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Abstract

Exponential dispersion models, which are linear exponential families with a
dispersion parameter, are the prototype response distributions for generalized
linear models. The Tweedie families are those exponential dispersion models
with power mean-variance relationships. The normal, Poisson, gamma and in-
verse Gaussian distributions are Tweedie families. Apart from these special cases,
Tweedie distributions do not have density functions which can be written in closed
form. Instead, the densities can be represented as infinite summations derived
from series expansions. This article describes how the series expansions can be
summed in an numerically efficient fashion. The usefulness of the approach is
demonstrated, but full machine accuracy is shown not to be obtainable using
the series expansion method for all parameter values. Derivatives of the density
with respect to the dispersion parameter are also derived to facilitate maximum
likelihood estimation. The methods are demonstrated on two data examples and
compared with with Box-Cox transformations and extended quasi-likelihoood.

∗This is the final preprint version of the article published in Statistics and Computing, Volume 15
(2005), pages 267–280.
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1 Introduction

An exponential dispersion model (EDM) is a two-parameter family of distributions
consisting of a linear exponential family with an additional dispersion parameter. EDMs
are important in statistics because they are the response distributions for generalized
linear models (McCullagh and Nelder, 1989). EDMs were established as a field of study
in their own right by Jørgensen (1987, 1997), who undertook a detailed study of their
properties.

Any EDM can be characterized by its variance function V (), which describes the
mean-variance relationship of the distribution when the dispersion is held constant. If
Y follows an EDM distribution with mean µ, variance function V () and dispersion φ,
then the variance of Y can be written

var(Y ) = φV (µ).

Of special interest are the class of EDMs with power mean-variance relationships for
which V (µ) = µp for some p. Following Jørgensen (1987, 1997), we call these Tweedie
models. The class of Tweedie models includes most of the important distributions
commonly associated with generalized linear models including the normal (p = 0),
Poisson (p = 1), gamma (p = 2) and the inverse Gaussian (p = 3) distributions.
Although the other Tweedie model distributions are less well known, Tweedie models
exist for all values of p outside the interval (0, 1). Apart from the four well-known
distributions already mentioned, none of the Tweedie models have density functions
which have explicit analytic forms. The purpose of this article is to provide fast, accurate
computation of these densities.

The Tweedie models for p > 2 are generated by stable distributions and have sup-
port on the positive reals. The Tweedie model distributions for 1 < p < 2 can be
represented as Poisson mixtures of gamma distributions and are mixed distibutions
with mass at zero and with support on the non-negative reals. These distributions
have been called “compound Poisson” by Bar-Lev and Stramer (1987), Feller (1968,
Section XII.2), Jørgensen and Paes de Souza (1994) and Smyth and Jørgensen (2002)
and “compound gamma” by Johnson and Kotz (1970). In this article we call them
Poisson-gamma distributions as in Smyth (1996) in recognition of their relationship to
both distributions. All Tweedie distributions with p > 1 have strictly positive means,
µ > 0. Jørgensen (1987) showed that Tweedie model distributions with p < 0 have
µ > 0 but support for y on the whole real line. We do not give attention to these
distributions in this article as they seem to have limited potential application.

Apart from applications of the four special Tweedie distributions listed above,
Tweedie distributions have been used in such diverse fields as actuarial studies (Haber-
man and Renshaw, 1996; Renshaw, 1994); Jørgensen and Paes de Souza, 1994; Haber-
man and Renshaw (1996, 1998); Millenhall (1999); Murphy, Brockman and Lee, 2000;
Smyth and Jørgensen, 2002), assay analysis (Davidian, 1990; Davidian, Carroll and
Smith, 1988), survival analysis (Aalen, 1992; Hougaard, Harvald and Holm, 1992;
Hougaard, 1986), time spent splicing telephone cables (Nelder, 1994), money spent on
hiring outside labour (Jørgensen, 1987), and ecology (Perry, 1981). Generalized linear
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models with Tweedie model responses have also been used by Gilchrist and Drinkwater
(1999) to analysis alcohol consumption in British teenagers and by Smyth (1996) to
analyse medical and metereological data.

The densities of Tweedie distributions for p = 0, 1, 2 and 3 can be written in
closed form. For other values of p, evaluation of the density requires some numerical
process such as the inversion of the cumulant generating function, involving evaluation
of an infinite oscillating integral, or evaluating an infinite summation. Since there
are generally no closed forms for the Tweedie densities, full likelihood analysis is very
difficult. This does not prevent the use of Tweedie distributions in generalized linear
models since the fitting algorithm requires knowledge only of the first two moments
of the response distribution. The likelihood function is very useful however because it
enables efficient estimation of the parameters p and φ as well as diagnostic checking of
the response distribution using techniques such as the quantile residuals of Dunn and
Smyth (1996).

Dunn (2001) considers two broad strategies for evaluating Tweedie densities, one
based on numerical inversion of the characteristic function and the other based on
series expansions obtained from an analytic approach to the inversion integral. Both
strategies have advantages and the two strategies are to some extent complementary;
they each work best in different regions of the parameter space. The numerical inversion
approach requires lengthy technical development and will be published elsewhere. This
article focuses on the series expansion method for the case p > 1. We describe how the
series expansions can be implemented in an numerically efficient fashion. The usefulness
of the series expansions is demonstrated, but full machine accuracy is shown not to be
obtainable using the series expansion method for all parameter values. It would be
possible to take a similar approach to develop expressions for the densities for the case
p < 0, but these EDMS are likely to be of far less practical importance.

Previously, Smyth (1996) and Gilchrist and Drinkwater (1999) have examined the
series expansion of the Tweedie densities for 1 < p < 2 using a simple summation of
terms in the series. Seigel (1979, 1985) discusses series evaluation of a special case of the
Tweedie distributions with p = 1.5. Jørgensen (1997) discusses the series themselves in
detail but not the actual evaluation of the series.

In the next section, the Tweedie densities are discussed and their properties intro-
duced. Section 3 gives the infinite series expansions. Section 4 addresses the issue of
selecting which terms in the summation must be summed for a fast and accurate answer.
Section 5 examines the computation complexity and accuracy of the numerical summa-
tion. Section 6 considers some issues of maximum likelihood estimation. In Section 7,
the problem of evaluating derivatives of the density with respect to φ is considered.
Section 8 discusses a particular problem that emerges with evaluating the densities for
1 < p < 2 as φ → 0, while Section 9 considers two data examples. Brief conclusions
follow in Section 10.
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2 Tweedie densities

EDMs have density functions or probability mass functions of the form

f(y; θ, φ) = a(y, φ) exp

[
1

φ
{yθ − κ(θ)}

]
, (1)

for suitable known functions κ() and a() (Jørgensen, 1997). The domain of the canonical
parameter θ is an open interval satisfying κ(θ) <∞ and the dispersion parameter φ is
positive. The function κ() is called the cumulant function of the EDM because, if φ = 1,
the derivatives of κ give the successive cumulants of the distribution. In particular, the
mean of the distribution is µ = κ̇(θ) and the variance is φκ̈(θ).

