
Primality Testing Revisited�J.H. DavenportSchool of Mathematical SciencesUniversity of BathBath BA2 7AYEnglandjhd@maths.bath.ac.ukAbstract. Rabin's algorithm is commonly used in computer algebra systems andelsewhere for primality testing. This paper presents an experience with this in theAxiom* computer algebra system. As a result of this experience, we suggest certainstrengthenings of the algorithm.IntroductionIt is customary in computer algebra to use the algorithm presented by Rabin [1980] to determineif numbers are prime (and primes are needed throughout algebraic algorithms). As is well known,a single iteration of Rabin's algorithm, applied to the number N , has probability at most 0.25 ofreporting \N is probably prime", when in fact N is composite. For most N , the probability ismuch less than 0.25. Here, \probability" refers to the fact that Rabin's algorithm begins with thechoice of a \random" seed x, not congruent to 0 modulo N . In practice, however, true randomnessis hard to achieve, and computer algebra systems often use a �xed set of x | for example Axiomrelease 1 uses the set f3; 5; 7; 11; 13; 17; 19; 23; 29; 31g: (1)As Pomerance et al. [1980] point out, there is some sense in using primes as the x-values: forexample the value x = 4 gives no more information than the value x = 2, and the value x = 6can only give more information than 2 and 3 under rare circumstances (in particular, we need the2-part of the orders of 2 and 3 to di�er, but be adjacent. However, this argument is heuristic:Pinch [1993] reports that, up to 1012, the set f2; 3; 5; 7g gives nine false reports, whereas the setf2; 3; 7; 10g only gives seven). By Rabin's theorem, a group-theoretic proof of which is given inDavenport & Smith [1987], 10 elements in the set gives a probability less than 1 in 106 of givingthe wrong answer. In fact, it is possible to do rather better than this: for example Damg�ard &Landrock [1991] show that, for 256-bit integers, six tests give a probability of less than 2�51 ofgiving the wrong answer.Nevertheless, given any such �xed set of x values, there are probably some composite N forwhich all the x in the set report \N is probably prime". In particular Jaeschke [1991] reports thatthe 29{digit number56897193526942024370326972321 = 137716125329053 � 413148375987157has this property for the set (1) (and indeed also for the base 2). For brevity, let us call this numberJ | \the Jaeschke number", and its factors J1 and J2 respectively. NowJ = 1 + 25 � 1778037297716938261572717885;* An earlier version of this paper was published in Proc. ISSAC 92 (ed. P.S. Wang, ACM, NewYork, 1992) pp. 123{129. Permission to republish is gratefully acknowledged. Axiom is a trademark of NAG Ltd. 1



so Rabin's algorithm will begin by raising each element of (1) to the power1778037297716938261572717885(modulo J), thus getting3 �! 1 squaring�! 15 �! 4199061068131012714084074012 squaring�! J � 17 �! 40249683417692701270027867121 squaring�! J � 111 �! 40249683417692701270027867121 squaring�! J � 113 �! 52698132458811011656242898309 squaring�! J � 117 �! 4199061068131012714084074012 squaring�! J � 119 �! 40249683417692701270027867121 squaring�! J � 123 �! 16647510109249323100299105200 squaring�! J � 129 �! 40249683417692701270027867121 squaring�! J � 131 �! 1 squaring�! 1Hence, for all these x-values, Rabin's algorithm will say \J is probably prime", since we arrive ata value of 1 in our repeated squaring, either directly (x = 3 and x = 31) or via J � 1. However,this table indicates (to the suspicious human eye) two things.(A) The �rst is that �1 appears to have four square roots modulo J , viz.4199061068131012714084074012; 40249683417692701270027867121;16647510109249323100299105200; 52698132458811011656242898309:This contradicts Lagrange's theorem, so J cannot be a prime.