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Abstract

This paper describes a stochastic concurrent constraint language for
the description and programming of concurrent probabilistic sys-
tems. The language can be viewed both as a calculus for describing
and reasoning about stochastic processes and as an executable lan-
guage for simulating stochastic processes. In this language pro-
grams encode probability distributions over (potentiallyinfinite)
sets of objects. We illustrate the subtleties that arise from the in-
teraction of constraints, random choice and recursion. We describe
operational semantics of these programs (programs are run by sam-
pling random choices), denotational semantics of programs(based
on labeled transition systems and weak probabilistic bisimulation),
and prove soundness theorems. We show thatProbabilistic cc is
conservative overcc, thus justifying the design ofProbabilistic cc.
We use the semantic study to illustrate a novel use of probability to
analyze a problem stated without reference to probability,namely
the problem of indeterminacy in synchronous programs.

1 Introduction

This paper describes a stochastic concurrent constraint language for
the description and programming of concurrent probabilistic sys-
tems. The language is both a calculus for reasoning about Markov
processes and an executable language that can be used to program
stochastic processes.

1.1 The Need for Probability

The traditional conceptual framework of programming languages
is based on the assumption that enough information will be avail-
able to model a given system in as accurate detail as is neededso
that appropriate causal, and maybe even determinate, models can
be constructed. However, this assumption is violated in many sit-
uations — it becomes necessary to reason and program with ap-
proximate, incomplete or uncertain information. We consider three
paradigmatic situations.�Research supported in part by a CAREER grant from NSF.yResearch supported in part by NSERC.

Firstly, probability finds use as an abstraction mechanism to
finesse inessential or unknown details of the system and/or the en-
vironment. For example, [3] analyzes a component of the Lucent
Technologies’ 5ESS

eR telephone switching system that is respon-
sible for detecting malfunctions on the hardware connections be-
tween switches. This component responds to alarms being gen-
erated from another complicated system that is only available as
a black-box. A natural model to consider for the black-box isa
stochastic one, which represents the timing and duration ofthe
alarm by random variables with a given probability distribution. [3]
then shows that the desired properties hold with extremely high
probability. For another instance of modeling a complex environ-
ment that is best done statistically, see [24].

Secondly, consider model-based diagnosis settings. Oftenin-
formation aboutfailure modelsand their associated probabilities
is obtained from field studies and studies of manufacturing prac-
tices. Failure models can be incorporated by assigning a variable,
called themodeof the component, to represent the physical state of
the component, and associating a failure model with each value of
the mode variable. Probabilistic information can be incorporated
by letting the mode vary according to the given probability distri-
bution [21]. The diagnostic engine computes the most probable
diagnostic hypothesis, given observations about the current state of
the system.

Thirdly, probability finds use as one of the tools in the design
of efficient algorithms for communication and computation in dis-
tributed unreliable networks. For example, [35] describesa class
of scalable (probabilistic) protocols based on a probabilistic sys-
tem model whose costs grow slowly with the size of the system.
A similar class of examples arise in the area of amorphous com-
puting [1, 10]. Here one assumes vast numbers of programmable
elements amassed without precise interconnection and addressing;
and solve control problems even though the individual entities are
unreliable and interconnected in unknown and irregular patterns.
Probabilistic methods are a basic tool used in the design of al-
gorithms in this area,e.g. see [19] for probabilistic algorithms
to compute maximal independent sets, [48] for probabilistic algo-
rithms to build hierarchical abstractions, and [17] for programming
an amorphous computer.

One can take the other extreme position and work with inde-
terminacy and avoid the subtleties of measure theory and proba-
bility theory. There are certainly situations where this isthe rec-
ommended approach, in particular when one has no quantitative
information at all: using a uniform probability distribution is not
the same as expressing complete ignorance about the possible out-
comes. However, one often does have the quantitative information
needed for a probabilistic analysis and then one can get far more
information from a probabilistic treatment than from a nondeter-



ministic treatment — [22] shows that the logical characterization
of a probabilistic system is almost the same as in the deterministic
case and very different from the indeterminate case.

1.2 Design Criteria

The above examples motivate the following criteria on candidate
modeling languages.

Concurrency. The need for concurrency arises from two
sources. First, note that concurrency arises inevitably inthe first
and third examples. The second example motivates a second source
of concurrency — concurrency as a structuring mechanism to aid
in modular construction of models — as motivated by the analysis
underlying synchronous programming languages [8, 30, 11].

Thus the intended stochastic language should permit the de-
scription of concurrency and interaction between concurrent pro-
cesses. Furthermore — as earlier work on concurrent constraint
programming [54, 50] has shown — concurrent composition is
precisely modeled by conjunction. In the stochastic case wenow
have much richer possibilities for interaction, namely interaction
between stochastic processes, but we do not want to model this by
introducing a plethora of new combinators. Rather, we adoptas a
design principle for our language that we havea single composi-
tion primitive — traditional parallel composition — encompassing
both interaction between stochastic processes and determinate pro-
cesses.

Executability. The motivation for executability in a program-
ming context such as the third example is evident. Furthermore,
even specification contexts, such as the first two examples, ben-
efit from an executable modeling language. At a foundational
level, executability helps to bridge the gap between a system and
its model. Secondly, in the style of abstract-interpretation based
program-analysis techniques, executability provides a systematic
way for developing reasoning algorithms,e.g.in the stochastic con-
text, [2] uses the simulation engine of the language to develop an
algorithm for maximum likelihood estimation, and [42] usesthe
lazy evaluation mechanism of their stochastic functional program-
ming language to compute conditional probabilities.

Constraints. One of the key motivations of the present work
is to have a formalism that allows one to work with physical sys-
tems. In such systems the real numbers and associated continuous
mathematics plays a significant role. Inevitably in workingwith
such systems one has to work with approximate information, quite
apart from the uncertainty in the dynamics. A natural way of ex-
pressing this uncertainty is as partial information, or constraints.
In traditional numerical analysis the notion of partial information
enters implicitly in every discussion of approximation anderror es-
timation. However there one does not often directly manipulate
intervals qua approximate real numbers; a notable exception is, of
course, interval analysis [46] which influenced the early work by
Scott on domain theory [57]. In this paper, we work directly with a
cpo of intervals as computational approximations to real numbers.

A major part of the philosophy of concurrent constraint pro-
gramming was “putting partial information in the hands of the pro-
grammer”. In our setting we have captured both a qualitativenotion
of uncertainty, embodied in the use of partial information,as well
as the evident quantitative notion associated with the use of proba-
bilities.

1.3 Our Results

We describeProbabilistic cc, an executable stochastic concurrent
constraint language, which adds a form of probabilistic choice to
the underlying concurrent constraint programming paradigm, cc.
Probabilistic cc is probabilistically determinate [47], rather than
nondeterministic.Probabilistic cc is expressive,e.g.Probabilistic
cc is expressive enough to encode (a variant of) ProbabilisticPetri
nets and probabilistic dataflow networks.� We describe an operational semantics given by SOS rules and

a notion of sampling.� We show that a denotational semantics based on input-output
relations cannot be compositional; and provide examples to
illustrate the impact of the non-monotonic character of the
language on (semantic) interpretations of recursion.� We describe a denotational semantics based on weak bisimu-
lation on constraint-labeled transition systems. It is necessary
to work with weak (rather than strong) bisimulation in a pro-
gramming language context. We show that weak bisimulation
is a congruence and is an adequate semantics for reasoning
about the input-output relation of processes.� The denotational semantics when specialized tocc is fully
abstract forcc. We show thatProbabilistic cc is conservative
overcc— thus our integration of probability is coherent with
the underlying concurrent constraint paradigm.

Our techniques suggest that probability has a role in the suite
of techniques at the disposal of concurrency theorists. As evidence,
we show that our semantic study permits a new characterization of
a problem stated withoutany reference to probability — the inde-
terminacy issues of synchronous programming.

Organization of paper. The next section describes a collec-
tion of examples that illustrate the design of the language and some
of its subtleties. We follow with a description of the operational
semantics. The next section describes a sketch of the denotational
semantics and contains soundness and conservativity theorems. We
conclude the paper with a comparison with related work.

In this extended abstract, we content ourselves with an
overview of the results, and some key examples, and defer thede-
tailed technical development to the full paper.

2 The language

2.1 Concurrent constraint programming

The concurrent constraint (cc) programming paradigm [56] re-
places the traditional notion of a store as a valuation of variables
with the notion of a store as a constraint on the possible val-
ues of variables. Computation progresses by accumulating con-
straints in the store, and by checking whether the store entails
constraints. Several concrete general-purpose programming lan-
guages have been implemented in this paradigm [39, 60], including
timed [53] and hybrid extensions [27] ofcc that have been used for
modeling physical systems [28, 29].

