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Abstract

This paper describes a stochastic concurrent constraigtitege for
the description and programming of concurrent probalilisys-
tems. The language can be viewed both as a calculus for bigggri
and reasoning about stochastic processes and as an exedamab
guage for simulating stochastic processes. In this largymeg-
grams encode probability distributions over (potentiafifinite)
sets of objects. We illustrate the subtleties that ariseftioe in-
teraction of constraints, random choice and recursion. ¥geribe
operational semantics of these programs (programs areyrsarb-
pling random choices), denotational semantics of progrgrased
on labeled transition systems and weak probabilistic hition),
and prove soundness theorems. We show Rinababilistic cc is
conservative overc, thus justifying the design dfrobabilistic cc.
We use the semantic study to illustrate a novel use of préhatm
analyze a problem stated without reference to probabiligynely
the problem of indeterminacy in synchronous programs.

1 Introduction

This paper describes a stochastic concurrent constraigtitege for
the description and programming of concurrent probalilisys-
tems. The language is both a calculus for reasoning aboutdar
processes and an executable language that can be usedranprog
stochastic processes.

1.1 The Need for Probability

The traditional conceptual framework of programming laages

is based on the assumption that enough information will laél-av
able to model a given system in as accurate detail as is neseded
that appropriate causal, and maybe even determinate, model
be constructed. However, this assumption is violated inynsn
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Firstly, probability finds use as an abstraction mechanism t
finesse inessential or unknown details of the system aniaéoen-
vironment. For example, [3] analyzes a component of the huce
Technologies’ 5E telephone switching system that is respon-
sible for detecting malfunctions on the hardware connestibe-
tween switches. This component responds to alarms being gen
erated from another complicated system that is only aviailab
a black-box. A natural model to consider for the black-boxis
stochastic one, which represents the timing and duratiothef
alarm by random variables with a given probability disttiba. [3]
then shows that the desired properties hold with extremaji h
probability. For another instance of modeling a complexirems
ment that is best done statistically, see [24].

Secondly, consider model-based diagnosis settings. @ften
formation abouftfailure modelsand their associated probabilities
is obtained from field studies and studies of manufacturiragp
tices. Failure models can be incorporated by assigningiatiat
called themodeof the component, to represent the physical state of
the component, and associating a failure model with eaakevail
the mode variable. Probabilistic information can be incogted
by letting the mode vary according to the given probabiliistii-
bution [21]. The diagnostic engine computes the most priebab
diagnostic hypothesis, given observations about the custate of
the system.

Thirdly, probability finds use as one of the tools in the dasig
of efficient algorithms for communication and computatiordis-
tributed unreliable networks. For example, [35] describadass
of scalable (probabilistic) protocols based on a probsiiglisys-
tem model whose costs grow slowly with the size of the system.
A similar class of examples arise in the area of amorphous- com
puting [1, 10]. Here one assumes vast numbers of progranemabl
elements amassed without precise interconnection aneés&idg;
and solve control problems even though the individual estiare
unreliable and interconnected in unknown and irregulatepas.

uations — it becomes necessary to reason and program with ap_PrObabi"StiC methods are a basic tool used in the desigri-of a

proximate, incomplete or uncertain information. We cossitiree
paradigmatic situations.
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gorithms in this areae.g. see [19] for probabilistic algorithms
to compute maximal independent sets, [48] for probahiliatgo-
rithms to build hierarchical abstractions, and [17] forgmamming
an amorphous computer.

One can take the other extreme position and work with inde-
terminacy and avoid the subtleties of measure theory andapro
bility theory. There are certainly situations where thighe rec-
ommended approach, in particular when one has no quawtitati
information at all: using a uniform probability distriboti is not
the same as expressing complete ignorance about the gossibl
comes. However, one often does have the quantitative iraom
needed for a probabilistic analysis and then one can get éae m
information from a probabilistic treatment than from a neta-



ministic treatment — [22] shows that the logical charac@ion
of a probabilistic system is almost the same as in the detéstid
case and very different from the indeterminate case.

1.2 Design Criteria

The above examples motivate the following criteria on cdatdi
modeling languages.

Concurrency. The need for concurrency arises from two
sources. First, note that concurrency arises inevitablghénfirst
and third examples. The second example motivates a secarekso
of concurrency — concurrency as a structuring mechanismdo a
in modular construction of models — as motivated by the aialy
underlying synchronous programming languages [8, 30, 11].

Thus the intended stochastic language should permit the de-
scription of concurrency and interaction between concurpo-
cesses. Furthermore — as earlier work on concurrent constra
programming [54, 50] has shown — concurrent composition is
precisely modeled by conjunction. In the stochastic caseave
have much richer possibilities for interaction, namelyenattion
between stochastic processes, but we do not want to moddithi
introducing a plethora of new combinators. Rather, we adsp
design principle for our language that we havsingle composi-
tion primitive — traditional parallel composition — encoagsing
both interaction between stochastic processes and detatenpro-
cesses.

Executability. The motivation for executability in a program-
ming context such as the third example is evident. Furthegmo
even specification contexts, such as the first two exampls, b
efit from an executable modeling language. At a foundational
level, executability helps to bridge the gap between a asystad
its model. Secondly, in the style of abstract-interpretatbased
program-analysis techniques, executability provides siesyatic
way for developing reasoning algorithngsg.in the stochastic con-
text, [2] uses the simulation engine of the language to dgveh
algorithm for maximum likelihood estimation, and [42] usbe
lazy evaluation mechanism of their stochastic functiomagpam-
ming language to compute conditional probabilities.

Constraints. One of the key motivations of the present work
is to have a formalism that allows one to work with physica-sy
tems. In such systems the real numbers and associatedmgin
mathematics plays a significant role. Inevitably in workingh
such systems one has to work with approximate informatiaiteq
apart from the uncertainty in the dynamics. A natural way»cf e
pressing this uncertainty is as partial information, or stoaints.
In traditional numerical analysis the notion of partialarhation
enters implicitly in every discussion of approximation antbr es-
timation. However there one does not often directly marifmul
intervals qua approximate real numbers; a notable exaegjmof
course, interval analysis [46] which influenced the earlykniay
Scott on domain theory [57]. In this paper, we work directighwa
cpo of intervals as computational approximations to reahipers.

A major part of the philosophy of concurrent constraint pro-
gramming was “putting partial information in the hands af firo-
grammer”. In our setting we have captured both a qualitatotéon
of uncertainty, embodied in the use of partial informatias,well
as the evident quantitative notion associated with the fipeoba-
bilities.

1.3 Our Results

We describeProbabilistic cc, an executable stochastic concurrent

constraint language, which adds a form of probabilisticicéd®o

the underlying concurrent constraint programming panaxligc.

Probabilistic cc is probabilistically determinate [47], rather than
nondeterministicProbabilistic cc is expressiveg.g. Probabilistic

cc is expressive enough to encode (a variant of) ProbabilPsici
nets and probabilistic dataflow networks.

e We describe an operational semantics given by SOS rules and
a notion of sampling.

e We show that a denotational semantics based on input-output
relations cannot be compositional; and provide examples to
illustrate the impact of the non-monotonic character of the
language on (semantic) interpretations of recursion.

e \We describe a denotational semantics based on weak bisimu-
lation on constraint-labeled transition systems. It isassary
to work with weak (rather than strong) bisimulation in a pro-
gramming language context. We show that weak bisimulation
is a congruence and is an adequate semantics for reasoning
about the input-output relation of processes.

The denotational semantics when specializeddas fully
abstract foicc. We show thaProbabilistic cc is conservative
overcc— thus our integration of probability is coherent with
the underlying concurrent constraint paradigm.

Our techniques suggest that probability has a role in the sui
of techniques at the disposal of concurrency theorists vigeace,

we show that our semantic study permits a new charactenizafi

a problem stated withowtny reference to probability — the inde-
terminacy issues of synchronous programming.

Organization of paper. The next section describes a collec-
tion of examples that illustrate the design of the languagesome
of its subtleties. We follow with a description of the opévatl
semantics. The next section describes a sketch of the diemata
semantics and contains soundness and conservativityetihsoiVe
conclude the paper with a comparison with related work.

In this extended abstract, we content ourselves with an
overview of the results, and some key examples, and defatehe
tailed technical development to the full paper.

