter, when the QDE includes monotonic function
constraints.

Proposition 4 If every monotonic function constraint M+ (z,y) in a QDE
satisfies sd2(z,t;) = sd2(y,t;) at a qualitative time-point t;, then filtering
according to the sd2 constraint is conservative at t;.

Proposition 5 Suppose that a QDFE contains a monotonic function con-
straint M (x,y) representing an unknown function f € M™* such that y =
f(z), and suppose the sd2 constraint is being applied at qualitative time-
point t;. Then sd2(z,t;) = sd2(y,t;) in case any of the following conditions
hold:

b~

The function f € M* is linear;

2. (1) = 0;

8. [ (1)) = ["(2(t:)));

4o ()] = L (t)];

5. [ (0] = — L (@(t))] and | " (2(t:)) (@' ()] < |f(2(t)a" ()]

Proof: y'(t;) = f'(x(t;)) * 2" (t;) + f"(x(t:)) * (2/(t;))?, and f’ > 0, and
@)z =o.l

The first four conditions in this Proposition rely on the availability of ad-
ditional qualitative knowledge, such as the sign of f”. The fifth condition is
a quantitative criterion, and cannot be established using a purely qualitative
description of a system. Kuipers and Berleant (1988) present a method for
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reasoning with incomplete quantitative information in a qualitative frame-
work. Their method can be extended to evaluate such a condition, where
quantitative bounds on f’, f”, 2’, and 2" can be obtained.

One can, however, construct examples where the f”(z(t)) * (2'(t))? term
makes a significant contribution to the sign relationship, so the sign-equality
assumption is violated.

4.2 Example: Violating The Sign-Equality Assumption

We have already seen, in figure 5, the predicted qualitative behavior of a
two-tank cascade. Notice that net flowB(t) rises monotonically from zero
to its maximum value, then falls monotonically back to zero. Suppose we
consider an actual pair of tanks such that the upper tank has a stack (fig.
8a), so that the monotonic relationship

out flowA = f(amountA)

has a sharp bend (fig. 8b). In this case, amountA(t) is concave down, but
f" is large and positive, with the net result that outflowA(t) is actually
concave up at this point.

Numerical simulation of a model of this situation gives the behavior
shown in figure 9. All variables are consistent with the qualitative prediction
except for net flowB, which includes a significant dip.

We can perform a numerical sensitivity analysis on the curvature of
M+ (amountA, out flowA). As the curvature in M*(amountA, out flowA)
becomes smoother, the unpredicted dip in netflowB(t) becomes smaller,
and the actual behavior converges to the qualitative prediction (Figure 10).
Traditional Taylor series methods make it possible to estimate the magni-
tude of the error as a function of the magnitudes of the derivatives of the
monotonic function, but they are outside the scope of this paper.



AlJ,

1991 29

Figure 8: Two cascaded tanks

Outflow = M+(Amount)
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where out flowA = M*(amountA) has a

sharp bend.
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Figure 9: Numerical simulation of the two-tank cascade.

Contrary to the qualitative prediction in figure 5, net flow B(t) includes
a pronounced dip and rise. If the assumption of a single maximum for
net flow B(t) were used at ¢ = 150 to predict the minimum time until

amount B = 2000, a significant error would result.
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Figure 10: Sensitivity to curvature of out flowA = M*(amountA).

As the curvature in M (amount A, out flowA) becomes smoother, the
unpredicted dip and rise in netflowB(t) becomes smaller, and the
actual behavior converges to the qualitative prediction in figure 5.
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4.3 Avoiding Prediction Failure

One of the attractive features of qualitative simulation is the ability to pre-
dict all possible behaviors consistent with incomplete knowledge. Thus, the
prospect of failing to predict actual behaviors, due to the use of a non-
conservative filter, is quite troubling. However, a deeper analysis of these
prediction failures demonstrates that, while the phenomenon is real, there
are a number of effective strategies for avoiding or minimizing problems due
to it.

e These prediction failures only occur in the presence of monotonic func-
tion constraints. Although avoiding monotonic function constraints
sacrifices an important part of the expressive power for incomplete
knowledge, qualitative simulation of ordinary differential equations can
still provide valuable insight into the set of all possible behaviors of a
system.

e Prediction failures arise because the derived higher-order derivative
constraint eliminates a genuine behavior of a chattering variable. The
qualitative predictions about non-chattering variables are completely
reliable. If a variable V (¢) is predictively important, one may include
an explicit variable for its derivative V’(t), along with derived con-
straints on that variable. The problem of chatter will still need to be
solved at the level of V'(¢), and may be more difficult to solve, but
predictions about the behavior of V'(¢) will be reliable.

e It may be possible to extend the representation for higher-order deriva-
tive expressions to record their dependency on monotonic functions.
If qualitative or quantitative information is available about the slopes
and curvatures of monotonic functions, the possibility and magni-
tude of violations of the sign-equality assumption can be determined
[Kuipers and Berleant, 1988], to more fully exploit the conditions in
Proposition 5.