A salient aspect of thecc computation model is that programs
may be thought of as imposing constraints on the evolution ofthe
system.cc provides four basic constructs: (tell)c (for c a primitive
constraint), parallel composition (A;B), positive ask (if c thenA)
and hiding (newX in A). The programc imposes the constraintc.
The program(A;B) imposes the constraints of bothA andB —
logically, this is the conjunction ofA andB. newX in A imposes



the constraints ofA, but hides the variableX from the other pro-
grams — logically, this can be thought of as a form of existential
quantification. The programif c then A imposes the constraints
of A provided that the rest of the system imposes the constraintc
— logically, this can be thought of as intuitionist implication. This
declarative way of looking at programs is complemented by anop-
erational view. The basic idea in the operational view is that of a
network of programs interacting with a shared store of primitive
constraints. The programc is viewed as addingc to the store in-
stantaneously. The program(A;B) behaves like the simultaneous
execution of bothA andB. newX in A startsA but creates a new
local variableX which is inaccessible outsideA. The program
if c thenA behaves likeA if the current store entailsc.
2.2 Constraint systems

cc languages are described parametrically over aconstraint
system[54, 55]. For technical convenience, the presentation here
is a slight variation on earlier published presentations.

The information added to the store consists of primitive con-
straints which are drawn from aconstraint system. A constraint
systemD is a system of partial information, consisting of a set
of primitive constraints (first-order formulas) ortokensD, closed
under finite conjunction and existential quantification, and an infer-
ence relation (logical entailment)̀that relates tokens to tokens.`
naturally induces logical equivalence, written�. Formally,

Definition 2.1 A constraint system is a structure hD;`;Var; f9X j X 2 Vargi such that:� D is closed under conjunction(̂); if a; b; c 2 D, then`�D �D satisfies:

– a ` a; a ` b andb ^ c ` d implies thata ^ c ` d
– a ^ b ` a anda ^ b ` b; a ` b anda ` c implies thata ` b ^ c� Var is an infinite set ofvariables, such that for each variableX 2 Var, 9X : D ! D is an operation satisfying usual

laws on existentials:

– a ` 9Xa
– 9X(a ^ 9Xb) � 9Xa ^ 9Xb
– 9X9Y a � 9Y 9Xa
– a ` b) 9Xa ` 9Xb

A constraint is an entailment closed subset ofD. The set of all
constraints, denotedjDj, is ordered by inclusion, and forms an al-
gebraic lattice with least upper bounds induced by^. We will uset andu to denote joins and meets of this lattice. From now on we
will usea; b; c; : : : to denote constraints, noting that a tokena can
be represented as the constraintfb 2 D j a ` bg: such constraints
are thefinite constraints, as they are the finite elements in the lat-
tice. 9 lifts to an operation on constraints. In any implementable
language,̀ must be decidable, and we also assume the the setD is
countable.

Examples of such systems are the system Herbrand (underlying
logic programming) and FD [36](finite domains).

In this paper we will work with a constraint system that in-
cludes interval constraints [46]. Primitive constraints are built up
(by conjunction and existential quantification) from tokens of the
form z 2 [l; u] wherel; u are rationals:z 2 [l; u] constrains the
variablez to lie in the closed interval[l; u]. The entailment rela-
tion on interval constraints is induced by inclusion of intervals —z 2 I ` z 2 J if I � J .

In addition, our constraint system will also include signalcon-
straints likeOn andS — these are 0-ary predicates, and telling
such a constraint is like emitting a signal.S1 ^ : : : ^ Sn ` T iffSi = T for somei 2 1::n.

2.3 Syntax

In this paper, we describe the integration of discrete random vari-
ables incc. This paper extends the results of [26] with recur-
sion. We augment the usualcc syntax with achooseconstruct,
chooseX from Dom in P . Thus theProbabilistic cc syntax is as
follows:Decl ::= � j g(X1; : : : ; Xn) :: P j Decl; DeclP ::= c j g(t1; : : : ; tn) j if c thenPj P; P j newX in Pj chooseX from Dom in PProg ::= Decl; P
In this description, aDecl is a set of procedure declarations, withg
a procedure name andX1; : : : ; Xn a list of parameters.t1; : : : ; tn
is a list of variables or values.X is a variable andDom is a finite
set of real numbers.

2.4 Constraints on random variables

Random variables (RV) must be declared using thechoosecombi-
nator.chooseX from Dom in A models a fair coin toss that takes
values from the setDom — chooseX from Dom in A reduces toA after choosing a value forX fromDom. Furthermore, this com-
binator has the scoping connotations ofnewX in A combinator—
the variableX is a new local variable and no information on it can
be communicated outside this scope. Thus our RVs satisfy:

RV Property 2.2� RVs are hidden,i.e. not part of the observable results of the
program.� Each RV is associated with a unique probability distribution.

Example 2.3 Consider the following program: it has one RV,X,
with 4 equiprobable possible values.

chooseX from f0; 1; 2; 3g in[if X = 0 _X = 1 then a; if X = 2 then b]
On inputtrue1, this program will produce outputa with proba-
bility 0:5, b with probability0:25 or true with probability0:25.
Note that the visible outputs do not includeX.

Random variables, like any other variables, may be constrained.
In fact this is a fundamental aspect of the entire framework.Each
RV acquires a value according to some distribution and the choices
are all made independently but the overall effect of the interaction
between these choices is achieved by imposing constraints on the
RVs. In particular if a choice is made which conflicts with a con-
straint then the inconsistent choices are discarded by the imple-
mentation and the probabilities get renormalized according to the
consistent choices. Thus constraints may cause portions ofthe do-
mains of the RVs to be eliminated. In such cases the renormaliza-
tion of the result yields theconditional probabilityof a given output
given the valid set of outputs. Relatively complex joint distributions

1Input true to a program in thecc context means running the program in the
unconstrained store,i.e. without external input.



can be emulated by this mechanism. The encoding of Probabilistic
Petri nets in Example 2.8 requires constraints on RVs, as does the
encoding of synchronous programs in Example 2.13.

In order to understand how to interpret the probabilities re-
ported in the formal semantics we think of execution in the follow-
ing “Monte Carlo” style. We consider a program as standing for
an ensemble of initially identical processes. Each processmakes
choices according to the indicated distributions as it evolves. As
processes become inconsistent they are discarded from the ensem-
ble. At the “end” the probability reported is the conditional proba-
bility of observing a given store conditioned on seeing a consistent
store. This is the sampling view of the process which is what the
semantics captures.

Example 2.4

chooseX from f0; 1; 2; 3g in [X � 2;
if X = 0 _X = 1 then a; if X = 2 then b]

On inputtrue, this program will outputa or b; true is not a
valid output because of the constraintX � 2. a is associated with0:5 andbwith 0:25; however to compute the probabilities, we must
normalize these numbers with the sum of the numbers associated
with all outputs. This yields the probability2=3 for a and1=3 forb.

We make the following assumption.

RV Property 2.5 The choices of values for different RVs are made
independently.

Correlations between random variables are established by con-
straints so we cannot just say that the RVs are independent.

Example 2.6

chooseX from f0; 1g in [X = z];
chooseY from f0; 1g in [if z = 1 then Y = 1]

There are a total of four execution paths. One of these paths
(X = 1; Y = 0) gets eliminated because of inconsistent con-
straints on the random variableY , leaving three valid execution
paths. Normalizing the probabilities, we get the followingpaths
(and associated probabilities):X = 0; Y = 0; z = 0(1=3); X =0; Y = 1; z = 0(1=3); X = 1; Y = 1; z = 1(1=3). Since the
random variables are hidden, the visible outputs (and associated
probabilities) are: z = 0(2=3); z = 1(1=3)

The above examples show how to get any finite distribu-
tion with rational probabilities by just using fair coin tosses.
For the rest of this paper, we will use the derived combinator:
chooseX from Dom with distribution f in P to indicate that
the random variableX is chosen fromDom with distribution func-
tion given byf . Consider the rational version of the probabilistic
choice operator of [40].

Example 2.7 Let r be a rational. The probabilistic choice opera-
tor of [40], P +r Q, reduces toP with probabilityr and toQ with
probability (1� r). This combinator can be defined inProbabilis-
tic cc as:

chooseX from f0; 1g with distribution fr; 1� rg in[if X = 0 thenP; if X = 1 thenQ]
wherefr; 1� rg represents the functionf(0) = r; f(1) = 1 � r.X is not free inP;Q. Since the random variables are hidden, we
get the expected laws:P +r P = P (absorption),P +r Q =Q+(1�r)P (commutativity),(P+rQ)+sR = P+rs (Q+ s(1�r)1�rsR)(associativity).