The mapping from θ to µ is invertible, so we may write κ̈(θ) = V (µ) for a suitable
function V (µ), called the variance function of the EDM. In this article we are interested
in EDMs with variance functions of the form V (µ) = µp for some p. These families
are called Tweedie models because the underlying linear exponential families were first
studied systematically by Tweedie (1984). Jørgensen (1987) showed that Tweedie EDMs
exist for all values of p outside the interval (0, 1). The notation Y ∼ EDp(µ, φ) is used
to indicate that Y is distributed as a Tweedie EDM with mean µ, dispersion φ and
variance function V (µ) = µp. Tweedie models are the only EDMs which are closed
under re-scaling of the response variable: if Y ∼ EDp(µ, φ) then cY ∼ EDp(cµ, c

2−pφ)
(Jørgensen, 1997, Section 4.1.1). This makes Tweedie EDMs an obvious choice for
modeling data when the unit of measurement is arbitrary.

The cumulant function and mean can be be found for Tweedie EDMs by equat-
ing κ̈(θ) = dµ/dθ = µp and solving for µ and κ. Setting the arbitrary constants of
integration to zero gives

θ =


µ1−p

1− p
p 6= 1

log µ p = 1

and

κ(θ) =


µ2−p

2− p
p 6= 2

log µ p = 2

The remaining factor in the density, a(y, φ), is more difficult to derive. The numerical
evaluation of a(y, φ) is the focus of the remainder of this article.

3 Series expansions

If Y ∼ EDp(µ, φ) with 1 < p < 2, then Y can be represented as

Y = X1 +X2 + · · ·+XN

where N has a Poisson distribution and the Xi are independent gamma random vari-
ables. Let λ be the mean of N and let −α and γ be the shape and scale parameters
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of the Xi, with −αγ and −αγ2 the mean and variance of Xi respectively. Note that α
is chosen negative so that the notation agrees with that used elsewhere in this paper.
Then the parameters are related by

λ =
µ2−p

φ(2− p)
α = (2− p)/(1− p)
γ = φ(p− 1)µp−1.

From this or otherwise it can be shown that

P (Y = 0) = exp

{
− µ2−p

φ(2− p)

}

and for y > 0 that

a(y, φ) =
1

y
W (y, φ, p)

with W (y, φ, p) =
∑∞
j=1Wj and

Wj =
y−jα(p− 1)αj

φj(1−α)(2− p)jj!Γ(−jα)
. (2)

See Jørgensen (1997, p. 141) and Smyth (1996) for details. Tweedie (1984) has identified
W (y, φ, p) as an example of Wright’s (1933) generalized Bessel function. It cannot be
expressed in terms of more common Bessel functions. For p = 1.5 the distribution is the
non-central χ2 distribution of zero degrees of freedom, studied by Seigel (1979, 1985).

A similar series expansion exists for p > 2 and is given in various forms by Aalen
(1992), Bar-Lev and Enis (1986), Hougaard (1986) and Jørgensen (1997, p. 141). For
p > 2 we have

a(y;φ) =
1

πy
V (y, φ, p) (3)

with V =
∑∞
k=1 Vk and

Vk =
Γ(1 + αk)φk(α−1)(p− 1)αk

Γ(1 + k)(p− 2)kyαk
(−1)k sin(−kπα). (4)

Note that 0 < α < 1 for p > 2. Jørgensen (1997, p. 137, 141) shows that the series
expansions with terms (2) and (4) are related though a reflection formula.

Note that terms Wj are all positive while the Vk are both positive and negative.
This will limit the numerical accuracy that is obtainable in summing the second series.

4 Which terms to include?

The functions W (y, φ, p) and V (y, φ, p) are evaluated in this paper by directly summing
the infinite series. A method is needed for determining which terms need to be included
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in the summation to achieve acceptable accuracy. The näıve approach of starting at
index 1 and adding more terms can result in a very large number of unnecessary terms.
The approach of summing a fixed number of terms, even if this number is large, may
sum negligible terms and miss those terms that make important contributions. The
number of necessary terms can be arbitrarily large and these terms can occur very far
from an index of 1.

The strategy used here is to establish where the terms that contribute to the sum of
the series are located in terms of the index and sum the necessary terms of the series in
that region. Stirling’s approximation is used to approximate the gamma functions and
then the index of summation is treated as continuous. This enables the approximate
terms in the series to be differentiated and the location (in terms of the index of sum-
mation) of the maximum value of terms in the summation to be found. To then find the
lower and upper limits of the index necessary for accurate evaluation, the approximate
terms either side of the maximum are evaluated until the contributions are negligible.
The exact terms are then summed over these values of the index.

4.1 Size of summands for 1 < p < 2

To evaluate the infinite summation for W (y, φ, p), the value of j is determined for which
Wj reaches a maximum. To do this, j is treated as continuous and Wj is differentiated
with respect to j and the derivative set to zero.

Write
logWj = j log z − log Γ(1 + j)− log Γ(−αj)

where

z =
y−α(p− 1)α

φ1−α(2− p)
.

Replacing the gamma functions with Stirling’s approximation (Abramowitz and Stegun,
1965) and approximating 1− αj with −αj gives

logWj ≈ j {log z + (1− α) + α log(−α)− (1− α) log j}

− log(2π)− 1

2
log(−α)− log j. (5)

This approximate is asymptotically accurate for j large and, as it turns out, not bad
for j small either. Note that α < 0 for 1 < p < 2 so the logarithms have positive
arguments. Differentiating with respect to j gives

∂ logWj

∂j
≈ log z − 1

j
− log j + α log(−αj)

≈ log z − log j + α log(−αj), (6)

since the term 1/j can be ignored for j large. Note that this derivative is monotonically
decreasing in j for j ≥ 0, so the sequence logWj is unimodal in j. Solving ∂Wj/∂j = 0
for j gives the unique solution

jmax =
y2−p

(2− p)φ
. (7)
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This approximation is surprisingly accurate. It is easy to confirm numerically that
jmax is always within one of the exact index j of the maximum Wj, i.e., the approxima-
tion is good for small as well as large values of j. The approximate maximum value of
Wj can be found by substituting jmax from (7) into (5) giving

logWmax = jmax(α− 1)− log(2π)− log jmax −
1

2
log(−α). (8)

4.2 Size of summands for p > 2

A similar approach can be taken with the series for p > 2. It should be noted however
that the terms (4) involve factors (−1)k and sin(−kπα) which are of changing sign.
To proceed as in the previous section, we need to work with the envelope of the terms
rather than individual terms themselves. The envelope is defined as Vk without the
(−1)k and sin terms, so that,

Venv(k) =
zkΓ(1 + αk)

Γ(1 + k)
(9)

where

z =
(p− 1)αφα−1

yα(p− 2)
.

