
AT Humboldt |Development, Practice and TheoryHans-Dieter Burkhard, Markus Hannebauer, Jan Wendler?Institute for Computer ScienceHumboldt-University of Berlin10099 Berlin, GermanyAbstract. This article covers three basics of our virtual soccer teamAT Humboldt: We describe our development process in the frame of apractical exercise for students. The resulting e�cient agent-oriented real-ization is explained, and we give a theoretical embedding of our planningcomponent based on BDI.1 IntroductionOne of the recent �elds of Arti�cial Intelligence is Agent-Oriented Programming(AOP, cf. e.g. [Wooldridge/Jennings, 1994], [Shoham, 1993]). AOP is pro-posed especially for the programming of autonomous components (\agents")in open heterogeneous systems. The agents (players) in Arti�cial Soccer[Kitano et al., 1997] must plan and execute actions individually and e�-ciently resulting in a successful cooperative team behavior.This article covers three basics of our virtual soccer team AT Humboldt:We present a description of our development process in the frame of a practicalexercise for students at the Humboldt-University of Berlin. We show how thishas lead to an e�cient agent-oriented realization. We also give a theoreticalembedding of our architecture and our planning component.We hope that our article can be useful for three types of readers: The practi-cian may �nd some new ideas to enhance his own team, the teacher may get animpression of our work with students, and the theoretician may be interested inan applied Belief-Desire-Intention (BDI) architecture.The article starts with the motivation of our interests in Arti�cial Soccer.The development process is �gured out in Section 3. The main part (Section 4)describes the components and implementation of our agents and Section 5 dis-cusses the theoretical background. Finally, future developments and conclusionsare discussed.? Many ideas and �rst of all hard implementation work came from Pascal M�uller-Gugenberger, Amin Coja-Oghlan, Adrianna Foremniak, Derrick Hepp, Heike M�ullerand Kay Schr�oter in a practical exercise. We wish to thank them for their greate�orts.

2 Our Interests in Arti�cial Soccer and First ExperiencesThe main interests in our group concern Distributed AI, Multi Agent Systems(MAS), Agent-Oriented Techniques (AOT), and Case Based Reasoning (CBR).All of these �elds have direct relations to Arti�cial Soccer and we have �xed thefollowing scienti�c goals for our participation in RoboCup:1. Agent architectures | We are interested in experiments and evaluations fordi�erent approaches like the subsumption architecture ([Brooks, 1990])and the BDI architecture ([Bratman, 1987], [Rao/Georgeff, 1995]).This concerns the e�cient realization of the \belief-to-action"-cycle and theoptimal relationship between deliberative and reactive behavior.2. Cooperation in MAS | We are interested in emerging cooperation and im-provements by communication, negotiation and (explicit) joint plans. Fur-ther interests concern the formation of a team out of di�erent roles and\characters".3. Agent learning | We are interested in the usage of CBR for the trainingof capabilities and decision procedures (o�-line learning) and for the adap-tion to opponents' behavior (on-line learning), respectively. Especially thetreatment of time in these two cases is challenging.4. Decision making using vague information | We have developed a specialtechnique for vague matching which we use in CBR applications (\CaseRetrieval Nets", [Lenz/Burkhard, 1996], [Burkhard, 1997]). We wantto test it as control structure for the mind of agents (e.g. for the choice andadaptation of precompiled plans using similarity of sensor information/beliefconditions).The implementation of our program until August 1997 has covered mainlypoint 1 and partially point 2. We have discussed di�erent approaches and �nallywe have implemented an architecture which is best comparable with the BDI-approach (cf. section 5). The Advanced Skills (cf. section 4.4) could also beconsidered as a layer in a subsumption architecture. Because the higher levelsof deliberation have continuous control, it is a more goal oriented architecturein our understanding. Under this view, the Advanced Skills are considered asprede�ned plans.Emerging cooperation has already given very exciting results: players actaccording to their expectations concerning the behavior of their team-mates.Di�erent roles result in an e�cient usage of the whole playground. But we havealso identi�ed several situations where communications would improve the be-havior (but this was not implemented up to now).The realization of Point 3 is supported in the architecture by the historymechanism within the world model (cf. section 4.2), but it was not used forlearning up to now. There was some misunderstanding in the announcements: Wehave declared CBR as our research goal for RoboCup (hoping to get ready withit until the competition in Nagoya). But in fact we did not use it in RoboCup97.We have observed in our studies that learning may lead to suboptimal (or even