Example 2.8 We model the Probabilistic Petri nets described
in [45, 62]. In these nets, places are responsible for the probabilis-
tic behavior, while transitions impose constraints to ensure correct
behavior. Nets are 1-safe, so a place may contain at most one to-
ken. Temporal evolution is discrete (modeled here by a recursive
call). At each time tick, a place with a token chooses randomly a
transition which it would like to send its token to, or choosenot to
send it anywhere. Similarly an empty place chooses which transi-
tion to accept a token from, or accept no token at all. A transition
constraint ensures that either all preconditions and postconditions
of a transition choose it, or none of them choose it. Then a new
marking is computed, and the net starts over again. The program
is shown in Figure 1. Note the use of constraints on RV’s to ensure
that only correct runs are generated.P (S; t) :: /* S � [1::n] is the marking,t = time*/

newT1; : : : Tn in f
/* Ti will be the transition chosen by placei to send a
token to or receive from. */
/* Select a transition for each place */
if (i 2 S) then

chooseX from Prei with distribution fi in Ti = X;
/* Prei is the set of transitions of whichi is a
precondition. Also,0 2 Prei, signifying no choice. */

if (i 62 S) then
chooseX from Posti with distribution gi in Ti = X;
/* As above,Posti is the set of transitions of whichi
is a postcondition, and0 2 Posti. */: : : ;

/* Transition constraints — one for each transition.
Contraint for transitioni. i1; : : : ; ik are its pre and
postconditions. If one of its pre or postconditions
chose transitioni, all must choose it. */
if (Ti1 = i _ : : : _ Tik = i) thenfTi1 = i; : : : ; Tik = ig: : : ;
/* Compute the next marking */
newnewS in f

if ((1 2 S ^ T1 = 0) _ (1 62 S ^ T1 6= 0)) then1 2 newS;
if ((1 62 S ^ T1 = 0) _ (1 2 S ^ T1 6= 0)) then1 62 newS;: : : ;P (newS; t+ 1) /* next instant */gg

Figure 1: Probabilistic Petri nets asProbabilistic cc programs.

2.5 Recursion and limit computations

Recursion increases the expressiveness of our language by allowing
the programming of continuous distributions.

Example 2.9 Consider the programU(l; u; z) :: z 2 [l; u];
chooseX from f0; 1g in [

if X = 0 thenU(l; (u+ l)=2; z);
if X = 1 thenU((u+ l)=2; u; z)]



This program can be visualized as a full binary branching tree,
where the branches correspond to the two possible values forthe
random variable of each recursive call. Each internal node of the
tree can be associated with the interval thatz has been constrained
to be in. Thus, in the limit, at the leaves of the tree,z gets con-
strained to be a real number. Furthermore, the induced probability
distribution is on infinite binary sequences satisfying thecondition
that each finite sequence has the same probability of being extended
by a0 or by 1. By classical results, this is the uniform random dis-
tribution onz over [0; 1](see [4] Page 195, Prob. 8). In the rest
of this paper, we will useU to stand for the program defined in
Example 2.9.

The following example conveys the flavor of use of probability
in the programming of large arrays of simple devices. This example
satisfies all the properties required of an amorphous computer [19].

Example 2.10 Suppose we have a large array of tiny light emitting
diodes (LEDs). Assume that each LED can be switched on or off.
We would like to produce light of a certain intensity. One method is
to switch on a fraction of the LEDs by telling each LED to switch
on or off. This method requires each LED to have a unique iden-
tity. A more efficient way is to let each LED light up with a certain
probability. The central limit theorem [4] ensures that theinten-
sity will be proportional to the probability. The probability can be
communicated to the LEDs via an electric potential, thus replacing
individual messages by a broadcast communication.

newX in [U(0; 1; X);
if (X < Potential) thenOn]

A clever implementation would need to unwind the recursion in U
only finitely (almost always). Furthermore, this method allows one
to compensate for a broken fraction of LED’s by increasing the
potential suitably.

How do we compute probabilities in the presence of recursion?
We use a computationally motivated analogy to the limiting pro-
cess [59] that computes conditional probabilities in measure the-
ory. This subtle limiting process plays a key role in our theory. The
important point here is that we can have situations where theprob-
ability of an inconsistent store is1, i.e. the conditional probability
is undefined according to classical measure theory. In our theory
we can sometimes define these probabilitiesby taking into account
the way in which the computational approximation proceeds.

We begin with a seductively simple warm-up example that il-
lustrates our techniques.

Example 2.11 ConsiderP = [U(0; 1; z); z = 0]
Intuitively we would expect its output to bez = 0 with probability
1, since after all theonly possible output of this program isz = 0.
Note however, that the probability ofz = 0 in the above program is
0, so a naive calculation at normalization time leads us to calculate0=0.

We handle this problem by computing the required probabil-
ities for a recursive program as a limit of the probabilitiesof its
finite unwindings. Consider the programPn = [Un; z = 0] got
by replacing the recursion inU by a finite unwindingUn. Un can
be viewed as a finite subtree of the tree associated withU , see ex-
ample 2.9. Pn is a finite program operating on a finite discrete
probability distribution. Each of these finite programs yield outputz = 0 with probability1. Thus, the result isz = 0 with probability1.

Apropos, this example also illustrates theneedfor these tech-
niques — the above problem arises anytime a random variable is
constrained. The limiting process yields expected answersin nor-
mal situations.

Example 2.12 Consider P = U(0; 1; z); if (1=4 < z <3=4) thenS whereS is a signal.

Let us compute the probability ofS being present — we expect
the answer to be1=2. Consider a finite unwindingUn of U ; the re-
quired answer for this unwinding is the sum of the sizes of thefinite
intervals contained completely in the interval(1=4; 3=4). Consider
the set of real numbers that are answers deduced at the finite un-
windings. The only limit point of this set of reals numbers is1=2.
This can be visualized as follows. Takeany directed set of finite
subtrees of the tree associated withU (we are thinking of trees un-
der the prefix ordering on trees), whose limit isU . Then, the limit
of the probabilities associated with this directed set is1=2.

The above example tells us when probability numbers are
well defined — any way of unwinding the various recursions in
a program should yield the same answer. Do limits exits al-
ways? Unfortunately not! These subtleties are illustratedby the
next set of examples that deal with program combinators remi-
niscent of indeterminacy issues in synchronous programming lan-
guages [30, 8, 12, 31, 25, 33, 53].

Example 2.13 Consider

newX in [U(0; 1; X);
if a thenX = 0; if X > 0 then b]

This program can be thought of asif a elseb, i.e. if a is not present,
produceb with probability 1. If a is present,b is not produced.
In essence, we use the RV to be certain thatb will be produced;
however, this expectation can be denied on the production ofa.

The analysis of this program proceeds as follows. On input
true, the program produces constraintb with probability 1 and
true with probability 0. On inputa the only output of this pro-
gram isa. Indeed in this latter case, computation of the probability
proceeds similar to Example 2.11 — the probability prior to nor-
malization is0, which seems to lead to a0=0 case — however, our
analysis tells us that the probability is1.

The next example shows how indeterminacy issues in syn-
chronous programming languages show up as problems with the
limit computation of probabilities. For example, the program
if a elseb; if b elsea has two potential outputsa andb on input
true2.

Example 2.14 ConsiderP = if a elseb; if b elsea.

A simple calculation shows that on inputtrue the outputs area, b
or true, with all non-normalized probabilities being0. However,
in this case the limiting process does not produce unique answers.
The formal calculation proceeds as follows.

Consider approximationsif a elsenb to if a elseb. if a elsenb
stands for the program got by unwinding the recursion inU n
times. A simple calculation shows thatif a elsenb behaves as fol-
lows: if a is not present, produceb with probability(1 � 2�n). Ifa is present,b is not produced.

Now consider approximationsPm;n = if a elsemb; if b elsena
to P . On inputtrue the non-normalized probabilities ofa andb are2�m(1 � 2�n); 2�n(1 � 2�m). Now the limits of the nor-
malized probabilities (resp. 2n�12m+2n�1 ; 2m�12m+2n�1 ) depend on the
relative rates ofm;n approaching1, i.e. the limits depend on the
“speed of unwinding” of the two recursions involved. In our theory,
this program would thus not have a defined result.

2Hence is rejected by the compilers for synchronous programming languages.



