
Pattern Analysis & Applications (1999)2:82–91
 1999 Springer-Verlag London Limited

Tracking in 3D: Image Variability
Decomposition for Recovering Object Pose
and Illumination*

Peter N. Belhumeur1 and Gregory D. Hager2

1Department of Electrical Engineering; 2Department of Computer Science, Center for Computational Vision and
Control, Yale University, New Haven, CT, USA

Abstract: As an object moves through space, it changes its orientation relative to the viewing camera and relative to light sources which
illuminate it. As a consequence, the images of the object produced by the viewing camera may change dramatically. Thus, to successfully
track a moving object, image changes due to varying pose and illumination must be accounted for. In this paper, we develop a method
for object tracking that can not only accommodate large changes in object pose and illumination, but can recover these parameters as
well. To do this, we separately model the image variation of the object produced by changes in pose and illumination. To track the
object through each image in the sequences, we then locally search the models to find the best match, recovering the object’s orientation
and illumination in the process. Throughout, we present experimental results, achieved in real-time, demonstrating the effectiveness of
our methods.
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1. INTRODUCTION

The challenge in visual tracking is to quickly and accurately
determine the image position or configuration of a target
(an object or a region on the surface of an object) as the
target moves through a camera’s field of view. This problem
becomes particularly challenging when the target is large
enough and of sufficient geometric complexity to exhibit
the full range of change in appearance caused by both
geometry and illumination. A more difficult challenge is to
also estimate the (3D) pose and illumination of the object
through an image sequence. If this determination can be
made reliably, it will not only increase the accuracy of the
tracking process, but should also considerably increase the
number of applications for which visual tracking is of use.
For example, estimates of a tracked object’s pose and illumi-
nation may prove invaluable in the development of systems
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for augmented reality, human/computer interfaces and sur-
veillance.

In this paper, we develop a region tracking algorithm
which efficiently and explicitly computes the three-dimen-
sional pose and illumination parameters of its target. To do
this, we explicitly model how changes in pose and illumi-
nation of an object, or target region on an object, produce
changes in the observed images. We decompose the varia-
bility into its component parts – pose and illumination –
each of which, when analysed separately, is well behaved.
We call this approach to handling image changes Image
Variability Decomposition.

In the case of pose variation, we exploit the results of
Ullman and Basri [1], Jacobs [2] and Tomasi and Kanade
[3] which show that, under weak perspective, the set of
image coordinates of a rigidly moving object lies in low-
dimensional linear subspace of the image coordinate space.
This differs from earlier work on handling pose variation
by ourselves and others [4–6], in that image coordinate
deformations are not restricted to be affine. For planar or
nearly planar targets, affine models work quite well. Yet,
most targets are not planar, and consequently, as the target
rotates in space affine models quickly break down. The
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models described in this paper are specific to the target
object’s 3D geometry. As a consequence, not only is the
tracking of the object’s position more reliable, but we are
also able to recover the 3D orientation of the object through
the image sequence.

In the case of illumination variation, we exploit the
results in Belhumeur and Kriegman [7], which show that
the set of images of an object seen from a fixed viewpoint,
under all possible illumination conditions, is a convex cone
in the space of images, and this cone (termed the ‘illumi-
nation cone’) can often be constructed from as few as three
images. This differs from earlier work [4], in that the changes
in the image of the target region are not assumed to lie
anywhere within a low-dimensional linear subspace, but are
restricted to lie on or within a convex cone. This improve-
ment models object shadowing, allowing the tracker to
maintain lock under greater variation in illumination than
before.

Given parametric models for image changes due to motion
or changes in illumination, we show that it is possible to
develop an efficient algorithm for perturbing state (pose and
illumination) estimates of targets to fit observed data. The
result is an efficient algorithm which computes 3D object pose
and illumination geometry in real-time on live video images. At
the end of the paper, we present two sets of experiments.
The first experiment quantifies the accuracy of the pose
determination. The second experiment qualitatively gauges
the performance of the algorithm for tracking a human face.

The remainder of this article is structured as follows.
Section 2 discusses related work. Section 3.1 describes how
we construct the pose model, and Section 3.2 describes how
we construct the illumination model for a target object.
Section 4 describes how we combine these models to build
a tracking system. Finally, Section 5 presents experimental
results from tracking both a ‘calibration’ sphere and a
human face.

