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This paper appeared in the C++ Report, Novem-gperf translates am element list of user-specified key-
ber/December, 1998. An earlier version of this paper appeaveatds, called thdeyfilg into source code containingkaele-
in the2"? USENIX C++ Conference in San Francisco, Caliment lookup table and the following pair of functions:

fornia, April 1990. ) _ _
e hash uniquely maps keywords in thkeeyfile onto the

range Ok — 1, wherek > n. If & = n hash is con-
Abstract sidered aminimalperfect hash function.

_ . _ e in _word _set useshash to determine whether a par-
gperf is a “software-tool generating-tool” designed to au- tjcylar string of characters occurs in tkeyfile using at
tomate the generation of perfect hash functions. This paper most one string comparison in the common case.
describes the features, algorithms, and object-oriented design
and implementation strategies incorporatedjperf . It also gperf is designed to run quickly for keyfiles containing
presents the results from an empirical comparison betwessveral thousand keywordgperf generates efficient ANSI
gperf -generated recognizers and other popular techniquasd K&R C and C++ source code as output. It has been used to
for reserved word lookumperf is distributed with the GNU generate reserved keyword recognizers in lexical analyzers for
libg++ library and is used to generate the keyword recognizeveral production and research compilers and language pro-
ers for the GNU C/C++ compilers and the TAO CORBA IDktessing tools, including GNU C/C++ [3] and the TAO CORBA
compiler. IDL compiler [4].

This paper is organized as follows: Section 2 outlines

alternative static search set implementations and compares

1 Introduction them withgperf -generated hash tables; Section 3 presents
a sample input keyfile; Section 4 highlights design patterns

Perfect hash functions are a time and space efficient im Tnd implementation strategies used to devepprf ; Sec-
. . X P ; RiGh 5 shows the results from empirical benchmarks between
mentation ofstatic search setsA static search set is an ab-

stract data type (ADT) with operationsitialize, insert, and gperf -generated recognizers and other popular techniques

for reserved word lookup; Section 6 outlines the limita-

retrieve Static search sets are common in system SOftW%E)ﬁWS with gperf and potential enhancements: and Section 7

applications. Typical static search sets include compiler an .
interpreter reserved words, assembler instruction mnemonﬁ:rse,Sents concluding remarks.
shell interpreter built-in commands, and CORBA IDL compil-
ers. Search set elements are cakegwords Keywords are 2  Static Search Set Implementations
inserted into the set once, usually off-line at compile-time.

gperf is a freely available perfect hash function generatbhere are numerous implementations of static search sets.
written in C++ that automatically constructs perfect hash fun€ommon examples include sorted and unsorted arrays and
tions from a user-supplied list of keywords. It was designedlinked lists, AVL trees, optimal binary search trees, digital
the spirit of utilities likelex [1] andyacc [2] to remove the search tries, deterministic finite-state automata, and various
drudgery associated with constructing time and space efficieash table schemes, such as open addressing and bucket chain-

keyword recognizers manually. ing [5].



. . . . Y
Different static search structure implementations oﬁé‘},ﬁclude <stdio.h>
trade-offs between memory utilization and search time eﬁ/ﬁngude <s(tjri|rjg.h> _

H H HH * Command-line options:
ciency and predlgtgblhty. For example, anelement sorted ™ > pa-n--o-1-k23
array is space efficient. However, the average- and worst-caseN is_month */
time complexity for retrieval operations using binary searé@u

. . ct months {
on a sorted array is proportional €log n) [5]. char *name;
In contrast, chained hash table implementations locate a tdlﬂi gg{g’?e“

ble entry in constant,e., O(1), time on the average. However, int leap_days;
hashing typically incurs additional memory overhead for li '000
pointers and/or unused hash table buckets. In addition, h r,

1, 31, 31
ing exhibitsO(n?) worst-case performance [5]. Iggﬁgﬁry, 2.3 283,1 2931
A minimal perfect hash functids a static search set implepyil, - 4, 30, 30
mentation defined by the following two properties: may, 5, 31, 31
june, 6, 30, 30
The perfect property:  Locating a table entry requiré3(1) J:;%'ust A 3 3
time,i.e., at mostone string comparison is required to perforrseptember, 9, 30, 30
it ithi ; october, 10, 31, 31
keyword recognition within the static search set. hovember. 11, 30, 30
ecember, 12, 31, 31

The minimal property: The memory allocated to store they,

keywords is precisely large enough for the keyword setramd/* Auxiliary code goes here... */
laraer #ifdef DEBUG
ger. int main () {
o . . . char buf[BUFSIZ];
Minimal perfect hash functions provide a theoretically op- while (gets (ouf)) {

timal time and space efficient solution for static search sets Struct months *p = is_month (buf, strlen (buf));
.. printf ("%s is%s a month\n",

[5]. However, they can be hard to generate efficiently due to p ? p->name : buf, p ? ™ : " not");

the extremely large search space of potential perfect hashiny

functions. Therefore, the following variations are often moggngi

appropriate for many practical hashing applications, especially

those involving thousands of keywords:

o ) ) Figure 1: An Example Keyfile for Months of the Year
Non-minimal perfect hash functions: These functions do

not possess the minimal property since they return a range of
hash values larger than the total number of keywords in thecreasedunction-generation-timeNear-perfect hash func-
table. However, theylo possess the perfect property sincgons are useful when main memory is at a premium since they
at most one string comparison is required to determine iftend to produce much smaller lookup tables than non-minimal
string is in the table. There are two reasons for generatipgrfect hash functions.
non-minimal hash functions:
gperf can generate minimal perfect, non-minimal perfect,
1. Generation efficiency It is usually much faster to gener2nd near-perfect hash functions, as described below.
ate non-minimal perfect functions than to generatsi-
mal perfecthash functions [6, 7].