2 Thelanguage

2.1 Concurrent constraint programming

The concurrent constraint¢) programming paradigm [56] re-
places the traditional notion of a store as a valuation ofaes

with the notion of a store as a constraint on the possible val-

ues of variables. Computation progresses by accumulating c
straints in the store, and by checking whether the storeilenta
constraints. Several concrete general-purpose progragitan-
guages have been implemented in this paradigm [39, 60ydirtd)
timed [53] and hybrid extensions [27] of that have been used for
modeling physical systems [28, 29].

A salient aspect of thec computation model is that programs
may be thought of as imposing constraints on the evoluticthef
system.cc provides four basic constructs: (tell{for ¢ a primitive
constraint), parallel compositiomi( B), positive askif ¢ then A)
and hiding fiew X in A). The program: imposes the constrainat
The program( A, B) imposes the constraints of bothand B —
logically, this is the conjunction oft andB. new X in A imposes



the constraints ofd, but hides the variabl& from the other pro-
grams — logically, this can be thought of as a form of exis&nt
quantification. The prograni ¢ then A imposes the constraints
of A provided that the rest of the system imposes the constraint
— logically, this can be thought of as intuitionist impliaat. This
declarative way of looking at programs is complemented bgmn
erational view. The basic idea in the operational view ig tfea
network of programs interacting with a shared store of piimi
constraints. The programis viewed as adding to the store in-
stantaneously. The prografdl, B) behaves like the simultaneous
execution of botd andB. new X in A startsA but creates a new
local variable X which is inaccessible outsidd. The program
if ¢ then A behaves liked if the current store entails

2.2 Constraint systems

cc languages are described parametrically overcamstraint

systerfb4, 55]. For technical convenience, the presentation here

is a slight variation on earlier published presentations.

The information added to the store consists of primitive-con
straints which are drawn from eonstraint system A constraint
systemD is a system of partial information, consisting of a set
of primitive constraints (first-order formulas) tokensD, closed
under finite conjunction and existential quantificationd an infer-
ence relation (logical entailmertt) that relates tokens to tokerts.
naturally induces logical equivalence, written Formally,

Definition 2.1 A constraint systemis a structure (D,+
, Var, {3x | X € Var}) such that:

e D is closed under conjunctiong; if a,b,c € D, then-C
D x D satisfies:
—ata;atbandbAct dimpliesthata Act d
—aAbFaanda AbkEb;at b anda b cimplies that
akFbAc

e Var is an infinite set ofariables such that for each variable
X € Var, 3x : D — D is an operation satisfying usual
laws on existentials:

- a = Ex(l

Ex(a A Exb) ~ dxa N Ixb

- E|Xz|y(1, ~ Eyaxa

—abkb= dxal Ixdb

A constraintis an entailment closed subset Df The set of all
constraints, denoteld|, is ordered by inclusion, and forms an al-
gebraic lattice with least upper bounds inducedroywWe will use
LI andr to denote joins and meets of this lattice. From now on we
willuse a, b, ¢, . .. to denote constraints, noting that a tokenan
be represented as the constrdititce D | a F b}: such constraints
are thefinite constraints, as they are the finite elements in the lat-
tice. 3 lifts to an operation on constraints. In any implementable
languagel- must be decidable, and we also assume the thP et
countable

Examples of such systems are the system Herbrand (undgrlyin
logic programming) and FD [36](finite domains).

In this paper we will work with a constraint system that in-
cludes interval constraints [46]. Primitive constrainte auilt up
(by conjunction and existential quantification) from tokesf the
form z € [I,u] wherel, u are rationals:z € [l, u] constrains the
variablez to lie in the closed intervall, u]. The entailment rela-
tion on interval constraints is induced by inclusion of mtds —
z€IkFze JifI CJ.

In addition, our constraint system will also include sigoah-
straints likeOn and S — these are O-ary predicates, and telling
such a constraint is like emitting a signéls A ... A S,, b T iff
S; =T for somei € 1..n.

2.3 Syntax

In this paper, we describe the integration of discrete ramdari-
ables incc. This paper extends the results of [26] with recur-
sion. We augment the usuet syntax with achooseconstruct,
chooseX from Dom in P. Thus theProbabilistic cc syntax is as
follows:

Decl == €|g(X1,...,Xy):: P| Decl, Decl
P == c|g(ti,... tn)|if cthenP
| P,P|newXin P
| chooseX from Dom in P
Prog := Decl, P

In this description, @ecl is a set of procedure declarations, wijth
a procedure name ar, . .. , X,, alist of parameters., ... ,t,
is a list of variables or valuesX is a variable andom is a finite
set of real numbers.

2.4 Constraints on random variables

Random variables (RV) must be declared usingdheosecombi-
nator.chooseX from Dom in A models a fair coin toss that takes
values from the seDom — chooseX from Dom in A reduces to
A after choosing a value foX from Dom. Furthermore, this com-
binator has the scoping connotationsefv X in A combinator—
the variableX is a new local variable and no information on it can
be communicated outside this scope. Thus our RVs satisfy:

RV Property 2.2

e RVs are hiddeni.e. not part of the observable results of the
program.

e Each RV is associated with a unique probability distribatio

Example 2.3 Consider the following program: it has one RY,
with 4 equiprobable possible values.

chooseX from {0,1,2,3}in
[if X =0V X =1thena,if X = 2thend]

On inputt r ue?, this program will produce outpui with proba-
bility 0.5, b with probability 0.25 or t r ue with probability 0.25.
Note that the visible outputs do not include

Random variables, like any other variables, may be comstcai
In fact this is a fundamental aspect of the entire framewé&&ch
RV acquires a value according to some distribution and tloécels
are all made independently but the overall effect of therauttton
between these choices is achieved by imposing constraintiseo
RVs. In particular if a choice is made which conflicts with aneo
straint then the inconsistent choices are discarded byntipdet
mentation and the probabilities get renormalized accgrdiinthe
consistent choices. Thus constraints may cause portiotie afo-
mains of the RVs to be eliminated. In such cases the renarasali
tion of the result yields theonditional probabilityof a given output
given the valid set of outputs. Relatively complex jointdmutions

Yinput t r ue to a program in thec context means running the program in the
unconstrained storég. without external input.



can be emulated by this mechanism. The encoding of Prob@dili
Petri nets in Example 2.8 requires constraints on RVs, as thee
encoding of synchronous programs in Example 2.13.

In order to understand how to interpret the probabilities re
ported in the formal semantics we think of execution in tHofo-
ing “Monte Carlo” style. We consider a program as standing fo
an ensemble of initially identical processes. Each prooesikes
choices according to the indicated distributions as itwe&l As
processes become inconsistent they are discarded fronmseene
ble. At the “end” the probability reported is the conditibpsoba-
bility of observing a given store conditioned on seeing aststent
store. This is the sampling view of the process which is what t
semantics captures.

Example 2.4

chooseX from {0,1,2,3}in [X < 2,
if X =0V X =1thena,if X = 2thenb)

On inputt r ue, this program will outputa or b; tr ue is not a
valid output because of the constraixit< 2. a is associated with
0.5 andb with 0.25; however to compute the probabilities, we must
normalize these numbers with the sum of the numbers assdciat
with all outputs. This yields the probabiliy/3 for a and1/3 for
b.

We make the following assumption.

RV Property 2.5 The choices of values for different RVs are made
independently.

Correlations between random variables are establishedohy ¢
straints so we cannot just say that the RVs are independent.

Example 2.6

chooseX from {0,1}in [X

= 2],
chooseY” from {0, 1} in [if z =

1thenY =1]

There are a total of four execution paths. One of these paths
(X = 1,Y = 0) gets eliminated because of inconsistent con-
straints on the random variablé, leaving three valid execution
paths. Normalizing the probabilities, we get the followipaths
(and associated probabilitiesY = 0,Y =0,z = 0(1/3), X =

0,Y =1,z =0(1/3), X =1,Y =1,z = 1(1/3). Since the
random variables are hidden, the visible outputs (and &ssoc
probabilities) are:

2=0(2/3), z=1(1/3)

The above examples show how to get any finite distribu-
tion with rational probabilities by just using fair coin &es.
For the rest of this paper, we will use the derived combinator
chooseX from Dom with distribution f in P to indicate that
the random variabl& is chosen fromDom with distribution func-
tion given by f. Consider the rational version of the probabilistic
choice operator of [40].

