Partial Evaluation for Higher-Order Languages with State

Peter Thiemann* Dirk Dussart!
pjtQ@cs.nott.ac.uk did.cimad.com
Abstract

We have designed and implemented an offline partial evaluator for a higher-order
language with first-class references. Its distinguishing feature over other partial evaluators
is its ability to perform assignments to local and global references at specialization time
for a higher-order language. The partial evaluator consists of a region-based monovariant
binding-time analysis and a specializer in essentially continuation-passing store-passing
style, thus generalizing type-based binding-time analysis and continuation-based partial
evaluation.

The partial evaluator yields good results for realistic problems such as object-oriented
programming, unification, and specializer generation.

Keywords: higher-order programming, program transformation, partial evaluation, state

Categories: D.1.1 Applicative (Functional) Programming, D.1.2 Automatic Programming,
D.3.1 Formal Definitions and Theory, Semantics, D.3.2 Language Classifications, Applicative
languages, D.3.4 Processors, 1.2.2 Automatic Programming, Program transformation

1 Introduction

Partial evaluation is an automatic program transformation that performs aggressive constant
propagation [44]. Offline partial evaluation separates this transformation in two stages. A
binding-time analysis determines those parts of a program that do not depend on dynamic
(unknown) data, regardless of the actual value of static (known) data. Subsequently, the
specializer reduces all static parts and generates residual code for the dynamic ones.

During specialization, a partial evaluator should perform all operations that do not depend
on dynamic data. In imperative languages, assignments are the essential operations. There-
fore, offline partial evaluators for traditional imperative languages like C [2,20], Modula-2 [15],
and FORTRAN 77 [47] perform assignments at specialization time. In contrast, current par-
tial evaluators for higher-order languages like ML or Scheme are much more conservative [12]:
They defer all operations on references and global variables as well as I/O operations to run
time [7,9,51]. This treatment of side effects is overly conservative and it seriously limits the

“Dept. of Computer Science, University of Nottingham, University Park, Nottingham, NG7 2RD, England.
Much of this work was done while at Universitat Tiibingen, Germany.

fCimad Consultants. This work was done while at Department of Computer Science, K.U.Leuven, Celesti-
jnenlaan 200A, B-3001 Leuven, Belgium. Supported by the National Fund for Scientific Research Belgium
(N.F.W.0.). This work was initiated during a visit at Universitdt Tiibingen funded by a grant of the Minis-
terium fiir Wissenschaft und Forschung.

;;; source program
(define-data object (object set get add))
;; a record type with constructor "object" and selectors '"set", '"get", "add"
(define (main)
(let ((counter-class
(lambda ()
(let* ((slot 0)
(mset (lambda (x) (set! slot x) x))
(mget (lambda () slot))
(madd (lambda (x) (set! slot (+ slot x)) x)))
(object mset mget madd)))))
(let ((cnt (counter-class)))
((set cnt) 21)
((add cnt) ((get cnt)))
((get cnt)))))

;33 program specialized with Similix (after assignment elimination)
(define (main-0)
(let ((slot_1 (make-cell 0)))
(cell-set! slot_1 21)
(let* ((g_2 (cell-ref slot_1)) (g_3 (cell-ref slot_1)))
(cell-set! slot_1 (+ g_3 g_2))
(cell-ref slot_1))))

;55 program specialized with our partial evaluator
(define ($goal-1) 42)

Figure 1: Specializing counter objects

quality of specialization. Therefore, we have designed and implemented a specializer for the
full Scheme language that does not have these deficiencies.

1.1 Motivation

Message-passing is a common programming style to emulate classes and objects in Scheme [1].
A typical representation for a class is a function that maps the initial values of the instance
variables to a tuple of closures, the representation of an object. The closures represent the
possible messages and they share the current values of the instance variables among them.
These values are not accessible otherwise, they are local to the object. Sending a message to
the object is implemented by calling one of the closures with appropriate arguments. Thus,
we have an instance of a programming technique that employs higher-order functions with
shared local state.

Consider the Scheme code in the top half of Fig. 1 defining a class of counter objects
using the above encoding. The instance variable slot is always initialized to zero, so the
class function is parameterless. A counter object cnt is a triple (or record) (object mset
mget madd), where (set cnt) is the function that sets the counter, (get cnt) is the function
that reads the counter, and (add cnt) is the function that adds to the counter. All these
functions operate on the encapsulated shared state in slot.

Let’s try to specialize this program. First, we apply Similix [11], a representative of the
conservative camp, to this program. The middle part of the figure shows the resulting residual
program. Similix removes the message dispatch, but defers all operations on the local state
slot to run time.

In contrast, our binding-time analysis instructs the specializer to perform all operations
at specialization time. In effect, it reduces the source program to its value 42 as shown in the
lower part of the figure.

Since Similix 5.0 does not handle set! directly, we performed an assignment elimina-
tion transformation that introduces explicit boxing operations make-cell, cell-ref, and
cell-set! by hand before submitting to Similix. This transformation is built into our spe-
cializer.

1.2 Contribution

We have designed and implemented a partial evaluator for Scheme [46] that performs im-
perative operations at specialization time. The system performs polyvariant program point
spectalization, i.e., the specializer may generate many residual expressions from a single source
expression (polyvariance) by specializing it with respect to different static values and stores
and it memoizes its state at certain program points to avoid processing an expression more
than once with respect to the same static values and store (program point specialization) [44].

Our system relies on a monovariant binding-time analysis. Such an analysis assigns each
expression in a source program a fixed binding time, just like a monomorphic type system
assigns each expression a fixed type.

The main contributions are:

e The specializer performs assignments at specialization time.

e The specializer is written in a novel extended continuation-passing and store-passing
style. This style is required for the soundness of the specializer in the presence of side
effects [49].

e The binding-time analysis is based on an effect system. It runs in polynomial time.

e The partial evaluator delivers good results for problems that are hard to solve with
other specializers:

Specialization of unification. Unification is hard to specialize and requires rewrit-
ing the algorithm to continuation-passing style [19]. Our system specializes a
straightforward unification algorithm where variables in terms are represented by
references with good results (see 6.2).

Specializer generation. The specializer with state can automatically generate a spe-
cializer for a lazy first-order language from an interpreter which uses updatable
thunks (see 6.3). This has not been achieved with other specializers.

The implementation is available for anonymous FTP at
ftp://ftp.informatik.uni-tuebingen.de/pub/PU/thiemann/software/pgg/.

expressions e 1= c|succe|pred e|x|Az.e|eQe|if0 eee]|rec f(x)e|refe] le|e:=¢
types T n= int|rvef7|T—>T
(t-cst) AF c:int (t-var) A{z: 7}z 7
Akl e:int Al e:int
(t-succ) At succ e :int (t-pred) At pred e :int
Alz:n}ke:n Albei:mm—1 Aler:m
(t-abs) AFAze: 1 = n (t-app) Al eQey
(t-if) AFeyg:int AFe;:7 Aley:T
AFif0eyer en: T
A{f:mn o me:n}be:n
(t-rec) Alrec f(z)e:m — 1
Able: T AbFeq:ref 7 Abejp:ref 7 Abey:T
(t-ref) Abref eq :ref 7 (t-deref) AF leg: 71 (t-assn) AFel i=e3: T
Figure 2: Syntax and typing rules

1.3 Overview

Section 2 defines the syntax and the denotational semantics of the source language A"/, a
simply typed call-by-value lambda calculus with first-class references. Section 3 presents a
polyvariant specializer for A" in denotational style as an extension of the standard seman-
tics. Section 4 specifies a monovariant binding-time analysis for A™/. The analysis performs
monomorphic region inference with an efficient reconstruction algorithm. Section 5 discusses
some implementation issues. Section 6 presents three example applications of the specializer:
programs with cyclic data structures, unification with references, and specializer generation
for a lazy language. Finally, Section 7 surveys related work, and Section 8 concludes.

2 Source Language

In this section, we describe the syntax and the denotational semantics of the source language
of the partial evaluator.

2.1 Syntax

Figure 2 defines the syntax and typing rules of A"/, a call-by-value lambda calculus with first-
class references, a recursion operator, integers, and a conditional. The type system derives
judgements of the form A F e : 7 (read: under type assumptions A expression e has type
7). The typing rules specify a system of simple types. Types may be recursive without an
explicit recursion operator. In addition to the standard constructs of the lambda calculus
there are integer constants “c”, the successor operation “succ e”, the predecessor operation
“pred e”, and an integer conditional “if0 e e e”. “rec f(x).e” defines a recursive function f
with argument z and body e. Furthermore, “ref ¢” creates a new memory cell that contains
the value of e and returns its address, “ le” dereferences a reference, and “e; := ey” assigns

to a reference. A let-expression “let x = ey in ey” is syntactic sugar for “(Az.ey)@eq.”

Comp = Cont — Store — Val

ke Cont = Val— Store — Val
p € Env = Var — Val
y € Val = Int; & Loc, & (Val — Comp) | & {error}
o € Store = Loc— (Val @ {unused})
Loc = unspecified infinite set of store locations

Figure 3: Semantic domains

2.2 Semantics

The semantic domains are sub-domains of some universal domain [60,67]. Figure 3 shows their
defining equations. The sub-domain Val of semantic values is a coalesced sum of the flat do-
mains of integers Int |, locations Loc |, the lifted continuous function space (Val — Comp) | ,
and a lifted one-point domain indicating errors. The sub-domain Comp of computations con-
sists of (continuous) functions that map a continuation and a store to a value. The sub-domain
Cont of continuations consists of functions that map a value and a store to the final answer
of a computation, in this case an element of Val. An element o of the sub-domain Store of
stores is a finite mapping from store locations to stored values or “unused”. An environment
p € Env is a finite mapping from variables to values.

The semantic equations of A™ in Fig. 4 define a call-by-value semantics which evaluates
subexpressions from left to right. The definitions for the constructs are standard in semantics
with continuations and store [65] [66, Chap. 9]. Only two points deserve mentioning: the
conditional tests an integer for a non-zero value and the assignment returns the assigned
value.

The equations make use of the following conventions. Environment update p[v/x] is
defined by pl[v/z](x) = v and plv/z](y) = p(y) for y # x. The function int() : Expr — Int
maps the syntactic representation of an integer constant to its integer value. The constant fix
denotes a fixpoint operator at type Val — Comp (i.e., its type is ((Val — Comp) — (Val —
Comp)) — (Val — Comp).)

As customary, we have reduced clutter by omitting the injections into the sum type Val.
For example, the full equations for the successor and for recursion are:

E[succ eq] = M Ak Ao er]p(AyAo. case y of Ini(y') = k(Ini(y +1))o
| = = Ing(error))o

E[rec f(x).e] = ApAkAo.k(Ins(fix Ag.\y.E[e]p[Ing(g9)/flly/x]))o

Here, case and pattern matching notation serve to project out of the Val domain, using In;(x)
to indicate the ith summand of the definition. Pattern matching includes “dropping” of the
lifted argument. As a function, In;(x) lifts and injects into the ith summand.

Eta-reducing expressions of the form Ao.e o simplifies many of the equations. The use of
o' indicates those places where eta-reduction is not possible.

