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Abstract

gperf is a “software-tool generating-tool” designed to au-
tomate the generation of perfect hash functions. This paper
describes the features, algorithms, and object-oriented design
and implementation strategies incorporated ingperf . It also
presents the results from an empirical comparison between
gperf -generated recognizers and other popular techniques
for reserved word lookup.gperf is distributed with the GNU
libg++ library and is used to generate the keyword recogniz-
ers for the GNU C/C++ compilers and the TAO CORBA IDL
compiler.

1 Introduction

Perfect hash functions are a time and space efficient imple-
mentation ofstatic search sets. A static search set is an ab-
stract data type (ADT) with operationsinitialize, insert, and
retrieve. Static search sets are common in system software
applications. Typical static search sets include compiler and
interpreter reserved words, assembler instruction mnemonics,
shell interpreter built-in commands, and CORBA IDL compil-
ers. Search set elements are calledkeywords. Keywords are
inserted into the set once, usually off-line at compile-time.

gperf is a freely available perfect hash function generator
written in C++ that automatically constructs perfect hash func-
tions from a user-supplied list of keywords. It was designed in
the spirit of utilities likelex [1] andyacc [2] to remove the
drudgery associated with constructing time and space efficient
keyword recognizers manually.

gperf translates ann element list of user-specified key-
words, called thekeyfile, into source code containing ak ele-
ment lookup table and the following pair of functions:� hash uniquely maps keywords in thekeyfileonto the

range 0..k � 1, wherek � n. If k = n hash is con-
sidered aminimalperfect hash function.� in word set useshash to determine whether a par-
ticular string of characters occurs in thekeyfile, using at
most one string comparison in the common case.

gperf is designed to run quickly for keyfiles containing
several thousand keywords.gperf generates efficient ANSI
and K&R C and C++ source code as output. It has been used to
generate reserved keyword recognizers in lexical analyzers for
several production and research compilers and language pro-
cessing tools, including GNU C/C++ [3] and the TAO CORBA
IDL compiler [4].

This paper is organized as follows: Section 2 outlines
alternative static search set implementations and compares
them withgperf -generated hash tables; Section 3 presents
a sample input keyfile; Section 4 highlights design patterns
and implementation strategies used to developgperf ; Sec-
tion 5 shows the results from empirical benchmarks between
gperf -generated recognizers and other popular techniques
for reserved word lookup; Section 6 outlines the limita-
tions withgperf and potential enhancements; and Section 7
presents concluding remarks.

2 Static Search Set Implementations

There are numerous implementations of static search sets.
Common examples include sorted and unsorted arrays and
linked lists, AVL trees, optimal binary search trees, digital
search tries, deterministic finite-state automata, and various
hash table schemes, such as open addressing and bucket chain-
ing [5].
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Different static search structure implementations offer
trade-offs between memory utilization and search time effi-
ciency and predictability. For example, ann element sorted
array is space efficient. However, the average- and worst-case
time complexity for retrieval operations using binary search
on a sorted array is proportional toO(logn) [5].

In contrast, chained hash table implementations locate a ta-
ble entry in constant,i.e.,O(1), time on the average. However,
hashing typically incurs additional memory overhead for link
pointers and/or unused hash table buckets. In addition, hash-
ing exhibitsO(n2) worst-case performance [5].

A minimal perfect hash functionis a static search set imple-
mentation defined by the following two properties:

The perfect property: Locating a table entry requiresO(1)
time, i.e., at mostone string comparison is required to perform
keyword recognition within the static search set.

The minimal property: The memory allocated to store the
keywords is precisely large enough for the keyword set andno
larger.

Minimal perfect hash functions provide a theoretically op-
timal time and space efficient solution for static search sets
[5]. However, they can be hard to generate efficiently due to
the extremely large search space of potential perfect hashing
functions. Therefore, the following variations are often more
appropriate for many practical hashing applications, especially
those involving thousands of keywords:

Non-minimal perfect hash functions: These functions do
not possess the minimal property since they return a range of
hash values larger than the total number of keywords in the
table. However, theydo possess the perfect property since
at most one string comparison is required to determine if a
string is in the table. There are two reasons for generating
non-minimal hash functions:

1. Generation efficiency– It is usually much faster to gener-
ate non-minimal perfect functions than to generatemini-
mal perfecthash functions [6, 7].

2. Run-time efficiency– Non-minimal perfect hash func-
tions may also execute faster than minimal ones when
searching for elements that arenot in the table because
the “null” entry will be located more frequently. This sit-
uation often occurs when recognizing programming lan-
guage reserved words in a compiler [8].

Near-perfect hash functions: Near-perfect hash functions
do not possess the perfect property since they allow non-
unique keyword hash values [9] (they may or may not possess
the minimal property, however). This technique is a compro-
mise that trades increasedgenerated-code-execution-timefor

%{
#include <stdio.h>
#include <string.h>
/* Command-line options:

-C -p -a -n -t -o -j 1 -k 2,3
-N is_month */

%}
struct months {

char *name;
int number;
int days;
int leap_days;

};
%%
january, 1, 31, 31
february, 2, 28, 29
march, 3, 31, 31
april, 4, 30, 30
may, 5, 31, 31
june, 6, 30, 30
july, 7, 31, 31
august, 8, 31, 31
september, 9, 30, 30
october, 10, 31, 31
november, 11, 30, 30
december, 12, 31, 31
%%
/* Auxiliary code goes here... */
#ifdef DEBUG
int main () {

char buf[BUFSIZ];
while (gets (buf)) {

struct months *p = is_month (buf, strlen (buf));
printf ("%s is%s a month\n",

p ? p->name : buf, p ? "" : " not");
}

}
#endif

Figure 1: An Example Keyfile for Months of the Year

decreasedfunction-generation-time. Near-perfect hash func-
tions are useful when main memory is at a premium since they
tend to produce much smaller lookup tables than non-minimal
perfect hash functions.

gperf can generate minimal perfect, non-minimal perfect,
and near-perfect hash functions, as described below.

