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Abstract

In this paper we give approximation algorithms for the
following problems on metric spaces: Furthest Pair, k-
median, Minimum Routing Cost Spanning Tree, Multi-
ple Sequence Alignment, Maximum Traveling Salesman
Problem, Maximum Spanning Tree and Average Dis-
tance. The key property of our algorithms is that their
running time is linear in the number of metric space
points. As the full specification o‘f an n-point metric
space is of size ©(n?), the complexity of our algorithms
is sublinear with respect to the input size. All previ-
ous algorithms (exact or approximate) for the problems
we consider have running time Q(n?). We believe that
our techniques can be applied to get similar bounds for
other problems.

1 Introduction

In recent years there has been a dramatic growth of
interest in algorithms operating on massive data sets.
This poses new challenges for algorithm design, as algo-
rithms quite efficient on small inputs (for example, hav-
ing quadratic running time) can become prohibitively
expensive for input sizes of, say, several gigabytes. For-
tunately, applications like similarity search, clustering,
data visualisation and representation [7] often demand
answers which are not necessarily entirely accurate or
complete. This makes approximate computation a promis-
ing tool for coping with large data sizes.

There was a lot of recent algorithmic research along
these lines. This includes research on approximate near-
est neighbor [4, 11, 10, 12, 9, 1] which shows that effi-
cient algorithms can be designed even for large high di-
mensional data sets. In particular, the results of [10, 9]
show that almost linear time/space algorithms can be
designed for approximate proximity problems, like find-
ing near(est) points, closest pair of points, minimum
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spanning tree or other variants of hierarchical cluster-
ing (see also [1]). Unfortunately, these algorithms are
restricted to specific (usually geometric) metric spaces,
making them unsuitable for non-geometric ones like edit
distance (used in molecular biology) or other domain-
specific measures. It is therefore desirable to consider
these problems in the general metric space setting.

In this paper we address these issues by providing
approximation algorithms for the following metric space
problems: k-median, Minimum Routing Cost Spanning
Tree (MRCST)/Multiple Sequence Alignment (MSA),
Maximum Traveling Salesman Problem (MaxTSP), Max-
imum Spanning Tree (MaxST) and Average Distance
(AvgD) (see the definitions in Section 2). The exact
running times of the algorithms are given in Table 1.
The crucial property of our algorithms is that they run
in time lnear' in n. As the size of the metric space is
(g), their complexity is in fact sublinear with respect to
the input size. We also provide lower bounds for sub-
linear time randomized algorithms for several problems
(see page 9). Notice that for MaxST, MaxTSP and Fur-
thest Pair the upper and lower bounds match.

Our techniques (described in more detail at the end
of this section) are quite general and their applicabil-
ity does not seem restricted to our problems. Therefore
we expect that similar results can be obtain for other
problems on metric spaces. We also note that our algo-
rithms are easy to implement and have small constants
in the running time. In fact our k-median algorithm is
very similar to the Scatter/Gather clustering procedure
by Cutting et al [3]. To our best knowledge we provide
the first formal analysis of that algorithm (or in fact of
any sampling-based clustering algorithm).

In the remainder of this section, we first motivate
the problems considered in this paper. Then we discuss
the relation of our work to several notions developed
recently in the theory of algorithms, in particular to
property testing and spot checking. Finally, we give an
overview of our techiques.

The problems. The k-median problem is of inter-
est in many areas such as facility location, information
retrieval and data mining. In the latter two areas the
value of k i1s usually much smaller than n and there-
fore our algorithm offers a significant improvement in

Mf a constant probability of success is required; otherwise the
running time is multiplied by log1/p where 1 — p is the required
probability of success



problem running time approximation factor | output objective

Furthest pair | O(n) % points p, g maxd(p, q)
k-median O(nk3 log k/52 log1/8) | [3(146)(2 4 ), 28] points ¢j .. .cg min Zp min; d(p, ¢;)
1-median O(n/55) 1446

MaxTSP O(n/é) 1-46 a tour T max ZeGT d(e)
MRCST O(n/é) 246 a tree T min b dr(p,q)
MaxST O(nIOg;/é) % ) a tree T max ZeGT d(e)
AvgD O(n/87/?) 1446 (I%I) Zp,q d(p, q)

Table 1: The result table. The notation [a,b] means the algorithm returns bk median with cost a times the optimal
k-median cost. The (a,3) are the bounds for the local search algorithm of [13], which are either (1 4+ ¢€,3 4+ 5/¢) or

(1+5/¢,3+¢€).