3 Operational semantics

We first describe a SOS style transition system for finite (recursion-
free) Probabilistic cc programs (as in [26]), and follow it with
a formalization of the limit constructions (alluded to earlier) for
handling recursion.

3.1 Transition relation of recursion-free programs.

We follow the treatment ofcc. We assume that the program is
operating in isolation — interaction with the environment can be
coded as an observation and run in parallel with the program.A
configuration is a multiset of programs�. �(�) will denote the
store in the multiset — it is recoverable as the conjunction of the
(tell) primitive constraints in�.�(�) ` a�; if a thenB �! �; B�; (A;B) �! �; A;B�; newX in A �! �; A[Y=X] (Y not free in�)�; chooseX from Dom in A �! �; Y = r;A[Y=X]r 2 Dom; Y not free in�
Consider the finite set of consistent quiescent configurations ofA
on any inputa, i.e. f�i j A; a �!� �i 6�!; �(�i) 6� falseg.
The unnormalized probability of�i is determined by the RVs in�(�i) — the transition sequence(s) to�i do not play a role in the
calculation. The unnormalized probability is�~Y 1=jDomY jwhere~Y is the set of RVs,Y = rY 2 �i, andDomY is the domain ofY .

The (finite set of) outputs of a processP on an inputa, denotedOpsemIO(P; a) is given by hiding the random variables and new
variables in the set of�(�i). The probability of an outputo, writtenPr(P; a; o) is computed as follows:� For each output, compute the unnormalized probability by

adding the probabilities of all configurations that yield the
same output.� Normalize probabilities of the set of outputs.

Define� Pr(P; a; o) = PfPr(P; a; o0) j o0 2 OpsemIO(P; a); o0 �og. Pr(P; a; o) is a cumulative probability interpreted as the
probability that the output ofP ona is at mosto. Pr can be
recovered fromPr by an inclusion–exclusion principle.� Pr(P; a; o) = PfPr(P; a; o0) j o0 2 OpsemIO(P; a); o �o0g. Pr(P; a; o) is a cumulative probability interpreted as the
probability that the output ofP on a is at leasto. Pr can be
recovered fromPr by an inclusion–exclusion principle.

3.2 Handling recursion.

We first generate all syntactic finite approximations to the given
program. Each of these finite programs is executed using the above
transition relation. We then describe the limit calculation for the
probabilities.

The partial order,(App(P );�P ) describes the syntactic ap-
proximations of aProbabilistic cc programP . �P , the partial or-
dering is intended to capture refinement of approximation. App(P )
is defined by structural induction onP . For a recursive program,
App(P ) is constructed by considering the set of approximations of

all finite unwindings with ordering induced by the (
) match order-
ing on recursive approximations [44], i.e. an expression isrefined
by replacing the “least program” (in our casetrue) by an expres-
sion. For a sample of other cases:

App(c) = fcg
App(A1; A2) = f(A01; A02) j A0i 2 App(Ai)g;
ordering induced by the cartesian product of�Ai

App(P ) has the expected properties.

Lemma 3.1 App(P ) is a directed set.

Let c be an input. Then,c induces a function on App(P ) that
mapsAi 2 App(P ) to OpsemIO(Ai)(c). If Ai �App(P ) A0i, then(8d0i 2 OpsemIO(A0i)(c)) (9di 2 OpsemIO(Ai)(c))di � d0i. The
outputs ofP on c are determined by a limit computation —d is an
output ofP on c if, there exists a monotone functionFd mapping
App(P ) to constraints such thatFd(Ai) 2 OpsemIO(Ai)(c), andd = Si Fd(Ai). 3

We now turn to computing the probability numbers. Letd be
an output ofP on c. Then,d maps eachAi 2 App(P ) to the
cumulative probabilityPr(Ai; c; d). Since App(P ) is a directed
set, we use the standard definition of convergence (e.g. see [4],
page 371). The cumulative probability of the outputd equalsr if:(8�) (9A 2 App(P )) (8A0) [A � A0 ) jPr(A0; c; d)� rj < �]V may not converge in general. We say that the output is defined
for the programP on a given inputc, if the cumulative probability
is defined for all outputs ofP on c.

We first explore the relationship of the above definition to the
two notions of cumulative probabilities discussed in the preceding
subsection.

Relationship to Pr and Pr
Example 3.2 Let P be a finite process. Then the set of outputs
given by the above definition on inputc is OpsemIO(P; c); the out-
put is defined onc and the definition yieldsPr(P; c; d) for all d 2OpsemIO(P; c).
The inclusion–exclusion style argument underlying the recovery of
probability (Pr) from cumulative probability (Pr) can be used for
programs that satisfy the following countability condition — for
any inputc, any outputd satisfies the condition that the cardinality
of the subset of outputse � d is countable. This condition is
satisfied byall our earlier examples.

Example 3.3 On Example 2.12 for inputtrue, the definition
yields cumulative probability1 for outputS, 0:5 for outputtrue;
thus yielding0:5 for both probabilities.

Let e be a constraint. Then,e induces a function that mapsAi 2 App(P ) to Pr(Ai; c; e). Since App(P ) is a directed set,
we can once again use the standard definition of convergence and
definePr(P; c; e) equalsr if:(8�) (9A 2 App(P )) (8A0) [A � A0 ) jPr(A0; c; e)� rj < �]
Again, convergence is not assured. We have the following relation-
ships betweenPr(P; c; e) and the cumulative probability of out-
puts ofP on c.

3We can prove the following fact: There is a monotone functionFd satisfying the
properties above, such thatd = Si Fd(Ai) iff there is a derivation starting fromA
whose output isd, where the output of an infinite derivation is the lub of the outputs
of its prefixes.



� Let P be a finite process. Then, the above definition ofPr(P; c; e) agrees with the definition ofPr from the pre-
ceding subsection.� Let P be a program such that its output is defined on inputc.
Furthermore, letPr(P; c; e) be defined for all finitee. Then,
the cumulative probabilityPr(P; c; d) of an outputd can be
recovered from thePr information by an inclusion–exclusion
principle on the (finite) constraintse such thatd 6� e.

Interpreting the probability numbers. How are these prob-
ability numbers to be interpreted? Recall that we say that there is
an ensembleof processes each of which executes a copy of the
Probabilistic cc program. The probability numbers are interpreted
statisticallywith respect to this ensemble,conditionalon the pro-
cess being consistent. The next few examples illustrate what we
have in mind.

Example 3.4 LetP be aProbabilistic cc program in which ran-
dom variables are “read only”,i.e. no constraints are imposed on
random variables; they are only queried in asks. (This classof pro-
grams includes all programs from [42].) In this case, the functionPr(;c; d) as defined above is a monotone, decreasing, bounded (by0) function on App(P ). Thus,Pr(;c; d) converges, and the output
of P is defined for all inputs.

Recall example 2.14 for examples of non–convergence. LetA be
a Default cc (“synchronous”, [53]) program andA0 be aProba-
bilistic cc program obtained fromA via the definition forelsefrom
example 2.13. Then,

Theorem 3.5 If A has multiple outputs on an inputc, the output
of A0 is not defined forc. If A is determinate, the output ofA0 on
any inputc is the the output ofA on c with probability1.

The next couple of examples illustrate the fact that our theory
agrees with the answers produced by standard probability theory,
when the standard theory produces defined answers.

Example 3.6 Letf : [a; b] �! [c; d] be a Riemann integrable func-
tion. Consider the programP :: U(a; b;X); U(c; d; Y );

if (Y < f(X)) thenA;
if (Y > f(X)) thenB

What is the probability of the outputA? Standard probability
theory tells us that ifR = (b � a) � (d � c), it should be(1=R) � R ba (f � c). Now consider the set of approximations toP . Each approximation defines a partition on[a; b] and a par-
tition on [c; d], and successive approximations refine these parti-
tions. Thus the probability number for signalA corresponds to a
lower Riemann sum, and similarly the probability number forB
corresponds to an upper Riemann sum. It is now easy to show thatP (A) �! 1RR ba(f � c) andP (B) �! 1 � 1RR ba(f � c), thus our
computations agree with standard probability theory. These results
extend to functions of many variables; andU can be replaced by
any program that produces the uniform distribution, such asV in
Example 3.9 below.

Example 3.7 The following program emits the signalnotC if z is
not an element of the Cantor set.C(l; u; z) :: C(l; (u+ 2l)=3; z);C((2u+ l)=3; u; z);

if ((u+ 2l)=3 < z < (2u+ l)=3) then notC

Now, consider the program:P :: U(0; 1; X); C(0; 1; X)
The probability of the outputnotC as per our theory is1, in con-
formance with standard probability theory.

