On using Different Distance Measures for Fuzzy Numbers in Fuzzy Linear Regression Models

Duygu İçen ¹ Marco E.G.V. Cattaneo²

¹Hacettepe University,
Department of Statistics, 06800, Ankara, Turkey

²Ludwig-Maximilians-University,
Department of Statistics, 80539, Munich, Germany

31th March, 2014
Outline

1. Introduction
2. Preliminaries
3. Fuzzy Regression with Monte Carlo Method
4. Distance Measure for Fuzzy Numbers
5. Application
 - Application for Second Category
 - Application for Third Category
 - Solutions
6. Conclusion
In many cases in real life, most of data are approximately known.
In many cases in real life, most of data are approximately known.

Fuzzy set theory introduced by Zadeh (1965) has been applied to many areas which need to manage uncertain and vague data.
In many cases in real life, most of data are approximately known.

Fuzzy set theory introduced by Zadeh (1965) has been applied to many areas which need to manage uncertain and vague data.

Such areas include approximate reasoning, decision making, time series, control and regression analysis where the difference of two fuzzy numbers plays an important role in the decision process.
In many cases in real life, most of data are approximately known.

Fuzzy set theory introduced by Zadeh (1965) has been applied to many areas which need to manage uncertain and vague data.

Such areas include approximate reasoning, decision making, time series, control and regression analysis where the difference of two fuzzy numbers plays an important role in the decision process.
A fuzzy number is a quantity whose value is imprecise and it depicts the physical world more realistically than single-valued numbers (Gao et al., 2009).
A fuzzy number is a quantity whose value is imprecise and it depicts the physical world more realistically than single-valued numbers (Gao et al., 2009).

Many research articles have been published in order to define a distance between fuzzy numbers. Several distance measures for fuzzy numbers are well established in the literature.
A fuzzy number is a quantity whose value is imprecise and it depicts the physical world more realistically than single-valued numbers (Gao et al., 2009).

Many research articles have been published in order to define a distance between fuzzy numbers. Several distance measures for fuzzy numbers are well established in the literature.

In this study, the distance measures for fuzzy numbers by
A fuzzy number is a quantity whose value is imprecise and it depicts the physical world more realistically than single-valued numbers (Gao et al., 2009).

Many research articles have been published in order to define a distance between fuzzy numbers. Several distance measures for fuzzy numbers are well established in the literature.

In this study, the distance measures for fuzzy numbers by

Kaufmann and Gupta (1991)
A fuzzy number is a quantity whose value is imprecise and it depicts the physical world more realistically than single-valued numbers (Gao et al., 2009).

Many research articles have been published in order to define a distance between fuzzy numbers. Several distance measures for fuzzy numbers are well established in the literature.

In this study, the distance measures for fuzzy numbers by
- Kaufmann and Gupta (1991)
- Heilpern (1997)
A fuzzy number is a quantity whose value is imprecise and it depicts the physical world more realistically than single-valued numbers (Gao et al., 2009).

Many research articles have been published in order to define a distance between fuzzy numbers. Several distance measures for fuzzy numbers are well established in the literature.

In this study, the distance measures for fuzzy numbers by

- Kaufmann and Gupta (1991)
- Heilpern (1997)
- Chen and Hsieh (1998)
A fuzzy number is a quantity whose value is imprecise and it depicts the physical world more realistically than single-valued numbers (Gao et al., 2009).

Many research articles have been published in order to define a distance between fuzzy numbers. Several distance measures for fuzzy numbers are well established in the literature.

In this study, the distance measures for fuzzy numbers by

- Kaufmann and Gupta (1991)
- Heilpern (1997)
- Chen and Hsieh (1998)
In the Monte Carlo method, several random crisp or fuzzy vectors are generated as regression coefficient vector. Then using these random vectors, the dependent variable is calculated. Two error measures are obtained by the difference of observed and estimated values of dependent variable to decide the best random vector for parameter estimation.

One of these error measures depends on the error measure defined by Kim and Bishu (1998). In this error measure, distance of two fuzzy numbers has to be calculated. Therefore, distance measure between two fuzzy numbers plays an important role in fuzzy regression with Monte Carlo method.
In the Monte Carlo method, several random crisp or fuzzy vectors are generated as regression coefficient vector. Then using these random vectors, the dependent variable is calculated.
In the Monte Carlo method, several random crisp or fuzzy vectors are generated as regression coefficient vector. Then using these random vectors, the dependent variable is calculated.

Two error measures are obtained by the difference of observed and estimated values of dependent variable to decide the best random vector for parameter estimation.
In the Monte Carlo method, several random crisp or fuzzy vectors are generated as regression coefficient vector. Then using these random vectors, the dependent variable is calculated.

Two error measures are obtained by the difference of observed and estimated values of dependent variable to decide the best random vector for parameter estimation.

One of these error measures depends on the error measure defined by Kim and Bishu (1998).
In the Monte Carlo method, several random crisp or fuzzy vectors are generated as regression coefficient vector. Then using these random vectors, the dependent variable is calculated.

Two error measures are obtained by the difference of observed and estimated values of dependent variable to decide the best random vector for parameter estimation.

One of these error measures depends on the error measure defined by Kim and Bishu (1998). In this error measure, distance of two fuzzy numbers has to be calculated.
In the Monte Carlo method, several random crisp or fuzzy vectors are generated as regression coefficient vector. Then using these random vectors, the dependent variable is calculated.

Two error measures are obtained by the difference of observed and estimated values of dependent variable to decide the best random vector for parameter estimation.

One of these error measures depends on the error measure defined by Kim and Bishu (1998). In this error measure, distance of two fuzzy numbers has to be calculated. Therefore, distance measure between two fuzzy numbers plays an important role in fuzzy regression with Monte Carlo method.
In the Monte Carlo method, several random crisp or fuzzy vectors are generated as regression coefficient vector. Then using these random vectors, the dependent variable is calculated.

Two error measures are obtained by the difference of observed and estimated values of dependent variable to decide the best random vector for parameter estimation.

One of these error measures depends on the error measure defined by Kim and Bishu (1998). In this error measure, distance of two fuzzy numbers has to be calculated. Therefore, distance measure between two fuzzy numbers plays an important role in fuzzy regression with Monte Carlo method.
Highlight the utility of distance measures
Calculate different distance measures in fuzzy linear regression with Monte Carlo method.
Estimate the parameters of fuzzy linear regression with Monte Carlo method according to the different distance measures.
Aim of the study

- Highlight the utility of distance measures
Aim of the study

- Highlight the utility of distance measures
- Calculate different distance measures in fuzzy linear regression with Monte Carlo method.
Aim of the study

- Highlight the utility of distance measures
- Calculate different distance measures in fuzzy linear regression with Monte Carlo method.
- Estimate the parameters of fuzzy linear regression with Monte Carlo method according to the different distance measures
Aim of the study

- Highlight the utility of distance measures
- Calculate different distance measures in fuzzy linear regression with Monte Carlo method.
- Estimate the parameters of fuzzy linear regression with Monte Carlo method according to the different distance measures
Outline

1. Introduction
2. Preliminaries
3. Fuzzy Regression with Monte Carlo Method
4. Distance Measure for Fuzzy Numbers
5. Application
 - Application for Second Category
 - Application for Third Category
 - Solutions
6. Conclusion
Definition 2.1. \(\mu_A(x) \) is the membership function of an element \(x \) belonging to a fuzzy set \(\tilde{A} \), where \(0 \leq \mu_A(x) \leq 1 \).