Example 2.7 Letr be a rational. The probabilistic choice opera-
tor of [40], P +, Q, reduces taP with probability » and to@ with
probability (1 — r). This combinator can be definedRmobabilis-
tic cc as:

chooseX from {0, 1} with distribution {r,1 —r}in
[if X = 0thenP,if X =1thenQ]
where{r,1 — r} represents the functiofi(0) = r, f(1) =1 —r.
X is not free inP, Q. Since the random variables are hidden, we

get the expected lawsP +, P = P(absorption),P +, Q
Q+(1—r) P (commutativity)(P+, Q) +s R = P+,. (Q+ 50—
1

R)(associativity). -

Example 2.8 We model the Probabilistic Petri nets described
in [45, 62]. In these nets, places are responsible for théophilis-

tic behavior, while transitions impose constraints to eastorrect
behavior. Nets are 1-safe, so a place may contain at mostmne t
ken. Temporal evolution is discrete (modeled here by a seer
call). At each time tick, a place with a token chooses rangaamnl
transition which it would like to send its token to, or choos to
send it anywhere. Similarly an empty place chooses whigfsira
tion to accept a token from, or accept no token at all. A traosi
constraint ensures that either all preconditions and postiitions

of a transition choose it, or none of them choose it. Then a new
marking is computed, and the net starts over again. The progr
is shown in Figure 1. Note the use of constraints on RV'’s torens
that only correct runs are generated.

P(S,t) [* S C [1..n] is the markings = time*/
newTty,...T,in{

/* T; will be the transition chosen by pla¢¢o send a

token to or receive from. */

/* Select a transition for each place */

if (i € S)then
chooseX from Pre; with distribution f; in T; = X,
[* Pre; is the set of transitions of whichis a
precondition. Alsof) € Pre;, signifying no choice. */

if (i ¢ S)then
chooseX from Post; with distribution g; in T; = X,
/* As above,Post; is the set of transitions of which
is a postcondition, and € Post;. */

b}

/* Transition constraints — one for each transition.
Contraint for transition. 1, . .. , i; are its pre and
postconditions. If one of its pre or postconditions
chose transition, all must choose it. */

if (Ti1 =iV...VT; :z’)then

{1 =1,... s Ty, =i}

)

/* Compute the next marking */
newnewS in {
1 € newS,
if (1¢SATI=0)V (1€ SAT #0))then
1 ¢ newsS,

LR}

P(newS,t+1) [* next instant */

}

Figure 1: Probabilistic Petri nets &sobabilistic cc programs.

2.5 Recursion and limit computations

Recursion increases the expressiveness of our languadiewing
the programming of continuous distributions.

Example 2.9 Consider the program

Ulyu,2) = z € [l,u],
chooseX from {0,1}in |
if X =0thenU(l, (u+1)/2,2),

if X =1thenU((u+1)/2,u,z)]



This program can be visualized as a full binary branching,tre
where the branches correspond to the two possible valuekdor
random variable of each recursive call. Each internal nddhe
tree can be associated with the interval thaias been constrained
to be in. Thus, in the limit, at the leaves of the treggets con-
strained to be a real number. Furthermore, the induced piiitlya
distribution is on infinite binary sequences satisfying¢badition
that each finite sequence has the same probability of betegdad
by a0 or by 1. By classical results, this is the uniform random dis-
tribution on =z over [0, 1](see [4] Page 195, Prob. 8). In the rest
of this paper, we will usdJ to stand for the program defined in
Example 2.9.

The following example conveys the flavor of use of probapilit
in the programming of large arrays of simple devices. Thaeple
satisfies all the properties required of an amorphous coenpif)].

Example 2.10 Suppose we have a large array of tiny light emitting
diodes (LEDs). Assume that each LED can be switched on or off.
We would like to produce light of a certain intensity. Onehoetis

to switch on a fraction of the LEDs by telling each LED to stvitc
on or off. This method requires each LED to have a unique iden-
tity. A more efficient way is to let each LED light up with a eént
probability. The central limit theorem [4] ensures that timten-

sity will be proportional to the probability. The probattifican be
communicated to the LEDSs via an electric potential, thusagpg
individual messages by a broadcast communication.

new X in [U(0, 1, X),
if (X < Potential) then On]

A clever implementation would need to unwind the recursioff i
only finitely (almost always). Furthermore, this methodai one
to compensate for a broken fraction of LED’s by increasing th
potential suitably.

How do we compute probabilities in the presence of recufsion
We use a computationally motivated analogy to the limiting-p
cess [59] that computes conditional probabilities in meashe-
ory. This subtle limiting process plays a key role in our ttyedhe
important point here is that we can have situations whergtble-
ability of an inconsistent store i i.e. the conditional probability
is undefined according to classical measure theory. In @orth
we can sometimes define these probabilitigsaking into account
the way in which the computational approximation proceeds.

We begin with a seductively simple warm-up example that il-
lustrates our techniques.

Example 2.11 ConsiderP = [U(0,1, z),z = 0]

Intuitively we would expect its output to be= 0 with probability
1, since after all thenly possible output of this program is= 0.
Note however, that the probability ef= 0 in the above program is
0, so a naive calculation at normalization time leads us louézte
0/0.

We handle this problem by computing the required probabil-
ities for a recursive program as a limit of the probabilitigfsits
finite unwindings. Consider the prograf, = [U,,z = 0] got
by replacing the recursion it by a finite unwindingU,,. U,, can
be viewed as a finite subtree of the tree associated iijtbee ex-
ample 2.9. P, is a finite program operating on a finite discrete
probability distribution. Each of these finite programslgieutput
z = 0 with probability 1. Thus, the resultis = 0 with probability
1.

Apropos, this example also illustrates theedfor these tech-
nigues — the above problem arises anytime a random variable i
constrained. The limiting process yields expected ansimensr-
mal situations.

Example 2.12 Consider P
3/4) then S whereS is a signal.

U0,1,2),if 1/4 < = <

Let us compute the probability & being present — we expect
the answer to bé/2. Consider a finite unwindin@,, of U; the re-
quired answer for this unwinding is the sum of the sizes ofittite
intervals contained completely in the interga)/4, 3/4). Consider
the set of real numbers that are answers deduced at the finite u
windings. The only limit point of this set of reals numberd j2.
This can be visualized as follows. Takey directed set of finite
subtrees of the tree associated witt{we are thinking of trees un-
der the prefix ordering on trees), whose limitis Then, the limit

of the probabilities associated with this directed set/is.

The above example tells us when probability numbers are
well defined — any way of unwinding the various recursions in
a program should yield the same answer. Do limits exits al-
ways? Unfortunately not! These subtleties are illustratgdhe
next set of examples that deal with program combinators -remi
niscent of indeterminacy issues in synchronous programnain-
guages [30, 8, 12, 31, 25, 33, 53].

Example 2.13 Consider

new X in [U(0, 1, X),
if athen X = 0,if X > 0thenb]

This program can be thought of &s: elseb, i.e. if a is not present,
produceb with probability 1. If a is presentp is not produced.
In essence, we use the RV to be certain #hatill be produced;
however, this expectation can be denied on the productian of

The analysis of this program proceeds as follows. On input
t r ue, the program produces constraintith probability 1 and
t r ue with probability 0. On inputa the only output of this pro-
gram isa. Indeed in this latter case, computation of the probability
proceeds similar to Example 2.11 — the probability prior tw-n
malization is0, which seems to lead to(y (0 case — however, our
analysis tells us that the probabilityis

The next example shows how indeterminacy issues in syn-
chronous programming languages show up as problems with the
limit computation of probabilities. For example, the pragr
if a elzseb, if b elsea has two potential outputs andb on input
true®.

Example 2.14 ConsiderP = if a elseb, if b elsea.

A simple calculation shows that on inpiut ue the outputs are, b
or t r ue, with all non-normalized probabilities beirtg However,
in this case the limiting process does not produce uniqueenss
The formal calculation proceeds as follows.

Consider approximation$ a elsgb to if a elseb. if a else,b
stands for the program got by unwinding the recursiorim
times. A simple calculation shows théta else,b behaves as fol-
lows: if a is not present, produdewith probability (1 — 27"). If
a is present) is not produced.

Now consider approximationB,, , = if a else,b, if b elsg,a
to P. On inputt r ue the non-normalized probabilities aof and
bare2 ™(1—27"),27"(1 — 27™). Now the limits of the nor-
malized probabilities (resps=—5=—, s=73-—) depend on the
relative rates ofn, n approachingx, i.e. the limits depend on the
“speed of unwinding” of the two recursions involved. In coebry,
this program would thus not have a defined result.

2Hence is rejected by the compilers for synchronous prograpitanguages.



