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Abstract: - In this paper the method of integral equations is proposed for some thermal problems of engineering
(radiative heat transfer, heat conduction). Presented models lead to a system of Fredholm integral equations and
Volterra-Fredholm integral equations, respectively. We propose various numerical methods (discretization
method and projection-iterative method) providing to a system algebraic equations. In some cases simulation
methods can be used. Computational results for integral modeling are given.
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1. Introduction

The aim of this paper is to present the
advantages of the integral equations method (IEM),
and the possibilities of its application to various
branches of engineering, particularly to the problems
arising in power engineering [4]. It is an analytical-
numerical method and requires great efforts from
highly skilled specialists (mathematicians, computer
scientists, engineers). IEM seems to be a natural
method, especially in the field of electrodynamics.
This is a case of electromagnetic field being
described with integral equations, the kernels of
which are searched for by integral transformations in
the domain of space variables, while in the time
domain the expected system response has a form of
integral formulas. It confines the expected solution
valid for the whole domain to a predefined part of
the space subject to analysis. This enables a
considerable reduction of the size of the system of
equations. In such a case, the minimization of the
size of the systems of equations and the reduction of
computation time, while maintaining the accuracy,
becomes highly important.

Integral equations, or rather their systems, are
often matched with mathematical models describing
the current density distribution at the cross-section of
a working conductor or in the cartridge of an
induction heater. The knowledge of the current
density distribution may be a base for determining
some electrodynamic values such as magnetic
induction or distribution of electrodynamic forces
acted at selected points of the conductors. Moreover,

some problems of the radiative heat transfer are
reducible to a system of Fredholm integral equations.

We restrict to the following mathematical
models in electrical engineering: radiative heat
transfer and Fourier’s problems. Presented models
lead to a system of Fredholm integral equations, and
Volterra-Fredholm integral equations, respectively.
We propose various computational methods
(discretization and projection-iterative methods)
providing to a system algebraic equations.

2. Integral equations in the radiosity
problems

2.1. Fundamental theory

The papers [1,7] present theoretical foundations
the modelling of phenomena related to visualisation
[1] performed by means of computer graphics
software and for the modelling of radiative heat
transfer [2]. Since the equations describing both of
these processes are very similar, there is a possibility
of applying certain computer graphics programmes
to resolve problems related to radiative heat transfer.
It is explores all necessary supplements making it
possible to perform such calculations.
Thermokinetics, describing radiative heat transfer;
lighting engineering, investigating problems of
determination of surface illumination and computer-
generated graphics, resolving issues connected with
visualisation (it is the creation of seemingly three-
dimensional representations of virtual reality on a



two-dimensional screen, based on mathematical
descriptions of the scene) — they all examine, to a
greater or smaller extent, the same phenomena of
emission, transmission and absorption of optical
radiation. The similarity of phenomena occurring in
all of these cases additionally offers the possibility to
use similar research tools to investigate them. Only
the simplest tasks involving radiative heat transfer or
lighting engineering can be solved in [1] using
analytical methods. Practically, all more demanding
problems in these fields are currently solved using
numerical methods or by means of modelling and
simulation: (see [1,5,7]). It thus seems interesting to
adapt such sophisticated computer graphics software
to solve very complex problems involved in radiative
heat transfer.

Contemporary advanced computer graphics software
and interior visualisation applications are based on
the visualisation equation given below:

L(xo,xl)zg(xo,xl)- Le(xo,xl)+_[p)()((),)(z,xl)L(xz,xl)dx2 (1)

Q

where L(x’,x") is luminance of point x’: the total of
luminance of radiation emitted L.(x’, x') and
reflected (integral value) in the direction of point x';
g(x’, x') - factor dependent on the geometry of the
system, defining the visibility” of point x' from x’;
p(x’x’x") — specular reflectance of radiation for
point x°, with radiation propagating from the
direction of point x> and reflected in the direction of
x'. Integration is performed along the whole
hemisphere Q surrounding x°. This is illustrated by
fig.1.

L(x’x")

Fig. 1. Illustration of equation (1).

The equation (1) was written in the terminology used
in lighting engineering or computer graphics, where
the concept of luminance L, [lm/m%sr] is used,
referring to visible radiation. Thermokinetics,
however, uses the concept of radiance L [W/m*/sr]
referring to all optical radiation (including thermal
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radiation).

The solution of equation (1) for every point of
surfaces S...S, under consideration consists of
determination of luminance of each of these points.
This is the basic information, necessary for further
construction of visual images of surfaces examined.
Unfortunately, the equation (1) cannot be solved
analytically. Only simulation methods can be
applied. One of a commonly used method is
backward ray tracing.