Definition 2.2. A general fuzzy number \(\tilde{A} \) is a normal convex fuzzy set of \(\mathbb{R} \) with a piecewise continuous membership function. The left and right sides of fuzzy numbers are \(L(x) = a_2 - x a_2 - a_1 \) and \(R(x) = x - a_3 a_4 - a_3 \) respectively.

Definition 2.3. The \(\alpha \)-cut of a fuzzy number \(\tilde{A} \) is a non-fuzzy set defined as \(\tilde{A}(\alpha) = \{ x \in \mathbb{R}, \mu_A(\alpha) \geq \alpha \} \).

\(\{ \tilde{A}(\alpha) = [A_L(\alpha), A_U(\alpha)] \} \)
Definition 2.1. $\mu_A(x)$ is the membership function of an element x belonging to a fuzzy set \tilde{A}, where $0 \leq \mu_A(x) \leq 1$.
Definition 2.1. \(\mu_A(x) \) is the membership function of an element \(x \) belonging to a fuzzy set \(\tilde{A} \), where \(0 \leq \mu_A(x) \leq 1 \).

Definition 2.2. A general fuzzy number \(\tilde{A} \) is a normal convex fuzzy set of \(\mathbb{R} \) with a piecewise continuous membership function. The left and right sides of fuzzy numbers are
\[
L(x) = \frac{a_2 - x}{a_2 - a_1} \quad \text{and} \quad R(x) = \frac{x - a_3}{a_4 - a_3}
\] respectively.
Definition 2.1. $\mu_A(x)$ is the membership function of an element x belonging to a fuzzy set \tilde{A}, where $0 \leq \mu_A(x) \leq 1$.

Definition 2.2. A general fuzzy number \tilde{A} is a normal convex fuzzy set of \mathbb{R} with a piecewise continuous membership function. The left and right sides of fuzzy numbers are $L(x) = \frac{a_2 - x}{a_2 - a_1}$ and $R(x) = \frac{x - a_3}{a_4 - a_3}$ respectively.

Definition 2.3. The α-cut of a fuzzy number \tilde{A} is a non-fuzzy set defined as $\tilde{A}(\alpha) = \{x \in \mathbb{R}, \mu_A(\alpha) \geq \alpha\}$.
Definition 2.1. \(\mu_A(x) \) is the membership function of an element \(x \) belonging to a fuzzy set \(\tilde{A} \), where 0 \(\leq \mu_A(x) \leq 1 \).

Definition 2.2. A general fuzzy number \(\tilde{A} \) is a normal convex fuzzy set of \(\mathbb{R} \) with a piecewise continuous membership function. The left and right sides of fuzzy numbers are \(L(x) = \frac{a_2-x}{a_2-a_1} \) and \(R(x) = \frac{x-a_3}{a_4-a_3} \) respectively.

Definition 2.3. The \(\alpha \)-cut of a fuzzy number \(\tilde{A} \) is a non-fuzzy set defined as \(\tilde{A}(\alpha) = \{ x \in \mathbb{R}, \mu_A(\alpha) \geq \alpha \} \).

\[\{ \tilde{A}(\alpha) = [A^L(\alpha), A^U(\alpha)] \} \]
Definition 2.1. \(\mu_A(x) \) is the membership function of an element \(x \) belonging to a fuzzy set \(\tilde{A} \), where \(0 \leq \mu_A(x) \leq 1 \).

Definition 2.2. A general fuzzy number \(\tilde{A} \) is a normal convex fuzzy set of \(\mathbb{R} \) with a piecewise continuous membership function. The left and right sides of fuzzy numbers are \(L(x) = \frac{a_2-x}{a_2-a_1} \) and \(R(x) = \frac{x-a_3}{a_4-a_3} \) respectively.

Definition 2.3. The \(\alpha \)-cut of a fuzzy number \(\tilde{A} \) is a non-fuzzy set defined as \(\tilde{A}(\alpha) = \{ x \in \mathbb{R}, \mu_A(\alpha) \geq \alpha \} \).

\(\{ \tilde{A}(\alpha) = [A^L(\alpha), A^U(\alpha)] \} \)
Definition 2.4. $v_k = (v_{0k}, \ldots, v_{mk})$ is called random crisp vector.
Definition 2.4. \(v_k = (v_{0k}, ..., v_{mk}) \) is called random crisp vector. \(v_{ik} \) are all real numbers in intervals \(l_i, i = 0, 1, ..., m \).
Definition 2.4. \(\nu_k = (\nu_{0k}, \ldots, \nu_{mk}) \) is called random crisp vector. \(\nu_{ik} \) are all real numbers in intervals \(I_i, i = 0, 1, \ldots, m \).

Firstly, random crisp vectors \(\nu_k = (x_{0k}, \ldots, x_{mk}) \) with all \(x_{ik} \in [0, 1] \) are generated.
Definition 2.4. \(v_k = (v_{0k}, \ldots, v_{mk}) \) is called random crisp vector. \(v_{ik} \) are all real numbers in intervals \(l_i \), \(i = 0, 1, \ldots, m \). Firstly, random crisp vectors \(v_k = (x_{0k}, \ldots, x_{mk}) \) with all \(x_{ik} \in [0, 1] \) are generated. Then all \(x_{ik} \) are put in the interval \(l_i = [c_i, d_i] \) by \(v_{ik} = c_i + (d_i - c_i)x_{ik} \), \(i = 0, 1, \ldots, m \).
Definition 2.4. $v_k = (v_0, ..., v_m)$ is called random crisp vector. v_{ik} are all real numbers in intervals I_i, $i = 0, 1, ..., m$.

Firstly, random crisp vectors $v_k = (x_0, ..., x_m)$ with all $x_{ik} \in [0, 1]$ are generated. Then all x_{ik} are put in the interval $I_i = [c_i, d_i]$ by $v_{ik} = c_i + (d_i - c_i)x_{ik}$, $i = 0, 1, ..., m$.

Definition 2.5. $\tilde{V}_k = (\tilde{V}_0, ..., \tilde{V}_m)$ is called random fuzzy vector.
Definition 2.4. \(v_k = (v_{0k}, \ldots, v_{mk}) \) is called random crisp vector.
\(v_{ik} \) are all real numbers in intervals \(I_i \), \(i = 0, 1, \ldots, m \).