worse) behavior if it is applied to insu�ciently analyzed/developed underlyingskills. To give an example: A directed kick needs some preparation (stop the ball,place the ball for kicking, �nal kick). Hence the players have to learn a relatedsequence of parameterized actions. A careful analysis can specify a skeleton for asuccessful skill, while parameter settings according to a given situation are dueto training (as for humans). Another example concerns the decision component:You can learn proper deliberation only if you can rely on the proper executionof the skills.The Case Retrieval Nets (Point 4) seem to be suited for the learning ofdeliberation processes, but we have no experience up to now.3 The DevelopmentThe overall development strategy was to keep in mind all our interests from thevery beginning (e.g. histories for learning, desires and intentions for deliberation).That means to develop a structure which is open for further re�nements andextensions. We also tried to obtain best results with least e�ort (e.g. cooperationwithout communication as far as possible).We have used protocols (log-�les) of internal and external information
owand decisions. The study of those �les gave us hints to inexact implementationsof our ideas (but it also occurred that \wrong" executions were caused by netoverload).We started with basic work on a class library for UDP/IP, sensors and com-mands. First ideas were developed by prototyping (extended \simple client").The development of soccer agents was the topic of a practical exercise for stu-dents in connection with a lecture on MAS/AOP/CBR during summer semester(April { July 1997). Besides the discussion of concepts some modules and rou-tines were implemented in C++ and JAVA.Starting in the second half of July a team of three students �nished the workon the implementation of the modules (only in C++ for reasons of computationalspeed). The modules were combined and tested. The �rst results showed approx-imately equivalence to the power of the \Ogalets". After �xing some bugs, tuningand further re�nements we could improve the scoring to 29:1 before leaving forNagoya.Some further changes during the breaks of the competition in Nagoya con-cerned especially positioning (fuzzy positioning, positions for corner kick andgoal kick, changes in the home positions).4 The Ideas of the RealizationThis section gives an overview and some details of the di�erent components ofour soccer playing agent team. Additionally it may help the reader to get throughour published code2: We will mention the particular �les which implement the2 (see http://www.ki.informatik.hu-berlin.de/RoboCup97/index e.html)

described parts. The whole project was implemented in C++ under Solaris andLinux, respectively.4.1 Clear Architecture
World Advanced

Skills

Sense Planning Act

Basic Skills

Model

SensorsFig. 1. General Architecture of a Soccer Agent.The general architecture is identical for all agents, the player identi�es its role(goal-keeper, defender, attacker ...) by the player-number given from the server.Special behaviors according to the roles are due to di�erent parameter values.Figure 1 shows the agent's abstract architecture. Thick arrows indicate the maininformation
ow. Rhombs symbolize concurrently running components. An agent(agent.*) consists of all these components which can be seen as \organs".The component Sensors (sensors.*) parses and transforms the string codedsensor information which the player receives from the SoccerServer. The compo-nent Basic Skills (baseskills.*) provides methods for sending basic commandsto the server.4.2 Stable World ModellingIn a dynamic and uncertain domain like Arti�cial Soccer a consistent modellingof the environment is necessary. Short-term false information has to be cor-rected, un-precise information must be evaluated and inferences are necessaryfor missing information. This leads to a certain stability of the agent's belief. Itis realized by the complex component World Model (weltmod.*, fussball.*,positions.*, sensori.*, spielfe.*), which provides e.g. basic classes for