2. RELATED WORK

Visual tracking can be usefully categorised as region- or
feature-based. Most of the tracking systems that are able to
use and/or compute 3D pose are feature-based [8–14]. These
systems overcome the potentially deleterious effects of
changes due to illumination by concentrating on a sparse
set of edges or corners in images, i.e. discontinuities in the
image intensity. However, models using only local features
are impoverished – they throw out a great deal of infor-
mation present in the original image. Furthermore, since
features are typically local, feature-based tracking methods
require good dynamical models and effective search methods
to avoid feature matching ambiguity [13,9]. If the objects
do not have piecewise constant albedo patterns, the detec-
tion and localisation of the edge or corner points are
sensitive to changes in illumination.

Previous work on region-based tracking has almost entirely
concentrated on the use of 2D linear models of image
deformations, ranging from simple rigid translation [15], to
affine or low-order polynomial deformations [6,4,16,17].

Affine models are correct for planar surfaces viewed under
orthographic projection. More recently, ‘appearance-based’
approaches have been developed in an effort to use intensity
information to model or learn a representation that captures
a large set of the possible images of an object under pose
and/or illumination variation [18–22]. These methods have
been directly applied to tracking problems [18], and have
also been applied in combination with image-level defor-
mations [5]. Although these methods can be used to both
track an object and to recover object pose, they require
that the target has been previously observed under similar
conditions.

The Image Variability Decomposition paradigm differs in
that by decomposing image variability, we are able to
uncover low-dimensional generative structures for the set of
images. Thus, unlike appearance-based methods, it is not
necessary to have seen the object under all of the seemingly
infinite possible permutations of lighting conditions and
pose. In addition, since the changes in object appearance
under pose and illumination variation are in general not
linear in image space, the dimensionality of the represen-
tation is likely to be far higher than that needed to describe
the underlying generative structure of images. Feature-based
methods require a method for choosing a set of features to
track, and additional knowledge of the object coordinates of
the features in order to compute pose. The Image Variability
Decomposition approach can be seen as a way of using all
of the grey-value structure of images without committing to
a particular set of features. The arguments used here in
support of region-based tracking are, of course, identical to
arguments in support of region-based determination of bin-
ocular stereo correspondence.

3. IMAGE VARIABILITY
DECOMPOSITION

In the subsections below, we describe how we model the
image variation due to changes in pose and illumination.
In particular, we demonstrate how, from as few as three
images of a target, it is possible to generate a complete set
of images of the target over a large range of pose and
illumination variation.

3.1. Pose

In this section, we apply the results of Ullman and Basri
[1], Jacobs [2] and Tomasi and Kanade [3] which show that,
under weak perspective, the set of image coordinates of a
rigidly moving object lies in low-dimensional linear subspace
of the image coordinate space. Unlike Tomasi and Kanade
[3], however, our goal is not to explicitly determine the
object’s structure. Rather, our approach follows that of Ull-
man and Basri [1], in that we want to use the low-dimen-
sionality of the image coordinate variation to predict what
the object will look like over a range of viewing directions.

To start, let us represent the structure of an object by
the positions in space of a collection of n points on the
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object’s surface. Let us choose the n points on the object’s
surface so that they map to a dense collection of pixels
within an image. Note again that we choose a dense collec-
tion of points – not a select few fiducial points – in
representing the object. We call this collection of points
the ‘target region’. The pose of the object relative to an
arbitrary fixed coordinate system can be represented by a
point in R3 3 SO(3). For each position and orientation of
the object, we can construct a 3n-dimensional vector
describing the positions in space of the n points on the
objects surface, i.e. for each orientation and translation, we
have a corresponding point in a 3n-dimensional coordinate
space.

The set of all possible 3D object coordinates under 3D
rotation and translation is then a 6D manifold in this 3n-
dimensional coordinate space. (Due to possible symmetries
in the object, the set of coordinates may not be a manifold,
but a stratified set [23] composed of manifolds and singular
sets of dimension six or less. For simplicity we will refer to
these sets as manifolds.)

As evident from the work of Ullman and Basri [1],
under scaled orthographic projection, the set of 2D image
coordinates lie in an 8D linear subspace of the 2n-dimen-
sional image coordinate space. To see this, let p P R3 rep-
resent a point on the surface of an object, R P SO(3)
represent a rotation matrix, and t P R3 represent a trans-
lation vector. Under scaled orthography, we can write the
projection (x,y)T P R2 of p as

Fx
yG = sP(Rp1t) (1)

where s is a fixed scaling factor, and P is of the form

P = F1 0 0
0 1 0G

We can simplify this equation, and rewrite it in the form

Fx
yG = Ap 1 d (2)

where A is a 233 matrix and d P R2.
It follows that the set of all image coordinates viewed

under scaled orthography lie on a 6D manifold embedded
within the 8D linear subspace represented by the
(unconstrained) matrix A and vector d. We call this 6D
manifold the ‘pose manifold’. As noted in the work of
Ullman and Basri [1], because of the symmetry between the
x and y image coordinates, both the x and y coordinates
lie in the same 4D linear subspace of an n-dimensional
coordinate space. This 4D subspace, which we call the ‘pose
subspace’, defines the 8D linear subspace in which the pose
manifold is embedded.

