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ABSTRACT

It is known that the Green’s function for non-dissipative acoustic or elastic
wave propagation can be extracted by correlating noise recorded at different
receivers. This property is often related to the invariance for time-reversal of
the acoustic or elastic wave equations. The diffusion equation is not invariant
for time-reversal. It is shown in this work that the Green’s function of the
diffusion equation can also be retrieved by correlating solutions of the diffusion
equation that are excited randomly and are recorded at different locations. This
property can be used to retrieve the Green’s function for diffusive systems from
ambient fluctuations. Potential applications include the fluid pressure in porous
media, electromagnetic fields in conducting media, the diffusive transport of
contaminants, and the intensity of multiply scattered waves.
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1 INTRODUCTION

The Green’s function for acoustic or elastic waves can
be extracted by cross-correlating recorded waves that
are excited by a random excitation, see ref. (Curtis
et al., 2006) for a tutorial. Derivations of this principle
have been presented based on normal modes (Lobkis
& Weaver, 2001), on representation theorems (Wape-
naar, 2004; Weaver & Lobkis, 2004; Wapenaar et al.,
2005), on time-reversal invariance (Derode et al., 2003a;
Derode et al., 2003b), and on the principle of station-
ary phase (Snieder, 2004; Roux et al., 2005a; Snieder
et al., 2006b). This technique has found applications
in ultrasound (Weaver & Lobkis, 2001; Malcolm et al.,
2004; Larose et al., 2006), crustal seismology (Campillo
& Paul, 2003; Shapiro et al., 2005; Roux et al., 2005b;
Sabra et al., 2005a; Sabra et al., 2005b), exploration
seismology (Calvert et al., 2004; Bakulin & Calvert,
2004), structural engineering (Snieder & Şafak, 2006;
Snieder et al., 2006a), and numerical modeling (van Ma-
nen et al., 2005). Recntly the exraction of the Green’s
function by cross-correlation has been derived for gen-
eral coupled systems of linear equations (Wapenaar
et al., 2006).

The principle of extracting the Green’s function of
a system from ambient fluctuations creates the possibil-

ity to retrieve the impulse response of a system without
using controlled point sources. This impulse response
can be used for imaging, tomography, or other methods
to determine the properties of the medium. For exam-
ple, models of the crust in California have been con-
structed using surface wave tomography based on micro-
seismic noise (Shapiro et al., 2005; Sabra et al., 2005b).
The autocorrelation of ambient seismic noise has been
used for daily monitoring fault zones (Wegler & Sens-
Schönfelder, 2006) and volcanoes (Sens-Schönfelder &
Wegler, 2006). The Green’s function extracted from am-
bient noise can also be used to model the response of a
system to a prescribed excitation without knowing the
in-situ properties of the system.

The extraction of the Green’s function from ambi-
ent noise has been described extensively for wave prop-
agation of acoustic or elastic waves without intrinsic
attenuation (e.g., (Curtis et al., 2006)-(Snieder et al.,
2006b)). In the absence of intrinsic attenuation, the
wave equation is invariant for time-reversal, and several
derivations of the reconstruction of the Green’s function
are indeed based on time-reversal invariance (Derode
et al., 2003a; Derode et al., 2003b; Bakulin & Calvert,
2004).

Many physical systems are not invariant under
time-reversal. Intrinsic attenuation breaks the symme-
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try for time-reversal for acoustic and elastic wave propa-
gation. Electrical conductivity breaks the time-reversal
symmetry of Maxwell’s equations. It has been shown
theoretically (@warning Citation ‘Snieder06Atten’ on
page 141 undefined) and observationally (Snieder &
Şafak, 2006; Snieder et al., 2006a) that the impulse re-
sponse of attenuating acoustic or elastic waves can be
retrieved from ambient fluctuations.

Time-reversal invariance is, however, not essential
for retrieving the Green’s function from ambient noise.
This can be seen by considering the diffusion equation

∂p(r, t)

∂t
= ∇ · (D(r)∇p(r, t)) + q(r, t) , (1)

where the diffusion constant D may depend on position
r. The diffusion equation is not invariant for time re-
versal because the operation t → −t changes the sign
of the first term. This equation is of practical impor-
tance because it describes conductive heat transport,
diffusive transport of tracers and contaminants, fluid
flow in porous media (Wang, 2000), electromagnetic
waves in conducting media (Jackson, 1975), and the en-
ergy transport of multiply scattered waves, e.g., (Sheng,
1995).

