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1 IntroductionCombinatorial optimization consists of search within a huge space of con�g-urations. Associated with each con�guration is the value of a utility functionand the task consists of �nding con�gurations that either maximises or min-imises this value. Finding the best con�guration of all is almost impossiblein many optimization problems. Indeed there is a class of combinatorialoptimization problems which are called NP-Complete and which, it is con-jectured, can not be solved by any polynomial-time algorithm. In addition tothe 300 problems presented by Garey and Johnson [8], the task of �nding theground state of a three-dimensional spin-glass has been proved to belong tothe NP-Complete class [2] [1]. More recently, many tasks related to learningin neural networks have been proved to be NP-complete [14].In 1983, Kirkpatrick, Gelatti and Vecchi presented an algorithm calledSimulated Annealing (SA) for dealing with these problems. They had previ-ously developed the method in the framework of statistical mechanics [15].The basis of their algorithm is that it allows movement in the con�gurationspace and that changes occur from one con�guration to another accordingto the probability p = min(1; e��C=T ) where �C is the di�erence in the costfunction between the two con�gurations and T is an external control param-eter regarded as a \temperature" which is decreased through the simulation.The initial value of T is initialized according to a start criterion and manyad hoc procedures are used for the initialization and decrement schedule.Simulated Annealing algorithms are generally composed of two basicparts: the inner and outer loop. In pseudo code, the algorithm is some-thing like the piece of pseudocode depicted in Fig. 1. We tried to put aSA algorithm and the algorithm presented in this paper in the same page.This has been done in order to show the common general structure. At thebegining of the the SA method a con�guration is generated as starting state.Both algorithms also share a temperature as a control parameter which isupdated each time the algorithm executes a complete inner loop. Please notethat we called MC step (Monte Carlo step) the inner loop of the cooperativeand competitive algorithm we are introducing. Cooperative and competitivephases are interlabeled between MC steps. It is this interaction betweensolutions that helps to develop global optimization properties.Simulated annealing is general in that it only needs the speci�cation ofthe cost function associated with con�gurations, the moves that may bemade between them, and a cooling schedule for modifying the temperatureparameter, and so it has become a popular method for diferent optimizationproblems like the N-city travelling salesperson problem (TSP) [15] [16], themin-cut partitioning [15] and global wiring [27]. Other aplications includeleast square �tting of many unknowns [26] image analysis [22] [9] and learning1



in random boolean networks [6] [5].One of the principal drawbacks of the simulated annealing approach is alarge dispersion shown by the results of optimizations with di�erent randomstarts. This can be solved using a slow cooling schedule [21], something thatrequires a large amount of computer time. Although some theoretical resultshave shed light on this matter [19] it is still a practical di�culty.1.1 The Traveling Salesman Problem (TSP)The TSP is generally de�ned as the task of �nding the cheapest way ofconnecting N cities in a closed tour where a cost is associated with each linkbetween cities.One version of it, which belongs to the NP-complete class, the EuclideanTSP in two dimensions, has been one of the most studied optimization prob-lems. In the Euclidean version, the cost of linking two cities is proportionalto the Euclidean distance between them. The blind Euclidean version of theTSP, beloved by purists, is a variation on the above where only the length ofa tour is known, and no information about the distance between individualcities is used to guide the search.During the long battle that science has waged with the TSP, only somebig problems have been solved to optimality [20] . Nevertheless, for a ran-dom uniform distribution of N cities over a rectangular area of R units, anasymptotic expected length formula for the optimal tour has been derived[3]. The expected length Le of the optimal tour is given byLe(N;R) = KpNR (1)With computational experiments [23], the value K has been bounded by0:765 � K � 0:765 + 4N (2)and we also remark the derivation given by Bonomi and Lutton. They give avalue of K = 0:749 for large N [4]. Many ad hoc TSP algorithms have beenconstructed during the last 50 years [17] and so it represents a challengingtest-model for our approach.2 The Cooperative-Competitive SearchThe central idea of the cooperative-competitive approach for searching inlarge con�guration spaces is to use collective properties of a group of distin-guishable individuals, which are separately performing the search, to generate2



solutions that are better than those which would be obtained by each individ-ual without interactions within the group, or by only one individual during anumber of searching attempts equal to the number of members of the group.Given this description, the approach is especially attractive for being im-plemented on multiple instruction multiple data (MIMD) parallel computersbecause each individual is trying to solve the complete optimization problem.If each individual node can have the complete instance of a problem, we canassure that each node can be running an individual process. The methodwould gain from the asynchronicity since the only needs for comunicationbetween nodes arise from the cooperative and competitive phases which donot dominate the computer time employed. The most time consuming pro-cedure is the individual local search and for that a fast heuristic would besuitable.An ImplementationWe have applied the competitive-cooperative search to the blind version ofthe Euclidean TSP in two dimensions. We regard the present work as anapplication of a more general approach for optimization problems.In this case, the individuals are arranged on a ring and each one searcheslocally, competes with its two immediate neighbours in the ring, and cooper-ates with individuals which are very distant within the ring. The arrangementintroduces a di�erent neighbourhoods for cooperation and competition.We can see that, for the sixteen element ring shown in Fig. 2, an indi-vidual competes with its nearest neighbours in the ring, and cooperates withindividuals that are four links away in the ring.The local search is supplied by Monte Carlo simulated annealing. Thecooperative aspect is supplied by a crossover operator identical in form tothat used in genetic algorithms [13] as applied to the travelling salespersonproblem by Grefenstette [11]. The competitive aspect is supplied by a pro-cedure where individuals subsume each other's positions according to theirrelative �tnesses. The acceptance of the changes involved in all three com-ponents of the search is governed by temperature, as described below, andthis value is subject to a cooling schedule.Local SearchOne step of the local Monte Carlo search process for a tour of N cities canbe understood as N attempted rearrangements of the tour. This indicatesthat we used as our stoping criterion of the MC step the completition of Nattempted rearrangements. We are aware of better criteria (see Ref.[10]) andthis would deserve more research in the future. This criterion combined with3