3 Interacting with GPERF

2. Run-time efficiency- Non-minimal perfect hash func-

tions may also execute faster than minimal ones Wh‘?ﬂis section explains how end-users can interact gyiterf .

searching for ele_ments that anetin the table becgugeBy default,gperf reads a keyword list and optionassoci-
thi. null ﬂentry will be Located more_frequently. Th_|s Sl't'ated attributesrom the standard inplkeyfile . Keywords
uation often oc(;:urs \(/jv en recogn_llzmgSprogrammmg e specified as arbitrary character strings delimited by a user-
guage reserved words in a compiler [8]. specified field separator that defaults,to . Thus, keywords
may contain spaces and any other ASCII characters. Associ-
Near-perfect hash functions: Near-perfect hash functionsated attributes can be any C literals. For example, keywords in
p p y p Yy

do not possess the perfect property since they allow ndéiigure 1 represent months of the year. Associated attributes in
unigue keyword hash values [9] (they may or may not possdsis figure correspond to fields struct months . They in-

the minimal property, however). This technique is a comprokude the number of leap year and non-leap year days in each

mise that trades increaseénerated-code-execution-tif@@ month, as well as the months’ ordinal numbéss, january =



1, february =2, ..., december = 12. the first non-comment line (lines beginning with#' char-
gperf ’s input format is similar to the UNIX utilitiedex  acter are treated as comments and ignored). This format style
andyacc . It uses the following input format: is useful for building keyword set recognizers that possess no
associated attributes. For example, a perfect hash function for
%% frequently occurring English wordsan efficiently filter out
Io<eoywords and optional attributes uninformative words, such as “the,” “as,” and “this,” from con-
rﬁjfiliary code sideration in &ey-word-in- contexndexmg application [5].
Again, as withlex andyacc , all text in the optional third

A pair of consecutivé/osymbols in the first column sepa-auxiliary codesection is included verbatim into the generated
rate declarations from the list of keywords and their option@¥tput file, starting immediately after the firta%and extend-
attributes. C or C++ source code and comments are includie@l to the end of the keyfile. It is the user’s responsibility to
verbatim into the generated output file by enclosing the text asure that the inserted code is valid C or C++. In the Fig-

side%{ 9%} delimiters, which are stripped off when the outputre 1 example, this auxiliary code provides a test driver that is
file is generatedg.g: conditionally included if the DEBUG symbol is enabled when

compiling the generated C or C++ code.

declarations and text inclusions

9%{
#include <stdio.h>
#include <string.h>

r C_%N;m?;af_'g-'ir,f_tjﬁzgf’gsg K 2.3 4 Design and Implementation Strate-
- iS_month *

%) - gies

An optional user-suppliedtruct  declaration may be Many articles describe perfect hashing [10, 7, 11, 12] and min-
placed at the end of the declaration section, just beforéd¥eimal perfect hashing algorithms [8, 13, 6, 14, 15]. Few articles,
separator. This feature enables “typed attribute” initializatioRewever, describe the design and implementation of a general-
For example, in Figure &truct months  is defined to have purpose perfect hashing generator tool in detail. This section
four fields that correspond to the initializer values given for thfescribes the data structures, algorithms, output format, and
month names and their respective associated vadugs, reusable components gperf .

struct months { gperf is written in~4,000 lines of C++ source code. C++
char *name; was chosen as the implementation language since it supports
:2% gggﬁsk_’er? data abstraction better than C, while maintaining C's efficiency
int leap_days; and expressiveness [16].

%,/;0% gperf ’sthree main phases for generating a perfect or near-

perfect hash function are shown in Figure 2 and described be-

Lines containing keywords and associated attributes app'é%f:
in the keywords and optional attributesection of the keyfile.
The first field of each line always contains the keyword itselfKEYFILE GPERF C/C++ CODE
left-justified against the first column and without surroun january int hash
ing quotation marks. Additional attribute fields can follo\ february (const char *str,
the keyword. Attributes are separated from the keyword g . unsigned int len)
from each other by field separators, and they continue up to december Asso_Values /..
“end-of-line marker,” which is the newline charactéin(”) by
default.

Attribute field values are used to initialize components of
the user-suppliedtruct  appearing at the end of the decla-
ration sectione.g:

Key List

Figure 2:gperf 's Processing Phases

1. Process command-line options, read keywords and at-

Jfgglrﬁ?r'g/ 3 21, > tributes (the input format is described in Section 3), and
march, 3, 31, 31 initialize internal objects (described in Section 4.1).

2. Perform a non-backtracking, heuristically guided search
As with lex andyacc , it is legal to omit the initial dec- for a perfect hash function (described in Section 4.2.1 and
laration section entirely. In this case, the keyfile begins with  Section 4.2.2).



3. Generate formatted C or C++ code according to thash function returns amnsigned int  value in the range
command-line options (output formatis described in Set-(k— 1), wherek = (maxzimum keyword hash value+1).
tion 4.3). When k = n a minimal perfect hash function is produced.

) ) ) For k larger thann, the lookup table'sload factoris 7
The following section outlinegperf ’s perfect hash func- ,,,mper of keywords

tion generation algorithms and internal objects, examines‘its totgl talé)l?dg’iszehash value is tvoically computed by combin
generated source code output, describes several reusable cl yw typically P y

components, and discusses the program'’s current Iimitati%;uﬁ ?ﬁ:%izae?ur\:gtlili)isa%f dgsthk:ézgo\f:vilgt]elctjsv:Egtcliya kev-
and future enhancements. ’ y

word'’s first index position plus the associated value of its last
index position to its length,e.:

4.1 Internal Objects
. . . ~ hash_value =
gperf s implementation centers around two internal objects: asso_values[keyword[0

the keyword signaturedist (Key_List ) and theassociated | asso valuesfkeyword[length - 1]]

. ) + length;
valuesarray @sso _values ), both of which are described
below. Other combinations are often necessary in practice. For exam-
ple, using the default hash function for C++ reserved words
4.1.1 The Keyword Signatures List causes a collision betweelelete anddouble . To resolve

- . . this collision and generate a perfect hash function for C++ re-

Every user-specified keyword and its attributes are read from o

: . : ; s(s:rved words, an additional character must be added to the
the keyfile and stored in a node on a linked list, Ca”(ie sig. as follows:
Key_List . gperf only considers a subset of each key- ysig. '
words’ characters while it searches for a perfect hash functigash_value =
The subset is called the “keyword signature keysig asso_values[keyword[0

- - + asso_values[keyword[1]]
The keysig represents the particular subset of characters assovalues[keyword[iength - 1]]

used by the automatically generated recognition function to+ length;
compute a keyword’s hash value. Keysigs are created and

cached in each node in thk@y _List when the keyfile is pro-  Developers can control the generated hash function’s con-
cessed initially bygperf . tents using thé-k"  option to explicitly specify the keyword

index positions used as keysig elementggperf . The de-
faultis"-k 1,$" , where the$' represents the keyword’s
final character.