The definition ensures that |Vk| ≤ Venv(k) for all k. The procedure is then the same as
for 1 < p < 2. Stirling’s approximation is used to approximate the gamma functions
giving

log Venv(k) ≈ k [log z + (1− α)− log k + α log(αk)] +
1

2
logα. (10)

Treating k as continuous,

∂ log Venv
∂k

≈ log z + α logα + (α− 1) log k. (11)

Equating to zero and solving for k gives the unique maximum

kmax =
y2−p

φ(p− 2)
. (12)

Note that kmax > 0 since p > 2. The similarity with the solution for the case 1 < p < 2
in (12) is obvious.

An upper bound for the maximum of |Vk| over k can be found by substituting (12)
into (10) to give

log Vmax = (1− α)kmax +
1

2
logα. (13)
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4.3 Evaluating the series

Our aim is to approximate W (y, φ, p) with

W̃ (y, φ, p) =
jU∑
j=jL

Wj

and V (y, φ, p) with

Ṽ (y, φ, p) =
kU∑
k=kL

Vk

where jL, jU and kL, kU are suitably chosen limits. The fact that ∂ logWj/∂j is mono-
tonic decreasing implies that logWj is strictly convex as a function of j and hence that
the Wj decay faster than geometrically on either side of jmax. The approximation error
can therefore be bounded by geometric sums,

W (y, φ, p)− W̃ (y, φ, p) < WjL−1
1− rjL−1L

1− rL
+WjU+1

1

1− rU

where

rL = exp

(
∂ logWj

∂j

)∣∣∣∣∣
j=jL−1

and

rU = exp

(
∂ logWj

∂j

)∣∣∣∣∣
j=jU+1

The same sort of bound can be constructed for V (y, φ, p)−Ṽ (y, φ, p) in terms of Venv(k).
In practice these geometric bounds are very conservative so we simply choose jL <
jmax and jU > jmax such that WjL and WjU are less than εWmax and kL < kmax and
kU > kmax such that Venv(kL) and Venv(kU) are less than εVmax. Here ε = 10−16 would
ensure double precision accuracy in 64-bit floating point arithmetic. In practice we use
ε = exp(−37) ≈ 8 × 10−17, simply searching away from jmax for 1 < p < 2 until the
saddlepoint approximation (5) is less than logWmax − 37 or away from kmax for p > 2
until (10) is less than log Vmax − 37. If jmax < 1 or if logW1 > Wmax − 37, then we set
jL = 1. Similarly if kmax < 1 or if log V1 > Vmax − 37, then we set kL = 1.

To avoid the possibility of floating point overflow, we compute W̃ (y, φ, p) and
Ṽ (y, φ, p) on the log-scale and standardize the individual terms to have maximum value
unity. Specifically, we compute

log W̃ (y, φ, p) = logWmax + log
jU∑
j=jL

wj

where wj = exp(logWj − logWmax) and

log Ṽ (y, φ, p) = log Vmax + log
kU∑
k=kL

vj
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Table 1: The number of terms required to reach machine accuracy for a Tweedie density
for various φ and 1 < p < 2. The value of µ does not affect the required number of
terms.

y
p φ 0.001 1 5 10 100 1000

1.01 1.00 3 4 8 10 22 58
1.01 0.10 3 10 16 22 58 170
1.01 0.01 3 22 42 58 174 532

1.5 1.00 7 16 25 29 54 100
1.5 0.10 11 54 84 100 173 310
1.5 0.01 29 173 262 310 547 970

1.9 1.00 34 46 50 53 60 68
1.9 0.10 118 166 180 186 208 232
1.9 0.01 368 520 564 584 652 732

1.999 1.00 546 546 548 548 548 550
1.999 0.10 1718 1724 1726 1726 1728 1730
1.999 0.01 5422 5442 5446 5448 5454 5460

where vk = exp(log Vk − logWmax).
The simple summation strategy used in this section for computing the densities

lends itself well to vectorized arithmetic such as that found in S-Plus, R or Matlab.
When densities are computed simultaneously for a vector of response values yi, we have
found it useful for fast computation to choose a common jL for all the yi to be the
minimum of the jL for the individual yi and a common jU to be the maximum of the jU
for the individual responses. This means that unnecessary terms are summed for some
values of yi but this is more than compensated usually by the ability to undertake the
summations in parallel. Similar comments apply to kL and kU .

5 Accuracy and limitations

For the case 1 < p < 2, the terms in the summation are always positive and so a simple
summation can compute the density to machine accuracy. The interest therefore is
in the number of terms required and the potential limitation is that the number of
terms may be prohibitive for some parameter values. Table 1 shows the number of
terms necessary to reach machine precision for 1 < p < 2. It can be seen that the
number terms necessary for accurate evalution becomes large as p near 2, y large or φ
small. In fact the number of required terms increases without bound at these limits.
This qualitative behavior was expected from the form for jmax given in (7) which is
unbounded for p near 2, y large or φ small.