Returning to our problem, let vectors x and y describe
the x-coordinates and the y-coordinates of a dense collection
of n pixels in some ‘model’ image. Let us call this collection
of pixels the ‘target region’. As discussed above, if the
object is viewed orthographically, the resulting vector of x-
coordinates and the resulting vector of y-coordinates are
each restricted to lie in the same 4D linear subspace, i.e.

the pose subspace. Let x̂,ŷ,ẑ, and 1 (where 1 is an n-
dimensional vector of ones) be the basis vectors for the 4D
pose subspace. Let the vector function f(b) represent a new
vector of x-coordinates and the vector function g(c) rep-
resent a new vector of y-coordinates, after a rotation and
translation of the target region. Then we have

f(b) = b1x̂ 1 b2ŷ 1 b3ẑ 1 b41 (3)

g(c) = c1x̂ 1 c2ŷ 1 c3ẑ 1 c41

The eight coefficients in b and c together determine a point
in the 8D linear subspace in which the 6D pose-manifold
is embedded. For rigid motions, this point must lie on the
pose manifold.

To compute the basis vectors for the pose subspace, let
us assume we have chosen n pixels defining the target region
of an object. We then acquire a second image of the object
after the object undergoes a small rotation (and translation)
in space, with the proviso that the axis of rotation is not
the camera’s optical axis. From the correspondences of each
pixel in the first image with those in the second image, we
can determine the pose subspace [3]. Note that determining
the pose subspace only fixes the affine structure of the object
[25]. To determine the 3D Euclidean structure of the object
or, equivalently, to determine the pose manifold, a third
image is needed. (This, of course, was implicit in the work
of Tomasi and Kanade [3], which demonstrated how these
subspaces could be computed efficiently and, from them, the
3D coordinates of the points determined.)

Yet we stress that the goal of pose decomposition is not
to necessarily determine the precise 3D structure of objects.
Rather, the goal is to find a pose subspace or pose manifold
(if more than two images are available) that can be used
to accurately predict images of the object under a range of
viewpoints. These objectives are not the same, as points on
the objects surface in regions of constant intensity will yield
inaccurate structure measurements, but will have little effect
on the set of images modelled by pose deformations.

What this all means is that from as few as two images
of the object seen from slightly different directions, we can
determine the images of the object under a large range of
viewing directions. Thus, in the case of scaled orthographic
projection, there is indeed a simple, generative structure to
the set of images of an object under varying pose.

Figure 1 gives a demonstration of an approximation to
the pose subspace and resulting pose manifold for a human
face. Here we have used 20 images, of which four are
shown, to generate the pose subspace in which the pose
manifold is embedded. The basis vectors spanning the pose
subspace were crudely determined by first determining the
correspondence using the optical flow techniques of Lucas
and Kanade [24]. (The methods for establishing a dense
correspondence can be improved by borrowing from work
in binocular stereopsis [26].) We then randomly sampled
the pose manifold, recreating the images of the object at
the new pose. The pictures at the bottom of the figure are
artificially generated images of the human face. Note that
there is little variation in the original images shown in the
top, left of the figure, yet the artificially generated images
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Fig. 1. Pose decomposition. In this figure, we have used 20 images, four of which are shown here, to generate the pose subspace in which
the pose manifold is embedded. The basis vectors spanning the pose subspace were crudely determined by first determining the correspondence
using the optical flow techniques of Lucas and Kanade [24]. We then randomly sampled the pose manifold, recreating the images of the
object at the new pose. The pictures at the bottom of the figure are artificially generated images of the human face. Note that there is little
variation in the original four images shown in the top, left of the figure, yet the artificially generated images demonstrate a large range of
pose variation.

demonstrate a wider range of pose variation. Furthermore,
while we have shown only five artificially generated images,
we can actually generate any image over a continuum
of poses.