Firstly, random crisp vectors
\(v_k = (x_{0k}, \ldots, x_{mk}) \) with all \(x_{ik} \in [0, 1] \) are generated.
Then all \(x_{ik} \) are put in the interval
\(I_i = [c_i, d_i] \) by \(v_{ik} = c_i + (d_i - c_i)x_{ik}, i = 0, 1, \ldots, m \).

Definition 2.5. \(\tilde{V}_k = (\tilde{V}_{0k}, \ldots, \tilde{V}_{mk}) \) is called random fuzzy vector
\(\tilde{V}_{ik} \) are all triangular fuzzy numbers.
Definition 2.4. \(v_k = (v_{0k}, \ldots, v_{mk}) \) is called random crisp vector.
\(v_{ik} \) are all real numbers in intervals \(I_i \), \(i = 0, 1, \ldots, m \).
Firstly, random crisp vectors \(v_k = (x_{0k}, \ldots, x_{mk}) \) with all \(x_{ik} \in [0, 1] \) are generated. Then all \(x_{ik} \) are put in the interval \(I_i = [c_i, d_i] \) by \(v_{ik} = c_i + (d_i - c_i)x_{ik}, i = 0, 1, \ldots, m \).

Definition 2.5. \(\tilde{V}_k = (\tilde{V}_{0k}, \ldots, \tilde{V}_{mk}) \) is called random fuzzy vector.
\(\tilde{V}_{ik} \) are all triangular fuzzy numbers. First crisp vectors \(v_k = (v_{1k}, \ldots, v_{(3m+3,k)}) \) with all the \(x_{ik} \) in \([0, 1]\), \(k = 1, \ldots, N \) are generated.
Definition 2.4. \(v_k = (v_{0k}, \ldots, v_{mk}) \) is called random crisp vector.
\(v_{ik} \) are all real numbers in intervals \(l_i \), \(i = 0, 1, \ldots, m \).
Firstly, random crisp vectors \(v_k = (x_{0k}, \ldots, x_{mk}) \) with all \(x_{ik} \in [0, 1] \) are generated.
Then all \(x_{ik} \) are put in the interval \(l_i = [c_i, d_i] \) by \(v_{ik} = c_i + (d_i - c_i)x_{ik}, i = 0, 1, \ldots, m \).

Definition 2.5. \(\tilde{V}_k = (\tilde{V}_{0k}, \ldots, \tilde{V}_{mk}) \) is called random fuzzy vector.
\(\tilde{V}_{ik} \) are all triangular fuzzy numbers.
First crisp vectors \(v_k = (v_{1k}, \ldots, v_{(3m+3,k)}) \) with all the \(x_{ik} \) in \([0, 1] \), \(k = 1, \ldots, N \) are generated.
Then the first three numbers in \(v_k \) are chosen and ordered from smallest to largest.
Definition 2.4. $v_k = (v_{0k}, ..., v_{mk})$ is called random crisp vector. v_{ik} are all real numbers in intervals l_i, $i = 0, 1, ..., m$. Firstly, random crisp vectors $v_k = (x_{0k}, ..., x_{mk})$ with all $x_{ik} \in [0, 1]$ are generated. Then all x_{ik} are put in the interval $l_i = [c_i, d_i]$ by $v_{ik} = c_i + (d_i - c_i)x_{ik}$, $i = 0, 1, ..., m$.

Definition 2.5. $\tilde{V}_k = (\tilde{V}_{0k}, ..., \tilde{V}_{mk})$ is called random fuzzy vector \tilde{V}_{ik} are all triangular fuzzy numbers. First crisp vectors $v_k = (v_{1k}, ..., v_{(3m+3, k)})$ with all the x_{ik} in $[0, 1]$, $k = 1, ..., N$ are generated. Then the first three numbers in v_k are chosen and ordered from smallest to largest. Let us assume that $x_{3k} < x_{1k} < x_{2k}$,
Definition 2.4. $v_k = (v_{0k}, \ldots, v_{mk})$ is called random crisp vector.

v_{ik} are all real numbers in intervals I_i, $i = 0, 1, \ldots, m$.

Firstly, random crisp vectors $v_k = (x_{0k}, \ldots, x_{mk})$ with all $x_{ik} \in [0, 1]$ are generated.

Then all x_{ik} are put in the interval $I_i = [c_i, d_i]$ by $v_{ik} = c_i + (d_i - c_i) x_{ik}$, $i = 0, 1, \ldots, m$.

Definition 2.5. $\tilde{V}_k = (\tilde{V}_{0k}, \ldots, \tilde{V}_{mk})$ is called random fuzzy vector \tilde{V}_{ik} are all triangular fuzzy numbers.

First crisp vectors $v_k = (v_{1k}, \ldots, v_{(3m+3), k})$ with all the x_{ik} in $[0, 1]$, $k = 1, \ldots, N$ are generated.

Then the first three numbers in v_k are chosen and ordered from smallest to largest.

Let us assume that $x_{3k} < x_{1k} < x_{2k}$,

then the first triangular fuzzy numbers is $\tilde{V}_{0k} = (x_{3k}/x_{1k}/x_{2k})$.
Outline

1. Introduction
2. Preliminaries
3. Fuzzy Regression with Monte Carlo Method
4. Distance Measure for Fuzzy Numbers
5. Application
 - Application for Second Category
 - Application for Third Category
 - Solutions
6. Conclusion
Choi and Buckley (2008) classified fuzzy regression models in three categories:

- Input and output data are both crisp (First Category)
Choi and Buckley (2008) classified fuzzy regression models in three categories:

- Input and output data are both crisp (First Category)
- Input data is crisp and output data is fuzzy (Second Category)
Choi and Buckley (2008) classified fuzzy regression models in three categories:

- Input and output data are both crisp (First Category)
- Input data is crisp and output data is fuzzy (Second Category)
- Input and output data are both fuzzy (Third Category)
Fuzzy linear regression model (Second Category)

\[
\tilde{Y}_l = \tilde{A}_0 + \tilde{A}_1 x_{1l} + \tilde{A}_2 x_{2l} + \ldots + \tilde{A}_m x_{ml} \quad l = 1, 2, \ldots, n
\]

(1)

Fuzzy linear regression model (Third Category)

\[
\tilde{Y}_l = a_0 + a_1 \tilde{X}_{1l} + a_2 \tilde{X}_{2l} + \ldots + a_m \tilde{X}_{ml} \quad l = 1, 2, \ldots, n
\]

(2)
Predicted values
Fuzzy linear regression model (Second Category)

\[\tilde{Y}_{lk}^* = \tilde{V}_0k + \tilde{V}_{1k}x_{1l} + \tilde{V}_{2k}x_{2l} + \ldots + \tilde{V}_{mk}x_{ml} \quad l = 1, 2, \ldots, n \]
Predicted values

Fuzzy linear regression model (Second Category)

\[\tilde{Y}_{lk}^* = \tilde{V}_{0k} + \tilde{V}_{1k}x_{1l} + \tilde{V}_{2k}x_{2l} + \ldots + \tilde{V}_{mk}x_{ml} \quad l = 1, 2, \ldots, n \]

(3)

Fuzzy linear regression model (Third Category)

\[\tilde{Y}_{lk}^* = v_{0k} + v_{1k} \tilde{x}_{1l} + v_{2k} \tilde{x}_{2l} + \ldots + v_{mk} \tilde{x}_{ml}; \quad l = 1, 2, \ldots, n \]

(4)
Since the dependent variable has a membership function, the estimated fuzzy output, which is also represented by a membership function, should be close to the membership function of the given data.
Since the dependent variable has a membership function, the estimated fuzzy output, which is also represented by a membership function, should be close to the membership function of the given data.