3 Interacting with GPERF

This section explains how end-users can interact withgperf .
By default,gperf reads a keyword list and optionalassoci-
ated attributesfrom the standard inputkeyfile . Keywords
are specified as arbitrary character strings delimited by a user-
specified field separator that defaults to’,’ . Thus, keywords
may contain spaces and any other ASCII characters. Associ-
ated attributes can be any C literals. For example, keywords in
Figure 1 represent months of the year. Associated attributes in
this figure correspond to fields instruct months . They in-
clude the number of leap year and non-leap year days in each
month, as well as the months’ ordinal numbers,i.e., january =
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1, february = 2, . . . , december = 12.
gperf ’s input format is similar to the UNIX utilitieslex

andyacc . It uses the following input format:

declarations and text inclusions
%%
keywords and optional attributes
%%
auxiliary code

A pair of consecutive%symbols in the first column sepa-
rate declarations from the list of keywords and their optional
attributes. C or C++ source code and comments are included
verbatim into the generated output file by enclosing the text in-
side%{ %} delimiters, which are stripped off when the output
file is generated,e.g.:

%{
#include <stdio.h>
#include <string.h>
/* Command-line options:

-C -p -a -n -t -o -j 1 -k 2,3
-N is_month */

%}

An optional user-suppliedstruct declaration may be
placed at the end of the declaration section, just before the%%
separator. This feature enables “typed attribute” initialization.
For example, in Figure 1struct months is defined to have
four fields that correspond to the initializer values given for the
month names and their respective associated values,e.g.:

struct months {
char *name;
int number;
int days;
int leap_days;

};
%%

Lines containing keywords and associated attributes appear
in thekeywords and optional attributessection of the keyfile.
The first field of each line always contains the keyword itself,
left-justified against the first column and without surround-
ing quotation marks. Additional attribute fields can follow
the keyword. Attributes are separated from the keyword and
from each other by field separators, and they continue up to the
“end-of-line marker,” which is the newline character (’\n ’) by
default.

Attribute field values are used to initialize components of
the user-suppliedstruct appearing at the end of the decla-
ration section,e.g.:

january, 1, 31, 31
february, 2, 28, 29
march, 3, 31, 31
...

As with lex andyacc , it is legal to omit the initial dec-
laration section entirely. In this case, the keyfile begins with

the first non-comment line (lines beginning with a"#" char-
acter are treated as comments and ignored). This format style
is useful for building keyword set recognizers that possess no
associated attributes. For example, a perfect hash function for
frequently occurring English wordscan efficiently filter out
uninformative words, such as “the,” “as,” and “this,” from con-
sideration in akey-word-in-contextindexing application [5].

Again, as withlex andyacc , all text in the optional third
auxiliary codesection is included verbatim into the generated
output file, starting immediately after the final%%and extend-
ing to the end of the keyfile. It is the user’s responsibility to
ensure that the inserted code is valid C or C++. In the Fig-
ure 1 example, this auxiliary code provides a test driver that is
conditionally included if the DEBUG symbol is enabled when
compiling the generated C or C++ code.

4 Design and Implementation Strate-
gies

Many articles describe perfect hashing [10, 7, 11, 12] and min-
imal perfect hashing algorithms [8, 13, 6, 14, 15]. Few articles,
however, describe the design and implementation of a general-
purpose perfect hashing generator tool in detail. This section
describes the data structures, algorithms, output format, and
reusable components ingperf .

gperf is written in�4,000 lines of C++ source code. C++
was chosen as the implementation language since it supports
data abstraction better than C, while maintaining C’s efficiency
and expressiveness [16].

gperf ’s three main phases for generating a perfect or near-
perfect hash function are shown in Figure 2 and described be-
low:

january
february
...
december

KEYFILE

Asso_Values

Key_List

GPERF

int hash
  (const char *str,
   unsigned int len)
{
  // ...

C/C++  CODE

Figure 2:gperf ’s Processing Phases

1. Process command-line options, read keywords and at-
tributes (the input format is described in Section 3), and
initialize internal objects (described in Section 4.1).

2. Perform a non-backtracking, heuristically guided search
for a perfect hash function (described in Section 4.2.1 and
Section 4.2.2).
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3. Generate formatted C or C++ code according to the
command-line options (output format is described in Sec-
tion 4.3).

The following section outlinesgperf ’s perfect hash func-
tion generation algorithms and internal objects, examines its
generated source code output, describes several reusable class
components, and discusses the program’s current limitations
and future enhancements.

4.1 Internal Objects

gperf ’s implementation centers around two internal objects:
the keyword signatureslist (Key List ) and theassociated
valuesarray (asso values ), both of which are described
below.

4.1.1 The Keyword Signatures List

Every user-specified keyword and its attributes are read from
the keyfile and stored in a node on a linked list, called
Key List . gperf only considers a subset of each key-
words’ characters while it searches for a perfect hash function.
The subset is called the “keyword signature,” orkeysig.

The keysig represents the particular subset of characters
used by the automatically generated recognition function to
compute a keyword’s hash value. Keysigs are created and
cached in each node in theKey List when the keyfile is pro-
cessed initially bygperf .

4.1.2 Associated Values Array

Theassociated valuesarray,asso values , is an object that
is closely related to keysigs. In fact, it is indexed by keysig
characters. The array is constructed internally bygperf and
referenced frequently whilegperf searches for a perfect hash
function.

During the C/C++ code generation phase ofgperf , an
ASCII representation of the associated array is output in the
generated hash function as astatic local array. This array
is declared asu int asso values[MAX ASCII SIZE] .
When searching for a perfect hash function,gperf repeatedly
reassigns different values to certainasso values elements
specified by keysig entries. At every step during the search
for the perfect hash function solution, theasso values ar-
ray’s contents represent the current associated values’config-
uration.

When configured to produce minimal perfect hash functions
(which is the default),gperf searches for an associated val-
ues configuration that maps alln keysigs onto non-duplicated
hash values. A perfect hash function is produced whengperf
finds a configuration that assigns each keysig to a unique loca-
tion within the generated lookup table. The resulting perfect

hash function returns anunsigned int value in the range0::(k�1), wherek = (maximumkeyword hash value+1).
When k = n a minimal perfect hash function is produced.
For k larger thann, the lookup table’sload factor is nk
(number of keywordstotal table size ).

