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Abstract: - In this paper the method of integral equations is proposed for some thermal problems of engineering 

(radiative heat transfer, heat conduction). Presented models lead to a system of Fredholm integral equations and 

Volterra-Fredholm integral equations, respectively. We propose various numerical methods (discretization 

method and projection-iterative method) providing to a system algebraic equations. In some cases simulation 

methods can be used. Computational results for integral modeling are given.  
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    1. Introduction 
The aim of this paper is to present the 

advantages of the integral equations method (IEM), 

and the possibilities of its application to various 

branches of engineering, particularly to the problems 

arising in power engineering [4]. It is an analytical-

numerical method and requires great efforts from 

highly skilled specialists (mathematicians, computer 

scientists, engineers). IEM seems to be a natural 

method, especially in the field of electrodynamics. 

This is a case of electromagnetic field being 

described with integral equations, the kernels of 

which are searched for by integral transformations in 

the domain of space variables, while in the time 

domain the expected system response has a form of 

integral formulas. It confines the expected solution 

valid for the whole domain to a predefined part of 

the space subject to analysis. This enables a 

considerable reduction of the size of the system of 

equations. In such a case, the minimization of the 

size of the systems of equations and the reduction of 

computation time, while maintaining the accuracy, 

becomes highly important. 

Integral equations, or rather their systems, are 

often matched with mathematical models describing 

the current density distribution at the cross-section of 

a working conductor or in the cartridge of an 

induction heater. The knowledge of the current 

density distribution may be a base for determining 

some electrodynamic values such as magnetic 

induction or distribution of electrodynamic forces 

acted at selected points of the conductors. Moreover, 

some problems of the radiative heat transfer are 

reducible to a system of Fredholm integral equations. 

We restrict to the following mathematical 

models in electrical engineering: radiative heat 

transfer and Fourier’s problems. Presented models 

lead to a system of Fredholm integral equations, and 

Volterra-Fredholm integral equations, respectively. 

We propose various computational methods 

(discretization and projection-iterative methods) 

providing to a system algebraic equations. 

 

 

2. Integral equations in the radiosity 

    problems 
 

2.1. Fundamental theory 
The papers [1,7] present theoretical foundations 

 the modelling of phenomena related to visualisation 

[1] performed by means of computer graphics 

software and for the modelling of radiative heat 

transfer [2]. Since the equations describing both of 

these processes are very similar, there is a possibility 

of applying certain computer graphics programmes 

to resolve problems related to radiative heat transfer. 

It is explores all necessary supplements making it 

possible to perform such calculations. 

Thermokinetics, describing radiative heat transfer; 

lighting engineering, investigating problems of 

determination of surface illumination and computer-

generated graphics, resolving issues connected with 

visualisation (it is the creation of seemingly three-

dimensional representations of virtual reality on a 
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two-dimensional screen, based on mathematical 

descriptions of the scene) – they all examine, to a 

greater or smaller extent, the same phenomena of 

emission, transmission and absorption of optical 

radiation. The similarity of phenomena occurring in 

all of these cases additionally offers the possibility to 

use similar research tools to investigate them. Only 

the simplest tasks involving radiative heat transfer or 

lighting engineering can be solved in [1] using 

analytical methods. Practically, all more demanding 

problems in these fields are currently solved using 

numerical methods or by means of modelling and 

simulation: (see [1,5,7]). It thus seems interesting to 

adapt such sophisticated computer graphics software 

to solve very complex problems involved in radiative 

heat transfer. 

Contemporary advanced computer graphics software 

and interior visualisation applications are based on 

the visualisation equation given below: 
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
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where L(x
0
,x

1
) is luminance of point x

0
: the total of 

luminance of radiation emitted Le(x
0
, x

1
) and 

reflected (integral value) in the direction of point x
1
; 

g(x
0
, x

1
) - factor dependent on the geometry of the 

system, defining the ”visibility” of point x
1 
from x

0
; 

ρ(x
0
,x

0
,x

1
) – specular reflectance of radiation for 

point x
0
, with radiation propagating from the 

direction of point x
2
 and reflected in the direction of 

x
1
. Integration is performed along the whole 

hemisphere Ω surrounding x
0
. This is illustrated by 

fig.1. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1. Illustration of equation (1). 

 

The equation (1) was written in the terminology used 

in lighting engineering or computer graphics, where 

the concept of luminance Lv [lm/m
2
/sr] is used, 

referring to visible radiation. Thermokinetics, 

however, uses the concept of radiance L [W/m
2
/sr] 

referring to all optical radiation (including thermal 

radiation). 