The sum of the differences is calculated as
Since the dependent variable has a membership function, the estimated fuzzy output, which is also represented by a membership function, should be close to the membership function of the given data.

The sum of the differences is calculated as

\[D = \int |\mu_{\tilde{Y}}(x) - \mu_{\tilde{Y}^*}(x)| \, dx \]
Since the dependent variable has a membership function, the estimated fuzzy output, which is also represented by a membership function, should be close to the membership function of the given data.

The sum of the differences is calculated as

\[D = \int |\mu_{\tilde{Y}}(x) - \mu_{\tilde{Y}_k^*}(x)| \, dx \]

\[E = \frac{\int_{S_{\tilde{Y} \cup \tilde{Y}_k^*}} |\mu_{\tilde{Y}}(x) - \mu_{\tilde{Y}_k^*}(x)| \, dx}{\int_{S_{\tilde{Y}}} \mu_{\tilde{Y}}(x) \, dx} \]
Error Measure (Abdalla & Buckley (2007))

\[E_1 = \sum_{l=1}^{n} \left[\int_{-\infty}^{\infty} |\tilde{Y}_l(x) - \tilde{Y}_\ast_{lk}(x)| \, dx \right] \]

\[\tilde{Y}_l = \left(y_{l1}/y_{l2}/y_{l3} \right) \text{ and } \tilde{Y}_\ast_{lk} = \left(y_{lk1}/y_{lk2}/y_{lk3} \right) \]

\[\tilde{V}_k \in \{ \tilde{V}_1, ..., \tilde{V}_N \} \text{ and } v_k \in \{ v_1, ..., v_N \} \]
Error Measure (Abdalla & Buckley (2007))

\[
E_1 = \frac{\sum_{i=1}^{n} \left[\int_{-\infty}^{\infty} |\tilde{Y}_i(x) - \tilde{Y}_{ik}^*(x)| \, dx \right]}{\left[\int_{-\infty}^{\infty} \tilde{Y}_i(x) \, dx \right]}
\] (5)
Error Measure (Abdalla & Buckley (2007))

\[E_1 = \sum_{i=1}^{n} \frac{\int_{-\infty}^{\infty} \left| \tilde{Y}_i(x) - \tilde{Y}_{ik}^*(x) \right| dx}{\int_{-\infty}^{\infty} \tilde{Y}_i(x) dx} \] (5)

- \(\tilde{Y}_i = (y_{i1}/y_{i2}/y_{i3}) \) and \(\tilde{Y}_{ik}^* = (y_{ik1}/y_{ik2}/y_{ik3}) \)
Error Measure (Abdalla & Buckley (2007))

\[
E_1 = \frac{\sum_{l=1}^{n} \left[\int_{-\infty}^{\infty} |\tilde{Y}_l(x) - \tilde{Y}_{lk}^{*}(x)| dx \right]}{\int_{-\infty}^{\infty} \tilde{Y}_l(x) dx} \tag{5}
\]

- \(\tilde{Y}_l = (y_{l1}/y_{l2}/y_{y3})\) and \(\tilde{Y}_{lk}^{*} = (y_{lk1}/y_{lk2}/y_{lk3})\)

\(\tilde{V}_k \in \{\tilde{V}_1, ..., \tilde{V}_N\}\) and \(v_k \in \{v_1, ..., v_N\}\)
Outline

1. Introduction
2. Preliminaries
3. Fuzzy Regression with Monte Carlo Method
4. Distance Measure for Fuzzy Numbers
5. Application
 - Application for Second Category
 - Application for Third Category
 - Solutions
6. Conclusion
The methods of measuring the distance between fuzzy numbers have become important due to the significant applications in diverse fields like data mining, pattern recognition, multivariate data analysis and so on.
The methods of measuring the distance between fuzzy numbers have become important due to the significant applications in diverse fields like data mining, pattern recognition, multivariate data analysis and so on.

- Kaufmann (1991)
The methods of measuring the distance between fuzzy numbers have become important due to the significant applications in diverse fields like data mining, pattern recognition, multivariate data analysis and so on.

- Kaufmann (1991)
- Heilpern (1997)
The methods of measuring the distance between fuzzy numbers have become important due to the significant applications in diverse fields like data mining, pattern recognition, multivariate data analysis and so on.

- Kaufmann (1991)
- Heilpern (1997)
 - Heilpern-1 (1997)
The methods of measuring the distance between fuzzy numbers have become important due to the significant applications in diverse fields like data mining, pattern recognition, multivariate data analysis and so on.

- Kaufmann (1991)
- Heilpern (1997)
 - Heilpern-1 (1997)
 - Heilpern-2 (1997)
The methods of measuring the distance between fuzzy numbers have become important due to the significant applications in diverse fields like data mining, pattern recognition, multivariate data analysis and so on.

- Kaufmann (1991)
- Heilpern (1997)
 - Heilpern-1 (1997)
 - Heilpern-2 (1997)
 - Heilpern-3 (1997)
The methods of measuring the distance between fuzzy numbers have become important due to the significant applications in diverse fields like data mining, pattern recognition, multivariate data analysis and so on.

- Kaufmann (1991)
- Heilpern (1997)
 - Heilpern-1 (1997)
 - Heilpern-2 (1997)
 - Heilpern-3 (1997)
- Chen & Hsieh (1998)
The methods of measuring the distance between fuzzy numbers have become important due to the significant applications in diverse fields like data mining, pattern recognition, multivariate data analysis and so on.