3.2. Illumination

Image variability due to illumination has received relatively
little attention in the computer vision literature. Yet the
same object seen from the same pose can appear drastically
different depending the directions and strengths of the light
sources [27,28]. This fact has implications not only for
object recognition, but also for object tracking.

The variability due to illumination may be much larger
than that due to pose as the set of possible lighting con-
ditions is infinite dimensional. Still, it turns out that while
the set of images of an object under varying illumination
may be large, it has a great deal of implicit structure. The
set of images of an object with arbitrary reflectance functions
seen under arbitrary illumination conditions is a convex
cone in Rn, where n is the number of pixels in each image
[7]. And if the object has a convex shape and a Lambertian
reflectance function, the set of images under an arbitrary
number of point light sources at infinity is a convex poly-
hedral cone in Rn, which can be determined exactly from
as few as three images, see again [7].

To express the stated relations through equations, let us

assume we have a target object seen from a fixed point, but
under varying illumination. Again, let vectors x and y
describe the x-coordinates and the y-coordinates of a dense
collection of n pixels in some image referred to as the
‘target region’. Let R(x,y) denote the vector of brightness
values in the target region. Due to its convexity, the illumi-
nation cone of the target region, i.e. the set of images of
the object under all lighting conditions, is defined by a
collection of extreme rays (images) Rj(x,y) with j = 1,%,m.
(The number of extreme rays m may be quite large, but we
approximate the illumination cone by choosing a small
subset.) Any model image of the target region seen from
the same viewpoint, but under arbitrary illumination, can
then be constructed from a convex combination of the
extreme rays:

M(x,y,a) = Om
j=1

ajRj(x,y) (4)

where aj $ 0 ∀j.
The determination of the extreme rays (the Rj) defining

the convex cone can be done in two ways. First, we can
simply gather a collection of images of the target regions
illuminated by point light sources of different directions,
and use these to define the extreme rays. This method is
similar to that of Murase and Nayar [18], except the illumi-
nation cone representation implicitly models multiple light
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sources, since it allows for convex combinations of the
extreme rays (images). A drawback of this method (and
that of Murase and Nayar [18]) is that many images are
needed to construct the model.

A second method for determining the extreme rays is to
gather only a small number of images of the object under
varying illumination, and use these to generate the complete
set of extreme rays. If the object’s surface has a Lambertian
reflectance function and the shape of the object is roughly
convex, then the extreme rays defining the illumination
cone can be generated from a 3D linear subspace in the n-
dimensional image space [7]. Furthermore, this ‘illumination
subspace’ can be generated from as few as three images [29].

Even if the surface reflectance function is more general
than Lambertian and the object is non-convex in shape,
this method still seems to work quite well. Figure 2 gives a

Fig. 2. Illumination decomposition. The set of all possible n-pixel images of an object in fixed pose under variable illumination including
shadows is a convex cone in Rn (the image space). When the object surface reflectance is Lambertian, the cone can be exactly determined
from as few as three images. In this case, six images, of which four are shown, are used to construct the cone of a target region centered
on a human face. Basis images for this 3D illumination subspace can be estimated using SVD from three or more images; the direction of
light sources is not needed. The extreme rays of the illumination cone can then be constructed from the illumination subspace. At the
bottom of the figure are artificially generated images of the face that lie in the cone.

demonstration of such an approximation for varying illumi-
nation of a face. Here we have used six images, of which
four are shown, to generate what we call the illumination
subspace which, in turn, generates the extreme rays which
define the illumination cone. We then randomly sampled
the illumination cone. The pictures at the bottom of the
figure are artificially generated images of the face.

4. THE TRACKING SYSTEM

In this section, we describe our procedure for tracking the
target region through an image sequence. We pose the
tracking problem as one of finding an optimal (according
to the criterion stated below) pair of trajectories through
the illumination cone and along the pose manifold.
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Let I(x,y,t) denote the brightness value at the location
(x,y)T in an image acquired at time t. If, as before, x and
y are the x and y coordinates of n pixels defining the target
region, let I(x,y,t) denote an image of the target region. In
the absence of noise, and if our pose and illumination
models are exact, then it follows that the image of the
target region must satisfy the following relation:

I(x,y,t) = M(f(b),g(c),a) (5)

for some a P Rm, b P R4 and c P R4. The expression on
the right-hand side can be interpreted as follows: an image
is first synthesized from the extreme rays of the illumination
cone, and then this image is ‘warped’ by a deformation
selected from the pose manifold so that the result is identical
to an observed image.