a di�erent acceptance procedure (see Ref. [18]) would yield a more e�cientway of performing the local search, however here we are restricted to theusual procedures.The moves used for rearrangement are of three di�erent types: the inver-sion of a sub-tour, the insertion of one city in a di�erent part of the tour, orthe insertion of two connected cities in another part of the tour. The �rstmove changes two links and the latter two moves both change three links.The cities and the places of insertion are selected with a random uniformdistribution among all possible values and all processors have the possibilityof doing all rearrangements, so we have an stochastic Markovian process.Each of the changes is accepted with a probabilityp(�EMC; T ) = 11 + e�EMC=T (3)where �EMC = �LpN (4)and �L is the change in length produced by the rearrangement. This accep-tance procedure has been also used by H. Szu and others in connexion withBoltzmann Machines [24] [25].CompetitionCompetition occurs between individuals on the basis of a challenge by anindividual currently residing in one location on the ring to an individual inanother location. In a given competition phase all individuals both challengeand are challenged, and so are involved in two interactions with neighbours.The competition procedure can be clari�ed with an example. In the ringshown above, the tour in location 0 would compete with the tour actuallyin location 1 by an issued challenge, and with the tour in location 15 by areceived challenge. If the challenge to location 1 is successful then the tour inlocation 1 is removed and it is replaced with a clone, an exact copy of tour 0.Clearly tour 0 can itself be replaced by tour 15 if it can not succeed againsthis challenger (tour 15). The battle is decided according to the probabilityp(�Ecomp; T ) = 11 + e�Ecomp=T (5)4



If each tour is of length Li. where the sub-index i stands for the sequencenumber of the location of the tour around the ring, for the competitionbetween 0 and 1 we compute �Ecomp according to�Ecomp(0; 1) = �L0;1N = L0 � L1N (6)so if tour 0 challenges tour 1, we generate a random number q with uniformdistribution in the interval [0; 1] and if q � p(�Ecomp(0; 1); T ) nothing hap-pens but if q < p(�Ecomp(0; 1); T ) tour 1 is deleted and replaced with a copyof tour 0.CooperationThe cooperation procedure is based upon the crossover operator of genetic al-gorithms in which components of con�gurations are exchanged, allowing thecombination of subcomponents of successful individual searches into con-�gurations that may develop to be better than either of their generatingcon�gurations.The operator used is that de�ned as the order crossover or OX operatorby Goldberg [?]. Of the two con�gurations to be combined, an arbitrarysubtour is chosen from one tour, and inserted into a second. In order thatthe generated tour should obey the constraint that each city is visited exactlyonce, the cities that are inserted are excised from their original locations inthe second tour, and those cities that were connected on each side of themare re-connected to each other. The result bears a structural relationshipto both parents, although the excision of cities means that achieving thesubtour often makes signi�cant changes to the tour into which it is inserted.In contrast to the two and three link changing operations of the MonteCarlo step procedure, the number of links in the second tour which changeduring crossover may be of any value, up to the number of links it contains.Cooperation occurs on a similar basis to competition in that a challenge,which may be considered as a proposition in this case, is issued betweenneighbours in the locality de�ned for cooperation. A proposition is assessedby the same criteria as a challenge, scaled with temperature in the same way.If the proposition is accepted, crossover is performed between the tours andthe resulting "child" replaces the recipient of the proposition. The length ofthe result of crossover is not used to determine its acceptability.5