The derivation in this work is applicable to the fre-
quency domain, and the following Fourier convention is
used: p(r, t) =

R

p(r, ω) exp(−iωt)dω. With this conven-
tion, the diffusion equation is, in the frequency domain,
given by

iωp(r, ω) + ∇ · (D(r)∇p(r, ω)) = −q(r, ω) . (2)

Time-reversal corresponds, in the frequency domain, to
complex conjugation. The time-reversed diffusion equa-
tion is thus given by

−iωp∗(r, ω) + ∇ · (D(r)∇p∗(r, ω)) = −q∗(r, ω) , (3)

where the asterisk denotes complex conjugation. The
sign difference in the first terms of expressions (2) and
(3) is due to the lack of time-reversal invariance of the
diffusion equation.

It is shown here that the Green’s function for
the diffusion equation can be retrieved by correlating
noise recorded at several locations in a diffusive sys-
tem. One application of this technique is monitoring
flow in porous media, we therefore refer to the solution
of the diffusion equation as pressure, but the results are
equally valid for other diffusive systems. In the follow-
ing all expressions are given in the frequency domain,
and the frequency-dependence is not shown explicitly.

2 REPRESENTATION THEOREMS OF

THE CONVOLUTION AND

CORRELATION TYPE

Following Fokkema and van den Berg (Fokkema &
van den Berg, 1993; Fokkema & van den Berg, 1996),

we consider representation theorems of the convolu-
tion and correlation types by using expressions (2)
and (3) for two solutions pA and pB with source
terms qA and qB , respectively. The representation the-
orem of the convolution type is obtained by computing
R

(pB(eq. 2)A − pA(eq. 2)B) dV , where (eq. 2)A denotes
equation (2) for state A, and where

R

(· · · ) dV denotes
an integration over a volume V . This gives

R

(pB∇ · (D∇pA) − pA∇ · (D∇pB)) dV

=

Z

(pAqB − pBqA) dV . (4)

Note that in the subtraction the iωp-terms cancel. Ap-
plying an integration by parts to the left hand side of
expression (4), and using Gauss’s theorem gives

I

D (pB∇pA − pA∇pB) · dS =

Z

(pAqB − pBqA) dV ,

(5)

where the integral
H

(· · · ) · dS is over the surface that
bounds the volume V .

A representation theorem of the corre-
lation type can be obtained by evaluating
R

(p∗

B(eq. 2)A − pA(eq. 3)B) dV . Carrying out an
integration by parts gives

H

D (p∗

B∇pA − pA∇p∗

B) · dS + 2iω

Z

pAp∗

BdV

=

Z

(pAq∗B − p∗

BqA) dV . (6)

Note that now the iω-terms in expression (2) and (3)
and do not cancel, but combine to give the volume in-
tegral in the left hand side. The presence of this term
results from the lack of invariance of time-reversal of the
diffusion equation.

In the following integration over all space is used.
The contribution of the surface integral vanishes be-
cause the solution of the diffusion equation p(r, ω) van-
ishes exponentially as r → ∞. Therefore, the represen-
tation theorems (5) and (6) reduce to
Z

(pAqB − pBqA) dV = 0 , (7)

and
Z

(pAq∗B − p∗

BqA) dV = 2iω

Z

pAp∗

BdV . (8)

The contribution of the surface integral also vanishes
for a finite volume in case the solution satisfies ei-
ther Dirichlet conditions (p = 0), Neumann conditions
(∂p/∂n = 0), or mixed boundary conditions (∂p/∂n +
ap = 0) at the surface that bounds the volume.



Retrieving the Green’s function of the diffusion equation 143

3 REPRESENTATION THEOREMS AND

GREEN’S FUNCTIONS

The Green’s function for the diffusion equation is the
solution to equation (2) when the forcing is a delta func-
tion:

iωG(r, r0) + ∇ · (D(r)∇G(r, r0)) = −δ (r− r0) . (9)

Setting qA(r) = δ(r− r0) in expression (7) implies that
pA(r) = G(r, r0). For this choice of qA, expression (7)
reduces to

p(r) =

Z

G(r, r0)q(r0)dV0 , (10)

where the subscripts B are dropped. Alternatively, set-
ting

qA,B(r) = δ(r− rA,B) (11)

implies that

pA,B(r) = G(r, rA,B) . (12)

For this choice of the states A and B, expression (7)
reduces to the reciprocity relation:

G(rB , rA) = G(rA, rB) . (13)

Inserting the states (12) into expression (8) gives

G(rB , rA) − G∗(rA, rB) = 2iω

Z

G(r, rA)G∗(r, rB)dV .

