
J. Functional Programming 1 (1): 1{000, January 1993 c
 1993 Cambridge University Press 1Algorithm + Strategy = ParallelismP.W. TRINDERDepartment of Computing Science, University of Glasgow, Glasgow, UKK. HAMMONDDivision of Computing Science, University of St Andrews, St Andrews, UKH.-W. LOIDL AND S.L. PEYTON JONES yDepartment of Computing Science, University of Glasgow, Glasgow, UKAbstractThe process of writing large parallel programs is complicated by the need to specify boththe parallel behaviour of the program and the algorithm that is to be used to compute itsresult. This paper introduces evaluation strategies, lazy higher-order functions that controlthe parallel evaluation of non-strict functional languages. Using evaluation strategies, itis possible to achieve a clean separation between algorithmic and behavioural code. Theresult is enhanced clarity and shorter parallel programs.Evaluation strategies are a very general concept: this paper shows how they can beused to model a wide range of commonly used programming paradigms, including divide-and-conquer, pipeline parallelism, producer/consumer parallelism, and data-oriented par-allelism. Because they are based on unrestricted higher-order functions, they can alsocapture irregular parallel structures.Evaluation strategies are not just of theoretical interest: they have evolved out of ourexperience in parallelising several large-scale parallel applications, where they have provedinvaluable in helping to manage the complexities of parallel behaviour. These applicationsare described in detail here. The largest application we have studied to date, Lolita, isa 60,000 line natural language parser. Initial results show that for these programs wecan achieve acceptable parallel performance, while incurring minimal overhead for usingevaluation strategies. 1 Writing Parallel ProgramsWhile it is hard to write good sequential programs, it can be considerably harderto write good parallel ones. At Glasgow we have worked on several fairly largeparallel programming projects and have slowly, and sometimes painfully, developeda methodology for parallelising sequential programs.The essence of the problem facing the parallel programmer is that, in additionto specifying what value the program should compute, explicitly parallel programsy This work is supported by the UK EPSRC (Engineering and Physical Science ResearchCouncil) AQUA and Parade grants.

2 Trinder and othersmust also specify how the machine should organise the computation. There are manyaspects to the parallel execution of a program: threads are created, execute on aprocessor, transfer data to and from remote processors, and synchronise with otherthreads. Managing all of these aspects on top of constructing a correct and e�cientalgorithm is what makes parallel programming so hard. One extreme is to rely onthe compiler and runtime system to manage the parallel execution without anyprogrammer input. Unfortunately, this purely implicit approach is not yet fruitfulfor the large-scale functional programs we are interested in.A promising approach that has been adopted by several researchers is to dele-gate most management tasks to the runtime system, but to allow the programmerthe opportunity to give advice on a few critical aspects. This is the approach wehave adopted for Glasgow Parallel Haskell (GpH), a simple extension of standardnon-strict functional language Haskell (Peterson et al., 1996) to support parallelexecution.In GpH, the runtime system manages most of the parallel execution, only re-quiring the programmer to indicate those values that might usefully be evaluatedby parallel threads, and since our basic execution model is a lazy one, perhaps alsothe extent to which those values should be evaluated. We term these programmer-speci�ed aspects the program's dynamic behaviour. Even with such a simple parallelprogrammingmodel we �nd that more and more of such code is inserted in order toobtain better parallel performance. In realistic programs the algorithm can becomeentirely obscured by the code describing the dynamic behaviour.1.1 Evaluation StrategiesEvaluation strategies use lazy higher-order functions to separate the two concernsof specifying the algorithm and specifying the program's dynamic behaviour. Afunction de�nition is split into two parts, the algorithm and the strategy, withgraph reduction allowing values de�ned in the former to be manipulated in thelatter. The algorithmic code is consequently uncluttered by details relating only tothe parallel behaviour.The primary bene�ts of the evaluation strategy approach are similar to thosethat are obtained by using laziness to separate the di�erent parts of a sequentialalgorithm (Hughes, 1983): the separation of concerns makes both the algorithm andthe dynamic behaviour easier to comprehend and modify.Because evaluation strategies are written using the same language as the algo-rithm, they have several other desirable properties.� Strategies are powerful: simpler strategies can be composed, or passed asarguments to form more elaborate strategies.� Strategies can be de�ned over all types in the language.� Strategies are extensible: the user can de�ne new application-speci�c strate-gies.� Strategies are type safe: the normal type system applies to strategic code.� Strategies have a clear semantics, which is precisely that used by the algo-rithmic language.

Algorithm + Strategy = Parallelism 3Evaluation strategies have been implemented in GpH and used in a number oflarge-scale parallel programs, including data-parallel complex database queries, adivide-and-conquer linear equation solver, and a pipelined natural-language pro-cessor, Lolita. Lolita is large, comprising over 60K lines of Haskell. Our experienceshows that strategies facilitate the top-down parallelisation of existing programs.1.2 Structure of the PaperThe remainder of this paper is structured as follows. Section 2 describes parallelprogramming in GpH. Section 3 introduces evaluation strategies. Section 4 showshow strategies can be used to specify several common parallel paradigms includingpipelines, producer/consumer and divide-and-conquer parallelism. Section 5 dis-cusses the use of strategies in three large-scale applications. Section 6 discussesrelated work. Finally, Section 7 concludes.2 Introducing ParallelismParallelism is introduced in GpH by the par combinator, which takes two argu-ments that are to be evaluated in parallel. The expression p `par` e (here we useHaskell's in�x operator notation) has the same value as e. Its dynamic behaviouris to indicate that p could be evaluated by a new parallel thread, with the parentthread continuing evaluation of e. We say that p has been sparked. Since the threadis not necessarily created, p is similar to a lazy future (Mohr et al., 1991). Notethat par di�ers from parallel composition in process algebras such as CSP (Hoare,1985) or CCS (Milner, 1989) by being an asymmetric operation { at most one newparallel task will be created.Since control of sequencing can be important in a parallel language (Roe, 1991),we therefore introduce a sequential composition operator, seq. If e1 is not ?, theexpression e1 `seq` e2 has the value of e2; otherwise it is ?. The correspondingdynamic behaviour is to evaluate e1 to weak head normal form (WHNF) beforereturning e2.Since both par and seq are projection functions, they are vulnerable to beingaltered by optimising transformations, and care must be taken in the compilerto protect them. The implementation of the compositions is described more fullyin (Trinder et al., 1996).2.1 Simple Divide-and-Conquer FunctionsLet us consider the parallel behaviour of pfib, a very simple divide-and-conquerprogram. If n is greater than 1, then pfib (n-1) is sparked, and the thread con-tinues to evaluate pfib (n-2). Figure 1 shows a process diagram of the executionof pfib 15. Each node in the diagram is a function application, and each arc is thedata value, in this case an integer, used to communicate between the invocations.Note that seq has a higher precedence than par.

4 Trinder and others
pfib 15

pfib 14 pfib 13

pfib 13 pfib 12 pfib 12 pfib 11Fig. 1. p�b Divide-and-conquer Process Diagrampfib n| n <= 1 = 1| otherwise = n1 `par` n2 `seq` n1+n2+1wheren1 = pfib (n-1)n2 = pfib (n-2)Parallel quicksort is a more realistic example, and we might write the followingas a �rst attempt to introduce parallelism.quicksortN :: [a] -> [a]quicksortN [] = []quicksortN [x] = [x]quicksortN (x:xs) = losort `par`hisort `par`losort ++ (x:hisort)wherelosort = quicksortN [y|y <- xs, y < x]hisort = quicksortN [y|y <- xs, y >= x]The intention is that two threads are created to sort the lower and higher halves ofthe list in parallel with combining the results. Unfortunately quicksortN has almostno parallelism because threads in GpH terminate when the sparked expression isWHNF. In consequence, all of the threads that are sparked to construct losort andhisort do very little useful work, terminating after creating the �rst cons cell. Tomake the threads perform useful work a forcing function like forceList below, canbe used. The resulting program has the desired parallel behaviour, and a processnetwork similar to pfib, except that complete lists are communicated rather thanintegers.forceList :: [a] -> ()forceList [] = ()forceList (x:xs) = x `seq` forceList xs

Algorithm + Strategy = Parallelism 5
f x0

parMap f [x0, x1, ... xn]

f x1 f xn....Fig. 2. parMap Process DiagramquicksortF [] = []quicksortF [x] = [x]quicksortF (x:xs) = (forceList losort) `par`(forceList hisort) `par`losort ++ (x:hisort)wherelosort = quicksortF [y|y <- xs, y < x]hisort = quicksortF [y|y <- xs, y >= x]2.2 Data-Oriented ParallelismQuicksort and p�b are examples of (divide-and-conquer) control-oriented paral-lelismwhere subexpressions of a function are identi�ed for parallel evaluation.Data-oriented parallelism is an alternative approach where elements of a data structureare evaluated in parallel. A parallel map is a useful example of data-oriented paral-lelism; for example the parMap function de�ned below applies its function argumentto every element of a list in parallel.parMap :: (a -> b) -> [a] -> [b]parMap f [] = []parMap f (x:xs) = fx `par` fxs `seq` (fx:fxs)wherefx = f xfxs = parMap f xsThe de�nition above works as follows: fx is sparked, before recursing down the list(fxs), only returning the �rst constructor of the result list after every element hasbeen sparked. The process diagram for parMap is given in Figure 2. If the functionargument supplied to parMap constructs a data structure, it must be composedwith a forcing function in order to ensure that the data structure is constructed inparallel.2.3 Evaluation Degree + Parallelism = Dynamic BehaviourAs the examples above show, a parallel function must describe not only the algo-rithm, but also some important aspects of how the parallel machine should organise