running time over previous Q(n?)-time algorithms. The
second problem (MRCST) has applications to network
design [18] and molecular biology. The latter applica-
tion follows from its connection to Multiple Sequence
Alignment (MSA), where the goal is to find a common
alignment of n genetic sequences. Specifically, Gus-
field [8] showed that any tree within cost at most c
times the sum of all distances between the sequences
can be used to find an alignment within factor ¢ away
from optimal. The alignment computation step is linear
in n and thus our tree computation procedure speeds
up Gusfield’s algorithm as well. The next two prob-
lems (MaxTSP and MaxST) are maximization versions
of classical optimization problems; unlike the minimiza-
tion problems (see page 9) they can be approximated up
to a small constant factor. They are included mainly be-
cause of theoretical interest .Finally, the last algorithm
(for the Average Distance problem) is a useful tool for
gathering statistics over the metric space. For example,
we can apply it to estimate the gap between the actual
solution to MSA and its lower bound.

Property testing and spot checking. In the last
two decades there has been significant work on estimat-
ing the complexity of checking graph properties. In par-
ticular, Rivest and Vuillemin [17] showed that deciding
of any non-trivial monotone graph property requires in-
spection of at least Q(n2) edges; the same bound is con-
jectured to hold for randomized algorithms as well. Very
few non-trivial graph properties have subquadratic com-
plexity.

The notion of approximate property testing (intro-
duced by Goldreich et al [6]) is a relaxation of the above
definition. Specifically, it 1s assumed that the input
graph either satisfies a property P or is within dis-
tance at least en® from any graph satisfying P; the
distance between two graphs is the Hamming distance
between their adjacency matrices. Goldreich et al [6]
showed many interesting results on complexity of test-
ing approximate properties; in particular they obtained
poly(1/e) and exp(1l/e) bounds on the complexity of
colorability, clique, cut and bisection problems. Their
work was later extended by Ergun et al [5], who in-
troduced the notion of spot-checking. They applied it
to a variety of problems on graphs, sets and algebra
obtaining algorithms with running times varying from
O(log npoly(1/e)) to O(+/npoly(1/e)), where n is the in-
put/output size and en is the distance from the correct
solution.

The main difference between approximate property

testing/spot-checking and our approach is that we do
not need to relax the original problem w.r.t the “close-
ness” to the correct solution. Rather than that, we relax
the quality of the output, which is a more standard way
of defining approximate versions of problems.? On the
other hand, our techniques seem to be limited to prob-
lems over metric spaces only.

Our techniques. All of our algorithms employ ran-
dom sampling. There are two basic properties of a ran-
dom sample of a metric space points which we use. The
first property is that large distances “cannot hide” in
a metric space (more specifically, if there is any pair of
vertices of distance A, then there are at least n other
pairs of distance at least A/2 (by triangle inequality).
Thus we can spot one such a pair by random sampling
or inspection of a neighborhood of one vertex (this for
example gives an immediate solution to the Furthest
Pair problem). Another property we use is that a ran-
domly sampled edge e from a set S has expected length
d(e) equal to the average weight of edges in S. This
can be used for finding approximation of S or its cost,
provided that we can prove additional properties of the
expectation or variance of w(e).

2 Preliminaries

Assume we are given a metric space (X,d), such that
| X| = n. The problems are then defined as follows.

Definition 1 (k-median): Find k medians c;...cx €
X which minimize the value of

min d(p,¢;).
i=1..k
peEX

The problem is MAX SNP-hard. Lin and Vitter [15,
16] gave a bicriterion (1 + ¢€,2(1 4 1/e€))-approximation
algorithm for any ¢ > 0, i.e. the algorithm outputs
2(1 + 1/e)k medians with cost at most (1 4 €) times
the minimum k-median cost. Their algorithm uses lin-
ear programming and its running time is a large degree
polynomial in n. Korupolu et al [13] gave a different
algorithm with running time O(n®k?) (see Table 1 for
approximation factors). Recently, Charikar et al [2] gave
a O(1, O(1))-approximation algorithm for this problem.

?In some cases these two approaches coincide; for example it
was shown in [6] that by using their techniques one can obtain
a (1 4 €)-approximation of MAX-CUT in dense graphs in time
linear in the number of vertices.



Definition 2 (Maximum Spanning Tree - MaxST):
Find a spanning tree T' of X such that the sum of its
edge lengths is maximized.

This problem can be solved exactly in O(n?)-time
by minimum spanning tree techniques.

Definition 3 (Maximum Traveling Salesman Prob-
lem - MaxTSP): Find a simple cycle of length n such
that the sum of its edge lengths is maximized.