3 The OX operatorIn order to describe the type of crossover operator used, we can show howit works with the sequence-example used by Goldberg (see Ref. [12]). Weshow with an example two parents con�gurations, tours A and B (see Fig. 1and Fig. 2), which are the following stringsA = 9 8 4 5 6 7 1 3 2 0B = 8 7 1 2 3 0 9 5 4 6As Goldberg describes, we will swap a substring from one of the parentsthat will be called the donor. This substring is selected randomly with uni-form probability of starting and ending sites, and in Goldberg's example, thesubstring 5 6 7 of donor A is the one that will be mapped into the receiverB. A matching section is de�ned and is graphically represented between twosymbols " ' ".A = 9 8 4 '5 6 7' 1 3 2 0B = 8 7 1 '2 3 0' 9 5 4 6The swapping of substring '5 6 7' will be performed in replacement ofthe '2 3 0' substring in parent B. Since the new individual should have tendi�erent city names (the numbers 0, 1, : : : , 9); after the insertion of thesubstring we must delete the cities of the receptor that were included in thenew substring added. Instead of presenting the �nal result, we will show allits steps. Before swapping, we will delete the cities in the receptor.A = 9 8 4 '5 6 7' 1 3 2 0B = 8 * 1 '2 3 0' 9 * 4 *We have �lled the holes with stars in the receptor parent B. Now topreserve the relative order in the receiver, we will make a sliding motion toleave the holes in the matching section marked in the receiver. Goldberg(Gold. page 174) makes this sliding motion starting in the second crossoversite, so after the rearrangement we haveA = 9 8 4 '5 6 7' 1 3 2 0B = 2 3 0 '* * *' 9 4 8 1After that, the stars are replaced with the city names taken from thedonor A. We get the con�guration OX(B,A,2) (see Fig. 3)A = 9 8 4 '5 6 7' 1 3 2 0OX(B,A,2) = 2 3 0 '5 6 7' 9 4 8 16



For the purpose of this explanation, we can stop the discussion here, butin the description of the OX operator, the creation of the complementarycross must be added. This would giveOX(A,B,2) = 5 6 7 '2 3 0' 1 9 8 4OX(B,A,2) = 2 3 0 '5 6 7' 9 4 8 1From the 10-cities example shown, it seems rather di�cult to understandhow this crossover operator helps giving a cooperative mechanism for thisconcurrent search. For this example we have selected two tours which arefar from being near optimality. This fact, combined with the small numberof cities of the tours under consideration, gave tours that di�er signi�cantlyfrom the parents. However, we encourage the reader to make some drawingsto understand what happens in other cases and how two tours which are nearof "local minima" by using the set of moves described above, merge to forma new child. The e�ect of the crossover operator is to make "a long jump" incon�guration space but preserving most of the good subcomponents of theparents tours.The Optimisation ScheduleCompetition, cooperation and local search are interspersed so that a periodof local search is followed by a competition phase, another period of localoptimisation, a cooperation phase, and then back to local optimisation. Asin some implementations of Simulated Annealing, the temperature is initiallyset to a value where 40 percent of the rearrangements with �L > 0 areaccepted and reduced using the standard geometrical schedule Tn = 0:98Tn�1on the completion of each Monte Carlo step.The optimisation is judged to have completed if the diversity of the groupfalls to a low value. To be more speci�c, samples of the connections of 128random cities are made in random pairs of individuals within the group .If, for all such pairs, the selected city is connected to the same two othercities then the group is judged to have reached a solution. The sampling isimplemented in a MIMD machine by considering only pairs of cities eithercompeting or cooperating, and by globally asynchronously monitoring thediversity of pairs of tours.The advantage of the cyclical sequence of phases outlined above are �rstthat the results of cooperation do not compete until they have undergonelocal optimisation to ameliorate the damage caused by the OX operator, andsecond that if both an individual and its clone are victors of competition,they are allowed to optimise along separate paths before their componentsare propagated in cooperation. 7



This said, there is no real reason, apart from simplicity of implementa-tion, that the phases should run synchronously in all localities. Indeed, themethod requires only occasional communication between individuals duringcooperation and competition and so is not likely to su�er the performancepenalties usually associated with message-passing in an asynchronous envi-ronment.ResultsIn order to study the performace of the method, we performed simulationsusing a set of 100 cities randomly distributed with uniform density inside aunit square. We found that when the number of individuals was small thecosts of �nal con�gurations, resulting from di�erent initial random starts, hada large variance such as that expected for the results of simulated annealing.When, however, the number of individuals was of the same order as thenumber of cities, �nal con�gurations were all very short and di�ered only ina small number of links. In Figure 1 we show some tours obtained using 128individuals and di�erent random starts.The con�gurations displayed are the ones that systematically appear as�nal results and were not selected as the best solutions in a huge number ofsimulations. Indeed, had we done this, all four tours would be identical.In search of a bigger problem to test the method, we looked at the Lin-Kerningham 318-cities TSP. This particular instance of the TSP seems to bevery di�cult since it contains randomness and clusters on di�erent scales.It also contains one �xed link. It is interesting to remark that while manyresearchers have su�cient computer facilities to prove their methods on it,they usually generate their own random set of cities.For this problem, the tour of optimal length among the 10655 possibilitieshas been found, so it is a good test for our method. Instead of de�ning thetour ad-hoc to contain the one �xed link we gave this link a very negativedistance value; that is a value equivalent to the the total length of a randomtour so we are performing a search between 317!=2 possible con�gurations.We performed the very computationally expensive experiment of simulatinga system composed of 408 individuals. The surprising result is given in Figure2 and it should be compared with the optimal solution shown in Figure 3.4 ConclusionsIt is clear that the method shows promise. The striking result for the 318-cities problem as well as the performance in the 100-cities case, encourageus to study the properties of the approach and ways of both improving the8
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