6 Trinder and othersthe computation, i.e. the function's dynamic behaviour. In GpH, there are two com-ponents to this dynamic behaviour:� Parallelism control, which speci�es what threads should be created, and inwhat order, using par and seq.� Evaluation degree, which speci�es how much evaluation each thread shouldperform. In the examples above, forcing functions were used to describe theevaluation degree.Evaluation degree is closely related to strictness. If the evaluation degree of avalue in a function is less than the program's strictness in that value then theparallelism is conservative, i.e. no expression is reduced in the parallel programthat is not reduced in its lazy counterpart. In several programs we have found ituseful to evaluate some values speculatively. That is, the evaluation-degree mayusefully be more strict than the lazy function.In the examples above, the code describing the algorithm and dynamic behaviourare intertwined, and as a consequence both have become rather opaque. In largerprograms, and with carefully-tuned parallelism, the problem is far worse.3 Strategies Separate Algorithm from Dynamic BehaviourThe driving philosophy behind evaluation strategies is that it should be possible tounderstand the semantics of a function without considering its dynamic behaviour.3.1 Evaluation StrategiesAn evaluation strategy is a function that speci�es the dynamic behaviour of analgorithmic function. In order to allow evaluation strategies to specify the degree towhich the algorithmic function's result should be evaluated, they are parameterisedover the result of the algorithmic function. Since a strategy's only purpose is tode�ne dynamic behaviour, it is de�ned to return the unit type ().type Strategy a = a -> ()Strategies Controlling Evaluation Degree The simplest strategies introduce no par-allelism: they specify only the evaluation degree. The simplest strategy is termed r0and performs no reduction at all. This is surprisingly useful, e.g. when evaluatinga pair the �rst element can be evaluated but not the second.r0 :: Strategy ar0 _ = ()Because reduction to WHNF is the default evaluation degree in GpH, a strategyto reduce a value of any type to WHNF is easily de�ned:rwhnf :: Strategy arwhnf x = x `seq` ()

Algorithm + Strategy = Parallelism 7A data value (but not a function value) can also be reduced further to normalform (NF) using rnf. Since we wish to de�ne only one rnf operation for a list ofvalues of any type, the obvious solution is to use a Haskell type class, NFData, tooverload the rnf operation. Because NF and WHNF coincide for base types likeintegers and booleans, the default method for rnf is rwhnf. For constructed typesan instance of NFData must be declared specifying how to reduce a value of thattype to normal form. Such an instance relies on its element type being in classNFData. Consider lists and pairs for example.class NFData a wherernf :: Strategy arnf = rwhnfinstance NFData a => NFData [a] wherernf [] = ()rnf (x:xs) = rnf x `seq` rnf xsinstance (NFData a, NFData b) => NFData (a,b) wherernf (x,y) = rnf x `seq` rnf yUsing Strategies A strategy is applied by the using function. The expressionx `using` s is a projection on x, i.e. it is both a retraction (x `using` s is less de-�ned than x) and idempotent ((x `using` s) `using` s = x `using` s). Theusing function is de�ned to have a lower precedence than any other operator.using :: a -> Strategy a -> ausing x s = s x `seq` xNote that the use of seq in the de�nition above allows some control over thetiming of results. For example, the following sequential version of quicksortwill notreturn any part of its result until the entire list is sorted. This could be signi�cantif the sort formed part of a pipeline, for example.quicksortFS [] = []quicksortFS [x] = [x]quicksortFS (x:xs) = losort ++ (x:hisort) `using` rnfwherelosort = quicksortFS [y|y <- xs, y < x]hisort = quicksortFS [y|y <- xs, y >= x]Combining Strategies Because evaluation strategies are just normal higher-orderfunctions, they can be combined using the full power of the language, e.g. passedas parameters or composed using the function composition operator. Strategies aremost commonly composed with seq or par. Many useful strategies are higher-order,for example, seqList is a strategy that sequentially applies a strategy to everyelement of a list. The strategy seqList r0 evaluates just the spine of a list, and

8 Trinder and othersseqList rwhnf evaluates every element of a list to WHNF. There are analogousfunctions for every constructed type.seqList :: Strategy a -> Strategy [a]seqList strat [] = ()seqList strat (x:xs) = strat x `seq` (seqList strat xs)Parallel Strategies A strategy can specify parallelism/sequencing as well as evalu-ation degree. Strategies specifying control-oriented parallelism use par and seq tospecify which subexpressions of a function are to be evaluated in parallel, and inwhat order. Quicksort uses divide-and-conquer control-oriented parallelism, and inthe following version the evaluation degree is speci�ed by rnf. As before, the twosubexpressions, losort and hisort are selected for parallel evaluation:quicksortS (x:xs) = losort ++ (x:hisort) `using` strategywherelosort = quicksortS [y|y <- xs, y < x]hisort = quicksortS [y|y <- xs, y >= x]strategy result = rnf losort `par`rnf hisort `par`rnf resultStrategies specifying data-oriented parallelism must describe the dynamic be-haviour in terms of some data structure. For example parList is similar to seqList,except that it applies the strategy to every element of a list in parallel.parList :: Strategy a -> Strategy [a]parList strat [] = ()parList strat (x:xs) = strat x `par` (parList strat xs)Strategic functions are particularly elegant when their result is a data structurethat describes the parallelism. Parallel map is just such a function:parMap :: Strategy b -> (a -> b) -> [a] -> [b]parMap strat f xs = map f xs `using` parList stratThe strat parameter determines the dynamic behaviour of each element of theresult list, and hence parMap is parametric in some of its dynamic behaviour.Such strategic functions can be viewed as a dual to the algorithmic skeleton ap-proach (Cole, 1988). This relationship is discussed further in Section 6.2.4 Evaluation Strategies for Parallel ParadigmsThis section demonstrates the
exibility of evaluation strategies by showing howthey express some common parallel paradigms. We cover data-oriented, divide-and-conquer, producer-consumer, and pipeline parallelism.

Algorithm + Strategy = Parallelism 94.1 Data-oriented ParallelismIn the data-oriented paradigm, elements of a data structure are evaluated in parallel.Complex database queries are more realistic examples of data-oriented parallelismthan parMap. The basis of one such query is a relation between parts indicating thatone part is made from zero or more others. The task is to list all component partsof a given part, including all the sub-components of those components etc. (Date,1976). Main Sub- QuantityComponent ComponentP1 P2 2P1 P4 4P5 P3 1P5 P6 8P2 P4 3A na��ve function explode lists the components of a single part, main. The fullprogram generates a bill of material relation, as a list of tuples, then explodes asequence of part numbers before printing the number of parts in each explosion.explode parts main = [p | (m,s,q) <- parts, m == main,p <- (s:explode parts s)]doQuery lo hi bomSize = map length explodeListwherebom = generate bomSizeexplodeList = map (explode bom) [lo..hi]The program is inherently data parallel because the explosion of one part is notdependent on the explosion of any other part. Constructing the bill of materialin memory is atypical of a query program: a more realistic program would readit in from disk. For this reason we do not parallelise the construction generate.Once the bill exists, the parts are exploded in parallel. This dynamic behaviour isspeci�ed by adding a strategy to doQuery:doQuery lo hi bomSize = map length explodeList `using` stratwherebom = generate bomSizeexplodeList = map (explode bom) [lo..hi]strat result = (rnf bom) `seq`(parList rnf explodeList)It is easy to modify both algorithm and strategy, although changing the algorithmmay also entail specifying new dynamic behaviour. It is, however, easy to modify

10 Trinder and othersthe strategy without changing the algorithm. For example, to calculate the lengthsin parallel we simply add `seq` parList result to the strategy.4.2 Divide-and-conquer ParallelismDivide-and-conquer is probably the best-known parallel programming paradigm.The problem to be solved is decomposed into smaller problems that are solved inparallel before being recombined to produce the result. Our example is taken froma parallel linear equation solver that we wrote as a realistic medium-scale parallelprogram (Loidl et al., 1995), whose overall structure is described in Section 5.4.Here is the speci�cation of a determinant on a square matrix:� Given: a matrix (A)1�i;j�n� Compute: for some 1 � i � n:P1�j�n(�1)i+jAi;jdet(A0)where A0 = A cancelling row i, and column jsum (l_par `using` parList rnf)wherel_par = map determine1 [jLo..jHi]determine1 j = (if pivot > 0 thensign*pivot*det' `using` strategyDelse0) `using` sPar signwheresign = if (even (j-jLo)) then 1 else -1pivot = (head mat) !! (j-1)mat' = SqMatrixC ((iLo,jLo),(iHi-1,jHi-1))(map (newLine j) (tail mat))det' = determinant mat'strategyD r =parSqMatrix (parList rwhnf) mat' `seq`det' `par`r0 rFor comparison, Appendix A contains sequential and directly parallel versions ofthis function. At �rst sight, it may not be obvious that this is a divide-and-conquerprogram. The crucial observation is that a determinant of a matrix of size n iscomputed in terms of the determinants of n matrices of size n-1.The �rst strategy, parList rnf speci�es that the determinant of each of thematrices of size n-1 should be calculated in parallel. There are two strategies indetermine1. The �rst, sPar sign speci�es that the sign of the determinant shouldbe calculated in parallel with the conditional (sPar is a strategy corresponding topar. i.e. x `par` e = e `using` sPar x). Only if the pivot is non-zero is thesecond strategy, strategyD used. It speci�es that the sub-matrix (mat') is to beconstructed in parallel before its determinant is computed in parallel with the result.4.3 Producer/Consumer ParallelismIn another common paradigm, a process consumes some data structures producedby another process. In a compiler, for example, an optimising phase might consume