linear algebra. Every object on the �eld is described by a special class. Inheri-tance is strongly used, and additional features like timed objects and encapsu-lated environments make synchronization easier.The agent's absolute position on the �eld is calculated using the visual infor-mation concerning lines,
ags and goals. The triangulation considers all possiblecases (actually several hundred). The agent's velocity is estimated from the com-mands sent to the server. Additionally, the player records its stamina. Absolutepositions of all other seen objects can be computed because the own absoluteposition is known. A special algorithm matches new information on unnamedobjects (e.g. a player with a missing number) to known objects. The world modelcan also close the information gaps for unobservable objects by simulation.Simulation is also used to predict future situations by using the knowledgeabout positions and velocities. This ability is extensively used by Planning andAdvanced Skills to estimate consequences of possible commands. For example,Advanced Skills can instantiate a new ball object, simulate it for some time stepsand look at the position and speed. Additional features like wind could be easilytaken into account.World Model logs an adjustable number of environments to keep track of theplayer's history. This ability was implemented to support on-line learning, butit was not exploited in RoboCup97.4.3 Bounded RationalityThe component Planning (entscheidung*.*) embeds the planning and reason-ing process which leads successively from coarse plans to concrete commandsequences. The theoretical background of this procedure is described in section5. Here we show how the internal process works.A new planning process is initiated each time a new sensor information hasarrived . The situation is classi�ed: If the ball is under control, the agent is ableto pass the ball or to dribble. If the player has no control of the ball, it can decidewhether to intercept it, to watch the surrounding or to run to a certain position.This goal (target) �nding is done by a usual decision tree which selects a goalout of a �x goal library. Some of the decisions are trivial (\Is the ball in the kickrange or not?") but some are really tricky (\Shall I run to the ball or shall myteam-mate do it?"). The latter decision is done by a reachability simulation: Ifthe agent supposes to be the �rst of its team to reach the ball, it will run. If not,it relies on its team-mates and runs back to its home position. Because we havenot used communication yet, the stamina of team-mates has not been regardedand may have caused wrong expectations.After the goal selection the player has to �nd the best way to achieve its goal.This phase of the planning process produces a coarse long-term plan with someparameters (partial plan). The plans must be based on the skills of the agents.This means that plans are in a close correspondence to the advanced skills, whichare themselves building blocks for the execution of the long-term plans. Thereare two major cases to cope with: The agent is out of the kick range or it cancontrol the ball (i. e. has ball possession).

In the �rst case the player calculates an optimal interception position if it hasdecided to get the ball. For several reasons (e.g. to regard the wind if necessary)we decided to utilize the simulation capability of the world model. The agenttries mentally to reach the ball in one step, in two steps and so on until it�nds a certain number of steps in which it can reach the ball. This procedurealso provides a distance measure because it can be applied to every player andball instance. Figure 2 shows this process graphically and gives a commentedexample.
P4

P2

P1

P1

P1

P3

P5

t

t

t+1t+2t+3t+4

t+6t+7
t+5

t-3
t-1 t-2

Ball

at Time t

t+4

tt+6

Player at Time t

2Player P at Time t

Fig. 2. Decision Finding for Ball Interception.The solid line shows the ball movement with the ball positions at the time stepst � i. The dotted lines represent the view sectors of the di�erent players P1 andP2 at time t. The dashed lines show the movements of the players.P1 does not see P2 and P5. It calculates distance 26 for P4, 29 for P3 and 6 foritself. The agent decides to intercept the ball. P2 whose view sector includes P1calculates 6 for P1, 30 for P3, 26 for P4, 39 for P5 and 4 for itself. It also decidesto go for the ball. Hence both players of the same team go for the ball.P1 calculates interception position at ball position t+6. Likewise does P2 for ballposition t + 4. At time t + 3 a new sensor information comes in. P1 cannot seethe ball. It will keep its plan according to the implementation of our planningcomponent for such situations. P2 sees the ball and also continues interceptingthe ball.If the player has decided not to intercept the ball, it returns to its homeposition, or (if it is already there) collects information by turning and waiting.Further development will lead to more sophisticated behavior (e.g. double passesand explicit team strategies). The architecture is prepared for such extensions