3 Operational semantics

We first describe a SOS style transition system for finiteyrreion-
free) Probabilistic cc programs (as in [26]), and follow it with
a formalization of the limit constructions (alluded to éan for
handling recursion.

3.1 Transition relation of recursion-free programs.

We follow the treatment otc. We assume that the program is
operating in isolation — interaction with the environmeande
coded as an observation and run in parallel with the progrAm.
configuration is a multiset of progranis (T") will denote the
store in the multiset — it is recoverable as the conjunctibthe
(tell) primitive constraints irT".

o) Fa
I'ifathenB —T,B

I(A,B)—T,A B

CnewXin A— T, AY/X] (Y notfreeinl)
I',chooseX from Domin A — 'Y = r, A[Y/X]
r € Dom,Y not freeinl

Consider the finite set of consistent quiescent configurataf A
on any inputa, i.e. {I'; | A,a —" T'; #—,0(T;) % fal se}.
The unnormalized probability df; is determined by the RVs in
o(T;) — the transition sequence(s) I do not play a role in the
calculation. The unnormalized probabilitylis; 1/| Domy | where

Y isthe setof RVSY = ry € T';, andDomy is the domain of".
The (finite set of) outputs of a proceBson an inputz, denoted
OpsemIO(P, a) is given by hiding the random variables and new
variables in the set of (I';). The probability of an output, written

Pr(P, a,0) is computed as follows:

e For each output, compute the unnormalized probability by
adding the probabilities of all configurations that yiela th
same output.

¢ Normalize probabilities of the set of outputs.
Define

e Pr(P,a,0) = S {Pr(P,a,0') | o' € OpsemI0(P,a),o C
o}. Pr(P,a,o0)is a cumulative probability interpreted as the
probability that the output of ona is at mosi. Pr can be
recovered fromPr by an inclusion—exclusion principle.

e Pr(P,a,0) = Y {Pr(P,a,0') | o' € OpsemI0(P,a),0 C
o'}. Pr(P,a, o) is a cumulative probability interpreted as the
probability that the output of ona is at leasb. Pr can be
recovered fromPr by an inclusion—exclusion principle.

3.2 Handling recursion.

We first generate all syntactic finite approximations to therg
program. Each of these finite programs is executed usingaineea
transition relation. We then describe the limit calculatior the
probabilities.

The partial order,(App(P), <p) describes the syntactic ap-
proximations of &robabilistic cc programP. <p, the partial or-
dering is intended to capture refinement of approximatiopp®)
is defined by structural induction aR. For a recursive program,

all finite unwindings with ordering induced by th@) match order-
ing on recursive approximations [44], i.e. an expressiarised
by replacing the “least program” (in our caseue) by an expres-
sion. For a sample of other cases:

App(c) = {c} o
ApP(A1, Az) = {(A1, A3) | A7 € App(A:)},
ordering induced by the cartesian product6fs,

App(P) has the expected properties.
Lemma 3.1 App(P) is a directed set.

Let ¢ be an input. Therg induces a function on Apg{) that
mapsA; € App(P) to OpsemI0(A;)(c). If A; =App(P) A}, then
(Vd; € OpsemI0(Aj)(c)) (3d; € OpsemIO(A4;)(c))d; C d;. The
outputs ofP on ¢ are determined by a limit computation €-is an
output of P on ¢ if, there exists a monotone functidn; mapping
App(P) to constraints such thdt;(A4;) € OpsemI0(A;)(c), and
d=, Fa(A).?

We now turn to computing the probability numbers. ldebe
an output of P onc. Then,d maps eachd; € App(P) to the
cumulative probabilityPr(A;, ¢, d). Since Appf) is a directed
set, we use the standard definition of convergence (e.g. 4ee [
page 371). The cumulative probability of the outgwtqualsr if:

(Ve) (3A € App(P)) (VA ) [A =< A" = |Pr(4A',c,d) —r| < €]

V' may not converge in general. We say that the output is defined
for the programP on a given input, if the cumulative probability
is defined for all outputs aP onc.

We first explore the relationship of the above definition te th
two notions of cumulative probabilities discussed in theceding
subsection.

Relationship to Pr and Pr

Example 3.2 Let P be a finite process. Then the set of outputs
given by the above definition on inpuis OpsemI0(P, ¢); the out-
put is defined om and the definition yield®r (P, ¢, d) for all d €
OpsemI0(P,c).

The inclusion—exclusion style argument underlying thevecy of
probability (Pr) from cumulative probability Pr) can be used for
programs that satisfy the following countability conditie— for
any inpute, any outputd satisfies the condition that the cardinality
of the subset of outputs C d is countable. This condition is
satisfied byall our earlier examples.

Example 3.3 On Example 2.12 for input r ue, the definition
yields cumulative probability for outputS, 0.5 for outputt r ue;
thus yielding0.5 for both probabilities.

Let e be a constraint. Ther, induces a function that maps
A; € App(P) to Pr(A;,c,e). Since AppP) is a directed set,
we can once again use the standard definition of convergemte a
definePr (P, ¢, e) equalsr if:

(Ve) (34 € App(P)) (VA ) [A = A" = |Pr(A',c,e) — 1| < ¢

Again, convergence is not assured. We have the followiragioei-
ships betweerPr(P, c,e) and the cumulative probability of out-
puts of P onec.

3We can prove the following fact: There is a monotone functignsatisfying the
properties above, such that= | J, Fq(A;) iff there is a derivation starting fromt
whose output isl, where the output of an infinite derivation is the lub of thepuis

App(P) is constructed by considering the set of approximations of of its prefixes.



e Let P be a finite process.
Pr(P, c,e) agrees with the definition oPr from the pre-
ceding subsection.

e Let P be a program such that its output is defined on input
Furthermore, lePr(P, ¢, e) be defined for all finitee. Then,
the cumulative probabilityPr(P, ¢, d) of an outputd can be
recovered from thér information by an inclusion—exclusion
principle on the (finite) constraintssuch thatl 2 e.

Interpreting the probability numbers. How are these prob-
ability numbers to be interpreted? Recall that we say thexietlis

an ensembleof processes each of which executes a copy of the
Probabilistic cc program. The probability numbers are interpreted

statisticallywith respect to this ensemblepnditionalon the pro-
cess being consistent. The next few examples illustrate¢ wka
have in mind.

Example 3.4 Let P be aProbabilistic cc program in which ran-
dom variables are “read only”j.e. no constraints are imposed on
random variables; they are only queried in asks. (This ctdgwo-
grams includes all programs from [42].) In this case, thedtion

Pr(,c,d) as defined above is a monotone, decreasing, bounded (by

0) function on AppP). Thus,Pr( ¢, d) converges, and the output
of P is defined for all inputs.

Recall example 2.14 for examples of non-convergence.ALké
a Default cc (“synchronous”, [53]) program and’ be aProba-
bilistic cc program obtained froml via the definition forelsefrom
example 2.13. Then,

Theorem 3.5 If A has multiple outputs on an inpuf the output
of A’ is not defined for. If A is determinate, the output of on
any inputc is the the output oft on ¢ with probability 1.

The next couple of examples illustrate the fact that ourtheo
agrees with the answers produced by standard probabikyryh
when the standard theory produces defined answers.

Example 3.6 Letf : [a,b] — [c, d] be a Riemann integrable func-
tion. Consider the program

P: U(a,b,X),U(c,d,Y),
if (Y < f(X))then A,
if Y > f(X))thenB

What is the probability of the outputl? Standard probability
theory tells us that ifR = (b — a) * (d — ¢), it should be
(1/R) x fab(f — ¢). Now consider the set of approximations to
P. Each approximation defines a partition gnb] and a par-

tition on [¢, d], and successive approximations refine these parti-

tions. Thus the probability number for signal corresponds to a
lower Riemann sum, and similarly the probability number for

corresponds to an upper Riemann sum. It is now easy to shaw tha

P(A) = L[°(f — ¢)andP(B) — 1 — L' (f — ¢), thus our
computations agree with standard probability theory. €hesults
extend to functions of many variables; abidcan be replaced by
any program that produces the uniform distribution, sucfvas
Example 3.9 below.

Example 3.7 The following program emits the signabtC if = is
not an element of the Cantor set.
Cllyu,z) == C(I, (u+20)/3,2),
C((2u+1)/3,u,z),
if ((uw+20)/3<2z< (2u+1)/3)thennotC

Then, the above definition of Now, consider the program:

P: U(0,1,X),C(0,1,X)

The probability of the outputotC' as per our theory id, in con-
formance with standard probability theory.