& : Expr — Env — Comp

E[x] = MMk Aok(p(x))o

El] = Ap. Ak Ao.k(int(c))o

E[succ eq] = Ap. Ak Ao]ei]p(AyNok(y +1)o)o
Epred e4] = Mp kAo llei]p(AyNok(y —1)o)o
E[Nx.e€] = Ap. Ak Ao k(\y.E]e]ply/x])o

Eler1@Qes] = Mp kAo llei]p(Af o &lex]p(AaXo.fako)o)o
E[if0 eg eq e9] Ap kAo .Eeo]p(Ay. Ao’ if0 y (E]er]pka’) (E[ex]pka’))o
Erec f(x).€] Ap Ak Ao k(fix Ag y.Elelplg/ flly/x])o

Eref €] = Ap. Ak Ao l]e]p(Ay. X' ka(o'[a — y]))o
where o’ = unused
E[e] = Ap Ak Ao]e]p(Aa.Xo’ k(o' a)o)o
Eler := ea] = Ak Ao el p(Aara.E]e] p(Ay Ao’ ky(o'[a— y]))o)o
Figure 4: Semantics of A"/
binding times b == S|D
annotated expressions E = x| \Na.E| EQYE |rec® f(z).E |ref’ E| "E | E :=" E |

lift F|c|succ® E|pred® E|ifo" E E E

Figure 5: Syntax of the annotated source language A"/

3 Specialization

In this section, we extend the source language to an annotated language by adding a binding-
time annotation to each construct. Its semantics is an extension of the standard semantics.
The semantics also serves as a functional program implementing an interpreter for the anno-
tated language. The translation to ML or Scheme is straightforward.

3.1 Syntax

Figure 5 defines the syntax of the annotated source language A’% . Tt adds a binding-time
annotation to each construct of A™/, where a binding time b is either S for “static” or D for
“dynamic”. There is an extra construct “lift £” to propagate numbers from binding time .S
to binding time D. For a A’/ _expression E, define |E| to be its stripped version (€ A™/)
after removing all annotations and all lifts.

The annotated language is not intended for programming: the binding-time analysis au-
tomatically derives annotated expressions from A"-expressions. The analysis is subject of

Section 4.

3.2 Semantic domains

Our domains need a slight revision (see Fig. 6) to become suitable for specialization: The
sub-domain Val' of semantic value has an additional summand RExpr to model residual
expressions. There is an obvious embedding from Val into Val'.

The domain equations leave RExpr unspecified for several reasons. First, it does not add
to understanding the specializer. Second, generating residual expressions involves generating
fresh variable names. It is a research topic on its own to investigate a satisfactory model that
includes name generation [55]. Third, we may want to parameterize over the residual syntax
anyway to replace the syntax constructors, for example, by compiling functions [69].

For these reasons, we treat RExpr as an abstract datatype with an interface reminiscent of
higher-order abstract syntax [59], to sidestep the issue of name generation. For convenience,
RExpr includes a let-expression with the usual meaning. The specializer requires the following
interface for RExpr:

e quote() : Int — RExpr converts a number to its representation as a residual expression.
It inserts specialization-time values of type integer into the residual program.

e let : RExpr x (Var — RExpr) — RExpr builds a residual let-expression. Roughly,
let (Ax.e2, Aep.) can be thought of as building “let = ey in e3”. lam : (Var —
RExpr) — RExpr builds a residual lambda expression. rec : (Var — Var — RExpr) —
RExpr builds a residual rec expression. All three have a functional argument, so that the
necessary generation of fresh variables is hidden in RExpr: one possible interpretation
is to have the implementation of RExpr apply these functions to freshly generated
variables.

e succ, pred : RExpr — RExpr builds a residual successor (predecessor) expression.

e Similarly for @,:= : RExpr x RExpr — RExpr, which we write infix, if : RExpr x
RExpr x RExpr — RExpr, and ref,! : RExpr — RExpr.

3.3 Semantic equations

The semantics of A7, extends the semantics of A™ in a natural way. The idea is that the
semantics of a completely static expression E (where all annotations are S and which does
not contain lift) is identical to the A™/-semantics of the stripped expression \E|, up to the
embedding mentioned in Sec. 3.2.

Therefore, the specialization semantics S inherits all the defining equations from £ by
putting S annotations on all constructs except constants ¢ and variables x (which are copied
as is) and then replacing all occurrences of £ by S. Figure 7 defines the additional equations
for the constructs annotated with D and for the lift-expression.

Next, we consider each equation in turn, discuss it, and identify constraints that the
binding-time analysis must enforce later on. To begin with, it is useful to realize that the
continuation k is the function that specializes the context of the current expression. So passing
a value to k means to make it available to the context and to start specializing it.

3.3.1 lift

S[lift E] = Ap. Ak Ao.S[E]p(Ay.\o.k(quote(y))o)o

Comp’ = Cont’ — Store’ — Val’

ke Cont’ = Val' — Store’ — Val'
p€ Env = Var— Val
y e Val = Int; @& Loc; & RExpr; @& (Val'! - Comp’), & {error}
o€ Store’ = Loc— (Val' @ {unused})
Loc = unspecified infinite set of store locations
RExpr = unspecified domain of residual expressions

Figure 6: Semantic domains for specialization

S : Expr — Env' = Comp’

S[lift E] = Ap. Ak Ao S[E]p(Ay.\o.k(quote(y))o)o

S[succ? EJ = Ap. Ak Ao S[E]p(Ay. Ao’ let (succ y, An.kno'))o

S[[predD E] = Ap. Ak Ao S[E]p(Ay. Ao’ let (pred y, An.kno'))o

S[\Pz.E] = Ap. kAo’ let (lam An.S[E]p[n/z](Ay. Ao’ .y)Tempty, An.kno’)

S[E: @DEQ]] = Ap Ak Ao S[EL] p(Ay1. Ao S[E2]p(Ay2. Mo’ let (y1Qya, An.kno'))o)o
S[[lfOD E1 EQ Eg]] ApAkAO’S[[El]]p(AylAGIIf_O Y1 (S[[EQ]]pkO") (S[[Eg]]pka’))a
S[rec? f(z).E] ApAkAo' let (rec Ag.Ay.S[E]plg. y/f. x](Ay. Ao’ .y)0empty, An.kno’)

S[ref® EJ = M Ak Ao S[E]p(Ay. Ao’ let (ref y, An.kno'))o
S['PE] = M Ak Ao S[E]p(Ay. Mo’ let (ly, An.kno'))o
S[E, :=P E,] = Ap Ak A0 S[E]p(Ay1.Ao.S[E2]p(Ay2. Ao’ let (y1 := y2, An.kno’))o)o

Figure 7: Specializer using continuation-passing and store-passing

The specializer converts a specialization-time number to residual code. After specializing F,
the resulting number is converted to code and passed to the continuation. The state is simply
passed on.

3.3.2 succ and pred

S[succ? E] = Mp Ak Ao S[E]p(Ay. Mo’ let (succ y, An.kno'))o

The specializer has to create a residual successor expression. It takes care not to discard,
duplicate, or reorder the residual computation succ y. Therefore, the specializer first special-
izes E. Next, it constructs the residual expression succ y from the resulting expression y. To
make sure that the generated succ y expression gets executed exactly once, the specializer
inserts a let-expression and starts specializing the context in the body of the let-expression
by invoking the continuation. The specializer passes only the let-bound variable n to the
continuation. This variable can be discarded, duplicated, or reordered without affecting the
number of times that succ y gets computed in the residual program.

In this case, the construction of the let-expression on-the-fly is not required for soundness,
because “succ E” has no side effects. However, it avoids code duplication.

The specialization of pred” E works the same way.

3.3.3 Lambda abstraction and rec

S[A\Pz.E] = Mp.MkAo'let (lam An.S[E]p[n/x](A\y.\o".y)Tempty, An.kno’)

The specializer has to construct a residual lambda abstraction. Since there is no way for the
specializer to predict the continuation or the contents of the static store for the body of the
lambda, it starts afresh, with the empty continuation Ay.Ao’.y and the empty store gempty-
The lifetime of the new store is confined to the body of the lambda: the empty continuation
discards the final store.

In consequence, the body of a dynamic lambda cannot assign to or dereference a static
reference that is defined outside the scope of the lambda. The binding-time analysis must
ensure that every such external reference is dynamic. In addition, both the argument and the
result of the dynamic lambda can never be static.

Again, wrapping the constructed lambda in a let-expression only avoids code duplication.
There is no semantical problem with discarding, duplicating, or reordering for this expression,
because the evaluation of a lambda expression always terminates and never causes side effects.

The rationale and the rule for specializing rec” f(x).E is analogous to that for \”z.E.

3.3.4 Application

S[[El@DEQ]] = Ap. Ak Ao S[E1]p(Ay1.No.S[E2]p(Aya. Ao’ let (y1Qya, An.kno’))o)o

The specializer has to construct a residual application which might have computational ef-
fects. To ensure soundness, the specializer must make sure that the residual application gets
executed exactly once. The mechanism to implement this is on-the-fly let-insertion as for
succ? E. Here its use is mandatory and failure to use it can change the semantics [49].

3.3.5 if0

S[ifo? Ey By B3] = Ap Ak Ao S[E1]p(\y. Ao’ if0 y (S[Fa]pko’) (S[Es]pko’))o

The specializer has to construct a residual conditional expression. In designing this case, there
is a choice to make between potential code duplication and unsatisfactory specialization. With
the present definition, the specializer may duplicate code because it specializes both branches
E5 and FEj3 of the conditional using the same continuation (which performs the specialization
of the context of the conditional, hence the potential for code duplication) and the same store.
This definition leads to a liberal binding-time analysis.

Quite often, this is the required behavior to obtain satisfactory specialization. For exam-
ple, consider the expression

Ad.et x = ref 0 in pair (if0 d (z := 1) (z := 2)) (lx)

which uses a primitive operator “pair” to construct a pair. With our choice of duplicating
the continuation, the annotated expression

APdlet & =ref® 0 in pair? (lift (if0” d (z :=° 1) (z:=° 2))) (lift (°z))

specializes satisfactorily to
Ad.if0 d (1,1) (2,2).

The alternative to duplicating the continuation and the store is to cut off both at a
dynamic conditional and start afresh in both branches:

S[ifo” Ey By Es] = ApMkAo.S[Ei]p(\yi Aak(0 y1 (S[E2]p(A\y-A0.y)Tempty)
(S[[ES]]p()‘yJ\U'y)Uempty))U)U

However, with this rule in place, the above expression requires a more restrictive annotation:
APdlet z = ref? (lift 0) in pair (if0? d (z =P lift 1) (z :=P lift 2)) (Px)

No specialization can take place because every construct is annotated dynamic.

In both alternatives, the specializer discards the final static store after processing a branch
completely. Why does it work? Well, for the first alternative, the continuation k performs
specialization up to the next enclosing dynamic lambda. Since the dynamic lambda cannot
not have an effect on the static store, as explained above, its contents are local to the lambda
and can safely be discarded. For the second, non-duplicating alternative, the binding-time
analysis must ensure that a dynamic conditional does not have effects on the static store, so
that it can be discarded, too.

As a consequence, the problem of merging the two different final stores in the context of
a dynamic conditional, which is discussed elsewhere [58], disappears in our approach.

Finally, specialization points—as introduced for program point specialization (see Sec. 5.1)—
also delimit the continuation and thus limit the amount of code duplication that occurs in
practice. The potential code duplication introduced by the dynamic conditional does not
affect the complexity of the residual programs in any way.

10

3.3.6 Operations on references

The operations on references do not yield new insights: ref? E, 'PE, and E; :=P E, all

generate residual code which depends on the state or has an effect on it, hence the specializer
must construct a let-expression. Interestingly, the dynamic store that they operate on only
exists at runtime of the residual program, the specializer just keeps the operations on it in
the correct order.

3.4 Remarks

Lawall and Thiemann [49] have proved the soundness of this on-the-fly let-insertion algorithm
for specializers that deal with arbitrary side effects. Moreover, the residual code is in direct
style restricted to A-normal form which facilitates compilation [30, 38, 69].

4 Binding-Time Analysis

In this section, we describe the aims and objectives of a binding-time analysis for A"/, specify
the analysis, and sketch a polynomial-time algorithm for it. The binding-time analysis maps
a A™-expression to a A’ -expression E, with as many constructs as possible annotated
as static S, given that no static operation or value should depend on dynamic data. This

property of the analysis—its correctness—is proved elsewhere [73].

4.1 Outline

Conceptually, the binding-time analysis has three phases: region inference, binding-time dec-
oration, and binding-time inference. We illustrate these phases with the example from the
previous section.