(we have implemented special behavior for corner kicks or goal kicks just in thebreaks of the competition in Nagoya).If the player controls the ball, it has to decide whether to pass the ball orto dribble. Furthermore it has to decide in which direction to kick or to dribble,respectively. It should prefer a direction with best chances to score or to passthe ball to a team-mate. At the same time it should prefer directions promotingan o�ensive play style. A �xed direction d is evaluated by the following formula:�(d) = !b(�t(d)� �o(d)) + !m(�t(d)� �o(d)) �
o(d) +
t(d)The indexes t are used for terms indicating values of the own team, indexeso for the values of the opponents, respectively. !b and !m are role dependentweight factors with !b + !m = 1.� is the minimum of the distances � to the ball for all players of a team(indexes t or o). The distances � are calculated by simulation as described before,if the ball is kicked in the given direction d with a certain velocity. It is computedfor the own team by:�t(d) = minnp�(d; i) � �(d; i) ��� i 2 StoS is the set of seen players. The additional factor � is the length of theperpendicular from player i to the ball line (this value provides an in
uence ofstamina loss).� provides the mean distance of a team to the ball line. The unseen playersare approximated using a worst distance �w (P is the set of all team players):�t(d) = Pi2St �p�(d; i) � �(d; i)�+ jPt n Stj � �wjPtj
 is a goal hitting bonus, where �k is the \typical" kick distance and �g isthe distance to the goal, respectively:
t(d) = (max�0; �w � �w��g�k �; d hits our goal0 ; otherwiseThe values for !b, !m, �w and �k have to be tuned (it is intended to uselearning). �o, �o and
o are de�ned analogously.Having the formula to evaluate directions d by their values �(d) we can lookfor an optimal direction. Due to the de�nition (convex combination by weightfactors, symmetrical values for opponents' players and team-mates) the evalu-ation function is normalized to zero. This means that negative values indicatea \good" direction and positive values indicate a \bad" direction. In our re-cent implementation several discrete directions are evaluated and then the bestdirection is taken. Figure 3 exempli�es such an evaluation process.Values around zero are neutral. Especially these values around zero are dif-�cult to judge. For this purpose a randomized function was implemented whichdecides afterwards whether to kick or to dribble.

Team-mates

Opponents

Fig. 3. Evaluation of Discrete Kick Directions.
evaluation
value

θ

Probability of Dribbling

α ∆ gFig. 4. Probability function for Dribbling.The function is shown in �gure 4. It is on the left half a Gaussian functionwith the following de�nition:P (Dribble) = (� � e� (�g��)23:38 ; �g � �� ; �g > �� is a role dependent dribble factor (e.g. the goal-keeper has � = 0:1, the at-tacker � = 0:5). �g is the minimal distance over all evaluated directions. � is anacceptance constant for kicking which is also role dependent.The main problem of the evaluation strategy described above is that play-ers move in unpredictable ways. Therefore the positions of unseen players are

uncertain. This is why we decided to evaluate only directions in the view area(we used a view angle of 90 degrees and high quality). To prevent too manybackward shots, every area on the �eld has a de�ned preferred direction. Our�rst idea was the following procedure: Turn to preferred direction and evaluatethe kick directions. If there is no \good" kick direction, determine a turn direc-tion and turn, evaluate this sector and so on. This was a safe way to �nd theglobal best direction, but was actually to slow because the agent had to wait300 ms to get the next information. So we implemented the following behavior:If the agent looks approximately into the preferred direction (the de�nition of\approximately" is role dependent), it will do the evaluation process. If not, itwill do an \emergency kick" directed to the opponents goal. With additionalinformation via communication this simple behavior could be omitted in favorof full 360 degree evaluation in the future.Cooperation between team partners emerges by relying on the behavior ofteam-mates, that means team-mate modelling. The player relies on the fact thatthe team-mate with the shortest distance to the ball will try to intercept it whenit is passed in its direction.As soon as the agent has decided for a partial plan, it is given to the com-ponent Advanced Skills for execution.4.4 E�cient ExecutionThe component Advanced Skills (advancedskills.*) is a library of skills whichfacilitate e�cient ball handling and optimal movement. The technical task ofthis component is to split the long-term partial plans into short-term plans,which means concrete command sequences with full parameters. These short-term plans are not longer than the interval between consecutive sensor informa-tion (with our preferences these are actually three basic commands). This waythe long-term plans are executed by iterated calls of advanced skills after eachsensor information.It was one of the major decisions during development to use this strategy ofplan execution. The more common strategy is to �x a long term plan which maybe adapted during execution if necessary. Such a long term plan can start withsome initial actions to achieve a well de�ned situation (e.g. a suitable ball posi-tion for dribbling). Afterwards the actions are performed in the �xed sequenceaccording to the plan, such that each action relies on the successful execution ofits predecessors.In our strategy, a strictly new deliberation process can start for each newsensor information (actually each 300 msec), and in this case we have a new longterm plan started just at this time point. If we would need always certain (new)initial actions for preparation, then we might never come to the continuationof a plan (cf. Section 5 for further discussions). To overcome this problem, theadvanced skills are designed to deal immediately with any situation which mightappear at the beginning or during the execution of a long term plan (e.g. tocontinue dribbling in any situation). As a side e�ect, the advanced skills are