Algorithm + Strategy = Parallelism 11
sieveAhead printFig. 3. Producer/Consumer Process Diagramthe parse-tree produced by the parser. The data structure can be thought of as abu�er that the producer �lls and the consumer empties.For simplicity, we will assume that the bu�er is represented by a list, and considerjust two alternatives: a one-place bu�er and an n-place bu�er. There are many otherpossible ways to express producer/consumer parallelism, for example in order toimprove granularity the producer could compute the next n-element \chunk" of thelist rather than just a single value.One-Place Bu�er In order to �ll a one-place bu�er, when the head of the bu�er-list is demanded, the producer should immediately evaluate the second element. Ine�ect the producer speculatively assumes that the next element in the list will beused in the computation. This gives parallel behaviour because, if there is a freeprocessor, a producer-thread can construct the second element, while the consumeris consuming the �rst. If good parallelism is to result, then the time to producean element must be similar to the time to consume it. The second element of thelist acts as a one-element bu�er. The simple sieveAhead function below eagerlyproduces an extra prime number using Eratosthenes' algorithm. It uses a simplestrategy parListNth to evaluate the second element of a list in parallel (sinceHaskell lists are enumerated from 0, the parameter to parListNth is 1 rather than2). The process diagram for producer/consumer parallelism is very simple: a pro-ducing process communicating via the bu�er with the consumer. Figure 3 show thediagram for a program that prints the result of a sieveAhead invocationparListNth :: Int -> Strategy a -> Strategy [a]parListNth n strat xs| null rest = ()| otherwise = strat (head rest) `par` ()whererest = drop n xssieveAhead (p:xs) =p:(sieveAhead [x | x <- xs, x `mod` p /= 0]) `using` parListNth 1 rwhnfn-Place Bu�er To provide an n-place bu�er, the producer must initially evaluaten elements, and whenever the head of the bu�er-list is demanded, it must evaluatethe nth element. In e�ect the producer eagerly �lls an n-element bu�er. Evaluatingthe �rst n elements of a list in parallel is easily speci�ed by parListN, analogousto parListNth. Unfortunately constructing the nth element every time the headis demanded cannot be speci�ed by a strategy that is independent of the result.Instead, the strategy for generating the rest of the result must be built into theresult. We use a function fringeListwhose semantics are the identity on lists, butwhose dynamic behaviour is to spark the nth element when the �rst is demanded.

12 Trinder and others
map (* 2) map fac map fibFig. 4. Pipeline Process DiagramseqListNth is analogous to parListNth. As an example, doExplode is a databasequery function that maps an explode function over a range of elements in a list.The list of explosions acts as a three-element bu�er.parListN :: (Integral b) => b -> Strategy a -> Strategy [a]parListN n strat [] = ()parListN 0 strat xs = ()parListN n strat (x:xs) = strat x `par` (parListN (n-1) strat xs)fringeList :: (Integral a) => a -> Strategy b -> [b] -> [b]fringeList n strat [] = []fringeList n strat (r:rs) = seqListNth n strat rs `par`r:fringeList n strat rsdoExplode lo hi bom =fringeList 3 rnf result `using` parListN 2 rnfwhereresult = map (explode bom) [lo..hi]4.4 PipelinesIn pipelined parallelism a sequence of stream-processing functions are composedtogether, each consuming the stream of values constructed by the previous stageand producing new values for the next stage. The generic pipeline combinatoruses strategies to describe a simple pipeline, where every stage constructs values ofthe same type, and the same strategy is applied to the result of each stage.pipeline :: Strategy a -> a -> [a->a] -> apipeline strat inp [] = inppipeline strat inp (f:fs) =pipeline strat out fs `using` sPar (strat out)whereout = f inplist = pipeline rnf [1..4] [map fib, map fac, map (* 2)]A pipeline process diagram has a node for each stage, and an arc connecting onestage with the next. Typically an arc represents a list or stream of values passingbetween the stages. Figure 4 gives the process diagram for the example above.Several of the large applications described in the next section use more elaboratepipelines where di�erent types of values are passed between stages, and stages mayuse di�erent strategies. For example, the back end in Lolita's top level pipeline isas follows:

Algorithm + Strategy = Parallelism 13back_end inp opts= r8 `using` stratwherer1 = unpackTrees inpr2 = unifySameEvents opts r1r3 = storeCategoriseInformation r2r4 = unifyBySurfaceString r3r5 = addTitleTextrefs r4r6 = traceSemWhole r5r7 = optQueryResponse opts r6r8 = mkWholeTextAnalysis r7strat x = (parPair rwhnf (parList rwhnf)) inp `par`(parPair rwhnf (parList (parPair rwhnf rwhnf))) r1 `par`rnf r2 `par`rnf r3 `par`rnf r4 `par`rnf r5 `par`rnf r6 `par`(parTriple rwhnf (parList rwhnf) rwhnf) r7 `par`()A disadvantage of using strategies like this over long pipelines is that every in-termediate structure must be named (r1..r8). Because pipelines are so commonwe have introduced two special combinators: parameterised sequential and parallelfunction application. The parameter speci�es the strategy that is used on the ar-gument. Therefore, we achieve the separation of algorithm and dynamic behaviourby using strategies only as the second argument to a parameterised function appli-cation.The de�nition of the new combinators is as follows:infixl 6 $||, $|($|), ($||) :: (a -> b) -> Strategy a -> a -> b($|) f s = \ x -> f x `using` \ _ -> s x `seq` ()($||) f s = \ x -> f x `using` \ _ -> s x `par` ()We have also de�ned similar combinators for parameterised function composition.Pipelines can now be expressed more concisely, while retaining textual separationof strategic and algorithmic code.back_end inp opts =mkWholeTextAnalysis $|| parTriple rwhnf (parList rwhnf) rwhnf $optQueryResponse opts $|| rnf $traceSemWhole $|| rnf $addTitleTextrefs $|| rnf $unifyBySurfaceString $|| rnf $storeCategoriseInf $|| rnf $unifySameEvents opts $|| parPair rwhnf (parList (parPair rwhnf rwhnf)) $unpackTrees $|| parPair rwhnf (parList rwhnf) $inp

14 Trinder and others5 Large Parallel Applications5.1 GeneralWe have written a number of medium-scale parallel programs, and are currentlyparalleling a large-scale program, Lolita (60K lines). This section discusses the use ofevaluation strategies in three programs, one divide-and-conquer, one pipelined andanother data-oriented. The methodology we are developing out of our experiencesis also described.To date, parallel programming has been most successful in addressing problemswith a regular structure and large grain parallelism. However, many large scale ap-plications have a number of distinct stages of execution, and good speedups can onlybe obtained if each stage is successfully made parallel. The resulting parallelism ishighly irregular. This makes understanding and controlling the dynamic behaviourof a large program hard. A major motivation for investigating our predominantly-implicit approach is that we believe that it is very hard to gain good speedups forlarge programs with irregular parallelism in languages that require the program-mer to control many aspects of parallelism, e.g. thread creation, placement andsynchronisation, etc.In large applications, evaluation strategies are de�ned in three kinds of mod-ules. Strategies over Prelude types such as lists, tuples and integers are de�ned ina Strategies module. Strategies over application-speci�c types are de�ned in theapplication modules. Currently, strategies over library types are de�ned in privatecopies of the library modules. Language support for strategies which automaticallyderived strategies over constructed types would greatly reduce the amount of codeto be modi�ed and avoid this problem of reproducing libraries.5.2 MethodologyOur emerging methodology for parallelising large non-strict functional programsis outlined below. The approach is top-down, starting with the top level pipeline,and then parallelising successive components of the program. The �rst �ve stagesare machine-independent. Our approach uses several ancillary tools, including timepro�ling (Sansom and Peyton Jones, 1995) and the GranSim simulator (Hammondet al., 1995). Several stages use GranSim, which is fully integrated with the GUMparallel runtime system (Trinder et al., 1996). A crucial property of GranSim is thatit can be parameterised to simulate both real architectures and an idealised machinewith, for example, zero-cost communication and an in�nite number of processors.The stages in our methodology are as follows.1. Sequential implementation. Start with a correct implementation of aninherently-parallel algorithm or algorithms.2. Parallelise Top-level Pipeline.Most non-trivial programs have a numberof stages, e.g. lex, parse and typecheck in a compiler. Pipelining the outputof each stage into the next is very easy to specify, and often gains someparallelism for minimal change.