An alternate method of eliminating the phenomenon of chatter is to
change the level of qualitative description, accepting a weaker description of
the predicted behaviors, and a lesser degree of filtering of spurious predic-
tions, in return for the guarantee that all real behaviors are predicted. This
is the method we turn to in the next section.
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5 Changing Level of Description

In this section, we develop an alternate solution to the problem of un-
constrained, chattering variables. The two solutions each have their own
strengths and weaknesses, and each technique suggests a direction for fur-
ther developments in qualitative reasoning methods.

Consider the two cascaded tanks (figure 4). As we have seen, the chat-
tering variable

net flowB(t) = out flowA(t) — out flowB(t)

is the difference between two other variables, both of which are increasing
monotonically with time in this situation (figure 1b). Thus, the direction of
change, qdir(net flowB,t), is constrained only by continuity. In a particular
instance of this model, the details of how net flowB(t) behaves are deter-
mined by the detailed behavior of out flowA(t) and out flowB(t). These,
in turn, are determined by the particular monotonic functions described by
the constraints,

out flowA(t) = M (amountA(t))
out flowB(t) = M7 (amountB(t)).

Depending on how the two monotonic functions interact, the actual behavior
of net flowB(t) may rise and fall any number of times. le., the “spurious”
prediction in figure 1b accurately describes the behavior in figure 9 of a
real system. Therefore, we must accept the conclusion that the intractably
branching tree of predicted behaviors represents an infinite collection of
real possibilities: the set of all possible behaviors violating the sign-equality
assumption.

5.1 Collapsing Descriptions

However, even though the behaviors are genuine, and qualitatively distinct,
the distinctions between them may be uninteresting to a problem-solver.
An effective approach in this situation is to adopt an alternate level of de-
scription that collapses an infinite set of possible behaviors into a single
description, while preserving validity.

In the case of the two-tank cascade, net flowB(t) is the chattering vari-
able, and the distinctions among behaviors can be attributed to changes in
gdir(net flowB,t). If we replace the distinctions between inc, std, and dec
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Figure 11: Ignoring distinctions in ¢dir (net flow B, t) gives a unique behavior
for the two-tank cascade.
The symbol #* represents the ign gdir.

when describing the direction of change of netflowB, with a single value
ign (for “ignore”), then the infinite, intractably branching tree of behaviors
collapses into a single finite behavior (fig. 11).

In order to eliminate chattering, this “ignore-qdir” description must be
applied to every variable in the equivalence classes defined in section 2.1.

Comparing figure 11 with figure 5, we see that the description captures
many of the same qualitative features. However figure 11 represents a weaker
description of the behavior of net flowB(t) than figure 5 does. The qualita-
tive description that net flowB(t) = ((0,00),ign) for t € (to,1;) is consistent
with any number of dips and oscillations, as long as they don’t reach the
endpoints of the interval. The prediction in figure 5 is significantly stronger.

Figure 12 uses a simplified {4, 0, —} quantity space with a single land-
mark at 0 to illustrate the qualitative transitions possible during chatter.
Changing the level of description collapses an infinite family of behaviors
wandering among the states (+,inc), (4, std), and (4, dec), into the single
qualitative state description (+, ign).

5.2 Verifying Viability

Unfortunately, if we simply collapse the transitions in Fig. 12a to the simpler
set in Fig. 12b, we lose an important source of constraint: the derivatives of
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(+, inc) (0, inc) (—,inc)
(+, std) (0, std) (—, s‘td>
(4, dec) (0, dec) (—, d‘ec>

(4, ign) (0,igm) (—,ign)

e (a) The full qualitative transition graph is adequate to capture continuity
constraints, but permits “chattering” behaviors.

e (b) The collapsed transition graph, ignoring direction of change, eliminates
chatter, but fails to detect discontinuous change.