In the case that a constraint forces the choices on a random
variable to be inconsistent with probability 1 we get a ditua
in which conventional probability theory has no answer. sTisi
the situation with examples 2.13 and 2.14. Standard prbbabi
theory would say that if we condition with respect to a set ebm
sure zero the resulting conditional probability is undedire this is
true both for discrete (countable) systems, and for contisistate
spaces, where the conditional probabilities are compuaseédon
some notion of derivative of measures, for example by uséef t
Radon-Nikodym theorem [4, 59]. We can however ascribe a&dimi
ing probabilitybased on the structure of the computational process
This additional information allows us to associate seesfrbba-
bilities in situation where conventional theory leaves tluenbers
undefined. Perhaps a better way of saying it is that prolalfile-
ory leaves the possibility of augmenting the informatiogame up
with a sensible conditional probability. The limit formuddoove is
defined to capture exactly tloemputational informatiothat goes
into the definition.

Example 3.8 Consider:
newX innewY in [U(0,1,X),U(0,1,Y), X =Y

This should and does yield a uniform distribution on the tdia
nal” of the unit X — Y square. This is intuitively plausible but
completely at variance with probability theory. That istaghiould
be. If one were to say that there are two independent unifosm d
tributions onX andY then the question “what is the distribution
given thatX andY are equal?” is not answerable. In our cése
operational model shows how the uniform distribution isaifed
by successive approximatioThe calculation based on the limit
formula is exactly the embodiment of this idea.

It is important to not mistake the intent of the above distrss
The numbers that we compute do not depend on the details of the
execution Thus in the example just above we are claiming that even
if the recursions in the two calls 1@ are unwound at very different
rates we get the same answer. An explicit calculation verifiés
easily. However if we took twdlifferentprocesses both generating
the uniform distribution we get a very different answer.

Example 3.9 Consider a variant of the prograri:

V(l,u,z)
z € [, ul,
chooseX from {0, 1} with distribution {1/3,2/3}in [
if X =0thenV (I, (2l + u)/3,2),
if X =1thenV((2l+ u)/3,u,z)]

This program chooséswith probability1/3 and1 with probability
2/3. It then subdivides the interval into two unequal portions —
one twice the size of the other — and recursively calls itsEHis
also produces the uniform distribution in the limit. Now stder

U(X7 07 1)7 V(Y7 07 1)7 X = Y

We donotget the uniform distribution along the diagonal. Itis easy
to verify that the distribution assigns to the subinter(@l0.1) a
smaller probability than it does to the inter@l9,1). The actual
distribution is quite fascinating (see [14, pp. 408]) buesimot
concern us further here. What is important is the fact thagote



two very different answers to the question %f andY are uni-
formly distributed, what is the distribution given th&tandY are
equal?” when the programs generating the uniform distidimst
are different. Here we see why the conventional probabilig-
ory answer is sensible; without further information one gahan
almost arbitrary answer. However our semantics providestx
this additional information.

4 Denotational semantics

4.1 CC semantics

We begin with a brief review of the model fac programs, refer-
ring the reader to [54] for details. In our treatmentaaf we will
considerfinite programdirst. We describe recursion (in parenthet-
ical remarks) by working with the sets of programs obtaingd b
unwinding the recursion. An observation ofa programA is a
storew in which it is quiescent, i.e. running in the storeu adds
no further information to the store. Formally we define thiatien

A |", read asA is quiescent o, with the evident axioms:

A LY Ay M Al® Ixu=3xv ceu
(A1, A2) I° MmewXinA)[” ¢l
cé Al"

u
(fcthenA) I” (if cthenA) [”

The denotation of a program can be taken to be the set of all
such thatd |“. The semantics is compositional since the axioms
above are compositional. The output .4fon any given input

is now the least containinga on which A quiesces. (IfA does
not become quiescent @n which might happen with a recursive
program, then we have to take the lub of the stores that ackipeal

by the finite unwindings ofi ona.)

4.2 The problems

We turn now toProbabilistic cc. The input—output relation is not
compositional. The following example is inspired by Rubselm-
plified version [52] of the Brock-Ackermann anomaly [16].

Example 4.1 Consider the programs

Al = Sl, if Rl then 527 if Rl A R2 then Sz

Ay = 517 if R, then SQ, if R1 A\ Ro then Ss

As = if R; then Sl, if R1 A R>thenS> A Sy
Ay =if Ry thenS; A Sz, if R1 A Rothen S,
A5 = if R then Sl, if Ri N Ry then Sa A S3

Si, R; are signals (see example 2.10). Define:

B; = if X =1then A4,,if X = 2then A,
if X = 3then As,if X = 4then Ay
Bs :Bl,le = 5thenA5

P, = chooseX from {1, 2, 3,4}
with distribution {0.2,0.1,0.5,0.2} in B,
P, = chooseX from {1,2,3,4,5}
with distribution {0.1,0.2,0.4,0.2,0.1} in B»

P, and P, have identical input/output behavior. Key cases are:

Input Output
true true(0.7), 51(0.3)
R 51(0.5)751 /\52(0.5)
RiNRy | S1ANS2 A 53(0.2), S1 ASy A 54(08)

Let@ = if Si then R4, if S2 then R,. Pi, @ on inputt r ue out-
putsSi A S2AS3(0.2), S1AS2AS4(0.1),t rue(0.7); Pz, Q input
t rue outputsSy A Sa A S3(0.1),51 A Sa A S4(0.2),t rue(0.7).
ThusP; and P, can be distinguished by the contéxt

Our solution to this problem is to makerobabilistic cc and
cc amenable directly to some of the standard techniques of con-
currency theory via a key technical innovation, CLTS (comist
labeled transition systems) with weak bisimulation, diesct in
greater detail below.

Unfortunately, more problems loom. The mixture of probabil
ities and constraints violates basic monotonicity prapemeeded
in standard treatments of recursion — these problems welie in
cated by the synchronous programming examples.

Example 4.2 Consider

P :: chooseX from {0, 1} with distribution
{0.2,0.8} in [X = z,Trim(1)]

Trim(Y) =
Trim(l1 -Y),
if z=7Y then

chooseX from {0, 1} with distribution
{0.9375,0.0625} in X =1

Unwinding Trim O times yields the approximatioR, = (z =
0) +o.2 (z = 1) to P. UnwindingZ'rim once yields the approx-
imation P; = (z = 0) +0.8 (2 = 1) to P. UnwindingTrim
twice yields the approximatiof; again. In a standard monotonic
least fixed point treatment of recursion, the denotatiorhefit'th
unwinding is less than the denotation of the+ 1)’st unwinding
for the purported ordei= on programs. ThusPy, C P, C P,
forcing P, = Py, an equation that is unsound.

The subtle interaction of recursion and normalization wlyitey

this example is not handled by our study. We however show how
to handle the issue of normalization in the case of recurbiea
programs.

4.3 CLTS

We begin with the intuitions underlying our definitions. L@the

a process. A transition system with transitions given bydper-
ational semantics afc is informally given in the following way.
Each state of the system intuitively corresponds to a caimtr
store. There is an initial statag, intuitively this corresponds to
the store(t r ue). The transitions are labeled in one of three ways:
7, ¢! and ¢’ wherec is a finite constraint. The! and I labels
represent interactions with the environment and are detéstit,

i.e. any state has at most one transition labeled with@ ¢I. A

transitions —s s’ means that the system outputs the constraint
to the environment and adds it to the storec Was already in the
store,s’ would bes, as the system can always output any constraint

already in the store. A transition <% s’ means that the system
reads the finite constraiatfrom the environment and adds it to the
store. If the system contains a top-lewedloose the actual choice
will not be visible to the environment and the transitionabéled
with 7 and the probability.

CLTS closure conditions make them a probabilistically de-
terminate system in the context@f computation.

e Probabilistic transitions:  Only r-transitions can be asso-
ciated with probabilities, and the associated probabhiiityst
be strictly positive.



Acyclicity: The only cycles in the transition system dre
cycles of non-probabilistic transitions. All states araaie-
able from the start state.

Determinacy: for every states and every labedT or d! there
is at most one transition fromwith that label.

Receptivity: In every states and for every finite constraint
there is a transition labeled".

Commutativity: If there is a state; and transitions; —
So, 81 i) s3, Wwhere at least one ef d is a non-probabilistic

transition, then there is a state and transitions. i> S4,
S3 L> S4.

