
Partial Evaluation for Higher-Order Languages with StatePeter Thiemann�pjt@cs.nott.ac.uk Dirk Dussartydid.cimad.comAbstractWe have designed and implemented an o�ine partial evaluator for a higher-orderlanguage with �rst-class references. Its distinguishing feature over other partial evaluatorsis its ability to perform assignments to local and global references at specialization timefor a higher-order language. The partial evaluator consists of a region-based monovariantbinding-time analysis and a specializer in essentially continuation-passing store-passingstyle, thus generalizing type-based binding-time analysis and continuation-based partialevaluation.The partial evaluator yields good results for realistic problems such as object-orientedprogramming, uni�cation, and specializer generation.Keywords: higher-order programming, program transformation, partial evaluation, stateCategories: D.1.1 Applicative (Functional) Programming, D.1.2 Automatic Programming,D.3.1 Formal De�nitions and Theory, Semantics, D.3.2 Language Classi�cations, Applicativelanguages, D.3.4 Processors, I.2.2 Automatic Programming, Program transformation1 IntroductionPartial evaluation is an automatic program transformation that performs aggressive constantpropagation [44]. O�ine partial evaluation separates this transformation in two stages. Abinding-time analysis determines those parts of a program that do not depend on dynamic(unknown) data, regardless of the actual value of static (known) data. Subsequently, thespecializer reduces all static parts and generates residual code for the dynamic ones.During specialization, a partial evaluator should perform all operations that do not dependon dynamic data. In imperative languages, assignments are the essential operations. There-fore, o�ine partial evaluators for traditional imperative languages like C [2,20], Modula-2 [15],and FORTRAN 77 [47] perform assignments at specialization time. In contrast, current par-tial evaluators for higher-order languages like ML or Scheme are much more conservative [12]:They defer all operations on references and global variables as well as I/O operations to runtime [7, 9, 51]. This treatment of side e�ects is overly conservative and it seriously limits the�Dept. of Computer Science, University of Nottingham, University Park, Nottingham, NG7 2RD, England.Much of this work was done while at Universit�at T�ubingen, Germany.yCimad Consultants. This work was done while at Department of Computer Science, K.U.Leuven, Celesti-jnenlaan 200A, B-3001 Leuven, Belgium. Supported by the National Fund for Scienti�c Research Belgium(N.F.W.O.). This work was initiated during a visit at Universit�at T�ubingen funded by a grant of the Minis-terium f�ur Wissenschaft und Forschung. 1

;;; source program(define-data object (object set get add));; a record type with constructor "object" and selectors "set", "get", "add"(define (main)(let ((counter-class(lambda ()(let* ((slot 0)(mset (lambda (x) (set! slot x) x))(mget (lambda () slot))(madd (lambda (x) (set! slot (+ slot x)) x)))(object mset mget madd)))))(let ((cnt (counter-class)))((set cnt) 21)((add cnt) ((get cnt)))((get cnt)))));;; program specialized with Similix (after assignment elimination)(define (main-0)(let ((slot_1 (make-cell 0)))(cell-set! slot_1 21)(let* ((g_2 (cell-ref slot_1)) (g_3 (cell-ref slot_1)))(cell-set! slot_1 (+ g_3 g_2))(cell-ref slot_1))));;; program specialized with our partial evaluator(define ($goal-1) 42) Figure 1: Specializing counter objectsquality of specialization. Therefore, we have designed and implemented a specializer for thefull Scheme language that does not have these de�ciencies.1.1 MotivationMessage-passing is a common programming style to emulate classes and objects in Scheme [1].A typical representation for a class is a function that maps the initial values of the instancevariables to a tuple of closures, the representation of an object. The closures represent thepossible messages and they share the current values of the instance variables among them.These values are not accessible otherwise, they are local to the object. Sending a message tothe object is implemented by calling one of the closures with appropriate arguments. Thus,we have an instance of a programming technique that employs higher-order functions withshared local state.Consider the Scheme code in the top half of Fig. 1 de�ning a class of counter objectsusing the above encoding. The instance variable slot is always initialized to zero, so theclass function is parameterless. A counter object cnt is a triple (or record) (object msetmget madd), where (set cnt) is the function that sets the counter, (get cnt) is the functionthat reads the counter, and (add cnt) is the function that adds to the counter. All thesefunctions operate on the encapsulated shared state in slot.2

Let's try to specialize this program. First, we apply Similix [11], a representative of theconservative camp, to this program. The middle part of the �gure shows the resulting residualprogram. Similix removes the message dispatch, but defers all operations on the local stateslot to run time.In contrast, our binding-time analysis instructs the specializer to perform all operationsat specialization time. In e�ect, it reduces the source program to its value 42 as shown in thelower part of the �gure.Since Similix 5.0 does not handle set! directly, we performed an assignment elimina-tion transformation that introduces explicit boxing operations make-cell, cell-ref, andcell-set! by hand before submitting to Similix. This transformation is built into our spe-cializer.1.2 ContributionWe have designed and implemented a partial evaluator for Scheme [46] that performs im-perative operations at specialization time. The system performs polyvariant program pointspecialization, i.e., the specializer may generate many residual expressions from a single sourceexpression (polyvariance) by specializing it with respect to di�erent static values and storesand it memoizes its state at certain program points to avoid processing an expression morethan once with respect to the same static values and store (program point specialization) [44].Our system relies on a monovariant binding-time analysis. Such an analysis assigns eachexpression in a source program a �xed binding time, just like a monomorphic type systemassigns each expression a �xed type.The main contributions are:� The specializer performs assignments at specialization time.� The specializer is written in a novel extended continuation-passing and store-passingstyle. This style is required for the soundness of the specializer in the presence of sidee�ects [49].� The binding-time analysis is based on an e�ect system. It runs in polynomial time.� The partial evaluator delivers good results for problems that are hard to solve withother specializers:Specialization of uni�cation. Uni�cation is hard to specialize and requires rewrit-ing the algorithm to continuation-passing style [19]. Our system specializes astraightforward uni�cation algorithm where variables in terms are represented byreferences with good results (see 6.2).Specializer generation. The specializer with state can automatically generate a spe-cializer for a lazy �rst-order language from an interpreter which uses updatablethunks (see 6.3). This has not been achieved with other specializers.The implementation is available for anonymous FTP atftp://ftp.informatik.uni-tuebingen.de/pub/PU/thiemann/software/pgg/.
3

expressions e ::= c j succ e j pred e j x j �x:e j e@e j if0 e e e j rec f(x):e j ref e j !e j e := etypes � ::= int j ref � j � ! �(t-cst) A ` c : int (t-var) Afx : �g ` x : �(t-succ) A ` e : intA ` succ e : int (t-pred) A ` e : intA ` pred e : int(t-abs) Afx : �1g ` e : �2A ` �x:e : �1 ! �2 (t-app) A ` e1 : �2 ! �1 A ` e2 : �2A ` e1@e2 : �1(t-if) A ` e0 : int A ` e1 : � A ` e2 : �A ` if0 e0 e1 e2 : �(t-rec) Aff : �1 ! �2; x : �1g ` e : �2A ` rec f(x):e : �1 ! �2(t-ref) A ` e1 : �A ` ref e1 : ref � (t-deref) A ` e1 : ref �A ` !e1 : � (t-assn) A ` e1 : ref � A ` e2 : �A ` e1 := e2 : �Figure 2: Syntax and typing rules1.3 OverviewSection 2 de�nes the syntax and the denotational semantics of the source language �ref, asimply typed call-by-value lambda calculus with �rst-class references. Section 3 presents apolyvariant specializer for �ref in denotational style as an extension of the standard seman-tics. Section 4 speci�es a monovariant binding-time analysis for �ref. The analysis performsmonomorphic region inference with an e�cient reconstruction algorithm. Section 5 discussessome implementation issues. Section 6 presents three example applications of the specializer:programs with cyclic data structures, uni�cation with references, and specializer generationfor a lazy language. Finally, Section 7 surveys related work, and Section 8 concludes.2 Source LanguageIn this section, we describe the syntax and the denotational semantics of the source languageof the partial evaluator.2.1 SyntaxFigure 2 de�nes the syntax and typing rules of �ref, a call-by-value lambda calculus with �rst-class references, a recursion operator, integers, and a conditional. The type system derivesjudgements of the form A ` e : � (read: under type assumptions A expression e has type�). The typing rules specify a system of simple types. Types may be recursive without anexplicit recursion operator. In addition to the standard constructs of the lambda calculusthere are integer constants \c", the successor operation \succ e", the predecessor operation\pred e", and an integer conditional \if0 e e e". \rec f(x):e" de�nes a recursive function fwith argument x and body e. Furthermore, \ref e" creates a new memory cell that containsthe value of e and returns its address, \ !e" dereferences a reference, and \e1 := e2" assignsto a reference. A let-expression \let x = e1 in e2" is syntactic sugar for \(�x:e2)@e1."4

Comp = Cont! Store! Valk 2 Cont = Val! Store! Val� 2 Env = Var! Valy 2 Val = Int? � Loc? � (Val! Comp)? � ferrorg?� 2 Store = Loc! (Val� funusedg?)Loc = unspeci�ed in�nite set of store locationsFigure 3: Semantic domains2.2 SemanticsThe semantic domains are sub-domains of some universal domain [60,67]. Figure 3 shows theirde�ning equations. The sub-domain Val of semantic values is a coalesced sum of the
at do-mains of integers Int?, locations Loc?, the lifted continuous function space (Val! Comp)?,and a lifted one-point domain indicating errors. The sub-domain Comp of computations con-sists of (continuous) functions that map a continuation and a store to a value. The sub-domainCont of continuations consists of functions that map a value and a store to the �nal answerof a computation, in this case an element of Val. An element � of the sub-domain Store ofstores is a �nite mapping from store locations to stored values or \unused". An environment� 2 Env is a �nite mapping from variables to values.The semantic equations of �ref in Fig. 4 de�ne a call-by-value semantics which evaluatessubexpressions from left to right. The de�nitions for the constructs are standard in semanticswith continuations and store [65] [66, Chap. 9]. Only two points deserve mentioning: theconditional tests an integer for a non-zero value and the assignment returns the assignedvalue.The equations make use of the following conventions. Environment update �[v=x] isde�ned by �[v=x](x) = v and �[v=x](y) = �(y) for y 6= x. The function int() : Expr ! Intmaps the syntactic representation of an integer constant to its integer value. The constant �xdenotes a �xpoint operator at type Val ! Comp (i.e., its type is ((Val ! Comp) ! (Val !Comp))! (Val! Comp).)As customary, we have reduced clutter by omitting the injections into the sum type Val.For example, the full equations for the successor and for recursion are:EJsucc e1K = ��:�k:��:EJe1K�(�y:��: case y of In1(y0)) k(In1(y0 + 1))�j z) In4(error))�EJrec f(x):eK = ��:�k:��:k(In3(�x �g:�y:EJeK�[In3(g)=f][y=x]))�Here, case and pattern matching notation serve to project out of the Val domain, using Ini(x)to indicate the ith summand of the de�nition. Pattern matching includes \dropping" of thelifted argument. As a function, Ini(x) lifts and injects into the ith summand.Eta-reducing expressions of the form ��:e � simpli�es many of the equations. The use of�0 indicates those places where eta-reduction is not possible.
5

