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Abstract. It is a common wisdom that servers should store the one-way hash of their clients’
passwords, rather than storing the password in the clear. In this paper we introduce a set of func-
tional properties a key-derivation function (password scrambler) should have. Unfortunately,
none of the existing algorithms satisfies our requirements. Therefore, we introduce a novel
and provably secure password-scrambling framework called Catena and derive an instantiation
Catena-λ, which is based on a memory-consuming one-way function called λ−bit-reversal graph
(λ−BRG). It is characterized by its λ−memory hardness. Thus, Catena-λ excellently thwarts
massively parallel attacks on cheap memory-constrained hardware, such as recent graphical
processing units (GPUs). Additionally, we show that Catena-λ is also a good key-derivation
function, since – in the random oracle model – it is indistinguishable from a random function.
Furthermore, the memory access pattern of the λ−BRG is password-independent and therefore
resistance against cache-timing attacks.
Moreover, Catena supports (1) client-independent updates (the server can increase the security
parameters and update the password hash without user interaction or knowing the password),
(2) a server relief protocol (saving the server’s resources at the cost of the client), and (3) a
variant Catena-KG for secure key derivation (to securely generate many cryptographic keys of
arbitrary lengths such that compromising some keys does not help to break others).
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1 Introduction

Passwords1 are user-memorizable secrets, commonly used for user authentication and cryp-
tographic key derivation. Typical (user-chosen) passwords often suffer from low entropy and
can be attacked by trying out all possible password candidates in likelihood-order until the
right one has been found. In some scenarios, when a password is used to open an interactive
session, the security of password-based authentication and key derivation can be enhanced
by dedicated cryptographic protocols defeating “off-line” password guessing, see, e.g., [5] for
an early example. Otherwise, the best protection are cryptographic password scramblers,
performing “key stretching”. The basic idea of such schemes is using an intentionally slow
one-way function for hashing the password. Therefore, the password processing takes some
time for both kinds of users legitimate ones and adversaries. A good password scrambler P
has to satisfy at least the following basic conditions:

(1) Given a password pwd , computing P (pwd) should be “fast enough” for the user.
(2) Computing P (pwd) should be “as slow as possible”, without contradicting condition (1).
(3) Given y = P (pwd), there must be no significantly faster way to test q password candidates

x1, x2, . . . , xq for P (xi) = y than by actually computing P (xi) for each xi.

Traditionally, most password scramblers realize “as slow as possible” by iterating a cryp-
tographic primitive (a block cipher or a hash function) many times (see [10] and [23] for

1 In our context, “passphrases” and “personal identification numbers” (PINs) are also “passwords”.



example). However, an adversary who happens to have c computing units (“cores”) can eas-
ily try out c different passwords in parallel. With recent technological trends, such as the
availability of graphical processing units (GPUs) with hundreds of cores [37], the question
of how to slow down such adversaries becomes a pressing one. Memory is expensive; so, a
typical GPU or other cheap massively-parallel hardware with lots of cores can only have a
limited amount of memory for each single core. More importantly, each core will have only
a very limited amount of fast (“cache”) memory. So the way to prevent c-core adversaries
from gaining some close-to-c-times speed-up is by making P not only intentionally slow on
standard sequential computers, but also intentionally memory-consuming. In the spirit of
the basic condition (3), any adversary using c cores in parallel with less than about c times
the memory of a sequential implementation must experience a strong slow-down. The first
password scrambler that took this condition into account was scrypt [43]. To the best of
our knowledge, it is also the only one – up to now.

However, a memory-consuming password scrambler may suffer from a new problem. If
the memory-access pattern depends on the password, and the adversary can observe that
pattern, this may open the way to another kind of shortcut attack. For example, a spy
process, running on the same machine as the password scrambler (without access to the
password scrambler’s internal memory) may gather information about the password scram-
bler’s memory-access pattern by measuring cache-timings. This information can be used to
greatly speed-up massively parallel attacks with low memory for each core. In this paper
we will show that this is actually an issue for scrypt by presenting a cache-timing attack.
Further, by introducing Catena-λ, we show that one can avoid password-defined memory-
access pattern and still provide memory hardness for an algorithm. We formally analyze the
security of Catena-λ and its memory consumption using the “pebble game” approach, which
dates back to the early days of Theoretical Computer Science [9,21,24,30,41].

Background. As observed by Wilkes in the late 1960s [58], storing plain authentication
passwords is insecure. About 10 years later, the UNIX system integrated some of Wilkes
ideas [34] by deploying the DES-based one-way encryption function crypt, to “encrypt” a
given password. Actually, there is no efficient way to recover the original password from the
result of the “encryption”, i.e., crypt is a one-way hash function, or a password scrambler,
as we call it.

Since the introduction of crypt, storing the hash of a password and avoiding to store the
plain password itself has become the minimum standard for secure password-based user au-
thentication. But, even as late as 2012, major players like Yahoo and CSDN (China Software
Developer Network) seem to store plain user-passwords [31].

Two important innovations from crypt were key stretching and salts. Key stretching is
the answer to the typically low entropy of user-chosen passwords: The password scrambler is
intentionally slow, but not too slow for the regular operation, e.g., a password-based log-in.
This makes exhaustively searching through all likely passwords more expensive.

A salt refers to an additional random input value for the password scrambler, stored
together with the password hash. It enables a password scrambler to derive lots of different
password hashes from a single password like an initialization vector enables an encryption
scheme to derive lots of different ciphertexts from a single plaintext. Since the salt must be
chosen uniformly at random, it is most likely that different users have different salts. Thus,
it hinders against attacks where password hashes from many different users are known to
the adversary, e.g., against the usage of rainbow tables [38].
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Note that there are further ways to thwart adversaries, i.e., ways to perform key stretch-
ing. One is to keep p bits of the salt secret, turning them into pepper [32]. Both adversaries
and legitimate users have to try out all 2p values the pepper can have (or 2p−1 on the av-
erage). Note that a careless implementation of this approach could leak a few bits of the
pepper via timing information, when trying out all possible values in a specific order. Thus,
a better approach would be to start at a random value and wrap around at 2p. Kelsey et al.
[25] analyzed another key stretching approach where a cryptographic operation is iterated
n times, where n is secret. Boyen proposed in [8] a user-defined implicit choice for n by
iterating until the user presses a “halt” button.

Contribution. Our primary contribution is a novel password-scrambling framework called
Catena (Latin for “chain”, due to its sequential structure when instantiated with a λ-
memory-hard function F λ). Catena provides innovative features like client-independent up-
date, when increasing the security parameter garlic or by turning some bits of the salt into
pepper. The notion of garlic reflects the property that incrementing of parameter by ’1’
doubles the memory usage and at least doubles the computational time. Further, it pro-
vides built-in support for server relief, which allows to shift the main effort for computing
a password hash to the client. Moreover, Catena fits very well in a proof of work scenario,
and we show that it is well suited for usage as a password-based key-derivation function –
called Catena-KG (see Section 7). Further, we provide Catena-λ – an instantiation of Catena
using the λ−bit-reversal hash operation (λ−BRH) for F λ. We prove this construction to be
λ−memory-hard in the random oracle model. Catena-λ thus thwarts back massively paral-
lelized attacks using GPUs and similar hardware. Additionally, Catena-λ has been designed
to be resistant against cache-timing attacks. The need to address this issue has been inspired
by revealing the cache-timing vulnerability of scrypt (see Appendix A). To the best of our
knowledge, such attacks for scrypt have not been known before.

Outline. Section 2 briefly overviews modern password scramblers and their properties. In
Section 3 we present desired properties of modern password-scrambling algorithms. Sec-
tion 4 introduces Catena, our new password-scrambling framework satisfying the properties
described in Section 3. In Section 5 we introduce an instantiation of Catena with a λ−BRG
resulting in a memory-demanding password scrambler called Catena-λ. Furthermore, this
section contains a brief description of how to implement Catena-λ. Section 6 contains a
generic security analysis of Catena-λ. In Section 7 we show that Catena fits very well in the
proofs of work scenario by presenting two examples. Finally, Section 8 concludes the paper.

2 Frequently used Password Scramblers

Table 1 provides an overview of password scramblers that are or have been in frequent
use, compared with Catena. It indicates the amount of memory used and the cost factor to
generate a password hash, as well as if the certain algorithm supports server relief and client-
independent updates. Furthermore, it points out issues from which the considered password
scrambler may suffer.