Masking: If there is a transition 4 & then any transition
of the forms —% s hass’ = s Masking is needed for the
(forthcoming) definition of parallel composition.

Splitting: if ¢ andd are constraints and we have a transition

U d)! . .

M s' then there is a stat€’ and transitions —“— s
d!

ands” — s'.

e . c? ’ yd? " .
Transitivity : if s — s’ ands’ —— s then there is a

. cud)? . ! d!
transitions —<=47, ¢, Also, if s = s" ands’ —Z "
. . (cud)
then there is a transition ——— s"'.

Saturation: if there is a transitiors C—?> s', then there are

transitionss’ —% s’ for everyd such that D d. Thus every
query resolved by the constraint solver is represented by an
action in the transition system.

Tau-finiteness condition: There are at most finitely many
transitions from any state.

The sole source of non—confluence in a CLTS is the (possible)
non-commutativity of conflicting probabilistic transitie — non-
probabilistic transitions commute with all other transso It also
ensures that adding new information cannot disable an djrea
enabled transition, and ensures the content of Lemmas3(8)5,

of [54]. These conditions ensure that the set of output caimss
leading out of a state forms a directed set; and ensure thateth

of output constraints in the labels on all the transitionsveen any
two states forms a directed set.

Path-equivalence: A CLTS comes equipped with a state-
indexed equivalence relatioa, on paths starting from the same
states in a CLTS: intuitively two paths are equivalent if they agree
on the random variables. Each equivalence class comesatssbc
with a probability, corresponding to the choice of the ramdeari-
ables.=; satisfies conditions such as:

e If ¢ is a non-probabilistic transition angd- ¢ is a path starting
from s, thenp - t =; p.

e If pathsp;, p2 both start ins and end in the same state then
P1 =s p2.

We say a CLTS is finite if intuitively it encodes only finitelyamy
probabilistic choices. Formally, we say a CLTS is finite if:

e the number of equivalence classes=n,, wheres, is the
start state, is finite; and

e there are no paths with infinitely many occurrences of

For a finite CLTS, the number of equivalence classes in ang &ta
finite, and the probability of any equivalence class is #iripos-
itive. For the purposes of this paper, we restrict our atbento
finite CLTSs.

Example 4.3 The CLTS fott r ue is constructed as follows. We
will assign labels to the states for notational convenierie® each
constrainte, there is a state with label The start state is the state
with labelt r ue. A state with labet has self-loops labeled! for

all finite constraintsd such thatc O d. There is transition labeled
el from a state with labet to a state with labetl if d is equivalent
to ¢ A e. For any states, =, consists of one equivalence class
consisting of all paths starting from This class has probability.

Example 4.4 The CLTS for a program that emitsis obtained

from the CLTS fot r ue as follows. For each transition with la-
bel dT" such thatc O d, add a transition labeled! with the same
source and target states.

The following example extends the ideas of examples 4.4
and 4.4 to all determinatec programs.

Example 4.5 Let (E, C) be an algebraic lattice in whichal se

is a compact element. Then, any continuous closure opeifdtor
can be encoded as a CLTS as follows. Start with a copy of the
CLTS fort rue. Close the CLTS under the addition of following
transitions: add a transitiorl! from a state with labet to a state
with labele| |dif d T f(c).

Example 4.6 The CLTS for the program+.5 d (emit one of: or

d with probability 0.5 each) is as follows. The set of states is the
disjoint union of the set of states @fd (as given in Example 4.4)
and the set of states of a copytafue(from Example 4.3). Each
component of the disjoint union retains all its transitiod® each
state, say with label coming from the copy of the CLTS for ue,
add two probabilisticr transitions each with probabilitg.5, with
target the states with the same label in CLTSsfandd.

The statess coming from the CLTS far (resp. d) retain the
associated=;. For each states coming from the copy dfr ue,
there are the following three equivalence classesin These three
equivalence classes correspond to the three possible cdgbs
probabilistic choice.

1. Choice not resolved: this equivalence class is the sehthisp
starting that only visit states from the copytafue and has
probability numberi.

. Choice resolved in favor af this class is the set of paths
that visit some state from the copy of the CLTScfand has
probability numbei0.5.

. Choice resolved in favor af: this class is the set of paths
that visit some state from the copy of the CLTS#fand has
probability number0.5.

Consistent states: A consistent state of a CLTS is intuitively
a state which does not already entail inconsistency. Thensis-
tency of such a state is witnessed by a “maximal” path thas doé
have & al se! labeled transition. We formalize this idea below.
Let P be a path from statev,. Let the transitions inP be
to, t1 ... with transitiont; (of labele;) going from statew; to state
wit1. Then, a path?’ from wo is ar extension ofP if P’ # P
and the following hold: (1) the transitions iR’ arer, g, t1, .. .,
with ¢ going fromw; to wi, ., (2) ¢; has the same label &s and

4f . E — E s aclosure operator if is monotonez T f(z) andf(f(x))

f(z).



(3) Vi there is a transition labeled from w; to w}. A path P, all for ¢ from example 4.4. These two CLTSs are bisimilar. The wit-

of whose suffixes have noextension, is called—maximal. nessing binary relation relates all consistent states wlith same
Let s be a state of a CLTS. We say thais consistentif there label.

is a path froms which satisfies the following: (1) all transitions on .

the path are labeledor 7, (2) the path is-—maximal (3) if anyc! Example 4.10 Consider the CLTS for +.5 f al se (based on

transition is enabled on the pathdatransition is taken for some ~ €xample 4.6, but withal se taking the role ofd) and the CLTS
d D ¢ (4) fal se! does not occur on the path. A state that is not for ¢ (example 4.4). These two CLTSs are.b|S|m|Iar. The states
consistent is calleéhconsistent Note that the closure conditions ~ Of f al se do not need to be part of the relation because they are

ensure that any state reachable from an inconsistent stat@ims all inponsistent. Thgs, the witnessing binary relatiorates (1) all
inconsistent. consistent states with the same label coming from the CLITS fo

with the same label, and (2) the start state of the CLTS: fgp 5
Example 4.7 In the CLTS fort r ue and ¢, the only inconsistent ~ fal se andc.
state is the one with labédlal se. In the CLTS forc +¢.5 d, the

only inconsistent states are the three states with labalsse. 4.4 An algebraof CLTSs
A states of a CLTS isobservablef s is the start state, of is a Given the definition of a CLTS, we now describéeobabilistic
consistent state with no outgoingiransitions. cc algebra of CLTSj.e. eachProbabilistic cc combinator is in-

terpreted as a function on CLTSs. The constructiort foue (ex-
ample 4.3) and (example 4.4) have been already described. We
describe the basic intuitions in the inductive cases. Ih ease, the
transition system needs to be closed under the closuretemmgito
geta CLTS.

Finite CLTS 10. Let O be the set of paths from the start state
so, Which satisfy the following: (1) the first transition on tpath

is labeledr, all others are labeledor 7, (2) the path is—maximal
(3) if any ¢! is enabled on the path,d transition is taken for some
d D ¢ (4)fal se! does not occur on the path (5) no prefix of the .
path is inO. if ¢ then A.  Consider the CLTS fot r ue(example 4.3), and
start withaI. The output of each path g ¢, for all ¢! on the path. all states with labeld such that! O ¢. Add transitions labeledl’

This is the set of outputs om. The probability of an outpus is from a state with labet’ (in the altered copy of r ue) to a state
S{Prob(Q) | Q € =.,,3p € QN O(a),outputofp = o} of A reached by a transitiodil’ from the start state ofl, if d D ¢
normalized b!z{pmb(Qg’| Qe =.,,0(a)NQ #0}. andd is equivalent t@' A e. The new start state is the start state of

the copy oft r ue and the CLTS is restricted to its reachable states.
Two paths in the resulting CLTS are equivalent if their nesion

to the states ofd are equivalent; the probability numbers of an
equivalence class of paths are inherited from the CLT S4fdthe
equivalence class(es) of paths contained completely indpg of

t r ue have probability numbet).