E : Expr! Env! CompEJxK = ��:�k:��:k(�(x))�EJcK = ��:�k:��:k(int(c))�EJsucc e1K = ��:�k:��:EJe1K�(�y:��:k(y + 1)�)�EJpred e1K = ��:�k:��:EJe1K�(�y:��:k(y � 1)�)�EJ�x:eK = ��:�k:��:k(�y:EJeK�[y=x])�EJe1@e2K = ��:�k:��:EJe1K�(�f:��:EJe2K�(�a:��:fak�)�)�EJif0 e0 e1 e2K = ��:�k:��:EJe0K�(�y:��0:if0 y (EJe1K�k�0) (EJe2K�k�0))�EJrec f(x):eK = ��:�k:��:k(�x �g:�y:EJeK�[g=f][y=x])�EJref eK = ��:�k:��:EJeK�(�y:��0:k�(�0[� 7! y]))�where �0� = unusedEJ !eK = ��:�k:��:EJeK�(��:��0:k(�0�)�)�EJe1 := e2K = ��:�k:��:EJe1K�(��:��:EJe2K�(�y:��0:ky(�0[� 7! y]))�)�Figure 4: Semantics of �refbinding times b ::= S j Dannotated expressions E ::= x j �bx:E j E@bE j recb f(x):E j refb E j !bE j E :=b E jlift E j c j succb E j predb E j if0b E E EFigure 5: Syntax of the annotated source language �refann3 SpecializationIn this section, we extend the source language to an annotated language by adding a binding-time annotation to each construct. Its semantics is an extension of the standard semantics.The semantics also serves as a functional program implementing an interpreter for the anno-tated language. The translation to ML or Scheme is straightforward.3.1 SyntaxFigure 5 de�nes the syntax of the annotated source language �refann. It adds a binding-timeannotation to each construct of �ref, where a binding time b is either S for \static" or D for\dynamic". There is an extra construct \lift E" to propagate numbers from binding time Sto binding time D. For a �refann-expression E, de�ne jEj to be its stripped version (2 �ref)after removing all annotations and all lifts.The annotated language is not intended for programming: the binding-time analysis au-tomatically derives annotated expressions from �ref-expressions. The analysis is subject ofSection 4.
6

3.2 Semantic domainsOur domains need a slight revision (see Fig. 6) to become suitable for specialization: Thesub-domain Val0 of semantic value has an additional summand RExpr to model residualexpressions. There is an obvious embedding from Val into Val0.The domain equations leave RExpr unspeci�ed for several reasons. First, it does not addto understanding the specializer. Second, generating residual expressions involves generatingfresh variable names. It is a research topic on its own to investigate a satisfactory model thatincludes name generation [55]. Third, we may want to parameterize over the residual syntaxanyway to replace the syntax constructors, for example, by compiling functions [69].For these reasons, we treat RExpr as an abstract datatype with an interface reminiscent ofhigher-order abstract syntax [59], to sidestep the issue of name generation. For convenience,RExpr includes a let-expression with the usual meaning. The specializer requires the followinginterface for RExpr:� quote() : Int! RExpr converts a number to its representation as a residual expression.It inserts specialization-time values of type integer into the residual program.� let : RExpr � (Var ! RExpr) ! RExpr builds a residual let-expression. Roughly,let (�x:e2; �e1:) can be thought of as building \let x = e1 in e2". lam : (Var !RExpr) ! RExpr builds a residual lambda expression. rec : (Var ! Var ! RExpr)!RExpr builds a residual rec expression. All three have a functional argument, so that thenecessary generation of fresh variables is hidden in RExpr: one possible interpretationis to have the implementation of RExpr apply these functions to freshly generatedvariables.� succ;pred : RExpr! RExpr builds a residual successor (predecessor) expression.� Similarly for @; := : RExpr � RExpr ! RExpr, which we write in�x, if : RExpr �RExpr�RExpr! RExpr, and ref; ! : RExpr! RExpr.3.3 Semantic equationsThe semantics of �refann extends the semantics of �ref in a natural way. The idea is that thesemantics of a completely static expression E (where all annotations are S and which doesnot contain lift) is identical to the �ref-semantics of the stripped expression jEj, up to theembedding mentioned in Sec. 3.2.Therefore, the specialization semantics S inherits all the de�ning equations from E byputting S annotations on all constructs except constants c and variables x (which are copiedas is) and then replacing all occurrences of E by S. Figure 7 de�nes the additional equationsfor the constructs annotated with D and for the lift-expression.Next, we consider each equation in turn, discuss it, and identify constraints that thebinding-time analysis must enforce later on. To begin with, it is useful to realize that thecontinuation k is the function that specializes the context of the current expression. So passinga value to k means to make it available to the context and to start specializing it.3.3.1 lift SJlift EK = ��:�k:��:SJEK�(�y:��:k(quote(y))�)�7

Comp0 = Cont0 ! Store0 ! Val0k 2 Cont0 = Val0 ! Store0 ! Val0� 2 Env0 = Var! Val0y 2 Val0 = Int? � Loc? �RExpr? � (Val0 ! Comp0)? � ferrorg?� 2 Store0 = Loc! (Val0 � funusedg?)Loc = unspeci�ed in�nite set of store locationsRExpr = unspeci�ed domain of residual expressionsFigure 6: Semantic domains for specialization

S : Expr! Env0 ! Comp0SJlift EK = ��:�k:��:SJEK�(�y:��:k(quote(y))�)�SJsuccD EK = ��:�k:��:SJEK�(�y:��0 :let (succ y; �n:kn�0))�SJpredD EK = ��:�k:��:SJEK�(�y:��0 :let (pred y; �n:kn�0))�SJ�Dx:EK = ��:�k:��0:let (lam �n:SJEK�[n=x](�y:��0 :y)�empty; �n:kn�0)SJE1@DE2K = ��:�k:��:SJE1K�(�y1:��:SJE2K�(�y2:��0:let (y1@y2; �n:kn�0))�)�SJif0D E1 E2 E3K = ��:�k:��:SJE1K�(�y1:��0:if0 y1 (SJE2K�k�0) (SJE3K�k�0))�SJrecD f(x):EK = ��:�k:��0:let (rec �g:�y:SJEK�[g; y=f; x](�y:��0 :y)�empty; �n:kn�0)SJrefD EK = ��:�k:��:SJEK�(�y:��0 :let (ref y; �n:kn�0))�SJ !DEK = ��:�k:��:SJEK�(�y:��0 :let (!y; �n:kn�0))�SJE1 :=D E2K = ��:�k:��:SJE1K�(�y1:��:SJE2K�(�y2:��0:let (y1 := y2; �n:kn�0))�)�Figure 7: Specializer using continuation-passing and store-passing
8

The specializer converts a specialization-time number to residual code. After specializing E,the resulting number is converted to code and passed to the continuation. The state is simplypassed on.3.3.2 succ and predSJsuccD EK = ��:�k:��:SJEK�(�y:��0:let (succ y; �n:kn�0))�The specializer has to create a residual successor expression. It takes care not to discard,duplicate, or reorder the residual computation succ y. Therefore, the specializer �rst special-izes E. Next, it constructs the residual expression succ y from the resulting expression y. Tomake sure that the generated succ y expression gets executed exactly once, the specializerinserts a let-expression and starts specializing the context in the body of the let-expressionby invoking the continuation. The specializer passes only the let-bound variable n to thecontinuation. This variable can be discarded, duplicated, or reordered without a�ecting thenumber of times that succ y gets computed in the residual program.In this case, the construction of the let-expression on-the-
y is not required for soundness,because \succ E" has no side e�ects. However, it avoids code duplication.The specialization of predD E works the same way.3.3.3 Lambda abstraction and recSJ�Dx:EK = ��:�k:��0:let (lam �n:SJEK�[n=x](�y:��0:y)�empty; �n:kn�0)The specializer has to construct a residual lambda abstraction. Since there is no way for thespecializer to predict the continuation or the contents of the static store for the body of thelambda, it starts afresh, with the empty continuation �y:��0:y and the empty store �empty.The lifetime of the new store is con�ned to the body of the lambda: the empty continuationdiscards the �nal store.In consequence, the body of a dynamic lambda cannot assign to or dereference a staticreference that is de�ned outside the scope of the lambda. The binding-time analysis mustensure that every such external reference is dynamic. In addition, both the argument and theresult of the dynamic lambda can never be static.Again, wrapping the constructed lambda in a let-expression only avoids code duplication.There is no semantical problem with discarding, duplicating, or reordering for this expression,because the evaluation of a lambda expression always terminates and never causes side e�ects.The rationale and the rule for specializing recD f(x):E is analogous to that for �Dx:E.3.3.4 ApplicationSJE1@DE2K = ��:�k:��:SJE1K�(�y1:��:SJE2K�(�y2:��0:let (y1@y2; �n:kn�0))�)�The specializer has to construct a residual application which might have computational ef-fects. To ensure soundness, the specializer must make sure that the residual application getsexecuted exactly once. The mechanism to implement this is on-the-
y let-insertion as forsuccD E. Here its use is mandatory and failure to use it can change the semantics [49].9

3.3.5 if0SJif0D E1 E2 E3K = ��:�k:��:SJE1K�(�y:��0:if0 y (SJE2K�k�0) (SJE3K�k�0))�The specializer has to construct a residual conditional expression. In designing this case, thereis a choice to make between potential code duplication and unsatisfactory specialization. Withthe present de�nition, the specializer may duplicate code because it specializes both branchesE2 and E3 of the conditional using the same continuation (which performs the specializationof the context of the conditional, hence the potential for code duplication) and the same store.This de�nition leads to a liberal binding-time analysis.Quite often, this is the required behavior to obtain satisfactory specialization. For exam-ple, consider the expression�d:let x = ref 0 in pair (if0 d (x := 1) (x := 2)) (!x)which uses a primitive operator \pair" to construct a pair. With our choice of duplicatingthe continuation, the annotated expression�Dd:let x = refS 0 in pairD (lift (if0D d (x :=S 1) (x :=S 2))) (lift (!Sx))specializes satisfactorily to �d:if0 d (1; 1) (2; 2).The alternative to duplicating the continuation and the store is to cut o� both at adynamic conditional and start afresh in both branches:SJif0D E1 E2 E3K = ��:�k:��:SJE1K�(�y1:��:k(if0 y1 (SJE2K�(�y:��:y)�empty)(SJE3K�(�y:��:y)�empty))�)�However, with this rule in place, the above expression requires a more restrictive annotation:�Dd:let x = refD (lift 0) in pair (if0D d (x :=D lift 1) (x :=D lift 2)) (!Dx)No specialization can take place because every construct is annotated dynamic.In both alternatives, the specializer discards the �nal static store after processing a branchcompletely. Why does it work? Well, for the �rst alternative, the continuation k performsspecialization up to the next enclosing dynamic lambda. Since the dynamic lambda cannotnot have an e�ect on the static store, as explained above, its contents are local to the lambdaand can safely be discarded. For the second, non-duplicating alternative, the binding-timeanalysis must ensure that a dynamic conditional does not have e�ects on the static store, sothat it can be discarded, too.As a consequence, the problem of merging the two di�erent �nal stores in the context ofa dynamic conditional, which is discussed elsewhere [58], disappears in our approach.Finally, specialization points|as introduced for program point specialization (see Sec. 5.1)|also delimit the continuation and thus limit the amount of code duplication that occurs inpractice. The potential code duplication introduced by the dynamic conditional does nota�ect the complexity of the residual programs in any way.
10

3.3.6 Operations on referencesThe operations on references do not yield new insights: refD E, !DE, and E1 :=D E2 allgenerate residual code which depends on the state or has an e�ect on it, hence the specializermust construct a let-expression. Interestingly, the dynamic store that they operate on onlyexists at runtime of the residual program, the specializer just keeps the operations on it inthe correct order.3.4 RemarksLawall and Thiemann [49] have proved the soundness of this on-the-
y let-insertion algorithmfor specializers that deal with arbitrary side e�ects. Moreover, the residual code is in directstyle restricted to A-normal form which facilitates compilation [30, 38, 69].4 Binding-Time AnalysisIn this section, we describe the aims and objectives of a binding-time analysis for �ref, specifythe analysis, and sketch a polynomial-time algorithm for it. The binding-time analysis mapsa �ref-expression to a �refann-expression E, with as many constructs as possible annotatedas static S, given that no static operation or value should depend on dynamic data. Thisproperty of the analysis|its correctness|is proved elsewhere [73].4.1 OutlineConceptually, the binding-time analysis has three phases: region inference, binding-time dec-oration, and binding-time inference. We illustrate these phases with the example from theprevious section. �d:let x = ref 0 in pair (if0 d (x := 1) (x := 2)) (!x)In the �rst phase (Sections 4.2, 4.3, 4.4, and 4.5), a monomorphic region and e�ect in-ference system translates a �ref-expression into an expression of a language �refr which is anextension of �ref with explicit region annotations. A region inference system divides the storeinto disjoint regions and assigns each reference to one of them. An e�ect system approximatesthe e�ect of each expression, i.e., the set of regions that may be accessed by evaluation of e.The simpli�cation with respect to other published region inference systems [45, 50, 70, 76] isthe omission of polymorphism, leading to an analysis which is monovariant with respect totypes, e�ects, and regions. This restriction leads to a polynomial-time algorithm, as opposedto the exponential algorithm for polymorphic region and e�ect inference (see Sec. 4.4).In the example expression only one region is necessary to hold the single reference.�d:letregion � in let x = ref� 0 in pair (if0 d (x :=� 1) (x :=� 2)) (!�x)The region � is con�ned to the body of the letregion. Each operation on a reference carriesan annotation that mentions the region involved.The second phase (Sections 4.6 and 4.7) decorates the derivation of the region infer-ence translation judgement with formal binding-time annotations, i.e., binding-time variables.There are three tasks in this phase. 11

