
Graphical User Interfaces for Haskell

Duncan C. Sinclair�
University of Glasgow

Abstract

User interfaces are normally based on low-level trickery either within the run-time
system, or in a separate program which has been connected to the stream I/O
system of the language. We present a new twist to this by giving some intelligence
to the outside system, which will have greater control of the interface. This has a
number of benefits: it makescreating new programs easier, increases the efficiency
of the resulting system, and improves the separation between the two halves of the
system.

1 Introduction

Many people have written of the problems functional languages have with user inter-
faces, and have proposed various solutions. These solutions range from the simplistic
[9], to the powerful [10], with some truly innovative possibilities explored [4,5].

These systems usually have, at some level, the functional program communicating
with an external system, receiving events from the user or system, and replying with
requests, telling the system what to do next. This can be done either as low-level
run-time calls embedded within the language, or as an external process, connected
to the input and output streams of the language. This difference is of no concern,
what matters is that at some level there is a protocol between the program written
in the functional language and another system which acts as its agent, creating and
manipulating the interface.

Mostly, however, control is held firmly by the functional program. We wish to
pursue the idea of the user interface being controlled by an external agent which has
its own intelligence, and can be programmed separately from the functional program.

2 Tcl and Tk

Tcl and Tk provide a simple yet powerful programming system for developing win-
dowing applications. We will use this system for our externally-controlled interface.

2.1 The Tcl Language

John Ousterhout’s Tcl [6], which stands for “Tool command language”, is a simple
interpreted language, intended to be extended and embedded within an application.
Its purpose is to provide a means by which systems may be controlled by users and
programmed by the application writer.�Department of Computing Science, University of Glasgow, Glasgow, G12 8QQ, UK.
E-mail: sinclair@dcs.gla.ac.uk

Tcl has strings as its only base type. It can arrange these into arrays or, if they are
numeric, regard them as numbers. Here is a small example program to calculate the
factorial of 10:

proc fac x {
if $x==1 {return 1}
return [expr {$x * [fac [expr $x-1]] }]

}
set a 10
puts stdout "The factorial of $a is [fac $a]"

Square brackets cause in-line evaluation. Curly brackets are a form of quoting, usually
used to hold program fragments which will be interpreted in a recursive manner.

2.2 The Tk Toolkit

Tk [7], also by John Ousterhout, is a toolkit for the X Window System [8], based around
the Tcl language. It allows the creation of user interfaces built out of components such
as buttons, menus, and dialogs. This can either be done in a imperative language such
as C, or in Tcl. One feature of this is that it is possible to write complete programs
in Tcl, using Tk for its interface. It is also possible for users or external processes to
control Tcl/Tk applications using the Tcl language.

Here is a very trivial Tk program, written in Tcl:

label .hello -text "Hello, World!"
pack append . .hello {}

Without going into too much detail, this creates a small label which says “Hello,
World!”, and displays it in a window.

This two-line script is at least an order of magnitude shorter than the equivalent in
C, or any functional system where the interface to the window system is at a similar
level to that of C. This makes writing user interfaces much easier than before, and with
Tcl at hand no power is lost.

2.3 Multiprocessing

The programmer’s first introduction to the Tcl/Tk system is through a simple shell,
called wish. It can either be run interactively, for experimentation and debugging, or
in a batch mode, submitting scripts to the interpreter. Normally, the script will set up
an interface, with some action procedures to be executed when buttons or menus are
activated. Once the script has been evaluated the Tcl interpreter, rather than exiting,
waits for any other commands to arrive from the user or other external processes. This
multiple input scheme can be thought of as some sort of multiprocessing. Such pseudo-
multiprocessing can be thwarted if any “process” gives the interpreter a command
which does not terminate.

2.4 Extending the Language

By modifying the wish shell with a little bit of C programming, we have created a
new shell program which have called swish, with extra commands added to the Tcl
language.

We have added three commands, the first, spawnchannels, is responsible for
spawning an external process, creating three communications channels (i.e. pipes)
between the existing and new processes.

The first channel feeds straight into the Tcl interpreter,allowing the external process
to feed commands to the runningTcl/Tk program. This can be anything from supplying
a complete Tcl program for execution, to the occasional procedure call to update state
or modify the program’s appearance.

The other two commands are tied to the remaining two channels, and allow mes-
sages to be sent back from the Tcl program to the external system. We partition
these messages into asynchronous events (the event command), and synchronous
replies (the reply command). These are sent on independent channels to help avoid
deadlock, which would otherwise have to be solved by some process of selecting,
separating, and buffering these messages in the external system (this is especially
difficult when the external system is a functional program). One major advantage of
this separation is that we can run the two systems in an asynchronous manner, which
makes possible true concurrent operation.

3 Haskell with Tcl

We will now look at what happens when the external process is actually a Haskell [1]
program. We chose Haskell because of its good I/O primitives, and good support from
the language designers and implementors.

3.1 Process Communication

To swish, the Haskell program is the external process, but naturally it works the other
way around from the point of view of the functional programmer. So in this section
we will talk of the Tcl process as being the external process.

Using the Haskell optional request ReadChannels, and the standard AppenChan
request, a Haskell program can communicate with our external process through the
three channels created by the swish program. The Chalmers Haskell B compiler
[3] also provides ‘TICK’ and ‘TIMEOUT’ channels which are useful for creating
“real-time” graphical programs. Figure 1 show how this works.

We have not yet investigated the best way to structure the functional code, and
admittedly early efforts have been difficult to program and read. It is for this reason
that we omit a sample of what such a program looks like.

The structure of the Haskell program we use is similar to the typical event-loop
found in imperative languages, but unfortunately can get complicated because of the
amount of state and channels being passed between functions. Using mechanisms
similar to that in the Concurrent Clean system [2], it may be possible to structure the
functional program in a cleaner way.