Theassociated valuesiray,asso _values ,is an objectthat Table 1 shows the keywords, keysigs, and hash value for
is closely related to keysigs. In fact, it is indexed by keysigach month shown in the Figure 1 keyfile. These keysigs were
characters. The array is constructed internallygperf and

4.1.2 Associated Values Array

referenced frequently whilgperf searches for a perfect hash Keyword || Keysig | Hash Value
function. january an 3
During the C/C++ code generation phasegplerf , an february be 9
ASCII representation of the associated array is output in the march ar 4
generated hash function astatic  local array. This array april pr 2
is declared asi_int asso _values[MAX _ASCIl _SIZE] . may ay 8
. . june nu 1
When searching for a perfect hash functigperf repeatedly iuly U 6
reassigns different values to certaigso _values elements august qu 7
specified by keysig entries. At every step during the search september||  ep 0
for the perfect hash function solution, theso _values ar- october ct 10
ray’s contents represent the current associated vatwedig- november ov 11
uration. december ce 5

When configured to produce minimal perfect hash functions

(which is the default)gperf searches for an associated val- ) )
ues configuration that maps allkeysigs onto non-duplicated'@Ple 1: Keywords, Keysigs, and Hash Values for the Months

hash values. A perfect hash function is produced vgpeerf ~ =xample

ﬁnds a anﬁguration that assigns each keysig to a l_mique locarThe -n"  option instructsyperf not include the length of the keyword
tion within the generated lookup table. The resulting perfeaien computing the hash function.




produced using th&k2,3 option. union of the colliding keywords’ keysigs. The disjoint union
Keysigs aremultisetssince they may contain multiple oc-of two keysigs{ A} and{B} is definedagAuUB} - {ANB}.

currences of certain characters. This approach differs fronilo illustrate the use of disjoint unions, consider the key-

other perfect hash function generation techniques [8] that omlgrds january and march from Figure 1. These key-

consider first/last characte#slength when computing a key-words have the keysig&n” and“ar” , respectively,
word’s hash value. as shown in Table 1. Thus, whexsso _values['a’] ,
The hash function generated laperf properly handles asso _values['n’] , andasso _values['r'] all equal

keywords shorter than a specified index position by skippifg a collision will occur duringgperf ’s executior? To re-
characters that exceed the keyword’s length. In addition, ussssve this collision,gperf only considers changing the as-
can instrucgperf to includeall of a keyword’s characters insociated values fon’ and/or’r . Changinga’ by any
its keysig via thé'-k*"  option. increment cannot possibly resolve the collision sitate oc-
curs the same number of times in each keysig.

By default, allasso _values are initialized to 0. When a
collision is detectedperf increases the corresponding asso-
This subsection describes hgperf generates perfect hastciated value by a “jump increment.” The command-line option

4.2 Generating Perfect Hash Functions

functions. "-j"  can be used to increase the jump increment by a fixed
or random amount. In general, selecting a smaller jump incre-

421 Main Algorithm ment,e.g, "-j 1" decreases the size of the generated hash
table, though it may increagmperf 's execution time.

gperf iterates sequentially through the list okeywords, In the months example in Figure 1, thg 1"  op-

1 < i < n, wheren equals the total number of keywordstion was used. Thereforegperf quickly resolves the
During each iteratiorgperf attempts to extend the set otollision betweenjanuary and march by incrementing
uniquely hashed keywords by 1. It succeeds if the hash vafisso _value['n’] by 1. As shown in Table 2, this is its
computed for keyworddoes not collide with the previods-1 final value.

uniquely hashed keywords. Figure 3 outlines the algorithm. gperf generates a perfect hash function if increments to
the associated values configuration shown in Figure 3 and de-
scribed above eliminate all keyword collisions when the end
oftheKey _List isreached. Theorst-caseasymptotic time-
complexity for this algorithm i£)(n31), wherel is the number

for i < 1tonloop
if hash (i*" key) collides with anyhash (15¢ key... (i — 1)t key)

then
modify disjoint union of associated values to resolve siolis of characters in the largest disjoint union between colliding
based upon certain collision resolution heuristics keyword keysigs. After experimenting witjperf on many
end if keyfiles it appears that such worst-case behavior occurs infre-
end loop quently in practice.
Many perfect hash function generation algorithms [6, 7] are
Figure 3: Gperf's Main Algorithm sensitive to the order in which keywords are considered. To

mitigate the effect of orderingyperf will optionally reorder

The algorithm terminates and generates a perfect hash fffywords in thekeyList  if the "-0"  command-line op-
tion wheni = n and no unresolved hash collisions remaifion iS enabled. This reordering is done in a two-stage pre-

Thus, thebest-casasymptotic time-complexity for this algo-Pass [8] beforgperf invokes the main algorithm shown in
rithm is linear in the number of keywordise., (). Figure 3. First, theKey_List is sorted by decreasing fre-
guency of keysig characters occurrence. The second reorder-

ing pass then reorders théey List so that keysigs whose
values are “already determined” appear earlier in the list.