Hash Function Based Password Scramblers. Not long ago, md5crypt [23] was used in
nearly all Free-BSD and Linux-based systems to scramble user passwords. It is based on the
well-known MD5 [46] hash function with a fixed number of 1,000 iterations. Due to the fact
that CPUs and GPUs become more and more powerful, md5crypt can now be computed too
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fast, e.g., over 5 million times per second on a AMD HD 6990 graphic card [52]. Additionally,
its own author does not consider md5crypt secure anymore [23]. Common Linux distributions
nowadays employ sha512crypt [10], e.g., Debian, Ubuntu, or Arch Linux. It provides similar
features as md5crypt, but uses SHA-512 [39] instead of MD5. Furthermore, the number of
iterations can be chosen by the user. NTLMv1 [18] is a fast password scrambler, which is
deployed to generate hash values for several versions of Microsoft Windows passwords. It is
very efficient to compute: one can check over nine billion password candidates per second
on a single COTS graphic card [52]. For this and other reasons, we recommend that NTLMv1
should not be used anymore. The “Password-Based Key Derivation Function 2” (PBKDF2)
has been specified by the National Institute of Standards and Technology (NIST) [57]. It is
widely used either as a KDF (e.g., in WPA, WPA2, OpenOffice, or WinZip) or as a password
scrambler (e.g., in Mac OS X, LastPass). The security of PBKDF2 is based on c iterations of
HMAC-SHA-1 [28], where c is a user-chosen value, which is given by default with c = 1000.

bcrypt. The bcrypt [44] algorithm is built upon the Blowfish block cipher [50]. Internally,
Blowfish uses a slow key scheduler to generate an internal state of 4,168 bytes for the key-
dependent S-boxes (4 × 1, 024 bytes) and the round keys (72 bytes). Thus, while bcrypt

was not designed with the intention to thwart parallelized adversaries by exhaustive memory
usage, the state is sufficiently large to slow down bcrypt significantly on current GPUs, e.g.,
it can only computed about 4,000 times per second on an AMD HD 7970 graphic card [52].
However, the state size is fixed – so if future GPUs have a larger cache, it may actually
run much faster. There is no tunable parameter to increase the memory requirement of this
password scrambler. For key stretching, bcrypt invokes the Blowfish key scheduler 2c times,
e.g., OpenBSD uses c = 6 for users and c = 8 for the superuser.

scrypt. Occupying a lot of memory hinders attacks using special-purpose hardware (storage
is expensive) and GPUs. We are aware of one single password scrambler that has been
designed to occupy a lot of memory: scrypt [43]. (There was HEKS [45], but it has been
broken by the author of scrypt.) As its core, scrypt uses the sequentially memory-hard
function ROMix (see [43] for a formal definition of sequential memory hardness), which can
take G units of memory and performs 2G operations. With only G/K units of memory,
the number of operations goes up to 2G · K. Unfortunately, ROMix is vulnerable against
cache timing attacks, due to its password-dependent memory-access pattern. In [43], Percival
recommends G = 214 and G = 220 for password hashing and key derivation, respectively.

3 Properties of Modern Password Scramblers

In this section we introduce a listing of desired properties a modern password scrambler
should have.

Memory Hardness. To describe memory requirements, we adopt and slightly change the
notion from [43]. The intuition is that for any parallelized attack, using m cores, the required
memory per core is decreased by a factor of 1/m, and vice versa.

Definition 1 (Memory-Hard Function).
For all α > 0, a memory-hard function f can be computed on a Random Access Machine
using S(g) space and T (g) operations, where S(g) ∈ Ω(T (g)1−α).
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Algorithm Cost Factor Memory Server Client-Indep. Issues
(default) Relief Updates

crypt [34] 25 small - - “too fast”
md5crypt [23] 1,000 small - - “too fast”
sha512crypt [10] 1,000–999,999 (5,000) small - - (small memory)
NTLMv1 [18] 1 small - - “too fast”
PBKDF2 [57] 1–∞ (1,000) small - - (small memory)
bcrypt [44] 24–299 (26, 28) 4,168 bytes - - (constant memory)
scrypt [43] 1–∞ (214, 220) flexible, big - - cache-timing attacks

Catena (this paper) 21–∞ (216, 220) flexible, big X X -

Table 1. Comparison of state-of-the-art password scramblers and Catena. Note that all of the mentioned
algorithms support salt values.

Thus, for S · T = G2 with G = 2g, using m cores, we have

1

m
· S +m · T = N2.

A formal generalization of this notion is given in the following.

Definition 2 (λ−Memory-Hard Function).
For a λ−memory-hard function f , which is computed on a Random Access Machine using
G(g) space and T (g) operations with G = 2g, it holds that

T (g) = Ω

(
Gλ+1

S(g)λ

)

.

Thus, we have

(
1

m
· Sλ) · (m · T ) = Gλ+1.

λ-Memory-Hard vs. Sequential Memory-Hard. In [43], Percival introduced the notion of
sequential memory hardness (we will refer to it as SMH), which is satisfied by his introduced
password scrambler scrypt. Bases on this notion, an algorithm is sequential memory-hard,
if an adversary has no computational advantage in using multiple CPUs, i.e., using p cores
requires p times the effort used for one core. It is easy to see that, in the parallel computation
setting, SMH is a stronger notion than that of λ-memory hardness (λMH). Thus, SMH is
a desirable goal when designing a memory-consuming password scrambler. In this section
we discuss why our presented password scrambling framework Catena satisfies only λMH
instead of SMH, without referring to details of Catena, which are presented in Section 4.

Note that a further goal of our design was to provide resistance against cache-time attacks,
i.e., Catena should satisfy password-independent memory access pattern. This goal can be
achieved by providing a control flow which is independent of its input. It follows that Catena
can be seen as a straight-line program, which on the other hand can be represented by a
directed acyclic graph (DAG, see Definition 3).

Definition 3 (Directed Acyclic Graph). Let Π(V , E) be a graph consisting of a set of
vertices V = (v0, v1, . . . , vn−1) and a set of edges E = (e0, e1, . . . , eℓ−1), where E = ∅ is a
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valid variant. Π(V , E) is a directed acyclic graph, if every edge in E consists of a starting
vertex vi and an ending vertex vj, with i 6= j. A path through Π(V , E) beginning at vertex vi
must never reach vi again (else, there would be a cycle). If there exists a path from a vertex
vi to a vertex vj in the graph with i 6= j, we will write vi ≤ vj.

Usually, a DAG can be at least partially computed in parallel. Assuming that one has c
processors to compute a graph Π(V , E), one can partition Π(V , E) into c disjunct subgraphs
π0, . . . , πc−1. Let Ri,j denote the set of crossing edges between two subgraphs πi and πj . If
the available shared memory units are at least equal to the order of Ri,j , one can compute πi
and πj in parallel. More detailed, in the first step one computes each vertex corresponding
to a crossing edge and stores them in the global shared memory. Next, both subgraphs can
be processed in parallel by accessing this memory. It follows that if the available memory is

c−1∑

i=0

c−1∑

j=0

|Ri,j |,

then, one can compute all subgraphs π0, . . . , πc−1 in parallel. Due to the structure of Catena,
one can always partition its corresponding DAG into such subgraphs and hence, Catena
can be at least partially computed in parallel, which is a contradiction to the definition of
sequential memory hardness. Thus, we introduced the notion of λMH as described above,
which is a weaker notion in the parallel computing setting but a stronger notion in the
single-core setting. To the best of our knowledge, Catena is the first password scrambler
which satisfies both to be memory-consuming (by satisfying λMH) and providing resistance
against cache-time attacks.

Nevertheless, we leave the task of designing a memory-consuming password scrambler
satisfying sequential memory hardness and resistance against cache-time attacks as an open
research problem.

Password Recovery (Preimage Security). For a modern password scrambler it should
hold that the advantage of an adversary (modelled as a computationally unbounded but
always-halting algorithm) for guessing a valid password should be reasonable small, i.e., not
higher than for trying out all possible candidates. Therefore, given a password scrambler
PS, we define the password-recovery advantage of an adversary A as follows.

Definition 4 (Password-Recovery Advantage). Let s denote a randomly chosen salt
value and pwd a password randomly chosen from a source Q with e bits of min-entropy. Let
PS denote a password-scrambling algorithm. Then, given a hash value h with PS(s, pwd) =
h, we define the password-recovery advantage of an adversary A as

AdvREC
PS (A) = Pr

s,h

[

x← APS,s,h : PS(s, x)
?
= h

]

.

Furthermore, by AdvREC
PS (q) we denote the maximum advantage taken over all adversaries

asking at most q queries to PS.

In Section 6.3 we show that for Catena-λ it holds that for guessing a valid password, an
adversary either has to try all possible candidates or it has to find a preimage for the
underlying hash function.
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Client-Independent Update. According to Moore’s Law [33], the available resources of an
adversary increase continually over time – and so do the legitimate user’s resources. Thus, a
security parameter chosen once may be too weak after some time and needs to be updated.
This can easily be done immediately after the user has entered its password the next time.
However, in many cases, a significant number of user accounts are inactive or rarely used,
e.g., 70.1% of all Facebook accounts experience zero updates per month [36] and 73% of all
Twitter accounts do not have at least one tweet per month [47]. It is desirable to be able
to compute a new password hash (with some higher security parameter) from the old one
(with the old and weaker security parameter), without having to involve user interaction, i.e.,
without having to know the password. We call this feature a client-independent update of the
password hash. When key stretching is done by iterating an operation, client-independent
updates may or may not be possible, depending on the details of the operation, e.g., when
the original password is one of the inputs for every operation, client-independent updates
are impossible.

Server Relief. A slow and – even worse – memory-demanding password-based log-in pro-
cess may be too much of a burden for many service providers. So we came up with the idea
to split the password-scrambling process into two parts: (1) a slow (and possibly memory-
demanding) one-way function F and (2) an efficient one-way function H. By default, the
server computes the password hash H(F (pwd , s)) from the password pwd and a salt s. Alter-
natively, the server sends s to the client who responds x = F (pwd , s). Finally, the server just
computes H(x). While it is probably easy to write a generic server relief protocol using any
password scrambler, none of the existing password scramblers has been designed to naturally
support this property.

Resistance against Cache-Timing Attacks. Consider the implementation of a password
scrambler, where data is read from or written to a password-dependent address a = f(pwd).
If, for another password pwd ′, we would get f(pwd ′) 6= a and the adversary could observe
whether we access the data at address a or not, then it could use this information to filter
out certain passwords. Under certain circumstances, timing information related to a given
machine’s cache behavior may enable the adversary to observe which addresses have been
accessed. Thus, we recommend to realize password-independent memory-access patters for
upcoming password scramblers.