(B) The second is that, if J were prime, we would expect about half of the elements of (1) to bequadratic non-residues, and hence to need �ve squarings to reach 1 (4 to reach J � 1), abouta quarter to be quadratic residues, but quartic non-residues, hence needing three squaringsto reach J � 1, and only an eighth to be octic residues or better, and to reach J � 1 in atmost one squaring. Hence, if J were prime, we have observed an event of probablility (1=8)10| less than 1 in 109.Much of the paper is taken up with a detailed exploration of these observations and their general-isations. We observe that, at least in principle, we are only concerned with the problem of testingrelatively large numbers: numbers less than 25 � 109 are covered by Pomerance et al. [1980], lessthan 1012 and less that 1013 by Pinch [1993] and less than 341550071728321 by Jaeschke [1993].2



Rabin revisited.Throughout this paper, we assume that all integers to be tested for primality are positive and odd.We use the standard notation�(n) = jfx : 0 < x � n; gcd(x; n) = 1gjfrom which the Chinese Remainder Theorem gives (here and always, we assume in such formulaethat the pi are distinct primes)�(Y p�ii ) =Y p�i�1i (pi � 1):In addition, we introduce�̂(Y p�ii ) =lcm �p�i�1i (pi � 1)� :Clearly �̂(n)j�(n).The Fermat-Euler Theorem states that, if gcd(x; n) = 1, then x�(n) � 1 (mod n). Thisleads to what might be called the Fermat primality test: pick some x 6� 0 (mod n) and computexn�1 (mod n). If this is not 1, then n � 1 6= �(n), so n cannot be prime. If xn�1 � 1 (mod n),but n is not prime, we say that n is a pseudoprime(x). All composite numbers are pseudoprime(1).However, the Chinese Remainder Theorem implies a stronger result than the Fermat-EulerTheorem, viz. the following.Lemma 1. If gcd(x; n) = 1, then x�̂(n) � 1 (mod n). Furthermore, �̂(n) is minimal with thisproperty.A non-prime number N for which �̂(N)jN � 1 is called a Carmichael number. Any Carmichaelnumber has to have at least three prime factors. (If pq were a Carmichael number, then pq � 1(mod p � 1), so q � 1 (mod p � 1) and q � p. Similarly, p � 1 (mod q � 1) and p � q. Sop = q, but �̂(p2) = p(p� 1), which can never divide p2� 1.) These numbers, of which we now knowthat there are in�nitely many [Alford et al., 1992], are the bane of the Fermat primality test, since,unless we hit on an x with gcd(x; n) 6� 1, we will always have xN�1 � 1 (mod N).Hence we need a stronger test: Rabin's test, which is �ner than the Fermat test since, insteadof computing xN�1, it writes N � 1 = 2k � l with l odd, and then considers each of xl; x2l; : : : ; x2kl(each obtained by squaring the previous one, and all computed modulo N). If the last is not 1, wehave a non-prime by the Fermat test. If the �rst is 1 or N � 1, we know nothing and say \N isprobably prime". If, however,the �rst 1 is preceded by a number other than N � 1, we can assertthat N is de�nitely composite, since we have found a square root of unity other than 1 and N � 1.Another way of seeing the di�erence between Rabin's test and the Fermat test is to say thatwe are analysing the 2-part of the order of x modulo N more carefully. We reply \N is de�nitelynot prime" if the order of x has di�erent 2-parts modulo di�erent factors of N .Our starting code for Axiom's implementation (slightly modi�ed from that distributed withAxiom release 1, in particular to split out the auxiliary function rabinProvesComposite, but usingthe same algorithm) is given below, where we have numbered the lines for ease of reference. Weremind the reader that Axiom comments begin with --, and continue to the end of the line. I isthe datatype of n, and can be thought of as being the integers. smallPrimes is a list of the primesup to 313, and nextSmallPrime is therefore 317.[ 1] prime? n ==[ 2] n < two => false[ 3] n < nextSmallPrime => member?(n, smallPrimes)[ 4] not one? gcd(n, productSmallPrimes) => false[ 5] n < nextSmallPrimeSquared => true3