1. Assign a binding-time variable to each subexpression;2. assign a binding-time variable to each region;3. insert lift-expressions where appropriate|on top of every expression of type Int whichoccurs as an argument of an application, a primitive operation, or on top of the branchesof a conditional).The result is an expression in �refr, ann, the annotated version of �refr . The example expressionnow reads as follows (simpli�ed for clarity):��1d: letregion�2 � inlet�3 x = ref�4� 0 inpair�9 (lift
1 (if0�5 d (x :=�6� 1) (x :=�7� 2))) (lift
2 (!�8� x))In the third and �nal phase (Sec. 4.9 and 4.8), a well-formedness condition gives rise to aset of constraints on the possible values of the binding-time annotations. These constraintsensure that the binding time of a region is equal to the binding time of all references that livein that region: if the region is allocated at specialization time then references to it are static;if the region is allocated at runtime then references to it must be static. In addition, eachoperation on a reference has the same binding time as the reference itself, and if a dynamicfunction has an e�ect on a particular region then the binding time of that region must bedynamic, as well. Finally, the result of the top-level expression is always dynamic.For the example, these constraints amount to:constraint explanation�1 = D top-level expression�2 = �4 = �6 = �7 = �8 operate on same region�1 � �5 argument of function�1 � �9 result of function�9 �
1 �rst component of pair�9 �
2 second component of pairSuch a set of constraints always has a least (read: as static as possible) solution and we �ndthat �1 = �5 = �9 =
1 =
2 = D and �2 = �3 = �4 = �6 = �7 = �8 = S de�ne the leastsolution. It corresponds to the annotation used in the previous section:�Dd:let x = refS 0 in pairD (lift (if0D d (x :=S 1) (x :=S 2))) (lift (!Sx))We have omitted the letregionS � in : : : and the region annotations|the specializer ignoresthem anyway. The region analysis only provides extra structure for the store, so that theanalysis can keep static and dynamic regions apart. The static store in the specializer simplybundles together all the static regions which are currently active.4.2 Region LanguageIn this section, we de�ne the syntax of expressions, types, and e�ects of the region language�refr , which is the target language of our �rst translation step from �ref. This step introducesregion annotations on operations on references as well as on reference types and it introducese�ect annotations on function types. 12

expressions E ::= c j succ E j pred E j if0 E E E jx j �x:E j E@E j rec f(x):E jref� E j !�E j E :=� E j letregion � in Eregion variables � 2 RegVarFigure 8: Syntax of �refre�ects � � finit(�); read(�);write(�) j � 2 RegVargtypes � ::= int j ref� � j � �! �Figure 9: E�ects and region-annotated types�refr is essentially the language considered by Talpin and Jouvelot [70] extended by e�ectmasking [50], but using the more elegant notation of Tofte and Talpin [76]. Figure 8 de�nesthe syntax of �refr -expressions.RegVar is an in�nite set of region variables. \letregion � in E" binds � to a newly allocatedempty region of memory, \ref� E" allocates a new cell in region �, \ !�E" dereferences areference from region �, and \E :=� E" assigns to a cell in region �. \letregion �1; : : : ; �n in E"is an abbreviation for \letregion �1 in : : : letregion �n in E"; for n = 0, letregion in E is thesame as E. frv(E) is the set of region variables that appear free in E, its de�nition is analogousto the standard notion of free variables.Figure 9 de�nes a type language with region annotations on reference types and e�ectannotations on function arrows. An e�ect � is a description of a potential side e�ect of theevaluation of an expression. It is a set of atomic e�ects: the allocation of a cell in region� (init(�)), dereferencing a cell in region � (read(�)), and assignment to a cell in region �(write(�)). For an e�ect � and a set R � RegVar we de�ne the intersection� \R = [�2R(� \ fread(�);write(�); init(�)g).We de�ne set di�erence � n R analogously.On top of that we build the type language. The region annotation � in the type ref� � ofreferences to values of type � indicates the memory region in which a cell of that type resides.The type �1 �! �2 is the type of functions that map values of type �1 to values of type �2 andhave a latent e�ect described by �. Type assumptions A are de�ned as usual.E�ects, types, and type assumptions can have free region variables as de�ned in Figure 10.4.3 Region TranslationIn this section, we de�ne the translation from �ref to �refr . A �ref-expression e translates to a�refr -expression E if the translation judgement A ` e ; E : �; � is derivable. The judgementreads \under type assumptions A source expression e translates into region expression Ewhich has type � and e�ect �." Figure 11 shows the translation rules (cf. [70, 76]). The rules13

frv(�) = f� j init(�) 2 � _ read(�) 2 � _ write(�) 2 �gfrv(int) = ;frv(ref� �) = f�g [frv(�)frv(�1 �! �2) = frv(�) [frv(�1) [frv(�2)frv(A) = Sffrv(�) j x : � in AgFigure 10: Free region variablesare syntax-directed, because our main interest is the derivation of an inference algorithm.For the same reason, we have made explicit the fact that there is an e�ect (variable) foreach sub-expression and that the e�ects are related by set inclusion and|in rules (r-abs) and(r-rec)|by set intersection. Next we consider some of the rules in detail.The rules (r-var) and (r-cst) show that the translation does not a�ect variables and con-stants. These expressions do not have an e�ect and we would expect the constraint � = ;:Instead we have � � ;. This is because the rules|like all others|integrate sube�ecting.Sube�ecting allows us to make the e�ect information less precise by increasing it. This canbe necessary if two expressions must have the same type (including the latent e�ects) butmay evaluate to di�erent functions. The rules (r-if), (r-app), and (r-assn) require such typeequalities.The e�ect part of the rules (r-succ) and (r-pred) just passes on the e�ect of the sub-expression E. Additionally, sube�ecting may happen.The �rst really interesting rule is (r-abs). It makes use of a new concept, e�ect masking.E�ect masking [50] formalizes the encapsulation of all accesses to a particular region �. IfA ` e; E : �; � and � does not occur free in A and � then Lucassen and Gi�ord have shownthat � is local to the evaluation of E in the sense that the rest of the computation will notaccess any value stored in �.Back to rule (r-abs). Once the rule has determined the e�ect �0 of the body of the lambda,it computes in �1 the \sub-e�ect" of �0 that a�ects regions mentioned either in the environmentor in the types �1 or �2. The remaining regions frv(�0 n �1) are considered to be local to thebody of the lambda. They are masked out by the \letregion �1; : : : ; �n in E" expression.Then the rule applies sube�ecting to the remaining e�ect �1 in �2 � �1. The resulting e�ect�2 is the latent e�ect of the function. The e�ect of the entire lambda expression is ;, modulosube�ecting.The (r-app) rule collects the e�ects of the subexpressions and includes the latent e�ect ofthe function that is applied here.The (r-if) rule only collects the e�ects of the subexpressions.The (r-rec) rule is similar in concept to the (r-abs) rule, because it also performs e�ectmasking. However, it does not perform sube�ecting for the latent e�ect � on the functionarrow. Without this restriction, we would not be able to prove our upcoming Lemma 1 whichestablishes that our system is essentially a restricted version of system considered by Talpinand Jouvelot [70].The remaining rules (r-ref), (r-deref), and (r-assn) just collect the e�ects of their subex-pressions and include their own atomic e�ect in the returned e�ect. They also include subef-14

(r-var) � � ;Afx : �g ` x; x : �; �(r-cst) � � ;A ` c; c : int; �(r-succ) A ` e; E : int; �0� � �0A ` succ e; succ E : int; � (r-pred) A ` e; E : int; �0� � �0A ` pred e; pred E : int; �(r-abs) Afx : �1g ` e; E : �2; �0f�1; : : : ; �ng = frv(�0 n �1)�1 = �0 \ (frv(A) [frv(�1) [frv(�2)) �2 � �1 �3 � ;A ` �x:e; �x:letregion �1; : : : ; �n in E : �1 �2! �2; �3(r-app) A ` e1 ; E1 : �2 �0! �1; �1 A ` e2 ; E2 : �2; �2� � �0 [�1 [�2A ` e1@e2 ; E1@E2 : �1; �(r-if) A ` e0 ; E0 : int; �0 A ` e1 ; E1 : �; �1 A ` e2 ; E2 : �; �2� � �0 [�1 [�2A ` if0 e0 e1 e2 ; if0 E0 E1 E2 : �; �(r-rec) Aff : �1 �! �2; x : �1g ` e; E : �2; �0f�1; : : : ; �ng = frv(�0 n �)� = �0 \ (frv(A) [frv(�1 �! �2)) �1 � ;A ` rec f(x):e; rec f(x):letregion �1; : : : ; �n in E : �1 �! �2; �1(r-ref) A ` e; E : �; �0� � �0 [finit(�)gA ` ref e; ref� E : ref� �; �(r-deref) A ` e; E : ref� �; �0� � �0 [fread(�)gA ` !e; !�E : �; �(r-assn) A ` e1 ; E1 : ref� �; �1 A ` e2 ; E2 : �; �2� � �1 [�2 [fwrite(�)gA ` e1 := e2 ; E1 :=� E2 : �; �Figure 11: Region translation
15

fecting.4.4 AlgorithmThis section outlines an algorithm to compute a derivation of a region translation judgement inpolynomial time. Given a �ref expression of size n, the algorithm �rst constructs the standardtype derivation. This takes almost-linear time in n using a term graph representation of thetypes [40]. This representation immediately yields a suitable annotation with region variables:we can simply use the identity of the nodes denoting reference types.Next, the algorithm attaches an e�ect variable to each judgement in the type derivationand to each function type constructor therein. The translation rules give rise to a system ofrecursive set inequations with union and intersection (the latter is due to rules (r-abs) and(r-rec)) on e�ects. From the inference rules, it is clear that there are no inequations whichmention a variable de�ned by intersection on their left side. Unions can be eliminated fromthe right sides, so that there are only inequations of the form X � C, where C is a constant,X � Y , where Y is another variable, and equations of the form X = Y \ Z, where Y and Zare variables.The least solution of such a system can be computed by �xpoint iteration: Each systemgives rise to a function F : Sn ! Sn where S is the �nite subset of the region variablesRegVar that is mentioned in the analyzed expression and n is the number of e�ect variablesXi. The ith component Fi of F is de�ned by1. Fi(X1; : : : ;Xn) = C1 [: : : [Cr [Xj1 [: : : [Xjs if Xi � C1; : : : ;Xi � Cr and Xi �Xj1 ; : : : ;Xi � Xjs are all inequations with left side Xi;2. Fi(X1; : : : ;Xn) = Xj \Xk if Xi = Xj \Xk is an equation;3. Fi(X1; : : : ;Xn) = ; if there is no equation or inequation with left side Xi.Obviously, each Fi is monotone and (since S is �nite) continuous with respect to set inclusion.By Tarksi's �xpoint theorem, F has a least �xpoint and it can be computed by iterating Fstarting with (;; : : : ; ;). The �xpoint gives rise to a derivation of the desired region translationjudgement by substituting the resulting sets. This derivation is minimal in a sense that wewill not formalize here.If n is the size of the program then the computation of the least �xpoint takes O(n4) timein the worst case: one occurrence of an (r-abs) or an (r-rec) rule generates O(n2) inequationsin the worst case, since an assumption can have O(n) entries and each type may have sizeO(n). Therefore, we generate n � O(n2) = O(n3) constraints for the entire expression. Tosolve the constraints, each region variable (there are O(n) of them) is propagated at mostonce through each constraint.4.5 Simpli�ed Translation RulesIn this section, we simplify the system of the previous section. The previous system hadsyntax-directed rules that helped to construct the inference algorithm and argue about itscomplexity. Now, |working towards a binding-time decoration of a region derivation|wewill use a slightly modi�ed set of rules to simplify the de�nition of the binding-time decoration.In the modi�ed system, e�ect masking and sube�ecting are separate rules. We do notlose anything in that transition, because for every judgement derivable in the original systemthere will be a corresponding judgement in the modi�ed system.16