As outlined in Figure 3gperf attempts to resolve keyword These two heuristics help to prune the search space by
hash collisions by incrementing certain associated values. T&dling inevitable collisions early in the generation process.

following discusses the strategigserf uses to speedup col-gperf will run faster on many keyword sets, and often de-
lision resolution. crease the perfect hash function range, if it can resolve these

collisions quickly by changing the appropriate associated val-

L . . . ues. However, if the number of keywords is large and the user
Disjoint union: To avoid performing unnecessary work,

gperf i_S selective V_Vhen changing aSSOCiat?d Valu_e_s- _ IN parzyote that since tha-n"  option is used in the months example, the dif-
ticular, it only considers characters comprising wisjoint ferent keyword lengths are not considered in the resultahtiunction.

4.2.2 Collision Resolution Strategies




wishes to generate a near-perfect hash function, this reorder-
ing sometimedncreasegperf 's execution time. The reason
for this apparent anomaly is that collisions begin earlier and
frequently persist throughout the remainder of keyword pro-
cessing [8, 9].

4.3 Generated Output Format

Figure 4 depicts the C code produced from tiyeerf -
generated minimal perfect hash function corresponding to the
keyfile depicted in Figure 1. Execution time was negligible

ChKeysitg As\foldated F(;eq”ency of on a Sun SPARC 20 workstatione., 0.0 user and 0.0 sys-
ar;c ers a2ues ccu;rence tem time. The following section uses portions of this code as
b 9 1 a working example to illustrate various aspectsgperf ’s
o 5 > generated output format.
‘e’ 0 3
g 7 1 4.3.1 Generated Symbolic Constants
T’ 6 1
" 1 2 gperf s output contains the following seven symbolic con-
o 1 1 stants that summarize the results of applying the algorithm in
P’ 0 2 Figure 3 to the keyfile in Figure 1:
T 2 2 enum
't 5 1 TOTAL_KEYWORDS = 12,
w 0 3 MIN_WORD_ LENGTH = 3,
o MAX_WORD_LENGTH = 9,
\ 0 1 MIN_ HASH_VALUE = 0,
y' 6 1 MAX_HASH_VALUE = 11,

HASH_VALUE_RANGE = 12,

DUPLICATES = 0

Table 2: Associated Values and Occurrences for Keysig Ct‘}ar—

acters gperf produces aminimal perfecthash function when
HASH_VALUE _RANGE = TOTAL_KEYWORDS and DUPLI-

Search heuristics: gperf uses several search heuristics t8ATES = 0. A non-minimal perfecthash function oc-
reduce the time required to generate a perfect hash functiéfs WhenDUP'—'CATE§ = 0 and HASH_VALUE _RANGE >
For instance, characters in the disjoint union are sorted by T®RTAL-KEYWORDS.  Finally, a near-perfecthash function
creasing frequency of occurrence, so that less frequently u86gurs WhenbUPLICATES > O and DUPLICATES < TO-
characters are incremented before more frequently used chék-KEYWORDS.
acters. This strategy is based on the assumption that incre-
menting infrequently used charactdirst decreases the nega4.3.2 The Generated Lookup Table
tive impact on keywords that are already uniquely hashed wjth L ' : .
P y y uniquely Igé/ gefault, whengperf is given a keyfile as input it at-

respect to each other. Table 2 shows the associated values an .
f : . %empts to generate a perfect hash function that uses at most
requency of occurrences for all the keysig characters in the . : . )

one string comparison to recognize keywords in the lookup ta-
months example. : .

ble. gperf can implement the lookup table as either an array
oraswitch statement, as described below.

asso _values array lookup table: gperf generates an
array by default, emphasizing run-time speed over minimal
memory utilization. This array is calledsso _values , as
shown in thehash function in Figure 4. Thasso _values
array is used by the two generated functions that compute hash
values and perform table lookup.

gperf also provides command-line options that allow de-
velopers to select trade-offs between memory size and execu-
tion time. For example, expanding the range of hash values



#include <stdio.h>

#include <string.h>

/* Command-line options:
C-p-a-n-t-o-1-k23
-N is_month */

struct months {
char *name;
int number;
int days;
int leap_days;

5

enum {
TOTAL_KEYWORDS = 12,
MIN_WORD_LENGTH = 3,
MAX_WORD_LENGTH = 9,
MIN_HASH_VALUE = 0,
MAX_HASH_VALUE = 11,
HASH_VALUE_RANGE = 12,
DUPLICATES = 0

h

static unsigned int ) )
hash (const char *str, unsigned int len)

static const unsigned char asso_values[] =

12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 2, 9,
12, 0, 12, 7, 12, 12, 12, 12, 6, 12,
1, 11, 0, 12, 2,12, 5 0, O
12, 6, 12, 12, 12, 12, 12, 12,

return asso_values[str[2]] + asso_values[str[1]];

const struct months * ) )
is_month (const char *str, unsigned int len)

static const struct months wordlist[] =

"september”, 9, 30 30}
"june”, 6 30},
“april", 4, 30 '30},
"January, 1, 31, 31},
“march”, 3, 31, 31},
"december", 12, 31, 31},
"july”, 7,31, 31},
"august”, 8, 31, 31},
"may", 5, 31 31},
“february”, 2, 28, 29}
"october", 10 31
"november"”, 11 30 3}

I}f (len <= MAX_WORD_LENGTH
&& len >= MIN_WORD_LENGTH) {
int key = hash (sfr, len);
if (key <= MAX_HASH_VALUE
&& key >= MIN_FASH_VALUE) {
char *s = wordlist[key].name;
if (*str == *s
&& 'strcm (str + 1, s + 1))
return &wordlist[key];

return O;

produces a sparser lookup table. This generally yields faster
keyword searches but requires additional memory.

The array-basedsso _values scheme works best when
the HASH_VALUE _RANGE is not considerably larger than the
TOTAL_KEYWORDS. When there are a large number of key-
words, and an even larger range of hash values, however, the
wordlist  array inis _month function in Figure 4 may be-
come extremely large. Several problems arise in this case:

e The time to compile the sparsely populated array is ex-
cessive;

e The array size may be too large to store in main memory;

¢ Alarge array may lead to increased “thrashing” of virtual
memory in the OS.