In the case p = 1.5, our series expansion gives identical numerical results to the
expressions published by Seigel (1979, 1985).
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Table 2: Comparing the exact and series expansion densities for the inverse Gaussian
distribution, p = 3 with µ = 1.4 and φ = 0.74. The comparison is excellent for y > 0.1
but fails for y near zero.

y Exact Series Relative No. terms
density density error in Series

0.001 1.39037× 10−289 2.149× 10284 −∞ 895
0.002 2.58550× 10−143 0 1 633
0.005 7.04450× 10−56 0 1 399
0.01 5.49261× 10−27 0 1 280
0.05 0.0001447812 0.0001446184 0.001 112
0.10 0.0432617075 0.0432617076 −5× 10−10 79
0.50 0.7504127835 0.7504127835 −3× 10−15 41
1.00 0.4388738851 0.4388738851 −4× 10−16 33
2.00 0.1540992189 0.1540992189 −5× 10−16 27
3.00 0.0665051333 0.0665051333 0 24
4.00 0.0323731652 0.0323731652 0 22
5.00 0.0169737124 0.0169737124 −2× 10−16 21
6.00 0.0093555852 0.0093555852 −4× 10−16 20
7.00 0.0053446845 0.0053446845 −3× 10−16 20
8.00 0.0031365974 0.0031365974 0 19
9.00 0.0018797070 0.0018797070 −6× 10−16 19
10.00 0.0011455103 0.0011455103 −2× 10−16 18
15.00 0.0001137801 0.0001137801 −5× 10−16 17
20.00 1.3334× 10−5 1.3334× 10−5 −2× 10−15 16

For p > 2 there are positive and negative terms in the series expression. Machine
accuracy is not generally achievable because subtractive cancellation in floating point
arithmetic will overcome precision if the summation converges sufficiently slowly. To
evaluate the accuracy of the numerical summation in the one case where an exact
analytic expression is available, we compare the series summation for p = 3 with the
density of the inverse Gaussian distribution (Table 2). Arbitrary but typical values
µ = 1.4 and φ = 0.74 were used for the comparison. The inverse Gaussian case presents
special problems for the algorithm for small y. For p = 3 we have α = 1/2 so the
terms Vk involve the factor (−1)k sin(−kπ/2) which is zero for k even and alternate in
sign for k odd. For very small y, the Vk terms for k odd are large and of alternating
sign. The numerical difficulties experienced by the algorithm as evidenced in Table 2
are the result of subtractive cancellation of very large but almost equal quantities of
opposite sign. On the other hand, the series expansion performs well for y > 0.1 where
the absolute relative error is less than 10−14.

The number of terms in the series approximation is shown in Table 3 for various
p > 2. For most parameter values the summation is easily manageable. However for p
close to 2 or y or φ small, the number of terms required becomes large and the series
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Table 3: The number of terms required to reach nominal machine accuracy for a Tweedie
density for various φ and p > 2.

y
p φ 0.01 1 5 10 100 1000

2.01 0.01 1774 1732 1718 1714 1694 1674
2.01 0.10 562 550 546 544 538 532
2.01 1.00 180 176 174 172 172 168

2.5 0.01 945 299 200 166 84 49
2.5 0.10 299 84 57 49 32 23
2.5 1.00 84 32 25 23 17 13

3.0 0.01 2435 241 96 70 31 19
3.0 0.10 771 70 38 31 19 13
3.0 1.00 241 31 21 19 13 11

4.0 0.01 21075 190 50 35 17 11
4.0 0.10 6667 67 29 23 13 9
4.0 1.00 2107 35 19 17 11 9

evaluation becomes slow and inaccurate.
The results of this section and the previous are invariant under scale transformation

of the distribution. The terms jmax and kmax and other results on accuracy and com-
putational complexity depend on y, µ and p only through p, µ2−p/φ and y2−p/φ, all of
which are invariant under re-scaling of the distribution.

6 Maximum likelihood estimation

This section considers maximum likelihood estimation of the parameters of a Tweedie
model, especially φ and p. The estimation of φ and p has been considered previously
by Smyth (1996) and Gilchrist and Drinkwater (1999) for the case 1 < p < 2.

Our interest is EDMs is motivated by their applications to generalized linear models.
A generalized linear model can be defined as follows. Independent responses Y1, . . . , Yn
are observed such that

Yi ∼ ED(µi, φi/wi)

where the wi are known prior weights. The means µi are related to linear predictors
through a known monotonic link function g,

g(µi) = xTi β

where xi is a vector of covariates and β is a vector of unknown regression parameters.
Let q be the dimension of β. To avoid unnecessary complications, we assume here that
the design matrix X with rows xT has full column rank.
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For p fixed, the maximum likelihood estimator β̂ of β can be computed using the
well known iteratively reweighted least squares algorithm proposed by Nelder and Wed-
derburn (1972). This iteration uses working weights given by

wi
V (µi)ġ(µi)2

where in our case V (µi) = µpi . Knowledge of φ is not required to compute β̂.
In the normal and inverse Gaussian cases, the maximum likelihood estimate of φ is

the mean-deviance estimator

φ̂ =
1

n

n∑
i=1

wid(yi, µ̂i)

where d(·, ·) is the unit deviance. In the gamma case, φ̂ can be found using the results
given by Smyth (1989). In other cases, the unit deviances are not sufficient for φ and
the maximum likelihood estimator of φ must be computed iteratively from the full data.
In the next section of this paper we discuss computation of the derivatives ∂ log f/∂φ
and ∂2 log f/∂φ2 in order to facilitate estimation of φ̂ using Newton-type methods. In
our implementation of maximum likelihood estimation for φ we actually use a BFGS-
type quasi-Newton optimizer which uses first but not second derivatives of the densities
with respect to φ (Byrd et al, 1995). Higher order derivatives for φ are slightly more
difficult to compute accurately than the likelihood function itself and we have not found
the second derivatives to result in a worthwhile speeding of the convergence of the
algorithm. Nevertheless we give them here for completeness. Gilchrist and Drinkwater
(1999) have developed an alternative iterative scheme in which derivatives are evaluated
with respect to 1/φ rather than φ. Smyth (1996) used the derivative-free Nelder-Mead
algorithm to estimate φ and p.

Estimation of p is a more difficult problem than estimating β or φ. Most authors
using Tweedie densities have taken p to be specified apriori. Jørgensen (1987), in
analysing the amount of money spent by Amazonian peasants hiring outside labour,
chooses p = 1.75 and explicitly states the choice is somewhat arbitrary. Likewise,
Nelder (1994) arbitrarily sets p = 1.5 when analysing the time spent splicing cables.
Given the ability to compute the maximum likelihood estimator φ̂ conditional on p, the
maximum likelihood estimate of p and an approximate confidence interval can obtained
by evaluating the profile likelihood for p on a grid of values followed by a univariate
optimization. A similar approach was used by Gilchrist and Drinkwater (1999) and
Smyth (1996) to estimate p. A special problem that arises in the estimation of p is the
possibility that recording of the responses yi to a limited number of decimal places can
cause the profile likelihood for p to be bimodal with a spurious maximum at p = 1.
This potential problem is discussed further in Section 8.

It is well known that maximum likelihood estimators of variances tend to be biased
down if the number of parameters in the mean model is large. This affects the estimation
of φ and p if q is not very small compared to n. The maximum likelihood estimator of
φ tends to underestimate φ while the maximum likelihood estimator of p may be biased
up or down depending on whether the fitted values µ̂i are greater or less than one. For
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this reason it is of interest to consider also modified profile estimators of φ and p. Since
the coefficients β are orthogonal to the variance parameters φ and p, approximately
unbiased estimators of φ and p can be obtained by maximizing with respect to φ and p
the adjusted profile likelihood (Cox and Reid, 1987), which in this case is

`(y; β̂, φ, p) +
q

2
log φ− 1

2
| logXTDX|.