In the case that a constraint forces the choices on a random
variable to be inconsistent with probability 1 we get a situation
in which conventional probability theory has no answer. This is
the situation with examples 2.13 and 2.14. Standard probability
theory would say that if we condition with respect to a set of mea-
sure zero the resulting conditional probability is undefined — this is
true both for discrete (countable) systems, and for continuous state
spaces, where the conditional probabilities are computed based on
some notion of derivative of measures, for example by use of the
Radon-Nikodym theorem [4, 59]. We can however ascribe a limit-
ing probabilitybased on the structure of the computational process.
This additional information allows us to associate sensible proba-
bilities in situation where conventional theory leaves thenumbers
undefined. Perhaps a better way of saying it is that probability the-
ory leaves the possibility of augmenting the information tocome up
with a sensible conditional probability. The limit formulaabove is
defined to capture exactly thecomputational informationthat goes
into the definition.

Example 3.8 Consider:

newX in new Y in [U(0; 1; X); U(0; 1; Y ); X = Y ]
This should and does yield a uniform distribution on the “diago-
nal” of the unitX � Y square. This is intuitively plausible but
completely at variance with probability theory. That is at it should
be. If one were to say that there are two independent uniform dis-
tributions onX andY then the question “what is the distribution
given thatX andY are equal?” is not answerable. In our casethe
operational model shows how the uniform distribution is obtained
by successive approximation. The calculation based on the limit
formula is exactly the embodiment of this idea.

It is important to not mistake the intent of the above discussion.
The numbers that we compute do not depend on the details of the
execution. Thus in the example just above we are claiming that even
if the recursions in the two calls toU are unwound at very different
rates we get the same answer. An explicit calculation verifies this
easily. However if we took twodifferentprocesses both generating
the uniform distribution we get a very different answer.

Example 3.9 Consider a variant of the programU :V (l; u; z) ::z 2 [l; u];
chooseX from f0; 1g with distribution f1=3; 2=3g in [

if X = 0 then V (l; (2l+ u)=3; z);
if X = 1 then V ((2l+ u)=3; u; z)]

This program chooses0 with probability1=3 and1 with probability2=3. It then subdivides the interval into two unequal portions —
one twice the size of the other — and recursively calls itself. This
also produces the uniform distribution in the limit. Now considerU(X; 0; 1); V (Y; 0; 1); X = Y
We donotget the uniform distribution along the diagonal. It is easy
to verify that the distribution assigns to the subinterval(0; 0:1) a
smaller probability than it does to the interval(0:9; 1). The actual
distribution is quite fascinating (see [14, pp. 408]) but does not
concern us further here. What is important is the fact that wegot



two very different answers to the question “ifX andY are uni-
formly distributed, what is the distribution given thatX andY are
equal?” when the programs generating the uniform distributions
are different. Here we see why the conventional probabilitythe-
ory answer is sensible; without further information one canget an
almost arbitrary answer. However our semantics provides exactly
this additional information.

4 Denotational semantics

4.1 CC semantics

We begin with a brief review of the model forcc programs, refer-
ring the reader to [54] for details. In our treatment ofcc, we will
considerfinite programsfirst. We describe recursion (in parenthet-
ical remarks) by working with the sets of programs obtained by
unwinding the recursion. An observation of acc programA is a
storeu in which it is quiescent, i.e. runningA in the storeu adds
no further information to the store. Formally we define the relationA #u, read asA is quiescent onu, with the evident axioms:A1 #u A2 #u(A1; A2) #u A #v 9Xu = 9Xv(newX in A) #u c 2 uc #uc 62 u(if c thenA) #u A #u(if c thenA) #u
The denotation of a programA can be taken to be the set of allu
such thatA #u. The semantics is compositional since the axioms
above are compositional. The output ofA on any given inputa
is now the leastu containinga on whichA quiesces. (IfA does
not become quiescent ona, which might happen with a recursive
program, then we have to take the lub of the stores that are produced
by the finite unwindings ofA ona.)

4.2 The problems

We turn now toProbabilistic cc. The input–output relation is not
compositional. The following example is inspired by Russell’s sim-
plified version [52] of the Brock-Ackermann anomaly [16].

Example 4.1 Consider the programsA1 = S1; if R1 thenS2; if R1 ^R2 thenS3A2 = S1; if R1 thenS2; if R1 ^R2 thenS4A3 = if R1 thenS1; if R1 ^R2 thenS2 ^ S4A4 = if R1 thenS1 ^ S2; if R1 ^ R2 thenS4A5 = if R1 thenS1; if R1 ^R2 thenS2 ^ S3Si; Ri are signals (see example 2.10). Define:B1 = if X = 1 thenA1; if X = 2 thenA2;
if X = 3 thenA3; if X = 4 thenA4B2 = B1; if X = 5 thenA5P1 = chooseX from f1; 2; 3; 4g

with distribution f0:2; 0:1; 0:5; 0:2g in B1P2 = chooseX from f1; 2; 3; 4; 5g
with distribution f0:1; 0:2; 0:4; 0:2; 0:1g in B2P1 andP2 have identical input/output behavior. Key cases are:Input Output
true true(0:7); S1(0:3)R1 S1(0:5); S1 ^ S2(0:5)R1 ^R2 S1 ^ S2 ^ S3(0:2); S1 ^ S2 ^ S4(0:8)

LetQ = if S1 thenR1; if S2 thenR2. P1; Q on inputtrue out-
putsS1^S2^S3(0:2); S1^S2^S4(0:1); true(0:7); P2; Q input
true outputsS1 ^ S2 ^ S3(0:1); S1 ^ S2 ^ S4(0:2); true(0:7).
ThusP1 andP2 can be distinguished by the contextQ.

Our solution to this problem is to makeProbabilistic cc and
cc amenable directly to some of the standard techniques of con-
currency theory via a key technical innovation, CLTS (constraint
labeled transition systems) with weak bisimulation, described in
greater detail below.

Unfortunately, more problems loom. The mixture of probabil-
ities and constraints violates basic monotonicity properties needed
in standard treatments of recursion — these problems were indi-
cated by the synchronous programming examples.

Example 4.2 ConsiderP :: chooseX from f0; 1g with distributionf0:2; 0:8g in [X = z; T rim(1)]Trim(Y ) ::Trim(1� Y );
if z = Y then

chooseX from f0; 1g with distributionf0:9375; 0:0625g in X = 1
UnwindingTrim 0 times yields the approximationP0 = (z =0) +0:2 (z = 1) to P . UnwindingTrim once yields the approx-
imation P1 = (z = 0) +0:8 (z = 1) to P . UnwindingTrim
twice yields the approximationP0 again. In a standard monotonic
least fixed point treatment of recursion, the denotation of then’th
unwinding is less than the denotation of the(n + 1)’st unwinding
for the purported orderv on programs. Thus,P0 v P1 v P0 ,
forcingP0 = P1, an equation that is unsound.

The subtle interaction of recursion and normalization underlying
this example is not handled by our study. We however show how
to handle the issue of normalization in the case of recursionfree
programs.

4.3 CLTS

We begin with the intuitions underlying our definitions. LetP be
a process. A transition system with transitions given by theoper-
ational semantics ofcc is informally given in the following way.
Each state of the system intuitively corresponds to a constraint
store. There is an initial state,s0, intuitively this corresponds to
the store(true). The transitions are labeled in one of three ways:� , c! and c? wherec is a finite constraint. Thec! and c? labels
represent interactions with the environment and are deterministic,
i.e. any state has at most one transition labeled with ac! or c?. A

transitions c!��! s0 means that the system outputs the constraintc
to the environment and adds it to the store. Ifc was already in the
store,s0 would bes, as the system can always output any constraint

already in the store. A transitions c?��! s0 means that the system
reads the finite constraintc from the environment and adds it to the
store. If the system contains a top-levelchoose, the actual choice
will not be visible to the environment and the transition is labeled
with � and the probability.

CLTS closure conditions make them a probabilistically de-
terminate system in the context ofcc computation.� Probabilistic transitions: Only � -transitions can be asso-

ciated with probabilities, and the associated probabilitymust
be strictly positive.



