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Summary. The goal is show that the reflection theorem holds. The theorem
is as usual in the Morse-Kelley theory of classes (MK). That theory works with
universal class which consists of all sets and every class is a subclass of it. In this
paper (and in another Mizar articles) we work in Tarski-Grothendieck (TG) theory
(see [17]) which ensures the existence of sets that have properties like universal
class (i.e. this theory is stronger than MK). The sets are introduced in [15] and
some concepts of MK are modeled. The concepts are: the class On of all ordinal
numbers belonging to the universe, subclasses, transfinite sequences of non-empty
elements of universe, etc. The reflection theorem states that if A¢ is an increasing
and continuous transfinite sequence of non-empty sets and class A = Ugeon Ag, then
for every formula H there is a strictly increasing continuous mapping F' : On — On
such that if > is a critical number of F (i.e. F(5) = 5 > 0) and f € AY*® | then
A f E H= A.,f}E H. The proof is based on [13]. Besides, in the article it is
shown that every universal class is a model of ZF set theory if w (the first infinite
ordinal number) belongs to it. Some propositions concerning ordinal numbers and
sequences of them are also present.

MML Identifier: ZF_REFLE.
WWW: http://mizar.org/JFM/Vol2/zf_refle.html

The articles [17], [19], [16], [2], [20], [11], [12], [18], [4], 6], [5], [7], [1], [14], [10], [15], [3], [8],
and [9] provide the notation and terminology for this paper.

In this paper W denotes a universal class, H denotes a ZF-formula, x denotes a set, and
X denotes a set.

Next we state several propositions:

—

W = the axiom of extensionality.

2) W [= the axiom of pairs.

4) If w € W, then W [= the axiom of infinity.

5

(1)

(2)

(3) W k= the axiom of unions.

(4)

(5) W k= the axiom of power sets.
(6)

6) For every H such that {xg,x1,x2} misses Free H holds W = the axiom of substitu-

tion for H.

(7) If w e W, then W is a model of ZF.
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For simplicity, we follow the rules: E is a non empty set, F'is a function, f is a function
from VAR into E, A, B, C are ordinal numbers, a, b are ordinals of W, p; is a transfinite
sequence of ordinals of W, and H is a ZF-formula.

Let us consider A, B. Let us observe that A C B if and only if:

(Def. 1) For every C such that C' € A holds C' € B.

In this article we present several logical schemes. The scheme ALFA concerns a non
empty set A and a binary predicate P, and states that:
There exists F' such that dom F' = A and for every element d of A there exists
A such that A = F(d) and P[d, A] and for every B such that P[d, B] holds
ACB
provided the following requirement is met:
o For every element d of A there exists A such that P[d, A].
The scheme ALFA’Universe deals with a universal class A, a non empty set B, and a
binary predicate P, and states that:
There exists F' such that
(i) domF =B, and
(ii) for every element d of B there exists an ordinal a of A such that a = F(d)
and P[d, a] and for every ordinal b of A such that P[d, b] holds ¢ C b
provided the following condition is met:
e For every element d of B there exists an ordinal a of A such that P[d, a].
Next we state the proposition

(8) x is an ordinal of W iff z € OnW.

In the sequel p; denotes a sequence of ordinal numbers.
Now we present three schemes. The scheme OrdSeqOfUnivEz deals with a universal class
A and a binary predicate P, and states that:
There exists a transfinite sequence p; of ordinals of A such that for every
ordinal a of A holds P[a, pi(a)]
provided the following conditions are satisfied:
e For all ordinals a, b1, by of A such that Pla,bi] and P[a,bs] holds by = bo,
and
e For every ordinal a of A there exists an ordinal b of A such that Pla, b].
The scheme UOS FEzist deals with a universal class A, an ordinal B of A, a binary functor
F yielding an ordinal of A, and a binary functor G yielding an ordinal of A, and states that:
There exists a transfinite sequence p; of ordinals of A such that
(i) p1(04) =B,
(ii) for all ordinals a, b of A such that b = p;(a) holds p; (succa) = F(a,b)
and
(iii) for every ordinal a of A and for every sequence p, of ordinal numbers
such that a # 04 and a is a limit ordinal number and ps = p;[a holds
pi(a) = G(a,ps)
for all values of the parameters.
The scheme Universe Ind deals with a universal class A and a unary predicate P, and
states that:
For every ordinal a of A holds PJa]
provided the following requirements are met:
o P04,
e For every ordinal a of A such that P[a] holds P[succa], and
e Let a be an ordinal of A. Suppose a # 04 and @ is a limit ordinal number
and for every ordinal b of A such that b € a holds P[b]. Then Pla].
Let f be a function, let W be a universal class, and let a be an ordinal of . The functor
U, f yields a set and is defined as follows:
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(Def. 2) U, f = Union(W[(f[R.,)).
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We now state several propositions:

9) U, f = Union(W[(fRa))-

(10) For every transfinite sequence L and for every A holds L[R 4 is a transfinite se-
quence.

(11) For every sequence L of ordinal numbers and for every A holds L[R 4 is a sequence
of ordinal numbers.

(12) Union ps is an ordinal number.
(13) Union(X [p2) is an ordinal number.
(14) On(Ry4) = A.

(15) p2/Ra = palA.

Let p; be a sequence of ordinal numbers, let W be a universal class, and let a be an
ordinal of . Then J, p1 is an ordinal of W.
The following proposition is true

(17)"  For every transfinite sequence p; of ordinals of W holds |J, p1 = Union(p [a) and
U, (p11a) = Union(p; [a).

Let W be a universal class and let a, b be ordinals of W. Then a U b is an ordinal of .
Let us consider W. Note that there exists an element of W which is non empty.

Let us consider W. A subclass of W is a non empty subset of W.

Let F be a function. We say that F' is non-empty if and only if:

(Def. 4> () ¢ rng F.

Let us consider W and let I; be a transfinite sequence of elements of W. We say that
I is non empty set yielding if and only if:

(Def. 5) domI; = OnW.

Let us consider W. One can verify that there exists a transfinite sequence of elements
of W which is non empty set yielding and non-empty.

Let us consider W. A transfinite sequence of non empty sets from W is a non-empty
non empty set yielding transfinite sequence of elements of W.

Next we state the proposition

(21> Every non empty element of W is a subclass of W.

Let us consider W and let L be a transfinite sequence of non empty sets from W. Then
Union L is a subclass of W. Let us consider a. Then L(a) is a non empty element of W.

In the sequel L is a transfinite sequence of non empty sets from W and f is a function
from VAR into L(a).

We now state several propositions:

(22) If X € W, then X < W.
(23) a€domlL.
(24) L(a) C Union L.

(25) Na VAR and VAR = N.

IThe proposition (16) has been removed.
2The definition (Def. 3) has been removed.
3The propositions (18)-(20) have been removed.
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(27)* sup X C succJOn X.

(2

8) If X € W, then supX € W.

(29) Suppose that

(iii

(i)
(ii) for all a, b such that a € b holds L(a) C L(b), and
ii)

—

we W,

for every a such that a # ) and a is a limit ordinal number holds L(a) =
Union(L|a).

Let given H. Then there exists p; such that

(iv)  p; is increasing and continuous, and

(10]

[11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

(v)  for every a such that pi(a) = a and § # a and for every f holds

Union L, (Union L)[f] = H iff L(a), f E H.
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