- Kaufmann (1991)
- Heilpern (1997)
 - Heilpern-1 (1997)
 - Heilpern-2 (1997)
 - Heilpern-3 (1997)
- Chen & Hsieh (1998)
Kaufmann (1991)

\[
d(\tilde{A}, \tilde{B}) = \int_0^1 (|A^L(\alpha) - B^L(\alpha)| + |A^U(\alpha) - B^U(\alpha)|) \, d\alpha
\]
Kaufmann (1991)

\[d(\tilde{A}, \tilde{B}) = \int_0^1 (|A^L(\alpha) - B^L(\alpha)| + |A^U(\alpha) - B^U(\alpha)|) \, d\alpha \]

- \([A^L(\alpha), A^U(\alpha)]\) and \([B^L(\alpha), B^U(\alpha)]\) are the closed intervals of \(\alpha\)-cuts
Heilpern-1 (1997)
Heilpern-1 (1997)

\[\tilde{A} = (a_1, a_2, a_3, a_4) \]
Heilpern-1 (1997)

\[\widetilde{A} = (a_1, a_2, a_3, a_4) \]

- \[E^*(\widetilde{A}) = a_2 - (a_2 - a_1) \int_0^\infty L(x)dx \]
- \[E^*(\widetilde{A}) = a_3 + (a_4 - a_3) \int_0^\infty R(x)dx \]
Heilpern-1 (1997)

\[\tilde{A} = (a_1, a_2, a_3, a_4) \]

\[E^*(\tilde{A}) = a_2 - (a_2 - a_1) \int_0^\infty L(x)dx \]

\[E^*(\tilde{A}) = a_3 + (a_4 - a_3) \int_0^\infty R(x)dx \]

\[EV(\tilde{A}) = \frac{1}{2} \left[E^*(\tilde{A}) - E^*(\tilde{A}) \right] \]
Heilpern-1 (1997)

\(\tilde{A} = (a_1, a_2, a_3, a_4) \)

- \(E^*(\tilde{A}) = a_2 - (a_2 - a_1) \int_0^\infty L(x) \, dx \)
- \(E^*(\tilde{A}) = a_3 + (a_4 - a_3) \int_0^\infty R(x) \, dx \)

\[EV(\tilde{A}) = \frac{1}{2} \left[E^*(\tilde{A}) - E^*(\tilde{A}) \right] \]

\[\sigma(\tilde{A}, \tilde{B}) = |EV(\tilde{A}) - EV(\tilde{B})| \]
Heilpern-2 (1997)

\[d_p(\tilde{A}, \tilde{B}) = \int_0^1 dp(\tilde{A}(\alpha), \tilde{B}(\alpha)) d\alpha \]

\[\tilde{A}(\alpha) = [A_L(\alpha), A_U(\alpha)] \quad \text{and} \quad \tilde{B}(\alpha) = [B_L(\alpha), B_U(\alpha)] \]

\[dp(\tilde{A}(\alpha), \tilde{B}(\alpha)) = \begin{cases} \frac{1}{p}, & 1 \leq p \leq \infty; \\ \max |A_L(\alpha) - B_L(\alpha)|, |A_U(\alpha) - B_U(\alpha)|, & p = \infty. \end{cases} \]

\[(8) \]
Heilpern-2 (1997)

\[d_p(\tilde{A}, \tilde{B}) = \int_0^1 d_p(\tilde{A}(\alpha), \tilde{B}(\alpha) d\alpha) \] (7)
Heilpern-2 (1997)

\[d_p(\tilde{A}, \tilde{B}) = \int_0^1 d_p(\tilde{A}(\alpha), \tilde{B}(\alpha)) d\alpha \] (7)

\[\tilde{A}(\alpha) = [A^L(\alpha), A^U(\alpha)] \text{ and } \tilde{B}(\alpha) = [B^L(\alpha), B^U(\alpha)] \]
Heilpern-2 (1997)

\[
d_p(\tilde{A}, \tilde{B}) = \int_0^1 d_p(\tilde{A}(\alpha), \tilde{B}(\alpha)) d\alpha
\]

\[
\tilde{A}(\alpha) = [A^L(\alpha), A^U(\alpha)] \text{ and } \tilde{B}(\alpha) = [B^L(\alpha), B^U(\alpha)]
\]

\[
d_p\left(\tilde{A}(\alpha), \tilde{B}(\alpha)\right) =
\begin{cases}
(0.5)(|A^L(\alpha) - B^L(\alpha)|^p + |A^U(\alpha) - B^U(\alpha)|^p)^{1/p}, & 1 \leq p \leq \infty; \\
\max|A^L(\alpha) - B^L(\alpha)|, |A^U(\alpha) - B^U(\alpha)|, & p = \infty.
\end{cases}
\]
Heilpern-3 (1997)

\[\tilde{A} = (a_1, a_2, a_3, a_4) \]
\[\tilde{B} = (b_1, b_2, b_3, b_4) \]
Heilpern-3 (1997)

\[\tilde{A} = (a_1, a_2, a_3, a_4) \]
\[\tilde{B} = (b_1, b_2, b_3, b_4) \]

\[
\delta_p(\tilde{A}, \tilde{B}) = \begin{cases}
0.25 \left(\sum_{i=1}^{4} |a_i - b_i|^p \right)^{1/p}, & 1 \leq p < \infty; \\
\max(|a_i - b_i|), & p = \infty.
\end{cases}
\]
Chen & Hsieh (1998)

\[P(A) = \frac{\int_0^w \alpha \left(\frac{L^{-1}(\alpha) + R^{-1}(\alpha)}{2} \right) d\alpha}{\int_0^w \alpha d\alpha} \]
Chen & Hsieh (1998)

\[
P(A) = \frac{\int_0^w \alpha \left(\frac{L^{-1}(\alpha) + R^{-1}(\alpha)}{2} \right) d\alpha}{\int_0^w \alpha d\alpha}
\]

\[\tilde{A} = (a_1, a_2, a_3, a_4)\]
Chen & Hsieh (1998)

\[P(A) = \frac{\int_0^w \alpha \left(\frac{L^{-1}(\alpha) + R^{-1}(\alpha)}{2} \right) d\alpha}{\int_0^w \alpha d\alpha} \]

\[\tilde{A} = (a_1, a_2, a_3, a_4) \]

\[P(A) = \frac{a_1 + 2a_2 + 2a_3 + a_4}{6} \]
Chen & Hsieh (1998)

\[
P(A) = \frac{\int_0^w \alpha \left(\frac{L^{-1}(\alpha) + R^{-1}(\alpha)}{2} \right) d\alpha}{\int_0^w \alpha d\alpha}
\]

\[
\tilde{A} = (a_1, a_2, a_3, a_4)
\]

\[
P(A) = \frac{a_1 + 2a_2 + 2a_3 + a_4}{6}
\]

\[
P(A) = \frac{a_1 + 4a_2 + a_4}{6}
\]
Chen & Hsieh (1998)

\[P(A) = \frac{\int_0^w \alpha \left(\frac{L^{-1}(\alpha) + R^{-1}(\alpha)}{2} \right) d\alpha}{\int_0^w \alpha d\alpha} \]

\[\tilde{A} = (a_1, a_2, a_3, a_4) \]