[ 6] nm1:=n-1[ 7] q := (nm1) quo two[ 8] for k in 1.. while not odd? q repeat q := q quo two[ 9] -- q = (n-1) quo 2**k for largest possible k[10] mn := minIndex smallPrimes[11] for i in mn+1..mn+10 repeat[12] rabinProvesComposite(smallPrimes i,n,nm1,q,k) => return false[13] true[14][15] rabinProvesComposite(p,n,nm1,q,k) ==[16] -- nm1 = n-1 = q*2**k; q odd[17] -- probability false for n composite is < 1/4[18] -- for most n this probability is much less than 1/4[19] t := powmod(p, q, n)[20] -- neither of these cases tells us anything[21] if not (one? t or t = nm1) then[22] for j in 1..k-1 repeat[23] t := mulmod(t, t, n)[24] one? t => return true[25] -- we have squared something not -1 and got 1[26] t = nm1 =>[27] leave[28] not (t = nm1) => return true[29] falseNon-square-free numbersIf Rabin's algorithm is handed a number N with a repeated prime factor pk, then the factor ofpk�1 in �̂(N) will certainly be coprime to N � 1. This means that we will return \N is de�nitelynot prime" unless we use an x-value which is actually a perfect pk�1-st power | an event withprobability 1=pk�1. This probability is less than 0.25 except in the case p = 3, k = 2, when we cancalculate explicitly that the probability of incorrectly saying \N is probably prime" is exactly 0.25in the case N = 9.In the implementation given above, then test at line [ 4] ensures that N has no factors lessthan 317, and, a fortiori, no such repeated factors. Hence the probability that an x-value wouldbe a perfect p-th power is at most 1=317. This compares favourably with some of the probabilitiesthat will be analysed later, and shows the practical utility of this preliminary test.The Jaeschke number analysedLet us analyse the number J more closely. To begin with, both J1 and J2 are prime. These numberscan be written as J1 =1+ 22 � 32 � 829 � 4614533083J2 =1+ 22 � 33 � 829 � 4614533083J =1+ 25 � 32 � 5 � 11 � 59 � 829 � 34849 � 456679 � 4614533083J is not a Carmichael number, but it is \fairly close", since it is only the factor of 33, rather than32, in J2 � 1 which prevents it from being so. In addition, J is a product of two primes, of theform (K + 1) � (rK + 1) (with r = 3) | a form observed by Pomerance et al. [1980] to account fornearly all pseudoprimes. 4



Why does Rabin's test (using the primes (1)) think that J is prime? To begin with, all theprimes in the set (1) are actually perfect cubes modulo J2, so their orders divide (J2 � 1)=3, andhence J � 1. Put another way, J is a pseudoprime(p) for all the p in (1): these 10 primes all causethe Fermat test to be satis�ed. Assuming that 3jp � 1, 1=3 of non-zero congruence classes areperfect cubes modulo p.For J to pass Rabin's test, we must also ensure that, for every p in (1), the 2-part of theorder of p modulo J1 is equal to the 2-part of the order of p modulo J2. 3 and 31 are both quadraticresidues modulo both J1 and J2, whilst the other primes are all non-residues. For the non-residues,the 2-part is maximal, viz. 22 modulo both these factors, so these eight primes all cause J to passRabin's test, as well as Fermat's. 3 and 31 are, in fact, not only quadratic residues, but also quarticresidues for both J1 and J2, so their orders have 2-part 20, and hence also cause J to pass Rabin'stest. Since J2 � J1 � 1 (mod 4), the quadratic character (ajJi) = (Jija), and so depends onlyon the value of Ji (mod a) (in general, one might have to work modulo 4a). J2 = 3J1 � 2, so thetwo are not independent, but we would expect 1=4 of congruence classes of J1 (mod a) to makea a non-residue for both J1 and J2. Another 1=4 would have a a quadratic residue for both, but itwould then be necessary to investigate quartic properties, and so on. For a given a, asymptotically,about 1=3 of the values of J1 will arrange that the quadratic, quartic, octic etc. characters of amodulo J1 and J2 are compatible with passing Rabin's tightening of the Fermat test.What are the implications of this for an n-step Rabin algorithm, if our opponent, the personwho is trying to �nd a composite N such that our use of Rabin's algorithm says \N is probablyprime", chooses N = M1 �M2, with M1, M2 prime and M2 � 1 = 3(M1 � 1) (and hence M1 � 1(mod 3), otherwise x = 3 will fail Rabin's test)? Each prime p we use forces the condition that pshould be a perfect cube modulo M2 | satis�ed about 1=3 of the time. In addition, the quadraticcharacters