(r-abs') Afx : �1g ` e; E : �2; �A `0 �x:e; �x:E : �1 �! �2; ;(r-rec') Aff : �1 �! �2; x : �1g `0 e; E : �2; �A `0 rec f(x):e; rec f(x):E : �1 �! �2; ;(r-esub') A `0 e; E : �; �A `0 e; E : �; �0 � � �0(r-mask') A `0 e; E : �; �� 2 frv(�) � 62 frv(A) [frv(�) �0 = � n f�gA `0 e; letregion � in E : �; �0Figure 12: Simpli�ed region translation rulesDe�nition 1 The judgement for the simpli�ed region translation A `0 e; E : �; � is de�nedby the following rules.1. The rules (r-abs'), (r-rec'), (r-esub'), and (r-mask') de�ned in Fig. 12.2. The rules from Fig. 11, except (r-abs) and (r-rec), after replacing each occurrence of� � Y by � = Y and each occurrence of ` by `0.Lemma 1 A ` e; E : �; � implies A `0 e; E : �; �.Proof: By induction on the derivation of A ` e ; E : �; �. The only interesting cases arethose where the last rule in the derivation is (r-abs) or (r-rec). The other cases areimmediate by appeal to the inductive hypothesis, applying the corresponding rule for`0, and applying the rule (r-esub'). We demonstrate the case for (r-abs), the case for(r-rec) works analogously.Suppose the last rule in the derivation is(r-abs) Afx : �1g ` e; E : �2; �0f�1; : : : ; �ng = frv(�0 n �1)�1 = �0 \ (frv(A) [frv(�1) [frv(�2)) �2 � �1 �3 � ;A ` �x:e; �x:letregion �1; : : : ; �n in E : �1 �2! �2; �3By induction, there is a derivation forAfx : �1g `0 e; E : �2; �0 (1)An auxiliary induction shows that for all 0 � i � n there exists � � �0 such thatAfx : �1g `0 e; letregion �n�i+1; : : : ; �n in E : �2; �and frv(�) \ f�1; : : : ; �ng = f�1; : : : ; �n�ig.17

� Case i = 0: with � = �0 we haveAfx : �1g `0 e; letregion in E : �2; �by (1) and also frv(�) \ f�1; : : : ; �ng = f�1; : : : ; �n�ig because f�1; : : : ; �ng �frv(�) = frv(�0) since rule (r-abs) is applicable.� Case 0 < i � n: by the auxiliary inductive hypothesis, there exists an � � �0 suchthat Afx : �1g `0 e; letregion �n�(i�1)+1; : : : ; �n in E : �2; �and frv(�) \ f�1; : : : ; �ng = f�1; : : : ; �n�(i�1)g. Since �n�(i�1) 2 frv(�) (by thepreceding equation) and �n�(i�1) 62 frv(A) [frv(�1) [frv(�2) (since f�1; : : : ; �ng =frv(�0) n (frv(A) [frv(�1) [frv(�2)) by applicability of (r-abs)) the rule (r-mask')is applicable and yieldsAfx : �1g `0 e; letregion �n�(i�1); �n�(i�1)+1; : : : ; �n in E : �2; � n f�n�(i�1)gwhere � n f�n�(i�1)g � �0 because of the assumption � � �0. Furthermore,frv(� n f�n�(i�1)g) \ f�1; : : : ; �ng = (frv(�) \ f�1; : : : ; �ng) n f�n�(i�1)g= f�1; : : : ; �n�(i�1)g n f�n�(i�1)g= f�1; : : : ; �n�ig.For i = n we obtain an � � �0 such thatAfx : �1g `0 e; letregion �1; : : : ; �n in E : �2; � (2)and frv(�) \ f�1; : : : ; �ng = f�1; : : : ; �n�ng = ;.Hence the �nal � is exactly �1 from rule (r-abs). Applying the rule (r-esub') to (2) for�2 � �1 from rule (r-abs) yieldsAfx : �1g `0 e; letregion �1; : : : ; �n in E : �2; �2. (3)Apply (r-abs') to getA `0 �x:e; �x:letregion �1; : : : ; �n in E : �1 �2! �2; ; (4)and �nally (r-esub') for ; � �3 to obtain the resultA `0 �x:e; �x:letregion �1; : : : ; �n in E : �1 �2! �2; �3. (5)4.6 Annotated Region LanguageThe next step adds binding-time annotations to the region language, both to the expressionlanguage and to the type language. Figure 13 de�nes the syntax of the expressions and thetypes of the binding-time-annotated region language �refr, ann. In the expression language, thereare binding-time annotated versions of all �refr -expressions (except variables and constants)and a lift-expression. The construct \letregionb � in E" binds � to a new region of bindingtime b for the execution of E.In the type language, every type carries a binding-time annotation that denotes the bind-ing time when a value of this type is available for computation. Top(�) denotes the top-levelbinding-time annotation of �, for example Top(�1 �!b �2) = b. Furthermore, we de�nestripped expressions, types, and type assumptions.18

annotated expressions E ::= lift E j c j succb E j predb E j if0b E E E jx j �bx:E j E@bE j recb f(x):E jrefb� E j !b�E j E :=b� E j letregionb � in Ebinding times b 2 BT = fS;Dgannotated types � ::= intb j refb� � j � �!b �Figure 13: Annotated region language �refr, annDe�nition 2 1. j�j is the region-annotated type that is obtained by stripping all binding-time annotations from �.2. jAj is de�ned by x : j�j in jAj i� x : � in A.3. jEj is the �refr expression that is obtained from E by stripping all binding-time annota-tions and all lift constructs.Not all binding-time annotated types are acceptable. Using the ordering S < D on bindingtimes and our knowledge from the design of the specializer, we derive some constraints thatlead to the de�nition of a well-formed binding-time annotated type.� The binding time of a region is equal to the binding time of all references (addresses)into this region. Therefore, the top-level binding time of a reference type must be equalto the binding time of its region.� The value stored in a cell depends on its address. If the address is dynamic then the valuecannot be static. Therefore, the binding time of the value stored in a reference needsto be greater than or equal to the binding time of the reference to that cell. However, astatic reference may contain dynamic values.� A dynamic function must neither take static parameters nor deliver static results [26,35,40]: the binding time of a function must be less than or equal to the binding time ofthe argument type and less than or equal to the binding time of the result type.� A dynamic function must not have an e�ect on a static region. This coincides preciselywith the observation that the specializer cannot pass the static store to a dynamic ab-straction, but rather starts a new local static store in the scope of the abstraction. Theletregion-expression introduced in rule (r-abs) identi�es those regions that are candi-dates for the local static store inside the body of the function. Therefore, the bindingtimes of the regions mentioned in the latent e�ect of a function must be greater than orequal to the binding time of the function itself.Of course, a static function may have an e�ect on static and dynamic regions. Thee�ects on static regions happen at specialization time while the e�ects on dynamicregions yield residual code.The above description of acceptable annotated types leads to the following de�nition [73]of well-formed binding-time-annotated types.19

B ` intb wftB ` � wft b � Top(�) B(�) = bB ` refb� � wftB ` �1 wft B ` �2 wft b � Top(�1) b � Top(�2) 8� 2 frv(�):b � B(�)B ` �1 �!b �2 wftFigure 14: Well-annotated region typesDe�nition 3 A binding-time assumption B is a �nite mapping from region variables tobinding times. dom(B) is the domain of this mapping.Suppose B is a binding-time assumption. A binding-time-annotated type � is well-formedwith respect to B if B ` � wft can be derived using the rules in Fig 14. A type assumptionA is well-formed with respect to B, B ` A wft, if B ` � wft for all x : � in A.The notion of well-formedness is the main source of constraints for the binding-time anal-ysis. The typing part of the system provides additional equalities.4.7 Binding-Time AnnotationIn this section, we give the typing rules for �refr, ann. They are built on top of the rules forthe translation judgement A0 `0 e ; E0 : �; �, by decorating the expression and the typeswith binding-time annotations. To avoid notational clutter, we omit the translation parte; of the judgement and show only the resulting �refr, ann-expression. The judgement has theform A;B ` E : �; �: \with type assumption A and binding-time assumption B the �refr, ann-expression E has binding-time-annotated type � and e�ect �." Figure 15 shows the inferencerules.The new parts in the rules lies in the introduction of binding-time annotations and inthe insistence on well-formedness in the rules that describe the construction of data, i.e.,abstraction (b-abs), recursion (b-rec), and reference creation (b-ref). The assumption of the(b-var) rule guarantees the well-formedness of the type assumption A. Constants (b-cst) arealways static and must be lifted if they are used in a dynamic context. This is captured bythe additional binding-time coercion rule (b-lift) that lifts static integers to code. This ruleis standard in binding-time analyses.One rule that is di�erent from other presentations of binding-time analysis is (b-if). Therule states that a conditional expression is well-formed if the types of the branches are iden-tical. Contrary to the standard rules, the binding time of the result type � is independent ofthe binding time of the condition. This is possible because the specializer propagates the fullcontext to both branches of the conditional (cf. 3.3.5). If we used the alternative specializationrule mentioned there, we would have to add the constraint b � Top(�).Lemma 2 If A;B ` E : �; � is derivable then B ` � wft and B ` A wft.Proof: Induction on the derivation of A;B ` E : �; �.Therefore, in rule (b-deref) refb� � is well-formed and will be accessed by a dereferenceoperation annotated with b. The same holds for the assignment operation (b-assn). If the20

(b-var) B ` A wft x : � in AA;B ` x : �; ;(b-cst) B ` A wftA;B ` c : intS ; ;(b-succ) A;B ` E : intb; �A;B ` succb E : intb; �(b-pred) A;B ` E : intb; �A;B ` predb E : intb; �(b-lift) A;B ` E : intb; � b < b0A;B ` lift E : intb0 ; �(b-abs) Afx : �1g; B ` E : �2; � B ` �1 �!b �2 wftA;B ` �bx:E : �1 �!b �2; ;(b-app) A;B ` E1 : �2 �!b �1; �1 A;B ` E2 : �2; �2A;B ` E1@bE2 : �1; � [�1 [�2(b-if) A;B ` E0 : intb; �0 A;B ` E1 : �; �1 A;B ` E2 : �; �2A;B ` if0b E0 E1 E2 : �; �0 [�1 [�2(b-rec) Aff : �; x : �1g; B ` E : �; � B ` � wftA;B ` recb f(x):E : �; ; � = �1 �!b �2(b-ref) A;B ` E : �; � B ` refb� � wftA;B ` refb� E : refb� �; � [finit(�)g(b-deref) A;B ` E : refb� �; �A;B ` !b�E : �; � [fread(�)g(b-assn) A;B ` E1 : refb� �; �1 A;B ` E2 : �; �2A;B ` E1 :=b� E2 : �; �1 [�2 [fwrite(�)g(b-esub) A;B ` E : �; �A;B ` E : �; �0 � � �0(b-mask) A;Bf� : bg ` E : �; �� 2 frv(�) � 62 frv(A) [frv(�) �0 = � n f�gA;B ` letregionb � in E : �; �0Figure 15: Decorated region inference
21