able to realize the fastest way for goal achievement in a very
exible way fromarbitrary start situations.Advanced Skills uses Basic Skills to send basic commands to the server. Wemodi�ed the basic Turn command because the original command which is di-rectly supported by the server is in
uenced by the player's speed. We enhancedthe Turn command to compensate this in
uence by increasing the turn angle or| in worst case | stopping �rst and then turning. The other basic commandsare sent without modi�cation to the server.The main advanced skills of the player agent are: Directed Kick, Go to Po-sition and Dribble. Go to Position enables the agent to reach every absoluteposition on the �eld. It produces one Turn (if needed) and/or up to two/threeDashes. If demanded, this procedure avoids obstacles like other players. Drib-ble moves the ball into a certain direction without loosing contact to it. Thisincludes the production of several Kick, Turn and Dash combinations.The Directed Kick skill was one of our competitive advantages and thereforeit will be described in detail in the following. This capability allows the playersto kick the ball into any direction with a demanded power (as far as possible).It handles di�cult situations like high velocities and situations where the playeritself is an obstacle for the desired direction. If the desired direction with thedesired speed cannot be achieved, the skill tries to meet the demands as goodas possible.First of all the skill tries to determine the kick angle and power which is nec-essary to transform the current movement vector into the demanded movementvector (Part A of �gure 5). If the length of the necessary kick vector (the power)is physically impossible, the skill tries to keep at least the right direction.A complication occurs for kick vectors which are possible but hit the playeritself. In this case an intermediate target is calculated which is at the side of theplayer (Part B). The �rst kick leads to this point and further kicks are calculatedfrom there (Part C). In some cases the ball can be kicked once more (Part D).This leads to the e�cient kicks which were observable in the matches ofour team. All this can be done with three basic kicks: The implementation ofthe SoccerServer for Nagoya permits addition of velocities by consecutive kicksfollowing the laws of vector algebra. According to the Nagoya settings, the playerscan start with approximately 10 m/sec and the ball with 13 m/sec. By additionaldashes, the players can get a speed of approx. 16 m/sec. Two consecutive kicksin the same direction give the ball a speed of approximately 25 m/sec. which isless than two times faster than the players' speed. It is reasonable that it takestwo actions (i.e. more time and more precise action settings) to make a strongerkick: The two kicks can be considered as a compound action (just like turn +dash). It can even be considered as a triplet together with the need to place theball at a certain position before a strong kick. This setting leads to an interestingchallenge for the learning of compound actions.Problems arise for the interception of a fast running ball: Especially increas-ing velocity for fast moving balls by likewise small additional kicks of an in-tercepting player looks problematic. Furthermore, we found it di�cult (but not