of p modulo M1 andM2 must be compatible | at best, withM1�1 � 2 (mod 4), thishappens 1=3 of the time on average. Hence each p we use imposes constraints satis�ed about 1=9 ofthe time (assuming independence, which seems in practice to be the case). So we might expect to�nd a \rogue" number with M1 about 9n, and so N about 92n, which is 1019 if n = 10. However,we also have to insist thatM1 and M2 are prime, which reduces our chance of �nding a rogue pairquite considerably | roughly by 1=22 for each of M1 and M2, which would give us an estimated\time to �nd a rogue value" of 5 � 1021. We can, in fact, be surprised that J is as large as it is |perhaps a smaller value exists.Roots of �1Here we look at observation (A) above | that a suspicious human being would observe more thantwo square roots of �1, and hence deduce that J was not prime, irrespective of the details ofRabin's algorithm. This is certainly true | how programmable, and how widely applicable, is it?Adding it is easy: the following modi�cations need to be performed. A global (to prime? andrabinProvesComposite) variable rootsMinus1 is added, whose type is a Set of I. This variable isused in the following ways.After line [10], we add[10y] rootsMinus1 := [] -- the empty setAfter line [22] we add[22a] oldt := tAfter line [26], we add (# is the operator that counts the number of elements in a set)[26a] rootsMinus1:=union(rootsMinus1,oldt)[26b] # rootsMinus1 > 2 => return trueThese changes certainly stop the algorithm from returning \N is probably prime" on theJaeschke number, and do not otherwise alter the correctness of the algorithm, so might as well5



be incorporated. They only take e�ect when k > 1, since only then is the loop at [22] onwardsexecuted.If k > 1 then these changes certainly may be executed. But if all the prime factors pi of Nhave small 2-part in �(pi), in particular if the 2-part of �̂(N) = 21, then these changes will nottake e�ect (but those proposed in the next section will). In general it is hard to analyse the precisecontribution of these changes, other than to be certain that it is never negative.The \maximal 2-part" testHere we attempt to generalise observation (B) above. Let us suppose that N is still the compositenumber that we wish to prove is composite, and that N = Qni=1 pi with the pi distinct. WriteN = 1 + 2kl with l odd, and pi = 1 + 2ki li with li odd. Clearly k � mini ki. If N were prime,we would know that half the residue classes modulo N were quadratic non-residue, and hence wewould expect half the x-values chosen to have 2-order k. Conversely, if all the ki were equal to eachother and to k, we would expect X to be a quadratic non-residue about half the time with respectto each pi, and so about 1 in 2n of the x-values will have maximal 2-rank.One very simple variant on this test that can be imposed is to insist that, before decidingthat \N is probably prime", we actually observe an element of 2-order k. If N actually were prime,we would have a chance of 1023/1024 of observing this before �nishing the loop starting on line[11], so this test is extremely unlikely to slow down the performance of the system on primes. Onnon-primes, it may slow us down, but increases the chance of our giving the \correct" answer.Adding it is easy: in fact our solution collects more information than is strictly necessary. Thefollowing modi�cations need to be performed. A global (to prime? and rabinProvesComposite)variable count2Order is added, whose type is a Vector of NonNegativeIntegers. This variableis used to count the number of elements of each 2-order: more precisely it is used in the followingways.After line [10], we add[10z] count2Order := new(k,0) -- vector of k zeroesAfter line 12, we insert the following lines[12e] currPrime:=smallPrimes(mn+10)[12f] while count2Order(k) = 0 repeat[12g] currPrime := nextPrime currPrime[12h] rabinProvesComposite(currPrime,n,nm1,q,k) => return falseAfter line [19] we insert[19a] if t=nm1 then count2Order(1):=count2Order(1)+1After line [26] we