Algorithm + Strategy = Parallelism 153. Time Pro�le the sequential application to discover the \big eaters", i.e. thecomputationally intensive pipeline stages.4. Parallelise Big Eaters using evaluation strategies. It is sometimes possibleto introduce adequate parallelism without changing the algorithm, otherwisethe algorithm may need to be revised to introduce an appropriate form ofparallelism, e.g. divide-and-conquer or data-parallelism.5. Simulate First. Using an idealised simulator like hbcpp or GranSim elim-inates some of the complexities of a real parallel implementation, like taskmigration, communication times etc. This is a \proving" step: if the programisn't parallel on an idealised machine it won't be on a real machine. A simu-lator is often easier to use, more heavily instrumented, and can be run on aworkstation.6. Simulate Second. GranSim can be parameterised to closely resemble theGUM runtime system for a particular machine, forming a bridge betweenthe idealised and real machines. A major concern at this stage is to improvethread granularity so as to o�set communication and thread-creation costs.7. Real Machine. The GUM runtime system supports some of the GranSimperformance visualisation tools. This seamless integration helps understandreal parallel performance.It is more conventional to start with a sequential program and then move almostimmediately to working on the target parallel machine. This has often proved highlyfrustrating: the development environments on parallel machines are usually muchworse than those available on sequential counterparts, and, although it is crucial toachieve good speedups, detailed performance information is frequently not available.It is also often unclear whether poor performance is due to use of algorithms thatare inherently sequential, or simply artefacts of the communication system or otherdynamic characteristics. 5.3 LolitaThe Lolita natural language engineering system (Morgan et al., 1994) has beendeveloped at Durham University. The team's interest in parallelism is partly as ameans of reducing runtime, and partly also as a means to increase functionalitywithin an acceptable response-time. The overall structure of the program bearssome resemblance to that of a compiler, being formed from the following largestages:� Morphology (combining symbols into tokens; similar to lexical analysis);� Syntactic Parsing (similar to parsing in a compiler);� Normalisation (to bring sentences into some kind of normal form);� Semantic Analysis;� Pragmatic Analysis.Depending on how Lolita is to be used, a �nal additional stage may perform adiscourse analysis, the generation of text (e.g. in a translation system), or it performinference on the text to extract the required information.

16 Trinder and othersOur immediate goal in parallelising this system is to expose su�cient parallelismto fully utilise a 4-processor shared memory machine. A pipeline approach is apromising way to achieve this relatively small degree of parallelism (Figure 5).Each stage listed above is executed by a separate thread, which are linked to forma pipeline. The key step in parallelising the system is to de�ne strategies on thevery complex intermediate data structures (e.g. parse trees) which are used tocommunicate between these stages. This data-oriented approach simpli�es the top-down parallelisation of this very large system, since it is possible to de�ne the partsparts of the data structure that should be evaluated in parallel without consideringthe algorithms that produce the data structures.
Synt. ParsingMorpholgy Semantic An.Normalisation Pragmatic An. Back EndFig. 5. Overall Pipeline Structure of LolitaA critical issue for the Lolita system is avoiding the generation of unnecessarywork. In order to achieve this, Lolita makes heavy use of laziness, for example whenhandling ambiguities in the parsing of natural languages. The overall e�ciency ofthe whole system depends on computing only information about the quality ofalternative parses, and not the parse trees themselves. This avoids the constructionof large super
uous data structures. Consequently, using a strategy that is stricterthan necessary may increase the parallelism in the parsing stage but decrease overallperformance.We are currently at the Simulate First stage of our parallelising methodology. Sofar, the pipeline approach has produced an average parallelism between 2.3 and 2.7.Since Lolita was originally written without any consideration for parallel execution,we are fairly satis�ed with this amount of parallelism. Amdahl's law gives an upperbound for speedup of about 3 if only 10% of the code is inherently sequential!Apart from specifying instances of NFData for intermediate data structures, toachieve this parallelisation it was only necessary to modify one of about threehundred modules in Lolita and three of the thirty six functions in that module.At this stage, we haven't parallelised any of the sub-algorithms, which also containsigni�cant sources of parallelism.To achieve more parallelism we plan to consider two parts of the pipeline.Firstly, both of the �rst two stages (morphology and syntactic parsing) can beapplied to di�erent parts of the text in parallel. So several sentences can be parsedsimultaneously. This creates data-parallelism in the �rst part of the pipeline thatwill be especially e�ective in improving performance for large inputs.Similarly, the semantic and pragmatic analyses can be applied in a data-parallelfashion on di�erent possible parse trees for the same sentence. Such parallelismwould not increase the performance of the system but it might improve the qualityof the result.The analyses also produce information that is put into a `global context' con-taining information about the semantics of the text. This creates an additional

Algorithm + Strategy = Parallelism 17
Morpholgy Synt. Parsing

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

Back End
Text

stream

Parse Forest Parse TreeSGML Tree

Fig. 6. Detailed Structure of Lolitadependence between di�erent instances of the analysis. Lazy evaluation ensuresthat this does not completely sequentialise the analyses, however.Finally, it seems worthwhile to parallelise the rather expensive syntactic parsingstage itself. Figure 6 shows the more detailed structure that results.The code of the top level function wholeTextAnalysis is given in Figure 7. Thisclearly shows how the algorithm is separated from the dynamic behaviour in eachstage.The only changes in the algorithm are1. the use of parMap to describe the data parallelism in the parsing stage; and2. the use of parameterised function applications to describe the overall pipelinestructure.The strategies used in parse2prag are of special interest. The parse forestrawParseForest contains all possible parses of a sentence. The semantic and prag-matic analyses are then applied to a prede�ned number (global) of these parses.The strategy that is applied to the list of these results (parList (parPair ...))demands only the score of each analysis (the �rst element in the triple), and notthe complete parse. This score is used in pickBestAnalysis to decide which of theparses to choose as the result of the whole text analysis.5.4 LinsolvLinsolv is a linear equation solver, and a typical example of a parallel symbolicprogram. It uses the multiple homomorphic images approach which is often used incomputer algebra algorithms (Lauer, 1982): �rst the elements of the input matrixand vector are mapped from Z into several images Zp (where each p is a primenumber); then the system is solved in each of these images, and �nally the overallresult is constructed by combining these solutions using the Chinese RemainderAlgorithm. This divide-and-conquer structure is depicted by Figure 8.

18 Trinder and otherswholeTextAnalysis opts inp global =resultwhere-- (1) Morphology(g2, sgml) = prepareSGML inp globalsentences = selectEntitiesToAnalyse global sgml-- (2) ParsingrawParseForest = parMap rnf (heuristic_parse global) sentences-- (3)-(5) Analysisanlys = stateMap_TimeOut (parse2prag opts) rawParseForest global2-- (6) Back Endresult = back_end anlys opts-- Pick the parse tree with the best score from the results of-- the semantic and pragmatic analysis. This is done speculatively!parse2prag opts parse_forest global =pickBestAnalysis global $|| evalScores $take (getParsesToAnalyse global) $map analyse parse_forestwhereanalyse pt = mergePragSentences opts $ evalAnalysisevalScores = parList (parPair rwhnf (parTriple rnf rwhnf rwhnf))evalAnalysis = stateMap_TimeOut analyseSemPrag pt global-- Pipeline the semantic and pragmatic analysesanalyseSemPrag parse global =prag_transform $|| rnf $pragm $|| rnf $sem_transform $|| rnf $sem (g,[]) $|| rnf $addTextrefs global $| rwhnf $subtrTrace global parseback_end inp opts =mkWholeTextAnalysis $|| parTriple rwhnf (parList rwhnf) rwhnf $optQueryResponse opts $|| rnf $traceSemWhole $|| rnf $addTitleTextrefs $|| rnf $unifyBySurfaceString $|| rnf $storeCategoriseInf $|| rnf $unifySameEvents opts $|| parPair rwhnf (parList (parPair rwhnf rwhnf)) $unpackTrees $|| parPair rwhnf (parList rwhnf) $inp Fig. 7. The Top Level Function of the Lolita Application

Algorithm + Strategy = Parallelism 19Z Z..�� �
CRAZst
�������) PPPPPPPq������)? ?PPPPPPq ?

ba pkp1 ststZp1 ZpkZp1Zp1 ZpkZpkap1 bp1 apk bpkxp1 xpkx
Forward MappingCramer's RuleLiftingFig. 8. Structure of the LinSolv algorithmStrategic code for the matrix determinant part of the solver is given in Section 4.2(the whole algorithm is discussed in (Loidl et al., 1995)). Precise control of thedynamic behaviour is required at two critical places in the program. This behaviourcan be described by combining generic strategies.� The algorithm is described in terms of an in�nite list of all solutions in thehomomorphic images. An initial segment of the list is computed in paral-lel, based on an educated guess as to how many homomorphic solutions areneeded. Depending on the solutions in the initial segment, a small number ofadditional solutions are then computed.� The algorithm only computes the solutions that can actually be used in thecombination step. This is achieved by initially only evaluating the �rst twoelements of the result list, then checking if the result is useful and if so com-puting the remainder.5.5 Accident BlackspotsGiven a set of 7500 police accident records, the task is to discover any accidentblackspots, i.e. places where a number of accidents occurred. Several criteria areused to determine whether two accident reports are for the same location. Twoaccidents may be at the same location if they occurred at the same junction number,at the same pair of roads, at the same grid reference, or within a small radius of