Here ` is the log-likelihood function, β̂ is the maximum likelihood estimator for β
conditional on φ and p, and D is the diagonal matrix of working weights from the
generalized linear model evaluated at β = β̂. Computing modified profile estimators is
a straightforward extension of the methods that we develop in this paper.

The most commonly used estimators for φ in generalized linear models are the mean
deviance estimator

φ̃ =
1

n− q

n∑
i=1

wid(yi, µ̂i)

and the Pearson estimator

φ̄ =
1

n− q

n∑
i=1

wi(yi − µ̂i)2

V (µ̂i)
.

The Pearson estimator is approximately unbiased but is more variable than estimators
based on the deviances or the likelihood. The mean deviance estimator coincides with
the modified profile estimator of φ in the normal and inverse-Gaussian cases. For other
values of p, φ̃ is an biased estimator of φ. The size of this bias has been investigated by
Dunn (2001).

7 Derivatives with respect to φ

Series expansions were given for evaluating the Tweedie density functions in Section 4.
Similar series expressions are now used to evaluate derivatives of the density with respect
to φ.

7.1 The case 1 < p < 2

Differentiating the log-density with respect to φ gives

∂ log f

∂φ
=


µ2−p

φ2(2− p)
for Y = 0

yµ1−p

φ2(p− 1)
+

µ2−p

φ2(2− p)
+
∂W/∂φ

W
for Y > 0

(14)

where W =
∑∞
j=1Wj for Wj given in (2).

The evaluation of the derivative ∂W/∂φ. is similar to the evaluation of the actual
series W =

∑∞
j=1Wj itself. Differentiating the Wj terms shows

∂W

∂φ
=

(
α− 1

φ

) ∞∑
j=1

jWj. (15)
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It can be deduced from (6) that

∂ log(jWj)

∂j
≈ log z − log j + α log(−αj).

This is exactly the expression used to solve for jmax for the series
∑
jWj, since in (6)

the 1/j term was ignored for large j. Thus, the value of j at which the series terms in
(15) reach a maximum occurs is approximated by

jmax =
y2−p

φ(2− p)

as in the series W =
∑
jWj itself. The actual implementation is very similar to that of

the density. Simply, search either side of the value of jmax to find the values of j over
which to sum, and then perform the summation on the exact terms.

The maximum value of the terms jWj can also be deduced from (8) to be

log(jW )max ≈ jmax(1− α)− log(2π)− 1

2
log(−α). (16)

In general, mth order derivatives with respect to φ require computation of
∑∞
j=1 j

νWj

for ν = 1, . . . ,m. These can all be computed using the ideas presented above. The
number of terms required generally increases slightly with increasing m.

7.2 The case p > 2

The details for this case are very similar to the case 1 < p < 2. It becomes necessary to
evaluate ∂V/∂φ =

∑∞
k=1 ∂Vk/∂φ. Differentiating the terms Vk with respect to φ gives

∂V

∂φ
=

(
α− 1

φ

) ∞∑
k=1

kVk.

Proceeding as before, the maximum occurs at

kmax ≈
µ2−p

φ(p− 2)
,

as with the series
∑
k Vk itself.

The procedure is then the same: search on either side of this maximum to find where
the series terms are negligible relative to the maximum value of the kVk terms. Then
the series can be summed over these values of k that contribute to the sum.

The maximum value of kVenv(k) can be deduced from (13) to be

log(kVmax) ≈ (1− α)kmax +
1

2
logα + log kmax. (17)

In general, nth order derivatives require computing
∑∞
k=1 k

νVk for ν = 1, . . . ,m.
These can all be computed using the ideas presented above. The number of terms
required generally increases slightly with increasing m.
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7.3 Selection of terms

In implementing the series expansions of
∑
j jWj and

∑
k kVk, the numerical aspects

of the implementation are similar to that of the density. The upper and lower limits
of the index of summation are found by determining when the individual summation
terms, jWj or kVk, are such that log jWj < ε log jWmax (or log kVk < εk log Vmax) where
ε = exp(−37) ≈ 8× 10−17.

To reduce the number of situations where overflow may occur, the log-scale is used
in calculations. In practice (where the case 1 < p < 2 is used as an example, but the
same procedures follow for the case p > 2), the logarithm of the terms to be summed is
determined, log jWj = jz + log j − log Γ(1 + j)− log Γ(αj), and then the largest value
of this quantity, say log(jW )max, is found. Then the jWj terms less this maximum
value are used to avoid overflow, defining log jW ′

j = log jWj − log(jWmax). Then, the
summation itself is reconstructed using

∑
jW =

∑
jW ′

j exp{log(jWmax)}.

7.4 Accuracy and limitations

As with the density itself, it is difficult to make definitive statements about the accuracy
of the algorithms since exact values are not generally available. However comparisons
can be made with the case p = 3, the inverse Gaussian distribution, for which

∂ log f

∂φ
= − 1

2φ
+

(y − µ)2

2φ2µ2y
. (18)

The comparison is made in Table 4. The relative accuracy of the series expansion is
excellent again for y > 0.1 while the effects of subtractive cancellation become apparent
for small y. The number of terms necessary for evaluating

∑∞
j=1Wj and

∑∞
j=1 jWj in

this example are almost always the same. As with the density evaluation, the accuracy
is poor and the number of terms needed increases without bound for y near 0. The
accuracy is excellent for y ≥ 0.50.

8 Multimodal densities

In this section we derive a condition for the Tweedie density function to be unimodal.
We also address a technical complication which arises from the fact that responses yi
are generally recorded to only a limited precision, for example to a limited number of
decimal places.

When p is close to one, the density fp(y;µ, φ) is multimodal, reflecting the fact that
the Poisson limit at p = 1 is a discrete distribution. For p very near one, the random
variables Xi defined in Section 3 have very small standard deviations and the density
of Y has multiple modes corresponding to distinct values of the Poisson count N . The
modes occur at the values E(

∑n
i=1Xi) = −nαγ = n(2− p)φµp−1 for n = 1, 2, . . . . The

density will have multiple modes near y = −nαγ if the standard deviation of
∑n
i=1Xi

is much smaller than the spacing −αγ between the successive modes. The ratio of the
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Table 4: Comparing the exact and series first derivatives for the inverse Gaussian
distribution, with p = 3, µ = 1.4 and φ = 0.74. The comparison is excellent for y > 0.1
but fails for small y.