Ad.let x =ref 0 in pair (if0 d (x := 1) (z := 2)) (lx)

In the first phase (Sections 4.2, 4.3, 4.4, and 4.5), a monomorphic region and effect in-
ference system translates a A™-expression into an expression of a language A’ which is an
extension of A with explicit region annotations. A region inference system divides the store
into disjoint regions and assigns each reference to one of them. An effect system approximates
the effect of each expression, i.e., the set of regions that may be accessed by evaluation of e.
The simplification with respect to other published region inference systems [45, 50,70, 76] is
the omission of polymorphism, leading to an analysis which is monovariant with respect to
types, effects, and regions. This restriction leads to a polynomial-time algorithm, as opposed
to the exponential algorithm for polymorphic region and effect inference (see Sec. 4.4).

In the example expression only one region is necessary to hold the single reference.

Ad.letregion p in let x = ref, 0 in pair (if0 d (v :=, 1) (v 1=, 2)) (!,7)

The region p is confined to the body of the letregion. Each operation on a reference carries
an annotation that mentions the region involved.

The second phase (Sections 4.6 and 4.7) decorates the derivation of the region infer-
ence translation judgement with formal binding-time annotations, i.e., binding-time variables.
There are three tasks in this phase.

11

1. Assign a binding-time variable to each subexpression;
2. assign a binding-time variable to each region;

3. insert lift-expressions where appropriate—on top of every expression of type Int which
occurs as an argument of an application, a primitive operation, or on top of the branches
of a conditional).

The result is an expression in A7 the annotated version of AT/, The example expression

r, anns

now reads as follows (simplified for clarity):

M1id. letregion® p in
let? ¢ = reff4 0 in
pair® (it (if0 d (v =0 1) (x =07 2))) (lift? (15s2))

In the third and final phase (Sec. 4.9 and 4.8), a well-formedness condition gives rise to a
set of constraints on the possible values of the binding-time annotations. These constraints
ensure that the binding time of a region is equal to the binding time of all references that live
in that region: if the region is allocated at specialization time then references to it are static;
if the region is allocated at runtime then references to it must be static. In addition, each
operation on a reference has the same binding time as the reference itself, and if a dynamic
function has an effect on a particular region then the binding time of that region must be
dynamic, as well. Finally, the result of the top-level expression is always dynamic.

For the example, these constraints amount to:

constraint explanation
pr = D top-level expression
B = (4= s = [=g operate on same region
fr < Bs argument of function
B < By result of function
Bo < M first component of pair
Bo < 72 second component of pair

Such a set of constraints always has a least (read: as static as possible) solution and we find
that 81 = 5 = By =71 =72 =D and By = 3 = b4 = s = 07 = B3 = S define the least
solution. It corresponds to the annotation used in the previous section:

APdlet z = ref® 0 in pair? (lift (if0P d (x:=° 1) (2 :=° 2))) (lift (5z))

We have omitted the letregion® p in ... and the region annotations—the specializer ignores
them anyway. The region analysis only provides extra structure for the store, so that the
analysis can keep static and dynamic regions apart. The static store in the specializer simply
bundles together all the static regions which are currently active.

4.2 Region Language

In this section, we define the syntax of expressions, types, and effects of the region language
AT, which is the target language of our first translation step from A™/. This step introduces
region annotations on operations on references as well as on reference types and it introduces
effect annotations on function types.

12

expressions E := c|succ E|pred E |if0 E E E |

x| Ax.E | EQE | rec f(x).F |

ref, E| | E | E:=, E|letregion pin £
region variables p € RegVar

Figure 8: Syntax of A’/

effects ¢ C {init(p),read(p), write(p) | p € RegVar}
types 6 u= int|[ref, 0|60 50

Figure 9: Effects and region-annotated types

AT is essentially the language considered by Talpin and Jouvelot [70] extended by effect
masking [50], but using the more elegant notation of Tofte and Talpin [76]. Figure 8 defines
the syntax of AT/-expressions.

RegVar is an infinite set of region variables. “letregion p in E” binds p to a newly allocated
empty region of memory, “ref, E” allocates a new cell in region p, “ ! E” dereferences a
reference from region p, and “E :=, E” assigns to a cell in region p. “letregion p1,...,p, in E”
is an abbreviation for “letregion py in ...letregion p, in E”; for n = 0, letregion in F is the
same as F. frv(FE) is the set of region variables that appear free in F, its definition is analogous
to the standard notion of free variables.

Figure 9 defines a type language with region annotations on reference types and effect
annotations on function arrows. An effect € is a description of a potential side effect of the
evaluation of an expression. It is a set of atomic effects: the allocation of a cell in region
p (init(p)), dereferencing a cell in region p (read(p)), and assignment to a cell in region p
(write(p)). For an effect € and a set R C RegVar we define the intersection

eNR= U (e N {read(p), write(p), init(p)}).
PER

We define set difference € \ R analogously.

On top of that we build the type language. The region annotation p in the type ref, § of
references to values of type 6 indicates the memory region in which a cell of that type resides.
The type 61 -5 65 is the type of functions that map values of type #; to values of type #5 and
have a latent effect described by e. Type assumptions A are defined as usual.

Effects, types, and type assumptions can have free region variables as defined in Figure 10.

4.3 Region Translation

In this section, we define the translation from A™ to A7/, A A™expression e translates to a
ATl-expression E if the translation judgement A - e ~» E : 0, ¢ is derivable. The judgement
reads “under type assumptions A source expression e translates into region expression E
which has type 6 and effect €.” Figure 11 shows the translation rules (cf. [70,76]). The rules

13

frv(e) = {p | init(p) € e Vread(p) € € V write(p) € €}

frv(int) =0

frv(ref, 0) = {p}Ufrv(d)

frv(6y 5 6y) = frv(e) Ufrv(fy) Ufrv(6s)
(

frv(A) = U{frv(f) | x: 0 in A}

Figure 10: Free region variables

are syntax-directed, because our main interest is the derivation of an inference algorithm.
For the same reason, we have made explicit the fact that there is an effect (variable) for
each sub-expression and that the effects are related by set inclusion and—in rules (r-abs) and
(r-rec)—by set intersection. Next we consider some of the rules in detail.

The rules (r-var) and (r-cst) show that the translation does not affect variables and con-
stants. These expressions do not have an effect and we would expect the constraint ¢ = ()
Instead we have ¢ C (). This is because the rules—like all others—integrate subeffecting.
Subeffecting allows us to make the effect information less precise by increasing it. This can
be necessary if two expressions must have the same type (including the latent effects) but
may evaluate to different functions. The rules (r-if), (r-app), and (r-assn) require such type
equalities.

The effect part of the rules (r-succ) and (r-pred) just passes on the effect of the sub-
expression F. Additionally, subeffecting may happen.

The first really interesting rule is (r-abs). It makes use of a new concept, effect masking.
Effect masking [50] formalizes the encapsulation of all accesses to a particular region p. If
AF e~ E:0,eand p does not occur free in A and 6 then Lucassen and Gifford have shown
that p is local to the evaluation of E in the sense that the rest of the computation will not
access any value stored in p.

Back to rule (r-abs). Once the rule has determined the effect ¢y of the body of the lambda,
it computes in €1 the “sub-effect” of ¢y that affects regions mentioned either in the environment
or in the types #; or f. The remaining regions frv(ey \ €1) are considered to be local to the
body of the lambda. They are masked out by the “letregion p1,...,p, in E” expression.
Then the rule applies subeffecting to the remaining effect €; in €2 D €;. The resulting effect
€2 is the latent effect of the function. The effect of the entire lambda expression is (), modulo
subeffecting.

The (r-app) rule collects the effects of the subexpressions and includes the latent effect of
the function that is applied here.

The (r-if) rule only collects the effects of the subexpressions.

The (r-rec) rule is similar in concept to the (r-abs) rule, because it also performs effect
masking. However, it does not perform subeffecting for the latent effect ¢ on the function
arrow. Without this restriction, we would not be able to prove our upcoming Lemma 1 which
establishes that our system is essentially a restricted version of system considered by Talpin
and Jouvelot [70].

The remaining rules (r-ref), (r-deref), and (r-assn) just collect the effects of their subex-
pressions and include their own atomic effect in the returned effect. They also include subef-

14

(r-v) <20
fvar A{z: 0} Fx~z:0¢

(r-cst) <20
AFc~c:int,e
AFe~ E:int,eq Al e~ E:int,e€g
(r-succ) €De€ (r-pred) €D e
Ak succ e ~ suce E :int,e AF pred e~ pred E :int,e

A{xiel}l—eineg,Co

(r—abs) {p17 cee /pn} = frV(GO \ 61)
€1 = €0 N (frv(A4) U frv(6;) U frv(6s)) € D€ e3 D0
A Ax.e ~ Azletregion py1,...,pn in E: 01 3 05, €3

A|—61«»E1:92€491,61 A|_62’\’>E2192./€2
(r-app) €DeUer Ues
Al—el@engl@Eg 201,6

A"Eo’\f)Eoiint,Eo Al—elvEl:G.,el Al_e2’\’>E2:9./€2
(r-if) € DeUer Ues
A Fifo €p €1 62’\’>if0 EO E1 E2 19,6

A{f291 —€>927$191}|_6’\’>E292.,€0
{p1,..,pn} =1frv(e \ €)
€=¢eg N (frv(A) U frv(0; 5 65)) €120
AFrec f(z).e ~ rec f(x).letregion py,...,pp in E: 0 5 63, ¢;

)

(r-rec)

AlFe~ E: 0, ¢
(r-ref) € D €o U {init(p)}
Al ref e~sref, E:ref, 0, ¢

Abe~ E:ref, 0, ¢
(r-deref) € D e U {read(p)}
Ak le~ E: 0

Al-elvElzrefPG.,el Al_eg’\f)E229.,€2
(r-assn) € D €1 Uey U {write(p)}
Al e 1= e~ B =, Es:0,¢

Figure 11: Region translation

15

fecting.

4.4 Algorithm

This section outlines an algorithm to compute a derivation of a region translation judgement in
polynomial time. Given a A expression of size n, the algorithm first constructs the standard
type derivation. This takes almost-linear time in n using a term graph representation of the
types [40]. This representation immediately yields a suitable annotation with region variables:
we can simply use the identity of the nodes denoting reference types.

Next, the algorithm attaches an effect variable to each judgement in the type derivation
and to each function type constructor therein. The translation rules give rise to a system of
recursive set inequations with union and intersection (the latter is due to rules (r-abs) and
(r-rec)) on effects. From the inference rules, it is clear that there are no inequations which
mention a variable defined by intersection on their left side. Unions can be eliminated from
the right sides, so that there are only inequations of the form X D C, where C is a constant,
X DY, where Y is another variable, and equations of the form X =Y N Z, where Y and Z
are variables.

The least solution of such a system can be computed by fixpoint iteration: Each system
gives rise to a function F' : S" — S™ where S is the finite subset of the region variables
RegVar that is mentioned in the analyzed expression and n is the number of effect variables
X,;. The ith component F; of F'is defined by

1. FZ(Xl,,Xn) =ClU...UCTUXj1U...UXjS if X; 2DC,....,X; DC, and X; D

X, ..., X; D Xj, are all inequations with left side X;;

2. Fi(Xq,...,X,) = X; N Xy if X; = X; N Xy, is an equation;
3. F;i(X1,...,X,) =0 if there is no equation or inequation with left side X;.

Obviously, each F; is monotone and (since S is finite) continuous with respect to set inclusion.
By Tarksi’s fixpoint theorem, F' has a least fixpoint and it can be computed by iterating F'
starting with (0,...,0). The fixpoint gives rise to a derivation of the desired region translation
judgement by substituting the resulting sets. This derivation is minimal in a sense that we
will not formalize here.

If n is the size of the program then the computation of the least fixpoint takes O(n*) time
in the worst case: one occurrence of an (r-abs) or an (r-rec) rule generates O(n?) inequations
in the worst case, since an assumption can have O(n) entries and each type may have size
O(n). Therefore, we generate n - O(n?) = O(n?) constraints for the entire expression. To
solve the constraints, each region variable (there are O(n) of them) is propagated at most
once through each constraint.