20 Trinder and otherseach other. The problem amounts to partitioning a set into equivalence classesunder several equivalence relations.The GpH implementation (Trinder et al., 1996) has three major phases forming atop-level pipeline. These are: reading and parsing the �le of accidents; constructing acombined sameSite relation and indices over the accident and sameSite relations;and forming the partition. Little parallelism is gained from this top-level pipeline(a speedup of 1.2) because the �rst value cannot be read from the index-trees untilall of the tree has been constructed.So far, the �rst and last pipeline stages have been adequately parallelised for our4-processor target machine. The accidents are read in parallel from n separate �lesinto a list of lists of accidents:nFiles = 4main = readn nFiles []readn n cts | n > 0 =readFile ("/path/accident"++show n)(\ioerror -> complainAndDie)(\ctsn -> readn (n-1) (ctsn:cts))readn 0 cts =let accidents = map parse8Tuple cts `using` strategywhere strategy = parList rnfThe partition is parallelised by speculatively computing the equivalence classes ofn (20) accidents in parallel. If two or more of the accidents are in the same class,some work is duplicated. The chance of wasting work is small as the mean classsize is 4.4, and there are approximately 7500 accidents. Additional parallelism isobtained by removing members of the equivalence classes from the accident set inparallel with determining the equivalence classes (rnf rest). The speculation isbenign because the amount of work performed by a speculative task is small, andno other threads are sparked.mkPartition :: Set Accident -> IxRelation2 Accident Accident ->Set (Set Accident)mkPartition accs ixRel =case (length aList) of0 -> emptySetn -> (mkSet matchList `union` mkPartition rest ixRel)`using` strategyotherwise -> (singletonSet matches) `union`mkPartition (accs `minusSet` matches) ixRelwhereaList = take n (setToList accs)matches = mkSet (reachable [chose accs] ixRel)matchList = [mkSet (reachable [a] ixRel) | a <- aList]rest = minusManySet accs matchListstrategy result = parList rnf matchList `par`rnf rest `par`r0 result

Algorithm + Strategy = Parallelism 21The middle stage which constructs the indices is harder to implement in parallel.The problem is that the indices are trees, and the top-level pipeline is blocked be-cause the �rst element (root) of an index-tree cannot be consumed by the followingstage until all of the tree has been constructed. Our current solution splits the indexinto a sequence of trees, reducing the bottleneck.6 Related WorkThere have been many di�erent proposals for ways to specify parallelism in func-tional languages. Space precludes describing every proposal in detail, instead thissection concentrates on the approaches that are most closely related to evaluationstrategies, covering purely-implicit approaches, algorithmic skeletons, coordinationlanguages, language extensions and explicit approaches. Some non-functional ap-proaches are also covered. The approach that is most closely related to our work isthat using �rst-class schedules (Mirani and Hudak, 1995), described in Section 6.4.6.1 Purely Implicit ApproachesPurely implicit approaches include data
ow languages like Id (Arvind et al., 1989)or pH (Nikhil et al., 1993), which is based on Haskell, and evaluation transform-ers (Burn, 1987). Data parallel languages such as NESL (Blelloch et al., 1993)can also be seen as implicitly parallelising certain bulk data structures. All of theimplicit approaches have some �xed underlying model of parallelism. Because eval-uation strategies allow explicit control of some crucial aspects of parallelism, theprogrammer can describe behaviours very di�erent from the �xed model, e.g. spec-ulatively evaluating some expressions.Evaluation Transformers Evaluation transformers exploit the results of strictnessanalysis on structured data types, providing parallelism control mechanisms thatare tailored to individual strictness properties (Burn, 1987). Each evaluation trans-former reduces its argument to the extent that is allowed by the available strictnessinformation. The appropriate transformer is selected at compile time, giving e�-cient execution at the cost of some increase in code-size (Burn, 1991; Finne andBurn, 1993).If there are only a small number of possible transformers (as for lists using thestandard 4-point strictness domain { see Table 1), repeated work can be avoidedby recording the extent to which a data structure has already been evaluated, andthen using a specialised transformer on the unevaluated, but needed part of thatstructure.One problem with evaluation transformers is that the more sophisticated thestrictness analysis, and the more types they are de�ned on, the greater is the num-ber of evaluation transformers that are needed, and the greater is the code-bloat.Specialised transformers must be de�ned in the compiler for each type, complicatingthe provision of transformers over programmer-de�ned types.In contrast, since the programmer has control over which strategy is to be used in

22 Trinder and othersTransf. Meaning StrategyE0 No reduction r0EWHNF Reduce to WHNF rwhnfETS Reduce spine of a list seqList r0EHTS Reduce each list element to WHNF seqList rwhnfTable 1. The Relationship of Evaluation Strategies and Transformersa particular context, and since those strategies are programmable rather than �xed,strategies are strictly more general than evaluation transformers. In particular, aprogrammer can elect to use a strategy that is more strict than the function inorder to obtain good performance.It is possible that in the future, strictness analysis could drive the choice of anappropriate evaluation strategy in at least some circumstances. Indeed we are awareof a relationship between strictness domains and the structure of certain strategiesthat implement those domains. Use of strictness information in this way wouldmake strategies more implicit than they are at present.Data Parallelism It has been argued that support should be provided for both taskand data parallelism (Subhlok et al., 1993). We have already shown how some kindsof data-oriented parallelism can be expressed using evaluation strategies. Trulydata parallel approaches, however, such as NESL (Blelloch et al., 1993; Blelloch,1996) treat higher-order functions such as scans and folds, or compound expressionssuch as list- and array-comprehensions, as single \atomic" operations over entirestructures such as lists or arrays.In e�ect, functions are applied to each element of the data simultaneously, ratherthan data being supplied to the functions. This approach is more suitable thancontrol parallelism for massively parallel machines, such as the CM-5. Certain eval-uation strategies can therefore be seen as control parallel implementations of dataparallel constructs, targetted more at distributed-memory or shared-memory ma-chines than at massively parallel architectures.Data
ow Many recent data
ow languages are functional, e.g. Id (Arvind et al.,1989), indeed pH (Nikhil et al., 1993) is a variant of Haskell. These languages typ-ically use some evaluation scheme, e.g. lenient evaluation, to introduce parallelismimplicitly. The evaluation scheme generates massive amounts of �ne-grained par-allelism, which is often too small to be utilised e�ciently by conventional threadtechnology. The overheads of small grain threads have been addressed by usinghardware support. The explicit control provided by evaluation strategies help theprogrammer to create larger grain threads.

Algorithm + Strategy = Parallelism 236.2 Algorithmic SkeletonsAs de�ned by Cole (Cole, 1988), algorithmic skeletons take the approach that imple-menting good dynamic behaviour on a machine is hard. A skeleton is intended to bean e�cient implementation of a commonly encountered parallel behaviour on somespeci�c machine. In e�ect a skeleton is a higher-order function that combines (se-quential) sub-programs to construct the parallel application. The most commonlyencountered skeletons are pipelines and variants of the common list-processing func-tions map, scan and fold. A general treatment has been provided by Rabhi, whohas related algorithmic skeletons to a number of parallel paradigms (Rabhi, 1993).Skeletons and Strategies Since a skeleton is simply a parallel higher-order function,it is straightforward to write skeletons using strategies. Both the parMap functionin Section 3.1 and the pipeline function in Section 4.4 are actually skeletons. Amore elaborate divide-and-conquer skeleton, based on a Concurrent Clean func-tion (N�ocker et al., 1991) can be written and used as follows.divConq :: (a -> b) -> a -> (a -> Bool) ->(b -> b -> b) -> (a -> Bool) -> (a -> (a,a)) -> bdivConq f arg threshold conquer divisible divide| not (divisible arg) = f arg| otherwise = conquer left right `using` strategywhere(lt,rt) = divide argleft = divConq f lt threshold conquer divisible divideright = divConq f rt threshold conquer divisible dividestrategy = \ _ -> if threshold argthen (seqPair rwhnf rwhnf) $ (left,right)else (parPair rwhnf rwhnf) $ (left,right)It is also possible to use strategies in the opposite way to skeletonsy. A skeletonparameterises the control function over the algorithm, i.e., it takes sequential sub-programs as arguments. However, a function using strategies may instead specifythe algorithm and parameterise the control information, i.e. take a strategy as aparameter. In fact several of the functions we have already described take a strategyas a parameter, including parList, parMap, and pipeline.Imperative Skeletons The algorithmic skeleton approach clearly �ts functional lan-guages very well, and indeed much work has been done in a functional context.However, it is also possible to combine skeletons with imperative approaches.For example, the Skil compiler integrates algorithmic skeletons into a subset ofC (C-). Rather than using closures to represent work, as we have done for ourpurely functional setting, the Skil compiler (Botorog and Kuchen, 1996) translatespolymorphic higher-order functions into monomorphic �rst-order functions. They such functions are not a true dual, because skeletons are lower level.

24 Trinder and othersperformance of the resulting program is close to that of a hand-crafted C- applica-tion. While the Skil instantiation procedure is not fully general, it may be possibleto adopt similar techniques when compiling evaluation strategies, in order to reduceoverheads. 6.3 Coordination LanguagesCoordination languages build parallel programs from two components: the com-putation model and the coordination model (Gelernter and Carriero, 1992). Likeevaluation strategies, programs have both an algorithmic and a behavioural aspect.It is not necessary for the two computation models to be the same paradigm, andin fact the computation model is often imperative, while the coordination languagemay be more declarative in nature. Programs developed in this style have a two-tier structure, with sequential processes developed using the computation languagecomposed using the coordination language.The best known coordination languages are PCN (Foster and Taylor, 1994) andLinda (Gelernter and Carriero, 1992). Both of these adopt a much lower-level ap-proach than evaluation strategies, however. It is, of course, possible to introducedeadlock with either of these systems.PCN composes tasks by connecting pairs of communication ports, using threeprimitive composition operators: sequential composition, parallel composition andchoice composition. It is possible to construct more sophisticated parallel structuressuch as divide-and-conquer, and these can be combined into libraries of reusabletemplates.Linda is built on a logically shared-memory structure. Objects (or tuples) areheld in a shared area: the Linda tuple space. Linda processes manipulate theseobjects, passing values to the sequential computation language. In the most commonLinda binding, C-Linda, this is C. Sequential evaluation is therefore performed usingnormal C functions.SCL Darlington et al. integrate the coordination language approach with the skele-ton approach, providing a system for composing skeletons, SCL (Darlington et al.,1995). SCL is basically a data-parallel language, with distributed arrays used tocapture not only the initial data distribution, but also subsequent dynamic redis-tributions.SCL introduces three kinds of skeleton: con�guration, elementary and computa-tional skeletons. Con�guration skeletons specify data distribution characteristics,elementary skeletons capture the basic data parallel operations as the familiarhigher-order functions map, fold, scan etc. Finally, computational skeletons addcontrol parallel structures such as farms, SPMD and iteration. It is possible to writehigher-order operations to transform con�gurations as well as manipulate compu-tational structures etc. An example taken from Darlington et al., but rewritten inHaskell-style, is the partition function, which partitions a (sequential) array intoa parallel array of p sequential subarrays.