Figure 12: Transition graphs for a single unconstrained qualitative variable
around the landmark 0.
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variables must change continuously. For example, although the transition
(+;ign) — (0, ign)

is apparently consistent (Fig. 12b), the more specific transition
(+,ign) — (0, inc)

is inconsistent with the requirement that variables in QDEs be continuously
differentiable.

To recapture the constraint that the derivative of a variable must change
continuously, we apply a global satisfiability filter to each state where the
tgn direction of change was used. The satisfiability filter determines whether
there is a complete, consistent state in which each occurrence of tgn is
replaced by one of {inc, std, dec}, and which is a consistent successor of the
previous state. The satisfiability filter is clearly conservative.

Proposition 6 The set of behaviors predicted by QSTM, applying the “ignore-
qdir” description to any subset of variables in the QDE, includes every con-
sistent behavior predicted by QSIM using the standard qualitative descrip-
tion.

Proof sketch: We know that the set of qualitative value transitions
provided in [Kuipers, 1986] includes every possible transition. As illustrated
by figure 12, the set of possible transitions under the ignore-qdir descrip-
tion encompasses each of those transitions, so all possible qualitative state
changes are proposed. Since the satisfiability filter eliminates only inconsis-
tent states, every actual behavior must remain.

The satisfiability filter is a weaker constraint than simulation with the
larger set of distinctions, {inc, std, dec}. For example, it may be possible for
a sequence of qualitative states

S1 — 52— 53

to survive the satisfiability filter because one set of substitutions is consistent
with S1 — S2, while another is consistent with $2 — 53, although no one
set of substitutions is consistent with both transitions.

5.3 Strengths and Weaknesses

Changing level of description has two advantages over the explicit higher-
order derivative constraint:
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It makes no assumptions about the M* /M~ functions, and thus pre-
serves the desirable property that all real behaviors are predicted.

It can be implemented within the constraint-filtering computational
framework of existing qualitative simulation algorithms, rather than
requiring a possibly elaborate algebraic manipulation package (see Ap-
pendix B).

However, there are two significant disadvantages as well.

The coarser level of description makes it impossible to derive infor-
mation about higher-order derivatives that could be used to filter out
genuinely spurious behaviors [Dalle Molle, 1989b]. Figure 13 shows
such an example.

The coarser level of description produces a weaker prediction, and
hence is less useful for explaining observations or for hypothesis-testing.

Thus, the choice of method for handling chatter depends on which vari-
ables must be described to what degree of detail. In complex models, it may
be appropriate to determine higher-order derivative constraints for certain
variables, while ignoring qdirs on others [Dalle Molle, 1989b].
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Figure 13: Our behavior is genuine; the other is not.

Consider the three-tank cascade, initialized with tank A filled, and draining through
tanks B and C until all tanks are empty. It is not possible for both B(t) and C(¢)
to have critical points at the same time, t;but the information required to filter out
this possibility is not available when ignoring qdirs.




AlJ, 1991 38

6 Conclusions

As we have seen, an important source of intractable branching in qualitative
simulation is lack of constraint on the direction of change of certain vari-
ables, due to lack of information about the higher-order derivatives of those
variables.

One method for eliminating this type of branching is to derive and ap-
ply the required information about higher-order derivatives: the HOD con-
straint. 1t is possible to do this while focusing attention on the higher-order
derivatives only at those isolated points where branching takes place. The
disadvantage of this approach is that it requires certain assumptions about
the behavior of monotonic function constraints which may not, in general,
be warranted. This sign-equality assumption means that certain qualita-
tive behaviors may be filtered out, in spite of being genuine possibilities. A
useful direction for future research would be the determination of when the
prediction is quantitatively “close enough” to the actual behavior.

A second method for eliminating this branching is to collapse the de-
scriptions of certain directions of change, to avoid representing unimpor-
tant distinctions. This method avoids reliance on added assumptions about
monotonic function constraints. However, this conservative approach pro-
duces a slightly weaker description of the predicted behavior, and the ability
to filter out spurious predictions is reduced.

Thus, we observe another instance of the classic trade-off between gen-
erality and power (or false-negative versus false-positive error rates). Which
method is most appropriate depends on the details of the pragmatic context
within which the simulation is being used. For example, one must ask how
much knowledge is actually available to bound the curvature of unknown
monotonic functions, and how serious a deviation between prediction and
observation (e.g. the “dip” in fig. 9) can be tolerated at what cost.