It follows that the temporal correspondence of the target
region across an image sequence can be determined by
finding the pose parameters and the illumination parameters
that minimise

O(a,b,c) = iI(x,y,t) 2 M(f(b),g(c),a)i2 (6)

As recently shown [4], it is possible to efficiently compute
the parameters in a problem of this form. Briefly, the
procedure is to linearise the above expression and solve for
the pose and illumination parameters incrementally in each
frame. The resulting system is then factored into time-
invariant and time-varying terms. As a result, the online
portion of the estimation procedures can be simplified to a
form which is easily computed in real-time.

The result of this process is both a vector of coefficients
characterising the object’s pose and a vector of coefficients
describing a point in the illumination cone. To determine
the actual pose, we choose a specific representation for
rotations [30] as

R = Rz(g)Ry(b)Rx(a) (7)

where Ri(u) is a rotation by an angle u about the axis i.
We are particularly interested in the out-of-plane rotations
a and b, which we subsequently refer to as ‘tilt’ and ‘pan’,
respectively. After substituting Eq. (7) into Eq. (1) and
equating the terms of the affine representation, simple
algebra yields the vector equation

Fb3

c3
G = F2SbCa

2Sa
G (8)

which is readily solved for the pan and tilt angles, where
b3 and c3 are given in Eq. (3).

In addition, if we know the absolute scale of the depth
values, then can use the estimated pan and tilt angles
to enforce consistency constraints on remaining parameters
(effectively mapping the R8 parameter vector to SE (3)),
thereby increasing the robustness of the tracking process.
Alternatively, if the scale on depth is not known, the same
consistency constraints be used to estimate the unknown
scale parameter. This can be done continually as the object
is being tracked, i.e. we can recover the object’s 3D position
and orientation at each instant in time. Likewise, the illumi-
nation coefficients each correspond to different light source

directions, with the magnitudes of the coefficients pro-
portional to the light source strengths.

We should add that, while the method in Murase and
Nayar [18] could also determine pose, an advantage of this
method is that for objects with similar geometry, but differ-
ent albedo patterns, all that is required is that the illumi-
nation cone be transformed. There is no need to re-learn
the pose manifold or illumination subspace. For the problem
of face tracking, all that is required is that a canonical (or
average) face geometry be known in advance. Thus, the
tracking system described in this paper could work for any
face without having to undergo a costly retraining procedure.
In fact, the results in the next section use the geometry of
the first author’s face to track the face of the second author.

5. RESULTS

A tracking algorithm based on these ideas has been
implemented in the XVision tracking environment [31]. In
this section we first demonstrate the accuracy of the algor-
ithm by presenting data from tracking a sphere for which
pose is known. We then present three runs of the system
applied to the problem of human face tracking to show its
applicability to real world situations. We note that the pose
and illumination models for the face have been described
in Sections 3.1 and 3.2, respectively. All experiments were
performed in real time on live video data on an SGI Indy
equipped with a VINO digitising system.

5.1. Pose Determination for a Sphere

In this experiment, we chose to use a known object – a
‘calibration sphere’ – for which an exact warping model is
known. The target was tracked while mounted on a pan-
tilt head, allowing for exact control of the two angles of
orientation of the sphere. Figure 3 shows an image of the
target. Figure 4 contains two graphs showing the accuracy
with which various trajectories were estimated. In all tests,
the (imaged) diameter of the ball was 160 pixels. The
size of the tracking window was 1003100 averaged to
half resolution.

Several observations can be made from the graphs:

I The graph at the lower left shows the absolute pan angle
and error in estimated pan angle over an interval from
210° to 110° from the starting position. In general, the
error is less than a degree of angle except for a small
spike near 0°. To place this in perspective, the range of
depths subtended by the tracking window is about 45
pixels. It follows that an error of one pixel corresponds
to sin21(1/45) = 1.27°. We perform no smoothing on the
incoming images and we are operating at half resolution,
so the results shown here correspond to matching images
to sub-pixel accuracy. The graph also clearly reflects alias-
ing effects that could possibly be alleviated through the
use of smoothing.

I The graph at the right shows the results of a more
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complex trajectory where estimated pan and tilt have
been plotted against each other. Note, in particular, that
the diagonal shows strong aliasing on the order of 1° to
1.5° – about what is expected in this case. The motion
left and right shows a small amount of hysteresis, possibly
indicating two nearby local minima, and both axes exhibit
a small amount of systematic bias. Both errors are attribu-
table to quantisation error.

Overall, these results seem to indicate that it is possible
to obtain accurate estimates of object pose. It is interesting
to note that tracking a sphere is in fact an extremely
challenging problem because the motion templates for trans-

Fig. 3. Image of a calibration sphere.