Key-Derivation Function (KDF). Beyond authentication, passwords are also used to
derive symmetric keys. Obviously, one can just use the output of the password scrambler as
a symmetric key – perhaps after truncating it to the required key size. This is a disadvantage
if one either needs a key longer than the password hash or has to derive more than one key.
Thus, it is prudent to consider a KDF as a tool of its own right – with the option to derive
more than one key and with the security requirement that compromising some of the keys
does not endanger the other ones. Note that it is required for a KDF that the input and
output behaviour cannot be distinguished from a set of random functions. Thus, we define
the Random-Oracle Security of a password scrambler as follows:

Definition 5 (Random-Oracle Security). Let PS : {0, 1}∗ → {0, 1}n be password scram-
bler, which gets an input of arbitrary length and produces a fixed-length output. Let A
be a fixed adversary which is allowed to ask at most q queries to an oracle. Further, let
$ : {0, 1}∗ → {0, 1}n be a random function which, given an input of arbitrary length, al-
ways returns randomly chosen values from {0, 1}n. Then, the Random-Oracle Security of a
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Algorithm 1 Catena
Input: pwd {Password}, t {Tweak} s {Salt}, g {Garlic}
Output: x {hash of the password}
1: x← H(0xFF || t || pwd || s)
2: for c = 1, . . . , g do
3: x← Fλ

H(c, x)
4: x← H(c || (λ+ 1) · 2c || x)
5: end for
6: return x

password scrambler PS is defined by

Adv$
PS(A) =

∣
∣
∣Pr

[
APS ⇒ 1

]
− Pr

[

A$ ⇒ 1
]∣
∣
∣ .

Furthermore, by Adv$
PS(q) we denote the maximum advantage taken over all adversaries

asking at most q queries to an oracle.

Note that the input (of arbitrary length) of PS contains the password, the salt, and some
other (optional) parameters, e.g., parameters to adjust the memory-consumption or the
computational time.

4 The Catena Password-Scrambling Framework

In this section we introduce our λ-memory-hard password-scrambling framework called
Catena. It consist of a family of novel and sustainable password-scrambling algorithms with
high resilience against cache-timing attacks. The core of Catena is the λ-memory-hard func-
tion F λ

H(·, ·) requiring O(2g) invocations of the hash function H for a fixed value of x. The
first input of F λ

H denotes the garlic parameter g with g = log2(G) (see Definition 2) and
the second input denotes the value to process. Thus, g determines the units of memory re-
quired to execute F λ

H(·, ·). Moreover, increasing g by one doubles the computational effort
for computing the password hash. The formal definition of Catena is given in Algorithm 1.

The password-dependent input of H is appended to a prefix tuple (c, i), where c denotes
the iteration counter (garlic factor) and i denotes the hash function invocation counter. This
position encoding guarantees the uniqueness of inputs for H within a run of Catena. This
becomes handy in the security analysis of Catena where H is modeled as a random oracle.

Tweak. The parameter t is an additional multi-byte value which is given by:

t← d || λ || n || |s| || H(AD),

where the first byte d denotes the domain (i.e., the mode) for which Catena is used. We set
d = 0 for the usage of Catena as a password scrambler, d = 1 when used as a key-derivation
function (see Section 7.1), and d = 2 for proofs of work (see Section 7.2). The remaining
possible values for d are reserved for future applications. The second byte λ defines together
with the value g (see above) the security parameters for Catena. The 16-bit value n denotes
the output length of the underlying hash function H in bits, and the 32-bit value |s| denotes
the total length of the salt in bits. The n-bit value H(AD) is the hash of the associated
data AD, which can contain additional information like hostname, user-ID, name of the
company, or the IP of the host, with the goal to customize the password hashes. The tweak
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is processed together with the one-byte value 0xFF, the salt, and the secret password (see
Line 1 of Algorithm 1). Thus, t can be seen as a weaker version of a salt increasing the
additional computational effort for an adversary when using different values. Furthermore,
it allows to differentiate between password hashing and key derivation. Note that the first
byte value 0xFF can also theoretically be reached by the value c which would destroy the
uniqueness. But, based on practical reasons, c = 0xFF will never occur, since then Catena

would require 2255 operations, which is infeasible.

Garlic. Catena employs a graph-based structure, where the memory requirement highly
depends on the number of input nodes of the permutation graph. If enough memory is
available (either for an adversary or an honest entity), all input nodes (plus one for the
output path – see Section 6 for details) can be stored in the cache. As the goal is to hinder an
adversary to make a reasonable number of parallel password checks using the same memory,
we have to consider a minimal number of input nodes. In general, we use G = 2g input nodes.
A recommendation for g can be found in Table 2. But, as the available memory for GPU’s
and CPU’s is continually growing, this recommendation will change in the future. Thus, for
Catena, the parameter garlic specifies the number of input nodes G, and can be adapted in
the future.

Client-Independent Update. Its sequential structure does enable Catena to provide
client-independent updates. Let h← Catena(pwd, t, s, g) be the hash of a specific password
pwd , where t, s, and g denote tweak, the salt, and the garlic, respectively. After increasing
the security parameter from g to g′ = g + 1, we can update the hash value h without user
interaction by computing:

h′ = H(g′ || (λ+ 1) · 2g′ ||F (g′, h)).

It is easy to see that the equation h′ = Catena(pwd , t, s, g′) holds.

Server Relief. In the last iteration of the for-loop in Algorithm 1, the client has to omit
the last invocation of the hash function H (see Line 4). The current output of Catena is then
transmitted to the server. Next, the server computes the password hash by applying the hash
function H. Thus, the vast majority of the effort (memory usage and computational time) for
computing the password hash is handed over to the client, freeing the server. This enables
someone to deploy Catena even under restricted environments or when using constrained
devices – or when a single server has to handle a huge amount of authentication requests.

Keyed Password Hashing. To further thwart off-line attacks, we introduce a technique
to use Catena for keyed password hashing, where the password hash depends on both the
password and a secret key K. Note that K is the same for all users, and thus, it has to
be stored on server-side. To preserve the server-relief property (see above), we encrypt the
output of Catena using a CPA-secure encryption scheme like the Counter-AES-Mode (CTR-
AES) [14]:

y = CatenaK(userID, pwd, t, s, g) := CTR-AESK(userID, Catena(pwd , t, s, g)),

where Catena is defined as in Algorithm 1 and the userID is a unique and user-specific
identification number which is assigned by the server. For CTR-AES, the starting value of
the counter is given by a 64-bit user-ID. Since AES processes 128-bit blocks, the remaining
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64 least significant bits are set to zero. Obviously, it is a bad idea to store the secret key for
the AES on hard drive, since it can be leaked in the same way as the password-hash database.
Instead, we recommend to derive the key K from a password during the bootstrapping phase.
Afterwards, K will be kept in the RAM and will never be on the hard drive. Note that one
has to care about side-channel attacks in this setting, and hence, the usage of a side-channel
resistant implementation of AES is necessary such as presented in [2,54,56].
Now we discuss what happens during the client-independent update, i.e., when g = g+ r for
arbitrary r ∈ N. First, y is decrypted using CTR-AES under K, i.e., x = CTR-AES−1

K (y).
Second, x is updated using the new garlic parameter, i.e., x = H(F λ

H(g, x)). Last, x is
encrypted using the CTR-AES under K leading to the updated password hash.

5 Catena-λ

In this chapter we present an instantiation of the Catena password-scrambling framework
using a structure called λ-bit-reversal graph (λ−BRG), which on the other hand uses a one-
way function H. We call this instantiation Catena-λ. In the second part of this section we
discuss how to optimize the implementation of Catena-λ.

5.1 The Core of Catena-λ

The core of Catena-λ is the λ−Bit-Reversal Hashing (λ-BRH) operation. The origin of
this operation on the other hand is the λ−BRG, which is given by stacking λ bit-reversal
permutations. The definition of the bit-reversal permutation is given below (see Definition 6).

Definition 6 (Bit-Reversal Permutation τ). Fix a number k ∈ N and represent i ∈ Z2k

as a binary k-bit number, (i0, i1, . . . , ik−1), i.e.,

i =

k−1∑

j=0

2jij .

The bit-reversal permutation τ : Z2k → Z2k is defined by

τ(i0, i1, . . . , ik−1) = (ik−1, . . . , i1, i0).

In Definition 7 we introduce a generic definition of the λ−BRG, where the edges within such
a graph define the control flow of the λ−BRH operation (see Algorithm 2).

V0 V1 V2 V3 V4 V5 V6 V7

W0 W1 W2 W3 W4 W5 W6 W7

Output

Input

Fig. 1. A λ−bit-reversal graph with λ = 1 (SBRG) and g = 3 (eight input and eight output nodes).
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Algorithm 2 λ−Bit-Reversal Hashing (λ−BRH)
Input: c {Garlic}, x {Value to Hash}, λ {Depth}
Output: x {Hash Value}
1: v0 ← H(c || 0 || x)
2: for i = 1, . . . , 2c − 1 do
3: vi ← H(c || i || vi−1)
4: end for
5: for k = 0, . . . , λ− 1 do
6: r0 ← H(c || (k + 1) · 2c || v0 || v2c−1)
7: for i = 1, . . . , 2c − 1 do
8: ri ← H(c || (k + 1) · 2c + i || ri−1 || vτ(i))
9: end for
10: v ← r
11: end for
12: return r2c−1

Definition 7 (λ−Bit-Reversal Graph). Fix a natural number g, let V denote the set of
vertices, and E the set of edges within this graph. Then, a λ−Bit-Reversal Graph Πλ

g (V , E)
consists of (λ+ 1) · 2g vertices

{v00, . . . , v02g−1} ∪ {v10, . . . , v12g−1} ∪ · · · ∪ {vλ−1
0 , . . . , vλ−1

2g−1} ∪ {vλ0 , . . . , vλ2g−1},

and (2λ+ 1) · 2g − 1 edges as follows:

– (λ+ 1) · (2g − 1) edges from vji−1 to vji for i ∈ {1, . . . , 2g − 1} and j ∈ {0, 1, . . . , λ}.
– λ · 2g edges from vji to vj+1

τ(i) for i ∈ {0, . . . , 2g − 1} and j ∈ {0, 1, . . . , λ − 1}, where τ is
the bit-reversal permutation.