Switch-based lookup table: To handle the problems de-
scribed aboveggperf can also generate one or masgitch
statements to implement the lookup table. Depending on the
underlying compiler'sswitch  optimization capabilities, the
switch -based method may produce smahledfaster code,
compared with the large, sparsely filled array. Figure 5 shows
how theswitch  statement code appears if the months exam-
ple is generated witgperf 's"-S 1" option.

const struct months *rw;

switch (key)
{

case 0: rw = &wordlist[0]; break;
case 1: rw = &wordlist[1]; break;
case 2: rw = &wordlist[2]; break;
case 3: rw = &wordlist[3]; break;
case 4: rw = &wordlist[4]; break;
case 5: rw = &wordlist[5]; break;
case 6: rw = &wordlist[6]; break;
case 7: rw = &wordlist[7]; break;
case 8: rw = &wordlist[8]; break;
case 9: rw = &wordlist[9]; break;
case 10: rw = &wordlist[10]; break;
case 11: rw = &wordlist[11]; break;
default: return O;

1

if (*str == *rw->name

&& !strcmp (str + 1, rw->name + 1))

return rw;

return O;

}

Figure 5: Theswitch -based Lookup Table

Since the months example is somewhat contrived, the trade-
off between the array arsWitch approach is not particularly
obvious. However, good C++ compilers generate assembly
code implementing a “binary-search-of-labels” scheme if the
switch statement'sase labels are sparse compared to the

Figure 4. Minimal Perfect Hash Function Generated Bynge between the smallest and largeste labels [3]. This

gperf

technique can save a great deal of space by not emitting un-
necessary empty array locations or jump-table slots. The exact



time and space savings of this approach varies according toMiax _HASH_VALUE, and MIN_HASH_VALUE. This check
underlying compiler’s optimization strategy. quickly eliminates many non-month names from further con-
gperf generates source code that constructs the arrayswleration. If users know in advance that all input strings are
switch statement lookup table abmpile-time Therefore, valid keywords,gperf will suppress this addition checking
initializing the keywords and any associated attributes requiveish the"-O" option.
little additional execution-time overhead when the recognizerlf gperf is instructed to generate an array-based lookup
function is run. The “initialization” is automatically per-table the generated code is quite condise, once it is deter-
formed as the program’s binary image is loaded from disk inteined that the hash value lies within the proper range the code

main memory. is simply:
4.3.3 The Generated Functions t char *s = wordlist[key];

if (*s == *str
gperf generates a hash function and a lookup function. By && Istremp (str + 1, s + 1))
default, they are callettash andin _word _set , although retumn: s;
a different name may be given fam _word _set using the
"-N" command-line option. Both functions require two ar- The *s == *str  expression quickly detects when the
guments, a pointer to a NUL-terminatedlo{ ) array of computed hash value indexes into a “null” table slot sitee
charactersconst char *str , and a length parameteris the NUL character{0’ ) in this case. This check is useful
unsigned int len : when searching a sparse keyword lookup table, where there is

The generated hash functionfash ):  Figure 4 shows the & higher probability of locating a null entry. If a null entry is
hash function generated from the input keyfile shown in Figocated, there is no need to perform a full string comparison.
ure 1. The command-line optidrk 2,3"  was enabled for Since the months’ example generates a minimal perfect
this test. This instructeash to return anunsigned int hash function null enties never appear. The check is still
hash value that is computed by using the ASCII values of t#&eful, however, since it avoids calling the string comparison
27 and 3" characters from itstr  argument into the local function when thestr s first letter does not match any of the
static  arrayasso _values .3 The two resulting numberskeywords in the lookup table.
are added to calculat#r 's hash value.

Theasso values array is generated byperf usingthe 4 4 Reusable Components and Patterns
algorithm in Section 4.1.2. This array maps the user-defined
keywords onto unique hash values. Aliso _values array Figure 6 illustrates the key components usedgerf s
entries with values greater thamax _HASH_VALUE (i.e., all software architecture.gperf is constructed from reusable
the “12's” in theasso _values array in Figure 4) represent
ASCII characters that do not occur as either the second or third - —~_ _ _ _ f N

characters in the months of the year. ihemonth function ) ASSO /. G )
in Figure 4 uses this information to quickly eliminate input / ( EN

[
strings that cannot possibly be month names. \ VALUES \ PERF \\
. R S \
Generated lookup function (n _word _set ): The \’ N ~o -
in _word _set function is the entry point into the perfect ,/ KEY /’ =

hash lookup function. In contrast, thesh function is

declared static and cannot be invoked by application GPERK \ LIST
programs directly. If the function’s first parametehar COMPONENTS

*str , is a valid user-define keyword) _word _set returns

a pointer to the corresponding record containing each keyword ACE

and its associated attributes; otherwise, a NULL pointer €OMPONENTS /\

|

PN - | BOOL |

returned. S N |
Figure 4 shows how thén _word _set function can be / READ /’ /HASH /’ ) LéBB;A‘_{_!

renamed tois _month using the"-N" command-line op- C )
tion. Note howgperf checks thelen parameter and \BUFFEIS/ \ TABLE / \SINGLETON/
~ Ve \ /

resulting hash function return value against the symbolic ~—~ ~S—- ~.__~—"~
constants forMAX _WORD_LENGTH, MIN_WORD_LENGTH,

3Note that C arrays start at 0, str[1] s actually the second character. Figure 6:gperf 's Software Architecture



components from the ACE framework [17].

Each comperise. Whenever a duplicate is detected, teget method

nent evolved “bottom-up” from special-purpose utilities intis called to reset all the array elements back to “empty” for
reusable software components. Several noteworthy reusabisuing iterations of the search process.

classes include the following components:

ACE _Bool Array: Earlier versions ofjperf were instru-
mented with a run-time code profiler on large input ke
files that evoke many collisions. The results showed tHa
gperf spent approximately 90 to 99 percent of its time i
a single function when performing the algorithm in Figure

This one functionGen_Perf::affects

termines how changes to associated values affect previo
hashed keywords. In particular, it identifies duplicate hash v
ues that occur during program execution.