Algorithm + Strategy = Parallelism 25partition :: Partition_pattern -> Array Index a ->ParArray Index (Array Index a)partition (Row_block p) a = mkParArray [ii := b ii | ii <- [1..p]]where b l = array bounds [(i,j) := a ! (i+(ii-1)*l/p, j)| i <- [1..l/p], j <- [1..m]]bounds = ((1,l/p), (1,m))A similar integration is provided by the P3L language (Danelutto et al., 1991),which provides a set of skeletons for common classes of algorithm.Control Abstraction Another approach which has certain parallels with evaluationstrategies has been described by Crowl and Leblanc (Crowl and Leblanc, 1994),who work with explicitly parallel imperative programs (including explicit synchro-nisation and communication, as well as explicit task creation).Like evaluation strategies, the control abstraction approach also separates par-allel control from the algorithm. Each control abstraction comprises three parts: aprototype specifying the types and names of the parameters to the abstraction; aset of control dependencies that must be satis�ed by all legal implementations ofthe control abstraction; and one or more implementations.Each implementation is e�ectively a higher-order function, parameterised on oneor more closures representing units of work that could be performed in parallel.These closures are invoked explicitly within the control abstraction. Implementa-tions can use normal language primitives or other control abstractions.In our purely functional context, Crowl and Leblanc's control dependencies cor-respond precisely to the evaluation degree of a strategy. Their requirement thatimplementations conform to the stated control dependencies is thus equivalent inour setting to requiring that strictness is preserved in any source-to-source transfor-mation involving an evaluation strategy. This is, of course, a standard requirementfor any transformation in a non-strict functional language.Compared with the work described here, that on control abstractions is muchlower level, relying on a meta-language to capture the essential notions of closureand control dependency that can be directly encoded in our GpH-based system.We also avoid the complications caused by explicit encoding of synchronisation andcommunication, though perhaps at some cost in e�ciency.Crowl and Leblanc have applied the technique in a prototype parallelising com-piler. They report good performance results compared with hand-coded parallel C,though certain optimisations must be applied by hand. This lends con�dence toour belief that evaluation strategies could also be applied to imperative parallelprograms.Finally, there is a clear relationship between control abstraction and skeleton-based approaches. In fact, control abstractions could be seen as an e�cient imple-mentation technique for algorithmic skeletons.

26 Trinder and others6.4 Parallel Language ExtensionsRather than providing completely separate languages for coordination and compu-tation, several researchers have instead extended a functional language with a small,but distinct, process control language. In its simplest form (as with GpH), this canbe simply a set of annotations that specify process creation etc. More sophisticatedsystems, such as Caliban (Kelly, 1989), or �rst-class schedules (Mirani and Hudak,1995) support normal functional expressions as part of the process control language.Annotations Several languages have been de�ned to use parallel annotations. De-pending on the approach taken, these annotations may be either hints that theruntime system can ignore, or directives that it must obey. In addition to speci-fying the parallelism and evaluation degree of the parallel program (the what andhow), as for evaluation strategies, annotation-based approaches often also permitexplicit placement annotations (the where).An early annotation approach that is similar to that used in GpH was that ofBurton (Burton, 1984), who de�ned three annotations to control the reduction orderof function arguments: strict, lazy and parallel. In his thesis (Hughes, 1983), Hughesextends this set with a second strict annotation (qes), that reverses the conventionalevaluation order of function and argument, evaluating the function body beforethe argument. Clearly all these annotations can be expressed as straightforwardevaluation strategies, or even directly in GpH.These simple beginnings have led to the construction of quite elaborate annota-tion schemes. One particularly rich set of annotations was de�ned for the Hope+implementation on ICL's Flagship machine (Glynn et al., 1988; Kewley and Glynn,1989). This covered behavioural aspects such as data and process placement, aswell as simple partitioning and sequencing. As a compromise between simplicityand expressibility, however, we will describe the well-known set of annotations thathave been provided for Concurrent Clean (N�ocker et al., 1991).The basic Concurrent Clean annotation is e {P} f args, which sparks a task toevaluate f args to WHNF on some remote processor and continues execution ofe locally. Before the task is exported its arguments, args, are reduced to NF. Theequivalent strategy is rnf args `seq` (rwhnf (f args) `par` e).The other Concurrent Clean annotations di�er from the {P} annotation in eitherthe degree of evaluation or the placement of the parallel task. Since GpH delegatestask placement to the runtime system, there is no direct strategic equivalent to theannotations that perform explicit placement.Other important annotations are:� e {I} f args interleaves execution of the two tasks on the local processor.� e {P AT location} f args executes the new task on the processor speci�edby location.� e {Par} f args evaluates f args to NF rather than WHNF. The equivalentstrategy is rnf args `seq` (rnf (f args) `par` e).� e {Self} f args is the interleaved version of {Par}.As with evaluation strategies, Concurrent Clean annotations cleanly separate

Algorithm + Strategy = Parallelism 27dynamic behaviour and algorithm. However, because there is no language for com-posing annotations, the more sophisticated behaviours that can be captured bycomposing strategies cannot be described using Concurrent Cleanannotations. Thisis, in fact, a general problem with the annotation approach.Caliban Caliban (Kelly, 1989) provides a separation of algorithm and parallelismthat is similar to that used for evaluation strategies. The moreover construct is usedto describe the parallel control component of a program, using higher-order func-tions to structure the process network. Unlike evaluation strategies, the moreoverclause inhabits a distinct value space from the algorithm { in fact one which com-prises essentially only values that can be resolved at compile-time to form a staticwiring system. Caliban does not support dynamic process networks, or controlstrategies. A clean separation between algorithm and control is achieved by namingprocesses. These processes are the only values which can be manipulated by themoreover clause. This corresponds to the use of closures to capture computationsin the evaluation strategy model.For example, the following function de�nes a pipeline. The � syntax is used tocreate an anonymous process which simply applies the function it labels to someargument. arc indicates a wiring connection between two processes. chain createsa chain of wiring connections between elements of a list. The result of the pipelinefunction for a concrete list of functions and some argument is thus the compositionof all the functions in turn to the initial value. Moreover, each function applicationis created as a separate process.pipeline fs x = resultwhere result = (foldr (.) id fs) xmoreover (chain arc (map (�) fs))/\ (arc �(last fs) x)/\ (arc �(head fs) result)Para-Functional Programming Para-functional programming (Hudak, 1986; Hu-dak, 1988; Hudak, 1991) extends functional programming with explicit parallelscheduling control clauses, which can be used to express quite sophisticated place-ment and evaluation schemes. These control clauses e�ectively form a separatelanguage for process control. For ease of comparison with evaluation strategies, wefollow Hudak's syntax for para-functional programming in Haskell (Hudak, 1991).Hudak distinguishes two kinds of control construct: schedules are used to expresssequential or parallel behaviours; while mapped expressions are used to specify pro-cess placements. These two notions are expressed by the sched and on constructs,respectively, which are attached directly to expressions.Schedules In order to use functional expressions in schedules, Hudak introduceslabelled expressions: l@e labels expression e with label l (this syntax is entirelyequivalent to a let expression.There are three primitive schedules: Dlab is the demand for the labelled expressionlab; ^lab represents the start of evaluation for lab; and lab^ represents the end of

28 Trinder and othersevaluation for lab. Whereas a value may be demanded many times, it can only beevaluated once. Schedules can be combined using either sequential composition (.)or parallel composition (|). Since it is such a common case, the schedule lab can beused as a shorthand for Dlab.lab^. Schedules execute in parallel with the expressionto which they are attached.So, for example,(l@e0 m@e1 n@e2) sched l^ . (Dm|Dn)requires e0 to complete evaluation before either m or n are demanded.Evaluating schedules in parallel is one major di�erence from the evaluation strat-egy approach, where all evaluation is done under control of the strategy. A secondmajor di�erence is that schedules are not normal functional values, and hence arenot under control of the type system.Mapped Expressions The second kind of para-functional construct is used to specifystatic or dynamic process placement. The expression exp on pid speci�es that exp isto be executed on the processor identi�ed by an integer pid. There is a special valueself, which indicates the processor id of the current processor, and libraries can beconstructed to build up virtual topologies such as meshes, trees etc. For example,sort (QT q1 q2 q3 q4) =merge (sort q1 on (left self))(sort q2 on (right self))(sort q3 on (up self))(sort q4 on (down self))would sort each sub-quadtree on a di�erent neighbouring processor, and mergethe results on the current processor. Because GpH deliberately doesn't addressthe issue of thread placement, there is no equivalent to mapped expressions inevaluation strategies.First-Class Schedules First-Class schedules (Mirani and Hudak, 1995) combinepara-functional programming with a monadic approach. Where para-functionalschedules and mapped expressions are separate language constructs, �rst-classschedules are fully integrated into Haskell. This integration allows schedules tobe manipulated as normal Haskell monadic values.The primitive schedule constructs and combining forms are similar to those pro-vided by para-functional programming. The schedule d e demands the value ofexpression e, returning immediately, while r e suspends the current schedule untile has been evaluated. Both these constructs have type a -> OS Sched. Similarly,both the sequential and parallel composition operations have type OS Sched ->OS Sched -> OS Sched. The monadic type OS is used to indicate that schedulesmay interact in a side-e�ecting way with the operating system. As we will see, thiscauses loss of referential transparency in only one respect.Rather than using a schedule construct, Mirani and Hudak instead provide a func-tion sched, whose type is sched :: a -> OS Sched -> a, and which is equivalent