Target Vector
of 1st Kick

Demanded Kick Vector

Target Vector
of 2nd Kick Demanded Kick Vector

A

Player

C D

Ball

Kick Area
of Player

Necessary
Kick Vector

Demanded Kick Vector

B

Current Ball Vector

Target Vector
of 3rd Kick

Demanded Kick Vector

Fig. 5. Several Steps of the Directed Kick Skill.impossible) to stop a ball by defending players.Alternatively the SoccerServer could simulate kicks as new settings of the ballvelocity instead of additions. In this case, the following problem arises: Settingof a fast arriving ball with a moderate single kick to a new slow velocity (defensecould be too simple with such settings)3.4.5 Precise Synchronization (system programming)In the real time environment of Arti�cial Soccer it is essential to keep syn-chronized with the server. For this purpose some components have to run inparallel. In our implementation the components Sense (sensorik.*) and Act(sender.*) run concurrently with the main routine to allow an undisturbedreasoning-process and to keep track of the server.There are di�erent ways to provide pseudo concurrency in a UNIX environ-ment. Processes raise di�culties with communication and storage organization.Threads are not widely supported (Solaris has native support, Linux and othershave only library support like pThreads) and have a lot of administration over-head. In addition they are di�cult to time. On the other hand UNIX system3 This point is still under discussion while writing this article.

signals are e�cient, well timed and easy to use. In fact one signal handler isenough to provide all the concurrency the agent needs.The signal is adjusted to 50 ms. The signal handler looks at top of the incom-ing message system queue and parses new information if necessary. Accordinglyinformation
ags for the planning process are set. In addition the handler peeksevery 100 ms on top of the outgoing command queue, sends one command if nec-essary and initiates a simulation cycle ofWorld Model. If the time information ofan incoming sensor information di�ers from the agent's internal time, additionalsimulation cycles are done until synchronization is achieved. This is essentialbecause the estimation of the agent's own speed relies only on sent commandsand passed time. If the calculation of the agent's own speed is wrong, then allother speed calculations will be wrong because they are known only relativelyto the values for the agent.5 The TheoryThe consideration of programs as agents focuses at �rst on the aspect of auton-omy: Programs have to act in an appropriate way to changes in the environment.Therefore they need some input or sensor facilities and some output or actoriccomponents. The mapping from input to output can be done in very simpleways (e.g. strictly reactive) or in more sophisticated ways up to models whichare inspired by human decision processes. We found that mental notions likecapabilities/skills, belief, goals/desires and intentions/plans are very useful pic-tures to make agent programming transparent. The aspect of rationality forcesagents to deal e�ciently with their resources, especially with time.The so-called BDI model �ts best to our concept of soccer agents. BDIstands for belief { desire { intention, and the approach is based on the philo-sophical work of Bratman [Bratman, 1987], and the theoretical and prac-tical work by Rao/Georgeff [Rao/Georgeff, 1995] and others (cf. e.g.[Wooldridge/Jennings, 1994], [Burkhard, 1996]). Agent-Oriented Pro-gramming is a fast developing �eld of research, and Arti�cial Soccer is a verysuitable �eld for experiments. Rao and George� write about typical charac-teristics of problem domains which can be successfully solved by BDI. Thesecharacteristics �t well to the soccer domain:{ The SoccerServer and the opponents create a non-deterministic environment.{ The agent itself reacts non-deterministically because parts of the planningprocess are randomized.{ The player can have di�erent goals at the same time, e.g. to reach the ballwhile covering an opponent.{ The success of the player's own commands depends strongly on the simulatedenvironment and the opponents.{ The whole information is local and di�erent for every player.{ The environment pushes bounded rationality because too deep reasoning iswithout pay-o� in a dynamic surrounding.