Weak bisimulation. A path P in a CLTS has labeld[)(resp.
c) if it is of the form 7" (ciD)7" (c2D)7™ ... (e I)T* (resp.
T ()T (e2) 7" ... (cn!)T7) andeis equivalent tai A ca A. .. A
Cp .
We first define the probability of reaching a non—empty count-
able set of observable statggrom a given state on paths labeled " .
¢TI Let X be the set of all consistent states reachable from the stateParallel composition.  Parallel composition proceeds by a
s by paths having labell’. Let P be the set of all paths ending in product construction thatl mixes aspects of asynchronodssm
consistent states whose initial state iand no state other than the ~ chronous products. We first form the product of the sets désta

final one is inX. Letp = S3{Prob(Q) | Q € =.,PNQ # 0}. Define transitions as follows:

Let P’ be the set of all paths whose initial statesjghe final el e? 7 el
state is inS, no state other than the final one isSnand whose label 51—t S2 —— ta 51—t S t2
is cT. Then the probability of reaching§ from s oncTis defined as (51,82) ——= (t1,t2)  (s1,82) —= (t1,t2)
0if p=0;if p # 0, itis defined ag1/p) x (>_{Prob(Q) | Q € s1 -t sy sty
=, P'nQ #0}). 7

A similar definition holds for the probability of reaching am- . (s1,82) — (t1,2) .
empty countable set of consistent stafeBom a given state on 51—l 53—ty
paths labeled!. (s1,s2) s (t1,82)  (s1,2) RN (s1,t2)

We view CLTSs modulo the equivalence induced by the fol-
lowing definition of probabilistic weak bisimulation (mdedd on
the definition for strong bisimulation in [43]). This defiidin relies
on tau-finitenessto ensure that a state can reach only countably
many states on”*.

We draw the readers attention to two technical points. Iifjretir
handling ofr transitions means that the probabilities at a state can
add up to more thaim. For example, let each parallel component
have a state with two tau transitions of probability; the resulting
product state has four transitions each with associated number

Definition 4.8 Given two CLTSE"; andCs, an equivalence rela-  0-5. This peculiarity does not affect the results of this paper;
tion, R, on the disjoint union of their observable states is called deed, it can be fixed by a slightly more involved syntacticstore-

a bisimulation if (1) their start states are related bg, and (2) tion that we will not describe in this paper. Secondly, uelik tra-
whenever two states, and s, are R-related, then for any finite ditional process algebras, thktransition and theT transition do
constraintc and anyR-equivalence class of stat@sthe probabil- not “cancel” each other. Rather the broadcast style captoyehe
ity of reachingS from s, oncI/c! is the same as the probability of ~ CLTS construction captures tie intuition that if one process tells
reachingS from s, onecl/cl. ¢, then this constraint is in the global store and in effectrizald-

cast to all other processes. Thmaskingcondition is necessary to
Example 4.9 Consider the CLTS for +¢.5 ¢ (based on exam- ensure that! transitions in parallel composition are deterministic,

ple 4.6, but witre taking the role ofi too). Consider also the CLTS  while saturationensures that all necessary synchronizations hap-
pen. The set of equivalence classes of paths in the producs GL



the product of the sets of equivalence classes of the two coem
CLTSs. Two paths in the product are equivalent if their progns
on the two component systems are equivalent; their prabalksl
the product of the two respective probabilities due to Priyp2 5.

New variables. The CLTS fornew X in A is constructed in
the following stages.
From the CLTS forA remove all transitions labeled” where

Jx ¢ # ¢, and delete any states not connected to the start state. This

step prevents the process from receiving ammformation from
the environment.

Replace all (output) labeld with 3x .c! to prevent output of
X-information. This however may violate the determinacy-con
dition on CLTSs, so we collapse certain states. We define an
equivalence relatiors on the remaining states of as follows:

S is defined inductively as the smallest equivalence relasiati

isfying (a) sSs’, s M) 51,8 (3z.c)? s, then s; Ss)
and (bpSs’, s~ o1 2 o thens; Ss) and (c)

sSs',s — 51,5 — s, the paths from the start statg of A

to s1, s} are in the same equivalence class of pathsjp, then

515s1. We quotient the remaining states4funder the relatiors.
The start state of the resulting CLTS is the (equivalencescla

of) the start state ofd; and the equivalence relation on paths is

inherited fromA.

choose X from {0,1} in P. This corresponds to
new X in (P, X = 0) +o.5 (P,X = 1), so the CLTS for it will
be very similar to that in example 4.6. L&, be the CLTS cor-
responding toP, X = 0, and P; be the CLTS corresponding to
P, X = 1. Construct a CLTHA as follows. A contains the disjoint
union of the CLTSs of r ue, P, and P,. To each state coming
fromt r ue and with labek;, add twor transitions each with prob-
ability 0.5; one going to the target of thé@ transition from the start
state of P, and the other going to the the target of thigtransition
from the start state aP; . The start state dfr ue becomes the start
state. The set of equivalence classes of paths from asstat@ing
from the copy of true are determined by the choice mad& dsee
example 4.6) and are as follows:

1. Choice not resolved: this equivalence class is the sedtbisp
starting that only visit states from the copy tof ueand has
probability numben.

2. ChoiceX = 0: this class is the set of paths that visit some
state fromP, and has probability numbér5.

3. ChoiceX = 1: this class is the set of paths that visit some
state fromP; and has probability numbér5.

The required CLTS is given byew X in A, i.e. hide the variable
X in A.

Definition 4.12 L < L' if the state/transition set af is a subset
of the state/transition set df’ and

e The start states of and L’ are the same.

e If tisar transition inL’ whose target is i, then the source
of tisin L andt is a transition inL.

e If p1 = po in L' for paths ofL starting froms, thenp; =,
p2 in L with same probability number.

Our idea is to model (potentially infinitefrobabilistic cc pro-
grams by countable directed (w) sets of CLTSs.

Example 4.13 Recall the program of Example 2.9.
Ulyu,2) = z € [l,u],
chooseX from {0,1}in |
if X =0thenU(l, (u+1)/2,z),
if X =1thenU((u+1)/2,u,z)]

Recall that this program can be visualized as a full binagnbh-
ing tree, where the branches correspond to the two possitles
for the random variable of each recursive call. The direstdor-
responding to this program is induced by the finite prefixethisf
tree satisfying the condition that every non-leaf node xastty 2
children — such a prefix corresponds to some element of the set
of syntactic finite approximants of the operational sentanfsec-
tion 3). Indeed, every such prefix forms the the skeleton tier t
associated CLTS where each node is equipped with a (sed}-loo
transition with labek! wherec is the finest associated intervalg.
the left (resp. right) child of the root node has a self loophe
form (z € [0, 0.5])! (resp.(z € [0.5.1])!).

Example 4.14 Consider the following modified variant of the pro-
gram of Example 2.9.
Ulyu,2) = z € [l,u],

chooseX from {0,1,2,3}in |
if X =0thenU(l, (u+ 31)/4, z),
if X =1thenU((u+30)/4, (u+1)/2,z),
if X =2thenU((u+1)/2,(3u+1)/4,z),
if X =3thenU((3u+1)/4,u,z)]

The directed set has similar intuitions to the one from examd3.
This program can be visualized as a full quarternary brarctree,
where the branches correspond to the four possible valuabdo
random variable of each recursive call. Consider the thesfimie-
fixes of this tree satisfying the condition that all non-leafles have
exactly 4 children. As in example 4.13, each node is equipptd
a (self-loop) transition with labell wherec is the finest associated
interval, eg. the children of the root node have self loopthef
form (z € [0,0.25))!, (= € [0.25.0.5])!, (= € [0.5,0.75])!, (= €

The algebra of CLTSs serves as a suitable target for the seman [0.75, 1])!. The directed set corresponding to this program consists

tics of finite Probabilistic cc programs because of the following
theorem.

Theorem 4.11 Weak bisimulation is a congruence on CLTS.

4.5 Recursion

In analogy with the treatment of recursion in the operatigeanan-
tics, we treat an infinit€robabilistic cc process as a countable set
of finite CLTSs. Intuitively, the set associated with a pargrP

can be viewed as the set of CLTSs corresponding to the element
of App(P). We first define an ordering on CLTS. LetL, L’ be
CLTSs.

of the CLTSs built out of the skeleton transition system elecbin
these trees.

10 relation.  The 10 relation for directed sets of CLTSs is de-
fined as a limit of the 10 relation of the elements of the sdbfeing
the ideas of Section 3 — the directed set of CLTSs takes treepla
of the directed set of syntactic approximations in the deding of
Section 3.



Weak bisimulation.  First some notation. LeD = {A4;}
be a directed set of CLTSs. Define the LT8whose states and
transitions are the union of the set of states of the CLASs Let
its state set b&.