The solution of equation (1) for every point of 

surfaces S0...Sn under consideration consists of 

determination of luminance of each of these points. 

This is the basic information, necessary for further 

construction of visual images of surfaces examined. 

Unfortunately, the equation (1) cannot be solved 

analytically. Only simulation methods can be 

applied. One of a commonly used method is 

backward ray tracing. 

The equation describing heat balance of point x
0 

in 

Siegel and Howell [8] or Modest [6] has a form that 

is similar to (1), as given below: 

),,T,x(p),,T,x(p 0
e

0
eff φθ=φθ

ωθφθφθφθρ+ ∫
Ω

dcos),,T,x(p),,,,x( ininj
2

ininin
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(2) 

where, in radiative heat transfer terminology: peff 

stands for surface density of effective radiant 

intensity (radiance) of point x
0
 in the direction of x

1
, 

defined by angles (θ, φ); T represents temperature 

and the index ‘in’ concerns incident radiation.  

Usually, to solve system (2), it is necessary to add 

boundary conditions determining the energy-heat 

transfer between boundary surfaces and ambient 

environment. For radiative heat transfer systems, 

these conditions are defined as Dirichlet conditions 

or Neumann conditions. In the first case, temperature 

distribution t functions on the examined boundary 

surface Si should be determined [6,9] 

),,() 000 zyxtt
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=
∈0r
0r(
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      (3) 

And in the second, however, surface-specific power 

density p proportional to the derivative of the 

searched function t, penetrating from outside into the 

system through the boundary surface, is given [5,7] 
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The system of (2) equations together with boundary 

conditions (3)-(4) is usually nonsolving by typical 

methods (number of integral equations is too big).  

But when the equation (2) with boundary conditions 

(3)-(4), refer only to diffuse radiation, it is simplified 

the system of (2)-(4) equations and obtains a simple 

linear equations which describe transfer of radiant 

flux between n surfaces [1,8]:  
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where: Pzi - radiant power at surface Si; Ti – 

temperature of surface Si; σ - Stefan’s constant; εi - 

total emissivity of surface Si and ϕij – form factor 

between surface Si and Sj.  

In this case where it is impossible, the most 

perspective seems to be a stochastic modelling, using 

(in heat radiative problems), a stochastic methods. A 

classic Monte-Carlo method of simulation is wildly 

used but it needs a big amount of computer time and 

large memory resources when tasks with complex 

geometry or non diffuse radiation are calculated. 

Back rays tracing method, which is widely used in 

computer graphics programs seems to be more 

effective also in radiative transfer simulations.  

 

Example 1 

As an example we consider the heating coil element 

(see fig.2) 

 

 
 

Fig.2 Heating coil element 

 

The simulation of radiative heat transfer, basic on 

equation (2) and back trace method was done for 

several size of heating coil. The real size and diffuse 

radiation (own and multi reflected one) was taken 

into consideration. The uniform of irradiance 

distribution on a wall of furnace was tested. The 

partial result is presented on fig.3. 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

E[W/m
2
]

 
 

Fig.3. Irradiance distribution E [W/m
2
] on a furnace 

wall for heat coil (H=60mm and r=8mm) 

 

Two local extreme are indicated, and a zone of 

relative uniform irradiation can be determinate. It is 

useful for setting of working zone in resistance 

furnaces. 

 

Remark2. Presented problems (without 

simplification) lead to a system of integral equations 

of the Fredholm type,  

S)dyk)f()y ′′′+= ∫ r()rr,(rr(
S

,            (6) 

where S is a certain surface or domain, and y is 

unknown function. It by the discretization method 

can be reduced to a system of algebraic equations 

[1,5,7]. 

Moreover, Fredholm integral equations are particular 

case of integral equations arising in the Fourier’s 

theory [3,4,5]. 

Below the approximate methods for integral 

equations (6) of radiosity problems will be presented. 

 

2.2. Discretization method 

By a partition a domain S for N elements ∆S1, ∆S2, , 
∆SN  we get 

∑ ∫
= ∆

=+
N

n S

rfdSryrrkry

n
1

)(')'()',()( .       (7) 

Assuming, that a function y(r) is constant in every 

element ∆Sn and it is equal yn we obtain 

∑ ∫
= ∆

=+
N

n S

n rfdSrrkyry

n
1

)(')',()( .        (8) 

This equation is satisfied in points rm∈∆Sm, m=1, 2, 

…,N. Introduce notation f(rm,) = fm the equation 

(8)leads to the following system of algebraic 

equations: 

∑ ∫
= ∆

=+
N

n

m

S

nm fdSrrkyy

n
1

')',( ,   m = 1, 2, …, N.   (9) 

Calculating y1, y2, …, yN being values of the function 

y(r) at elements ∆S1, ∆S2, …, ∆SN, the solution of 

equation (6) is determined in domain S by (8). 