4.5 Simplified Translation Rules

In this section, we simplify the system of the previous section. The previous system had
syntax-directed rules that helped to construct the inference algorithm and argue about its
complexity. Now, —working towards a binding-time decoration of a region derivation—we
will use a slightly modified set of rules to simplify the definition of the binding-time decoration.

In the modified system, effect masking and subeffecting are separate rules. We do not
lose anything in that transition, because for every judgement derivable in the original system
there will be a corresponding judgement in the modified system.

16

Af{x 01} Fe~ E:0y¢
AF Ax.e~ Ao E: 01 -5 05,0

(r-abs’)

A{f:01 5 0y, 2:01}H e~ E:6y,¢
At rec f(x).e~rec f(x).E: 01 -5 65,0

(r-rec’)

1 :
AFH e~ E:0¢ cC o

AFH e~ E: 0, =

(r-esub’)

AF e~ FE:0,¢
(r-mask’) p €frv(e) p&frv(A)Ufv(d) € =€\ {p}
A e~ letregion pin E : 6, ¢

Figure 12: Simplified region translation rules

Definition 1 The judgement for the simplified region translation A ' e~ E : 0, ¢ is defined
by the following rules.

1. The rules (r-abs’), (r-rec’), (r-esub’), and (r-mask’) defined in Fig. 12.

2. The rules from Fig. 11, except (r-abs) and (r-rec), after replacing each occurrence of
€ 2 Y by e =Y and each occurrence of - by .

Lemma 1
AlFe~ E:0,¢ implies At e~ E:0,e.

Proof: By induction on the derivation of A - e ~ E : f,e. The only interesting cases are
those where the last rule in the derivation is (r-abs) or (r-rec). The other cases are
immediate by appeal to the inductive hypothesis, applying the corresponding rule for
H, and applying the rule (r-esub’). We demonstrate the case for (r-abs), the case for
(r-rec) works analogously.

Suppose the last rule in the derivation is

A{z: 01} F e~ E:0y,¢

(1-abs) {p1,....pn} =1rv(eo \ €1)
€1 = €9 N (frv(A) U frv(6y) U frv(6s)) €2 D €] e300
AF Ax.e ~ Az.letregion p1,...,p, in E: 01 3 05, €3

By induction, there is a derivation for

Alz 01} H e~ E: 09, ¢ (1)
An auxiliary induction shows that for all 0 < i < n there exists € C ¢y such that
A{x : 01} H e~ letregion ppit1,...,pp in E 0o,

and frv(e) N {p1,....on} = {p1.-- . PnLi}-

17

e Case i = 0: with € = ¢y we have
A{z : 01} H e~ letregion in E: 0y, ¢
by (1) and also frv(e) N {p1,...,pn} = {p1,...,pnri} because {p1,...,pn} C
frv(e) = frv(eg) since rule (r-abs) is applicable.

e Case 0 < i < n: by the auxiliary inductive hypothesis, there exists an ¢ C ¢y such
that
A{z : 01} F' e~ letregion p, | (;11)41s-- 0 0 E: €
and frv(e) N {p1,---,pn} = {p1,--- pni@i)}- Since p, 111y € frv(e) (by the
preceding equation) and p,, | ;1 1) € frv(A) Ufrv(01) U frv(6a) (since {p1,...,pn} =
frv(eg) \ (frv(A) U frv(6y) U frv(62)) by applicability of (r-abs)) the rule (r-mask’)
is applicable and yields

A{x 01} H e~ letregion pp 1 (i11) Pui(il1)41s > Pn 0 E 0o e\ {py i1}
where €\ {p, 1 (;11)} € €0 because of the assumption € C ¢p. Furthermore,
fI‘V(G \ {an(iLl)}) N {pla s apn} = (fI‘V(G) N {p17 ce 7pn}) \ {pnl(iil)}

= {p1,--- apnj_(ij_l)} \ {pnj_(ij_l)}
= {pla s aani}-

For © = n we obtain an € C ¢; such that
A{x : 01} H e~ letregion pi,...,p, in E: 0y, ¢ (2)

and frv(e) N {p1,....on} ={p1.-- . pnin} = 0.

Hence the final € is exactly € from rule (r-abs). Applying the rule (r-esub’) to (2) for
€2 D €1 from rule (r-abs) yields

A{x : 01} H e~ letregion p1,...,p, in E : 63, €. (3)
Apply (r-abs’) to get
AF Ax.e ~ Ax.letregion pi,...,p, in E:60; 3 65,0 (4)
and finally (r-esub’) for § C €3 to obtain the result
AF Ax.e ~ Ax.letregion pi,....p, in E: 0] S 0y, ¢€3. (5)

4.6 Annotated Region Language

The next step adds binding-time annotations to the region language, both to the expression
language and to the type language. Figure 13 defines the syntax of the expressions and the
types of the binding-time-annotated region language A;ff anne 10 the expression language, there
are binding-time annotated versions of all AZ-expressions (except variables and constants)
and a lift-expression. The construct “letregion® p in E” binds p to a new region of binding
time b for the execution of E.

In the type language, every type carries a binding-time annotation that denotes the bind-
ing time when a value of this type is available for computation. Top(o) denotes the top-level
binding-time annotation of o, for example Top(o; %% 03) = b. Furthermore, we define

stripped expressions, types, and type assumptions.

18

annotated expressions FE == lift E | ¢ |succ® F | pred® E |if0" E E FE |
x| \Nx.E | EQYE |rec® f(x).F |
refz E| "E|E:=} E| letregion® p in E
binding times b € BT ={S D}
annotated types o n= int®| ref{; oloSta

Figure 13: Annotated region language A/

r, ann

Definition 2 1. |o| is the region-annotated type that is obtained by stripping all binding-
time annotations from o.

2. |A] is defined by z : |o| in |A| iff : 0 in A.

3. |E| is the AT expression that is obtained from E by stripping all binding-time annota-
tions and all lift constructs.

Not all binding-time annotated types are acceptable. Using the ordering S < D on binding
times and our knowledge from the design of the specializer, we derive some constraints that
lead to the definition of a well-formed binding-time annotated type.

e The binding time of a region is equal to the binding time of all references (addresses)
into this region. Therefore, the top-level binding time of a reference type must be equal
to the binding time of its region.

e The value stored in a cell depends on its address. If the address is dynamic then the value
cannot be static. Therefore, the binding time of the value stored in a reference needs
to be greater than or equal to the binding time of the reference to that cell. However, a
static reference may contain dynamic values.

e A dynamic function must neither take static parameters nor deliver static results [26,
35,40]: the binding time of a function must be less than or equal to the binding time of
the argument type and less than or equal to the binding time of the result type.

e A dynamic function must not have an effect on a static region. This coincides precisely
with the observation that the specializer cannot pass the static store to a dynamic ab-
straction, but rather starts a new local static store in the scope of the abstraction. The
letregion-expression introduced in rule (r-abs) identifies those regions that are candi-
dates for the local static store inside the body of the function. Therefore, the binding
times of the regions mentioned in the latent effect of a function must be greater than or
equal to the binding time of the function itself.

Of course, a static function may have an effect on static and dynamic regions. The
effects on static regions happen at specialization time while the effects on dynamic
regions yield residual code.

The above description of acceptable annotated types leads to the following definition [73]
of well-formed binding-time-annotated types.

19

B Fint? wit

BFowft b<Top(c) B(p)=b
BF refz o wit

BF oy wit BFoywit b<Top(oy) b<Top(os) Vpe€frv(e).b < Bl(p)
BF oy 5P oy wit

Figure 14: Well-annotated region types

Definition 3 A binding-time assumption B is a finite mapping from region variables to
binding times. dom(B) is the domain of this mapping.

Suppose B is a binding-time assumption. A binding-time-annotated type o is well-formed
with respect to B if B - o wft can be derived using the rules in Fig 14. A type assumption
A is well-formed with respect to B, B+ A wft, if B+ o wit for all z: o in A.

The notion of well-formedness is the main source of constraints for the binding-time anal-
ysis. The typing part of the system provides additional equalities.

4.7 Binding-Time Annotation

In this section, we give the typing rules for Affmm. They are built on top of the rules for
the translation judgement Ag F' e ~ Ey : 6, ¢, by decorating the expression and the types
with binding-time annotations. To avoid notational clutter, we omit the translation part
e ~ of the judgement and show only the resulting A:ffann—expression. The judgement has the

form A, B+ E : g,e: “with type assumption A and binding-time assumption B the A:ffann—
expression F has binding-time-annotated type o and effect e.” Figure 15 shows the inference
rules.

The new parts in the rules lies in the introduction of binding-time annotations and in
the insistence on well-formedness in the rules that describe the construction of data, i.e.,
abstraction (b-abs), recursion (b-rec), and reference creation (b-ref). The assumption of the
(b-var) rule guarantees the well-formedness of the type assumption A. Constants (b-cst) are
always static and must be lifted if they are used in a dynamic context. This is captured by
the additional binding-time coercion rule (b-lift) that lifts static integers to code. This rule
is standard in binding-time analyses.

One rule that is different from other presentations of binding-time analysis is (b-if). The
rule states that a conditional expression is well-formed if the types of the branches are iden-
tical. Contrary to the standard rules, the binding time of the result type o is independent of
the binding time of the condition. This is possible because the specializer propagates the full
context to both branches of the conditional (cf. 3.3.5). If we used the alternative specialization
rule mentioned there, we would have to add the constraint b < Top(o).

Lemma 2 If A,BF F :0,¢ is derivable then B - o wft and B+ A wft.
Proof: Induction on the derivation of A,BF E : o,¢.

Therefore, in rule (b-deref) refz o is well-formed and will be accessed by a dereference
operation annotated with b. The same holds for the assignment operation (b-assn). If the

20

BFAwft z:0in A

(b-var) ABFax:0,0
BF A wft
(b-cst) A BFc:int, 0
(b-succ) A BF E:intb e
A, Bt succ® E:int? e
(b-pred) A,BF E:int® ¢

A,BFpred® E:int’, e
ABFE:intte b<¥/

A, BFlift E:int? ¢
A{x:0,},BF E:09,¢ BF o 5boy wit
A Btk Ny E:op 5P o9,
A,B|—E1:O'2—6>50'1,61 A,B"EQZO’Q,EQ

(b-app) T
A, Bt E{Q°Es : 01,eUeg Uegy

A BFEy:int’,e¢¢ A BFE :0,6 ABF Ey:o0,¢
A,Bl—ifObEgE1E220',60U61U62
A{f:0,x:01},BFFE:0,e BFowft o
A,BFrec’ f(z).F: 0,0 o= 72
A BFE:0,e BFref o wit
A, Bt refg E: ref{; o, € U {init(p)}

A,Bl—E:refg o, €
.
A,BF DE:0,eU{read(p)}

ABFE:ref 0,61 ABFFEsy:0,6

A,BF E; :=) Ey:0,e; Uey U{write(p)}

A BFE:o,¢

ABFE:o,€

A B{p:b}FE:o.€

(b-mask) p € frv(e) p&frv(A)Ufrv(o) € =€\ {p}
A, B+ letregion” pin E : o, ¢

(b-lift)

(b-abs)

(b-if)

(b-rec)

(b-ref)

(b-deref)

(b-assn)

(b-esub) eCé

Figure 15: Decorated region inference

21

reference has well-formed type ref{:7 o and the argument has type ¢ then the assignment will
be performed at the time indicated by b. The binding time Top(c) may be greater than or
equal to b, it may be dynamic even if b, the binding time of the address, is static. Likewise,
in (b-app) the type of E is well-formed.

4.8 Properties of Binding-Time Annotations

We are now interested in finding the “most static” binding-time annotation for an expression,
once we have chosen a certain derivation in A7 as the basis (for example, using the algorithm
in Sec. 4.4). To formalize this, we define the notion of a completion of a A’-derivation.