– λ additional edges from vj2g−1 to vj+1
0 where j ∈ {0, . . . , λ− 1}.

For example, we call a λ−BRG with λ = 1 a Sequential Bit-Reversal Graph (SBRG), which
is shown in Figure 1. Note that this structure is almost identical – except for one additional
edge e = (v02g−1, v

1
0) – to the Bit-Reversal Graph presented by Lengauer and Tarjan in [29].

5.2 Implementation Details

In this section we (1) clarify our choice of the internally used hash function and (2) present an
optimized implementation of Catena-λ. Recommendations for the parameters of Catena-λ
can be found in Table 2.

Parameter Description Encoding Recommendation

gp garlic (password hashing) 1 byte 17
gk garlic (key derivation) 1 byte 20
λ depth 1 byte 2
d domain 1 byte -
s salt byte string 16 bytes
|s| salt length UInt32 -

Table 2. Parameter choices for the practical usage of Catena-λ. By UInt32 we denote a 32-bit unsigned
integer which is always encoded in little-endian way.
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Hash Function Choice. For the practical application of Catena-λ, we where looking for
a hash function with a 512-bit (64 byte) output, since it often complies with the size of a
cache line on common CPUs. In any case, we assume that both the output size of H and the
cache-line size are powers of two, so if they are not equal, the bigger number is a multiple of
the smaller one. Moreover, the output of H should be byte-aligned. For Catena-λ, we decided
to use the following hash functions: SHA2-512 [39], SHA3-512, and BLAKE2b [4]. Note that
SHA3-512 is not standardized yet and thus, we refer to Keccak-512 [7] with c = 1024, where
c denotes the capacity.

The advantage of SHA2-512 is that it is well-analyzed [3,19,26], standardized, and widely
used, e.g., in sha512crypt, the common password scrambler in several Linux distribu-
tions [10]. We decided on the use of SHA3-512 as an alternative, since it will soon become
a standardized hash function, it is easy to analyze, and it maintains a 1600-bit state, which
can provide, depending on the choice of the capacity, a high security margin. Additionally,
we point out that SHA3-512 has a high performance in hardware, which suits very well
for adversaries using dedicated hardware. Our decision for BLAKE2b was motivated by its
high performance in software, which allows to use a large value for the garlic parameter,
resulting in a higher memory effort than for, e.g., SHA3-512.

Note that the security of Catena does not rely on the performance of a specific hash
function, but on the size of the λ−BRG, i.e., the depth λ and the width g. Thus, even in the
case of a secure but very fast cryptographic hash function, which may be counter-intuitive in
the password-scrambling scenario, one can adapt the security parameter to reach the same
computational effort.

Observation. The following observation holds for a 1−BRG. Nevertheless, it can be applied
to a λ−BRG for arbitrary values of λ ∈ N. When the output size of H is equal to the size of a
cache line (or a multiple), each time a value is read from or written to a location vi, the time
to access vi is the same, to first order. Now, assume the output size of H (i.e., the number
of bits for each of the vi) is k times the cache line size. In this case the adversary may try to
optimize the memory layout (the order in which the vi are stored in memory) to minimize the
number of cache misses. However, a nice property of the bit-reversal permutation τ is that
one cannot gain much from such an optimization. If the values are stored in their natural
order: v0, v1, . . . , v2g−1, then, the number of cache misses in the first phase (lines 1 and
3 of Algorithm 2) are drastically reduced to 2g/k. But, in the second phase (lines 6 and
8 of Algorithm 2), the number of cache misses is 2g. If an adversary stores the vi in their
bit-reversal order, the number of cache misses in the second phase is 2g/k, but, in the first
it is now 2g. A more complex mixture between natural and bit-reversal order would allow
2g/
√
k cache misses in each of the first and the second phase. If k is not really huge, the

benefit from such an optimization would remain small.

Optimization. In this section we describe an optimized implementation of Catena instan-
tiated with a λ−BRG, where we transform the explicit unique prefix tuple (c, i) (see Line
4 of Algorithm 1 and lines 3,6,8 of Algorithm 2) into an implicit mode of operation. The
prefix tuple (c, i) is really handy when analyzing the security of Catena-λ (see Section 6).
But, in real world implementations, the tuple (c, i) should match the block size, which would
imply one additional compression function invocation. In the following we discuss how to
omit this extra invocation of the compression function without violating the unique pre-
fix assumption, which is vital for the proof. Usually, a hash function is implemented using
the three methods Initialize(), Update(), and Finalize() [35]. Thereby, the method
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Algorithm 3 Implementation of λ−BRH
Input: c {Garlic}, x {Value to Hash}, λ {Depth}
Output: x {Hash Value}

1: s←Initialize(H)
2: s← s.Update(c || 0∗)
3: s← s.Update(x)
4: t← s.copy()
5: v0 ← t.Finalize()
6: for i = 1, . . . , 2c − 1 do
7: s← s.Update(vi−1)
8: t← s.copy()
9: vi ← t.Finalize()
10: end for

10: for k = 0, . . . , λ− 1 do
11: s← s.Update(v0 || v2c−1)
12: t← s.copy()
13: r0 ← t.Finalize()
14: for i = 1, . . . , 2c − 1 do
15: s← s.Update(ri−1 || vtau(i))
16: t← s.copy()
17: ri ← t.Finalize()
18: end for
19: v ← r
20: end for
21: return r2c−1

Initialize() generates the initial chaining value, the method Update() processes arbitrary
large data updating the internal state, and the Finalize() method finalizes the message,
e.g., padding, and computes the output hash. In our case, for each iteration of c, we proceed
as shown in Algorithm 3. Thus, depending on the used compression function, for each invo-
cation of the hash function, we reduce the effort by one compression function call. Moreover,
one can precompute the values from Line 2 to save an additional compression function call.
Note that we use the 0∗-padding to stretch the value c to the block size. Finally, the saved
computational effort can be reinvested in the usage of higher security parameter.

6 Security of Catena-λ

In this section we provide the security analysis of a λ−BRG, since it is the basic structure
of Catena-λ. Before we present our claims in Section 6.2, we introduce some preliminaries in
Section 6.1.

6.1 Memory Hardness and the Pebble Game

Hellman presented in [20] a possibility to trade memory/space S against time T in attacking
cryptographic algorithms, i.e., he has introduced the idea of a time-memory trade-off (TMT)
in terms of generic attacks. Hence, we can assume that an adversary with access to this
algorithm and restricted resources is always looking for a sweet spot to optimize S · T . To
analyze the effort for a given adversary, one needs to choose a certain model for studying the
TMT. In 1970, Hewitt and Paterson introduced a method for analyzing TMTs on directed
acyclic graphs (DAG, see Definition 3, Section 3) [40]. As the control flow of the λ−BRH
operation can be represented as a DAG, i.e., the nodes of the graph represent the inputs and
outputs of the hash function and an edge denotes a hash function invocation, we adapt the
model from [40] to analyze our scheme. In the following we introduce this model, which is
also called pebble game. It has been occasionally used in cryptographic context, see, e.g. [16]
for a recent example.

Pebble Game. This model is restricted to DAGs with bounded in-degree and can be seen as
a single-player game. Let Π(V , E) be a DAG and let N = |V| be the number of nodes within
Π(V , E). For our scheme, we restrict the in-degree to 2. In the setup phase of the game, the
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player gets S pebbles (tokens) with S ≤ N . A pebble can be placed on a node (mark) or
be removed from a node (unmark) under certain requirements (where v ∈ V denotes a node
within the set V of all nodes of Π(V , E)):

1. A pebble may be removed from a vertex v at any time.
2. A pebble can be placed on a node v if all predecessors of the node v are marked.
3. If all immediate predecessors of an unpebbled node v are marked, a pebble may be moved

from a predecessor of v to v.

A move is the application of either the second or the third action stated above. The
goal of the game is to mark (to pebble) all nodes of a graph Π(V , E) at least once. The
time-memory trade-off (TMT) is then defined by counting the minimum number of moves
(T ) and the maximum simultaneously placed pebbles on the graph (S), which are necessary
to reach the goal. Based on the following two trivial observations (see [29]), we can define a
lower and an upper bound for the time-memory trade-off S · T . On the one hand, any graph
of size N can be pebbled with N pebbles in time N (in topological order). On the other
hand, if a graph Π(V , E) of size N can be pebbled with S pebbles at all, it can be pebbled
with S pebbles in time

T ≤
∑

0≤k≤S

(
N

i

)

≤ 2N .

Therefore, the interest of T is bounded to the range N ≤ T (S) ≤ 2N , where T (S) has to
increase if S decreases. In general, a pebble game is a common model to derive and analyze
TMTs as shown in [48,49,51,53,55].