These higher-order derivative constraint methods have been sufficient
to allow tractable predictions of the possible behaviors of open and closed
two-tank systems, cascades of any number of tanks, and numerous other
mechanisms drawn from chemical engineering [Dalle Molle, 1989b]. These
types of multi-compartment models are generic instances of such systems
as chemical reaction kinetics [Dalle Molle and Edgar, 1989a], physiological
mechanisms [Jacquez, 1985], ecological systems [Puccia and Levins, 1985],
etc.

There are many other important qualitative mechanism models for which
the higher-order derivative constraints are a necessary, but not sufficient,
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source of constraint to obtain a tractable behavior. For example, a damped
oscillatory system such as the PI controller requires the local constraint
provided by the higher-order derivative constraint, but also requires non-
local constraints such as energy and system property constraints [Lee, Chiu,
and Kuipers, 1987; Fouchéand Kuipers, 1990], and the non-intersection con-
straint in qualitative phase space [Lee and Kuipers, 1988; Struss, 1988; Dalle
Molle and Edgar, 1989b].

Thus, the higher-order derivative constraints are essential pieces in the
puzzle. The overall picture, at least as far as qualitative simulation goes, is
approximately the following;:

e Limit analysis algorithms [de Kleer and Brown, 1984; Forbus, 1984;
Kuipers, 1984, 1986] predict the local transitions from one qualitative
state to its immediate successors, and can be constructed to guarantee
that all possible behaviors are predicted, although it is not possible
to guarantee the elimination of all spurious behaviors [Struss, 1988a;
Kuipers, 1988].

e Higher-order derivative constraints can be applied to eliminate an im-
portant class of intractable branching, as described in this paper and
in [de Kleer and Bobrow, 1984; Williams, 1984b; Kuipers and Chiu,
1987; Chiu, 1988].

e Quantitative information, in the form of measurements or a priori
knowledge, can be combined with qualitative predictions to determine
which qualitative behaviors are consistent with the quantitative knowl-
edge [Forbus, 1983, 1986; Kuipers and Berleant, 1988].

e Non-local constraints obtainable from the energy and system prop-
erty constraints [Lee, Chiu, and Kuipers, 1987], and the qualitative
phase space can eliminate other spurious behaviors [Lee and Kuipers,
1988; Struss, 1988b]. An analysis based on the Kinetic Energy The-
orem [Fouchéand Kuipers, 1990] now makes it possible to produce a
tractable simulation of the non-linear monotonic damped spring and
hence such industrially significant mechanisms as PI controllers.

e Hierarchical decomposition methods will be usable to decompose cer-
tain complex systems into weakly-coupled subsystems [Kuipers, 1987;
Simon and Ando, 1961; Iwasaki and Bhandari, 1988], ideally to the
point that the subsystems are small enough for the previous methods
to be effective.
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e Comparative analysis methods [Forbus, 1984; Weld, 1987; Chiu and
Kuipers, 1989] make it possible to determine the effects on an individ-
ual qualitative behavior of perturbations to variables, and to determine
relations among “adjacent” behaviors.

As these pieces of the puzzle are filled in, we expect that qualitative
simulation will be adequate for model-based reasoning about realistically
complex systems in the presence of incomplete knowledge.
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A The Analytic Function Restriction

The basic limit analysis algorithms for qualitative simulation, QSIM for
example, require that variables be continuously differentiable functions of
time. That is, for any variable v, v(¢#) must be continuous, and its derivative
v’'(t) must be defined and continuous. Because of this restriction, we can
depend on the qualitative description of v(¢) changing in orderly transitions
from one state to adjacent ones (in both magnitude and direction of change).

Higher-order derivative constraints impose stronger requirements on the
differentiability of the underlying functions of time described by qualitative
behaviors. However, since HOD constraints are only applied at isolated
critical points of the behavior, strictly speaking, such a variable v(t) needs
only to be differentiable to the degree necessary to determine the first non-
zero derivative, and then only at the isolated point ¢;.

Under many circumstances in analysis, for example whenever using Tay-
lor series, one restricts one’s attention to analytic functions: functions whose
higher-order derivatives exist for all orders, over the domain of interest. For-
tunately, most of the familiar mathematical functions — polynomials, ex-
ponentials, trigonometric functions, etc. — are analytic at all points where
they are defined. However, an important fact is that, if a function is ana-
lytic over an interval, and is constant over any open sub-interval, it must be
constant over the entire interval.