Since this function is called so frequently, it is im
portant to minimize its execution overhead.

If many hash collisions occur, theset method is exe-
cuted frequently during the duplicate detection and elimina-
ion phase ofgperf ’s algorithm. Processing large keyfiles,
g containing more than 1,000 keywords, tends to require
a maximum hash valué that is oftenmuchlarger thann,

:§he total number of keywords. Due to the large range, it be-

comes expensive to explicitly reset all elementsaimay _

LE’ k to empty, especially when the number of keywords actu-

gty checked for duplicate hash values is comparatively small.
To address this issugperf uses a pattern callegener-
ation numberingwhich optimizes the search process by not

ThereforgXplicitly reinitializing the entire array. Generation number-

gperf employs a novel boolean array component call¥Rp operates as follows:

ACEBool _Array to expedite this process. The C++ inte
face for theACEBool _Array class is depicted in Figure 7.
Since only one copy is requireBOOLARRANMSs typedef

class ACE\_Bool_Array

{

public:
/I Constructor.
ACE\_Bool_Array (void);

/I Returns dynamic memory to free store.

“ACE_Bool_Array (void);

/I Allocate a k element dynamic array.
init (u_int Kk);

/I Checks if <value> is a duplicate.
int in_set (u_int value);

/I Reinitializes all set elements to FALSE.

void reset (void);

private:
/I Current generation count.
u_short generation_number_;

/I Dynamically allocated storage buffer.
u_short *array_;

/I Length of dynamically allocated array.
u_int size_;

/I Create a Singleton.
typedef ACE_Singleton <ACE_Bool_Array,

ACE_Null_Mutex>

BOOL_ARRAY;

r-

1. TheBool _Array init method dynamically allocates
space fork unsigned short integers and pointarray -

at the allocated memory. ARt array elements irarray _
are initially assigned O (representing “empty”) and the
generation _number _ counteris setto 1.

2. gperf uses thein _set method to detect dupli-
cate keyword hash values. If the number stored at the
hash(keyword) index position inarray _ is not equal to

the current generation number, then that hash value is not al-
ready in the set. In this case, the current generation number
is assigned immediately to thash(keyword) array loca-

tion, thereby marking it as a duplicate if it is referenced subse-
guently during this particular iteration of the search process.

3: If array _[hash(keyword)] is equal to the genera-
tion number, a duplicate exists and the algorithm must try to
modify certain associated values to resolve the collision.

4. If aduplicate is detected, tra@ray _ elements are reset

to empty for subsequent iterations of the search process. The
reset method simply incrementgeneration _number _

by 1. The entire k array locations are only reinitialized
to 0 when the generation number exceeds the range of an
unsigned short integer, which occurs infrequently in
practice.

A design strategy employed throughayperf 's imple-

Figure 7: The ACE Boolean Array Component mentation is “first determine a concise set of operations and
to be a Singleton using theCESingleton  adapter. This interfaces, then successively tune the implementation.” In the
template automatically transforms a class into a Singleton Gase of generation numbering, this policy of optimizing per-
ing the Singleton and Adapter patterns [18]. formance, without compromising program clarity, decreased

Thein _set method efficiently detects duplicate keywor@perf 's execution-time by an average of 25 percent for large
hash values for a given associated values configuration. Itkgyfiles, compared with the previous method that explicitly

turns non-zero if a value is already in the set and zero othegeroed out” the entire boolean array’s contents on every
reset



ACE _ReadBuffer: Each line ingperf ’s input contains Input File Identifiers | Keywords |  Total
a single keyword followed by any optional associated at- | ET++.in 624,156| 350,466| 974,622
tributes, ending with a newline characteAn(”). The NIH.in 209,488 | 181,919 391,407
Read_Buffer:read ~ member function copies an arbitrar- gt+.in 278,319 88,169 | 366,488
ily long "\n ’-terminated string of characters from the input idraw.in 146,881 74,744 | 221,625
into a dynamically allocated buffer. A recursive auxiliary cfront.in 98,335 51,235] 149,570
function,Read _Buffer::rec _read , ensures only one call libg++.in 69,375 50,656 | 120,031

IS made to theew opeator for eat_:h input line realde:, there Table 4: Total Identifiers and Keywords for Each Input File
is no need to reallocate and resize buffers dynamically. This

class has been incorporated into the GNU libgstream li-

” ’ Object Byte Count

brary [19] and the ACE network programming tookit [17]. File fext daia bss | dynamic otal
. . . . control.o 88 0 0 0 88

ACE _HashTable: This class provides a search set impl&=pinary o 1008 288 0 0 129
mented via double hashing [5]. During program initializatigpgperf.o 2,672 0 0 0 2,672
gperf uses an instance of this class to detect keyfile entrjeshash.o 1,608 304 8 1,704 3,624
that are guaranteed to produce duplicate hash values. TheRgricia.o 3,936 0 0 2,272 | 6,208
duplicates occur whenever keywords possess both identje&imP1ex-0 7,920 56 | 16,440 0| 24416
Pl , . y P Yle.o 79,472 0 0 0| 79,472
keysigs and identical lengths,g, thedouble anddelete [ fexo 3,064 | 98,104 | 16,440 0 [ 117,808

collision described in Section 4.1.2. Unless the user speci-
fies that a near-perfect hash function is desired, attempting to
generate a perfect hash function for keywords with duplicate
keysigs and identical lengths is an exercise in futility!