insert[26c] count2Order(j+1):=count2Order(j+1)+1Again, this modi�cation to the Rabin algorithm proves that the Jaeschke number is notprime.How would one defeat these modi�cations?It is all very well to propose new algorithms, and demonstrate that they are \better" than theold ones, but might they really have loop-holes just as large? The \maximal 2-part" requirementdefeats a whole family of pseudoprimes | all those of the form (K+1) � (rK+1) with r odd, sincethen N � 1 has a higher 2-part than �̂(N). This test is therefore useful in general, and defeats anystraight-forward generalisation of the Jaeschke number to larger sets of x.There are various possible constructions which these modi�cations do not defeat. We couldmake our pseudoprime N take the form (K +1) � (6K +1) with K � 2 (mod 4). Then the 2-partof �̂(N) would be 22, whereas that of N � 1 would be 21 (and so the \roots of �1" enhancement6



would never operate). A value x would pass Rabin's test, with the \maximal 2-part" enhancement,if it were(1) a cubic residue modulo 6K + 1;(2) a quadratic residue modulo 6K + 1;(3) a quartic non-residue modulo 6K + 1;(4) a quadratic non-residue modulo K + 1.On average, one K-value in 24 will have these properties for a �xed x.A value x would also pass Rabin's test, but would not contribute to the \maximal 2-part",if it were(1') a cubic residue modulo 6K + 1;(2') a quadratic residue modulo 6K + 1;(3') a quartic residue modulo 6K + 1;(4') a quadratic residue modulo K + 1.Again, on average, one K-value in 24 will have these properties for a �xed x.We note, therefore, that we might expect 50% of x-values causing N to pass Rabin's test tohave 2-part 21 and 50% to have 2-part 20: the same distribution as for a prime value of N (withk = 1). If we use n di�erent x-values, we might expect K to have to be of the order of 12n, and Nto be of the order of 144n. In addition, both K + 1 and 6K + 1 have to be prime. For n = 10, theprobability of this is about 1=25, so we might expect to �nd such an N at around 2 � 1024.Leech's attackLeech [1992] has suggested an attack of the form N = (K + 1) � (2K + 1) � (3K + 1). If the threefactors are prime (which incidentally forces K = 2, a case we can discard, or K � 0 (mod 6)),then these numbers are certainly Carmichael*, and hence a good attack on the original version ofRabin's algorithm. Indeed, almost 25% of seed values will yield the result \N is probably prime".Fortunately, we are saved by the \maximal 2-part" variant. Suppose K = 3 � n � 2m with nodd (and m at least 1). Then the maximal 2-part we can actually observe is 2m, whereasN � 1 = 162 n3 (2m)3 + 99 n2 (2m)2 + 18 n 2m;which is divisible by 2m+1. Hence we will never observe an element of the maximal 2-part, and theloop at line [12f] will run until a counter-example to primality is found.In fact, if m = 1, N � 1 is divisible by 8, and if m > 1, N � 1 is divisible by 2m+1, which is atleast 8. Hence the \roots of �1" test also acts, and reduces the probability of passing the modi�edRabin well below 25%.Other forms of attack are certainly possible, e.g. taking N = (K + 1) � (3K + 1) � (5K + 1).Here the \maximal 2-part" does not help us, since the 2-part of N � 1 is equal to that of �̂(N).However these numbers are not generally Carmichael, only \nearly Carmichael", since 5 does notdivide N � 1. Hence we would need to insist that all our seed values were quintic residues modulo5K + 1 as well as having the same 2-part modulo all the factors, and so on. These more complexfamilies seem to create more problems for the inventor of counter-examples, so we can probably* The �rst few numbers of this form are 1729, 294409, 56052361, 118901521, 172947529,216821881, 228842209; 1299963601, 2301745249, 9624742921, 11346205609, 13079177569,21515221081, 27278026129, 65700513721, 71171308081, 100264053529, 168003672409,172018713961, 173032371289, 464052305161, 527519713969; 663805468801, 727993807201,856666552249, 1042789205881 and 1201586232601.7