\[P(A) = \frac{a_1 + 2a_2 + 2a_3 + a_4}{6} \]

\[P(A) = \frac{a_1 + 4a_2 + a_4}{6} \]
Chen & Hsieh (1998)

\[
P(A) = \frac{\int_0^w \alpha \left(\frac{L^{-1}(\alpha) + R^{-1}(\alpha)}{2} \right) d\alpha}{\int_0^w \alpha d\alpha}
\]

\[\tilde{A} = (a_1, a_2, a_3, a_4)\]

\[
P(A) = \frac{a_1 + 2a_2 + 2a_3 + a_4}{6}
\]

\[
P(A) = \frac{a_1 + 4a_2 + a_4}{6}
\]

\[
|P(A) - P(B)|
\] (10)
Outline

1. Introduction
2. Preliminaries
3. Fuzzy Regression with Monte Carlo Method
4. Distance Measure for Fuzzy Numbers
5. Application
 - Application for Second Category
 - Application for Third Category
 - Solutions
6. Conclusion
In this section, there are two different applications.
In this section, there are two different applications. First application is for the second fuzzy regression model category and the other one is for the third fuzzy regression model category.
In this section, there are two different applications.

First application is for the second fuzzy regression model category and the other one is for the third fuzzy regression model category.

We consider different distance measures for fuzzy numbers given in Section 4 in the error measure \(E_1 \) for fuzzy linear regression models with Monte Carlo approach.
In this section, there are two different applications.

First application is for the second fuzzy regression model category and the other one is for the third fuzzy regression model category.

We consider different distance measures for fuzzy numbers given in Section 4 in the error measure (E_1) for fuzzy linear regression models with Monte Carlo approach.
Table: Data for the application (Second category)

<table>
<thead>
<tr>
<th>Fuzzy Output</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2.27/5.83/9.39)</td>
<td>2.00</td>
<td>0.00</td>
<td>15.25</td>
</tr>
<tr>
<td>(0.33/0.85/1.37)</td>
<td>0.00</td>
<td>5.00</td>
<td>14.13</td>
</tr>
<tr>
<td>(5.43/13.93/22.43)</td>
<td>1.13</td>
<td>1.50</td>
<td>14.13</td>
</tr>
<tr>
<td>(1.56/4.00/6.44)</td>
<td>2.00</td>
<td>1.25</td>
<td>13.63</td>
</tr>
<tr>
<td>(0.64/1.65/2.66)</td>
<td>2.19</td>
<td>3.75</td>
<td>14.75</td>
</tr>
<tr>
<td>(0.62/1.58/2.54)</td>
<td>0.25</td>
<td>3.50</td>
<td>13.75</td>
</tr>
<tr>
<td>(3.19/8.18/13.17)</td>
<td>0.75</td>
<td>5.25</td>
<td>15.25</td>
</tr>
<tr>
<td>(0.72/1.85/2.98)</td>
<td>4.25</td>
<td>2.00</td>
<td>13.50</td>
</tr>
</tbody>
</table>
Before the application we have to decide the intervals for $I_i, i = 0, 1, 2, 3$ to obtain the model coefficients as explained in Definition 2.5.
Before the application we have to decide the intervals for $I_i, i = 0, 1, 2, 3$ to obtain the model coefficients as explained in Definition 2.5.

We use same intervals in order to compare the results we have with the results from Abdalla and Buckley (2007) in the literature.
Before the application we have to decide the intervals for $I_i, i = 0, 1, 2, 3$ to obtain the model coefficients as explained in Definition 2.5.

We use same intervals in order to compare the results we have with the results from Abdalla and Buckley (2007) in the literature.

Four separate intervals ($MCI, MCII, MCIII, MCIV$) that they studied are given with Table 2.
Before the application we have to decide the intervals for I_i, $i = 0, 1, 2, 3$ to obtain the model coefficients as explained in Definition 2.5.

We use same intervals in order to compare the results we have with the results from Abdalla and Buckley (2007) in the literature.

Four separate intervals (MCI, $MCII$, $MCIII$, $MCIV$) that they studied are given with Table 2.
Table: Intervals for l_i, $i = 0, 1, 2, 3$ for second category

<table>
<thead>
<tr>
<th>Interval</th>
<th>MC_I</th>
<th>MC_{II}</th>
<th>MC_{III}</th>
<th>MC_{IV}</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_0</td>
<td>[-1,0]</td>
<td>[0,1]</td>
<td>[-18.174,-18.174]</td>
<td>[28.000,47.916]</td>
</tr>
<tr>
<td>l_1</td>
<td>[-1,0]</td>
<td>[-1,0]</td>
<td>[-1.083,-1.083]</td>
<td>[-2.542,-2.542]</td>
</tr>
<tr>
<td>l_2</td>
<td>[-1.5,-0.5]</td>
<td>[-1.5,-0.5]</td>
<td>[-1.150,-1.150]</td>
<td>[-2.323,-2.323]</td>
</tr>
<tr>
<td>l_3</td>
<td>[0,1]</td>
<td>[0,1]</td>
<td>[1.733,2.149]</td>
<td>[-1.354,-1.354]</td>
</tr>
</tbody>
</table>
Results for using different definitions of distance measures in fuzzy linear regression with MC method for minimizing E_1