Definition 4 A' = A, B+ E : 0,¢ is a completion of Aqg F e~ Eg : 0, ¢ if A’ is derivable,
\A| = Ag, dom(B) = frv(Ey), |E| = Ey, and |o| = 6.

However, we are not interested in any completion, but in the “most static” one, so we set out
to define an ordering on the set of completions of a particular derivation. First, we need an
auxiliary definition to define greatest lower bounds of binding times, types, type assumptions,
binding-time assumptions, and judgements.

b1 if by = by Vb < by

Definition 5 1. For b1,by € BT, by Mby = { by otherwise
2 .

2. Let 01,09 be such that |o1| = |o3|. Define o1 M o9 inductively by
intt M intb2 = inth1Mb2
(ref{;l o1) M (refi’,2 09) = ref{;}'—'bQ (o1 M o)
(o1 SP o)) N (09 52 0h) = (01 Noy) ST (04 M oh)

3. For type assumptions Ay, Ay with |A;| = |Ay| define Ay M Ay by:
r:01Mogin AyM Ay iff 2 : 07 in Ay and z : 09 in As.

4. For binding-time assumptions By, By with dom(B;) = dom(Bj) define

BiN By = {p:Bi(p) N Ba(p) | p € dom(B1)}.

5. For judgements A" = A", B'"+ E' : ¢/,e and A" = A" B" + E" : ¢"” ¢ which are
completions of A = Ag F' e~ Ej : 0, ¢, define the judgement A’ M A” by induction on
A and the number of lift-expressions in £’ and E”.

A’ A" has the form A’ A", BN B"+ E: o' Mo e (all this is well-defined, because
A" and A" are completions of A) where is F is defined as follows:

If B' = lift E] and E" = lift B} then ¢/ = ¢” = int” and E = lift E; where F is
determined inductively by the result of (A’, B' - E} : int%,)N (A", B" - E{ : int%, ¢) =
(A'm A", B'M B" - Ej :int®,e).

If £/ = lift B}, E" # lift EY, o' = int? and ¢” = int? then E = lift E; where
E, is determined by the result of (A’,B' - E}| : int®,¢) N (A", B" - E" : intP e) =
(A'm A", B'M B" + E; :int”,¢).

22

If E' = lift B, E" # lift E}, ¢/ = int” and ¢” = int® then E = F;, where E is
determined by the result of (A', B’ - E{ : int%,¢) M (A”,B" - E" : int%,¢) = (A' N
A" B'NB"+ E; :int%,¢).

If E' # lift B and E"” = lift EY: analogous to the previous two cases.

For the remaining cases, we can assume that neither E' nor E” is a lift-expression.
They are straightforward and we present just two samples. Basically, if b’ and 0" are
the top-level annotations in E' and E”, we need to apply the same syntax constructor
annotated with o' M b” to the expressions that we obtain inductively.

If E' = x then B =z and FE = x, too.

If E' = succ” E} and E" = succ”” E! then E = succ®™" E| where E; is obtained by
induction as above.

Lemma 3 The greatest lower bound operations on binding times, types, type assumptions,
binding-time assumptions, and judgements are commutative and associative.

Proof: Straightforward, with a tedious case analysis in the case for judgements involving
lift-expressions.

In addition, well-formedness of types and type assumptions is not affected by taking greatest
lower bounds.

Lemma 4 Suppose dom(B;) = dom(By).

1. For all 0 = |o1| = |og| with frv(f) C dom(By), if By b o1 wit and By F oy wit then
By M By F g1 Moy wit.

2. For all Ag = |A1| = |Aa| with fro(Ag) C dom(By), if By - Ay wit and By + Ay wit then
BBy F A Ay wit.
Proof: 1. Induction on 6.

2. Induction on the size of Ay, then apply part 1.

Next we can prove that the greatest lower bound of two completions is itself a completion,
which includes its derivability.

Lemma 5 If A" and A" are completions of some A-judgement A then A' M A" is a com-
pletion of A.

Proof: By induction on the definition of A’ M A",
Let A=A B FE :0',e, A"=A"B"+E":0",e, A= Ay e~ Ey: 0,¢, and
A'MA" = A'MA" B'NB"FE: o' No",e.

Now we follow the cases of the definition:

o If B/ = lift E} and E" = lift F then o/ = 0" = int? and E = lift E; where E;
is determined by the result of (4, B’ - E} : int%,¢) N (A", B" - E/ : int%,¢) =
(A'm A", B'MB" - E; :int?, ¢).

By induction, this judgement is derivable and we apply (b-lift) to obtain A’ M
A" B'n B" F1lift Ey :int”,€), but that is exactly A’ A",
Trivially, |E| = [lift E;| = FEj.

23

Thus armed, we set out to show that each A’ derivation A can be completed to a AT/

The case E' = lift B}, E" #lift B/, ¢/ = int? and ¢” = int” works by exactly the
same reasoning.

If B' = lift B}, B" #lift EY, ¢/ = int? and ¢” = int” then E = F; where F;
is determined by the result of (4, B’ - E} : int®,¢) N (A",B" - E" : int%,¢) =
(A'M A", B'MB"F E; :int”).

Again, by induction this judgement is derivable, but this time it is already equal
to A’ A",

Trivially, |E| = |E1| = Ej.

If B/ = x then £ = z and E = =z, too.

By assumption, A', B’ + x : ¢', € which must be due to rule (b-var). Hence = : ¢’
in A and ¢ = (. By the same reasoning, x : ¢” in A” so that = : ¢’ T ¢” in
A" A" by definition. Since B’ B" - A’ M A” wit by Lemma 4, (b-var) proves
AMA" B NB"Fa:o No",0.

Trivially, |E| = x = Ej.

If E' = succ” EY and E" = succ” EY then E = succ? ™" E; where E; is obtained
as indicated in the definition of M.

In this case, we have o’ = int”, ¢” = int"", and Ey is succ Ej. The last rule in
both cases must have been (b-succ) applied to A', B' + E} : int? e and A”, B" +
EY - int" e, respectively.

The greatest lower bound of these is by definition A’ A”, B'M1B" Ey : int? ™" ¢
and it is a completion of Ej, by induction. Applying (b-succ) to it yields A’ I
A", B'11 B" F succ?™" By ¢ int? ™" ¢ which is exactly A/ A”.

Furthermore, |E;| = E}, by induction, so |E| = |succ” ™" E;| = succ E} = Fq.
The remaining cases are essentially straightforward appeals to the inductive hy-
pothesis.

r, ann”

derivation. Furthermore, the set of completions of A forms a finite lower semi-lattice, i.e., a
partial order with greatest lower bounds and a smallest element.

Proposition 1 Suppose the translation judgement A = Ag F' e~ Eqy: 0, ¢ is derivable.

1. There exist A, B, E, and o such that A, B+ E : 0,¢ is a completion of A.

2. Define the relation < on the set of completions of A by A" < A" iff AMA" = A'. This
relation s a partial order.

3. The partial order < on the set of completions of A has a smallest element.

Proof:

1. Define A such that for each x; : 6; in Ag there is x; : 0; in A with 0; = |0
and all annotations in og; are D. Likewise for o. For each free region variable p
in Eqy there is p : D in B. Obviously, B - A wft and B F ¢ wft. Define E such
that |E| = Ep, all annotations in E are D, and a lift is placed on every constant.
This assignment fulfills all well-formedness requirements, and by induction on the
derivation of A we can prove that A, B+ E : o,¢ is derivable and conforms to A.

24

2. We have to show that < is reflexive, transitive, and antisymmetric. Reflexivity is
trivial by definition of M. Transitivity is immediate using the definition of < and
the associativity of M. Antisymmetry follows by commutativity of .

3. Since BT and Ej are finite, there is only a finite number of completions of A.
Since the set of completions is non-empty by part 1 and it is closed under greatest
lower bounds M, the greatest lower bound of all completions is a completion which
is < to every other completion.

This result sets our goal: The algorithm should find the annotation corresponding to the
smallest completion of a fixed AT/-derivation.

4.9 Binding-Time Reconstruction

In this section, we use the well-formedness constraints on the binding-time annotation to de-
termine the smallest possible annotation. This reconstruction of the binding-time annotations
boils down to solving inequations over natural numbers.

To compute the minimal well-formed binding-time decoration for the derivation of a trans-
lation judgement A = Ay F e ~ Ey : 6,¢, we first attach a binding-time variable to each
construct of Fy and to each type constructor mentioned in the derivation of A. Binding-time
variables range over BT. The type equalities imposed by the inference rules imply equali-
ties between binding-time variables. These equalities are resolved by unification during type
inference. The well-formedness constraints in the decorated region inference rules give rise
to a system of inequations between binding-time variables. Such a system can be solved in
time linear in the number of inequations [68]. To facilitate the insertion of lift-expressions,
expressions of type int carry two binding-time variables b; and by constrained by by < bs, as
proposed by Henglein [40].

The number of inequations is at most quadratic in n, the size of the expression e, because
we need at most 2 + n inequations for each type constructor and there is a (term graph)
representation of all types mentioned in A that needs at most n type constructor nodes [40].
Hence, the worst case time bound for this step is O(n?).

5 Implementation Issues

The implementation of the specializer is mostly straightforward and follows the specialization
semantics given in Sec. 3. This section deals with two implementation issues that we have
ignored so far: program point specialization and static store management.

5.1 Program Point Specialization

Program point specialization is an essential feature of realistic specializers [2,8,9,17,51,58]. It
implements the fold and define rules that are well-known from program transformation [16],
thus avoiding code duplication and many cases of infinite specialization. Folding is the process
of using already known definitions.

A program point specializer tries to fold at specialization points, marked by “memo E” in
the annotated language. How to fold is determined by the static fingerprint, a projection of
the current state of the specializer. Compared to the other specializers, we have an additional
problem with computing the static fingerprint due to the presence of sharing and cycles in

25

the store. The static fingerprint of S[memo E]pko depends on p and the reachability graph
of the store, R(o), which is defined as follows:
R(0) is alabeled digraph. Its nodes are the used locations of the store {a | o(«) # unused}
and the label of node « is o(«). There is an edge o — o' iff () contains the address «'.
The static fingerprint of S[memo E]pko consists of

e the static values in the environment p and

e the statically reachable part of the store o, i.e., the subgraph of the graph R(o) that is
reachable from the static references in the environment.

Whenever the specializer encounters a specialization point “memo E” it creates a residual
procedure call. The current static fingerprint determines which residual procedure is called.
When the specializer encounters a particular fingerprint for the first time it creates a new
procedure definition and specializes £ to construct its body. The new definition is cached
and indexed with the fingerprint. The next time, the specializer only constructs the residual
procedure call and adjusts the static store according to the effect that specializing F would
have.

The implementation uses a linearized representation of the reachable static store, which
is constructed during a depth-first traversal of R(o). This representation only reflects the
structure of the graph, but not the actual store addresses. Otherwise it would be virtu-
ally impossible to encounter the same fingerprint again. Therefore, the address used in a
fingerprint is the depth-first number of the node in the traversal of R(o).

The binding time of a specialization point memo F is dynamic, because the specializer
generates a residual function call for it. The specializer processes the body E with the empty
continuation Ay.\o.y and—in contrast to the dynamic abstraction—the static store at the
memo FE expression. In addition, it stores a log of the static side effects performed while
specializing F.

This log causes a problem, because it is only complete after the specializer is finished with
E. However, the specializer may recursively try to process the same specialization point with
respect to the same static fingerprint before the log for this specialization point is complete.
There are basically two solutions to this problem.

1. The online strategy [58] “freezes” the log when it encounters such a recursive call. Then
it proceeds with its current contents. The specializer signals an error on an attempt to
modify the “frozen” log later on.