No. Terms:
y Exact first Series first Relative for for

derivative derivative error
∑
Vk

∑
kVk

0.001 911.095634 −927.644712 2 895 895
0.002 454.558482 −509.162138 2 633 633
0.005 180.637308 156.319402 0.1 399 399
0.01 89.332113 85.265128 0.05 280 280
0.05 16.304729 16.356116 −0.003 112 112
0.10 7.197269 7.197269 1× 10−9 79 79
0.50 0.079009 0.079009 3× 10−14 41 41
1.00 −0.601139 −0.601139 −1× 10−15 33 33
2.00 −0.591822 −0.591822 −6× 10−16 27 27
3.00 −0.278146 −0.278146 −1× 10−15 24 24
4.00 0.111619 0.111619 3× 10−15 22 22
5.00 0.531820 0.531820 4× 10−16 21 21
6.00 0.967239 0.967239 −3× 10−16 20 20
7.00 1.41153 1.411353 2× 10−16 20 20
8.00 1.860903 1.860903 1× 10−16 19 19
9.00 2.314076 2.314076 2× 10−16 19 19
10.00 2.769786 2.769786 0 18 18
15.00 5.068624 5.068624 0 17 17
20.00 7.382679 7.382679 4× 10−16 16 16

Figure 1: Densities of Tweedie distributions with µ = 1 and φ = 0.1. The density is
multimodal with p = 1.02 but unimodal with p = 1.05.
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standard deviation to the spacing is (−nαγ2)1/2/(−αγ) = (−nα)1/2. Inserting for n the
maximum of E(N) = λ and one, a condition for the density to be multimodal is that

(
−λ ∨ 1

α

)1/2

=

[{
µ2−p

φ(2− p)
∨ 1

}
p− 1

2− p

]1/2

be less than about 0.5. Figure 1 shows then Tweedie density for µ = 1 and φ = 0.1.
For p small the density will have modes at multiples of 0.1. For p = 1.02 we have
(−λ/α)1/2 = 0.46 and the density is is multimodal. For p = 1.05 we have (−λ/α)1/2 =
0.74 and the multiple modes are gone. A conservative condition to ensure that the
density be unimodal for most values of µ and φ is (−1/α)1/2 > 0.5, i.e., p > 1.2.

The multimodality of the density for small p causes a technical problem for maximum
likelihood estimation with rounded data. If the observations yi are rounded to d decimal
places say, then the likelihood is unbounded as p ↓ 1 and φ ↓ 10−d. This limit models the
data as discrete on the lattice n10−d for n = 0, 1, . . . . If the yi are rounded observations
sampled from EDp(µ, φ) with p > 1, then the likelihood will usually have two local
maxima, one infinite at p = 1 and one finite for p > 1, and it is usually the latter
which is required. This phenomenon has been noted by Jørgensen and Paes de Souza
(1994), Gilchrist and Drinkwater (1999) and by Burridge in the discussion of Jørgensen
(1987). Gilchrist and Drinkwater (1999) constrain p > 1.1 while Jørgensen and Paes de
Souza (1994) similarly try to avoid small values of p. We prefer to avoid the spurious
singularity in the likelihood by requiring that the density not have multiple modes
corresponding to the rounding accuracy. This can be achieved by constraining

−(λ ∨ 1)αγ2 =

{
µ(2−p)

φ(2− p)
∨ 1

}
(2− p)(p− 1)φ2

µ2−2p > 10−2d.

In most relevant cases we will have λ > 1 so the above condition is

−λαγ2 = (p− 1)φµp = (p− 1)var(Y ) > 10−2d,

i.e.,

p > 1 +
10−2d

var(Y )
.

In this paper we do not apply such a constraint explicitly, but simply inspect the profile
likelihood as a function of p.

As an example, 100 random deviates were generated from the Tweedie distribution
with µ = 2, φ = 1 and p = 1.5. The maximum likelihood estimate of p is 1.41.
Rounding the data to two decimal places introduces an infinite peak in the likelihood
at p = 1, although the likelihood is effectively unchanged for larger values of p; see
Figure 2. Rounding the data to one decimal place decreases the location of local peak
to 1.3. Rounding the data to the nearest integer loses the peak of interest altogether
— the likelihood is now monotonically decreasing for p > 1.
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Figure 2: Profile likelihood for 100 random deviates from the Tweedie distribution with
µ = 2, φ = 1 and p = 1.5. The maximum likelihood estimate is p̂ = 1.41. Rounding
the data decreases the estimate value of p and introduces a spurious likelihood peak at
p = 1.
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9 Examples

Enabling likelihood calculations for Tweedie models with arbitary p opens up many
potential applications. Two small data examples are given here to hint at possibilities,
the first featuring data with positive support where we expect p > 2 and the second
featuring mixed data with mass at zero where we expect 1 < p < 2.

9.1 Sensitivity to poison

Box and Cox (1964) give the results of a 3×4 factorial experiment in which the survival
times of animals were recorded after exposure to poisons. There are two factors: the
type of poison with three levels and the type of treatment with four levels. Each of the
twelve factor combinations was applied to four randomly allocated animals for a total of
48 observations. The data are available from http://www.statsci.org/data/general/-

poison.html. Box and Cox defined what is now known as the Box-Cox transformation,

yω =
{

(yω − 1)/ω ω 6= 0
log y ω = 0.

They analysed the data assuming the reponses to be normal after a reciprocal transfor-
mation, i.e., assuming the yω to be normal with ω = −1.

A plot of the log of sample variances against the log of the sample means for each
poison–treatment combination is shown in Figure 3. The plot is almost linear with
slope 3.95 showing that a power mean-variance relationship V (µ) = µp with p close
to 4 is appropriate for this data. There is a rough correspondence between Box-Cox
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Figure 3: Log-sample variances versus log-sample means for the poison data. The plot
is almost linear with slope close to 4.
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transformations and power variance functions in that the Box-Cox transformation with
ω = 1− p/2 is to first order the variance stabilizing transformation for V (µ) = µp. The
reciprocal transformation is the variance-stabilizing transformation for V (µ) = µ4, so
our observation that p ≈ 4 for this data matches the transformation chosen by Box and
Cox (1964).