<table>
<thead>
<tr>
<th>Definitions</th>
<th>Parameters</th>
<th>MCI</th>
<th>MCII</th>
<th>MCIII</th>
<th>MCIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaufmann (1991)</td>
<td>A_0</td>
<td>-0.8530</td>
<td>-0.5900</td>
<td>-0.2935</td>
<td>-18.1740</td>
</tr>
<tr>
<td></td>
<td>A_1</td>
<td>-0.6934</td>
<td>-0.6033</td>
<td>-0.3096</td>
<td>-0.2712</td>
</tr>
<tr>
<td></td>
<td>A_2</td>
<td>-1.4064</td>
<td>-1.3966</td>
<td>-1.3162</td>
<td>-0.8220</td>
</tr>
<tr>
<td></td>
<td>A_3</td>
<td>0.5474</td>
<td>0.5727</td>
<td>0.5923</td>
<td>0.2591</td>
</tr>
<tr>
<td>Heilpern-1 (1997)</td>
<td>A_0</td>
<td>-0.8472</td>
<td>-0.7690</td>
<td>-0.1782</td>
<td>0.0653</td>
</tr>
<tr>
<td></td>
<td>A_1</td>
<td>-0.8527</td>
<td>-0.3696</td>
<td>-0.0810</td>
<td>-0.8627</td>
</tr>
<tr>
<td></td>
<td>A_2</td>
<td>-1.4198</td>
<td>-1.1616</td>
<td>-0.5778</td>
<td>-1.4075</td>
</tr>
<tr>
<td></td>
<td>A_3</td>
<td>0.0251</td>
<td>0.6431</td>
<td>0.7575</td>
<td>0.1453</td>
</tr>
<tr>
<td>Heilpern-2 (1997)</td>
<td>A_0</td>
<td>-0.8530</td>
<td>-0.5900</td>
<td>-0.2935</td>
<td>0.0607</td>
</tr>
<tr>
<td></td>
<td>A_1</td>
<td>-0.6934</td>
<td>-0.6033</td>
<td>-0.3096</td>
<td>-0.2712</td>
</tr>
<tr>
<td></td>
<td>A_2</td>
<td>-1.4064</td>
<td>-1.3966</td>
<td>-1.3162</td>
<td>-0.8220</td>
</tr>
<tr>
<td></td>
<td>A_3</td>
<td>0.5474</td>
<td>0.5727</td>
<td>0.5923</td>
<td>0.2591</td>
</tr>
<tr>
<td>Heilpern-3 (1997)</td>
<td>A_0</td>
<td>-0.8530</td>
<td>-0.5900</td>
<td>-0.2935</td>
<td>0.0607</td>
</tr>
<tr>
<td></td>
<td>A_1</td>
<td>-0.6934</td>
<td>-0.6033</td>
<td>-0.3096</td>
<td>-0.2712</td>
</tr>
<tr>
<td></td>
<td>A_2</td>
<td>-1.4064</td>
<td>-1.3966</td>
<td>-1.3162</td>
<td>-0.8220</td>
</tr>
<tr>
<td></td>
<td>A_3</td>
<td>0.5474</td>
<td>0.5727</td>
<td>0.5923</td>
<td>0.2591</td>
</tr>
<tr>
<td>Chen and Hsieh (1998)</td>
<td>A_0</td>
<td>-0.7617</td>
<td>-0.7454</td>
<td>-0.5821</td>
<td>0.0716</td>
</tr>
<tr>
<td></td>
<td>A_1</td>
<td>-0.6857</td>
<td>-0.4093</td>
<td>-0.3824</td>
<td>-0.9107</td>
</tr>
<tr>
<td></td>
<td>A_2</td>
<td>-1.3294</td>
<td>-1.1576</td>
<td>-0.5469</td>
<td>-1.3458</td>
</tr>
<tr>
<td></td>
<td>A_3</td>
<td>0.2521</td>
<td>0.4794</td>
<td>0.8036</td>
<td>0.2596</td>
</tr>
</tbody>
</table>
Table: Data for the application (Third category)

<table>
<thead>
<tr>
<th>Fuzzy output</th>
<th>$X_{1/}$</th>
<th>$X_{2/}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(55.4/61.6/64.7)</td>
<td>(5.7/6.0/6.9)</td>
<td>(5.4/6.3/7.1)</td>
</tr>
<tr>
<td>(50.5/53.2/58.5)</td>
<td>(4.0/4.4/5.1)</td>
<td>(4.7/5.5/5.8)</td>
</tr>
<tr>
<td>(55.7/65.5/75.3)</td>
<td>(8.6/9.1/9.8)</td>
<td>(3.4/3.6/4.0)</td>
</tr>
<tr>
<td>(61.7/64.9/74.7)</td>
<td>(6.9/8.1/9.3)</td>
<td>(5.0/5.8/6.7)</td>
</tr>
<tr>
<td>(69.1/71.7/80.0)</td>
<td>(8.7/9.4/11.2)</td>
<td>(6.5/6.8/7.1)</td>
</tr>
<tr>
<td>(49.6/52.2/57.4)</td>
<td>(4.6/4.8/5.5)</td>
<td>(6.7/7.9/8.7)</td>
</tr>
<tr>
<td>(47.7/50.2/55.2)</td>
<td>(7.2/7.6/8.7)</td>
<td>(4.0/4.2/4.8)</td>
</tr>
<tr>
<td>(41.8/44.0/48.4)</td>
<td>(4.2/4.4/4.8)</td>
<td>(5.4/6.0/6.3)</td>
</tr>
<tr>
<td>(45.7/53.8/61.9)</td>
<td>(8.2/9.1/10.0)</td>
<td>(2.7/2.8/3.2)</td>
</tr>
<tr>
<td>(45.4/53.5/58.9)</td>
<td>(6.0/6.7/7.4)</td>
<td>(5.7/6.7/7.7)</td>
</tr>
</tbody>
</table>
Before the application we have to decide the intervals for $I_i, i = 0, 1, 2$ to obtain the model coefficients as explained in Definition 2.4.
Before the application we have to decide the intervals for \(l_i, i = 0, 1, 2 \) to obtain the model coefficients as explained in Definition 2.4.

We use same intervals in order to compare the results we have with the results from Abdalla and Buckley (2008) in the literature.
Before the application we have to decide the intervals for $l_i, i = 0, 1, 2$ to obtain the model coefficients as explained in Definition 2.4.

We use same intervals in order to compare the results we have with the results from Abdalla and Buckley (2008) in the literature.

Four separate intervals ($MCI, MCII, MCIII, MCIV$) that they studied are given with Table 5.
Before the application we have to decide the intervals for $I_i, i = 0, 1, 2$ to obtain the model coefficients as explained in Definition 2.4.

We use same intervals in order to compare the results we have with the results from Abdalla and Buckley (2008) in the literature.

Four separate intervals ($MC_{I}, MC_{II}, MC_{III}, MC_{IV}$) that they studied are given with Table 5.
Table: Intervals for I_i, $i = 0, 1, 2$ for third category

<table>
<thead>
<tr>
<th>Interval</th>
<th>MCI</th>
<th>$MCII$</th>
<th>$MCIII$</th>
<th>$MCIV$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_0</td>
<td>[0,5]</td>
<td>[0,37]</td>
<td>[16.528,16.528]</td>
<td>[33.808,36.601]</td>
</tr>
<tr>
<td>I_1</td>
<td>[0,6]</td>
<td>[0,6]</td>
<td>[3.558,3.982]</td>
<td>[1.294,3.756]</td>
</tr>
<tr>
<td>I_2</td>
<td>[0,4]</td>
<td>[0,6]</td>
<td>[2.575,2.575]</td>
<td>[0.423,0.473]</td>
</tr>
</tbody>
</table>
Table: Results for using different definitions of distance measures in fuzzy linear regression with MC method for minimizing E_1.