 

2.3 Method of special kernels 

   If  k(r,r’) = )'()(
1

rbra i

m

i

i∑
=

, where { )}(rai and 

{ )}'(rbi  are linear independent systems of functions 

on S, then equation (6) is of the form 

S)dyrbra)f()y i

m

i

i
′′+= ∫∑

=

r()'()(rr(
S1

.                 
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Introducing the notation  

 

S)dyrbi ′′∫ r()'(
S

= Ci     

we get the following solution of equation (6) 

).(rr(
1

raC)f()y
m

i

ii∑
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Numbers Ci  we get multiplied the above by bi(r) 

and integrating on S. Then we obtain 
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By notations 
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and 
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S
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we obtain a system of algebraic equations: 

ijij

m

j

ij fCd =−∑
=

][
1

δ   for  i=1,2,...,m. 

   

to calculate numbers Ci  .  

 

 

3. Integral equations in the heat  

    conduction problems 
We consider the integral equations of the mixed type 

∫ ∫+=
t

M

dydssyusytxKtxftxu
0

),(),,,(),(),(       (10) 

which generalize Volterra and Fredholm integral 

equations. The presented equations play a very 

important role in electromagnetics and heat 

conduction problems. Some initial-boundary 

problems for some differential partial equations in 

physics are reducible to the above integral equation. 

Consider this equation in space-time, where f is a 

given function in the domain D M T= × [ , ]0  (M is a 

compact subset of m-dimensional Euclidean space) 

and u is an unknown function in D. The kernel K is 

defined in the domain 

}0 ,,:),,,{( TtsMyxsytx ≤≤≤∈=Ω .  

In this paper we will present new numerical method 

and give computational results. It is based on 

iterative method with corrections defined by 

orthogonal polynomials of the Lagrange type. 

3.1.  Iterative-collocation method 
For integral equation (10) with M=[a, b] we propose 

new the following method 

( ) ( ) ( ) ( ) ( )[ ]∫ ∫ +⋅+= −

t b
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The corrections n
kp  can be defined by  

( ) ( ) ( )txutxutxu kkk ,,, 1−−=∆  

 in points [ ]bax p ,∈  and [ ]Ttq ,0∈  for 

nqp  ..., ,1 ,0, = , being zeros of some orthogonal 

polynomials such that  
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and 

    ( ) ippi x δϕ = ,          ( ) jqqj t δψ =          (14) 

Because the polynomials of the Lagrange type 

satisfy the above condition we can choose the 

fundamental Lagrange polynomials of the form 
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From here it follows  

 

( ) ( )qpkqp
n
kpqk txutxpc ,, ∆== .                    (16) 

Hence we get the following system of algebraic 

equations 
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where 
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Here: 

( ) 0,0 =txu , 

( ) ( )txftxu ,,1 = ,                     (20) 

( ) 0,1 =txp n . 
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If 

[ ]Tnnkknknnkkknkkkk cccccccccC ,...,,,......,,...,,,,...,, 101111000100=

 

[ ]Tnnkknknnkkknkkkk gggggggggG ,...,,,......,,...,,,,...,, 101111000100=
 

and                              ( )[ ]nmAA ik ,=  

for                     nki  ..., ,1 ,0, = ;   nm  ..., ,1= .       (21) 

system (17) can be written in the form  

kkk CAGC ⋅+= .                    (22)     

In this iterative process the matrix A  is constant and 

kG  is determined for every k . 

Introduce notations: 
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where r  is a resolving kernel defined as a series [3] 
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with iterated kernels 
( )nK  determined by formulas 
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Let R  be a space of the Riemann integrable 

functions on D with a norm 

{ }),(sup
),(
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DL   be a space  with the norm 
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Theorem  

If ( )DRf ∈  and ( )Ω∈Ck , then the sequence { }ku  

defined by formulas (11)-(12) tends for ∞→k  to a 

unique solution ( )DRu∈  of equation (11) and the 

following estimates  

21
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k
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Proof. By some transformations we get 
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It is clear that a solution of the mixed integral 

equation (31) can be presented in the form [2] 
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From (31) we obtain 
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Similarly, by (32) we get 
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Using (36) in (34) we get 
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By the induction we have 
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We can get  
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Hence 0 → ∞→n
nq  and a convergence of studied 

method is proved. For an error estimates let us 

notice, that  

2
DD LkRk VCuu ≤−                    (40) 

and 

222
DD LkLLk VKuu

Ω
≤− .     (41) 

 

3.2  Numerical experiments 

In this method the corrections k

np  defined by (13) 

have coefficients calculated from algebraic system 

(17) . Other numerical method analyzed in paper [5] 

led to the system Volterra equations. Presented 

method is easier to calculate. 