say that taking one prime for every factor of 100 in N probably makes the systematic constructionof counter-examples by this technique impossible.However, if we also force K � 12 (mod 30), Leech [1992] has pointed out that N isCarmichael. By construction, the factors are conguent to each other, and to their product, modulo12, so the quadratic characters of 3 modulo the di�erent factors are compatible. In fact we alsoneed K � 0 (mod 7), since K � 1; 3; 5 gives incompatible quadratic characters for 7 modulo thedi�erent factors, and K � 2; 4; 6 gives non-prime factors. However, the three factors are congruentrespectively to 3, 2 and 1 modulo 5, and so 5 will be a quadratic non-residue modulo the �rst twofactors, but a residue modulo the last, hence ensuring that Rabin's algorithm with x = 5 alwayssays \N is certainly composite".The (K + 1) � (2K + 1) attackThis attack has been used recently by Arnault [1991] to defeat the set of x-valuesf2; 3; 5; 7; 11; 13; 17; 19; 23; 29g: (2)The number 1195068768795265792518361315725116351898245581 =48889032896862784894921 � 24444516448431392447461passes all these tests. In e�ect, the requirement is that x be a quadratic residue modulo 2K + 1,and that the quadratic character of x modulo K + 1 should equate to the quartic character of xmodulo 2K + 1. These conditions are satis�ed for approximately 25% of K-values. In addition, ofcourse, K+1 and 2K+1 must be prime. It would almost certainly be possible to construct a muchsmaller number than Arnault's, with the same properties | he �xed the congruences classes he wasconsidering: for example he chose one class modulo 116, rather than examining all 29 satisfactoryclasses.This form of attack is particularly worrying, since it is much easier to use than the otherattacks in the previous sections. Indeed, one should probably consider log4N values x to test anumber N if one is to defend against this attack. Fortunately, we have a simpler defence: we cancheck explicitly if the number we are given is of this form.It is worth noting that Damg�ard & Landrock [1991] prove the following theorem, a slightlyweaker version of which was earlier proved by McDonnell [1989].Theorem. If N is an odd composite number, such that N is not divisible by 3, and more than1/8 of the x-values yield \N is probably prime" then one of the following holds:� N is a Carmichael number with precisely three prime factors;� 3N + 1 is a perfect square;� 8N + 1 is a perfect square.8(K + 1) � (2K + 1) + 1 = (4K + 3)2, so this attack is a special case of the above theorem. Thereseems no reason not to test both the exceptional conditions in the Damg�ard-Landrock Theorem |such numbers are always composite, except for trivial cases ruled out by lines before [ 5].This requires the following modi�cations. The following lines are inserted after line [12] (butbefore those from the \maximal 2-part" modi�cation).[12a] import IntegerRoots(I)[12b] q > 1 and perfectSquare?(3*n+1) => false[12c] ((n9:=n rem (9::I))=1 or n9 = -1) and perfectSquare?(8*n+1) => false[12d] -- Both previous tests from Damgard & LandrockNote that we have saved on the average number of calls to perfectSquare? by the use of someelementary congruences. This is perhaps somewhat otiose, since in theory testing for being a perfectsquare takes time O(log2N), and our algorithm for primality testing is at least O(log3N).8



Further AttacksWe were unable to construct a number which defeated our enhanced version of Rabin's algorithm,and in the earlier version of our paper we wrote as follows.\It should certainly be possible to do so [defeat the algorithm], if the set of x-values is�xed. In general, the number of primes used should be proportional to logN , and wehave made some suggestions as to what the constant of proportionality should be. Abetter constant of proportionality can be used if we test explicitly for numbers of theform (K+1) � (2K+1), probably via the Damg�ard-Landrock Theorem. This approachconverts Rabin's algorithm from a O(log3N) test to a O(log4N), but we believe thata general-purpose system needs the additional security."Our expectation that the �xed test with 10 bases