A keyword’s hash value is typically computed by combin-
ing the associated values of its keysig with its length.1 By
default, the hash function adds the associated value of a key-
word’s first index position plus the associated value of its last
index position to its length,i.e.:

hash_value =
asso_values[keyword[0]]
+ asso_values[keyword[length - 1]]
+ length;

Other combinations are often necessary in practice. For exam-
ple, using the default hash function for C++ reserved words
causes a collision betweendelete anddouble . To resolve
this collision and generate a perfect hash function for C++ re-
served words, an additional character must be added to the
keysig, as follows:

hash_value =
asso_values[keyword[0]]
+ asso_values[keyword[1]]
+ asso_values[keyword[length - 1]]
+ length;

Developers can control the generated hash function’s con-
tents using the"-k" option to explicitly specify the keyword
index positions used as keysig elements bygperf . The de-
fault is "-k 1,$" , where the’$’ represents the keyword’s
final character.

Table 1 shows the keywords, keysigs, and hash value for
each month shown in the Figure 1 keyfile. These keysigs were

Keyword Keysig Hash Value
january an 3
february be 9
march ar 4
april pr 2
may ay 8
june nu 1
july lu 6
august gu 7
september ep 0
october ct 10
november ov 11
december ce 5

Table 1: Keywords, Keysigs, and Hash Values for the Months
Example

1The"-n" option instructsgperf not include the length of the keyword
when computing the hash function.
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produced using the-k2,3 option.
Keysigs aremultisetssince they may contain multiple oc-

currences of certain characters. This approach differs from
other perfect hash function generation techniques [8] that only
consider first/last characters+ length when computing a key-
word’s hash value.

The hash function generated bygperf properly handles
keywords shorter than a specified index position by skipping
characters that exceed the keyword’s length. In addition, users
can instructgperf to includeall of a keyword’s characters in
its keysig via the"-k*" option.

4.2 Generating Perfect Hash Functions

This subsection describes howgperf generates perfect hash
functions.

4.2.1 Main Algorithm

gperf iterates sequentially through the list ofi keywords,1 � i � n, wheren equals the total number of keywords.
During each iterationgperf attempts to extend the set of
uniquely hashed keywords by 1. It succeeds if the hash value
computed for keywordi does not collide with the previousi�1
uniquely hashed keywords. Figure 3 outlines the algorithm.

for i  1 to n loop
if hash (ith key) collides with anyhash (1st key... (i� 1)st key)
then

modify disjoint union of associated values to resolve collisions
based upon certain collision resolution heuristics

end if
end loop

Figure 3: Gperf’s Main Algorithm

The algorithm terminates and generates a perfect hash func-
tion wheni = n and no unresolved hash collisions remain.
Thus, thebest-caseasymptotic time-complexity for this algo-
rithm is linear in the number of keywords,i.e., 
(n).
4.2.2 Collision Resolution Strategies

As outlined in Figure 3,gperf attempts to resolve keyword
hash collisions by incrementing certain associated values. The
following discusses the strategiesgperf uses to speedup col-
lision resolution.

Disjoint union: To avoid performing unnecessary work,
gperf is selective when changing associated values. In par-
ticular, it only considers characters comprising thedisjoint

unionof the colliding keywords’ keysigs. The disjoint union
of two keysigsfAg andfBg is defined asfA[Bg�fA\Bg.

To illustrate the use of disjoint unions, consider the key-
words january and march from Figure 1. These key-
words have the keysigs‘‘an’’ and ‘‘ar’’ , respectively,
as shown in Table 1. Thus, whenasso values[’a’] ,
asso values[’n’] , andasso values[’r’] all equal
0, a collision will occur duringgperf ’s execution.2 To re-
solve this collision,gperf only considers changing the as-
sociated values for’n’ and/or’r’ . Changing’a’ by any
increment cannot possibly resolve the collision since’a’ oc-
curs the same number of times in each keysig.

By default, allasso values are initialized to 0. When a
collision is detectedgperf increases the corresponding asso-
ciated value by a “jump increment.” The command-line option
"-j" can be used to increase the jump increment by a fixed
or random amount. In general, selecting a smaller jump incre-
ment,e.g., "-j 1" decreases the size of the generated hash
table, though it may increasegperf ’s execution time.

In the months example in Figure 1, the"-j 1" op-
tion was used. Therefore,gperf quickly resolves the
collision betweenjanuary and march by incrementing
asso value[’n’] by 1. As shown in Table 2, this is its
final value.

gperf generates a perfect hash function if increments to
the associated values configuration shown in Figure 3 and de-
scribed above eliminate all keyword collisions when the end
of theKey List is reached. Theworst-caseasymptotic time-
complexity for this algorithm isO(n3l), wherel is the number
of characters in the largest disjoint union between colliding
keyword keysigs. After experimenting withgperf on many
keyfiles it appears that such worst-case behavior occurs infre-
quently in practice.

Many perfect hash function generation algorithms [6, 7] are
sensitive to the order in which keywords are considered. To
mitigate the effect of ordering,gperf will optionally reorder
keywords in theKey List if the "-o" command-line op-
tion is enabled. This reordering is done in a two-stage pre-
pass [8] beforegperf invokes the main algorithm shown in
Figure 3. First, theKey List is sorted by decreasing fre-
quency of keysig characters occurrence. The second reorder-
ing pass then reorders theKey List so that keysigs whose
values are “already determined” appear earlier in the list.