The equation describing heat balance of point x” in
Siegel and Howell [8] or Modest [6] has a form that
is similar to (1), as given below:

P eff (XO,T,e,d)) = pe(XO’Taead))
+ J.p(x()’e’d)’ein 7¢in )pin (X27Tj7ein’¢in)cos 0do
Q

)
where, in radiative heat transfer terminology: pesr
stands for surface density of effective radiant
intensity (radiance) of point x° in the direction of x',
defined by angles (6, ¢); T represents temperature
and the index ‘in’ concerns incident radiation.
Usually, to solve system (2), it is necessary to add
boundary conditions determining the energy-heat
transfer between boundary surfaces and ambient
environment. For radiative heat transfer systems,
these conditions are defined as Dirichlet conditions
or Neumann conditions. In the first case, temperature
distribution ¢ functions on the examined boundary
surface S; should be determined [6,9]

t(ry) =t(Xy,¥0,20) (3)
ryeS;
And in the second, however, surface-specific power
density p proportional to the derivative of the
searched function 7, penetrating from outside into the
system through the boundary surface, is given [5,7]

p(fo)zp(xo,yo,zo)z—ﬂ,g “4)

ryes; 5r s

The system of (2) equations together with boundary
conditions (3)-(4) is usually nonsolving by typical
methods (number of integral equations is too big).
But when the equation (2) with boundary conditions
(3)-(4), refer only to diffuse radiation, it is simplified
the system of (2)-(4) equations and obtains a simple
linear equations which describe transfer of radiant
flux between n surfaces [1,8]:

i[6k’i —(pk’i 1_8i]_Pout,i — N <6k,i +(Pk,i)'GTi4 (5)
€

i=1 \_ & S i=1

i i i




where: P, - radiant power at surface S;; T; —
temperature of surface S;; 6 - Stefan’s constant; ¢; -
total emissivity of surface S; and ¢ij — form factor
between surface S; and S;.

In this case where it is impossible, the most
perspective seems to be a stochastic modelling, using
(in heat radiative problems), a stochastic methods. A
classic Monte-Carlo method of simulation is wildly
used but it needs a big amount of computer time and
large memory resources when tasks with complex
geometry or non diffuse radiation are calculated.
Back rays tracing method, which is widely used in
computer graphics programs seems to be more
effective also in radiative transfer simulations.

Example 1

As an example we consider the heating coil element
(see fig.2)

Fig.2 Heating coil element

The simulation of radiative heat transfer, basic on
equation (2) and back trace method was done for
several size of heating coil. The real size and diffuse
radiation (own and multi reflected one) was taken
into consideration. The uniform of irradiance
distribution on a wall of furnace was tested. The
partial result is presented on fig.3.

E[W/m?]

Fig.3. Irradiance distribution £ [W/m?] on a furnace
wall for heat coil (H=60mm and r=8mm)
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Two local extreme are indicated, and a zone of
relative uniform irradiation can be determinate. It is
useful for setting of working zone in resistance
furnaces.

Remark?2. Presented problems (without
simplification) lead to a system of integral equations
of the Fredholm type,

Y0 = fi+ [k(r.r)y)as’s — (©)

where S is a certain surface or domain, and y is
unknown function. It by the discretization method
can be reduced to a system of algebraic equations
[1,5,7].

Moreover, Fredholm integral equations are particular
case of integral equations arising in the Fourier’s
theory [3,4,5].

Below the approximate methods for integral
equations (6) of radiosity problems will be presented.

2.2. Discretization method
By a partition a domain S for N elements AS;, AS,, ,
ASy we get

Y+ Y, [k )yeds'= f(r) - (D)

n=1 AS,

Assuming, that a function y(r) is constant in every
element A4S, and it is equal y, we obtain

N
Y+ Dy, [k(rrHdS'= f(r). (8
n=1 AS,
This equation is satisfied in points 7, € 4S,,, m=1, 2,
...,N. Introduce notation f{r,,) = f, the equation

(8)leads to the following system of algebraic
equations:

N
Y+ 2V, fk(r,r')dS'zfm, m=12..N. (9
n=1 AS,

Calculating y;, y», ..., yy being values of the function
y(r) at elements AS;, AS,, ..., ASy, the solution of
equation (6) is determined in domain S by (8).

