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The Reection TheoremGrzegorz BancerekWarsaw UniversityBia lystokSummary. The goal is show that the reection theorem holds. The theoremis as usual in the Morse-Kelley theory of classes (MK). That theory works withuniversal class which consists of all sets and every class is a subclass of it. In thispaper (and in another Mizar articles) we work in Tarski-Grothendieck (TG) theory(see [17]) which ensures the existence of sets that have properties like universalclass (i.e. this theory is stronger than MK). The sets are introduced in [15] andsome concepts of MK are modeled. The concepts are: the class On of all ordinalnumbers belonging to the universe, subclasses, trans�nite sequences of non-emptyelements of universe, etc. The reection theorem states that if A� is an increasingand continuous trans�nite sequence of non-empty sets and class A = S�2OnA�, thenfor every formula H there is a strictly increasing continuous mapping F : On! Onsuch that if { is a critical number of F (i.e. F ({) = { > 0) and f 2 AVAR{ , thenA; f j= H � A{; f j= H. The proof is based on [13]. Besides, in the article it isshown that every universal class is a model of ZF set theory if ! (the �rst in�niteordinal number) belongs to it. Some propositions concerning ordinal numbers andsequences of them are also present.MML Identi�er: ZF_REFLE.WWW: http://mizar.org/JFM/Vol2/zf_refle.htmlThe articles [17], [19], [16], [2], [20], [11], [12], [18], [4], [6], [5], [7], [1], [14], [10], [15], [3], [8],and [9] provide the notation and terminology for this paper.In this paperW denotes a universal class, H denotes a ZF-formula, x denotes a set, andX denotes a set.Next we state several propositions:(1) W j= the axiom of extensionality:(2) W j= the axiom of pairs:(3) W j= the axiom of unions:(4) If ! 2W; then W j= the axiom of in�nity:(5) W j= the axiom of power sets:(6) For every H such that fx0; x1; x2g misses FreeH holds W j= the axiom of substitu-tion for H .(7) If ! 2W; then W is a model of ZF.
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the reflection theorem 2For simplicity, we follow the rules: E is a non empty set, F is a function, f is a functionfrom VAR into E, A, B, C are ordinal numbers, a, b are ordinals of W , p1 is a trans�nitesequence of ordinals of W , and H is a ZF-formula.Let us consider A, B. Let us observe that A � B if and only if:(Def. 1) For every C such that C 2 A holds C 2 B:In this article we present several logical schemes. The scheme ALFA concerns a nonempty set A and a binary predicate P ; and states that:There exists F such that domF = A and for every element d of A there existsA such that A = F (d) and P [d;A] and for every B such that P [d;B] holdsA � Bprovided the following requirement is met:� For every element d of A there exists A such that P [d;A].The scheme ALFA'Universe deals with a universal class A; a non empty set B; and abinary predicate P ; and states that:There exists F such that(i) domF = B; and(ii) for every element d of B there exists an ordinal a ofA such that a = F (d)and P [d; a] and for every ordinal b of A such that P [d; b] holds a � bprovided the following condition is met:� For every element d of B there exists an ordinal a of A such that P [d; a].Next we state the proposition(8) x is an ordinal of W i� x 2 OnW:In the sequel p2 denotes a sequence of ordinal numbers.Now we present three schemes. The scheme OrdSeqOfUnivEx deals with a universal classA and a binary predicate P ; and states that:There exists a trans�nite sequence p1 of ordinals of A such that for everyordinal a of A holds P [a; p1(a)]provided the following conditions are satis�ed:� For all ordinals a, b1, b2 of A such that P [a; b1] and P [a; b2] holds b1 = b2;and� For every ordinal a of A there exists an ordinal b of A such that P [a; b].The scheme UOS Exist deals with a universal class A; an ordinal B of A; a binary functorF yielding an ordinal of A; and a binary functor G yielding an ordinal of A; and states that:There exists a trans�nite sequence p1 of ordinals of A such that(i) p1(0A) = B;(ii) for all ordinals a, b of A such that b = p1(a) holds p1(succ a) = F(a; b);and(iii) for every ordinal a of A and for every sequence p2 of ordinal numberssuch that a 6= 0A and a is a limit ordinal number and p2 = p1�a holdsp1(a) = G(a; p2)for all values of the parameters.The scheme Universe Ind deals with a universal class A and a unary predicate P ; andstates that:For every ordinal a of A holds P [a]provided the following requirements are met:� P [0A],� For every ordinal a of A such that P [a] holds P [succa], and� Let a be an ordinal of A: Suppose a 6= 0A and a is a limit ordinal numberand for every ordinal b of A such that b 2 a holds P [b]. Then P [a].Let f be a function, letW be a universal class, and let a be an ordinal ofW . The functorSa f yields a set and is de�ned as follows:(Def. 2) Sa f = Union(W �(f�Ra)):