reference has well-formed type refb� � and the argument has type � then the assignment willbe performed at the time indicated by b. The binding time Top(�) may be greater than orequal to b, it may be dynamic even if b, the binding time of the address, is static. Likewise,in (b-app) the type of E is well-formed.4.8 Properties of Binding-Time AnnotationsWe are now interested in �nding the \most static" binding-time annotation for an expression,once we have chosen a certain derivation in �refr as the basis (for example, using the algorithmin Sec. 4.4). To formalize this, we de�ne the notion of a completion of a �refr -derivation.De�nition 4 �0 = A;B ` E : �; � is a completion of A0 `0 e ; E0 : �; � if �0 is derivable,jAj = A0, dom(B) = frv(E0), jEj = E0, and j�j = �.However, we are not interested in any completion, but in the \most static" one, so we set outto de�ne an ordering on the set of completions of a particular derivation. First, we need anauxiliary de�nition to de�ne greatest lower bounds of binding times, types, type assumptions,binding-time assumptions, and judgements.De�nition 5 1. For b1; b2 2 BT , b1 u b2 = (b1 if b1 = b2 _ b1 < b2b2 otherwise.2. Let �1; �2 be such that j�1j = j�2j. De�ne �1 u �2 inductively byintb1 u intb2 = intb1ub2(refb1� �1) u (refb2� �2) = refb1ub2� (�1 u �2)(�1 �!b1 �01) u (�2 �!b2 �02) = (�1 u �2) �!b1ub2 (�01 u �02)3. For type assumptions A1; A2 with jA1j = jA2j de�ne A1 uA2 by:x : �1 u �2 in A1 uA2 i� x : �1 in A1 and x : �2 in A2.4. For binding-time assumptions B1; B2 with dom(B1) = dom(B2) de�neB1 uB2 = f� : B1(�) uB2(�) j � 2 dom(B1)g.5. For judgements �0 = A0; B0 ` E0 : �0; � and �00 = A00; B00 ` E00 : �00; � which arecompletions of � = A0 `0 e ; E0 : �; �, de�ne the judgement �0 u�00 by induction on� and the number of lift-expressions in E0 and E00.�0 u�00 has the form A0 uA00; B0 u B00 ` E : �0 u �00; � (all this is well-de�ned, because�0 and �00 are completions of �) where is E is de�ned as follows:If E0 = lift E01 and E00 = lift E001 then �0 = �00 = intD and E = lift E1 where E1 isdetermined inductively by the result of (A0; B0 ` E01 : intS ; �)u (A00; B00 ` E001 : intS; �) =(A0 uA00; B0 uB00 ` E1 : intS ; �).If E0 = lift E01, E00 6= lift E001 , �0 = intD and �00 = intD then E = lift E1 whereE1 is determined by the result of (A0; B0 ` E01 : intS ; �) u (A00; B00 ` E00 : intD; �) =(A0 uA00; B0 uB00 ` E1 : intS ; �). 22

If E0 = lift E01, E00 6= lift E001 , �0 = intD and �00 = intS then E = E1 where E1 isdetermined by the result of (A0; B0 ` E01 : intS ; �) u (A00; B00 ` E00 : intS; �) = (A0 uA00; B0 uB00 ` E1 : intS ; �).If E0 6= lift E01 and E00 = lift E001 : analogous to the previous two cases.For the remaining cases, we can assume that neither E0 nor E00 is a lift-expression.They are straightforward and we present just two samples. Basically, if b0 and b00 arethe top-level annotations in E0 and E00, we need to apply the same syntax constructorannotated with b0 u b00 to the expressions that we obtain inductively.If E0 = x then E00 = x and E = x, too.If E0 = succb0 E01 and E00 = succb00 E001 then E = succb0ub00 E1 where E1 is obtained byinduction as above.Lemma 3 The greatest lower bound operations on binding times, types, type assumptions,binding-time assumptions, and judgements are commutative and associative.Proof: Straightforward, with a tedious case analysis in the case for judgements involvinglift-expressions.In addition, well-formedness of types and type assumptions is not a�ected by taking greatestlower bounds.Lemma 4 Suppose dom(B1) = dom(B2).1. For all � = j�1j = j�2j with frv(�) � dom(B1), if B1 ` �1 wft and B2 ` �2 wft thenB1 uB2 ` �1 u �2 wft.2. For all A0 = jA1j = jA2j with frv(A0) � dom(B1), if B1 ` A1 wft and B2 ` A2 wft thenB1 uB2 ` A1 uA2 wft.Proof: 1. Induction on �.2. Induction on the size of A0, then apply part 1.Next we can prove that the greatest lower bound of two completions is itself a completion,which includes its derivability.Lemma 5 If �0 and �00 are completions of some �refr -judgement � then �0 u�00 is a com-pletion of �.Proof: By induction on the de�nition of �0 u�00.Let �0 = A0; B0 ` E0 : �0; �, �00 = A00; B00 ` E00 : �00; �, � = A0 `0 e ; E0 : �; �, and�0 u�00 = A0 uA00; B0 uB00 ` E : �0 u �00; �.Now we follow the cases of the de�nition:� If E0 = lift E01 and E00 = lift E001 then �0 = �00 = intD and E = lift E1 where E1is determined by the result of (A0; B0 ` E01 : intS ; �) u (A00; B00 ` E001 : intS ; �) =(A0 uA00; B0 uB00 ` E1 : intS ; �).By induction, this judgement is derivable and we apply (b-lift) to obtain A0 uA00; B0 uB00 ` lift E1 : intD; �), but that is exactly �0 u�00.Trivially, jEj = jlift E1j = E0. 23

� The case E0 = lift E01, E00 6= lift E001 , �0 = intD and �00 = intD works by exactly thesame reasoning.� If E0 = lift E01, E00 6= lift E001 , �0 = intD and �00 = intS then E = E1 where E1is determined by the result of (A0; B0 ` E01 : intS ; �) u (A00; B00 ` E00 : intS ; �) =(A0 uA00; B0 uB00 ` E1 : intS ; �).Again, by induction this judgement is derivable, but this time it is already equalto �0 u�00.Trivially, jEj = jE1j = E0.� If E0 = x then E00 = x and E = x, too.By assumption, A0; B0 ` x : �0; � which must be due to rule (b-var). Hence x : �0in A0 and � = ;. By the same reasoning, x : �00 in A00 so that x : �0 u �00 inA0 u A00, by de�nition. Since B0 u B00 ` A0 u A00 wft by Lemma 4, (b-var) provesA0 uA00; B0 uB00 ` x : �0 u �00; ;.Trivially, jEj = x = E0.� If E0 = succb0 E01 and E00 = succb00 E001 then E = succb0ub00 E1 where E1 is obtainedas indicated in the de�nition of u.In this case, we have �0 = intb0 , �00 = intb00 , and E0 is succ E00. The last rule inboth cases must have been (b-succ) applied to A0; B0 ` E01 : intb0 ; � and A00; B00 `E001 : intb00 ; �, respectively.The greatest lower bound of these is by de�nition A0uA00; B0uB00 ` E1 : intb0ub00 ; �and it is a completion of E00, by induction. Applying (b-succ) to it yields A0 uA00; B0 uB00 ` succb0ub00 E1 : intb0ub00 ; � which is exactly �0 u�00.Furthermore, jE1j = E00 by induction, so jEj = jsuccb0ub00 E1j = succ E00 = E0.� The remaining cases are essentially straightforward appeals to the inductive hy-pothesis.Thus armed, we set out to show that each �refr derivation � can be completed to a �refr, ann-derivation. Furthermore, the set of completions of � forms a �nite lower semi-lattice, i.e., apartial order with greatest lower bounds and a smallest element.Proposition 1 Suppose the translation judgement � = A0 `0 e; E0 : �; � is derivable.1. There exist A, B, E, and � such that A;B ` E : �; � is a completion of �.2. De�ne the relation � on the set of completions of � by �0 � �00 i� �0u�00 = �0. Thisrelation is a partial order.3. The partial order � on the set of completions of � has a smallest element.Proof: 1. De�ne A such that for each xi : �i in A0 there is xi : �i in A with �i = j�ijand all annotations in �i are D. Likewise for �. For each free region variable �in E0 there is � : D in B. Obviously, B ` A wft and B ` � wft. De�ne E suchthat jEj = E0, all annotations in E are D, and a lift is placed on every constant.This assignment ful�lls all well-formedness requirements, and by induction on thederivation of � we can prove that A;B ` E : �; � is derivable and conforms to �.24

2. We have to show that � is re
exive, transitive, and antisymmetric. Re
exivity istrivial by de�nition of u. Transitivity is immediate using the de�nition of � andthe associativity of u. Antisymmetry follows by commutativity of u.3. Since BT and E0 are �nite, there is only a �nite number of completions of �.Since the set of completions is non-empty by part 1 and it is closed under greatestlower bounds u, the greatest lower bound of all completions is a completion whichis � to every other completion.This result sets our goal: The algorithm should �nd the annotation corresponding to thesmallest completion of a �xed �refr -derivation.4.9 Binding-Time ReconstructionIn this section, we use the well-formedness constraints on the binding-time annotation to de-termine the smallest possible annotation. This reconstruction of the binding-time annotationsboils down to solving inequations over natural numbers.To compute the minimal well-formed binding-time decoration for the derivation of a trans-lation judgement � = A0 `0 e ; E0 : �; �, we �rst attach a binding-time variable to eachconstruct of E0 and to each type constructor mentioned in the derivation of �. Binding-timevariables range over BT . The type equalities imposed by the inference rules imply equali-ties between binding-time variables. These equalities are resolved by uni�cation during typeinference. The well-formedness constraints in the decorated region inference rules give riseto a system of inequations between binding-time variables. Such a system can be solved intime linear in the number of inequations [68]. To facilitate the insertion of lift-expressions,expressions of type int carry two binding-time variables b1 and b2 constrained by b1 � b2, asproposed by Henglein [40].The number of inequations is at most quadratic in n, the size of the expression e, becausewe need at most 2 + n inequations for each type constructor and there is a (term graph)representation of all types mentioned in � that needs at most n type constructor nodes [40].Hence, the worst case time bound for this step is O(n2).5 Implementation IssuesThe implementation of the specializer is mostly straightforward and follows the specializationsemantics given in Sec. 3. This section deals with two implementation issues that we haveignored so far: program point specialization and static store management.5.1 Program Point SpecializationProgram point specialization is an essential feature of realistic specializers [2,8,9,17,51,58]. Itimplements the fold and de�ne rules that are well-known from program transformation [16],thus avoiding code duplication and many cases of in�nite specialization. Folding is the processof using already known de�nitions.A program point specializer tries to fold at specialization points, marked by \memo E" inthe annotated language. How to fold is determined by the static �ngerprint, a projection ofthe current state of the specializer. Compared to the other specializers, we have an additionalproblem with computing the static �ngerprint due to the presence of sharing and cycles in25

the store. The static �ngerprint of SJmemo EK�k� depends on � and the reachability graphof the store, R(�), which is de�ned as follows:R(�) is a labeled digraph. Its nodes are the used locations of the store f� j �(�) 6= unusedgand the label of node � is �(�). There is an edge �! �0 i� �(�) contains the address �0.The static �ngerprint of SJmemo EK�k� consists of� the static values in the environment � and� the statically reachable part of the store �, i.e., the subgraph of the graph R(�) that isreachable from the static references in the environment.Whenever the specializer encounters a specialization point \memo E" it creates a residualprocedure call. The current static �ngerprint determines which residual procedure is called.When the specializer encounters a particular �ngerprint for the �rst time it creates a newprocedure de�nition and specializes E to construct its body. The new de�nition is cachedand indexed with the �ngerprint. The next time, the specializer only constructs the residualprocedure call and adjusts the static store according to the e�ect that specializing E wouldhave.The implementation uses a linearized representation of the reachable static store, whichis constructed during a depth-�rst traversal of R(�). This representation only re
ects thestructure of the graph, but not the actual store addresses. Otherwise it would be virtu-ally impossible to encounter the same �ngerprint again. Therefore, the address used in a�ngerprint is the depth-�rst number of the node in the traversal of R(�).The binding time of a specialization point memo E is dynamic, because the specializergenerates a residual function call for it. The specializer processes the body E with the emptycontinuation �y:��:y and|in contrast to the dynamic abstraction|the static store at thememo E expression. In addition, it stores a log of the static side e�ects performed whilespecializing E.This log causes a problem, because it is only complete after the specializer is �nished withE. However, the specializer may recursively try to process the same specialization point withrespect to the same static �ngerprint before the log for this specialization point is complete.There are basically two solutions to this problem.1. The online strategy [58] \freezes" the log when it encounters such a recursive call. Thenit proceeds with its current contents. The specializer signals an error on an attempt tomodify the \frozen" log later on.2. The o�ine strategy disallows static write and init e�ects at specialization points.Our system implements the o�ine strategy. It avoids unexpected errors at specialization timeand the binding-time analysis can easily enforce it. More sophisticated o�ine strategies arepossible, but we have yet to encounter examples where they are required.5.2 Static Store ManagementThe specializer duplicates the static store at a dynamic conditional (see Fig. 7). Takenliterally, the specializer would hold on to a copy of the static store while specializing thethen-branch and use the copy to specialize the else-branch afterwards (as in early versions ofC-Mix [2]). This is clearly ine�cient. 26