2.3 Method of special kernels
If k(r,r’) = Zai (r)b,(r'), where {a,(r)}and
i=1

{b,(r')} are linear independent systems of functions
on S, then equation (6) is of the form

MURS OIS WAG| CAG IR
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Introducing the notation 3.1. Iterative-collocation method
For integral equation (10) with M=/a, b] we propose
Ib(r')y(r')dS' e new the following method
ing solut ~ ()= Ao+ [ Kot .9) b () i hvas (D)
we get the following solution of equation (6) u(xt)= flx.t +£.[ x1,338)- ey (v,8)+ pi (v, dves
()= fl)+ Z Cia; (r). The corrections p; can be defined by

Auk(x,t)zuk(x,t)—ukfl(x,t)
Numbers C; we get multiplied the above by b;(7) in points x, ela,b] and 7, e[0,T] for

and integrating on S. Then we obtain p,q=0,1,...n, being zeros of some orthogonal
polynomials such that
y(1b,(r)ds = | f(r)b,(r)ds + > C | a,(r)b,(r)dS - n
J ] 2., [a,000) iy, )= (x, ., ), (12)
where
By notations
X, t c 13
jf(l")bl-(l")dS _ f, pk ;jzo ik (01 ) ( )
s and
ond olx,)=6,.  wl,)=6, (14
ja ;(rb,(r)dS =d, Because the polynomials of the Lagrange type
S satisfy the above condition we can choose the
we obtain a system of algebraic equations: fundamental Lagrange polynomials of the form

3 o, —d.1C. =T, i=1,2,...,m.
2,10, =1, = fi for i71.2-m R N NS N N

(0, =x0)- (v = oy =iy )- (3 = oo =)

to calculate numbers C; . i=0,1,...,m. (15)

From here it follows

3. Integral equations in the heat
conduction problems ot = Ph oty )= Bt (08, ). (16)

We consider the integral equations of the mixed type Hence we get the following system of algebraic

‘ equations
u(x,t) = f(x,z)+j j K(x,t,y,8)u(y,s)dvds  (10)

which generalize Volterra and Fredholm integral = & pak +zzcuk p q (17)
equations. The presented equations play a very =00

important role in electromagnetics and heat where

conduction problems. Some initial-boundary 4 b

problems for some differential partial equations in A,-,-(p,q)=”K (xp,lqa »s)-0,(v)-w S (t)dyds (18)
physics are reducible to the above integral equation. ba

Consider this equation in space-time, where f is a )b

given function in the domain D= M x[0,T] (M is a &pu = IK q:ya U 1(% )=, (v.5)- i, ]dyds(lg)
compact subset of m-dimensional Euclidean space) ‘

and u is an unknown function in D. The kernel X is

O ey

defined in the domain Here:

Q={(x1y,5):x,yeM,0<s<t<T}. u(xt)zO

In this paper we will present new numerical method o ’

and give computational results. It is based on u, (x,t) =f (x, t) , (20)

iterative method with corrections defined by
orthogonal polynomials of the Lagrange type. )2 (x t) 0.



If

G = [COOk9C01k9"'>COnk9ClOk’cllk9"'>Clnk’ ~~~~~~ ’crzok’cnlk""’cnnk]
G, = [gook 5801k > ++> 80nk > 810k > 811k 5+++> Enk 3++++++>
and A=[4,m,n]

for ,k=0,1,...,n; m=1..n. 21

system (17) can be written in the form

C,=G,+A4-C,. (22)

In this iterative process the matrix A4 is constant and
G, is determined for every k.
Introduce notations:

Ve.s)=u(y.s)-u,_,(v.s)- pi (v.s).
(5:5) = 2 S Kl ty025) 0,0, 0):

C= sup J.J.|K X,t, 9,8 X dyds , (23)

) n—>0
2
Lo

Lo y >0,

B ( L%,)
where r is a resolving kernel defined as a series [3]
ZK

with iterated kernels K ") determined by formulas

=

x t,y,s X, y, (24)

t b
x t y, ij x,t,2, w (- 1)(z,w,y,s)afzdw
for n=2,3,... . (25)
where K(l)(x,t, y,s) = K(x, t,y,s). (26)

Let R be a space of the Riemann integrable
functions on D with a norm

e, = sup fucx.0)f} 7)
(x,t)eD

and L2D be a space with the norm

Tb
o, =
0a

b

J (28)

a
8ok > Enik>+++> & nnk ]
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Theorem

If feR(D) and ke C(Q), then the sequence {u, |
defined by formulas (11)-(12) tends for £k —> o to a
unique solution u € R(D) of equation (11) and the
following estimates

e =l <C-ax”-Will; @9

and

e =, < 0”&l - (30)

hold.
Proof. By some transformations we get

t b
pi(et)=[[ K, (etoys) b, (25)+ pi (vos)= pis (v M
0a

and
t b

V gkxt+J_[thy, y, )dde’(31)
0a

where

60 (60)= [ 1K, 6t ,) Kot I 025) - s 0,5 s “B2)