6.2 Security Analysis

Obviously, a λ−BRG consists of a sequential structure, since each node within the graph is
at least derived from its predecessor. We denote by G = 2g the number of vertices within
one row of a λ−BRG. Let vij denote the j-th vertex of the i-th row of a λ−BRG with
i ∈ {0, . . . , λ} and j ∈ {0, . . . , G − 1}. An λ−BRG can be pebbled in time T = (λ + 1) · G
using at least S = G pebbles. Therefore, the G pebbles are placed sequentially on the input
vertex v00, . . . , v

0
G−1. Then, the pebble placed on v00 is moved to v10 and the G− 1 remaining

pebbles of the first row are sequentially placed on the nodes v11, . . . , v
1
G−1. Now, the pebble

on the vertex v10 is moved to v20 and the G− 1 pebbles are sequentially placed on the nodes
v21, . . . , v

2
G−1. This line of action is repeated for all i ∈ {0, . . . , λ}, i.e., until the output of the

λ−BRG is produced.
As the memory requirement for S = G pebbles is usually too large, we have to consider

scenarios with S < G pebbles. Now, we argue that the smallest number of pebbles a λ−BRG
can be pebbled with is S = λ + 1. Therefore, assume that S = λ, i.e., there are λ pebbles
p0, . . . , pλ−1 available. A λ−BRG consists of the λ+1 rows r0, . . . , rλ. We wlog. assume that
one pebble (pλ−1) is used to move along the last row, i.e., Row rλ (we call that pebble the
runner pebble). Furthermore, we wlog. assume that the remaining λ− 1 pebbles are placed
on the rows r1, . . . , rλ−1. Let x denote the current position of pλ−1. Then, pλ−1 can be moved
at most one step from vλ+1

x to vλ+1
x+1 without additional effort iff pλ−2 is already on vλτ(x+1).

Else, due to the structure of the λ−BRG, pλ−2 has to be moved to vλτ(x+1). Therefore, p
λ−3

has to be moved to the predecessor of vλτ(x+1). Since this observation holds for the whole

λ−BRG and r0 does not contain a pebble, none of the pebbles p0, . . . , pλ−1 can be moved
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(or at least one step depending on the current position of the corresponding predecessors).
Obviously, this holds for all S ≤ λ and thus, pebbling a λ−BRG with S ≤ λ pebbles is
impossible. We now present a formal proof for pebbling a λ−BRG using λ+ 1 pebbles.

Lemma 1 (Upper Bound (S = λ+1)). Let λ ∈ N be a fixed value and let G = 2g. Then,
the λ−bit-reversal graph Πλ

g (V , E) can be pebbled with λ+ 1 pebbles in time

T = O
(

Gλ+1
)

.

Note that we also consider the case λ = 0, since it eases the understanding of the proof, even
if λ ∈ N excludes this case.

Proof.

Induction Hypothesis (n = λ):
For any fixed λ ∈ N, a λ−BRG can be pebbled with λ+1 pebbles in time T = O

(
Gλ+1

)
.

Basis (n ∈ {0, 1}):
n = 0:

In this case λ = 0 and thus, we consider a 0−BRG, i.e., a graph which consists of G
vertices v0, . . . , vG−1, which are all connected in a sequential way. Let p0 denote the
one pebble we are allowed to use (remind that we are allowed to use λ+1 pebbles and
λ = 0 in this case). Since each vertex vi has only one predecessor vi−1 for 1 ≤ i ≤ G−1,
a 0-BRG can be pebbled by moving p0 in a sequential way G times to pebble vG−1.
Thus, the effort for pebbling a 0−BRG is given by G pebble movements.

n = 1:
In this case we consider a 1−BRG, i.e., a graph consisting of 2G vertices v00, . . . , v

0
G−1,

v10, . . . , v
1
G−1. Let p0 and p1 denote the two pebbles we are allowed to use. Then, a

1−BRG can be pebbled as follows: We start by placing p0 on v00 and use p1 to pebble
the first row in a sequential order (this can be done in G steps). Then, we move p1

from v0G−1 to v10. Let denote x the current position of p1, i.e., x = 0 at the beginning.
Now, to move p1 from v1x to v1x+1, the pebble p0 has to be moved to v0τ(x+1). For each

move of p1, p0 has to be moved G/2 times in average to reach the certain predecessor.
Thus, the effort for pebbling a 1−BRG is given by G+G ·G/2 = O

(
G2

)
.

Induction Step (n ❀ n+ 1):
In this case we consider a (λ+1)−BRG, which consists of G(λ+2) vertices, i.e., (λ+2)
rows of G vertices each. Let p0, . . . , pλ+1 denote the λ+ 2 pebbles we are allowed to use.
Furthermore, we denote by pλ+1 the runner pebble which is placed on vertex vλ+2

0 . Based
on the inductive hypothesis, pebbling vλ+1

G−1 needs at most O
(
Gλ+1

)
pebble movements

using the pebbles p0, . . . , pλ. To pebble vλ+2
G−1, p

λ+1 has to be movedG times in a sequential

order from vλ+1
G−1 to vλ+2

G−1. Since for each movement of pλ+1 at most the whole λ−BRG
has to be pebbled, it holds that the maximum number of movements for pebbling a
(λ+ 1)−BRG is given by

G · O
(

Gλ+1
)

= O
(

Gλ+2
)

.

⊓⊔

Next, we analyze the case of (λ+ 1) < S ≤ G− 1.

15



Theorem 1 (Upper Bound). Let λ ∈ N be a fixed value and let G = 2g. Then, the
λ−bit-reversal graph Πλ

g (V , E) can be pebbled with (λ+ 1) < S ≤ G− 1 pebbles in time

T = O
(

Gλ+1/Sλ
)

.

Proof. Note that any reasonable adversary A with S+1 pebbles will use at most one pebble
at the bottom row (runner pebble). Furthermore, each adversary using S+1 pebbles can be
easily replaced by an adversary A′ using S pebbles in each row r0, . . . , rλ−1 and one pebble in
Row rλ (bottom row), requiring less movements than A. It follows that Adv(A) < Adv(A′)
and thus, it is sufficient to upper bound A′. In the following we estimate the number of
pebble movements of A′.

It follows that A′ is in possession of λ · S + 1 pebbles. First, we divide the top row (r0)
into S intervals of size G/S, i.e., we place a pebble on every node v0⌊iG/S⌋ for 0 ≤ i < S − 1.

Then, we use an extra pebble to pebble v0G−1. This can be achieved in G steps. Thereafter,
we move the pebble from v0G−1 to v10 and use the next S pebbles to place a pebble on each
node v1⌊iG/S⌋ for 1 ≤ i < S − 1. This takes about (S − 1) · G/S · G/2S steps. Now, we take

again one additional pebble which is moved from v1G−G/S to v1G−1 and later to v20. The effort

for moving this additional pebble is given by G/S · G/2S = G2/2S2. Thus, assuming S
pebbles on Row r0, the effort for pebbling r1 is given by S ·G2/2S2 = G2/2S. Then, placing
S +1 pebbles (S pebbles for generating the intervals and again one additional pebble which
is later moved to v30) on Row r2 requires S ·G/S · (G/2S)2 = G3/2S2 pebble movements.

Since A′ is in possession of λ · S + 1 pebbles, we can repeat the procedure for all but the
last row. Thus, the effort for pebbling λ rows r0, . . . , rλ−1 generating S intervals in each row,
and placing one additional pebble (runner pebble) on vλ0 , is given by

G
︸︷︷︸

1st row

+
λ−2∏

i=1

(G2/2S)

︸ ︷︷ ︸

rows r1,...,rλ−1

= G+
(

Gλ/2Sλ−1
)

.

Then, moving the runner pebble from vλ0 to vλG−1 in a sequential order requires

G · (G/2S)λ =
(

Gλ+1/2Sλ
)

pebble movements. Thus, the total effort for pebbling a λ−BRG using λ · S + 1 pebble is
given by

G+
(

Gλ/2Sλ−1
)

+
(

Gλ+1/2Sλ
)

= O
(

Gλ+1/Sλ
)

.

⊓⊔

Conjecture 1 (Lower Bound) If (λ+1) ≤ S ≤ G/2λ, then, pebbling the λ−BRG Πλ
g (V , E)

consisting of G = 2g input nodes with S pebbles, takes time

T >
Gλ+1

Sλ
.
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V0 V1 V2 V3 V4 V5 V6 V7

Output

Input

W0 W1 W2 W3 W4 W5 W6 W7

top row

mid row

bottom row

Fig. 2. A λ−bit-reversal graph with λ = 2 (2−BRG) and g = 3.

The case λ = 1 was already proven by Lengauer and Tarjan in [29]. For the sake of complete-
ness, we show their proof again in Appendix B. Here, we present the proofs for λ ∈ {2, 3}
(see Lemma 2 and Lemma 3), i.e., for a 2-BRG (see Figure 2) and a 3-BRG (see Figure 3).
Nevertheless, we leave the proof for a generic lower bound as an open research problem. Note
that the cases for λ ∈ {1, 2, 3} are sufficient for the practical instantiation of Catena. Even
λ = 4 would be artificial strong for the practice.

Lemma 2 (Lower Bound for λ = 2). If 3 ≤ S ≤ G/4, then, pebbling the 2−BRG Π2
g (V , E)

consisting of G = 2g input nodes with S ≤ 2σ + 1 pebbles takes time

T ≥ G3/128S2.

Proof. Note that if an adversary is not in possession of 2σ + 1 pebbles, we give it as many
pebbles as necessary for free until it has 2σ + 1 pebbles. Let the bottom row be divided into
2g−s intervals of length 2s, where 2s ≥ 2σ+2 and where the j-th interval I2j consists of the

vertices v2j2s , . . . , v
2
(j+1)2s−1 with 0 ≤ j < 2g−s. Let zj be the first time (i.e., the number of

the first move) that a pebble is placed on the last vertex of the interval I2j , i.e., v
2
(j+1)2s−1.

Let zj−1 = 0. Then, zj > zj−1 for 0 ≤ j < 2g−s. In order to find a lower bound on zj − zj−1,
we observe that at time zj−1 the interval I2j is pebble-free and thus, all 2s vertices in I2j
have to be pebbled between zj−1 and zj . By definition of the bit-reversal permutation, the
immediate predecessors on the input path of the vertices in I2j divide the mid row naturally

into 2s intervals I1i of length 2g−s, where each vertex of I2j defines the high end of an interval

I1i with 0 ≤ i < 2s.