In the BDI-approach, agents maintain a model of their world which is calledbelief (because it might not be true knowledge). The way from belief to actionsis guided by the desires of the agent. Bratman has argued that intentions areneither desires nor beliefs, but an additional independent mental category. Inten-tions are considered as (partial) plans for the achievement of goals by appropriateactions. Commitment to intentions is needed which has impact on the rationalusage of resources: The (relative) stability of committed intentions prevents over-load in deliberation and useless plan changes, and it serves trustworthiness incooperation.All components of a BDI-architecture can be identi�ed in our planningprocess. Belief equals the component World Model (cf. section 4.2 in our re-alization. The strict relativity of the server statements leads to an individualimage of the world in every agent. Additionally the agent cannot rely on theaccuracy of the received and interpolated data, therefore it is belief not knowl-edge. The update routines (including the simulation for unseen objects), thesimulation of expected future situations and the history of situations are alsoconsidered to be parts of the belief.In our implementation Desires are goals which are selected out of a �xed goallibrary. The list of possible goals is still small, but the set will be extended e.g.to allow joint goals (like double passes) in the future. In the present realizationdi�erent (even opposite) goals may be achievable but the agent selects only oneof them4. To do this the environment is classi�ed by a decision tree. The selectionfunction and the execution of the chosen goal must be fast because it must notbe interrupted by new information which could be decision relevant. In spite ofthat, reasoning must be accurate enough to ful�ll its task optimally. This is thesame trade-o� as described by Rao and George�. The risk of full execution oflong-term plans is that the agent cannot adapt correctly to unforeseen events.On the other hand permanent evaluation and control of every planning step istoo expensive in the sense of computing resources.This implies Intentions which are divided into two stages of planning in oursystem. At �rst the best possibility to reach the chosen goal is computed and�xed as an intention (cf. section 4.3). This corresponds to the long-term plan withsome parameters which can be also seen as a partial plan. Its calculated end is theful�llment of the selected goal. The execution of the intention is split into smallerpieces which are implemented as short-term plans in the component AdvancedSkills (Section 4.4). As mentioned above Advanced Skills provides precompiledplan skeletons of a size that �ts between two time points of sensor information.They have their own calculation capability which is used to compute the shorttime optimal command sequence. Looking at the mentioned trade-o� these short-term plans are atomic and cannot be interfered by sensor information. But incomposition they build a long-term plan that is complex enough to ful�ll higher4 In the future we may deal with the commitment to concurrent goals. In such acase we will have to regard the \scope of admissibility" (Bratman) set by previousintentions. For example, an existing intention to preserve the o�-side position of anopponent may restrict the commitment to later goals for reaching special positions.

goals. There is a certain overlapping with the decision procedures for desires:This is necessary, since the decision process has to look for achievable desires.The realization of the intention relies on the capabilities of the agent, which areimplemented by the advanced skills.The consideration of our agents as BDI-constructs is appropriate since wehave for each new sensor information a complete deliberation process with up-date of belief, choice of a desire, commitment to an intention and execution of aplan part.A problem arises from the fact that commitment of intentions is mostlyperformed independently from the previous intentions: This might contradict thementioned principle of stability of committed intentions, which is a central pointin Bratman's theory. The \canonical" deliberation process has to maintain anold intention as long as there are no serious counter indications.Because a new deliberation process might be initiated every time a new sensorinformation comes in and then new plans are created, the planning strategy hasto ensure stability of the long-term plans to avoid constantly changing goals orintentions. The stability of our goal tracking relies on the fact that even in thecase of a new initialization of the whole planning process very often the samesteps are chosen because the situation has not radically changed. That meansthat the same goal and intention are created, too. The player must prevent thatmissing knowledge or only slightly better other intentions destroy the formerbehavior. Indeed, a simple implementation of our strategy would have seriousdrawbacks. As already mentioned in Section 4.4, simple plans could result inonly repeated initial actions. To avoid this the agent for example lets out minorturns on the way to a certain position which would cost too much time. Thiscould be called implicit persistence.The explicit persistence of goals and intentions in our implementation canbe exempli�ed by the realization of the goal \Go to home position". To decidewhether to intercept the ball or to go home the agent has calculated the minimaldistance of all team-mates and opponents to the ball (cf. section 4.3) and hasstored these values. If the decision is to go home, the agent will use these valuesto determine a time interval in which it must not care for the ball because noother player will be able to change the ball's known movement. The decisiontree usually strongly relies on sight of the ball but in this case the agent won'tturn for the ball in the calculated \don't care"-interval on its way to its assignedposition. This results in a straight run to the designated position until the \don'tcare"-time will be over. In general that means that the old goal and intention iskept as long as the calculated interval lasts.We found this to be a very interesting implementation of the stability prin-ciple for committed intentions without explicitly using the old intention. Ouragents are able to adapt a plan to new situations if necessary (e.g. a turn-command with a greater change would not be dropped). It might be the case thatfuture implementations would need an explicit treatment of previous intentions(e.g. if there was a commitment given to team-mates in explicit cooperation).