It is clear that a solution of the mixed integral
equation (31) can be presented in the form [2]

‘(b
V,(x,t)= g, (x,1 +.”r x,t,9,5)- g, (v,s)dvds . (33)
0a

From (31) we obtain
Vi, < i+

Similarly, by (32) we get

y
LD

8k (34)

2 .
LD

leil,, <l ~# s 7 Vil <<l - K1, (il + Pl )

(35)
Hence
lecl,s <Pl + 1l J, ~ &1, i+, ) o)
Using (36) in (34) we get
Wl <alials- 69

By the induction we have

Pl <™

V1||L2D (%)
We can get

n—» 0

2
LQ

|k, - K

- 0. 39



Hence ¢,——=—>0 and a convergence of studied

method is proved. For an error estimates let us
notice, that

et =, <PVl 5 (40)

RD
and

e = ull,,

(41)

3.2 Numerical experiments

In this method the corrections P ! . defined by (13)

have coefficients calculated from algebraic system
(17) . Other numerical method analyzed in paper [5]
led to the system Volterra equations. Presented
method is easier to calculate.

Below tables contain relative errors & in points
{; and x;:

5l )-ulwt; )

. 42
‘ (xt) ‘ (42)

l’j

Here: n +/ means a number of basis functions and &
— a number of iterations. Fundamental Lagrange
polynomials form basis functions.

Example 2

()= Sm[@{a —sin(tgﬂ+j;j[§e’ cos( : j (s ivds

Table 1 Relative errors for n=35, k=10

t/x |-1 -04 |-0.2 (0.2 |04 |1

0.1 (3.2:10°(2.1-10°| 1.4-10° [ 9.5:10° | 6.4-10° | 4.3-10°

0.2 (2.610*|1.7-10*| 1.1.10* | 7.7-10* [ 5.2.10° | 3.5-107

0.3 (3.9-10%|2.6-10%| 1.8:10* | 1.2:102 | 7.9-10° | 5.3-107

0.4 [4.010%|2.710*| 1.8-.10* | 1.2-10* [ 8.1-10° | 5.5-107

0.5 [3.2:10%]2.2:10%| 1.5.10* | 9.8:10° | 6.5:10° | 4.4-107

0.6 [2.1-10%|1.4-10%]9.5:10° | 6.3-10° [ 4.3-10° | 2.9-107

0.7 [ 1.1-10*| 7.2.10° | 4.8-10° [ 3.2.10° | 2.2.10° | 1.5-10°

0.8 [3.6:10°|2.4-10°| 1.6-10° | 1.7-10° | 7.2:10° | 4.9-10°°

0.9 (3.4.10°]2.6:10°]1.5-10° | 1.0-10° [ 6.9-107 | 4.6-10”

1 1.5-10° | 1.0-10° [ 7.0-10° | 4.7-10° | 3.1-10° | 2.1-10°°

Example 3

ult) = .(e -2 j+

1
Ixztzeru v, )dyds

-1

[SY .
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Table 2. Relative errors for n=>35, k=7

x| 0,4 0,2 0,2 0,4 1

0.1{221-10" 6.13-10™ | 3.03-10"° | 2.21-10"° | 6.13-107"° | 3.04-107"°

0.2 | 3.61-10°| 3.41-10° | 3.44-107 | 3.61-10° | 3.41-10° | 3.44-10°

0.3 1.37-10%| 1.40-10® | 1.37-10® | 1.37-10® | 1.40-10® | 1.38-10°

0.4 | 2.83-10%| 2,80-10® | 2.73-10® | 2.83-10® | 2.80-10% | 2.73-10°

0.5] 4.19-10%| 4.19-10® | 4.36-10°® | 4.19-10° | 4.19-10° | 4.37.10°

0.6 | 5.37-10%| 6.78-10® | 4.62-10® | 5.37-10° | 6.78-10° | 4.62:10°

0.7 | 7.49-10%| 9.01-10® | 4.99-10°® | 7.49-10° | 9.01-10® | 5.00-10°®

0.8 | 1.52:10%| 1.35-10® | 1.64-10® | 1.52-10° | 1.35-10° | 1.64-10°

0.9 | 1.71-107| 4.28-107 | 6.00-107 | 1.71-10® | 4.28-107 | 6.00-10”

1 |290-10°| 1.64-10° | 1.64-10° | 2.90-10° | 1.64-10° | 1.65-10°

4. Conclusion

In this paper we restrict to the following
mathematical models in electrical engineering:
radiative heat transfer and Fourier’s problems.
Presented models lead to a system of Fredholm
integral equations and Volterra-Fredholm integral
equations, respectively. We propose discretization
method and projection-method) providing to a
system algebraic equations.
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