2. The offline strategy disallows static write and init effects at specialization points.

Our system implements the offline strategy. It avoids unexpected errors at specialization time
and the binding-time analysis can easily enforce it. More sophisticated offline strategies are
possible, but we have yet to encounter examples where they are required.

5.2 Static Store Management

The specializer duplicates the static store at a dynamic conditional (see Fig. 7). Taken
literally, the specializer would hold on to a copy of the static store while specializing the
then-branch and use the copy to specialize the else-branch afterwards (as in early versions of
C-Mix [2]). This is clearly inefficient.

26

In our implementation, a stack (which happens to be identical to the above-mentioned
log) keeps track of all modifications, similar to the trail stack in a Prolog implementation.
Every static assignment pushes the address o and the previous contents o(«) on the stack.
At the dynamic conditional, the specializer pushes a mark on the stack before entering the
then-branch. After this specialization is finished and before specializing the else-branch, the
specializer pops and undoes all entries in the stack up to (and including) the mark. Thus it
establishes a static store which is equivalent to the static store before entering the then-branch.

6 Applications

In preceding sections, we have seen that two factors aggravate the problem of performing
assignments at specialization time with respect to a traditional imperative language: first-
class references complicate the data flow and higher-order functions complicate the control
flow. With the applications below, we show that our specializer handles both in a satisfactory
manner. None of the existing specializers for Scheme and ML [7,9, 51] can satisfactorily
specialize these examples in the presented form.

The first application demonstrates program point specialization with respect to cyclic data
structures. All previous program point specializers explicitly forbid cyclic data since it results
in non-termination. Specializers for traditional languages avoid this problem by restricting
the use of pointers. The second application is the specialization of DAG unification where
variables are implemented by pointers. To achieve similar results with another specializer,
requires major rewriting of the source program [19]. In contrast, our source program is
straightforward and needs only slight modifications to achieve good specialization. For the
third application we specialize an interpreter for a first-order lazy functional language which
implements updatable closures using thunks and references. The result is online specialization
for the lazy language. This is a particular instance of specializer generation [33] which has
not been achieved before. For this example, the ability of the specializer to process thunks

and references at specialization time is crucial.
The examples use a non-standard construct to declare algebraic datatypes. For example

(define-data xlist (xnil) (xcons xcar xcdr))

defines a new datatype x1ist with a nullary constructor xnil and a binary constructor xcons
with selectors xcar and xcdr.

6.1 Cyclic Data

The program below constructs a cyclic list of ones and combines it with an unknown list d.
The function main maps a list (z1 ... z,) to the list of pairs ((z; . 1) ... (z, . 1)).

(define-data x1list (xnil) (xcons xcar xcdr))
(define (main d)
(let ((cycle (xcons 1 (make-cell (xnil)))))
(cell-set! (xcdr cycle) cycle)
(zip d cycle)))
(define (zip d s)
(if (null? d)
>0
(cons (cons (car d) (xcar s))
(zip (cdr d) (cell-ref (xcdr s))))))

27

The binding-time analysis determines that all operations on references can be performed
at specialization time, given that d is dynamic. Specializing the function zip requires taking
the static fingerprint of the cyclic data structure bound to cycle. The resulting residual
program is:

(define ($goal-1 yyy-1)
(define (zip-4-2 yyy-1-1)
(let ((mlet-2 (null? yyy-1-1)))
(if mlet-2
"0
(let* ((mlet-5 (car yyy-1-1))
(mlet-4 (cons mlet-5 1))
(mlet-6 (cdr yyy-1-1))
(mlet-7 (zip-4-2 mlet-6)))
(cons mlet-4 mlet-7)))))
(zip-4-2 yyy-1))

The specializer terminates despite the cyclic structure which vanishes on specialization. The
construction of the pair (x . 1) is implemented by (cons mlet-5 1).

6.2 Unification

We have implemented a unification algorithm (unify s t) which works on terms where
variables are implemented by references:

(define-data maybe
(just one)
(nothing))
(define-data term
(make-var ref) ; make-var : ref (maybe term) -> term
(make-cst num)
(make-bin terml term2)
(make-dyn dynterm))

A value of type maybe X is either (nothing) or (just X), where X has type X. A variable
is represented by (make-var ref) where ref is a reference which either contains (nothing)
(an unbound variable) or a binding (just term) where term is a term. A constant is simply
(make-cst num) where num is a number. The single binary constructor make-bin applies to

two terms. Finally, a term may also be a dynterm which is explained below.
The following code is written for s static and t dynamic.

(define (unify s t)
(cond
((make-var? s)
(let ((ref-maybe-s (ref s)))
(if (just? (cell-ref ref-maybe-s))
(unify (one (cell-ref ref-maybe-s)) t)
(begin
(cell-set! ref-maybe-s (just (make-dyn t)))
SUCCESS))))
((make-cst? s)
(cond ((make-var? t)
(let ((ref-maybe-t (ref t)))

28

(if (just? (cell-ref ref-maybe-t))
(unify s (one (cell-ref ref-maybe-t)))
(begin
(cell-set! ref-maybe-t (just (make-cst (num s))))
SUCCESS))))
((make-cst? t)
(= (num s) (num t)))
(else
FAIL)))
((make-bin? s)
(cond ((make-var? t)
(let ((ref-maybe-t (ref t)))
(if (just? (cell-ref ref-maybe-t))
(unify s (one (cell-ref ref-maybe-t)))
(begin
(cell-set! ref-maybe-t (just (make-bin (coerce (terml s))
(coerce (term2 s)))))
SUCCESS))))
((make-bin? t)
(and (unify (terml s) (terml t))
(unify (term2 s) (term2 t))))
(else
FAIL)))
((make-dyn? s)
(dynamic-unify (dynterm s) t))
(else
FAIL)))

SUCCESS and FAIL are just names for #t and #f. We consider the case where s is make-cst
in depth.

If the dynamic term t is a variable then the code checks (dynamically) whether the variable
is bound. If it is bound it recursively unifies s with the term bound to the variable. If the
variable is not bound then it is dynamically bound to the constant term and SUCCESS is
returned.

Otherwise, if t is a constant then the values of the constants are compared and the result
of the comparison is the result of the unification. Otherwise, for any other kind of term,
failure is signalled.

The make-dyn constructor appears in static terms when a static variable is bound to a
dynamic term. Consequently, if s is such a dynamic term, unify extracts the term and
dynamically unifies it with t. Therefore, a completely dynamic copy of unify is necessary.
This duplication of unify (not shown) is a standard binding-time improvement, which can
be automated [75].

Finally, coerce transforms a static term into a dynamic copy of the same term. It is
necessary whenever a static term is bound to a dynamic variable. If the code would simply
assign the static term to the dynamic variable the binding-time analysis would classify the
intended static term as dynamic. Therefore, coerce first copies the static term and the code
assigns the copy to the variable. The copy procedure coerce serves as a binding-time coercion
because its argument term is static and its result term is dynamic. Coerce must implement
a graph copy algorithm to preserve sharing.

29

(define ($goal-1 yyy-1)
(define (unify_1-56-2 yyy-1-1)
(let ((mlet-2 (make-var? yyy-1-1)))
(if mlet-2
(let* ((mlet-3 (ref yyy-1-1))
(mlet-4 (cell-ref mlet-3)))
(unify_1-57-3 mlet-4 mlet-3))
(unify_1-58-4 yyy-1-1))))
(define (unify_1-58-4 yyy-1-1-1)
(let ((mlet-2 (make-bin? yyy-1-1-1)))
(if mlet-2 (unify_1-59-5 yyy-1-1-1) #£)))
(define (unify_1-59-5 yyy-1-1-1-1)
(let* ((mlet-2 (terml yyy-1-1-1-1))
(mlet-3 (term2 yyy-1-1-1-1)))
(dynamic-unify mlet-2 mlet-3)))
(define (unify_1-57-3 mlet-4-2 mlet-3-1)
(let ((mlet-3 (just? mlet-4-2)))
(if mlet-3
(let ((mlet-4 (one mlet-4-2)))
(unify_1-56-2 mlet-4))
(let* ((mlet-10 (nothing))
(mlet-9 (make-cell mlet-10))
(mlet-11 (make-var mlet-9))
(mlet-12 (make-var mlet-9))
(mlet-8 (make-bin mlet-11 mlet-12))
(mlet-7 (just mlet-8))
(mlet-6 (cell-set! mlet-3-1 mlet-7)))
#£))))
(unify_1-56-2 yyy-1))

Figure 16: unify specialized with respect to (make-bin (make-var r) (make-var r))

Our binding-time analysis annotates all operations on static terms s as static. Only the
operations depending on t are classified dynamic.

We have specialized this algorithm with respect to various terms s. In each case the
specializer is able to perform all operations that involve the processing of s. It handles non-
linear variables correctly due to the fact that coerce preserves sharing. Figure 16 shows the
result of specializing unify with respect to (make-bin (make-var r) (make-var r)) where
the variable is not bound. The function unify_1-59-5 handles the non-linear occurrence of
the variable (make-var r). The last part of function unify_1-57-3 constructs a dynamic
version of the static input term, again respecting sharing (viz. mlet-9).

The speedup obtained by specialization of unify varies between 1.65 and 2.25. This is a
good result for a realistic algorithm.

6.3 Specializer Generation

Specializer generation is a challenging application [32,33]. Basically, it allows the automatic
construction of a specializer from a suitable interpreter. This is an extension of the classic
application of partial evaluation to compilation. The theoretical foundations are the special-

30

izer projections [32], which are generalizations of Futamura’s projections (which show how to

achieve compilation) [31].

Using the specializer projections we have generated an online specializer for a lazy first-
order functional programming language from a two-level interpreter. A two-level interpreter
accepts its input data in two parts. The first part is considered the known part of the input
while the second part is unknown. The first part is put in a standard environment, while
the second part is put into a configuration environment. The known inputs may refer to the
unknown inputs through configuration variables (pointers to unknown input). The interpreter
represents values using the datatype desc:

(define-data desc
(const const->value)
(cvar cvar->number)
(static-susp static-susp->ref-sum) ; (value + unit -> value) ref
(dyn-susp dyn-static->ref-sum dyn-susp->ref-sum))
(define-data sum
(make-value sum->value)
(make-thunk sum->thunk))

The interpreter tries to perform a computation with the known values first before it backtracks
and uses unknown values from the configuration environment. A value can be a constant
(const), a configuration variable (cvar) that points into the dynamic configuration environ-
ment, a static suspension, or a dynamic suspension. A static suspension is implemented by a
reference that either holds the value (if it was already computed) or a thunk that is invoked
when the value is first demanded. The interpreter generates a dynamic suspension if it is not
able to determine a priori whether the value of the suspension will be known or unknown.
Therefore, the dyn-susp contains both, a static and a dynamic suspension. The interpreter
first tries the static one and only falls back to using the dynamic one if the static suspension
fails to deliver a result.

The binding-time analysis classifies all references and thunks in the interpreter as static.
This is impossible to achieve with an overly conservative partial evaluator like Similix. The
specialized programs have the property that the value of each source expression of the program
is computed at most once.

In our experiments, we have found that the speedup due to specialization varies extremely
depending on the particular first-order program. We have measured speedups between 70 and

150, which reflects the massive overhead in the two-level interpreter.
For example, specialization of the program (first-order recursive equations)

(fxyz=(gx (+yz) (-y=2))
(gxyz=(>Uf x (+yy) (xz2)))

with respect to (f cv; cvy 13) (where cv; denotes a configuration variable) yields the fol-
lowing residual program.