In the examples in this paper, QSIM restricts its attention to analytic
functions, by filtering out any behavior which is constant over an interval
without being constant everywhere. Thus, the only consistent behaviors for
the two-tank cascade (figs. 5, 11) has both tanks reaching their final values
simultaneously at t = oc.

However, if we allow non-analytic solutions, we obtain a finite number
of additional intuitively reasonable solutions. For example, in the two-tank
cascade, we obtain a solution in which the level of water in tank A reaches
its final value at finite time, and remains constant while tank B continues
to fill (fig. 14).

This prediction corresponds intuitively with real-world observations of
processes acting at different time scales: the faster one apparently reaches its
limit significantly before the slower one. Two variables may be approaching
their limits exponentially and asymptotically, but the more rapidly converg-
ing of two exponentials will pass below the level of observability very swiftly,
and thereafter appear constant for all practical purposes.

The following table shows the number of predicted behaviors for the
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Figure 14: A non-analytic qualitative behavior.
Without the restriction to analytic functions, QSIM predicts a second behavior for
the two-tank cascade in which tank A reaches its limit before tank B. While this
behavior 1s not strictly consistent with a linear model, note how closely it resembles

the numerically simulated behavior of such a system.

N-tank cascades, with and without the analytic function restriction:

Mechanism Analytic functions only?  States created
Yes No

two-tank cascade 1 2 9

three-tank cascade 1 8 38

four-tank cascade 1 40 189

five-tank cascade 1 224 1044

While this method provides an indication of the possible time-scale rela-
tions in a mechanism, more rigorous methods are available [Kuipers, 1987b]
for expressing time-scale abstraction in complex mechanisms.
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B Deriving the Curvature Constraint

These rules do the transformations for the curvature constraint.
- The first clause in the rule is matched against the sd2 expression.

after substitutions.

H
H
; - Additional clauses before '"->'" are matched against QDE constraints,
H
H

- The clause after the "->" has bindings substituted, and is returned.

(defparameter

»(((sd2
((sd2

((sd2
((sd2

((sd2
((sd2
((sd2

((sd2

((sd2

((sd2

((sd2
((sd2

((sd2
((sd2
((sd1
))

?X)
?y)

?X)
?y)
?z)
?X)

?y)

?z)

?X)

?y)

7x)
?y)

?X)
?X)
?X)

*transformation-rules*
(M+ 7x ?y) -> (sd2 ?7y))
(M+ 7x ?y) -> (sd2 7x))

(M- 7?x ?y) -> (- 0 (sd2 7y)))
(M- 7x ?y) -> (- 0 (sd2 7x)))

(add 7x 7y 7z) -> (+ (sd2 7x) (sd2’?y)))
(add 7x 7y 7z) -> (- (sd2 7z) (sd2 7y)))
(add 7x 7y 7z) -> (- (sd2 7z) (sd2 7x)))

(mult 7x ?y 7z) -> (+ (* ?y (sd2 7x))
(+ (x 7x (sd2 7y))
(* 2 (x (sdi 7x) (sdl ?y))))))
(mult 7x ?y ?7z) -> (- (/ (sd2 ?7z) ?y)
(- (* 2 (* (sdl 7z)
(/ (sd1 ?y) (C 7y 2))))
(- (2 (x 7z (/ (" (sdl ?y) 2)
7y 30
(* 7z (/ (sd2 7z) (" 7y 2)))))))
(mult 7x ?y ?7z) -> (- (/ (sd2 ?z) 7x)
(- (* 2 (* (sdl 7z)
(/ (sd1l 7x) (* ?x 2))))
(- (x 2 (* 7z (/ (* (sdl ?x) 2)
(¢ 7x 3))))
(* 7z (/ (sd2 7z) (" ?7x 2)))))))
(minus ?x ?7y) -> (- 0 (sd2 7y)))
(minus ?x ?7y) -> (- 0 (sd2 7x)))

(d/dt ?x ?y) -> (sdi 7y))
(independent ?x) -> 0)
(chattering-variable 7x) -> 0)

Inspection of these algebraic transformations reveals that the expressions
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that can be derived for sd2(var,t) have a very restricted form. In BNF:

(exp) == (primitive) | (compound)

(primitive) = (number) | (variable) | (qdir (variable))
= ((bin_op) (exp) (exp)) | ( (exp) (number))

= =l

(compound

)
)
)
(bin_op)

In particular, there are no explicit derivative or monotonic function con-
straints in the expression, and an expression may only be raised to a constant
power.