Table 5: Size of Object Files in Bytes

with the GNU libg++ distribution.

flex.exe: a flex -generated recognizer created with the
"-f* (no table compaction) option. Note that both the

flex.exe and trie.exe are uncompacted, deterministic finite

Tool-generated recognizers are useful from a software engizomata (DFA)-based recognizers. Not using compaction
neering perspective since they reduce development time aidimizes speed in the generated recognizer, at the ex-
decrease the likelyhood of development errors. However, “Féhse of much larger tables. For example, the uncompacted
are not necessarily advantageous for production applicatigas exe program is almost 5 times larger than the com-

unless the resulting executable code speed is competitive "ﬁié}étecbomp-flex.exe programj.e., 117,808 bytes versus
typical alternative implementations. In fact, it has been a3 416 bytes.

gued that there arao circumstances where perfect hashing

proves worthwhile, compared with other common static sea@perf.exe: agperf -generated recognizer created with the

set methods [20]. “a-D-S1-k1%" options. These options mean
To compare the efficacy of thgperf -generated perfect 9enerate ANSI C prototypes-a” ), handle duplicate key-

hash functions against other common static search set imp{grds (-D" ), via a single switch statemerit§ 1" ), and

mentations, seven test programs were developed and execﬁl@lée"the keysig be the first and last character of each key-
on six large input files. Each test program implemented tH@rd.

same function: a recognizer for the reserved words in GNash.exe: a dynamic chained hash table lookup function
g++ . The function returns 1 if a given input string is identisimilar to the one that recognizes reserved words for AT&T's

fied as a reserved word and 0 otherwise. cfront 3.0 C++ compiler. The table’s load factor is 0.39, the
The seven test programs are described below. They &sgne as itisircfront 3.0.

listed by increasing order of execution time, as shown in Ta- ] _ .
ble 3. The input files used for the test programs are descri@ificia.exe:  a PATRICIA trie recognizer, where PATRICIA

in Table 4. Table 5 shows the number of bytes for each tégqnds for “Practical Algorithm to Retrieve Information Coded

program'’s compiled object file, listed by increasing size (bo!trﬁAIphanumeric.” A complete PATRI,CA trie imp_lementation
patricia.o andchash.o use dynamic memory, so theilS available in the GNU libg++ class library distribution [19].

overall memory usage depends upon the underlying free stoiigary.exe: a carefully coded binary search function that
mechanism). minimizes the number of complete string comparisons.

5 Empirical Results

trie.exe: a program based upon an automatically generatmmmp-flex.exe: a flex -generated recognizer created with
table-driven search trie created by thie-gen utility included the default"-cem” options, providing the highest degree
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Executable Input File

Program ET++.in NIH.in g++.in idraw.in cfront.in libg++.in
control.exe 38.8/1.00 | 15.4/1.00 | 15.2| 1.00 8.9]1.00 5.7]1.00 4.5/ 1.00
trie.exe 59.1| 1.52 | 23.8/1.54 | 23.8| 1.56 13.7] 1.53 8.6|1.50 7.0] 1.55
flex.exe 60.5/1.55 | 23.9]1.55 | 23.9]1.57 13.8| 1.55 8.9| 1.56 7.1]1.57
gperf.exe 64.6/1.66 | 26.0|/1.68 | 25.1| 1.65 14.6| 1.64 9.7| 1.70 771171
chash.exe 69.2|1.78 | 27.5/1.78 | 27.1| 1.78 15.8] 1.77 10.1| 1.77 8.2]1.82
patricia.exe | 71.7]1.84 | 28.9/1.87 | 27.8]/1.82 | 16.3/1.83 10.8[1.89 8.7/ 1.93
binary.exe 72.5/1.86 | 29.3]1.90 | 28.5/1.87 | 16.4|1.84 10.8|1.89 8.8]1.95
comp-flex.exe|| 80.1|2.06 | 31.0/ 2.01 | 32.6|2.14 18.2] 2.04 11.6| 2.03 9.2]2.04

Table 3: Raw and Normalized CPU Processing Time

of table compression. Note the obvious time/space tradiechnique is very consistent across the input test file suite, il-
off between the uncompactdtex.exe (which is faster lustrating that the timing results are representative for different
and larger) and the compactedmp-flex.exe (which is source code inputs.

smaller and much slower). Several conclusions result from these empirical bench-

marks:
In addition to these seven test programs, a simple C++ pro- _
gram calledcontrol.exe  measures and controls for I/O!IMe/space tradeoffs are common: The uncompacted,

DFA-based trie tfie.exe ) and flex flex.exe ) imple-

overheadi.e. 3 .
mentations are both the fastest and the largest implementa-
int main (void) { tions, illustrating the time/space trade-off dichotomy. Appli-
char buf[BUFSIZ]; cations where saving time is more important than conserving
while (]gets (bu?}) space may benefit from these approaches.
printf ("%s", buf);

gperf can provide the best of both worlds: While the
trie.exe andflex.exe  recognizers allow programmers

All of the above reserved word recognizer programs wel@ rade-off space fortime, thgperf -generated perfect hash
compiled by the GNU g++ 2.7.2 compiler with tHeO?2 function gperf.exe  is comparatively timeand space ef-

finline-functions" options enabled. They were theficient.  Empirical support for this claim can be calculated

tested on an otherwise idle SPARCstation 20 model 712 witfim the data for the programs that did not allocate dy-
128 megabytes of RAM. namic memoryj.e, trie.exe , flex.exe , gperf.exe

All six input files used for the tests contained a |ar%_nary.exe  andcomp-flex.exe . The number of iden-
number of words, both user-defined identifiers and g++ lers scanned per-second, per-byte of executable program
served words, organized with one word per line. This fo?—\_'erhead was 5.6 fogperf.exe , but less than 1.0 for
mate was automatically created by running thiIX com- trie.exe flex.exe , andcomp-flex.exe
mand"tr -cs A-Za-z_ "\012™ on the preprocessed Sincegperf generates a stand-alone recognizer, it is eas-
source code for several large C++ systems, including tieincorporated into an otherwise hand-coded lexical analyzer,
ET++ windowing toolkit ET++.in ), the NIH class library such as the ones found in the GNU C and GNU C++ compiler.
(NIH.in ), the GNU g++ 2.7.2 C++ compilegé+.in ), the It is more difficult, on the other hand, to partially integrate
idraw figure drawing utility from the InterViews 2.6 distri-flex or lex into a lexical analyzer since they are gener-
bution (draw.in ), the AT&T cfront 3.0 C++ compiler ally used in an “all or nothing” fashion. Furthermore, neither
(cfront.in ), and the GNU libg++ 2.8 C++ class libranfflex norlex are capable of generating recognizers for ex-
(libg++.in ). Table 4 shows the relative number of idertremely large keyfiles because the size of the state machine is
tifiers and keywords for the test input files. too big for their internal DFA state tables.