(define ($goal-1 dyn-1)
(define (dyn-eval_1-11-2 mlet-4-6 mlet-3-5 mlet-4-4 mlet-3-3 mlet-4-2 mlet-3-1)
(if mlet-3-1
(let ((mlet-7 (+ mlet-4-4 13)))
(+ mlet-7 mlet-7))
(let ((mlet-9 (- mlet-4-6 13)))
(* mlet-9 mlet-9))))

31

(let* ((mlet-2 (cdr dyn-1))
(mlet-3 (car dyn-1))
(mlet-4 (car mlet-2)))
(dyn-eval_1-11-2 mlet-4 mlet-3 mlet-4 mlet-3 mlet-4 mlet-3)))

The parameter dyn represents the configuration environment. It is a list of the values of the
configuration variables. So mlet-3 and mlet-4 hold the values of cv; and cva, respectively.
It is clearly visible that each operation in the source program is executed at most once in the

residual program. In addition, the known value 13 is propagated to its uses.
If the input additionally specifies the value of the condition, i.e., (f #f cwvy 13) the
residual program reduces to one slice of the above residual program.

(define ($goal-1 dyn-1)
(let* ((mlet-2 (car dyn-1))
(mlet-3 (- mlet-2 13)))
(* mlet-3 mlet-3)))

7 Related Work

7.1 Online Specialization

The early work on specialization mostly considers online specialization for imperative lan-
guages. For example, Futamura [31] and Ershov and his group [14, 28, 29] consider fragments
of Algol. Building on work by Ershov’s group, Meyer [53] defines and proves correct an on-
line specializer for Pascal that performs side effects at specialization time. Marquard and
Steensgaard [52] describe an online partial evaluator for an object-oriented imperative lan-
guage. The REDFUN group [6, 37] developed specializers for impure Lisp using an ad-hoc
approach to handling side effects. @rbaek’s POPE [64] specializes Scheme with mutable vari-
ables, but always residualizes operations that affect variables. Asai and others [4] describe an
online specializer for a subset of Scheme which handles dynamic side effects using pre-actions.
Pre-actions have a purpose similar to automatically inserted let-expressions. Their special-
izer does not handle side effects at specialization time. There are also versions of the FUSE
specializer [77] which deal with assignments.

7.2 Offline Specialization

The first offline specializer for an imperative flow-chart language is flow-chart mix [36]. A
similar language is studied by Das and others [24] who provide a semantic notion of binding-
time analysis for a tiny imperative language based on a notion of value sequences. Today
there are partial evaluators for realistic languages, for example C-mix and Tempo for a subset
of ANSI C [2,20] , F-spec for a subset of Fortran 77 [5], and M2MIX for Modula-2 [15]. All
of them perform some side effects statically, but all of them deal with first-order languages
and some do not include pointers (flow-chart mix and F-spec). In contrast, we specialize a
higher-order language with first-class mutable references.

The system of Nirkhe and Pugh [58] is interesting, because it requires programming in an
annotated language. They describe partial evaluation for a block-structured imperative lan-
guage. They perform full memoization, but using the online technique described in Sec. 5.1.
Furthermore, they cut down the static fingerprint by only including those parts of the store

32

that are actually read. This feature could also be included in our specializer using an addi-
tional analysis or by starting from a polymorphically typed language.

Like our system, recent versions of C-Mix duplicate the store only conceptually at dynamic
conditionals and include sophisticated static memory management techniques [3]. Bulyonkov
and Kochetov [15] define a static analysis that determines the part of the store that is affected
by specialization of the then-branch. The result of this analysis can drive a more efficient
partial save/restore scheme than ours. Our approach to static memory management draws
on ideas from the implementation of first-class stores [25,43,56]. A language supporting first-
class stores provides operations to reify the current store as a first-class object and to install
such a store again as the current one later in the computation.

The specializers of Bondorf and Danvy [9,12] deal with first-order and higher-order recur-
sive equations with global variables. Neither specializer performs side effects at specialization
time. SML-mix [7] and Pell-Mell [51] employ the same conservative strategy for partial eval-
uation of SML. Pell-Mell wraps dynamic computations in dynamic let-expressions to obtain
“lightweight symbolic values.” This is similar to the introduction of let-expressions in our
specializer.

7.3 Specialization with Continuations

Continuation-based partial evaluation started of with Consel and Danvy’s improvement of
static data flow by CPS-transforming the source program before specializing it [18]. Bondorf
[10] avoids CPS in residual programs by writing the specializer itself using continuations
and liberalizing the binding-time analysis in the same way as Consel and Danvy. Lawall
and Danvy [48] reexpress Bondorf’s specializer in direct style plus control operators to gain
efficiency. Moura, Consel, and Lawall [57] suggest an approach to static analysis of imperative
programs by transforming them to a sophisticated variant of store-passing style (and to static
single assignment form [21]) and apply analysis techniques developed for pure functional
programs. This parallels Consel and Danvy’s use of the CPS transformation [18]. In our
work we use Consel and Danvy’s approach as a proof device. In practice, our specializer
rephrases Bondorf’s specializer [10] in the style of Consel and Danvy [18] using A-normal
form instead of CPS for the residual code and, of course, adding store passing. Our actual
implementation generalizes Lawall and Danvy’s direct-style specializer.

Interestingly, Hatcliff and Danvy [39] have specified and proved correct a partial evaluator
that performs let-insertion automatically. Their let-insertion results from a preceding trans-
formation into Moggi’s computational metalanguage [54] whereas our specializer does it on
the fly. Another difference is that their specializer only propagates static contexts whereas
our specializer propagates dynamic contexts, too.

Our binding-time analysis is inspired by binding-time specifications using non-standard
and annotated type systems [26,34,40]. The supporting analyses are based on effect systems
[50, 70, 76].

7.4 Type-based Specialization

Hughes [42] has discovered a novel framework for specialization of typed higher-order lan-
guages. His type specialization is a variation of type inference and is thus able to overcome
some limitations of partial evaluators for typed languages. Hughes and the authors [27] have
extended type specialization to Moggi's computational metalanguage (instantiated to the

33

state monad) so that it covers a similar range of applications as the present work. However,
whereas the focus of the type specialization work lies on the exploitation of (and struggling
with) the superior information flow granted by unification, the present work targets efficient
partial evaluation for realistic languages. Due to the unification a type specializer constructs
its output out of order, whereas our specializer adheres to the evaluation order. Furthermore,
the partial evaluator presented here is fully automated: the binding-time analysis constructs
well-annotated programs which the specializer processes without producing errors. In con-
trast, the type specializer must be fed an annotated program and it may report errors during
specialization even on well-formed programs.

Type-directed partial evaluation [22] is also applicable to specialization with static state,
in principle. However, if sum types are handled as indicated in the paper [22] then the static
store will not be duplicated at dynamic conditionals. This is due to the use of versions of the
control operators shift and reset that are ignorant of the store, leading to incorrect results.
In addition, type-directed partial evaluation does not perform program point specialization.

8 Conclusions and Further Work

We have developed an offline partial evaluator for a call-by-value lambda calculus with first-
class references. Although presented for a simple core language, the techniques scale up to full
Scheme or Standard ML. It is straightforward to include partially static data, to construct
program-generator generators (cogens), and to extend the specializer to multiple levels of
binding times. All these extensions are implemented along with the techniques presented in
this work in the PGG system which applies to the full Scheme language [71,72,74].

The specializer is applicable to programs that are otherwise hard to specialize in a sat-
isfactory manner: Specializers like Similix explicitly disallow the construction of cyclic data
structures; specializing unification without static references requires non-trivial rewriting of
the algorithm [19]; specialization of programs in message-passing style is impossible without
a proper treatment of static references as demonstrated in Fig. 1; specializer generation for
lazy functional languages has not been achieved before.

Specialization time and the efficiency of the binding-time analysis were never a problem in
practice. Preliminary experiments suggest that the analysis runs in linear time in the typical
case, i.e., for programs that do not use side effects or that use them sparingly. We have never
observed the worst-case O(n*) behavior in practice.

The specialization algorithm is based on continuation-passing and store-passing style. It
generalizes continuation-based partial evaluation. The novelties are the treatment of the
static store using store-passing style and the automatic let-insertion. In the implementation
we have rephrased our algorithm in a similar way as Lawall and Danvy rephrased continuation-
based partial evaluation [48]. Furthermore, we have some evidence that our approach can be
generalized to deal with other computational effects, such as exceptions.

The novel element of our binding-time analysis is its reliance on a region inference system
in place of a type system. We regard it as a natural extension of the type-based analyses
that are used in other partial evaluators [13]. Our analysis can be regarded as improving the
results of earlier analyses by exploiting region information. There is a correctness proof for
the region-based binding-time analysis [73].

The main emphasis of our approach is on simplicity and efficiency. For these reasons we
have chosen a monovariant, context-insensitive binding-time analysis. This yields a tractable

34

polynomial analysis which is fast in practice. We are fully aware that there are more precise
and more expensive analysis methods that exploit polyvariance or polymorphism, but the
examples show that our approach already leads to satisfactory results. Our conclusion is that
the additional precision of other analysis methods may not be required for many applica-
tions in mostly functional languages like Scheme or ML. In another context, for example to
specialize C or Modula-2, different choices may be preferable.

The basic techniques presented in this work are generally applicable. For example, our
techniques for analysis and static memory management are immediately applicable to any
procedural language, i.e., Modula-2 or C. Beyond that, we believe that the analysis and
implementation techniques can be extended to object-oriented programming languages.

Acknowledgements

This work was initiated during a visit of Dirk Dussart at Tiibingen University, funded by a
Ministerium fiir Wissenschaft und Forschung grant, in February 1996. It was further devel-
oped during his stay at BRICS, Aarhus, in 1996. Special thanks are due to Olivier Danvy,
Simon Helsen, Julia Lawall, Torben Mogensen, Claus Reinke, and Michael Sperber for valu-
able feedback in various stages of this work and to S. Doaitse Swierstra for support.

References

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpretation
of Computer Programs. MIT Press, Cambridge, Mass., 1985.

[2] Lars Ole Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU report 94/19).

[3] Peter Holst Andersen. Static memory management in C-Mix. available
at URL http://www.diku.dk/research-groups/topps/activities/cmix/memory.ps.gz, De-
cember 1996.

[4] Kenichi Asai, Hidehiko Masuhara, and Akinori Yonezawa. Partial evaluation of call-
by-value A-calculus with side-effects. In Charles Consel, editor, Proc. ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation PEPM
97, pages 12-21, Amsterdam, The Netherlands, June 1997. ACM Press.

[5] Romana Baier, Robert Gliick, and Robert Zochling. Partial evaluation of numerical
programs in Fortran. In Peter Sestoft and Harald Sgndergaard, editors, Proc. ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation
PEPM °94, pages 119-132, Orlando, Fla., June 1994. ACM.

[6] L. Beckman, A. Haraldsson, O. Oskarsson, and E. Sandewall. A partial evaluator, and
its use as a programming tool. Artificial Intelligence, 7(4):319-357, 1976.

[7] Lars Birkedal and Morten Welinder. Partial evaluation of Standard ML. Rapport 93/22,
DIKU, University of Copenhagen, 1993.

[8] Lars Birkedal and Morten Welinder. Hand-writing program generator generators. In
Manuel V. Hermenegildo and Jaan Penjam, editors, International Symposium on Pro-
gramming Languages, Implementations, Logics and Programs (PLILP ’94), volume 844

35

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

of Lecture Notes in Computer Science, pages 198-214, Madrid, Spain, September 1994.
Springer-Verlag.

Anders Bondorf. Automatic autoprojection of higher order recursive equations. Science
of Computer Programming, 17:3-34, 1991.

Anders Bondorf. Improving binding times without explicit CPS-conversion. In Proc. 1992
ACM Conference on Lisp and Functional Programming, pages 1-10, San Francisco, Cal-
ifornia, USA, June 1992.

Anders Bondorf. Similiz 5.0 Manual. DIKU, University of Copenhagen, May 1993.

Anders Bondorf and Olivier Danvy. Automatic autoprojection of recursive equations with
global variables and abstract data types. Science of Computer Programming, 16(2):151-
195, 1991.

Anders Bondorf and Jesper Jgrgensen. Efficient analyses for realistic off-line partial
evaluation. Journal of Functional Programming, 3(3):315-346, July 1993.

Mikhail A. Bulyonkov. Polyvariant mixed computation for analyzer programs. Acta
Informatica, 21:473-484, 1984.