These two heuristics help to prune the search space by
handling inevitable collisions early in the generation process.
gperf will run faster on many keyword sets, and often de-
crease the perfect hash function range, if it can resolve these
collisions quickly by changing the appropriate associated val-
ues. However, if the number of keywords is large and the user

2Note that since the"-n" option is used in the months example, the dif-
ferent keyword lengths are not considered in the resulting hash function.
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Keysig Associated Frequency of
Characters Values Occurrence

’a’ 2 3
’b’ 9 1
’c’ 5 2
’e’ 0 3
’g’ 7 1
’l’ 6 1
’n’ 1 2
’o’ 1 1
’p’ 0 2
’r’ 2 2
’t’ 5 1
’u’ 0 3
’v’ 0 1
’y’ 6 1

Table 2: Associated Values and Occurrences for Keysig Char-
acters

Search heuristics: gperf uses several search heuristics to
reduce the time required to generate a perfect hash function.
For instance, characters in the disjoint union are sorted by in-
creasing frequency of occurrence, so that less frequently used
characters are incremented before more frequently used char-
acters. This strategy is based on the assumption that incre-
menting infrequently used charactersfirst decreases the nega-
tive impact on keywords that are already uniquely hashed with
respect to each other. Table 2 shows the associated values and
frequency of occurrences for all the keysig characters in the
months example.

wishes to generate a near-perfect hash function, this reorder-
ing sometimesincreasesgperf ’s execution time. The reason
for this apparent anomaly is that collisions begin earlier and
frequently persist throughout the remainder of keyword pro-
cessing [8, 9].

4.3 Generated Output Format

Figure 4 depicts the C code produced from thegperf -
generated minimal perfect hash function corresponding to the
keyfile depicted in Figure 1. Execution time was negligible
on a Sun SPARC 20 workstation,i.e., 0.0 user and 0.0 sys-
tem time. The following section uses portions of this code as
a working example to illustrate various aspects ofgperf ’s
generated output format.

4.3.1 Generated Symbolic Constants

gperf ’s output contains the following seven symbolic con-
stants that summarize the results of applying the algorithm in
Figure 3 to the keyfile in Figure 1:

enum {
TOTAL_KEYWORDS = 12,
MIN_WORD_LENGTH = 3,
MAX_WORD_LENGTH = 9,
MIN_HASH_VALUE = 0,
MAX_HASH_VALUE = 11,
HASH_VALUE_RANGE = 12,
DUPLICATES = 0

};

gperf produces aminimal perfecthash function when
HASH VALUE RANGE = TOTAL KEYWORDS and DUPLI-
CATES = 0. A non-minimal perfecthash function oc-
curs whenDUPLICATES = 0 and HASH VALUE RANGE >
TOTAL KEYWORDS. Finally, a near-perfecthash function
occurs whenDUPLICATES > 0 and DUPLICATES � TO-
TAL KEYWORDS.

4.3.2 The Generated Lookup Table

By default, whengperf is given a keyfile as input it at-
tempts to generate a perfect hash function that uses at most
one string comparison to recognize keywords in the lookup ta-
ble. gperf can implement the lookup table as either an array
or aswitch statement, as described below.

asso values array lookup table: gperf generates an
array by default, emphasizing run-time speed over minimal
memory utilization. This array is calledasso values , as
shown in thehash function in Figure 4. Theasso values
array is used by the two generated functions that compute hash
values and perform table lookup.

gperf also provides command-line options that allow de-
velopers to select trade-offs between memory size and execu-
tion time. For example, expanding the range of hash values
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#include <stdio.h>
#include <string.h>
/* Command-line options:

-C -p -a -n -t -o -j 1 -k 2,3
-N is_month */

struct months {
char *name;
int number;
int days;
int leap_days;

};

enum {
TOTAL_KEYWORDS = 12,
MIN_WORD_LENGTH = 3,
MAX_WORD_LENGTH = 9,
MIN_HASH_VALUE = 0,
MAX_HASH_VALUE = 11,
HASH_VALUE_RANGE = 12,
DUPLICATES = 0

};

static unsigned int
hash (const char *str, unsigned int len)
{

static const unsigned char asso_values[] =
{

12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 2, 9, 5,
12, 0, 12, 7, 12, 12, 12, 12, 6, 12,

1, 11, 0, 12, 2, 12, 5, 0, 0, 12,
12, 6, 12, 12, 12, 12, 12, 12,

};
return asso_values[str[2]] + asso_values[str[1]];

}

const struct months *
is_month (const char *str, unsigned int len)
{

static const struct months wordlist[] =
{

{"september", 9, 30, 30},
{"june", 6, 30, 30},
{"april", 4, 30, 30},
{"january", 1, 31, 31},
{"march", 3, 31, 31},
{"december", 12, 31, 31},
{"july", 7, 31, 31},
{"august", 8, 31, 31},
{"may", 5, 31, 31},
{"february", 2, 28, 29},
{"october", 10, 31, 31},
{"november", 11, 30, 30},

};
if (len <= MAX_WORD_LENGTH

&& len >= MIN_WORD_LENGTH) {
int key = hash (str, len);
if (key <= MAX_HASH_VALUE

&& key >= MIN_HASH_VALUE) {
char *s = wordlist[key].name;
if (*str == *s

&& !strcmp (str + 1, s + 1))
return &wordlist[key];

}
}
return 0;

}

Figure 4: Minimal Perfect Hash Function Generated by
gperf

produces a sparser lookup table. This generally yields faster
keyword searches but requires additional memory.

The array-basedasso values scheme works best when
the HASH VALUE RANGE is not considerably larger than the
TOTAL KEYWORDS. When there are a large number of key-
words, and an even larger range of hash values, however, the
wordlist array inis month function in Figure 4 may be-
come extremely large. Several problems arise in this case:� The time to compile the sparsely populated array is ex-

cessive;� The array size may be too large to store in main memory;� A large array may lead to increased “thrashing” of virtual
memory in the OS.

Switch-based lookup table: To handle the problems de-
scribed above,gperf can also generate one or moreswitch
statements to implement the lookup table. Depending on the
underlying compiler’sswitch optimization capabilities, the
switch -based method may produce smallerandfaster code,
compared with the large, sparsely filled array. Figure 5 shows
how theswitch statement code appears if the months exam-
ple is generated withgperf ’s "-S 1" option.