Table 3 depicts the amount of time each search set imple-
mentation spent executing the test programs, listed by increas- T
ing execution time. The first number in each column reper}é- Current Limitations and Future
sents the user-time CPU seconds for each recognizer. The sec- \WOrk
ond number is “normalized execution time.2., the ratio of
user-time CPU seconds divided by tbentrol.exe pro- gperf has been freely distributed for many years along with
gram execution time. The normalized execution time for eattte GNU libg++ library and the ACE network programming
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toolkit at www.cs.wustl.edu/"schmidt/ACE.html . comparisons within &ase label to handle non-unique key-
Although gperf has proven to be quite useful in practicayord hash values.

there are several limitations. This section describes the trade~or example, ifgperf is run with the default keysig selec-
offs and compromises with its current algorithms and outlinden command-line optiori-k 1,$"  on a keyfile contain-
how it can be improved. Sinogperf is open source soft-ing C++ reserved words, a hash collision occurs between the
ware, however, it is straightforward to add enhancements afelete anddouble keywords, thereby preventing a perfect
extensions. hash function. Using theD" option produces a near-perfect
hash function, that allows at most one string comparison for
all keywords exceptiouble , which is recognized after two
comparisons. Figure 8 shows the relevant fragment of the gen-

Several other hash function generation algorithms utilize sogf@ted near-perfect hash function code.
form of backtracking when searching for a perfect or minimal
perfect solution [6, 8, 9]. For example, Cichelli’s [8] algorithm ¢nar *w:
recursively attempts to find an associated values configuration.
that uniquely maps alk keywords to distinct integers in the fYV'tCh (hash (str, lem) {
rangel..n. In his scheme, the algorithm “backs up” if com- case 46:
puting the current keyword’s hash value exceeds the minimal irfw(*;r defete’s
perfect table size constraint at any point during program exe- && Istrcmp (str + 1, rw + 1, len - 1))
cution. Cichelli’'s algorithm then proceeds by undoing selected Mre:t“.fgoﬂ‘“b’l;e...
hash table entries, reassigning different associated values, andif (‘str == *rw
continuing to search for a solution. s !rf,\t,tcmp (str + 1, w + 1, len - 1))

Unfortunately, the exponential growth rate associated with return 0;
the backtracking search process is simply too time consuméase _ 47 _
. . . . . . rw default”; break;
ing for large keyfiles. Even “intelligently-guided” exhaustive case  49:
search quickly becomes impractical for more than several hun- ™w = "void"; break;
dred keywords. .

To simplify the algorithm in Figure 3, and to improve if (str == *rw

&& l!strcmp (str + 1, rw + 1, len - 1))

average-case performangperf does not backtrack when return rw:
keyword hash collisions occur. Thugperf may process the  return 0;
entire keyfile inputwithoutfinding a unique associated value
configuration for every keyword, even if one exists. If a unique

configuration is not found, users have two choices:

6.1 Tradeoffs and Compromises

Figure 8: The Near-Perfect Lookup Table Fragment

1. They can rumgperf again, enabling different options in h A s;:mp:}le Imc—;ar search||s pgrforme_d on duphcahte_ keyf\;vorQS
search of a perfect hash function: or that hash to the same location. Linear search is effective

since most keywords still require only one string comparison.
2. They canguaranteea solution by instructingiperf to  sypport for duplicate hash values is useful in several circum-
generate anear-perfechash function. stances, such as large input keyfilegy( dictionaries), highly
. ) similar keyword setsd.g, assembler instruction mnemonics),
Near-perfect hash functions perngperf to operate on anq secondary keys. In the latter case, if the primary keywords
keyword sets that it otherwise could not handieg, if the gre gistinguishable only via secondary key comparisons, the
keyfile contains duplicates or there are a very large number gk, may edit the generated code by hand or via an automated

keywords. Although the resulting hash function is no longggript to completely disambiguate the search key.
“perfect,” it handles keyword membership queries efficiently

since only a small number of duplicates usually renfain. )
Both duplicate keyword entries and unresolved keywofi2 Enhancements and Extensions
collisions are handled by generalizing tisvitch -based
scheme described in Section 3gperf treats duplicate
keywords as members of agquivalence clasand gener-
atesswitch statement code containing cascadirelse

Fully automating the perfect hash function generation process
is gperf ’s most significant unfinished extension. One ap-
proach is to replacgperf s current algorithm with more ex-
haustive approaches [9, 7]. Duedperf ’s object-oriented
4The exact number depends on the keyword set and the comimandProgram design, such modifications will not disrupt the overall
options. program structure. The perfect hash function generation mod-
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ule,class Gen _Perf , is independent from other program  Aword is hashed usingperf , and if the word is already
components; it represents only about 10 percergpaff 's in the cache it is not looked up in the dictionary.
overall lines of source code.

A more comprehensive, albeit computationally expensii@nce automatic static search set generators perform well in
approach could switch over to a backtracking strategy whefactice and are widely and freely available, there seems little
the initial, computationally less expensive, non-backtrackifgentive to code keyword recognition functions manually for
first pass fails to generate a perfect hash function. For mangst applications.
common uses, where the search sets are relatively small, the
program will run successfully without incurring backtrackin
overhead. In practice, the utility of these proposed modiﬁc%—eferenceS

tions remains an OPe” question. . . . [1] M. Lesk and E. Schmidt.EX - A Lexical Analyzer Generator
Another potentially worthwhile feature is enhancing ~ Bell Laboratories, Murray Hill, N.J., Unix Programmers Man
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hash functions quickly and easily. Currently, the user must oratories, Murray Hill, N.J., Unix Programmers Manual ed.
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