Mikhail A. Bulyonkov and Dmitrij V. Kochetov. Practical aspects of specialization of
Algol-like programs. In Danvy et al. [23], pages 17-32.

Rod M. Burstall and John Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44-67, 1977.

Charles Consel. Polyvariant binding-time analysis for applicative languages. In
David Schmidt, editor, Proc. ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation PEPM 93, pages 66-77, Copenhagen, Den-
mark, June 1993. ACM Press.

Charles Consel and Olivier Danvy. For a better support of static data flow. In Hughes [41],
pages 496-519.

Charles Consel and Siau-Cheng Khoo. Semantics directed generation of a Prolog com-
piler. In Jan Maluszynski and Martin Wirsing, editors, Proc. Programming Language
Implementation and Logic Programming '91, pages 135-146, Passau, Germany, August
1991. Springer-Verlag. LNCS 528.

Charles Consel and Francois Noél. A general approach for run-time specialization and
its application to C. In POPL1996 [63], pages 145-156.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control flow graph.
ACM Transactions on Programming Languages and Systems, 13(4):451-490, October
1991.

Olivier Danvy. Type-directed partial evaluation. In POPL1996 [63], pages 242-257.

36

23]

[24]

[25]

[26]

Olivier Danvy, Robert Gliick, and Peter Thiemann, editors. Dagstuhl Seminar on Partial
Evaluation 1996, volume 1110 of Lecture Notes in Computer Science, Schlo3 Dagstuhl,
Germany, February 1996. Springer-Verlag.

Manuvir Das, Thomas Reps, and Pascal Van Hentenryck. Semantic foundations of
binding-time analysis for imperative programs. In William Scherlis, editor, Proc. ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipula-
tion PEPM 95, pages 100-110, La Jolla, CA, June 1995. ACM Press.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures
persistent. In Proceedings of the Fighteenth ACM Symposium on Theory of Computing,
pages 109-121, May 1986.

Dirk Dussart, Fritz Henglein, and Christian Mossin. Polymorphic recursion and sub-
type qualifications: Polymorphic binding-time analysis in polynomial time. In Alan
Mycroft, editor, Proc. International Static Analysis Symposium, SAS’95, volume 983 of
Lecture Notes in Computer Science, pages 118-136, Glasgow, Scotland, September 1995.
Springer-Verlag.

Dirk Dussart, John Hughes, and Peter Thiemann. Type specialisation for imperative
languages. In Mads Tofte, editor, Proc. International Conference on Functional Pro-
gramming 1997, pages 204-216, Amsterdam, The Netherlands, June 1997. ACM Press,
New York.

Andrei P. Ershov. On the essence of compilation. In Erich J. Neuhold, editor, Formal
Description of Programming Concepts, pages 391-420. North-Holland, 1978.

Andrei P. Ershov. On mixed computation: Informal account of the strict and polyvariant
computational schemes. In Manfred Broy, editor, Control Flow and Data Flow: Consepts
of Distributed Programming, pages 107-120. Springer-Verlag, 1984.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations. In Proc. of the ACM SIGPLAN 938 Conference on
Programming Language Design and Implementation, pages 237-247, Albuquerque, New
Mexico, June 1993.

Yoshihiko Futamura. Partial evaluation of computation process — an approach to a
compiler-compiler. Systems, Computers, Controls, 2(5):45-50, 1971.

Robert Gliick. On the generation of specializers. Journal of Functional Programming,
4(4):499-514, October 1994.

Robert Gliick and Jesper Jgrgensen. Generating optimizing specializers. In IEEE Inter-
national Conference on Computer Languages, pages 183-194. IEEE Computer Society
Press, 1994.

Carsten K. Gomard. Partial type inference for untyped functional programs. In
Proc. 1990 ACM Conference on Lisp and Functional Programming, pages 282—-287, Nice,
France, 1990. ACM Press.

Carsten K. Gomard. A self-applicable partial evaluator for the lambda-calculus. ACM
Transactions on Programming Languages and Systems, 14(2):147-172, 1992.

37

[36]

[37]

[38]

[46]

[47]

[48]

Carsten K. Gomard and Neil D. Jones. Compiler generation by partial evaluation: A
case study. Structured Programming, 12:123-144, 1991.

Anders Haraldsson. A Program Manipulation System Based on Partial Evaluation. PhD
thesis, Link6ping University, Sweden, 1977. Link6ping Studies in Science and Technology
Dissertations 14.

John Hatcliff and Olivier Danvy. A generic account of continuation-passing styles. In
POPL1994 [62], pages 458-471.

John Hatcliff and Olivier Danvy. A computational formalization for partial evaluation.
Mathematical Structures in Computer Science, 7(5):507-542, 1997.

Fritz Henglein. Efficient type inference for higher-order binding-time analysis. In Hughes
[41], pages 448-472.

John Hughes, editor. Functional Programming Languages and Computer Architecture,
volume 523 of Lecture Notes in Computer Science, Cambridge, MA, 1991. Springer-
Verlag.

John Hughes. Type specialisation for the A-calculus; or, a new paradigm for partial
evaluation based on type inference. In Danvy et al. [23], pages 183-215.

G. F. Johnson and Dominic Duggan. Stores and partial continuations as first-class objects
in a language and its environment. In POPL1988 [61], pages 158-168.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, 1993.

Pierre Jouvelot and David K. Gifford. Algebraic reconstruction of types and effects. In
Proc. 18th Annual ACM Symposium on Principles of Programming Languages, pages
303-310, Orlando, Florida, January 1991. ACM Press.

Richard Kelsey, William Clinger, and Jonathan Rees. Revised® report on the algorithmic
language scheme. Technical report, 1998.

Paul Kleinrubatscher, Albert Kriegshaber, Robert Zochling, and Robert Gliick. Fortran
program specialization. SIGPLAN Notices, 30(4):61-70, 1995.

Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation. In Proc. 199
ACM Conference on Lisp and Functional Programming, pages 227-238, Orlando, Florida,
USA, June 1994. ACM Press.

Julia L. Lawall and Peter Thiemann. Sound specialization in the presence of computa-
tional effects. In Proc. Theoretical Aspects of Computer Software, volume 1281 of Lecture
Notes in Computer Science, pages 165-190, Sendai, Japan, September 1997. Springer-
Verlag.

John M. Lucassen and David K. Gifford. Polymorphic effect systems. In POPL1988 [61],
pages 47-57.

38

[51]

[57]

[58]

[61]

[62]

[63]

Karoline Malmkjaer, Nevin Heintze, and Olivier Danvy. ML partial evaluation using
set-based analysis. In Record of the 1994 ACM SIGPLAN Workshop on ML and its
Applications, number 2265 in INRTA Research Report, pages 112-119, Orlando, Florida,
June 1994.

Morten Marquard and Bjarne Steensgaard. Partial evaluation of an object-oriented
imperative language. Master’s thesis, Department of Computer Science, University of
Copenhagen, Denmark, April 1992.

Uwe Meyer. Techniques for partial evaluation of imperative languages. In Paul Hudak
and Neil D. Jones, editors, Proc. ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation PEPM 91, pages 94-105, New Haven, CT,
June 1991. ACM. SIGPLAN Notices 26(9).

Eugenio Moggi. Computational lambda-calculus and monads. In Proc. of the jth Annual
Symposium on Logic in Computer Science, pages 14-23, Pacific Grove, CA, June 1989.
IEEE Computer Society Press.

Eugenio Moggi. Functor categories and two-level languages. In M. Nivat and A. Arnold,
editors, Foundations of Software Science and Computation Structures, FoSSaCS’98, Lec-
ture Notes in Computer Science, Lisbon, Portugal, April 1998.

J. Gregory Morrisett. Generalizing first-class stores. In Paul Hudak, editor, SIPL 93,
ACM SIGPLAN Workshop on State in Programming Languages, pages 73-87, Copen-
hagen, Denmark, June 1993. Yale University, Department of Computer Science, New
Haven, CT. Technical Report YALEU/DCS/RR-968.

Barbara Moura, Charles Consel, and Julia L. Lawall. Bridging the gap between functional
and imperative languages. Publication interne 1027, Irisa, Rennes, France, July 1996.

Vivek Nirkhe and William Pugh. Partial evaluation of high-level imperative program-
ming languages with applications in hard real-time systems. In Proc. 19th Annual ACM
Symposium on Principles of Programming Languages, pages 269-279, Albuquerque, New
Mexico, January 1992. ACM Press.

Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proc. Conference on
Programming Language Design and Implementation 88, pages 199-208, Atlanta, July
1988. ACM.

Gordon D. Plotkin. T% as a universal domain. Journal of Computer and System Sciences,
17:209-236, 1978.

Proc. 15th Annual ACM Symposium on Principles of Programming Languages, San
Diego, California, January 1988. ACM Press.

Proc. 21st Annual ACM Symposium on Principles of Programming Languages, Portland,
OG, January 1994. ACM Press.

Proc. 23rd Annual ACM Symposium on Principles of Programming Languages, St. Pe-
tersburg, Fla., January 1996. ACM Press.

39

[64]

[65]

[73]

[74]

[75]

Peter Orbeek. POPE: An on-line partial evaluator.
ftp://ftp.daimi.aau.dk /pub/empl/poe/pope.ps.gz, June 1994.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In
ACM Annual Conference, pages 717-740, July 1972.

David A. Schmidt. Denotational Semantics, A Methodology for Software Development.
Allyn and Bacon, Inc, Massachusetts, 1986.

Dana S. Scott. Data types as lattices. SIAM Journal on Computing, 5(3):522-587, 1976.

Helmut Seidl. Least solutions of equations over N. In Proc. International Conference
of Automata, Languages and Programming, ICALP ’9/, volume 820 of Lecture Notes in
Computer Science, pages 400-411. Springer-Verlag, 1994.

Michael Sperber and Peter Thiemann. Two for the price of one: Composing partial eval-
uation and compilation. In Proc. of the ACM SIGPLAN 97 Conference on Programming
Language Design and Implementation, pages 215-225, Las Vegas, NV, USA, June 1997.
ACM Press.

Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect inference.
Journal of Functional Programming, 2(3):245-272, July 1992.

Peter Thiemann. Cogen in six lines. In R. Kent Dybvig, editor, Proc. International
Conference on Functional Programming 1996, pages 180-189, Philadelphia, PA, May
1996. ACM Press, New York.

Peter Thiemann. Implementing memoization for partial evaluation. In Herbert Kuchen
and Doaitse Swierstra, editors, International Symposium on Programming Languages,
Implementations, Logics and Programs (PLILP ’96), volume 1140 of Lecture Notes in
Computer Science, pages 198-212, Aachen, Germany, September 1996. Springer-Verlag.

Peter Thiemann. Correctness of a region-based binding-time analysis. In Proc. Math-
ematical Foundations of Programming Semantics, Thirteenth Annual Conference,
volume 6 of FElectronic Notes in Theoretical Computer Science, page 26, Pitts-
burgh, PA, March 1997. Carnegie Mellon University, Elsevier Science BV. URL:
http://www.elsevier.nl/locate/entcs/volume6.html.

Peter Thiemann. The PGG System—User Manual. University of Nottingham, Notting-
ham, England, June 1998. Available from ftp://ftp.informatik.uni-tuebingen.de/
pub/PU/thiemann/software/pgg/.

Peter Thiemann and Michael Sperber. Polyvariant expansion and compiler generators.
In PSI-96: Andrei Ershov Second International Memorial Conference, Perspectives of
System Informatics, volume 1181 of Lecture Notes in Computer Science, pages 285-296,
Novosibirsk, Russia, June 1996. Springer-Verlag.

Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value A-calculus
using a stack of regions. In POPL1994 [62], pages 188-201.

Daniel Weise, Roland Conybeare, Erik Ruf, and Scott Seligman. Automatic online partial
evaluation. In Hughes [41], pages 165-191.

40