Below tables contain relative errors δ  in points 

jt  and ix : 
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( )ji

jijik
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,

,, −
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Here: n+1 means a number of basis functions and k 

– a number of iterations. Fundamental Lagrange 

polynomials form basis functions. 

 

Example 2 
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Table 1 Relative errors for n=5, k=10 

 

t/x -1 -0.4 -0.2 0.2 0.4 1 

0.1 3.2⋅10-5 2.1⋅10-5 1.4⋅10-5 9.5⋅10-6 6.4⋅10-6 4.3⋅10-6 

0.2 2.6⋅10-4 1.7⋅10-4 1.1⋅10-4 7.7⋅10-4 5.2⋅10-5 3.5⋅10-5 

0.3 3.9⋅10-4 2.6⋅10-4 1.8⋅10-4 1.2⋅10-2 7.9⋅10-5 5.3⋅10-5 

0.4 4.0⋅10-4 2.7⋅10-4 1.8⋅10-4 1.2⋅10-4 8.1⋅10-5 5.5⋅10-5 

0.5 3.2⋅10-4 2.2⋅10-4 1.5⋅10-4 9.8⋅10-5 6.5⋅10-5 4.4⋅10-5 

0.6 2.1⋅10-4 1.4⋅10-4 9.5⋅10-5 6.3⋅10-5 4.3⋅10-5 2.9⋅10-5 

0.7 1.1⋅10-4 7.2⋅10-5 4.8⋅10-5 3.2⋅10-5 2.2⋅10-5 1.5⋅10-5 

0.8 3.6⋅10-5 2.4⋅10-5 1.6⋅10-5 1.7⋅10-5 7.2⋅10-6 4.9⋅10-6 

0.9 3.4⋅10-6 2.6⋅10-6 1.5⋅10-6 1.0⋅10-6 6.9⋅10-7 4.6⋅10-7 

1 1.5⋅10-5 1.0⋅10-5 7.0⋅10-6 4.7⋅10-6 3.1⋅10-6 2.1⋅10-6 

Example 3 

( ) ( )∫ ∫
−

− +






 −⋅=
t

st dsdysyuetxtextxu

0

1

1

2232 ,
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2
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Table 2. Relative errors for n=5, k=7 

t/x -1 -0,4 -0,2 0,2 0,4 1 

0.1 2.21⋅10-10 6.13⋅10-10 3.03⋅10-10 2.21⋅10-10 6.13⋅10-10 3.04⋅10-10 

0.2 3.61⋅10-9 3.41⋅10-9 3.44⋅10-9 3.61⋅10-9 3.41⋅10-9 3.44⋅10-9 

0.3 1.37⋅10-8 1.40⋅10-8 1.37⋅10-8 1.37⋅10-8 1.40⋅10-8 1.38⋅10-8 

0.4 2.83⋅10-8 2,80⋅10-8 2.73⋅10-8 2.83⋅10-8 2.80⋅10-8 2.73⋅10-8 

0.5 4.19⋅10-8 4.19⋅10-8 4.36⋅10-8 4.19⋅10-8 4.19⋅10-8 4.37⋅10-8 

0.6 5.37⋅10-8 6.78⋅10-8 4.62⋅10-8 5.37⋅10-8 6.78⋅10-8 4.62⋅10-8 

0.7 7.49⋅10-8 9.01⋅10-8 4.99⋅10-8 7.49⋅10-8 9.01⋅10-8 5.00⋅10-8 

0.8 1.52⋅10-8 1.35⋅10-8 1.64⋅10-8 1.52⋅10-8 1.35⋅10-8 1.64⋅10-8 

0.9 1.71⋅10-7 4.28⋅10-7 6.00⋅10-7 1.71⋅10-8 4.28⋅10-7 6.00⋅10-7 

1 2.90⋅10-6 1.64⋅10-6 1.64⋅10-6 2.90⋅10-6 1.64⋅10-6 1.65⋅10-6 

 

4. Conclusion 
In this paper we restrict to the following 

mathematical models in electrical engineering: 

radiative heat transfer and Fourier’s problems. 

Presented models lead to a system of Fredholm 

integral equations and Volterra-Fredholm integral 

equations, respectively. We propose discretization 

method and projection-method) providing to a 

system algebraic equations. 
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