6 Future WorkThe next steps to improve our players concern various forms of training andlearning as well as other methods of cooperative play:{ Some decisions and skills use individual parameters which values were foundby testing evaluation. These parameters shall be tuned by the agent itself.{ Methods from Case Based Reasoning can help to reuse \good" decisions inequal situations.{ Learning means training of behavior with o�-line learning as well as adaptionto the opponents' behavior in the match (on-line learning).{ The team play shall be improved by a special behavior in well-known situa-tions, explicit cooperative skills and use of the provided communication onthe �eld.7 ConclusionThe following lessons have been learned during our discussions and implemen-tations:{ An architecture which makes the agent processing transparent is importantfor development of concepts, implementation and fast changes.{ An e�cient implementation needs the integration of methods from di�erent�elds, especially Mathematics, Software Engineering and Arti�cial Intelli-gence.{ Methods from Arti�cial Intelligence are e�cient if applied to well performingbasic behavior.The last experience was very important to us. It showed us that \pure"Arti�cial Intelligence may be insu�cient. In our development phase sometimesa better solution from AI view has led to less performance. The reason werebasic mistakes which were increased by the sensitive AI techniques. As a resultwe think that learning can only be based on a strong and correct conventionalfoundation.We have published our code to make transparent our ideas (we have to apol-ogize for some \unorthodox" program parts, we hope to present a better versionin the future).We want to express our thanks to all people which are engaged in RoboCupfor giving us so much fun. Special thanks are due the Japanese colleagues fororganizing RoboCup 97!References[Bratman, 1987] M. E. Bratman: Intentions, Plans and Practical Reason.Harvard University Press, 1987.

[Brooks, 1990] R. A. Brooks: Elephants don't play chess. In P. Maes(ed.): Designing Autonomous Agents. MIT press, 1990.[Burkhard, 1996] H. D. Burkhard: Abstract goals in multi-agent systems.In W. Wahlster (ed.): 12th European Conf. on Arti�cialIntelligence (ECAI96). 524 { 528. John Wiley & Sons,1996.[Burkhard, 1997] H. D. Burkhard. Cases, Information, and Agents. InP. Kandzia, M. Klusch (eds.): Cooperative InformationAgents. Proc. First Int. Workshop CIA'97. 64{79. LNAI1202, Springer, 1997.[Kitano et al., 1997] Hiroaki Kitano, Milind Tambe, Peter Stone, ManuelaVeloso, Silvia Coradeschi, Eiichi Osawa, Hitoshi Matsub-ara, Itsuki Noda, Minoru Asada. The RoboCup SyntheticAgent Challenge 97. In M. E. Pollack (ed.): Proc. IJCAI-97. 24{29. Morgan Kaufmann, 1997.[Lenz/Burkhard, 1996] M. Lenz and H. D. Burkhard. Lazy propagation in caseretrieval nets. In W. Wahlster (ed.): 12th European Conf.on Arti�cial Intelligence (ECAI96). 127{131. John Wiley& Sons, 1996.[Rao/Georgeff, 1995] A. S. Rao and M. P. George�: BDI agents: From theory topractice. In V. Lesser (ed.): Proc. of the First Int. Conf. onMulti-Agent Systems (ICMAS-95). 312{319. MIT Press,1995.[Shoham, 1993] Y. Shoham: Agent oriented programming. 60:51{92. Ar-ti�cial Intelligence, 1993.[Wooldridge/Jennings, 1994] N. R. Jennings and M. Wooldridge: Proceedingsof the ECAI-94-Workshop on Agent Theories, Architec-tures, and Languages. LNAI 890, Springer, 1994.

This article was processed using the LATEX macro package with LLNCS style