� Acyclicity: The only cycles in the transition system are1-
cycles of non-probabilistic transitions. All states are reach-
able from the start state.� Determinacy: for every states and every labelc? or d! there
is at most one transition froms with that label.� Receptivity: In every states and for every finite constraintc
there is a transition labeledc?.� Commutativity: If there is a states1 and transitionss1 c�!s2, s1 d��! s3, where at least one ofc; d is a non-probabilistic

transition, then there is a states4 and transitionss2 d��! s4,s3 c�! s4.� Masking: If there is a transitions c?��! s0 then any transition

of the forms c!��! s00 hass0 = s00. Masking is needed for the
(forthcoming) definition of parallel composition.� Splitting : if c andd are constraints and we have a transitions(c t d)!������! s0 then there is a states00 and transitionss c!��! s00
ands00 d!��! s0.� Transitivity : if s c?��! s0 ands0 d?��! s00 then there is a

transitions (c t d)?������! s00. Also, if s c!��! s0 ands0 d!��! s00
then there is a transitions (c t d)!������! s00.� Saturation: if there is a transitions c?��! s0, then there are

transitionss0 d!��! s0 for everyd such thatc � d. Thus every
query resolved by the constraint solver is represented by an
action in the transition system.� Tau-finiteness condition:There are at most finitely many�
transitions from any state.

The sole source of non–confluence in a CLTS is the (possible)
non-commutativity of conflicting probabilistic transitions — non-
probabilistic transitions commute with all other transtions. It also
ensures that adding new information cannot disable an already
enabled transition, and ensures the content of Lemmas (3.5,3.6)
of [54]. These conditions ensure that the set of output constraints
leading out of a state forms a directed set; and ensure that the set
of output constraints in the labels on all the transitions between any
two states forms a directed set.

Path-equivalence: A CLTS comes equipped with a state-
indexed equivalence relation�s on paths starting from the same
states in a CLTS: intuitively two paths are equivalent if they agree
on the random variables. Each equivalence class comes associated
with a probability, corresponding to the choice of the random vari-
ables.�s satisfies conditions such as:� If t is a non-probabilistic transition andp � t is a path starting

from s, thenp � t �s p.� If pathsp1; p2 both start ins and end in the same states0, thenp1 �s p2.

We say a CLTS is finite if intuitively it encodes only finitely many
probabilistic choices. Formally, we say a CLTS is finite if:� the number of equivalence classes in�s0 , wheres0 is the

start state, is finite; and� there are no paths with infinitely many occurrences of�

For a finite CLTS, the number of equivalence classes in any state is
finite, and the probability of any equivalence class is strictly pos-
itive. For the purposes of this paper, we restrict our attention to
finite CLTSs.

Example 4.3 The CLTS fortrue is constructed as follows. We
will assign labels to the states for notational convenience. For each
constraintc, there is a state with labelc. The start state is the state
with labeltrue. A state with labelc has self-loops labeledd! for
all finite constraintsd such thatc � d. There is transition labelede? from a state with labelc to a state with labeld if d is equivalent
to c ^ e. For any states, �s consists of one equivalence class
consisting of all paths starting froms. This class has probability1.

Example 4.4 The CLTS for a program that emitsc is obtained
from the CLTS fortrue as follows. For each transition with la-
bel d? such thatc � d, add a transition labeledd! with the same
source and target states.

The following example extends the ideas of examples 4.4
and 4.4 to all determinatecc programs.

Example 4.5 Let (E;v) be an algebraic lattice in whichfalse
is a compact element. Then, any continuous closure operatorf4

can be encoded as a CLTS as follows. Start with a copy of the
CLTS fortrue. Close the CLTS under the addition of following
transitions: add a transitiond! from a state with labelc to a state
with labelcFd if d v f(c).
Example 4.6 The CLTS for the programc+0:5 d (emit one ofc ord with probability0:5 each) is as follows. The set of states is the
disjoint union of the set of states ofc, d (as given in Example 4.4)
and the set of states of a copy oftrue(from Example 4.3). Each
component of the disjoint union retains all its transitions. To each
state, say with labele coming from the copy of the CLTS fortrue,
add two probabilistic� transitions each with probability0:5, with
target the states with the same label in CLTSs forc andd.

The statess coming from the CLTS forc (resp. d) retain the
associated�s. For each states coming from the copy oftrue,
there are the following three equivalence classes in�s. These three
equivalence classes correspond to the three possible casesof the
probabilistic choice.

1. Choice not resolved: this equivalence class is the set of paths
starting that only visit states from the copy oftrue and has
probability number1.

2. Choice resolved in favor ofc: this class is the set of paths
that visit some state from the copy of the CLTS forc and has
probability number0:5.

3. Choice resolved in favor ofd: this class is the set of paths
that visit some state from the copy of the CLTS ford and has
probability number0:5.

Consistent states: A consistent state of a CLTS is intuitively
a state which does not already entail inconsistency. The inconsis-
tency of such a state is witnessed by a “maximal” path that does not
have afalse! labeled transition. We formalize this idea below.

Let P be a path from statew0. Let the transitions inP bet0; t1 : : : with transitionti (of labelei) going from statewi to statewi+1. Then, a pathP 0 from w0 is a� extension ofP if P 0 6= P
and the following hold: (1) the transitions inP 0 are�; t00; t01; : : : ,
with t0i going fromw0i tow0i+1, (2) t0i has the same label asti, and

4f : E ! E is a closure operator iff is monotone,x v f(x) andf(f(x)) =f(x).



(3) 8i there is a transition labeled� from wi to w0i. A pathP , all
of whose suffixes have no� extension, is called�–maximal.

Let s be a state of a CLTS. We say thats is consistentif there
is a path froms which satisfies the following: (1) all transitions on
the path are labeled! or � , (2) the path is�–maximal (3) if anyc!
transition is enabled on the path, ad! transition is taken for somed � c (4) false! does not occur on the path. A state that is not
consistent is calledinconsistent. Note that the closure conditions
ensure that any state reachable from an inconsistent state remains
inconsistent.

Example 4.7 In the CLTS fortrue and c, the only inconsistent
state is the one with labelfalse. In the CLTS forc +0:5 d, the
only inconsistent states are the three states with labelsfalse.

A states of a CLTS isobservableif s is the start state, ors is a
consistent state with no outgoing� transitions.

Finite CLTS IO. Let O be the set of paths from the start states0, which satisfy the following: (1) the first transition on thepath
is labeled?, all others are labeled! or � , (2) the path is�–maximal
(3) if any c! is enabled on the path, ad! transition is taken for somed � c (4) false! does not occur on the path (5) no prefix of the
path is inO.

Now for an inputa, consider the subsetO(a) of O whose paths
start witha?. The output of each path is

F c, for all c! on the path.
This is the set of outputs ona. The probability of an outputo isPfProb(Q) j Q 2 �s0 ; 9p 2 Q \ O(a); output ofp = og
normalized by

PfProb(Q) j Q 2 �s0 ; O(a) \Q 6= ;g.
Weak bisimulation. A pathP in a CLTS has label (c?)(resp.c!) if it is of the form ��(c1?)��(c2?)�� : : : (cn?)�� (resp.��(c1!)��(c2!)�� : : : (cn!)��) andc is equivalent toc1^ c2^ : : :^cn.

We first define the probability of reaching a non–empty count-
able set of observable statesS from a given states on paths labeledc?. LetX be the set of all consistent states reachable from the states by paths having labelc? . LetP be the set of all paths ending in
consistent states whose initial state iss and no state other than the
final one is inX. Let p =PfProb(Q) j Q 2 �s; P \Q 6= ;g.

Let P 0 be the set of all paths whose initial state iss, the final
state is inS, no state other than the final one is inS, and whose label
is c?. Then the probability of reachingS from s onc? is defined as0 if p = 0; if p 6= 0, it is defined as(1=p)� (PfProb(Q) j Q 2�s; P 0 \Q 6= ;g).

A similar definition holds for the probability of reaching a non–
empty countable set of consistent statesS from a given states on
paths labeledc!.

We view CLTSs modulo the equivalence induced by the fol-
lowing definition of probabilistic weak bisimulation (modeled on
the definition for strong bisimulation in [43]). This definition relies
on tau-finitenessto ensure that a state can reach only countably
many states on�?.

Definition 4.8 Given two CLTSsC1 andC2, an equivalence rela-
tion, R, on the disjoint union of their observable states is called
a bisimulation if (1) their start states are related byR, and (2)
whenever two statess1 and s2 are R-related, then for any finite
constraintc and anyR-equivalence class of statesS the probabil-
ity of reachingS froms1 on c?=c! is the same as the probability of
reachingS froms2 on c?=c!.
Example 4.9 Consider the CLTS forc +0:5 c (based on exam-
ple 4.6, but withc taking the role ofd too). Consider also the CLTS

for c from example 4.4. These two CLTSs are bisimilar. The wit-
nessing binary relation relates all consistent states withthe same
label.