Since we have at most S−1 pebbles left to pebble the mid row, at least 2s− (S−1) ≥ 3S
intervals are pebble-free at zj−1. In the following we denote all vertices in a pebble free
interval as unmarked, otherwise as marked. Note that at most 1/4 of the nodes are marked,
whereas the majority (3/4) of the nodes are unmarked.

Then, we divide the mid row again in 2g−s intervals J1
j of length 2s to re-establish the

same configuration as in the bottom row. We denote the interval J1
j as bad, if more than half
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V0 V1 V2 V3 V4 V5 V6 V7

Input

W0 W1 W2 W3 W4 W5 W6 W7

r0

r1

r2

r3

Fig. 3. A λ−bit-reversal graph with λ = 3 (3−BRG) and g = 3.

of its vertices (> 2s−1) are marked (otherwise we denote it as a good interval). Since the mid
row has at at most G/4 marked vertices, at least half of the intervals J1

j can be considered as

good. Each of those mid row intervals divide the top naturally into 2s intervals I0i of length
2g−s where each vertex of J1

j defines the high end of an interval I0i .

We denote a top level interval I0i as good if the vertex of J1
j that defines its high end

is marked. Thus, we have at least 2s−1 good intervals in the top row. Therefrom, at most
2s−1 − S ≥ S intervals are pebble free. Thus, the cost for pebbling one mid row interval J1

j

is at least 2g−s · S ≥ G/4. With this knowledge we can lower bound the cost of pebbling a
bottom row interval by 2g−s−1 ·G/4 ≥ G2/32S. Thus, the total cost of pebbling a 2−BRG
is at least 2g−s ·G2/32S ≥ G3/128S2. ⊓⊔

Lemma 3 (Lower Bound for λ = 3). If 4 ≤ S ≤ G/8, then, pebbling the 3−BRG Π3
g (V , E)

consisting of G = 2g input nodes with S ≤ 2σ + 1 pebbles takes time

T ≥ G4

218S3
.

Proof. Note that if an adversary is not in possession of 2σ + 1 pebbles, we give it as many
pebbles as necessary for free until it has 2σ + 1 pebbles. Let the Row r3 be divided into
2g−s intervals of length 2s, where 2s ≥ 2σ+3 and where the j-th interval I3j consists of the

vertices v3j2s , . . . , v
3
(j+1)2s−1 with 0 ≤ j < 2g−s. Let zj be the first time (i.e., the number of

the first move) that a pebble is placed on the last vertex of the interval I3j (i.e., v3(j+1)2s−1).
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Let zj−1 = 0. Then, zj > zj−1 for 0 ≤ j < 2g−s. In order to find a lower bound on zj − zj−1,
we observe that at time zj−1 the interval I3j is pebble-free and thus, all 2s vertices in I3j
have to be pebbled between zj−1 and zj . By definition of the bit-reversal permutation, the
immediate predecessors on the input path of the vertices in I3j divide the Row r2 naturally

into 2s intervals I2i of length 2g−s, where each vertex of I3j defines the high end of an interval

I2i with 0 ≤ i < 2s.

Since we have at most S−1 pebbles left to pebble r2, at least 2s− (S−1) > 7S intervals
are pebble-free at zj−1. In the following we denote a vertex as marked if it is part of an
interval which already contains a pebble, and unmarked otherwise. Thus, at most 1/8 of the
nodes in r2 are marked, whereas 7/8 of the nodes are unmarked.

Then we divide r2 again in 2g−s intervals J2
j of length 2s to re-establish the same configu-

ration as in Row r3. We denote an interval J2
j as bad if more than half of its vertices (> 2s−1)

are marked. Since r2 has at most G/8 marked vertices, at most 1/4 of the intervals in r2 are
bad, i.e., at least 3/4 of the intervals are good. Now, each good interval in r2 divides the Row
r1 naturally into 2s intervals I1i of length 2g−s where each vertex of J2

j defines the high end

of an interval I1i . We denote an interval I1i in r1 as bad, if the vertex of J2
j that defines its

high end is marked. Thus, we have at least 2s−2S good intervals in r1. Furthermore, at most
S − 1 pebbles can be placed within these intervals and thus, we have at least 2s − 3S ≥ 5S
good intervals. It follows that at most 3/8 of the nodes of r1 are marked.

Then again, we divide r1 in 2g−s intervals J1
j of length 2s to re-establish the same con-

figuration as in Row r2. We denote an interval J1
j as bad if more than 3/4 of its nodes are

marked. Since r1 has at most 3G/8 marked vertices, at most 5G/8 of the intervals in r1 are
bad. It follows, that at least 1/6 of the intervals in r1 can be considered as good. For each of
those intervals, r0 is divided into 2s intervals J0

j of length 2g−s. Since at most 3/4 of these

intervals are generated by a marked vertex in an interval J1
j , we have 2s − 6S ≥ 2S good

intervals in the top row. Furthermore, since at most S − 1 of these intervals can contain a
pebble, there remain S good intervals in the Row r0. Thus, the cost for pebbling a good
interval of r1 is given by S · 2g−s ≥ G/8. Further, the effort for pebbling one interval of r2 is
given by 1/6 · 2g−s ·G/8 ≥ G2/384S. Next, the effort for pebbling on interval of r3 is given
by 1/8 · 2g−s ·G2/768S ≥ G3/24576S2. Since this has to be done for each interval of r3, the
total costs for pebbling a 3−BRG are at least

2g−s ·G3/24576S2 ≥ G4

218S3
.

⊓⊔

Corollary 1. For pebbling a λ−bit-reversal graph Πλ
g (V , E) with G = 2g input nodes and S

pebbles with (λ+ 1) ≤ S ≤ G/2λ, it holds that

T = Θ

(
Gλ+1

Sλ

)

.

6.3 Additional Security Features

Preimage Security. In this section we discuss the success probability of an adversary
for guessing a valid password, given a salt value s, a hash value h, and an algorithm PS

19



(password scrambler). Then, the password-recovery advantage (see Definition 4, Section 3)
for Catena-λ is given by

AdvREC
Catena-λ(q) ≤

q

2e
+AdvPRE

H (q), (1)

where AdvPRE
H (q) denotes the preimage security of H.

Proof (Sketch). We measure the quality of a password population by the min-entropy,
− log2(max{Pr[pwd ]}), the negative base-2 logarithm of the largest probability of any pass-
word from that population. Let e denote the min-entropy of passwords generated by Catena-λ.
Then, an adversary can guess a password by trying out 2e password candidates. For a max-
imum of q queries, it holds that the success probability is given by q/2e. Instead of guessing
2e password candidates, an adversary can also try to find a preimage for a given hash value
h. It is easy to see from Algorithm 1 that an adversary thus has to find a preimage for H
in Line 4. More detailed, for a given value h with h ← H(c || (λ + 1) · 2c || x), A has to
find a valid value for x. We denote by AdvPRE

H (q) the advantage of an adversary A to find
a preimage for H using at most q queries. Equation 1 is then given by summing up the
individual terms. ⊓⊔

Pseudorandomness. For proving the pseudorandomness of Catena-λ, we refer to the defi-
nition Random-Oracle Security, which was introduced in Section 3 (see Definition 5). There-
fore, we model the internally used hash function H : {0, 1}∗ → {0, 1}n as a random oracle.

Theorem 2. Let q denote the number of queries made by an adversary and s a randomly
chosen salt value. Furthermore, let H be modelled as a random oracle. Then, we have

Adv$
CatenaH

(q) =
∣
∣
∣Pr[ACatenaH ⇒ 1]− Pr[A$ ⇒ 1]

∣
∣
∣ ≤ q2(λ+ 1)

2n−g
.

Proof. Suppose that ai = (pi||si||ti||gi) represents the i-th query, where pi denotes the pass-
word, si denotes the salt, ti the tweak, and gi the garlic. For this proof, we impose the
reasonable condition that all queries of an adversary are distinct, i.e., ai 6= aj for i 6= j.

Suppose that yj denotes the output of λ−BRH(g, x, λ) of the j-th query (Line 3 of
Algorithm 1, where F λ

H is replaced by the bit-reversal hash operation shown in Algorithm 2).
Then, H(g || (λ+ 1) · 2g || yj) is the output of Catena-λ(aj). In the case that y1, . . . , yq are
pairwise distinct, A can not distinguish H(g || (λ+1) ·2g || ·) from $(·), since both functions
are modeled as random oracles, returning a value chosen uniformly at random from the set
{0, 1}n.

Therefore, we have to upper bound the probability of the event yi = yj with i 6= j. Due
to the assumption that A′s queries are pairwise distinct, there must be at least one collision
for H, i.e., z 6= z′ with H(z) = H(z′). More precisely, we need a collision inside a specific
domain represented by the counter-index tuple (c, b), i.e., H(c || b || x) = H(c || b || x′) for
x 6= x′ (Line 4 of Algorithm 1 and lines 1, 3, 6, and 8 of Algorithm 2) with c ∈ {1, . . . , g}
and b ∈ {0, . . . , (λ+ 1) · 2g}. We call such a collision a bad event.