The problem is MAX SNP-hard. Kosaraju et al [14]

gave a %—approximation algorithm for this problem.

Definition 4 (Minimum Routing Cost Spanning
Tree - MRCST): Find a spanning tree T' such that the

metric dr induced by T minimizes the value of

> dr(p, ).

p,gEX

The problem is NP-hard. Wong [19] showed how to
construct (in O(n?)-time) a tree with cost at most twice
the sum of pairwise distances of the original metric, thus
also at most twice of the minimum RCST cost. Wu et
al [18] gave a (1 4 €)-approximation algorithm running

in time n®1/9)

Definition 5 (Average Distance - AvgD): Com-
1
pute =T Zp<q€X d(p,q).

The problem can be solved trivially in O(n?)-time.

3 1-median

In this section we present an O(n/55 )-time (1 + §)-
approximation algorithm for the 1-median problem.

For a given point p let S(p) = qux d(p,q). The
main part of our algorithm is a O(1/6°)-time procedure
which given any two points p and ¢ performs an approx-
imate comparison of S(p) and S(g). More specifically, if
S(p) > (14 6)S(q), then with probability 2/3 (say) the
algorithm will return p; if S(q) > (14 4)S(p) then with
same probability the algorithm will return ¢; otherwise
the output is arbitrary. Using this probabilistic compar-
ison as a subroutine, we can approximate the smallest
S(q) using O(n) comparisons.

The comparison procedure is as follows. Assume
that § < % Let t = d(p, q), let r = 4¢/6 + 1 and let B
be the set of points within distance r from p. The algo-

rithm starts from estimating the value of v = %. More
specifically, it chooses uniformly at random a set S of
s = O(1/6) points from X and computes ' = |s|r;13|

Then it checks if ' > §/5; if so, it concludes that
v > 8/6, otherwise, it concludes that v < /4 (the con-
stants are chosen mainly for clarity of exposition). It is
easy to see that with large constant probability the con-
clusions are correct. In the following, we show that in
both cases we can quickly approximately compare S(p)
and S(q). In the first case (if v > 6/6) then we can easily
sample points from B. Moreover, the distances d(u, p)
and d(u, q) for u € B are bounded from above; also we

show that the larger of S(p) and S(g) can be bounded

from below. Therefore we can estimate the sum of the
distances within B by random sampling (the distances
outside of B are again similar for p and ¢). In the sec-
ond case, most points u € X are so far away from both
p and g that the difference between d(p, u) and d(q, u)
is relatively small, which implies that S(p) and S(q) are
close to each other and any choice is correct.

Consider first the case when v < 6/4. In this case we
show that the difference between S(p) and S(q) is negli-
gible (i.e. smaller than §-min(S(p), S(q))), so any choice
made by the algorithm is correct. The argument is as
follows. For v € X define S;(v) = ZuGB d(v,u) and
S2(v) = ZueB d(v,u). Observe that S(p) = Si(p) +
S2(p) and S(q) = S1(gq) + S2(g). Notice that due to the
fact that for any u € X the triangle inequality implies
|d(p, u) — d(q,u)| < d(p,q) = t, we have

A=15(p) - 1

On the other hand S(p) > S2(p) > (1 — v)n(r — t) >
(1-— %)nr and the same bound holds for S(g). Thus one
can verify that indeed A < 6 min(S(p), S(q)).

Consider now the case when » > §/6. In this case
we first choose a random sample R of | points from
B; notice that by choosing O(1/§) random elements of
X and rejecting those which do not belong to B, we
can obtain such a sample in O(l/d) time with constant
probability. Then we compute S'(p) = ZuGR d(p, u)
and S'(q) = Z:ueRd(q7 u) and choose p if S'(p) > S'(q)
or g in the opposite case.

To prove correctness of the above procedure, we first
observe that if (say) S(p) > (1 + 8)S(q), then Si(p) >

(1+6)51(g), as otherwise we would have
S(p) = S1(p)+S2(p) < (146)S1(q)+(1+6/4)S2(q) <

Thus if we show that S'(p) estimates |B|51( p) (and

S'(q) estimates ﬁsl (p)) with an additive error at most

S(@) <n-t< érn.
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S TE ™S (), 51 ()

we are done. Since the expected value of S'(p) is equal

|B| S1(p) and a similar fact holds for ¢, we just need
to bound the variance of S'(p) and S’(gq) with respect
to their expectations. To this end we observe that both
variances D?[S'(p)] and D?[S'(¢)] are bounded by Ir*.
On the other hand, we know that for any point u € L
we have d(p, u) + d(u,q) > d(p,q) =t and thus