In our implementation, a stack (which happens to be identical to the above-mentionedlog) keeps track of all modi�cations, similar to the trail stack in a Prolog implementation.Every static assignment pushes the address � and the previous contents �(�) on the stack.At the dynamic conditional, the specializer pushes a mark on the stack before entering thethen-branch. After this specialization is �nished and before specializing the else-branch, thespecializer pops and undoes all entries in the stack up to (and including) the mark. Thus itestablishes a static store which is equivalent to the static store before entering the then-branch.6 ApplicationsIn preceding sections, we have seen that two factors aggravate the problem of performingassignments at specialization time with respect to a traditional imperative language: �rst-class references complicate the data
ow and higher-order functions complicate the control
ow. With the applications below, we show that our specializer handles both in a satisfactorymanner. None of the existing specializers for Scheme and ML [7, 9, 51] can satisfactorilyspecialize these examples in the presented form.The �rst application demonstrates program point specialization with respect to cyclic datastructures. All previous program point specializers explicitly forbid cyclic data since it resultsin non-termination. Specializers for traditional languages avoid this problem by restrictingthe use of pointers. The second application is the specialization of DAG uni�cation wherevariables are implemented by pointers. To achieve similar results with another specializer,requires major rewriting of the source program [19]. In contrast, our source program isstraightforward and needs only slight modi�cations to achieve good specialization. For thethird application we specialize an interpreter for a �rst-order lazy functional language whichimplements updatable closures using thunks and references. The result is online specializationfor the lazy language. This is a particular instance of specializer generation [33] which hasnot been achieved before. For this example, the ability of the specializer to process thunksand references at specialization time is crucial.The examples use a non-standard construct to declare algebraic datatypes. For example(define-data xlist (xnil) (xcons xcar xcdr))de�nes a new datatype xlist with a nullary constructor xnil and a binary constructor xconswith selectors xcar and xcdr.6.1 Cyclic DataThe program below constructs a cyclic list of ones and combines it with an unknown list d.The function main maps a list (x1 : : : xn) to the list of pairs ((x1 . 1) : : : (xn . 1)).(define-data xlist (xnil) (xcons xcar xcdr))(define (main d)(let ((cycle (xcons 1 (make-cell (xnil)))))(cell-set! (xcdr cycle) cycle)(zip d cycle)))(define (zip d s)(if (null? d)'()(cons (cons (car d) (xcar s))(zip (cdr d) (cell-ref (xcdr s))))))27

The binding-time analysis determines that all operations on references can be performedat specialization time, given that d is dynamic. Specializing the function zip requires takingthe static �ngerprint of the cyclic data structure bound to cycle. The resulting residualprogram is:(define ($goal-1 yyy-1)(define (zip-4-2 yyy-1-1)(let ((mlet-2 (null? yyy-1-1)))(if mlet-2'()(let* ((mlet-5 (car yyy-1-1))(mlet-4 (cons mlet-5 1))(mlet-6 (cdr yyy-1-1))(mlet-7 (zip-4-2 mlet-6)))(cons mlet-4 mlet-7)))))(zip-4-2 yyy-1))The specializer terminates despite the cyclic structure which vanishes on specialization. Theconstruction of the pair (x . 1) is implemented by (cons mlet-5 1).6.2 Uni�cationWe have implemented a uni�cation algorithm (unify s t) which works on terms wherevariables are implemented by references:(define-data maybe(just one)(nothing))(define-data term(make-var ref) ; make-var : ref (maybe term) -> term(make-cst num)(make-bin term1 term2)(make-dyn dynterm))A value of type maybe X is either (nothing) or (just X), where X has type X. A variableis represented by (make-var ref) where ref is a reference which either contains (nothing)(an unbound variable) or a binding (just term) where term is a term. A constant is simply(make-cst num) where num is a number. The single binary constructor make-bin applies totwo terms. Finally, a term may also be a dynterm which is explained below.The following code is written for s static and t dynamic.(define (unify s t)(cond((make-var? s)(let ((ref-maybe-s (ref s)))(if (just? (cell-ref ref-maybe-s))(unify (one (cell-ref ref-maybe-s)) t)(begin(cell-set! ref-maybe-s (just (make-dyn t)))SUCCESS))))((make-cst? s)(cond ((make-var? t)(let ((ref-maybe-t (ref t))) 28

(if (just? (cell-ref ref-maybe-t))(unify s (one (cell-ref ref-maybe-t)))(begin(cell-set! ref-maybe-t (just (make-cst (num s))))SUCCESS))))((make-cst? t)(= (num s) (num t)))(elseFAIL)))((make-bin? s)(cond ((make-var? t)(let ((ref-maybe-t (ref t)))(if (just? (cell-ref ref-maybe-t))(unify s (one (cell-ref ref-maybe-t)))(begin(cell-set! ref-maybe-t (just (make-bin (coerce (term1 s))(coerce (term2 s)))))SUCCESS))))((make-bin? t)(and (unify (term1 s) (term1 t))(unify (term2 s) (term2 t))))(elseFAIL)))((make-dyn? s)(dynamic-unify (dynterm s) t))(elseFAIL)))SUCCESS and FAIL are just names for #t and #f. We consider the case where s is make-cstin depth.If the dynamic term t is a variable then the code checks (dynamically) whether the variableis bound. If it is bound it recursively uni�es s with the term bound to the variable. If thevariable is not bound then it is dynamically bound to the constant term and SUCCESS isreturned.Otherwise, if t is a constant then the values of the constants are compared and the resultof the comparison is the result of the uni�cation. Otherwise, for any other kind of term,failure is signalled.The make-dyn constructor appears in static terms when a static variable is bound to adynamic term. Consequently, if s is such a dynamic term, unify extracts the term anddynamically uni�es it with t. Therefore, a completely dynamic copy of unify is necessary.This duplication of unify (not shown) is a standard binding-time improvement, which canbe automated [75].Finally, coerce transforms a static term into a dynamic copy of the same term. It isnecessary whenever a static term is bound to a dynamic variable. If the code would simplyassign the static term to the dynamic variable the binding-time analysis would classify theintended static term as dynamic. Therefore, coerce �rst copies the static term and the codeassigns the copy to the variable. The copy procedure coerce serves as a binding-time coercionbecause its argument term is static and its result term is dynamic. Coerce must implementa graph copy algorithm to preserve sharing. 29

(define ($goal-1 yyy-1)(define (unify_1-56-2 yyy-1-1)(let ((mlet-2 (make-var? yyy-1-1)))(if mlet-2(let* ((mlet-3 (ref yyy-1-1))(mlet-4 (cell-ref mlet-3)))(unify_1-57-3 mlet-4 mlet-3))(unify_1-58-4 yyy-1-1))))(define (unify_1-58-4 yyy-1-1-1)(let ((mlet-2 (make-bin? yyy-1-1-1)))(if mlet-2 (unify_1-59-5 yyy-1-1-1) #f)))(define (unify_1-59-5 yyy-1-1-1-1)(let* ((mlet-2 (term1 yyy-1-1-1-1))(mlet-3 (term2 yyy-1-1-1-1)))(dynamic-unify mlet-2 mlet-3)))(define (unify_1-57-3 mlet-4-2 mlet-3-1)(let ((mlet-3 (just? mlet-4-2)))(if mlet-3(let ((mlet-4 (one mlet-4-2)))(unify_1-56-2 mlet-4))(let* ((mlet-10 (nothing))(mlet-9 (make-cell mlet-10))(mlet-11 (make-var mlet-9))(mlet-12 (make-var mlet-9))(mlet-8 (make-bin mlet-11 mlet-12))(mlet-7 (just mlet-8))(mlet-6 (cell-set! mlet-3-1 mlet-7)))#t))))(unify_1-56-2 yyy-1))Figure 16: unify specialized with respect to (make-bin (make-var r) (make-var r))Our binding-time analysis annotates all operations on static terms s as static. Only theoperations depending on t are classi�ed dynamic.We have specialized this algorithm with respect to various terms s. In each case thespecializer is able to perform all operations that involve the processing of s. It handles non-linear variables correctly due to the fact that coerce preserves sharing. Figure 16 shows theresult of specializing unify with respect to (make-bin (make-var r) (make-var r)) wherethe variable is not bound. The function unify_1-59-5 handles the non-linear occurrence ofthe variable (make-var r). The last part of function unify_1-57-3 constructs a dynamicversion of the static input term, again respecting sharing (viz. mlet-9).The speedup obtained by specialization of unify varies between 1.65 and 2.25. This is agood result for a realistic algorithm.6.3 Specializer GenerationSpecializer generation is a challenging application [32, 33]. Basically, it allows the automaticconstruction of a specializer from a suitable interpreter. This is an extension of the classicapplication of partial evaluation to compilation. The theoretical foundations are the special-30

izer projections [32], which are generalizations of Futamura's projections (which show how toachieve compilation) [31].Using the specializer projections we have generated an online specializer for a lazy �rst-order functional programming language from a two-level interpreter. A two-level interpreteraccepts its input data in two parts. The �rst part is considered the known part of the inputwhile the second part is unknown. The �rst part is put in a standard environment, whilethe second part is put into a con�guration environment. The known inputs may refer to theunknown inputs through con�guration variables (pointers to unknown input). The interpreterrepresents values using the datatype desc:(define-data desc(const const->value)(cvar cvar->number)(static-susp static-susp->ref-sum) ; (value + unit -> value) ref(dyn-susp dyn-static->ref-sum dyn-susp->ref-sum))(define-data sum(make-value sum->value)(make-thunk sum->thunk))The interpreter tries to perform a computation with the known values �rst before it backtracksand uses unknown values from the con�guration environment. A value can be a constant(const), a con�guration variable (cvar) that points into the dynamic con�guration environ-ment, a static suspension, or a dynamic suspension. A static suspension is implemented by areference that either holds the value (if it was already computed) or a thunk that is invokedwhen the value is �rst demanded. The interpreter generates a dynamic suspension if it is notable to determine a priori whether the value of the suspension will be known or unknown.Therefore, the dyn-susp contains both, a static and a dynamic suspension. The interpreter�rst tries the static one and only falls back to using the dynamic one if the static suspensionfails to deliver a result.The binding-time analysis classi�es all references and thunks in the interpreter as static.This is impossible to achieve with an overly conservative partial evaluator like Similix. Thespecialized programs have the property that the value of each source expression of the programis computed at most once.In our experiments, we have found that the speedup due to specialization varies extremelydepending on the particular �rst-order program. We have measured speedups between 70 and150, which re
ects the massive overhead in the two-level interpreter.For example, specialization of the program (�rst-order recursive equations)(f x y z = (g x (+ y z) (- y z)))(g x y z = (if x (+ y y) (* z z)))with respect to (f cv1 cv2 13) (where cvi denotes a con�guration variable) yields the fol-lowing residual program.(define ($goal-1 dyn-1)(define (dyn-eval_1-11-2 mlet-4-6 mlet-3-5 mlet-4-4 mlet-3-3 mlet-4-2 mlet-3-1)(if mlet-3-1(let ((mlet-7 (+ mlet-4-4 13)))(+ mlet-7 mlet-7))(let ((mlet-9 (- mlet-4-6 13)))(* mlet-9 mlet-9)))) 31