Example 4.10 Consider the CLTS forc +0:5 false (based on
example 4.6, but withfalse taking the role ofd) and the CLTS
for c (example 4.4). These two CLTSs are bisimilar. The states
of false do not need to be part of the relation because they are
all inconsistent. Thus, the witnessing binary relation relates (1) all
consistent states with the same label coming from the CLTS for c
with the same label, and (2) the start state of the CLTS forc +0:5
false andc.
4.4 An algebra of CLTSs

Given the definition of a CLTS, we now describe aProbabilistic
cc algebra of CLTS,i.e. eachProbabilistic cc combinator is in-
terpreted as a function on CLTSs. The construction fortrue (ex-
ample 4.3) andc (example 4.4) have been already described. We
describe the basic intuitions in the inductive cases. In each case, the
transition system needs to be closed under the closure conditions to
get a CLTS.

if c then A. Consider the CLTS fortrue(example 4.3), and
restrict it to the states with labelsd such thatd 6� c, by removing
all states with labelsd such thatd � c. Add transitions labelede?
from a state with labele0 (in the altered copy oftrue) to a state
of A reached by a transitiond? from the start state ofA, if d � c
andd is equivalent toe0 ^ e. The new start state is the start state of
the copy oftrue and the CLTS is restricted to its reachable states.
Two paths in the resulting CLTS are equivalent if their restriction
to the states ofA are equivalent; the probability numbers of an
equivalence class of paths are inherited from the CLTS forA (the
equivalence class(es) of paths contained completely in thecopy of
true have probability number1).

Parallel composition. Parallel composition proceeds by a
product construction that mixes aspects of asynchronous and syn-
chronous products. We first form the product of the sets of states.
Define transitions as follows:s1 c!��! t1 s2 c?��! t2(s1; s2) c!��! (t1; t2) s1 c?��! t1 s2 c!��! t2(s1; s2) c!��! (t1; t2)s1 c?��! t1 s2 c?��! t2(s1; s2) c?��! (t1; t2)s1 ���! t1(s1; s2) ���! (t1; s2) s2 ���! t2(s1; s2) ���! (s1; t2)
We draw the readers attention to two technical points. Firstly, our
handling of� transitions means that the probabilities at a state can
add up to more than1. For example, let each parallel component
have a state with two tau transitions of probability0:5; the resulting
product state has four� transitions each with associated number0:5. This peculiarity does not affect the results of this paper;in-
deed, it can be fixed by a slightly more involved syntactic construc-
tion that we will not describe in this paper. Secondly, unlike in tra-
ditional process algebras, thec! transition and thec? transition do
not “cancel” each other. Rather the broadcast style captured by the
CLTS construction captures thecc intuition that if one process tellsc, then this constraint is in the global store and in effect is broad-
cast to all other processes. Themaskingcondition is necessary to
ensure thatc! transitions in parallel composition are deterministic,
while saturationensures that all necessary synchronizations hap-
pen. The set of equivalence classes of paths in the product CLTS is



the product of the sets of equivalence classes of the two component
CLTSs. Two paths in the product are equivalent if their projections
on the two component systems are equivalent; their probability is
the product of the two respective probabilities due to Property 2.5.

New variables. The CLTS fornewX in A is constructed in
the following stages.

From the CLTS forA remove all transitions labeledc? where9Xc 6= c, and delete any states not connected to the start state. This
step prevents the process from receiving anyX-information from
the environment.

Replace all (output) labelsc! with 9X :c! to prevent output ofX-information. This however may violate the determinacy con-
dition on CLTSs, so we collapse certain states. We define an
equivalence relationS on the remaining states ofA as follows:S is defined inductively as the smallest equivalence relationsat-

isfying (a) sSs0; s (9x:c)?������! s1; s0 (9x:c)?������! s01, then s1Ss01
and (b)sSs0; s (9x:c)!�����! s1; s0 (9x:c)!�����! s01, thens1Ss01 and (c)sSs0; s ���! s1; s0 ���! s01, the paths from the start states0 of A
to s1; s01 are in the same equivalence class of paths in�s0 , thens1Ss01. We quotient the remaining states ofA under the relationS.

The start state of the resulting CLTS is the (equivalence class
of) the start state ofA; and the equivalence relation on paths is
inherited fromA.

choose X from f0; 1g in P . This corresponds to
newX in (P;X = 0) +0:5 (P;X = 1), so the CLTS for it will
be very similar to that in example 4.6. LetP0 be the CLTS cor-
responding toP;X = 0, andP1 be the CLTS corresponding toP;X = 1. Construct a CLTSA as follows.A contains the disjoint
union of the CLTSs oftrue, P0 andP1. To each state coming
from true and with labelc, add two� transitions each with prob-
ability 0:5; one going to the target of thec? transition from the start
state ofP0 and the other going to the the target of thec? transition
from the start state ofP1. The start state oftrue becomes the start
state. The set of equivalence classes of paths from a states coming
from the copy of true are determined by the choice made onX (see
example 4.6) and are as follows:

1. Choice not resolved: this equivalence class is the set of paths
starting that only visit states from the copy oftrueand has
probability number1.

2. ChoiceX = 0: this class is the set of paths that visit some
state fromP0 and has probability number0:5.

3. ChoiceX = 1: this class is the set of paths that visit some
state fromP1 and has probability number0:5.

The required CLTS is given bynewX in A, i.e. hide the variableX in A.
The algebra of CLTSs serves as a suitable target for the seman-

tics of finite Probabilistic cc programs because of the following
theorem.

Theorem 4.11 Weak bisimulation is a congruence on CLTS.

4.5 Recursion

In analogy with the treatment of recursion in the operational seman-
tics, we treat an infiniteProbabilistic cc process as a countable set
of finite CLTSs. Intuitively, the set associated with a programP
can be viewed as the set of CLTSs corresponding to the elements
of App(P ). We first define an ordering� on CLTS. LetL;L0 be
CLTSs.

Definition 4.12 L � L0 if the state/transition set ofL is a subset
of the state/transition set ofL0 and� The start states ofL andL0 are the same.� If t is a� transition inL0 whose target is inL, then the source

of t is inL andt is a transition inL.� If p1 �s p2 in L0 for paths ofL starting froms, thenp1 �sp2 in L with same probability number.

Our idea is to model (potentially infinite)Probabilistic cc pro-
grams by countable directed (wrt�) sets of CLTSs.

Example 4.13 Recall the program of Example 2.9.U(l; u; z) :: z 2 [l; u];
chooseX from f0; 1g in [

if X = 0 thenU(l; (u+ l)=2; z);
if X = 1 thenU((u+ l)=2; u; z)]

Recall that this program can be visualized as a full binary branch-
ing tree, where the branches correspond to the two possible values
for the random variable of each recursive call. The directedset cor-
responding to this program is induced by the finite prefixes ofthis
tree satisfying the condition that every non-leaf node has exactly 2
children — such a prefix corresponds to some element of the set
of syntactic finite approximants of the operational semantics (sec-
tion 3). Indeed, every such prefix forms the the skeleton for the
associated CLTS where each node is equipped with a (self-loop)
transition with labelc! wherec is the finest associated interval,e.g.
the left (resp. right) child of the root node has a self loop ofthe
form (z 2 [0; 0:5])! (resp.(z 2 [0:5:1])!).
Example 4.14 Consider the following modified variant of the pro-
gram of Example 2.9.U(l; u; z) :: z 2 [l; u];

chooseX from f0; 1; 2; 3g in [
if X = 0 thenU(l; (u+ 3l)=4; z);
if X = 1 thenU((u+ 3l)=4; (u+ l)=2; z);
if X = 2 thenU((u+ l)=2; (3u+ l)=4; z);
if X = 3 thenU((3u+ l)=4; u; z)]

The directed set has similar intuitions to the one from example 4.13.
This program can be visualized as a full quarternary branching tree,
where the branches correspond to the four possible values for the
random variable of each recursive call. Consider the the finite pre-
fixes of this tree satisfying the condition that all non-leafnodes have
exactly 4 children. As in example 4.13, each node is equippedwith
a (self-loop) transition with labelc! wherec is the finest associated
interval, eg. the children of the root node have self loops ofthe
form (z 2 [0; 0:25])!; (z 2 [0:25:0:5])!; (z 2 [0:5; 0:75])!; (z 2[0:75; 1])!. The directed set corresponding to this program consists
of the CLTSs built out of the skeleton transition system encoded in
these trees.

IO relation. The IO relation for directed sets of CLTSs is de-
fined as a limit of the IO relation of the elements of the set following
the ideas of Section 3 — the directed set of CLTSs takes the place
of the directed set of syntactic approximations in the definitions of
Section 3.