Fig. 4. Left, a graph of the estimated position with respect to ground truth, and the error between ground truth and the estimate. Right,
the estimated pan and tilt angles for a more complex trajectory consisting of a motion 10° to the left, 20° to the right, 10° back to the
left, 10° upward, 20° downward, 10° to the left, and diagonally upward 20° in both axes.

lation and the templates for rotation are quite similar.
Objects with more variable surfaces usually lead to better
conditioning of the estimation problem.

5.2. Face Tracking

The second test object is an unadorned human face. In the
first experimental run with a face, we emphasise the use of
the pose manifold. Since ground-truth values for head pose
are not available, we chose to demonstrate the accuracy of
the pose estimates by using them to animate a range model
of a human head. The results are shown in Fig. 5. The first
row of images are frames taken from the live sequence; the
second row are the corresponding frames from the animation.
Note, in particular, that the algorithm computes accurate
pose information even when significant areas of the face
become occluded.

In the second run, we vary the illumination dramatically,
but keep the pose relatively constant. In Fig. 6, we show
three frames excerpted from the sequence and below them
the corresponding artificial images synthesised using the
lighting coefficients computed by the tracking algorithm.

In the third run, we vary both pose and illumination.
The results appear in Fig. 7. The graph at the upper left
shows the pose angles for the face, and the graph at the
upper right shows the illumination coefficients for three of
the rays defining the cone. The coefficients represent the
contribution of illumination from the left, illumination from
the right, and illumination from above. The lower row of
images are frames from the sequence.

By comparing the graphs and the images, we see that the
parameters vary in exact correspondence to the physical
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Fig. 5. The results of animating a head using the pose coefficients of the tracking algorithm. Above, the live images, and below an image
of the range model of a head rotated by the angles computed by the tracking algorithm.

Fig. 6. The results of animating a head using the illumination coefficients computed by the tracking algorithm. Above, three frames excerpted
from the sequence and below the corresponding artificial images synthesized using the lighting coefficients computed by the tracking algorithm.

situation. At the start (Frame 0), the face is illuminated
from the front and is facing forward. As the face tips
downward (Frame 75), the ray describing illumination from
above and the tilt angle increase. Next, as the source
moves to the right, the contribution of the corresponding
illumination ray increases (Frame 165) until the face is
turned toward the light (Frame 225). The face turns back
(Frame 300), then the source is moved to the left (Frame
375) causing the contribution of the corresponding illumi-
nation coefficient to increase. Finally, the face turns to the
left (Frame 420) causing it to be more centrally illuminated,
at which point the contribution of illumination from the
left decreases.

6. CONCLUSION

We have developed a method for tracking objects and
computing their pose and illumination in a computationally
efficient manner. To do this, we build an image-based model
of the target object which can predict the target appearance
over a large range of variation in pose and illumination.

The models are built from a small number of images over
a small range of object variation. Yet the method is able
to extrapolate to more extreme conditions.

At the moment, the pose manifolds and illumination cone
are built before the tracking process is initiated. However, we
believe it may be possible to estimate one or both during
the tracking procedure. All that is needed to build the pose
manifolds are images of the target seen under several
rotations – rotations small enough for a tracker using only
affine deformations to keep a lock on the target. Likewise,
to determine the illumination cone, the tracking system
must be sufficiently robust to tolerate novel deviations in
illumination long enough to incorporate these deviations
into the cone representation.

In future work, we plan to investigate the online develop-
ment of pose and illumination models, and also to extend
the algorithm to handle multiple views. The principle prob-
lem in multiple-view tracking is to develop effective methods
for indexing the views and moving smoothly (in parameter
space) between them as the target itself moves. Initial
investigations in this direction suggest that the use of differ-
ential methods (e.g. methods similar to those of Stein and
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Fig. 7. The top row of images are selected frames from a tracking sequence. The next two graphs show the computed head angles and
illumination coefficients for this sequence. The graph at the bottom compares the least square residuals for an affine model against the 3D
pose-based model.

Shashua [32]) for computing pose variation work well for
moderately dense (in pose space) images of the target.
Furthermore, this approach appears to be compatible with
the class of tracking algorithms we currently use, and is of
similar computational complexity.

Successful incorporation of view switching will make it
possible to track objects through the complete pose space.
By successfully learning views online (each with its own
pose and illumination model), we hope to demonstrate
completely automated tracking of novel objects in real time.
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