We can exploit our observations to define a new game Catena′-λ which works as follows.
Firstly, it calls Catena-λ and stores all inputs and outputs of H in a query list Q. Secondly,
returns a random value R and finally, let an adversary win iffQ contains bad event. Remark,
the advantage of winning the game Catena′-λ is higher than the advantage for distinguishing
Catena-λ(·) from $(·), since there are bad events that most likely lead to a list of unique
values y1, . . . , yq.
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Algorithm 4 Catena-KG
Input: pwd {Password}, t′ {Tweak}, s {Salt}, g {Garlic}, ℓ {Key Size}, I {Key Identifier}
Output: k {ℓ-bit key derived from the password}
1: x← Catena(pwd, t′, s, g)
2: k ← ∅
3: for i = 1, . . . , ⌈ℓ/|n|⌉ do
4: k ← k || H(0 || i || I || ℓ || x)
5: end for
6: return Truncate(k, ℓ) {truncate k to the first ℓ bits}

Now, we upper bound the probability that Q contains bad event. Note that the proba-
bility that Q contains a collision at some position (c, b) is at most q2/2n+1. The probability
that Q contains a bad event at any position (c, b), for the c-th iteration of the for loop

(lines 2–5 of Algorithm 1) is at most q2 (λ+1)·2c

2n+1 . Thus, we can upper bound the probability
that Q contains a bad event by

q2

2n+1
+

g
∑

c=1

q2 · 2
c(λ+ 1)

2n+1
<

q2(λ+ 1)

2n−g
.

Our claim follows from the union bound. ⊓⊔

7 Further Application of the Catena Framework

7.1 The Key-Derivation Function Catena-KG

In this section we introduce Catena-KG – a mode of operation based on Catena, which can
be used to generate different keys of different sizes (even larger than the natural output size
of Catena, see Algorithm 4). To provide uniqueness of the inputs, the domain value d of the
tweak is set to 1, i.e., the tweak t′ is given by

t′ ← 0x01 || λ || n || |s| || H(AD).

Then, the call of Catena is followed by an output transform that takes the output x of
Catena, a one-byte key identifier I, and a parameter ℓ for the key length as the input,
and generates key material of the desired output size. Catena-KG is even able to handle the
generation of extra-long keys (longer than the output size of H), by applying H in Counter
Mode [15]. Note that longer keys do not imply improved security, in that context.

The key identifier I is supposed to be used when different keys are generated from the
same password. E.g., when Alice and Bob set up a secure connection, they may need four
keys: an encryption and a message authentication key for messages from Alice to Bob, and
another two keys for the opposite direction. One could argue that I should also become a
part of the associated data. But actually, this would be a bad move, since setting up the
connection would require legitimate users to run Catena several times. But, the adversary
can search for the password for one key, and just derive the other keys, once that password
has been found. For a given budget for key derivation, one should rather employ one single
call to Catena with larger security parameters and then run the output transform for each
key.

In contrast to the password hashing scenario, where a user want to log-in without no-
ticeable delay, users may tolerate a delay of several seconds to derive an encryption key
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from a password process [57], e.g., when setting up a secure connection, or when mounting a
cryptographic file system. Thus, we recommend to use g = 20 when Catena is used for key
derivation.

Security Analysis. It is easy to see that Catena-KG inherits its λ−memory hardness from
Catena (see Section 6, Corollary 1), since it invokes Catena (Line 1 of Algorithm 4). Next,
we show that Catena-KG a good pseudorandom function (PRF) in the random oracle model.

Theorem 3. In the random oracle model we have

Adv$
Catena-KGH

=
∣
∣
∣Pr[ACatena-KGH ⇒ 1]− Pr[A$ ⇒ 1]

∣
∣
∣ ≤ q2

2n−g−1
.

Proof. Suppose that H is modeled as random oracle. For the sake of simplification, we omit
the truncation step and let the adversary always get access to the untruncated key k.

Note that all inputs to H from Algorithm 4 (cf. Line 4) contain zero as their first byte.
Hence, they never occur as inputs in any invocations in CatenaH(pwd, t′, s, g), because the
first byte of the input therein is always a value in the interval [1, g]. Suppose xi denotes the
output of Catena of the i-th query. In the case xi 6= xj for all values with 1 ≤ i < j ≤ q, the
output k is always a random value, since H is always invoked with a fresh input (see Line
4, Algorithm 4). The only chance for an adversary to distinguish Catena-KGH(·) from the
random function $(·) is a collision in CatenaH . The probability for this event can be upper
bounded by similar arguments as in the proof of Theorem 2. ⊓⊔

7.2 Catena for Proofs of Work

The concept of proofs of work was introduced by Dwork and Naor [12] in 1992. The principle
design goal was to combat junk mail under the usage of CPU-bounded functions, i.e., the
goal was to gain control over the access to shared resources. The main idea is “to require a
user to compute a moderately hard, but not intractable, function in order to gain access to the
resource ” [12]. Therefore, they introduced so called CPU-bound pricing functions based on
certain mathematical problems which may be hard to solve (depending on the parameters),
e.g., extracting square roots modulo a prime. As an advancement to CPU-bound function,
Abadi et al. [1], and Dwork et al. [11] considered moderately hard, memory-bound functions,
since memory access speeds do not vary so much on different machines like CPU accesses.
Therefore, they may behave more equitably than CPU-bound functions. These memory-
bound function base on a large table which is randomly accesses during the execution, causing
a lot of cache misses. Dwork et al. presented in [13] a compact representation for this table
by using a time-memory trade-off for its generation.

For Catena, there exist at least two possible attempts to be used for proofs of work. We
denote by C the client which has to fulfill the challenge to gain access to a server S.

Guessing Secret Bits (Pepper). Let pwd denote a fixed password chosen by S. Further-
more, we denote by s a maybe randomly chosen k-bit salt value, where p bits of s are secret,
i.e., p-bit pepper with p ≤ k. Then, S computes h = Catena(s, pwd) and sends the tuple
(pwd, h, s[0,k−p−1], k) to C, where s[0,k−p−1] denote the k−p least significant bits of s (the pub-
lic part). Now, C has to guess the secret bits of the salt by computing h′ = Catena(s′, pwd)
about 2k times and comparing if h = h′. If so, C gains access to S. The effort of C is given
by about 2k computations of Catena (and about 2k comparisons for h = h′). Hence, the
effort of C is scalable by adapting k.
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Guessing the Correct Password. In this scenario S chooses an m-bit password pwd and
a salt s. Then, S computes h = Catena(s, pwd) and sends h and s to C. The client C then
has to guess the password by computing about 2m times h′ = Catena(s, pwd′) for different
values of pwd′, and comparing if h′ = h. If so, C gains access to S. The effort of C is given
by about 2m computations of Catena (and about 2m comparisons for h = h′). Hence, in this
case the effort of C is scalable by adapting the length m of the password.

8 Conclusion and Outlook

In this paper we have presented Catena, a novel password-scrambling framework which is
based on a λ−memory-hard function. Further, it is the first scheme which naturally supports
client-independent updates and server relief. It consists of two security parameters λ (depth)
and g (garlic), where λ reflects the memory hardness and g the memory consumption. Fur-
ther, we introduced a provably-secure instantiation of Catena using a λ−bit-reversal graph
(λ−BRG) – called Catena-λ. The motivation for the overall design is to thwart GPU-based
attacks and to provide cache-time resistance. Thereby, we were inspired by the discovery of
cache-timing attacks on scrypt. Nevertheless, the application of the Catena framework is
not restricted to the generation of password hashes. It also fits very well for the usage as a
key derivation, since we have shown that it behaves like a pseudorandom permutation in the
random oracle model. Additionally, Catena is well-suitable for the usage in proofs of work.

Finally, based on its high flexibility and security properties, Catena (and its instantiation
Catena-λ) seems to be the reasonable choice for current and future applications in comparison
with existing algorithms (see Section 2). Also, we expect that future password scrambler
designs will borrow the two novel features of Catena, i.e., client-independent update and
server relief.
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A The scrypt Password Scrambler

Algorithm 5 describes the scrypt password scrambler and its core operation ROMix. For pre-
and post-processing, scrypt invokes the one-way function PBKDF2 [22] to support inputs and
outputs of arbitrary length. ROMix uses a hash function H with n output bits, where n is the
size of a cache line (at current machines usually 64 bytes). To support hash functions with
smaller output sizes, [43] proposes to instantiate H by a function called BlockMix, which we
will not elaborate on. For our security analysis of ROMix, we model H as a random oracle.

ROMix takes two inputs: an initial state x, which depends on both salt and password, and
the array size G that defines the required storage. One can interpret log2(G) as the garlic
factor of scrypt. In the first phase (lines 20–23), ROMix initializes an array v. More detailed,
the array variables v0, v1 . . . , vG−1 are set to x,H(x), . . . , H(. . . (H(x))), respectively. In the
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Algorithm 5 The scrypt algorithm and its core operation ROMix [43].
scrypt

Input:
pwd {Password}
s {Salt}
G {Cost Parameter}

Output: x {Password Hash}
10: x← PBKDF2(pwd , s, 1, 1)
11: x← ROMix(x,G)
12: x← PBKDF2(pwd , x, 1, 1)
13: return x

ROMix

Input: x {Initial State} , G {Cost Parameter}
Output: x {Hash value}
20: for i = 0, . . . , G− 1 do
21: vi ← x
22: x← H(x)
23: end for
24: for i = 0, . . . , G− 1 do
25: j ← x mod G
26: x← H(x⊕ vj)
27: end for
28: return x

Algorithm 6 The algorithm ROMixMC, performing ROMix with K/G storage.
Input:

x {Initial State},
G {1st Cost Parameter},
K {2nd Cost Parameter}

Output: x {Hash Value}
1: for i = 0, . . . , G− 1 do
2: if i mod K = 0 then
3: vi ← x
4: end if
5: x← H(x)
6: end for

7: for i = 0, . . . , G− 1 do
8: j ← x mod G
9: ℓ← K(j/K) { “/” is the integer division }
10: y ← vℓ
11: for m = ℓ+ 1, . . . , j do
12: y ← H(y) { invariant: y ← vm }
13: end for
14: x← H(x⊕ y)
15: end for
16: return x

second phase (lines 24–27), ROMix updates x depending on vj . The sequential memory hard-
ness comes from the way how the index j is computed, depending on the current value of
x, i.e., j ← x mod G. After G updates, the final value of x is returned and undergoes the
post-processing.