would be defeated was shown to be justi�ed byArnault [1993], who suggested a (K+1) �(37K+1) �(41K+1) attack. With K=1242260225201226,we get the number 2908193646321516347729985612962472286446235377 of 46 digits, which is �rstproved composite (among the odd prime values) by the x-value 43. Bleichenbacher [1993] used a(K + 1) � (5K + 1) � (21K + 1) attack with K=867416450123298078 to deduce the 56-digit number68528663395046912244223605902738356719751082784386681071, which is �rst proved compositeby the base 101.ConclusionsIt is certainly possible to draw more information from a �xed set of x-values than Rabin's originalalgorithm does, and we have explained two ways of doing this. However, it seems likely that any�xed set of bases can be led to produce a composite number for which they all report \probablyprime". We therefore suggest that the number of bases used should grow with N , and suggestlog100N as the right number of bases to use (subject to a minimum of 10, except when relying onthe exhaustive checks of Pomerance et al. [1980]. Pinch [1993] and Jaeschke [1993]).It is perhaps worth noting that log100N is consistent with the exhaustive data referred toabove. The pseudoprimes from Pomerance et al. which need more than the bases 2, 3 and 5 are alllarger than 1003, and all are proved composite by the base 7. The �rst number to need �ve bases(2, 3, 5, 7 and 11) is 118670087467 from Pinch, and that is greater than 1004*. The �rst numberto need six bases is 21515221081, which is greater than 1005, and the �rst to need seven bases is3474749660383, which is greater than 1006 | though not by much, and we see that picking a largerconstant than 100 would not be suggsted by these exhaustive data.It must be emphasised that we have not produced a guaranteed O(log4N) primality test:merely one that we do not believe we can break by the technology we know. It would be temptingto conjecture that, with an appropriate constant of proportionality, this test is guaranteed neverto return \N is probably prime" when in fact it is composite. The �rst result in this area is astatement by Ankeny [1952] that, assuming the Extended Riemann Hypothesis (ERH), the numberof tests required is O(log2N). Lenstra [1980] (see also Koblitz [1987]) shows, under the sameassumptions, that 70 log2N values su�ce, which would give a O(log5N) primality test. UnderERH, Bach [1985; 1992] has reduced the constant from 70 to 2, and in fact 1 + o(1). Bach &Huelsbergen [1993] suggest that the correct number of test required is at most log2N log logN ,which would give a O(log4N log logN) primality test.We should note that Baillie & Wagsta� [1980] propose that, and Arnault [1993] gives furtherreasons why, a composite test, testing for both Fermat pseudoprimes and Lucas pseudoprimes,might be more e�cient. No counter-examples are known to this test, but there is currently less* 354864744877, from the same list, also needs �ve bases for the standard Rabin test, but onlyfour with our \roots of �1" modi�cation. 9
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[10w] rabinProvesCompositeSmall(17::I,n,nm1,q,k) => return false[10x] trueHere, rabinProvesCompositeSmall is a variant of rabinProvesComposite without the \Roots of�1" or the \Maximal 2-part" modi�cations. This, and the careful ordering of these lines comparedto [10y] and [10z] suggested earlier means that recursive calls of prime? do not disturb the datastructures set up for those modi�cations unless we recurse on primes greater than the Jaeschkelimit, which would happen if we wished to test numbers with more than 6 � 1014 decimal digits |a contingency we can regard as remote.O(log4N) Modi�cationsThe \Maximal 2-part" modi�cations are replaced by the following.[12e] currPrime:=smallPrimes(mn+10)[12f] probablySafe:=tenPowerTwenty[12g] while count2Order(k) = 0 or n > probablySafe repeat[12h] currPrime := nextPrime currPrime[12i] probablySafe:=probablySafe*(100::I)[12j] rabinProvesComposite(currPrime,n,nm1,q,k) => return false
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