LetS C X. We first defineSa,, the projection ofS on A;. Let
s be a state of;. Thens € Sy,, ifin D s reaches some state 6f
by a path of the form*, and no other state of; is on this path.

We now define the probability of reaching a non—empty count-
able set of stateS C X from a given state on paths labeledl’
(resp.c!). Lets be a state i, andk < s. Letpa,, the (unnor-
malized) probability of reaching4; from s on a path labeledI
(resp.c!) ® We define the probability of reachir§jfrom s on a path
labeledcI" (resp.c!) as the limit of the ne{p 4, }. In the absence of
normalization, this limit always exists.

Definition 4.15 LetD and E be two directed sets of CLTSs, and let
‘D and& be their union LTSs. A partial equivalence relatidty,on
the disjoint union of the states i and £ is called abisimulation
if
e Lets be a state such that is not related tos by R. Then,
everyr* path froms can be extended to&a" path ending in
a statet such thatt R ¢; every > path froms includes a
statet such that R t, where these paths are in the respective
LTSs.

e Whenever two states and s, are R-related, then for any
finite constraintc and any R-equivalence class of states
the probability of reaching from s, oncI/¢! is the same as
the probability of reaching from sz oncI/c!. Two states are
bisimilar if there is a bisimulation relating two states.

Two CLTSs are bisimilar if there is a binary relation between
their state sets, satisfying the above conditions suchthgginitial
states are bisimilar.

In the above definition, the partiality of the equivalencéate
tion captures the idea that all internal configurations neeidbe
matched. This idea was captured by the restriction to obbézv
states in the finite case. This issue is illustrated by thieviahg
example.

Example 4.16 There is a bisimulation relating the trees of exam-
ple 4.13 and example 4.14. The witnessing partial equivaea-
lation relates the nodes of example 4.14 to the correspgnaiatles

of example 4.13. The other nodes of example £1Bthe children

of the root node, and every alternating level of nodes froeneibn)
are not included in the equivalence relation.

The following non—example illustrates the issues further.

Example 4.17 No two distinct nodes of the tree described in Ex-
amples 4.13 can be in the same equivalence class of a bigionula
relation, since their possible outputs distinguish theimi&rly, no
two distinct nodes of Example 4.14 can be in the same eqoi&le
class of a bisimulation relation.

The absence of normalization in the computation of probabil
ity numbers of our programs shows up in the following example
(recall that for finite recursion free programf the semantics of
Section 4.3 validates the equational lawt-o 5 f al se = A.)

Example 4.18 The programsA +,.5 f al se and A are not bisim-
ilar in general.

5Note thatD may not be CLTS as it may not satisfyfiniteness.

epAi is defined following the definitions of section 4.3. LBt be the set of all
paths inA; whose initial state i, the final state is iS4, , no state other than the
final one is inS, and whose label i8? (resp.c!). Then,pa, = (3-{Prob(Q) |

Qe =.,P' NQ #0}).

Algebra of directed sets of CLTSs. The following lemma
lifts the Probabilistic cc algebra to sets. It allows us to lift the
Probabilistic cc combinators to sets of CLTSs by just extending
them “pointwise” —e.g. the parallel composition of two sets is
the set of CLTSs got by performing the defined compositionlbn a
possible pairs from the two sets.

Lemma 4.19 All operations in the algebra of CLTS are monotone
with respect to<.

The earlier theorem that weak bisimulation is a congrueetg g
lifted to directed sets of CLTSs:

Lemma 4.20 Weak bisimulation is a congruence on directed sets
of CLTS.

4.6 Correspondence and conservativity results

Theorem 4.21 (Adequacy) (Directed sets of) CLTS modulo weak
bisimulation is sound for reasoning aboBtobabilistic cc with
respect to observations of 10 relations.

The key step in this theorem is to show computational adgguac
the operational and CLTS 1O relations coincide. Our progfieits
the set construction in the CLTS semantics for recursivganms
to reduce the proof to the case of finite recursion free progra
For this case, the proof is carried out by using a standarstyle
argument to reduce finite recursion free programs to theviotig
normal form — random variable declarations at the outsidiosa
ing a body with all local variable declarations outside aybdilt
out of tells, composition and asks.

The directed sets CLTS semantics is not completenot fully
abstract because it does not handle normalization of pitityab
numbers.

The theory is consistent with limit observing semantics ef d
terminatecc [54, Pg. 344] — the outputal se of [54] corre-
sponds to absence of output in our treatment of determicate
Example 4.5 motivates:.

Theorem 4.22 CLTS modulo weak bisimulation is a fully abstract
semantics for determinatec with respect to observations of 10
relation.

Corollary 4.23 (Conservativity) Probabilistic cc is conservative
overcc.

5 Related work

Our integrated treatment of probability and the underlyoan-
current programming paradigm is inspired by [9, 8]g. condi-
tions 2.2 and 2.5 are directly borrowed from these paperse
treatment of recursion and associated semantics are niotresn
these papers. Our work falls fundamentally into the realrstofly
initiated in these two papers, with our contribution beihg tnte-
gration of programming language and concurrency theomnouit.
The role of probability has been extensively studied in the-c
text of several models of concurrency. Typically, thesedigtsi
have involved a marriage of a concurrent computation modidl w
a model of probability.
(1) Probabilistic process algebras add a notion of randsste
the underlying process algebra model. This theory is quita-c
prehensive and these extensive studies have been cartigdtbe
traditional framework of (different) semantic theoriegdifferent)
process algebras (to name but a few, see [32, 41, 43, 34, 53p1,
e.g. bisimulation, theories of (probabilistic) testing, rétetship
with (probabilistic) modal logics etc. Recently, thesedties have

Th



been shown to extend nicely to continuous distributions P.

We have imported powerful machinery to analyze labeledsiran

tion systems from this area of probabilistic process algétiio our [4]
work. [5]
(2) The work of Jane Hillston [37] develops a process algebra
PEPA, for compositional performance modeling. The prolités
enter through the fact that each action has a duration chasen
cording to an exponential distribution. A natural questionus is

to encode her process algebra&lirobabilistic cc. This would lead

us into the integration of explicit continuous time into enodel.

(3) The verification community has been very active and thase
been significant activity in developing model checking sofar 7]
probabilistic systems, for example [13, 6, 20, 38]. Our wizk

not directedly related but should be seen as a complemetatalry 8]
(4) Probabilistic Petri nets [45, 62] add Markov chains te tn-

derlying Petri net model. This area has a well developeck sfit
algorithms for performance evaluation. Example 2.8 shoovg to
represent such nets Rrobabilistic cc. o]
(5) Probabilistic studies have also been carried out in tmaxt of

10 Automata [58, 63]. The reader will have noticed the inflceen
of IO-automata on the definition of CLTS.

Our work differs in the following aspects. Formally, our Wor
is based on thec model. More importantly perhaps, our work fo-
cuses on the execution aspect of stochastic models, inasbritr
the specification focus of the above. Thus, our model rentgas
terminately probabilistic and we integrate probability ndeeply
into the languageg.g. the cc paradigm is exploited to build and
specify joint probability distributions of several varlab. This
forces us to explore the semantic issues associated witimtire
action of constraints, recursion and random variablegjeissiot
treated in the above theories. On the other hand, our work doe
not currently incorporate the sophisticated reasoninghowuilo-
gies of the above formalisms. Our semantic study based asicla
cal techniques, labeled transition systems and bisinmuiathakes
us hopeful that this technology can be adaptelrtababilistic cc.

The development of probabilistic frameworks in knowledge
representation has been extensive [51]. Our earlier exesnpbti-
vate how to express the joint probability distributions afy@sian
networks withinProbabilistic cc makingProbabilistic cc a sim- (5]
ple notation for describing Bayesian networks. Howewnob-
abilistic cc does not allow the direct manipulation of conditional
probability assertions as in the logics of [49, 23]. The wiorkhis
genre that is most closely related to our work is the work azy(| (16]
first order) stochastic functional programming languag3.[The
key technical contribution of that paper is an algorithmt ttam-
putes the output distribution exactly when all possiblecetien
paths terminate. Our paper differs in the choice of the Ugiohey
concurrent computing idiom — recall our earlier argumentstifie
importance of concurrency. [42] also does not handle pritibab
distributions when the underlying computation does nahieate. (18]
However, we hope to be able to adapt the very general (program
analysis style) ideas in the algorithm of that paper to dgveta-
soning methods foProbabilistic cc. [19]
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