(14)

Using reciprocity, this expression can also be written as

G(rA, rB , ω) − G∗(rA, rB , ω)

= 2iω

Z

G(rA, r, ω)G∗(rB , r, ω)dV . (15)

The left hand side of this expression corresponds, in
the time-domain, to the superposition of the Green’s
function and the time-reversed Green’s function. In the
following section we consider how this superposition can
be retrieved from the cross-correlation of the pressure
generated by uncorrelated sources.

4 RETRIEVING THE GREEN’S

FUNCTION

In order to show how the Green’s function can be ex-
tracted from the correlation of solutions generated by
random sources, let us consider spatially uncorrelated
sources with power spectrum |q(ω)|2 that does not de-
pend on location:

〈q(r1, ω)q∗(r2, ω)〉 = δ (r1 − r2) |q(ω)|2 , (16)

where the brackets 〈· · · 〉 denote the expectation value.
In practical applications this expectation value is usu-
ally replaced by using several non-overlapping time win-
dows (e.g., (Shapiro & Campillo, 2004; Sens-Schönfelder

& Wegler, 2006)). Multiplying equation (15) with
|q(ω)|2, the volume integral in that expression can be
written as

|q(ω)|2
Z

G(rA, r)G∗(rB , r)dV

=

Z

G(rA, r1)δ (r1 − r2) |q(ω)|2 G∗(rB , r2)dV1dV2

=

Z

G(rA, r1)〈q(r1, ω)q∗(r2, ω)〉G∗(rB , r2)dV1dV2

= 〈

„
Z

G(rA, r1)q(r1, ω)dV1

« „
Z

G(rB , r2)q(r2, ω)dV2

«

∗

〉 .

(17)

When we use this result and expression (10), equa-
tion (15) after multiplication with |q(ω)|2 is given by

(G(rA, rB , ω) − G∗(rA, rB , ω)) |q(ω)|2

= 2iω〈p(rA, ω)p∗(rB , ω)〉 , (18)

where p(r, ω) is the pressure at location r due to the
random forcing q(r, ω).

Equation (18) states that the superposition of the
Green’s function G(rA, rB , ω) and its time-reversed ver-
sion is, after multiplication with the power spectrum
of the excitation, equal to the correlation of the ran-
dom fields at locations rA and rB , respectively. The
pre-factor 2iω corresponds, in the time domain, with
−2d/dt. Since multiplication in the frequency domain
corresponds, in the time domain to convolution, expres-
sion (19) is, in the time domain, given by

(G(rB , rA, t) − G(rB , rA,−t)) ∗ Cq(t)

= −2
d

dt
〈p(rA, t) ⊗ p(rB, t)〉 (19)

where ∗ denotes convolution, ⊗ denotes correlation, and
Cq(t) is the autocorrelation of q(t).

5 DISCUSSION

The Green’s function of the diffusion equation can be
retrieved by cross-correlating measurements of a dif-
fusive system that is excited by random noise. Since
the diffusion equation is not invariant for time-reversal,
this shows that invariance for time-reversal is not es-
sential for the retrieval of the Green’s function by cross-
correlation.

For elastic and acoustic waves, the Green’s func-
tion can be extracted from waves that are excited ran-
domly at the surface that surrounds the volume (Wape-
naar, 2004; Wapenaar et al., 2005). This is not the case
for the diffusion equation. For a volume of radius R,
the surface area grows with R2, but for a homogeneous
medium the solution of the diffusion equation varies
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with the radius as R−1 exp(−
p

ω/2DR). The contribu-
tion of the surface integral therefore depends on the ra-
dius of the volume, and the derivation shown here holds
for an infinite volume (R → ∞), or for a finite volume
when Dirichlet, Neumann, or mixed boundary condi-
tions hold at the surface that bounds the volume. In
contrast to the retrieval of the Green’s function for non-
attenuating acoustic or elastic waves, where one needs
random sources on a surface that bounds the volume,
one needs random sources throughout the volume for
the retrieval of the Green’s function for the diffusion
equation.