3.2 Examples

Typically, the Haskell program takes no part in the layout of the interface, and how it
works; all this is left to the Tcl program. The Haskell program deals with higher-level
decisions, such as what information will appear in various windows, while the Tcl
program is left to decide how this is done.

Replies Commands

Swish

Tcl/Tk

Xlib

Haskell

ReadChannels AppendChan

 Window System

Events

Figure 1: Communication between Haskell and Tcl/Tk

An Alarm Clock

For our first example, we have a simple alarm clock program, in which the Haskell
program keeps note of what the time is, and when it should activate the alarm. Every
second it advises tcl what the time is, using a procedure defined in the script that
swish has executed. The Tcl/Tk process then updates the display, without the
Haskell program knowing whether it is running an analogue or digital clock. When
the user sets the alarm, the dialog is conducted exclusively within the Tcl/Tk process.
When this is concluded, the Haskell program receives an ‘alarm set’ event, telling it
when to activate the alarm.

This shows how a greater degree of separation between the interface and func-
tionality can be reached using this method, compared with other methods where the
distinction tends to be blurred.

When the alarm is activated, our Haskell program sends a command to the Tcl/Tk
process to display a flashing window. This window is then completely managed by the
Tcl/Tk process, flashing it every second until the user acknowledges it. Meanwhile,
the Haskell process continues counting time.

A Maze Game

As a more substantial example we created a three dimensional maze game, written in
Haskell, using Tcl/Tk for its interface. The general idea is for the player to completely
navigate the maze, using simple commands such as turn left, turn right and move
forward. An indication of the separation between the interface and the program is that
the two halves were written by different people in different countries.

The Haskell program is responsible for looking after the creation of the maze,
keeping track of where the player is in the maze, and the current view of the maze. It
takes events such as ‘left’, ‘right’, and ‘forward’ and causes the display to be updated
by sending to the Tcl/Tk process a list of where there are walls visible.

The Tcl/Tk program sets up the display, which includes buttons that the player uses
to navigate the maze, plus a perspective view of the maze as ‘seen’ in the direction the

Figure 2: Functional Maze in X

player is facing. When a button is pressed by the player, the program passes on the
appropriate event to the Haskell process. It also receives the list of visible walls, and
updates the display accordingly.

Neither process ‘knows’ what the other does with messages sent, and either could
be implemented totally differently, without affecting the other.

Figure 2 shows what the maze program looks like. A copy of the source may be
requested from the author using electronic mail.

4 Discussion

In the abstract we claimed that our system would do three things for us: make program-
ming the system easier, make it more efficient, and improve the modular separation
between the functional program and its interface.

We claim that the Tcl/Tk system is easier to program than typical other systems
for creating interfaces. One major reason for this is that the interface is written in an
imperative language, which we would argue is more suited to interface creation and
manipulation than functional languages. Our evidence for this is simply that we find
it hard to create user interfaces within our functional programs. In our system almost
all of the interface handling is transparent to the functional program.

We feel it is more efficient, simply because two heads are better than one. Even in
other two-process systems what usually happens is that one process is always waiting
for the other. They run synchronously, to ensure that they can predict what the next
input will be. Also, the system external to the functional program is usually not smart
enough to do anything useful. With our Tcl/Tk system, we can program it to do other
things when not doing anything else. The flashing alarm is an example of this.

In any system it is good for the user interface to be separate from the main
functionality of the program. This increases portability between systems where only
the interface would need rewritten, and helps keep interface decisions out of the main
body of code where it may lead to problems later. Our system clearly helps in achieving
this aim by having the user interface defined in a totally different language than the
main body of code. We feel that this demarcation is a good thing, with functional
languages being used for the parts of the programming task to which their special
abilities are suited.

Acknowledgements

Thanks to: John K. Ousterhout, the author of Tcl and Tk; Satnam Singh, for motivating
me to do this; Gilbert Cockton, for motivating my desire to get it right; Patrick Sansom,
who helped on a previous version of the system; and lastly Carsten Kehler Holst who
motivated and implemented the Haskell part of the maze example.

Bibliography

1. P Hudak et al, “Report on the functional programming language Haskell, Version
1.2," SIGPLAN Notices 27 (May 1992).

2. P. M. Achten, J. H. G. van Groningen & M. J. Plasmeijer, “High level specifica-
tion of I/O in functional languages," in Functional Programming, Glasgow 1992 ,
J Launchbury & PM Sansom, eds., Springer-Verlag, Workshops in Computing,
Ayr, Scotland, 1992.

3. Lennart Augustsson, “Haskell B. user’s manual," From Haskell B distribution, Aug
1992.

4. Magnus Carlsson, “Fudgets – A Graphical Interface in a Lazy Functional Lan-
guage," Draft, Chalmers University, Sweden, August 1992.

5. Andrew Dwelly, “Graphical user interfaces and dialogue combinators," ECRC,
1989.

6. John K. Ousterhout, “Tcl: An Embeddable Command Language," in Proc. USENIX
Winter Conference 1990 .

7. John K. Ousterhout, “An X11 Toolkit Based on the Tcl Language," in Proc.
USENIX Winter Conference 1991.

8. Robert W. Scheifler & Jim Gettys, “The X Window System," ACM Transactions
on Graphics vol. 5, No. 2 (Apr 1986).

9. Duncan C. Sinclair, “Graphical User Interfaces from Functional Languages," Final
Year Project, May 1989.

10. Satnam Singh, “Using XView / X11 from Miranda," in Functional Programming,
Glasgow 1991, Workshops in Computing, Springer-Verlag, Aug 1991.