(let* ((mlet-2 (cdr dyn-1))(mlet-3 (car dyn-1))(mlet-4 (car mlet-2)))(dyn-eval_1-11-2 mlet-4 mlet-3 mlet-4 mlet-3 mlet-4 mlet-3)))The parameter dyn represents the con�guration environment. It is a list of the values of thecon�guration variables. So mlet-3 and mlet-4 hold the values of cv1 and cv2, respectively.It is clearly visible that each operation in the source program is executed at most once in theresidual program. In addition, the known value 13 is propagated to its uses.If the input additionally speci�es the value of the condition, i.e., (f #f cv2 13) theresidual program reduces to one slice of the above residual program.(define ($goal-1 dyn-1)(let* ((mlet-2 (car dyn-1))(mlet-3 (- mlet-2 13)))(* mlet-3 mlet-3)))7 Related Work7.1 Online SpecializationThe early work on specialization mostly considers online specialization for imperative lan-guages. For example, Futamura [31] and Ershov and his group [14,28,29] consider fragmentsof Algol. Building on work by Ershov's group, Meyer [53] de�nes and proves correct an on-line specializer for Pascal that performs side e�ects at specialization time. Marquard andSteensgaard [52] describe an online partial evaluator for an object-oriented imperative lan-guage. The REDFUN group [6, 37] developed specializers for impure Lisp using an ad-hocapproach to handling side e�ects. �rb�k's POPE [64] specializes Scheme with mutable vari-ables, but always residualizes operations that a�ect variables. Asai and others [4] describe anonline specializer for a subset of Scheme which handles dynamic side e�ects using pre-actions.Pre-actions have a purpose similar to automatically inserted let-expressions. Their special-izer does not handle side e�ects at specialization time. There are also versions of the FUSEspecializer [77] which deal with assignments.7.2 O�ine SpecializationThe �rst o�ine specializer for an imperative
ow-chart language is
ow-chart mix [36]. Asimilar language is studied by Das and others [24] who provide a semantic notion of binding-time analysis for a tiny imperative language based on a notion of value sequences. Todaythere are partial evaluators for realistic languages, for example C-mix and Tempo for a subsetof ANSI C [2, 20] , F-spec for a subset of Fortran 77 [5], and M2MIX for Modula-2 [15]. Allof them perform some side e�ects statically, but all of them deal with �rst-order languagesand some do not include pointers (
ow-chart mix and F-spec). In contrast, we specialize ahigher-order language with �rst-class mutable references.The system of Nirkhe and Pugh [58] is interesting, because it requires programming in anannotated language. They describe partial evaluation for a block-structured imperative lan-guage. They perform full memoization, but using the online technique described in Sec. 5.1.Furthermore, they cut down the static �ngerprint by only including those parts of the store32

that are actually read. This feature could also be included in our specializer using an addi-tional analysis or by starting from a polymorphically typed language.Like our system, recent versions of C-Mix duplicate the store only conceptually at dynamicconditionals and include sophisticated static memory management techniques [3]. Bulyonkovand Kochetov [15] de�ne a static analysis that determines the part of the store that is a�ectedby specialization of the then-branch. The result of this analysis can drive a more e�cientpartial save/restore scheme than ours. Our approach to static memory management drawson ideas from the implementation of �rst-class stores [25,43,56]. A language supporting �rst-class stores provides operations to reify the current store as a �rst-class object and to installsuch a store again as the current one later in the computation.The specializers of Bondorf and Danvy [9,12] deal with �rst-order and higher-order recur-sive equations with global variables. Neither specializer performs side e�ects at specializationtime. SML-mix [7] and Pell-Mell [51] employ the same conservative strategy for partial eval-uation of SML. Pell-Mell wraps dynamic computations in dynamic let-expressions to obtain\lightweight symbolic values." This is similar to the introduction of let-expressions in ourspecializer.7.3 Specialization with ContinuationsContinuation-based partial evaluation started of with Consel and Danvy's improvement ofstatic data
ow by CPS-transforming the source program before specializing it [18]. Bondorf[10] avoids CPS in residual programs by writing the specializer itself using continuationsand liberalizing the binding-time analysis in the same way as Consel and Danvy. Lawalland Danvy [48] reexpress Bondorf's specializer in direct style plus control operators to gaine�ciency. Moura, Consel, and Lawall [57] suggest an approach to static analysis of imperativeprograms by transforming them to a sophisticated variant of store-passing style (and to staticsingle assignment form [21]) and apply analysis techniques developed for pure functionalprograms. This parallels Consel and Danvy's use of the CPS transformation [18]. In ourwork we use Consel and Danvy's approach as a proof device. In practice, our specializerrephrases Bondorf's specializer [10] in the style of Consel and Danvy [18] using A-normalform instead of CPS for the residual code and, of course, adding store passing. Our actualimplementation generalizes Lawall and Danvy's direct-style specializer.Interestingly, Hatcli� and Danvy [39] have speci�ed and proved correct a partial evaluatorthat performs let-insertion automatically. Their let-insertion results from a preceding trans-formation into Moggi's computational metalanguage [54] whereas our specializer does it onthe
y. Another di�erence is that their specializer only propagates static contexts whereasour specializer propagates dynamic contexts, too.Our binding-time analysis is inspired by binding-time speci�cations using non-standardand annotated type systems [26,34,40]. The supporting analyses are based on e�ect systems[50, 70, 76].7.4 Type-based SpecializationHughes [42] has discovered a novel framework for specialization of typed higher-order lan-guages. His type specialization is a variation of type inference and is thus able to overcomesome limitations of partial evaluators for typed languages. Hughes and the authors [27] haveextended type specialization to Moggi's computational metalanguage (instantiated to the33

state monad) so that it covers a similar range of applications as the present work. However,whereas the focus of the type specialization work lies on the exploitation of (and strugglingwith) the superior information
ow granted by uni�cation, the present work targets e�cientpartial evaluation for realistic languages. Due to the uni�cation a type specializer constructsits output out of order, whereas our specializer adheres to the evaluation order. Furthermore,the partial evaluator presented here is fully automated: the binding-time analysis constructswell-annotated programs which the specializer processes without producing errors. In con-trast, the type specializer must be fed an annotated program and it may report errors duringspecialization even on well-formed programs.Type-directed partial evaluation [22] is also applicable to specialization with static state,in principle. However, if sum types are handled as indicated in the paper [22] then the staticstore will not be duplicated at dynamic conditionals. This is due to the use of versions of thecontrol operators shift and reset that are ignorant of the store, leading to incorrect results.In addition, type-directed partial evaluation does not perform program point specialization.8 Conclusions and Further WorkWe have developed an o�ine partial evaluator for a call-by-value lambda calculus with �rst-class references. Although presented for a simple core language, the techniques scale up to fullScheme or Standard ML. It is straightforward to include partially static data, to constructprogram-generator generators (cogens), and to extend the specializer to multiple levels ofbinding times. All these extensions are implemented along with the techniques presented inthis work in the PGG system which applies to the full Scheme language [71, 72, 74].The specializer is applicable to programs that are otherwise hard to specialize in a sat-isfactory manner: Specializers like Similix explicitly disallow the construction of cyclic datastructures; specializing uni�cation without static references requires non-trivial rewriting ofthe algorithm [19]; specialization of programs in message-passing style is impossible withouta proper treatment of static references as demonstrated in Fig. 1; specializer generation forlazy functional languages has not been achieved before.Specialization time and the e�ciency of the binding-time analysis were never a problem inpractice. Preliminary experiments suggest that the analysis runs in linear time in the typicalcase, i.e., for programs that do not use side e�ects or that use them sparingly. We have neverobserved the worst-case O(n4) behavior in practice.The specialization algorithm is based on continuation-passing and store-passing style. Itgeneralizes continuation-based partial evaluation. The novelties are the treatment of thestatic store using store-passing style and the automatic let-insertion. In the implementationwe have rephrased our algorithm in a similar way as Lawall and Danvy rephrased continuation-based partial evaluation [48]. Furthermore, we have some evidence that our approach can begeneralized to deal with other computational e�ects, such as exceptions.The novel element of our binding-time analysis is its reliance on a region inference systemin place of a type system. We regard it as a natural extension of the type-based analysesthat are used in other partial evaluators [13]. Our analysis can be regarded as improving theresults of earlier analyses by exploiting region information. There is a correctness proof forthe region-based binding-time analysis [73].The main emphasis of our approach is on simplicity and e�ciency. For these reasons wehave chosen a monovariant, context-insensitive binding-time analysis. This yields a tractable34

polynomial analysis which is fast in practice. We are fully aware that there are more preciseand more expensive analysis methods that exploit polyvariance or polymorphism, but theexamples show that our approach already leads to satisfactory results. Our conclusion is thatthe additional precision of other analysis methods may not be required for many applica-tions in mostly functional languages like Scheme or ML. In another context, for example tospecialize C or Modula-2, di�erent choices may be preferable.The basic techniques presented in this work are generally applicable. For example, ourtechniques for analysis and static memory management are immediately applicable to anyprocedural language, i.e., Modula-2 or C. Beyond that, we believe that the analysis andimplementation techniques can be extended to object-oriented programming languages.AcknowledgementsThis work was initiated during a visit of Dirk Dussart at T�ubingen University, funded by aMinisterium f�ur Wissenschaft und Forschung grant, in February 1996. It was further devel-oped during his stay at BRICS, Aarhus, in 1996. Special thanks are due to Olivier Danvy,Simon Helsen, Julia Lawall, Torben Mogensen, Claus Reinke, and Michael Sperber for valu-able feedback in various stages of this work and to S. Doaitse Swierstra for support.References[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpretationof Computer Programs. MIT Press, Cambridge, Mass., 1985.[2] Lars Ole Andersen. Program Analysis and Specialization for the C Programming Lan-guage. PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU report 94/19).[3] Peter Holst Andersen. Static memory management in C-Mix. availableat URL http://www.diku.dk/research-groups/topps/activities/cmix/memory.ps.gz, De-cember 1996.[4] Kenichi Asai, Hidehiko Masuhara, and Akinori Yonezawa. Partial evaluation of call-by-value �-calculus with side-e�ects. In Charles Consel, editor, Proc. ACM SIGPLANSymposium on Partial Evaluation and Semantics-Based Program Manipulation PEPM'97, pages 12{21, Amsterdam, The Netherlands, June 1997. ACM Press.[5] Romana Baier, Robert Gl�uck, and Robert Z�ochling. Partial evaluation of numericalprograms in Fortran. In Peter Sestoft and Harald S�ndergaard, editors, Proc. ACMSIGPLAN Workshop on Partial Evaluation and Semantics-Based Program ManipulationPEPM '94, pages 119{132, Orlando, Fla., June 1994. ACM.[6] L. Beckman, A. Haraldsson, �O. Oskarsson, and E. Sandewall. A partial evaluator, andits use as a programming tool. Arti�cial Intelligence, 7(4):319{357, 1976.[7] Lars Birkedal and Morten Welinder. Partial evaluation of Standard ML. Rapport 93/22,DIKU, University of Copenhagen, 1993.[8] Lars Birkedal and Morten Welinder. Hand-writing program generator generators. InManuel V. Hermenegildo and Jaan Penjam, editors, International Symposium on Pro-gramming Languages, Implementations, Logics and Programs (PLILP '94), volume 84435

of Lecture Notes in Computer Science, pages 198{214, Madrid, Spain, September 1994.Springer-Verlag.[9] Anders Bondorf. Automatic autoprojection of higher order recursive equations. Scienceof Computer Programming, 17:3{34, 1991.[10] Anders Bondorf. Improving binding times without explicit CPS-conversion. In Proc. 1992ACM Conference on Lisp and Functional Programming, pages 1{10, San Francisco, Cal-ifornia, USA, June 1992.[11] Anders Bondorf. Similix 5.0 Manual. DIKU, University of Copenhagen, May 1993.[12] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recursive equations withglobal variables and abstract data types. Science of Computer Programming, 16(2):151{195, 1991.[13] Anders Bondorf and Jesper J�rgensen. E�cient analyses for realistic o�-line partialevaluation. Journal of Functional Programming, 3(3):315{346, July 1993.[14] Mikhail A. Bulyonkov. Polyvariant mixed computation for analyzer programs. ActaInformatica, 21:473{484, 1984.[15] Mikhail A. Bulyonkov and Dmitrij V. Kochetov. Practical aspects of specialization ofAlgol-like programs. In Danvy et al. [23], pages 17{32.[16] Rod M. Burstall and John Darlington. A transformation system for developing recursiveprograms. Journal of the ACM, 24(1):44{67, 1977.[17] Charles Consel. Polyvariant binding-time analysis for applicative languages. InDavid Schmidt, editor, Proc. ACM SIGPLAN Symposium on Partial Evaluation andSemantics-Based Program Manipulation PEPM '93, pages 66{77, Copenhagen, Den-mark, June 1993. ACM Press.[18] Charles Consel and Olivier Danvy. For a better support of static data
ow. In Hughes [41],pages 496{519.[19] Charles Consel and Siau-Cheng Khoo. Semantics directed generation of a Prolog com-piler. In Jan Maluszynski and Martin Wirsing, editors, Proc. Programming LanguageImplementation and Logic Programming '91, pages 135{146, Passau, Germany, August1991. Springer-Verlag. LNCS 528.[20] Charles Consel and Francois No�el. A general approach for run-time specialization andits application to C. In POPL1996 [63], pages 145{156.[21] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. KennethZadeck. E�ciently computing static single assignment form and the control
ow graph.ACM Transactions on Programming Languages and Systems, 13(4):451{490, October1991.[22] Olivier Danvy. Type-directed partial evaluation. In POPL1996 [63], pages 242{257.36