Weak bisimulation. First some notation. LetD = fAig
be a directed set of CLTSs. Define the LTSD whose states and
transitions are the union of the set of states of the CLTSsAi5. Let
its state set beX.

LetS � X. We first defineSAi , the projection ofS onAi. Lets be a state ofAi. Thens 2 SAi , if in D s reaches some state ofS
by a path of the form�?, and no other state ofAi is on this path.

We now define the probability of reaching a non–empty count-
able set of statesS � X from a given states on paths labeledc?
(resp. c!). Let s be a state inAk andk � s. Let pAi , the (unnor-
malized) probability of reachingSAi from s on a path labeledc?
(resp.c!) 6 We define the probability of reachingS from s on a path
labeledc? (resp.c!) as the limit of the netfpAig. In the absence of
normalization, this limit always exists.

Definition 4.15 LetD andE be two directed sets of CLTSs, and letD andE be their union LTSs. A partial equivalence relation,R, on
the disjoint union of the states inD andE is called abisimulation
if � Let s be a state such thats is not related tos by R. Then,

every�? path froms can be extended to a�? path ending in
a statet such thatt R t; every�1 path froms includes a
statet such thatt R t, where these paths are in the respective
LTSs.� Whenever two statess1 and s2 are R-related, then for any
finite constraintc and anyR-equivalence class of statesS
the probability of reachingS froms1 on c?=c! is the same as
the probability of reachingS froms2 onc?=c!. Two states are
bisimilar if there is a bisimulation relating two states.

Two CLTSs are bisimilar if there is a binary relation between
their state sets, satisfying the above conditions such thatthe initial
states are bisimilar.

In the above definition, the partiality of the equivalence rela-
tion captures the idea that all internal configurations neednot be
matched. This idea was captured by the restriction to observable
states in the finite case. This issue is illustrated by the following
example.

Example 4.16 There is a bisimulation relating the trees of exam-
ple 4.13 and example 4.14. The witnessing partial equivalence re-
lation relates the nodes of example 4.14 to the corresponding nodes
of example 4.13. The other nodes of example 4.13 (e.g.the children
of the root node, and every alternating level of nodes from thereon)
are not included in the equivalence relation.

The following non–example illustrates the issues further.

Example 4.17 No two distinct nodes of the tree described in Ex-
amples 4.13 can be in the same equivalence class of a bisimulation
relation, since their possible outputs distinguish them. Similarly, no
two distinct nodes of Example 4.14 can be in the same equivalence
class of a bisimulation relation.

The absence of normalization in the computation of probabil-
ity numbers of our programs shows up in the following example.
(recall that for finite recursion free programsA, the semantics of
Section 4.3 validates the equational lawA+0:5 false = A.)

Example 4.18 The programsA+0:5 false andA are not bisim-
ilar in general.

5Note thatD may not be CLTS as it may not satisfy� -finiteness.
6pAi is defined following the definitions of section 4.3. LetP 0 be the set of all

paths inAi whose initial state iss, the final state is inSAi , no state other than the
final one is inS, and whose label isc? (resp.c!). Then,pAi = (PfProb(Q) jQ 2 �s; P 0 \Q 6= ;g).

Algebra of directed sets of CLTSs. The following lemma
lifts the Probabilistic cc algebra to sets. It allows us to lift the
Probabilistic cc combinators to sets of CLTSs by just extending
them “pointwise” —e.g. the parallel composition of two sets is
the set of CLTSs got by performing the defined composition on all
possible pairs from the two sets.

Lemma 4.19 All operations in the algebra of CLTS are monotone
with respect to�.

The earlier theorem that weak bisimulation is a congruence gets
lifted to directed sets of CLTSs:

Lemma 4.20 Weak bisimulation is a congruence on directed sets
of CLTS.

4.6 Correspondence and conservativity results

Theorem 4.21 (Adequacy)(Directed sets of) CLTS modulo weak
bisimulation is sound for reasoning aboutProbabilistic cc with
respect to observations of IO relations.

The key step in this theorem is to show computational adequacy —
the operational and CLTS IO relations coincide. Our proof exploits
the set construction in the CLTS semantics for recursive programs
to reduce the proof to the case of finite recursion free programs.
For this case, the proof is carried out by using a standardcc style
argument to reduce finite recursion free programs to the following
normal form — random variable declarations at the outside enclos-
ing a body with all local variable declarations outside a body built
out of tells, composition and asks.

The directed sets CLTS semantics is not complete,i.e. not fully
abstract because it does not handle normalization of probability
numbers.

The theory is consistent with limit observing semantics of de-
terminatecc [54, Pg. 344] — the outputfalse of [54] corre-
sponds to absence of output in our treatment of determinatecc.
Example 4.5 motivates:.

Theorem 4.22 CLTS modulo weak bisimulation is a fully abstract
semantics for determinatecc with respect to observations of IO
relation.

Corollary 4.23 (Conservativity) Probabilistic cc is conservative
overcc.

5 Related work

Our integrated treatment of probability and the underlyingcon-
current programming paradigm is inspired by [9, 2],e.g. condi-
tions 2.2 and 2.5 are directly borrowed from these papers. The
treatment of recursion and associated semantics are not explored in
these papers. Our work falls fundamentally into the realm ofstudy
initiated in these two papers, with our contribution being the inte-
gration of programming language and concurrency theory methods.

The role of probability has been extensively studied in the con-
text of several models of concurrency. Typically, these studies
have involved a marriage of a concurrent computation model with
a model of probability.
(1) Probabilistic process algebras add a notion of randomness to
the underlying process algebra model. This theory is quite com-
prehensive and these extensive studies have been carried out in the
traditional framework of (different) semantic theories of(different)
process algebras (to name but a few, see [32, 41, 43, 34, 5, 61,18])
e.g. bisimulation, theories of (probabilistic) testing, relationship
with (probabilistic) modal logics etc. Recently, these theories have



been shown to extend nicely to continuous distributions [15, 22].
We have imported powerful machinery to analyze labeled transi-
tion systems from this area of probabilistic process algebra into our
work.
(2) The work of Jane Hillston [37] develops a process algebra,
PEPA, for compositional performance modeling. The probabilities
enter through the fact that each action has a duration chosenac-
cording to an exponential distribution. A natural questionfor us is
to encode her process algebra inProbabilistic cc. This would lead
us into the integration of explicit continuous time into ourmodel.
(3) The verification community has been very active and therehas
been significant activity in developing model checking tools for
probabilistic systems, for example [13, 6, 20, 38]. Our workis
not directedly related but should be seen as a complementarytool.
(4) Probabilistic Petri nets [45, 62] add Markov chains to the un-
derlying Petri net model. This area has a well developed suite of
algorithms for performance evaluation. Example 2.8 shows how to
represent such nets inProbabilistic cc.
(5) Probabilistic studies have also been carried out in the context of
IO Automata [58, 63]. The reader will have noticed the influence
of IO-automata on the definition of CLTS.

Our work differs in the following aspects. Formally, our work
is based on thecc model. More importantly perhaps, our work fo-
cuses on the execution aspect of stochastic models, in contrast to
the specification focus of the above. Thus, our model remainsde-
terminately probabilistic and we integrate probability more deeply
into the language,e.g. the cc paradigm is exploited to build and
specify joint probability distributions of several variables. This
forces us to explore the semantic issues associated with theinter-
action of constraints, recursion and random variables; issues not
treated in the above theories. On the other hand, our work does
not currently incorporate the sophisticated reasoning methodolo-
gies of the above formalisms. Our semantic study based on classi-
cal techniques, labeled transition systems and bisimulation, makes
us hopeful that this technology can be adapted toProbabilistic cc.

The development of probabilistic frameworks in knowledge
representation has been extensive [51]. Our earlier examples moti-
vate how to express the joint probability distributions of Bayesian
networks withinProbabilistic cc makingProbabilistic cc a sim-
ple notation for describing Bayesian networks. However,Prob-
abilistic cc does not allow the direct manipulation of conditional
probability assertions as in the logics of [49, 23]. The workin this
genre that is most closely related to our work is the work on (lazy
first order) stochastic functional programming languages [42]. The
key technical contribution of that paper is an algorithm that com-
putes the output distribution exactly when all possible execution
paths terminate. Our paper differs in the choice of the underlying
concurrent computing idiom — recall our earlier arguments for the
importance of concurrency. [42] also does not handle probability
distributions when the underlying computation does not terminate.
However, we hope to be able to adapt the very general (program
analysis style) ideas in the algorithm of that paper to develop rea-
soning methods forProbabilistic cc.
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