Algorithm + Strategy = Parallelism 29to our using function. The sched function takes an expression e and a schedules, and executes the schedule. If the schedule terminates, then the value of e isreturned, otherwise the value of the sched application is ?.In evaluation strategy terms, both the d and r schedules can be replaced by callsto rwhnf without a�ecting the semantics of those para-functional programs thatterminate. Unlike evaluation strategies, however, with �rst-class schedules it is alsopossible to suspend on a value without ever evaluating it. Thus para-functionalschedules can give rise to deadlock in situations which cannot be expressed withevaluation strategies. A trivial example might be:f x y = (x,y) `sched` r x . d y | r y . d xCompared with evaluation strategies, it is not possible to take as much advantageof the type system: all schedules have type OS Sched rather than being parame-terised on the type of the value(s) they are scheduling. Clearly there is also a loss ofreferential transparency, since expressions involving sched may sometimes evaluateto ?, and other times to a non-? value. If the program terminates (yields a non-?value), however, it will always yield the same value.6.5 Fully-Explicit ApproachesMore explicit approaches usually work at the lowest level of parallel control, pro-viding sets of basic parallelism primitives that could then be exploited to buildmore complex structures such as evaluation strategies. The approach is typi�ed byMultiLisp (Halstead, 1985) or Mul-T (Kranz et al., 1989) which provide explicitfutures as the basic parallel control mechanism. Futures aresimilar to GpH pars.At an even more explicit level, languages such as CML (Reppy, 1991) also requirecommunication and synchronisation to be speci�ed. Again, these constructs can beused to build a higher-level, evaluation strategy approach (closures and laziness canbe modelled using function application or conditionals), although to our knowledge,there has been no attempt yet to implement such an approach in this framework.At a slightly higher level, Jones and Hudak have worked on commutative Mon-ads (Jones and Hudak, 1993), which allow operations such as process creation(called fork) to be captured within a standard state-transforming monad. Whilethis approach provides the essential building blocks which would be needed to sup-port evaluation strategies, it has the disadvantage of raising all parallel operationsto the monad level, thus preventing the clean separation of algorithm and behaviourthat is observed with either evaluation strategies or �rst-class schedules.7 Conclusion7.1 SummaryThis paper has introduced evaluation strategies, a new mechanism for controllingthe parallel evaluation of non-strict functional languages. We have shown how lazyevaluation can be exploited to de�ne evaluation strategies in a way that cleanly

30 Trinder and othersseparates algorithmic and behavioural concerns. As we have demonstrated, the re-sult is a very general, and expressive system: many common parallel programmingparadigms can be captured. Finally, we have also outlined the use of strategies inthree large parallel applications, noting how they facilitate the top-down paralleli-sation of existing code. 7.2 DiscussionRequired Language Support In describing evaluation strategies, we have exploitedseveral aspects of the Haskell language design. Some of these are essential, whereasothers may perhaps be modelled using other mechanisms. For example, some sup-port for higher-order functions is clearly needed: strategies are themselves higher-order functions, and may take functional arguments.Lazy evaluation of some form is clearly essential since it allows us to postpone tothe strategy the speci�cation of which bindings, or data-structure components, areevaluated and in what order. Operationally, laziness avoids the recomputation ofvalues referred to in both the algorithmic code and the strategy. Although we havenot yet studied this in detail, the work on control abstraction by Crowl and Leblanc,plus other work referred to above, does suggest that enough of the characteristicsof lazy evaluation could be captured in an imperative language to allow the use ofevaluation strategies in a wider context than that we have considered.In de�ning evaluation strategies, we have taken advantage of Haskell's type classoverloading to de�ne general evaluation-degree strategies, such as rnf. If general ad-hoc overloading is not available, then a number of standard alternative approachescould be taken, including:� de�ne a set of standard polymorphic evaluation-degree operations;� require evaluation-degree operations to be monomorphic.In either case, support can be provided as functions or language constructs. Nei-ther approach is as desirable as that taken here, since they limit user
exibility inthe �rst case, or require code duplication in the second.Additional Control Issues Evaluation strategies have been used to specify someaspects of dynamic behaviour that are not described here. One such aspect is con-trol of thread granularity. While it is not possible to exploit load information, forexample, in a referentially transparent fashion, simple thresholding techniques cansafely be employed. In quicksort, for example, if the sublists that are to be sortedare su�ciently small they can be evaluated sequentially rather than subdivided forparallel execution. Such tests are easily incorporated into an evaluation strategy,which consquently avoids cluttering the algorithmic code.One parallel programming paradigm that we have not expressed here is branch-and-bound parallelism. This cannot be expressed functionally, however, withoutusing semantic non-determinism of some kind. This is not available in Haskell,though languages such as Sisal (Feo et al., 1995) do provide non-determinism forprecisely such a purpose.

Algorithm + Strategy = Parallelism 31Abuse of Strategies Like most powerful language constructs, evaluation strategiescan be abused. If a strategy has an evaluation degree greater than the strictness ofthe function it controls, it may change the termination properties of the program(note that unlike �rst-class schedules, however, this is still de�ned by the normallanguage semantics). Similarly it is easy to construct strategies with undesirableparallelism, e.g. a strategy that creates an unbounded number of threads. Finally,strategies sometimes require additional runtime traversals of a data structure. Inpathological cases, e.g. when accumulating parameters are involved, care must betaken to avoid multiple traversals.7.3 Future WorkThe groups at Glasgow and Durham will continue to use evaluation strategies towrite large parallel programs, and we hope to encourage others to use them too.Initial performance measurements show that strategic code is as e�cient as codewith ad hoc parallelism and forcing functions, but more measurements are neededto con�rm that this is true in general.A framework for reasoning about strategic functions is under development. Prov-ing that two strategic functions are equivalent entails not only proving that theycompute the same value, but also that they have the same evaluation degree andparallelism/sequencing. The evaluation-degree of a strategic function can be deter-mined adding laws for par and seq to existing strictness analysis machinery, e.g.Hughes and Wadler's projection-based analysis (Wadler and Hughes, 1987). As anoperational aspect, parallelism/sequencing are harder to reason about. At presentwe have a set of laws, e.g. both par and seq are idempotent, but are uncertain ofthe best framework for proving them. One possible starting point is to use partiallyorder multisets to provide a theoretical basis for de�ning evaluation order (Hudakand Anderson, 1987).Some support for evaluation strategies could be incorporated into the language.If the compiler was able to automatically derive rnf from a type de�nition, thework involved in parallelising a large application would be dramatically reduced,and the replication of libraries could be avoided. Some form of tagging of closuresin the runtime system could reduce the execution overhead of strategies: a datastructure need not be traversed by a strategy if its evaluation degree is already atleast as great as the strategies.We would like to investigate strategies for strict parallel languages. Many strictfunctional languages provide a mechanism for postponing evaluation, e.g. delayand force functions. The question is whether cost of introducing explicit lazinessoutweighs the bene�ts gained by using strategies.Our long term goal is to support more implicit parallelism. Strategies provide auseful step towards this goal. We are learning a great deal by explicitly controllingdynamic behaviour, and hope to learn su�cient to automatically generate strategieswith good dynamic behaviour for a large class of programs. One promising approachis to use strictness analysis to indicate when it is safe to evaluate an expressionin parallel, and granularity analysis to indicate when it is worthwhile. It may be