{
const struct months *rw;

switch (key)
{

case 0: rw = &wordlist[0]; break;
case 1: rw = &wordlist[1]; break;
case 2: rw = &wordlist[2]; break;
case 3: rw = &wordlist[3]; break;
case 4: rw = &wordlist[4]; break;
case 5: rw = &wordlist[5]; break;
case 6: rw = &wordlist[6]; break;
case 7: rw = &wordlist[7]; break;
case 8: rw = &wordlist[8]; break;
case 9: rw = &wordlist[9]; break;
case 10: rw = &wordlist[10]; break;
case 11: rw = &wordlist[11]; break;
default: return 0;

}
if (*str == *rw->name

&& !strcmp (str + 1, rw->name + 1))
return rw;

return 0;
}

Figure 5: Theswitch -based Lookup Table

Since the months example is somewhat contrived, the trade-
off between the array andswitch approach is not particularly
obvious. However, good C++ compilers generate assembly
code implementing a “binary-search-of-labels” scheme if the
switch statement’scase labels are sparse compared to the
range between the smallest and largestcase labels [3]. This
technique can save a great deal of space by not emitting un-
necessary empty array locations or jump-table slots. The exact
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time and space savings of this approach varies according to the
underlying compiler’s optimization strategy.

gperf generates source code that constructs the array or
switch statement lookup table atcompile-time. Therefore,
initializing the keywords and any associated attributes requires
little additional execution-time overhead when the recognizer
function is run. The “initialization” is automatically per-
formed as the program’s binary image is loaded from disk into
main memory.

4.3.3 The Generated Functions

gperf generates a hash function and a lookup function. By
default, they are calledhash and in word set , although
a different name may be given forin word set using the
"-N" command-line option. Both functions require two ar-
guments, a pointer to a NUL-terminated (’\0’ ) array of
characters,const char *str , and a length parameter,
unsigned int len .

The generated hash function (hash ): Figure 4 shows the
hash function generated from the input keyfile shown in Fig-
ure 1. The command-line option"-k 2,3" was enabled for
this test. This instructshash to return anunsigned int
hash value that is computed by using the ASCII values of the2nd and3rd characters from itsstr argument into the local
static arrayasso values .3 The two resulting numbers
are added to calculatestr ’s hash value.

Theasso values array is generated bygperf using the
algorithm in Section 4.1.2. This array maps the user-defined
keywords onto unique hash values. Allasso values array
entries with values greater thanMAX HASH VALUE (i.e., all
the “12’s” in theasso values array in Figure 4) represent
ASCII characters that do not occur as either the second or third
characters in the months of the year. Theis month function
in Figure 4 uses this information to quickly eliminate input
strings that cannot possibly be month names.

Generated lookup function (in word set ): The
in word set function is the entry point into the perfect
hash lookup function. In contrast, thehash function is
declaredstatic and cannot be invoked by application
programs directly. If the function’s first parameter,char
*str , is a valid user-define keyword,in word set returns
a pointer to the corresponding record containing each keyword
and its associated attributes; otherwise, a NULL pointer is
returned.

Figure 4 shows how thein word set function can be
renamed tois month using the"-N" command-line op-
tion. Note how gperf checks thelen parameter and
resulting hash function return value against the symbolic
constants forMAX WORD LENGTH, MIN WORD LENGTH,

3Note that C arrays start at 0, sostr[1] is actually the second character.

MAX HASH VALUE , and MIN HASH VALUE . This check
quickly eliminates many non-month names from further con-
sideration. If users know in advance that all input strings are
valid keywords,gperf will suppress this addition checking
with the"-O" option.

If gperf is instructed to generate an array-based lookup
table the generated code is quite concise,i.e., once it is deter-
mined that the hash value lies within the proper range the code
is simply:

{
char *s = wordlist[key];
if (*s == *str

&& !strcmp (str + 1, s + 1))
return s;

}

The *s == *str expression quickly detects when the
computed hash value indexes into a “null” table slot since*s
is the NUL character (’\0’ ) in this case. This check is useful
when searching a sparse keyword lookup table, where there is
a higher probability of locating a null entry. If a null entry is
located, there is no need to perform a full string comparison.

Since the months’ example generates a minimal perfect
hash function null enties never appear. The check is still
useful, however, since it avoids calling the string comparison
function when thestr ’s first letter does not match any of the
keywords in the lookup table.

4.4 Reusable Components and Patterns

Figure 6 illustrates the key components used ingperf ’s
software architecture.gperf is constructed from reusable
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Figure 6:gperf ’s Software Architecture
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components from the ACE framework [17]. Each compo-
nent evolved “bottom-up” from special-purpose utilities into
reusable software components. Several noteworthy reusable
classes include the following components:

ACE Bool Array: Earlier versions ofgperf were instru-
mented with a run-time code profiler on large input key-
files that evoke many collisions. The results showed that
gperf spent approximately 90 to 99 percent of its time in
a single function when performing the algorithm in Figure 3.
This one function,Gen Perf::affects previous , de-
termines how changes to associated values affect previously
hashed keywords. In particular, it identifies duplicate hash val-
ues that occur during program execution.

Since this function is called so frequently, it is im-
portant to minimize its execution overhead. Therefore,
gperf employs a novel boolean array component called
ACEBool Array to expedite this process. The C++ inter-
face for theACEBool Array class is depicted in Figure 7.
Since only one copy is required,BOOLARRAYis typedef ’d

class ACE\_Bool_Array
{
public:

// Constructor.
ACE\_Bool_Array (void);

// Returns dynamic memory to free store.
˜ACE_Bool_Array (void);

// Allocate a k element dynamic array.
init (u_int k);

// Checks if <value> is a duplicate.
int in_set (u_int value);

// Reinitializes all set elements to FALSE.
void reset (void);

private:
// Current generation count.
u_short generation_number_;

// Dynamically allocated storage buffer.
u_short *array_;

// Length of dynamically allocated array.
u_int size_;

};

// Create a Singleton.
typedef ACE_Singleton <ACE_Bool_Array,

ACE_Null_Mutex>
BOOL_ARRAY;

Figure 7: The ACE Boolean Array Component

to be a Singleton using theACESingleton adapter. This
template automatically transforms a class into a Singleton us-
ing the Singleton and Adapter patterns [18].