Rather than having to transform the response variable, we entertain the possibility of
modeling the survival times directly on their original scale using a Tweedie generalized
linear model. Comparison of likelihoods gives a means to compare the fit of the Tweedie
and Box-Cox models for this data. For each value of p we fit a generalized linear
model with variance function V (µ) = µp allowing for interactions between the poison
and treatment explanatory factors. Similarly for each p we consider a normal linear
interaction model for the transformed responses yω with ω = 1 − p/2. Figure 4 plots
Tweedie and Box-Cox profile likelihoods on the same scale and shows that the Tweedie
likelihood is somewhat higher for any given value of p. The Tweedie log-likelihood
peaks at 56.8 while the maximum Box-Cox log-likelihood is 55.5. The Tweedie and
Box-Cox models are not nested hypotheses so comparing the log-likelihoods in this way
does not constitute a formal hypothesis test comparing the two models without further
work (Cox 1961, 1962; Pereira, 1977), Nevertheless, this does show that the Tweedie
model is at least as acceptable as the transformation model. The Tweedie log-likelihood
is defined here as

`Tw(y;β, φ, p) =
n∑
i=1

log fp(y;µ, φ),

where fp(y;µ, φ) is the Tweedie distribution density function, evaluated using the al-
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Figure 4: Poison data. Profile log-likelihoods for p under the Tweedie (solid lines) and
Box-Cox models (dotted lines). Horizontal lines indicate 95% likelihood regions. The
peaks occur at similar values of p for the Tweedie and Box-Cox models but the Tweedie
likelihood is higher.
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gorithms in this paper. Under the Box-Cox model, the log-likelihood function is that
assuming yω,i ∼ N(µ, σ2) for ω = 1− p/2, i.e.,

`BC(y;β, σ2, p) = −1

2

n∑
i=1

{
log(2πσ2) +

(
yω,i − µi

σ

)2

+ p log yi

}
.

In Figure 4 the log-likelihoods have been maximised over β, φ and σ2 for given values
of p. The maximum likelihood estimates for the Tweedie parameters are p̂ = 3.85 and
φ̂ = 0.151. The 95% confidence interval for p computed from the profile likelihood is
(2.87, 4.88). For the Box-Cox model, the maximum likelihood estimate of ω is equivalent
to p̂ = 3.64.

Now consider the effects of the explanatory factors on survival time. An appealing
advantage of the Tweedie model over the Box-Cox transformation is that it makes sense
to summarize responses using sample means. Under the Tweedie model, sample means
follow the same distribution as the individual observations except that the dispersion
parameter is divided by the sample size, i.e., Yi ∼ EDp(µ, φ) implies Ȳ ∼ EDp(µ, φ/n)
where n is the sample size. (This generalizes the corresponding result for the normal
distribution.) Figure 5 plots the mean survival time for each poison–treatment group.
The effects of poison and treatment appear approximately multiplicative, except that
the relative changes between the treatments are somewhat less for poison 3, which also
has the shortest survival times.

Finally we consider link functions for the generalized linear model, and it is natural
to consider link functions in the power family, g(µ) = µr. Another advantage of the
Tweedie model approach is that the variance and link functions can be chosen separately.
We assume a power variance function. For convenience, we fix p = 3.85 from this point
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Figure 5: Poison data. Mean survival time by treatment and poison.
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so that covariate and link model selection can be undertaken using standard generalized
linear model methods. Although convenient, this is not strictly necessary. In principle, p
could be left unknown in which case all model selection would be undertaken comparing
likelihoods rather than comparing deviances.

The residual mean deviance allowing for poison–treatment interaction is 0.199 on
36 degrees of freedom, unchanged by the choice of link function. The mean deviance
for interaction is on 6 degrees of freedom and is low and non-significant for a range
of link functions. It is 0.28 for the reciprocal link r = −1 and 0.33 for the log-link
r = 0, with a minimum of 0.21 at r = −0.6. Any of these link functions could be used,
as the interaction remains non-significant, but the log-link seems the most intuitively
appealing as it treats the poison and treatment effects as multiplicative. The slight
deviation from additivity on the log-scale could be explained by an initial survival
period before the poison starts to take effect. If a small constant is subtracted from all
the survival times, the times become very closely additive on the log-scale. Using the
log-link, the mean deviances for the poison and treatment main effects are significant
at 14.6 and 5.66 respectively, both highly significant according to the usual generalized
linear model methods.

9.2 Root length density of apple trees

The root length density data of de Silva et al. (1999), also available from http://-

www.statsci.org/data/oz/fineroot.html, provides an example of data with exact ze-
ros. The data concerns the underground root system of eight separate apple trees.
Three different root stocks are considered (Mark, MM106 and M26) and two plant
spacing (4× 2 metres and 5× 3 metres). Soil core sampling units taken were classified
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Figure 6: Root length density data. Profile log-likelihood for p. The peak is at p = 1.406
with 95% likelihood region from 1.363 to 1.452.
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as belonging to an inner or outer zone relative to each plant. The response variable is
the density of fine roots, also called the root length density, RLD (in cm/cm3), which
can have zeros as well as continuous positive values. There are 511 observations, of
which 193 or 38% have a zero response.

The design is not a full factorial design: plants 1 and 2 are Mark root stock at 5× 3
spacing; plants 3 and 4 are Mark root stock at 4×2 spacing; plants 5 and 6 are MM106
root stock at 5 × 3 spacing; and plants 7 and 8 are M26 root stock at 4 × 2 spacing.
The Mark root stock is therefore tested at both plant spacings but the MM106 only at
5× 3 and M26 only at 4× 2.

No transformation to normality is likely to be successful for this data because of
the large number of exact zeros, so we investigate a Tweedie generalized linear model
with 1 < p < 2. Since zone is the only variable which varies within plant, the mean
structure of the responses is fully described by a plant-zone model allowing for plant by
zone interactions. For each p a generalized linear model is fitted to the data allowing
for plant-zone effects and the profile log-likelihood function is shown in Figure 6. The
maximum likelihood estimates for p and φ are 1.406 and 0.3118 respectively. The 95%
likelihood confidence interval for p is tight, from 1.363 to 1.452.

A primary issue when modeling data with exact zeros is to accurately model the
probability of exact zeros. One question is whether the occurence of zeros needs to be
modeled separately to the distribution of the positive values, perhaps through a logistic
regression model. Figure 7 plots the observed proportion of zeros for each plant and
each zone versus the probability of zeros exp(−λ̂) derived from the maximum likelihood
Tweedie model. Although the proportion of zeros is somewhat less than expected at the
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Figure 7: Root length density data. Observed versus predicted proportion of exact
zeros in each zone of each plant. The line of equality is also plotted.
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lowest probabilities, the model appears to predict well the observed pattern of zeros.
The Tweedie approach of modeling the zeros and the positive observations together
appears to be perfectly adequate here.