32 Trinder and otherspossible to use a combined implicit/explicit approach, i.e. most of a programmay beadequately parallelised by a compiler, but the programmer may have to parallelisea small number of crucial components.ReferencesArvind, Nikhil, R.S., and Pingali, K.K., \I-Structures - Data Structures For Parallel Com-puting", TOPLAS 11(4), (1989), pp. 598{632.Blelloch, G.E., Chatterjee, S., Hardwick, J.C., Spielstein, J., and Zagha, M., \Implemen-tation of a Portable Nested Data-Parallel Language", Proc. Fourth ACM Conf. onPrinciples & Practice of Parallel Programming (PPoPP), San Diego, CA, May 19-22,(1993), pp. 102{111.Blelloch, G.E., \Programming Parallel Algorithms", CACM, 39(3) (1996), pp. 85{97.Botorog, G.M., and Kuchen, H., \Skil: An Imperative Language with Algorithmic Skele-tons for E�cient Distributed Computation", Proc. 5th. IEEE Intl. Symposium on HighPerformance Distributed Computing, Syracuse, NY, August 6-9, (1996), pp. 253{252.Burn, G.L., Abstract Interpretation and the Parallel Evaluation of Functional Languages,PhD Thesis, Imperial College London, (1987).Burn, G.L., \Implementing the Evaluation Transformer Model of Reduction on ParallelMachines", J. Functional Prog., 1(3), (1991), pp. 329{366.Burton, F.W., \Annotations to Control Parallelism and Reduction Order in the Dis-tributed Evaluation of Functional Programs", ACM TOPLAS, 6(2), April (1984),pp. 159{174.M.I. Cole, Algorithmic Skeletons, Pitman/MIT Press (1988).Crowl, L.A, and Leblanc, T.J., \Parallel Programming with Control Abstraction", ACMTOPLAS, 16(3), (1994), pp. 524{576.Danelutto, M., Di Meglio, R., Orlando, S., Pelagatti, S., and Vanneschi, M., \The P3LLanguage: An Introduction", Technical Report HPL-PSC-91-29, Hewlett-Packard Lab-oratories, Pisa Science Centre, December, (1991).Darlington, J., Guo, Y., To, H.W., and Yang, J., \Parallel Skeletons for Structured Com-position", Proc. Fifth ACM Conf. on Principles & Practice of Parallel Programming(PPoPP), Santa Barbara, CA, July 19-21, (1995), pp. 19{28.Date, C.J., An Introduction to Database Systems, 4th Edition, Addison Wesley, (1976).Feo, J., Miller, P., Skedziewlewski, S., Denton, S., and Soloman, C., \Sisal 90", Proc.HPFC '95, Denver, CO, April 9-11, (1995), pp. 35{47.Finne, S.O., and Burn, G.L., \Assessing the Evaluation Transformer Model of Reductionon the Spineless G-Machine", Proc. FPCA '93, Copenhagen, (1993), pp. 331{340.Gelernter, D., and Carriero, N., \Coordination Languages and Their Signi�cance", CACM,32(2), February, (1992), pp. 97{107.Flanagan, C., and Nikhil, R.S., \pHluid: The Design of a Parallel Functional LanguageImplementation", Proc. ICFP '96, Philadelphia, Penn., May 24-26, (1996), pp. 169{179.Foster, I., and Taylor, S., \A Compiler Approach to Scalable Concurrent-Program Design",ACM TOPLAS, 16(3), (1994), pp. 577{604.Glynn, K., Kewley, J.M., Watson, P., and While, L., \Annotations for Hope+", TechnicalReport IC/FPR/PROG/1.1.1/5, Imperial College, London, (1988).Halstead, R., \MultiLisp: A Language for Concurrent Symbolic Computation", ACMTOPLAS, 7(4), (1985), pp. 501{538.Hammond, K., Loidl, H.-W., and Partridge, A.S., \Visualising Granularity in ParallelPrograms: A Graphical Winnowing System for Haskell", Proc. HPFC'95 | High Per-formance Functional Computing, Denver, CO, April 9-11, (1995), pp. 208{221.

Algorithm + Strategy = Parallelism 33Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall (1985).Hudak, P., \Para-Functional Programming", IEEE Computer, 19(8), (1986), pp. 60{71.Hudak, P., \Exploring Para-Functional Programming: Separating the what from the how",IEEE Software, 5(1), (1988), pp. 54{61.Hudak, P., \Para-Functional Programming in Haskell", In Parallel Functional Languagesand Computing, ACM Press (New York) and Addison-Wesley (Reading, MA), (1991),pp. 159{196.Hudak, P., and Anderson, S., \Pomset Interpretations of Parallel Functional Languages",Proc. FPCA '87, Springer-Verlag LNCS 274, September (1987), pp. 234{256.Hughes, R.J.M., The Design and Implementation of Programming Languages, DPhil The-sis, Oxford University, (1983).Jones M.P., and Hudak, P., \Implicit and Explicit Parallel Programming in Haskell",Research Report YALEU/DCS/RR-982, University of Yale, August 13, (1993).Kelly, P.H.J., Functional Programming for Loosely-Coupled Multiprocessors, Pitman/MITPress, (1989).Kewley, J.M., and Glynn, K., \Evaluation Annotations for Hope+", Glasgow Workshopon Functional Programming, Fraserburgh, Scotland, Springer-Verlag WICS, (1989),pp. 329{337.Kranz, D., Halstead, R., and Mohr, E., \Mul-T: A High-Performance Parallel Lisp", Proc.PLDI '89, Portland, OR, June, (1989), pp. 81{90.M. Lauer, \Computing by Homomorphic Images", in Computer Algebra | Symbolic andAlgebraic Computation, B. Buchberger, G.E. Collins, R. Loos, and R. Albrecht, (Eds.),Springer Verlag (1982), pp. 139{168.Loidl, H.-W., Hammond, K., and Partridge A.S., \Solving Systems of Linear EquationsFunctionally: a Case Study in Parallelisation", Technical Report, Dept. of ComputingScience, University of Glasgow, (1995).Milner, A.J.R.G., Communication and Concurrency, Prentice Hall (1989).Mirani, R., and Hudak, P., \First-Class Schedules and Virtual Maps", Proc. FPCA '95,La Jolla, CA, June, (1995), pp. 78{85.Mohr, E., Kranz, D.A., and Halstead, R.H., \Lazy Task Creation { a Technique for In-creasing the Granularity of Parallel Programs", IEEE Transactions on Parallel andDistributed Systems, 2(3), July, (1991), pp. 264{280.Morgan, R.G., Smith, M.H., and Short, S., \Translation by Meaning and Style in Lolita",Intl. BCS Conf. | Machine Translation Ten Years On, Cran�eld University, November,(1994).Nikhil, R.S., Arvind and Hicks, J., \pH language proposal", DEC Cambridge ResearchLab Tech. Rep. (1993).N�ocker, E.G.J.M.H., Smetsers, J.E.W., van Eekelen, M.C.J.D., and Plasmeijer, M.J.,\Concurrent Clean", Proc. PARLE '91, Springer Verlag LNCS 505/506, (1991), pp. 202{220.Peterson J.C., Hammond, K. (eds.), Augustsson, L., Boutel, B., Burton, F.W., Fasel, J.,Gordon, A.D., Hughes, R.J.M., Hudak, P., Johnsson, T., Jones, M.P., Peyton Jones,S.L., Reid, A., and Wadler, P.L.,Report on the Non-Strict Functional Language, Haskell,Version 1.3, (1996).Rabhi, F.A. \Exploiting Parallelism in Functional Languages: a `Paradigm-Oriented' Ap-proach", in Abstract Machine Models for Highly Parallel Computers, Dew, P. and Lake,T. (eds.), Oxford University Press, (1993).Reppy, J.H., \CML: a Higher-Order Concurrent Language", Proc. PLDI '91, Toronto,Canada, June 26-28, (1991), pp. 293{305.

34 Trinder and othersRoe, P., Parallel Programming using Functional Languages, PhD thesis, Dept. of Com-puting Science, University of Glasgow, April, (1991).Sansom, P.M., and Peyton Jones, S.L., \Time and Space Pro�ling for Non-Strict, Higher-Order Functional Languages", Proc. POPL '95, (1995), pp. 355{366.Subhlok, J., Stichnooch, J.M., O'Hallaron, D.R., and Gross, T., \Exploiting Task and DataParallelism on a Multicomputer", Proc. Fourth ACM Conf. on Principles & Practice ofParallel Programming (PPoPP), San Diego, CA, May 19-22, (1993), pp. 13{22.Trinder, P.W., Hammond, K., Mattson, J.S. Jr., Partridge, A.S., and Peyton Jones, S.L.,\GUM: a Portable Parallel Implementation of Haskell", Proc. PLDI '96, Philadelphia,Penn., May 22-24, (1996), pp. 79{88.Trinder, P.W., Hammond, K., Loidl, H-W., Peyton Jones, S.L., and J. Wu, \A Case Studyof Data-intensive Programs in Parallel Haskell" Proc. Glasgow Functional ProgrammingWorkshop, Ullapool, Scotland, (1996).Wadler, P.L., and Hughes, R.J.M., \Projections for Strictness Analysis", Proc. FPCA '87,September, (1987). A DeterminantThis appendix contains two more versions of the determinant function from the lin-ear equation solver described in Section 4.2. The version on the left is the originalsequential version. That on the right is a slightly cleaned-up version of the one weoriginally wrote to parallelise this function. Compared with the strategic versionpresented earlier, the lower-level parallel version is much more obscure and di�cultto understand.Sequential Versionsum l_par wherel_par = map determine1 [jLo..jHi]determine1 j =(if pivot > 0 thensign*pivot*det'else0)wheresign = if (even (j-jLo))then 1 else -1pivot = (head mat) !! (j-1)mat' =SqMatrixC((iLo,jLo),(iHi-1,jHi-1))(map (newLine j)(tail mat))det' = determinant mat'
Direct Parallel Versionsum l_par wherel_par = do_it_from_to jLodo_it_from_to j| j>jHi = []| otherwise = fx `par` (fx:rest)wheresign = if (even (j-jLo))then 1 else -1mat' =SqMatrixC((iLo,jLo),(iHi-1,jHi-1))(parMap (newLine j)(tail mat))pivot = (head mat) !! (j-1)det' = mat' `seq`determinant mat'x = case pivot of0 -> 0_ -> sign*pivot*det'fx = sign `par`if pivot>0then det' `par` x else xrest = do_it_from_to (j+1)