The in set method efficiently detects duplicate keyword
hash values for a given associated values configuration. It re-
turns non-zero if a value is already in the set and zero other-

wise. Whenever a duplicate is detected, thereset method
is called to reset all the array elements back to “empty” for
ensuing iterations of the search process.

If many hash collisions occur, thereset method is exe-
cuted frequently during the duplicate detection and elimina-
tion phase ofgperf ’s algorithm. Processing large keyfiles,
e.g., containing more than 1,000 keywords, tends to require
a maximum hash valuek that is oftenmuch larger thann,
the total number of keywords. Due to the large range, it be-
comes expensive to explicitly reset all elements inarray
back to empty, especially when the number of keywords actu-
ally checked for duplicate hash values is comparatively small.

To address this issue,gperf uses a pattern calledgener-
ation numbering, which optimizes the search process by not
explicitly reinitializing the entire array. Generation number-
ing operates as follows:

1: The Bool Array init method dynamically allocates
space fork unsigned short integers and pointsarray
at the allocated memory. Allk array elements inarray
are initially assigned 0 (representing “empty”) and the
generation number counter is set to 1.

2: gperf uses the in set method to detect dupli-
cate keyword hash values. If the number stored at the
hash(keyword) index position inarray is not equal to
the current generation number, then that hash value is not al-
ready in the set. In this case, the current generation number
is assigned immediately to thehash(keyword) array loca-
tion, thereby marking it as a duplicate if it is referenced subse-
quently during this particular iteration of the search process.

3: If array [hash(keyword)] is equal to the genera-
tion number, a duplicate exists and the algorithm must try to
modify certain associated values to resolve the collision.

4: If a duplicate is detected, thearray elements are reset
to empty for subsequent iterations of the search process. The
reset method simply incrementsgeneration number
by 1. The entire k array locations are only reinitialized
to 0 when the generation number exceeds the range of an
unsigned short integer, which occurs infrequently in
practice.

A design strategy employed throughoutgperf ’s imple-
mentation is “first determine a concise set of operations and
interfaces, then successively tune the implementation.” In the
case of generation numbering, this policy of optimizing per-
formance, without compromising program clarity, decreased
gperf ’s execution-time by an average of 25 percent for large
keyfiles, compared with the previous method that explicitly
“zeroed out” the entire boolean array’s contents on every
reset .
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ACE Read Buffer: Each line ingperf ’s input contains
a single keyword followed by any optional associated at-
tributes, ending with a newline character (’\n ’). The
Read Buffer::read member function copies an arbitrar-
ily long ’ \n ’-terminated string of characters from the input
into a dynamically allocated buffer. A recursive auxiliary
function,Read Buffer::rec read , ensures only one call
is made to thenew opeator for each input line read,i.e., there
is no need to reallocate and resize buffers dynamically. This
class has been incorporated into the GNU libg++stream li-
brary [19] and the ACE network programming tookit [17].

ACE Hash Table: This class provides a search set imple-
mented via double hashing [5]. During program initialization
gperf uses an instance of this class to detect keyfile entries
that are guaranteed to produce duplicate hash values. These
duplicates occur whenever keywords possess both identical
keysigs and identical lengths,e.g., thedouble anddelete
collision described in Section 4.1.2. Unless the user speci-
fies that a near-perfect hash function is desired, attempting to
generate a perfect hash function for keywords with duplicate
keysigs and identical lengths is an exercise in futility!

5 Empirical Results

Tool-generated recognizers are useful from a software engi-
neering perspective since they reduce development time and
decrease the likelyhood of development errors. However, they
are not necessarily advantageous for production applications
unless the resulting executable code speed is competitive with
typical alternative implementations. In fact, it has been ar-
gued that there areno circumstances where perfect hashing
proves worthwhile, compared with other common static search
set methods [20].

To compare the efficacy of thegperf -generated perfect
hash functions against other common static search set imple-
mentations, seven test programs were developed and executed
on six large input files. Each test program implemented the
same function: a recognizer for the reserved words in GNU
g++ . The function returns 1 if a given input string is identi-
fied as a reserved word and 0 otherwise.

The seven test programs are described below. They are
listed by increasing order of execution time, as shown in Ta-
ble 3. The input files used for the test programs are described
in Table 4. Table 5 shows the number of bytes for each test
program’s compiled object file, listed by increasing size (both
patricia.o andchash.o use dynamic memory, so their
overall memory usage depends upon the underlying free store
mechanism).

trie.exe: a program based upon an automatically generated
table-driven search trie created by thetrie-gen utility included

Input File Identifiers Keywords Total
ET++.in 624,156 350,466 974,622
NIH.in 209,488 181,919 391,407
g++.in 278,319 88,169 366,488
idraw.in 146,881 74,744 221,625
cfront.in 98,335 51,235 149,570
libg++.in 69,375 50,656 120,031

Table 4: Total Identifiers and Keywords for Each Input File

Object Byte Count
File text data bss dynamic total
control.o 88 0 0 0 88
binary.o 1,008 288 0 0 1,296
gperf.o 2,672 0 0 0 2,672
chash.o 1,608 304 8 1,704 3,624
patricia.o 3,936 0 0 2,272 6,208
comp-flex.o 7,920 56 16,440 0 24,416
trie.o 79,472 0 0 0 79,472
flex.o 3,264 98,104 16,440 0 117,808

Table 5: Size of Object Files in Bytes

with the GNU libg++ distribution.

flex.exe: a flex -generated recognizer created with the
"-f" (no table compaction) option. Note that both the
flex.exe and trie.exe are uncompacted, deterministic finite
automata (DFA)-based recognizers. Not using compaction
maximizes speed in the generated recognizer, at the ex-
pense of much larger tables. For example, the uncompacted
flex.exe program is almost 5 times larger than the com-
pactedcomp-flex.exe program,i.e., 117,808 bytes versus
24,416 bytes.