We can now use generalized linear model methods to answer some of the experi-
mental questions of interest. The parameter p is orthogonal to µ and φ in the Tweedie
model, implying that the estimator of p changes relatively slowly as µ̂ and φ̂ change.
As a first approximation therefore, we can hold p fixed in our analyses in which case the
Tweedie model reduces to an ordinary generalized linear model with a power variance
function. By analogy with normal theory, an approximately unbiased estimator of φ is
obtained by scaling the maximum likelihood estimator up by the ratio of the number
of observations to the residual degrees of freedom,

φ̃ =
n

n− q
φ̂ =

511

511− 16
0.3118 = 0.3219

This is slightly lower than the residual mean deviance for the plant-zone interaction
model, which is 0.360 on 495 degrees of freedom.

The mean RLD is greater in the inner than the outer zone for every plant, the
difference being greater for some plants than others. Let us first test the significance of
these differences. It seems natural to use a log-link to preserve positivity of µ for any
linear predictor, although in fact an ordinary linear additive fit is just as good as the
log-linear additive fit for this data. The mean deviance for differences between plants is
2.8 on 7 df. The sequential mean deviances for Zone and Plant×Zone interactions are
16.6 on 1 df and 1.4 on 7 df respectively. All of these give highly significant F -statistics
when compared to φ̃ on 495 degrees of freedom. We conclude that the inner zone gives
greater RLD than the outer zone, but that this effect differs between plants.
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Table 5: Root length density data. Mean RLD by root stock and zone.

Zone
Stock Inner Outer

M26 0.123 0.079
Mark 0.078 0.015
MM106 0.115 0.076

This analysis can be done in S-Plus or R by

fit <- glm(RLD Plant*Zone,family=tweedie(var.power=1.406,link.power=0))

anova(fit,test="F",dispersion=0.3219)

using our function tweedie().
Now consider the between-plant factors of Stock and Spacing. The main effects for

Stock and Zone are highly significant (p = 2×10−10) and (p = 2×10−13) as is the Stock
by Zone interaction (p = 2×10−5). After allowing for these effects, there is no significant
effect for Spacing or Plant by Zone interaction and only a marginally significant main
effect for Plant (p = 0.02). A table of mean RLD by Stock and Zone allows us to
interpret the effects for Stock and Zone (Table 5). We see that stocks M26 and MM106
are very similar and have greater RLD that Mark stock. The Inner zone shows greater
RLD than the outer for all stocks, however the relative difference is greatest for Mark
stock. A more complete treatment of this data might include fitting a generalized linear
mixed model with plant as a random effect. Such an analysis is beyond the scope of this
paper and would be unlikely to change our qualitative conclusions since the differences
between plants are not too large.

We finish this example by comparing maximum likelihood with another strategy
which has been suggested for estimating parameters in a generalized linear model vari-
ance function, namely the extended quasi-likelihood (EQL) proposed by Nelder and
Pregibon (1987). For exponential dispersion models, EQL is equivalent to using the
saddlepoint approximation to the density

f(y;µ, φ) ≈ [2πφV (y)]−1/2 exp

{
− 1

2φ
d(y, µ)

}
{1 +O(φ)}

(Jørgensen, 1997; Smyth and Verbyla, 1999). The saddlepoint approximation as given
above is not defined at zero for power variance functions but Nelder and Pregibon
(1987) suggest using V (y + 1/6) in place of V (y) to allow evaluation at y = 0. While
this strategy has proved effective for count data, it seems inappropriate here with a
partially continuous response and no quantum gap between exact zeros and positive
obvervations. In the root length density data, some of the positive responses are as
small as 0.003008. We have experimented with estimating φ and p from the EQL using
V (y + c) in place of V (y) and with various values of c. The estimators turn out to be
extremely sensitive to the choice of c — the estimated value for p can be made to be
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anything from near 0 to nearly 2 by varying c between 0 and 1/6. The most sensible
estimates for φ or p are obtained when c is somewhat smaller than the smallest positive
value of y, say c = 0.003/3 or c = 0.003/6. It seems inappropriate though to make
c depend on the observed data, so we conclude that EQL is not well suited to this
type of mixed data with exact zeros. The Tweedie model approach is invariant to a
change in the unit of measurement, apart from an obvious rescaling of the µ and φ,
while transformations which involve y + c for a pre-specified constant c are not.

10 Conclusion

This paper has considered the numerical computation of probability densities for Tweedie
models. The motivation has been to extend the range of response distributions for which
generalized linear model-type analyses can be done. Apart from the appealing power
mean-variance relationship, Tweedie EDMs are natural candidates for modeling quanti-
tative data on arbitrary measurement scales because they are the only EDMs which are
closed under scale transformations, i.e., changes in the unit of measurement. The ability
to compute densities facilitates maximum likelihood estimation of the variance function
and dispersion parameter as well as diagnostic checking of the response distribution.

Numerically efficient strategies have been developed for evaluating series expansions
for the density functions and their derivatives when p > 1. The series are evaluated
only for those terms that make a contribution to the final result. The method shows
excellent relative accuracy for a wide range of parameter values. However we have
also shown that the number of terms necessary can increase without bound for certain
parameter values and, even more serious, that full accuracy is not obtainable in floating
point arithmetic for certain parameter values when p > 2 regardless of the number of
terms evaluated.

The Tweedie models have closed form characteristic functions. The series expansions
for the density functions arise from an analytic approach to the inversion integral for
the density function in terms of the characteristic function. Dunn (2001) has also
investigated a more direct numerical approach to inverting the characteristic function
based on numerical integration methods for oscillating functions. The numeric inversion
method provides a means to evaluate the Tweedie densities when the series approach
fails, and this work will be published elsewhere.

The saddlepoint approximation has been shown to perform poorly for the root length
density data of Section 9.2. This agrees with the rule of thumb given in Smyth and
Verbyla (1999) for judging whether the saddlepoint approximation will be adequate,
which rules out saddlepoint approximations for data sets with exact zeros. On the
other hand, the saddlepoint approximation is judged adequate for the poison data of
Section 9.1.

The software package “tweedie” has been developed for the R (R Development Core
Team 2004) programming environment to implement the methods developed in this
paper. The package includes functions for the Tweedie density, distribution function,
quantile function and random number generation using both the series expansion and
numeric inversion methods. It is available from http://www.sci.usq.edu.au/staff/-
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dunn/twhtml/home.html. The generalized linear model family function tweedie(), which
does not in itself require likelihood calculations, is in the “statmod” package, also
written by the authors of this paper, available from http://www.statsci.org/r/.
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