[23] Olivier Danvy, Robert Gl�uck, and Peter Thiemann, editors. Dagstuhl Seminar on PartialEvaluation 1996, volume 1110 of Lecture Notes in Computer Science, Schlo� Dagstuhl,Germany, February 1996. Springer-Verlag.[24] Manuvir Das, Thomas Reps, and Pascal Van Hentenryck. Semantic foundations ofbinding-time analysis for imperative programs. In William Scherlis, editor, Proc. ACMSIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipula-tion PEPM '95, pages 100{110, La Jolla, CA, June 1995. ACM Press.[25] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structurespersistent. In Proceedings of the Eighteenth ACM Symposium on Theory of Computing,pages 109{121, May 1986.[26] Dirk Dussart, Fritz Henglein, and Christian Mossin. Polymorphic recursion and sub-type quali�cations: Polymorphic binding-time analysis in polynomial time. In AlanMycroft, editor, Proc. International Static Analysis Symposium, SAS'95, volume 983 ofLecture Notes in Computer Science, pages 118{136, Glasgow, Scotland, September 1995.Springer-Verlag.[27] Dirk Dussart, John Hughes, and Peter Thiemann. Type specialisation for imperativelanguages. In Mads Tofte, editor, Proc. International Conference on Functional Pro-gramming 1997, pages 204{216, Amsterdam, The Netherlands, June 1997. ACM Press,New York.[28] Andrei P. Ershov. On the essence of compilation. In Erich J. Neuhold, editor, FormalDescription of Programming Concepts, pages 391{420. North-Holland, 1978.[29] Andrei P. Ershov. On mixed computation: Informal account of the strict and polyvariantcomputational schemes. In Manfred Broy, editor, Control Flow and Data Flow: Conseptsof Distributed Programming, pages 107{120. Springer-Verlag, 1984.[30] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essenceof compiling with continuations. In Proc. of the ACM SIGPLAN '93 Conference onProgramming Language Design and Implementation, pages 237{247, Albuquerque, NewMexico, June 1993.[31] Yoshihiko Futamura. Partial evaluation of computation process | an approach to acompiler-compiler. Systems, Computers, Controls, 2(5):45{50, 1971.[32] Robert Gl�uck. On the generation of specializers. Journal of Functional Programming,4(4):499{514, October 1994.[33] Robert Gl�uck and Jesper J�rgensen. Generating optimizing specializers. In IEEE Inter-national Conference on Computer Languages, pages 183{194. IEEE Computer SocietyPress, 1994.[34] Carsten K. Gomard. Partial type inference for untyped functional programs. InProc. 1990 ACM Conference on Lisp and Functional Programming, pages 282{287, Nice,France, 1990. ACM Press.[35] Carsten K. Gomard. A self-applicable partial evaluator for the lambda-calculus. ACMTransactions on Programming Languages and Systems, 14(2):147{172, 1992.37

[36] Carsten K. Gomard and Neil D. Jones. Compiler generation by partial evaluation: Acase study. Structured Programming, 12:123{144, 1991.[37] Anders Haraldsson. A Program Manipulation System Based on Partial Evaluation. PhDthesis, Link�oping University, Sweden, 1977. Link�oping Studies in Science and TechnologyDissertations 14.[38] John Hatcli� and Olivier Danvy. A generic account of continuation-passing styles. InPOPL1994 [62], pages 458{471.[39] John Hatcli� and Olivier Danvy. A computational formalization for partial evaluation.Mathematical Structures in Computer Science, 7(5):507{542, 1997.[40] Fritz Henglein. E�cient type inference for higher-order binding-time analysis. In Hughes[41], pages 448{472.[41] John Hughes, editor. Functional Programming Languages and Computer Architecture,volume 523 of Lecture Notes in Computer Science, Cambridge, MA, 1991. Springer-Verlag.[42] John Hughes. Type specialisation for the �-calculus; or, a new paradigm for partialevaluation based on type inference. In Danvy et al. [23], pages 183{215.[43] G. F. Johnson and Dominic Duggan. Stores and partial continuations as �rst-class objectsin a language and its environment. In POPL1988 [61], pages 158{168.[44] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and AutomaticProgram Generation. Prentice-Hall, 1993.[45] Pierre Jouvelot and David K. Gi�ord. Algebraic reconstruction of types and e�ects. InProc. 18th Annual ACM Symposium on Principles of Programming Languages, pages303{310, Orlando, Florida, January 1991. ACM Press.[46] Richard Kelsey, William Clinger, and Jonathan Rees. Revised5 report on the algorithmiclanguage scheme. Technical report, 1998.[47] Paul Kleinrubatscher, Albert Kriegshaber, Robert Z�ochling, and Robert Gl�uck. Fortranprogram specialization. SIGPLAN Notices, 30(4):61{70, 1995.[48] Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation. In Proc. 1994ACM Conference on Lisp and Functional Programming, pages 227{238, Orlando, Florida,USA, June 1994. ACM Press.[49] Julia L. Lawall and Peter Thiemann. Sound specialization in the presence of computa-tional e�ects. In Proc. Theoretical Aspects of Computer Software, volume 1281 of LectureNotes in Computer Science, pages 165{190, Sendai, Japan, September 1997. Springer-Verlag.[50] John M. Lucassen and David K. Gi�ord. Polymorphic e�ect systems. In POPL1988 [61],pages 47{57. 38

[51] Karoline Malmkj�r, Nevin Heintze, and Olivier Danvy. ML partial evaluation usingset-based analysis. In Record of the 1994 ACM SIGPLAN Workshop on ML and itsApplications, number 2265 in INRIA Research Report, pages 112{119, Orlando, Florida,June 1994.[52] Morten Marquard and Bjarne Steensgaard. Partial evaluation of an object-orientedimperative language. Master's thesis, Department of Computer Science, University ofCopenhagen, Denmark, April 1992.[53] Uwe Meyer. Techniques for partial evaluation of imperative languages. In Paul Hudakand Neil D. Jones, editors, Proc. ACM SIGPLAN Symposium on Partial Evaluationand Semantics-Based Program Manipulation PEPM '91, pages 94{105, New Haven, CT,June 1991. ACM. SIGPLAN Notices 26(9).[54] Eugenio Moggi. Computational lambda-calculus and monads. In Proc. of the 4th AnnualSymposium on Logic in Computer Science, pages 14{23, Paci�c Grove, CA, June 1989.IEEE Computer Society Press.[55] Eugenio Moggi. Functor categories and two-level languages. In M. Nivat and A. Arnold,editors, Foundations of Software Science and Computation Structures, FoSSaCS'98, Lec-ture Notes in Computer Science, Lisbon, Portugal, April 1998.[56] J. Gregory Morrisett. Generalizing �rst-class stores. In Paul Hudak, editor, SIPL '93,ACM SIGPLAN Workshop on State in Programming Languages, pages 73{87, Copen-hagen, Denmark, June 1993. Yale University, Department of Computer Science, NewHaven, CT. Technical Report YALEU/DCS/RR-968.[57] B�arbara Moura, Charles Consel, and Julia L. Lawall. Bridging the gap between functionaland imperative languages. Publication interne 1027, Irisa, Rennes, France, July 1996.[58] Vivek Nirkhe and William Pugh. Partial evaluation of high-level imperative program-ming languages with applications in hard real-time systems. In Proc. 19th Annual ACMSymposium on Principles of Programming Languages, pages 269{279, Albuquerque, NewMexico, January 1992. ACM Press.[59] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proc. Conference onProgramming Language Design and Implementation '88, pages 199{208, Atlanta, July1988. ACM.[60] Gordon D. Plotkin. T! as a universal domain. Journal of Computer and System Sciences,17:209{236, 1978.[61] Proc. 15th Annual ACM Symposium on Principles of Programming Languages, SanDiego, California, January 1988. ACM Press.[62] Proc. 21st Annual ACM Symposium on Principles of Programming Languages, Portland,OG, January 1994. ACM Press.[63] Proc. 23rd Annual ACM Symposium on Principles of Programming Languages, St. Pe-tersburg, Fla., January 1996. ACM Press.39

[64] Peter �rb�k. POPE: An on-line partial evaluator.ftp://ftp.daimi.aau.dk/pub/empl/poe/pope.ps.gz, June 1994.[65] John C. Reynolds. De�nitional interpreters for higher-order programming languages. InACM Annual Conference, pages 717{740, July 1972.[66] David A. Schmidt. Denotational Semantics, A Methodology for Software Development.Allyn and Bacon, Inc, Massachusetts, 1986.[67] Dana S. Scott. Data types as lattices. SIAM Journal on Computing, 5(3):522{587, 1976.[68] Helmut Seidl. Least solutions of equations over N . In Proc. International Conferenceof Automata, Languages and Programming, ICALP '94, volume 820 of Lecture Notes inComputer Science, pages 400{411. Springer-Verlag, 1994.[69] Michael Sperber and Peter Thiemann. Two for the price of one: Composing partial eval-uation and compilation. In Proc. of the ACM SIGPLAN '97 Conference on ProgrammingLanguage Design and Implementation, pages 215{225, Las Vegas, NV, USA, June 1997.ACM Press.[70] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and e�ect inference.Journal of Functional Programming, 2(3):245{272, July 1992.[71] Peter Thiemann. Cogen in six lines. In R. Kent Dybvig, editor, Proc. InternationalConference on Functional Programming 1996, pages 180{189, Philadelphia, PA, May1996. ACM Press, New York.[72] Peter Thiemann. Implementing memoization for partial evaluation. In Herbert Kuchenand Doaitse Swierstra, editors, International Symposium on Programming Languages,Implementations, Logics and Programs (PLILP '96), volume 1140 of Lecture Notes inComputer Science, pages 198{212, Aachen, Germany, September 1996. Springer-Verlag.[73] Peter Thiemann. Correctness of a region-based binding-time analysis. In Proc. Math-ematical Foundations of Programming Semantics, Thirteenth Annual Conference,volume 6 of Electronic Notes in Theoretical Computer Science, page 26, Pitts-burgh, PA, March 1997. Carnegie Mellon University, Elsevier Science BV. URL:http://www.elsevier.nl/locate/entcs/volume6.html.[74] Peter Thiemann. The PGG System|User Manual. University of Nottingham, Notting-ham, England, June 1998. Available from ftp://ftp.informatik.uni-tuebingen.de/pub/PU/thiemann/software/pgg/.[75] Peter Thiemann and Michael Sperber. Polyvariant expansion and compiler generators.In PSI-96: Andrei Ershov Second International Memorial Conference, Perspectives ofSystem Informatics, volume 1181 of Lecture Notes in Computer Science, pages 285{296,Novosibirsk, Russia, June 1996. Springer-Verlag.[76] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value �-calculususing a stack of regions. In POPL1994 [62], pages 188{201.[77] Daniel Weise, Roland Conybeare, Erik Ruf, and Scott Seligman. Automatic online partialevaluation. In Hughes [41], pages 165{191.40