gperf.exe: a gperf -generated recognizer created with the
"-a -D -S 1 -k 1,$" options. These options mean
“generate ANSI C prototypes ("-a" ), handle duplicate key-
words ("-D" ), via a single switch statement ("-S 1" ), and
make the keysig be the first and last character of each key-
word.”

chash.exe: a dynamic chained hash table lookup function
similar to the one that recognizes reserved words for AT&T’s
cfront 3.0 C++ compiler. The table’s load factor is 0.39, the
same as it is incfront 3.0.

patricia.exe: a PATRICIA trie recognizer, where PATRICIA
stands for “Practical Algorithm to Retrieve Information Coded
in Alphanumeric.” A complete PATRICA trie implementation
is available in the GNU libg++ class library distribution [19].

binary.exe: a carefully coded binary search function that
minimizes the number of complete string comparisons.

comp-flex.exe: a flex -generated recognizer created with
the default"-cem" options, providing the highest degree
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Executable Input File
Program ET++.in NIH.in g++.in idraw.in cfront.in libg++.in
control.exe 38.8j 1.00 15.4j 1.00 15.2j 1.00 8.9 j 1.00 5.7 j 1.00 4.5 j 1.00
trie.exe 59.1j 1.52 23.8j 1.54 23.8j 1.56 13.7j 1.53 8.6 j 1.50 7.0 j 1.55
flex.exe 60.5j 1.55 23.9j 1.55 23.9j 1.57 13.8j 1.55 8.9 j 1.56 7.1 j 1.57
gperf.exe 64.6j 1.66 26.0j 1.68 25.1j 1.65 14.6j 1.64 9.7 j 1.70 7.7 j 1.71
chash.exe 69.2j 1.78 27.5j 1.78 27.1j 1.78 15.8j 1.77 10.1j 1.77 8.2 j 1.82
patricia.exe 71.7j 1.84 28.9j 1.87 27.8j 1.82 16.3j 1.83 10.8j 1.89 8.7 j 1.93
binary.exe 72.5j 1.86 29.3j 1.90 28.5j 1.87 16.4j 1.84 10.8j 1.89 8.8 j 1.95
comp-flex.exe 80.1j 2.06 31.0j 2.01 32.6j 2.14 18.2j 2.04 11.6j 2.03 9.2 j 2.04

Table 3: Raw and Normalized CPU Processing Time

of table compression. Note the obvious time/space trade-
off between the uncompactedflex.exe (which is faster
and larger) and the compactedcomp-flex.exe (which is
smaller and much slower).

In addition to these seven test programs, a simple C++ pro-
gram calledcontrol.exe measures and controls for I/O
overhead,i.e.:

int main (void) {
char buf[BUFSIZ];

while (gets (buf))
printf ("%s", buf);

}

All of the above reserved word recognizer programs were
compiled by the GNU g++ 2.7.2 compiler with the"-O2
-finline-functions" options enabled. They were then
tested on an otherwise idle SPARCstation 20 model 712 with
128 megabytes of RAM.

All six input files used for the tests contained a large
number of words, both user-defined identifiers and g++ re-
served words, organized with one word per line. This for-
mate was automatically created by running theUNIX com-
mand"tr -cs A-Za-z_ ’\012’" on the preprocessed
source code for several large C++ systems, including the
ET++ windowing toolkit (ET++.in ), the NIH class library
(NIH.in ), the GNU g++ 2.7.2 C++ compiler (g++.in ), the
idraw figure drawing utility from the InterViews 2.6 distri-
bution (idraw.in ), the AT&T cfront 3.0 C++ compiler
(cfront.in ), and the GNU libg++ 2.8 C++ class library
(libg++.in ). Table 4 shows the relative number of iden-
tifiers and keywords for the test input files.

Table 3 depicts the amount of time each search set imple-
mentation spent executing the test programs, listed by increas-
ing execution time. The first number in each column repre-
sents the user-time CPU seconds for each recognizer. The sec-
ond number is “normalized execution time,”i.e., the ratio of
user-time CPU seconds divided by thecontrol.exe pro-
gram execution time. The normalized execution time for each

technique is very consistent across the input test file suite, il-
lustrating that the timing results are representative for different
source code inputs.

Several conclusions result from these empirical bench-
marks:

Time/space tradeoffs are common: The uncompacted,
DFA-based trie (trie.exe ) and flex (flex.exe ) imple-
mentations are both the fastest and the largest implementa-
tions, illustrating the time/space trade-off dichotomy. Appli-
cations where saving time is more important than conserving
space may benefit from these approaches.

gperf can provide the best of both worlds: While the
trie.exe andflex.exe recognizers allow programmers
to trade-off space for time, thegperf -generated perfect hash
function gperf.exe is comparatively timeand space ef-
ficient. Empirical support for this claim can be calculated
from the data for the programs that did not allocate dy-
namic memory,i.e., trie.exe , flex.exe , gperf.exe ,
binary.exe , andcomp-flex.exe . The number of iden-
tifiers scanned per-second, per-byte of executable program
overhead was 5.6 forgperf.exe , but less than 1.0 for
trie.exe , flex.exe , andcomp-flex.exe .

Sincegperf generates a stand-alone recognizer, it is eas-
ily incorporated into an otherwise hand-coded lexical analyzer,
such as the ones found in the GNU C and GNU C++ compiler.
It is more difficult, on the other hand, to partially integrate
flex or lex into a lexical analyzer since they are gener-
ally used in an “all or nothing” fashion. Furthermore, neither
flex nor lex are capable of generating recognizers for ex-
tremely large keyfiles because the size of the state machine is
too big for their internal DFA state tables.

6 Current Limitations and Future
Work

gperf has been freely distributed for many years along with
the GNU libg++ library and the ACE network programming

11



toolkit at www.cs.wustl.edu/˜schmidt/ACE.html .
Although gperf has proven to be quite useful in practice,
there are several limitations. This section describes the trade-
offs and compromises with its current algorithms and outlines
how it can be improved. Sincegperf is open source soft-
ware, however, it is straightforward to add enhancements and
extensions.