The theory presented here provides an example
that time-reversal invariance is not required for the ex-
traction of the Green’s function from ambient fluctua-
tions. The diffusion equation governs physical systems
of practical importance, and the derivation presented
here makes it possible to retrieve the impulse response
of diffusive systems from measured fluctuations.

In this work the phrase pressure is used for the solu-
tion of the diffusion equation because the pore-pressure
in a porous medium follows the diffusion equation. The
theory of this work makes it possible to retrieve the
Green’s function for fluid flow in an aquifer or hydrocar-
bon reservoir from recorded pressure fluctuations. This
Green’s function can be used to estimate parameters
such as hydraulic conductivity, and it can be used to
model the fluid transport in the subsurface without ex-
plicit knowledge of the in-situ hydraulic conductivity.
Similarly, the impulse response for the diffusive trans-
port of contaminants can be retrieved from observa-
tions of ambient fluctuations in the concentration. The
Green’s function thus obtained can then be used to pre-
dict the diffusive transport of a localized release of the
contaminant.

Electromagnetic fields in a conducting media satisfy
the diffusion equation. This has been used in the magne-
totelluric method where the ambient fluctuations in the
electric and magnetic fields observed at one location are
used to determine the electrical conductivity (Weidelt,
1972). The theory presented here makes it possible to
retrieve the Green’s function for electromagnetic fields
for non-coincident points from observed electromagnetic
fluctuations.

The intensity of multiply scattered waves satisfies,
for late times, the diffusion equation. Controlled inten-
sity fluctuations of multiply scattered waves have been
used to create images of the spatial distribution of the
diffusion constant. This has found application in med-
ical imaging, e.g., (Yodh & Chance, 1995). Instead of
using controlled, spatially localized, sources for the in-
tensity of scattered waves, one may use the theory of
this work to use random spatially distributed sources
instead.

As always, the application of the theory to these,
and other, applications faces implementation issues.
The assumption that the sources of the ambient fluctu-

ations have a homogeneous spatial distribution may not
be satisfied in practical applications. For applications
where this condition is satisfied, the theory can be used
to extract the impulse response of diffusive systems
without using a controlled, localized, source.
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Snieder, R., & Şafak, E. 2006. Extracting the building re-
sponse using seismic interferometry; theory and appli-
cation to the Millikan Library in Pasadena, California.
Bull. Seismol. Soc. Am., 96, 586–598.

Snieder, R., Sheiman, J., & Calvert, R. 2006a. Equivalence
of the virtual source method and wavefield deconvolution
in seismic interferometry. Phys. Rev. E, 73, 066620.

Snieder, R., Wapenaar, K., & Larner, K. 2006b. Spurious
multiples in seismic interferometry of primaries. Geo-

physics, 71, SI111–SI124.
van Manen, D.J., Robertson, J.O.A., & Curtis, A. 2005.

Modelling of wave propagation in inhomogeneous media.
Phys. Rev. Lett., 94, 164301.

Wang, H.F. 2000. Theory of linear poroelasticity, with ap-

plications to geomechanics and hydrogeology. Princeton:
Princeton Univ. Press.

Wapenaar, K. 2004. Retrieving the elastodynamic Green’s
function of an arbitrary inhomogeneous medium by cross
correlation. Phys. Rev. Lett., 93, 254301.

Wapenaar, K., Fokkema, J., & Snieder, R. 2005. Retrieving
the Green’s function by cross-correlation: a comparison
of approaches. J. Acoust. Soc. Am., 118, 2783–2786.

Wapenaar, K., Slob, E., & Snieder, R. 2006. Unified Green’s
function retrieval by cross-correlation. Phys. Rev. Lett.,
97, 234301.

Weaver, R.L., & Lobkis, O.I. 2001. Ultrasonics without a
source: Thermal fluctuation correlations and MHz fre-
quencies. Phys. Rev. Lett., 87, 134301.

Weaver, R.L., & Lobkis, O.I. 2004. Diffuse fields in open
systems and the emergence of the Green’s function. J.

Acoust. Soc. Am., 116, 2731–2734.
Wegler, U., & Sens-Schönfelder, C. 2006. Fault zone mon-

itoring with passive image interferometry. Geophys. J.

Int., in press.
Weidelt, P. 1972. The Inverse Problem of Geomagnetic In-

duction. J. Geophys., 38, 257–289.
Yodh, A., & Chance, B. 1995. Spectroscopy and Imaging

with Diffusing Light. Physics Today, 48(3), 34–40.



146 R. Snieder