the reflection theorem 3We now state several propositions:(9) Sa f = Union(W �(f�Ra)):(10) For every trans�nite sequence L and for every A holds L�RA is a trans�nite se-quence.(11) For every sequence L of ordinal numbers and for every A holds L�RA is a sequenceof ordinal numbers.(12) Union p2 is an ordinal number.(13) Union(X�p2) is an ordinal number.(14) On(RA) = A:(15) p2�RA = p2�A:Let p1 be a sequence of ordinal numbers, let W be a universal class, and let a be anordinal of W . Then Sa p1 is an ordinal of W .The following proposition is true(17)1 For every trans�nite sequence p1 of ordinals of W holds Sa p1 = Union(p1�a) andSa(p1�a) = Union(p1�a):Let W be a universal class and let a, b be ordinals of W . Then a[ b is an ordinal of W .Let us consider W . Note that there exists an element of W which is non empty.Let us consider W . A subclass of W is a non empty subset of W .Let F be a function. We say that F is non-empty if and only if:(Def. 4)2 ; =2 rngF:Let us consider W and let I1 be a trans�nite sequence of elements of W . We say thatI1 is non empty set yielding if and only if:(Def. 5) dom I1 = OnW:Let us consider W . One can verify that there exists a trans�nite sequence of elementsof W which is non empty set yielding and non-empty.Let us consider W . A trans�nite sequence of non empty sets from W is a non-emptynon empty set yielding trans�nite sequence of elements of W .Next we state the proposition(21)3 Every non empty element of W is a subclass of W .Let us consider W and let L be a trans�nite sequence of non empty sets from W . ThenUnionL is a subclass of W . Let us consider a. Then L(a) is a non empty element of W .In the sequel L is a trans�nite sequence of non empty sets from W and f is a functionfrom VAR into L(a).We now state several propositions:(22) If X 2 W; then X < W :(23) a 2 domL:(24) L(a) � UnionL:(25) N � VAR and VAR = N :1The proposition (16) has been removed.2The de�nition (Def. 3) has been removed.3The propositions (18){(20) have been removed.



the reflection theorem 4(27)4 supX � succSOnX:(28) If X 2 W; then supX 2W:(29) Suppose that(i) ! 2 W;(ii) for all a, b such that a 2 b holds L(a) � L(b); and(iii) for every a such that a 6= ; and a is a limit ordinal number holds L(a) =Union(L�a):Let given H . Then there exists p1 such that(iv) p1 is increasing and continuous, and(v) for every a such that p1(a) = a and ; 6= a and for every f holdsUnionL; (UnionL)[f ] j= H i� L(a); f j= H:References[1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/-JFM/Vol1/card 1.html.[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics,1, 1989. http://mizar.org/JFM/Vol1/nat 1.html.[3] Grzegorz Bancerek. A model of ZF set theory language. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/zf lang.html.[4] Grzegorz Bancerek. Models and satis�ability. Journal of Formalized Mathematics, 1, 1989. http://mizar.-org/JFM/Vol1/zf model.html.[5] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/-JFM/Vol1/ordinal1.html.[6] Grzegorz Bancerek. Properties of ZF models. Journal of Formalized Mathematics, 1, 1989. http://mizar.-org/JFM/Vol1/zfmodel1.html.[7] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/ordinal2.html.[8] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Journal of Formalized Mathematics, 2,1990. http://mizar.org/JFM/Vol2/ordinal4.html.[9] Grzegorz Bancerek. Replacing of variables in formulas of ZF theory. Journal of Formalized Mathematics, 2,1990. http://mizar.org/JFM/Vol2/zf lang1.html.[10] Grzegorz Bancerek. Tarski's classes and ranks. Journal of Formalized Mathematics, 2, 1990. http://mizar.-org/JFM/Vol2/classes1.html.[11] Czes law Byli�nski. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct 1.html.[12] Czes law Byli�nski. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.-org/JFM/Vol1/funct 2.html.[13] Andrzej Mostowski. Constructible Sets with Applications. North Holland, 1969.[14] Andrzej N�edzusiak. �-�elds and probability. Journal of Formalized Mathematics, 1, 1989. http://mizar.-org/JFM/Vol1/prob 1.html.[15] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/classes2.html.[16] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/-Vol1/enumset1.html.[17] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/Axiomatics/tarski.html.[18] Andrzej Trybulec. Function domains and Fr�nkel operator. Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/fraenkel.html.[19] Zinaida Trybulec and Halina �Swi�eczkowska. Boolean properties of sets. Journal of Formalized Mathematics,1, 1989. http://mizar.org/JFM/Vol1/boole.html.4The proposition (26) has been removed.



the reflection theorem 5[20] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/relat 1.html.Received August 10, 1990Published May 12, 1999