6.1 Tradeoffs and Compromises

Several other hash function generation algorithms utilize some
form of backtracking when searching for a perfect or minimal
perfect solution [6, 8, 9]. For example, Cichelli’s [8] algorithm
recursively attempts to find an associated values configuration
that uniquely maps alln keywords to distinct integers in the
range1::n. In his scheme, the algorithm “backs up” if com-
puting the current keyword’s hash value exceeds the minimal
perfect table size constraint at any point during program exe-
cution. Cichelli’s algorithm then proceeds by undoing selected
hash table entries, reassigning different associated values, and
continuing to search for a solution.

Unfortunately, the exponential growth rate associated with
the backtracking search process is simply too time consum-
ing for large keyfiles. Even “intelligently-guided” exhaustive
search quickly becomes impractical for more than several hun-
dred keywords.

To simplify the algorithm in Figure 3, and to improve
average-case performance,gperf does not backtrack when
keyword hash collisions occur. Thus,gperf may process the
entire keyfile input,withoutfinding a unique associated values
configuration for every keyword, even if one exists. If a unique
configuration is not found, users have two choices:

1. They can rungperf again, enabling different options in
search of a perfect hash function; or

2. They canguaranteea solution by instructinggperf to
generate annear-perfecthash function.

Near-perfect hash functions permitgperf to operate on
keyword sets that it otherwise could not handle,e.g., if the
keyfile contains duplicates or there are a very large number of
keywords. Although the resulting hash function is no longer
“perfect,” it handles keyword membership queries efficiently
since only a small number of duplicates usually remain.4

Both duplicate keyword entries and unresolved keyword
collisions are handled by generalizing theswitch -based
scheme described in Section 3.gperf treats duplicate
keywords as members of anequivalence classand gener-
atesswitch statement code containing cascadingif-else

4The exact number depends on the keyword set and the command-line
options.

comparisons within acase label to handle non-unique key-
word hash values.

For example, ifgperf is run with the default keysig selec-
tion command-line option"-k 1,$" on a keyfile contain-
ing C++ reserved words, a hash collision occurs between the
delete anddouble keywords, thereby preventing a perfect
hash function. Using the"-D" option produces a near-perfect
hash function, that allows at most one string comparison for
all keywords exceptdouble , which is recognized after two
comparisons. Figure 8 shows the relevant fragment of the gen-
erated near-perfect hash function code.

{
char *rw;
...
switch (hash (str, len)) {
...
case 46:

rw = "delete";
if (*str == *rw

&& !strcmp (str + 1, rw + 1, len - 1))
return rw;

rw = "double";
if (*str == *rw

&& !strcmp (str + 1, rw + 1, len - 1))
return rw;

return 0;
case 47:

rw = "default"; break;
case 49:

rw = "void"; break;
...
}
if (*str == *rw

&& !strcmp (str + 1, rw + 1, len - 1))
return rw;

return 0;
}

Figure 8: The Near-Perfect Lookup Table Fragment

A simple linear search is performed on duplicate keywords
that hash to the same location. Linear search is effective
since most keywords still require only one string comparison.
Support for duplicate hash values is useful in several circum-
stances, such as large input keyfiles (e.g., dictionaries), highly
similar keyword sets (e.g., assembler instruction mnemonics),
and secondary keys. In the latter case, if the primary keywords
are distinguishable only via secondary key comparisons, the
user may edit the generated code by hand or via an automated
script to completely disambiguate the search key.

6.2 Enhancements and Extensions

Fully automating the perfect hash function generation process
is gperf ’s most significant unfinished extension. One ap-
proach is to replacegperf ’s current algorithm with more ex-
haustive approaches [9, 7]. Due togperf ’s object-oriented
program design, such modifications will not disrupt the overall
program structure. The perfect hash function generation mod-
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ule, class Gen Perf , is independent from other program
components; it represents only about 10 percent ofgperf ’s
overall lines of source code.

A more comprehensive, albeit computationally expensive,
approach could switch over to a backtracking strategy when
the initial, computationally less expensive, non-backtracking
first pass fails to generate a perfect hash function. For many
common uses, where the search sets are relatively small, the
program will run successfully without incurring backtracking
overhead. In practice, the utility of these proposed modifica-
tions remains an open question.

Another potentially worthwhile feature is enhancing
gperf to automatically select the keyword index positions.
This would assist users in generating time or space efficient
hash functions quickly and easily. Currently, the user must
use the default behavior or explicitly select these positions via
command-line arguments. Finally,gperf ’s output functions
can be extended to generate code for other languages,e.g.,
Java, Ada, Smalltalk, Module 3, Eiffel, etc.

7 Concluding Remarks

gperf was originally designed to automate the construction
of keyword recognizers for compilers and interpreter reserved
word sets. The various features described in this paper en-
able it to achieve its goal, as evidenced by its use in the GNU
compilers. In addition,gperf has been used in the following
applications:� The TAO CORBA IDL compiler [4] usesgperf to gen-

erate the operation dispatching tables [21] used by server-
side skeletons.� A hash function for 15,400 “Medical Subject Headings”
used to index journal article citations in MEDLINE, a
large bibliographic database of the biomedical literature
maintained by the National Library of Medicine. Gener-
ating this hash function takes approximately 10 minutes
of CPU time on a SPARC 20 workstation.� The GNUindent C code reformatting program, where
the inclusion of perfect hashing sped up the program by
an average of 10 percent.� A public domain program converting double precision
FORTRAN source code to/from single precision uses
gperf to modify function names that depend on the
types of their arguments,e.g., replacingsgefa with
dgefa in the LINPACK benchmark. Each name cor-
responding to a function is recognized viagperf and
substituted with the version for the appropriate precision.� A speech synthesizer system, where there is a cache be-
tween the synthesizer and a larger, disk-based dictionary.

A word is hashed usinggperf , and if the word is already
in the cache it is not looked up in the dictionary.

Since automatic static search set generators perform well in
practice and are widely and freely available, there seems little
incentive to code keyword recognition functions manually for
most applications.
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