<table>
<thead>
<tr>
<th>Distance Measures</th>
<th>Parameters</th>
<th>MCI</th>
<th>$MCII$</th>
<th>$MCIII$</th>
<th>$MCIV$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaufmann (1991)</td>
<td>a_0</td>
<td>1.9138</td>
<td>1.8114</td>
<td>16.5280</td>
<td>33.8108</td>
</tr>
<tr>
<td></td>
<td>a_1</td>
<td>4.7655</td>
<td>4.7820</td>
<td>3.5733</td>
<td>3.1333</td>
</tr>
<tr>
<td></td>
<td>a_2</td>
<td>3.6687</td>
<td>3.6775</td>
<td>2.5750</td>
<td>0.4730</td>
</tr>
<tr>
<td>Heilpern-1 (1997)</td>
<td>a_0</td>
<td>2.4841</td>
<td>0.3650</td>
<td>16.5280</td>
<td>33.8106</td>
</tr>
<tr>
<td></td>
<td>a_1</td>
<td>4.9058</td>
<td>4.8024</td>
<td>3.5580</td>
<td>2.7181</td>
</tr>
<tr>
<td></td>
<td>a_2</td>
<td>3.4424</td>
<td>3.9099</td>
<td>2.5750</td>
<td>0.7430</td>
</tr>
<tr>
<td>Heilpern-2 (1997)</td>
<td>a_0</td>
<td>1.9138</td>
<td>1.8114</td>
<td>16.5280</td>
<td>33.8108</td>
</tr>
<tr>
<td></td>
<td>a_1</td>
<td>4.7655</td>
<td>4.7820</td>
<td>3.5733</td>
<td>3.1333</td>
</tr>
<tr>
<td></td>
<td>a_2</td>
<td>3.6687</td>
<td>3.6775</td>
<td>2.5750</td>
<td>0.4730</td>
</tr>
<tr>
<td>Heilpern-3 (1997)</td>
<td>a_0</td>
<td>4.8121</td>
<td>5.3534</td>
<td>16.5280</td>
<td>33.8111</td>
</tr>
<tr>
<td></td>
<td>a_1</td>
<td>4.5835</td>
<td>4.5590</td>
<td>3.5580</td>
<td>3.0608</td>
</tr>
<tr>
<td></td>
<td>a_2</td>
<td>3.4776</td>
<td>3.3425</td>
<td>2.5750</td>
<td>0.4730</td>
</tr>
<tr>
<td>Chen and Hsieh (1998)</td>
<td>a_0</td>
<td>2.1047</td>
<td>0.5538</td>
<td>16.5280</td>
<td>33.8086</td>
</tr>
<tr>
<td></td>
<td>a_1</td>
<td>5.0605</td>
<td>5.0276</td>
<td>3.5580</td>
<td>3.0994</td>
</tr>
<tr>
<td></td>
<td>a_2</td>
<td>3.3305</td>
<td>3.6148</td>
<td>2.5750</td>
<td>0.4730</td>
</tr>
</tbody>
</table>
Table: Error measures for application (second category)

<table>
<thead>
<tr>
<th></th>
<th>MCI</th>
<th>MCII</th>
<th>MCIII</th>
<th>MCIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdalla and Buckley (2008)</td>
<td>6.169</td>
<td>5.812</td>
<td>7.125</td>
<td>8.201</td>
</tr>
<tr>
<td>Kaufmann (1991)</td>
<td>32.63132</td>
<td>31.0182</td>
<td>24.1279</td>
<td>110.6466</td>
</tr>
<tr>
<td>Heilpern-3 (1997)</td>
<td>16.3649</td>
<td>15.104</td>
<td>9.2622</td>
<td>40.2581</td>
</tr>
</tbody>
</table>
Table: Error measures for application (third category)

<table>
<thead>
<tr>
<th>E_1</th>
<th>MCI</th>
<th>MCI\text{II}</th>
<th>MCI\text{III}</th>
<th>MCI\text{IV}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaufmann (1991)</td>
<td>52.7943</td>
<td>83.9582</td>
<td>19.0558</td>
<td>24.3161</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. Preliminaries
3. Fuzzy Regression with Monte Carlo Method
4. Distance Measure for Fuzzy Numbers
5. Application
 - Application for Second Category
 - Application for Third Category
 - Solutions
6. Conclusion
Why we did this study!!!

- Monte Carlo methods in fuzzy regression is a very new and potential area that is easy to calculate model parameters without any long and complex mathematical equations, also no need for any regression assumptions.
Monte Carlo methods in fuzzy regression is a very new and potential area that is easy to calculate model parameters without any long and complex mathematical equations, also no need for any regression assumptions.

Distance measure between fuzzy numbers have gained importance due to the widespread applications in diverse fields like decision making, machine learning and market prediction.
Monte Carlo methods in fuzzy regression is a very new and potential area that is easy to calculate model parameters without any long and complex mathematical equations, also no need for any regression assumptions.

Distance measure between fuzzy numbers have gained importance due to the widespread applications in diverse fields like decision making, machine learning and market prediction.

There are several different definitions of distance measure between two fuzzy numbers in the literature.
Monte Carlo methods in fuzzy regression is a very new and potential area that is easy to calculate model parameters without any long and complex mathematical equations, also no need for any regression assumptions.

Distance measure between fuzzy numbers have gained importance due to the widespread applications in diverse fields like decision making, machine learning and market prediction.

There are several different definitions of distance measure between two fuzzy numbers in the literature.
Why we did this study!!!

Monte Carlo methods in fuzzy regression is a very new and potential area that is easy to calculate model parameters without any long and complex mathematical equations, also no need for any regression assumptions.

Distance measure between fuzzy numbers have gained importance due to the widespread applications in diverse fields like decision making, machine learning and market prediction.

There are several different definitions of distance measure between two fuzzy numbers in the literature

Reason

- Only one definition of distance measure has been used in fuzzy regression with Monte Carlo method until now.
- Hence, we investigate using different definitions of distance measure between fuzzy numbers in estimating the parameters of fuzzy regression with Monte Carlo method.
Future Works !!!
Future Works !!!

- Making a simulation above the intervals according to the distance measures. For deciding which distance measure is the best for estimating the parameters.
Future Works !!!

- Making a simulation above the intervals according to the distance measures. For deciding which distance measure is the best for estimating the parameters.

- Investigating different definitions of distance measure between fuzzy numbers in different types of fuzzy regression models, such as nonparametric regression, exponential regression and...
Future Works !!!

- Making a simulation above the intervals according to the distance measures. For deciding which distance measure is the best for estimating the parameters.
- Investigating different definitions of distance measure between fuzzy numbers in different types of fuzzy regression models, such as nonparametric regression, exponential regression and
- Considering different types of fuzzy numbers, such as trapezoidal, Gaussian in these regression models are potential future works.
Future Works !!!

- Making a simulation above the intervals according to the distance measures. For deciding which distance measure is the best for estimating the parameters.

- Investigating different definitions of distance measure between fuzzy numbers in different types of fuzzy regression models, such as nonparametric regression, exponential regression and

- Considering different types of fuzzy numbers, such as trapezoidal, Gaussian in these regression models are potential future works.
References

Dubois, D, Prade, H (1978) Operations on fuzzy numbers, International Journal of Systems Science, vol.9, no.6, .613-626
References

- Zadeh LA (1965) Fuzzy Sets. Information and control, 8, 338-353