A minor issue is that scrypt uses the password pwd as one of the inputs for post-
processing. Thus, it has to stay in storage during the entire password-scrambling process.
This is risky if there is any chance that the memory can be compromised during the time
scrypt is running. Compromising the memory should not happen, anyway, but this issue
could easily be fixed without any bad effect on the security of scrypt, e.g., one could replace
Line 12 of Algorithm 5 by x← PBKDF2(x, s, 1, 1).

A.1 Brief Analysis of ROMix

In the following we introduce a way to run ROMix with less than G units of storage. Suppose
we only have S < G units of storage for the values in v. For convenience, we assume G is
a multiple of S and set K ← G/S. As it will turn out, the memory-constrained algorithm
ROMixMC (see Algorithm 6) generates the same result as ROMix with less than G storage
places and is Θ(K) times slower than ROMix. From the array v, we will only store the values
v0, vK , v2k, . . . , v(S−1)K – using all the S memory units available.

At Line 9, the variable ℓ is assigned the biggest multiple of K less or equal j. By verifying
the invariant at Line 12, one can easily see that ROMixMC computes the same hash value as the
original ROMix, except that vj is computed on-the-fly, beginning with vℓ. These computations
call the random oracle on the average (K − 1)/2 times. Thus, the second phase of ROMixMC
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is about Θ(K) times slower than the second phase of ROMix, which dominates the workload
for ROMixMC.

Next, we briefly discuss why ROMix is sequentially memory-hard (for the full proof see
[43]). The intuition is as follows. The indices j are determined by the output of the random
oracle H and thus, essentially, uniformly distributed random values over {0, . . . , G−1}. With
no way to anticipate the next j, the best approach is to minimize the size of the “gaps”, i.e.,
the number of consecutively unknown vj . This is indeed what ROMixMC does, by storing one
vi every K-th step.

A.2 Cache-Timing Attacks

Algorithm 5 (scrypt/ROMix) revisited. What could possibly go wrong?

The Spy Process. As it turns out, the idea to compute a “random” index j and then ask
for the value vj , which is so useful for sequential memory hardness, is also an issue. Consider
a spy process, running on the same machine as scrypt. This spy process cannot read the
internal memory of scrypt, but, as it is running on the same machine, it shares its cache
memory with ROMix. The spy process interrupts the execution of ROMix twice:

1. When ROMix enters the second phase (Line 24 of Algorithm 5), the spy process reads
from a bunch of addresses, to force out all the vi that are still in the cache. Thereupon,
ROMix is allowed to run for another very short time.

2. Now, the spy process interrupts ROMix again. By measuring access times when reading
from different addresses, the spy process can figure out which of the vi has been read by
ROMix, in between.

So, the spy process can tell us the indices j for which vj has been read, and with this
information, we can mount the following cache-timing attack.

Preliminary Cache-Timing Attack. Let x be the output of PBKDF2(pwd, s, 1, 1), where
pwd denotes the current password candidate and s the salt. Then, we can apply the following
password candidate sieve.

1. Run the first phase of ROMix, without storing the vi (i.e., skip Line 21 of Algorithm 5).

2. Compute the index j ← x mod G.

3. If vj is one of the values that have been read by ROMix, then store pwd in a list.

4. Else, conclude that pwd is a wrong password.

This sieve can run in parallel on any number of cores, where each core tests another password
candidate pwd. Note that each core needs only a small and constant amount of memory – the
data structure to decide if j is one of the indices being read with vj , can be shared between
all the cores. Thus, we can use exactly the kind of hardware, that scrypt has been designed
to hinder.

Next, we discuss the gain of this attack. Let r denote the number of iterations the loop
in lines 24–27 of ROMix has performed, before the second interrupt by the spy process. So,
there are at most r indices j with vj being read. That means, we expect this approach to
sort out all but r/G candidates. If our spy process manages to interrupt very soon, after
allowing it to run again, we have r ≪ G. This may enable us to use conventional hardware
to run full ROMix to search for the correct password among the candidates on the list.
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Final Cache-Timing Attack. In this attack we allow the second interrupt to arrive very
late – maybe even as late as the termination time of ROMix. So, the loop in lines 24–27 of
ROMix has been run r = G times. As it seems, each vi has been read once. But actually,
this is only true on average; some vi have been read more then once, and we expect about
(1/e)G ≈ 0.37G array elements vi not to have been read at all. So applying the basic attack
allows us to eliminate about 37% of all password candidates – a rather small gain for such
hard work.

In the following we introduce a way to push the attack further, inspired by Algorithm 6,
the memory-constrained ROMixMC. Our final cache-timing attack on scrypt only needs the
smallest possible amount of memory: S = 1,K = G/S = G, and thus, we only have to
store the single value v0. Like the second phase of ROMixMC, we will compute the values vj
on-the-fly when needed. Unlike ROMixMC, we will stop execution whenever one of our values
j is such that vj has not been read by ROMix (according to the info from our spy process).

Thus, if the first j has not been read, we immediately stop the execution without any on-
the-fly computation; if the first j has been read, but not the second, we need one on-the-fly
computation of vj , and so forth.

Since a fraction (i.e., 1/e) of all values vi has not been read, we will need about 1/(1 −
1/e) ≈ 1.58 on-the-fly computations of some vj , each at the average price of (G− 1)/2 times
calling H. Additionally, each iteration needs one call to H for computing x ← H(x ⊕ vj).
Including the work for the first phase, with G calls to H, the expected number of calls to
reject a wrong password is about

G+ 1.58 ∗
(

1 +
G− 1

2

)

≈ 1.79G.

As it turns out, rejecting a wrong password with constant memory is faster then computing
ordinary ROMix with all the required storage, which actually makes 2G calls to H, without
computing any vi on-the-fly. We stress that the ability to abort the computation, thanks to
the information gathered by the spy process, is crucial. Meanwhile, we are working on an
implementation to verify this attack.

A.3 Discussion

At the current point of time, our cache-timing attacks are theoretical. Even if one manages
to run some spy process on a machine using scrypt, the requirement to interrupt ROMix

twice at the right points of time is demanding. Nevertheless, even the theoretical ability of
mounting such attacks should be seriously taken into account.

The idea of attacking cryptographic algorithms from hardware side (side-channel attacks)
is not new [27], neither is the usage of a spy process for theoretical cache-timing attacks
[42]. In [6], Bernstein demonstrated practically how to recover AES keys by using cache-
timing information: “The problem lies in AES itself: it is extremely difficult to write constant-
time high-speed AES software [...]. Constant time low-speed AES software is fairly easy to
write but is also unacceptable for many applications.” Meanwhile, this claim can be denoted
as obsolete, since Käsper and Schwabe have shown in [17], that it is possible to write a
fast and constant-time AES-GCM implementation, which is resistant against timing-attacks.
Moreover, the AES New Instructions (AES-NI) can be a helpful tool to write constant-time
implementations.

Nevertheless, we argue that there is a problem in scrypt itself. One can certainly im-
plement scrypt such that cache-timings leak no information about the password. But, we
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believe this would drastically reduce the performance of scrypt. As a compensation – recall
that password scramblers are intentionally slow, but must be “fast enough” for the user –
one would have to set the cost parameter G to some smallish value, but this would only
make regular attacks more efficient, since adversaries can use faster implementations. At the
end of the day, this may defeat the entire point of using scrypt at all.

The core of the problem is the fact that ROMix reads a value vj , where the index j ← x mod G
depends on x and thus, on the password. It would be very compelling to have a password
scrambler which is at least memory-hard and computes j in some password-independent
way, i.e., only depending on the loop index i. In this paper we actually presented such a
password scrambler, Catena or resp. Catena-λ, which uses a variation of the bit-reversal
hash operation to compute j from i.

B Lower Bound for Pebbling a BRG

Lemma 4 ([29]). If S ≥ 2, then, pebbling the bit-reversal graph Πg(V , E) consisting of
G = 2g input nodes with S pebbles takes time

T >
G2

16S
.

Proof. The proof is trivial for S > G/4. Thus, assume that S ≤ G/4. Choose the integer s
such that 2S ≤ 2s < 4S. Let the output path be divided into 2g−s intervals of length 2s.
The j-th interval Ij (0 ≤ j < 2g−s) consists of the vertices τj2s , . . . , τ(j+1)2s−1. Let zj be the
first time (i.e., the number of the first move) that a pebble is placed on τ(j+1)2s−1, that is,
on the highest vertex in Ij . Let zj−1 = 0. Then, zj > zj−1 for 0 ≤ j < 2g−s. In order to
find a lower bound on zj − zj−1, we observe that at time zj−1 the interval Ij is pebble-free
and thus, all 2s vertices in Ij have to be pebbled between zj−1 and zj . By definition of
the bit-reversal permutation, the immediate predecessors on the input path of the vertices
in Ij divide the input path naturally into 2s − 1 intervals of length 2g−s. (The immediate
predecessor of a vertex in Ij defines the high end of an interval. The intervals at the ends of
the input path are disregarded.) At time zj−1 at most S − 1 pebbles are on the input path.
Thus, at least 2s − 1 − (S − 1) ≥ S intervals are pebble-free at zj−1. All of them have to
be pebbles completely before zj . This takes at least S · 2g−s > G/4 placements. Therefore,
zj − zj−1 > G/4 for 0 ≤ j < 2g−s, and thus, before time z2g−1 at least 2g−sG/4 > G2/16S
placements have to occur.

⊓⊔
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