Si(p) + Si(g)
2

and therefore max(E[S ( )], B[S’
) > Si(a)-

that we assume S1(p S1(

ity
E[S"(p)]] > a-VIr] <

max(51(p), S1(q)) = > |Blt/2

(¢)]) > 1t/2. Recall
By Chebyshev inequal-

1
a

Pr{]S"(p) —

If we choose I > a24(4/5—|—1) 9/52 then \/_ 5 > ar and
the deviation of S'(p) from E[S’(p)] can be bounded by

@ VI < 31 < 3PS W) = 350 o7

(146)5(q)-



which was to be shown. The same error bound can be
obtained for S'(g) as well. This completes the proof of
correctness for the second case and the whole compari-
son procedure.

Using the probabilistic comparator as a subroutine,
we can easily get an O(npoly (log n, 1/§)-time algorithm
for (1 4 d)-approximate 1-median in the following way.
Construct a binary tournament tree over the points in
X, where each internal node performs a comparison of
values of the function S() of its children and selects
the smaller one. Set the comparison quality parame-
ter 8’ to §/logn and perform each comparison O(log n)
times, thus achieving a high probability of correctness
of all comparisons. Since the smallest element S(p) is
compared at most log n times, the value of the selected
element S(q) is bounded by (14 3")1°8™ < 1 + O(4).

We can achieve a better running time by applying
the randomized tournament technique by Kleinberg [11].
The details are very similar, thus we omit the descrip-
tion here.

4 k-median

In this section we present an O(n)-time approximation
algorithm for the k-median problem. Our procedure
uses the (o, 3)-approximation algorithm by Korupolu
et al [13], which we refer to as KPR. Let s = ayv/knlogk

for a > 1 determined later. The algorithm is as follows.

1. Choose a set S of s points sampled without re-
placement from X

2. Run the KPR k-median algorithm on S, let ¢! =
' '
¢y ...cgy denote the output

3. Assign each point p € X to a point in ¢’ within
smallest distance from p; let d(p, C') denote that
distance

4. Select the set M containing the points p with m =
ka" log k largest values of d(p,C"), for b deter-
mined later

5. Run the KPR algorithm on M, let C" denote the
output

6. Output C' and C”

In the following we will use a = ©(1/44/log1/6)
and b = ©(1/6%log 1/6). It is easy to verify that the
running time of the algorithm is O(k*nlog k/4% log 1/4).
It remains to prove its correctness.

Theorem 1 For any constant § > 0 the above algo-
rithm computes a ((1 4 6)3(2 4+ a), 28)-approzimate so-
lution for the k-median problem with probability Q(6).

By running the above procedure O(1/4) times and
taking the solution with the smallest cost, we can reduce
the error probability to any constant.

Proof: The 23 factor is clear, thus we focus on prov-
ing the first bound. Let ¢ ...ck denote the optimal me-
dians and let ) denote the optimal cost. Let C; denote
the set of points in X closer to ¢; than to any other

5 (for simplicity assume there are no ties). Also, let
C;=5nC;. Let t =bZlogk. Let L = {i:|Ci| > t},
=3 e |Ciland U =57 |Ci]. Clearly I > n — kt.

Claim 1

PSS S e 2 00 Y X dean < 1

i€L PGC: i peC;

Proof: Consider any sampled element p. With a
probability of l; this element belongs to C; for ¢ €
L. Conditioned on this event the expected value of

d(p, is 7 ZzGL ZPGC (ci,p). Thus the expected

value OfZieszeC’ ci,p 1sslnz ZPGC (ci,p).
The Claim follows from Markov inequality. a

Claim 2 For any v > 0 we have

|Ci] _n =5
Pr[for every i € P, 7 = —(14+7v)]>1—2kesn
Proof: Follows from Chernoff bound. 0O

Assume that both assertions of the above Claims
hold (which is true with probability ©(e) for a proper
choice of a and b). We show that the centers C' provide
a good solution for all points from U7, C;. Fix any such

C; and consider any function ¢; : C; — C/ such that any

[Ci ]
[l

it. For any g € C! let ¢'(g) denote the median ¢{ closest
to g. By triangle inequality

d(p, C") < d(p, i) + d(ci,qi(p)) + d(qi(p),
Thus

element from C! has at most elements assigned to

'(gi(p)))-

ST>dw ey < SIS dipe)
t€L peC; €L peC;
:g: Z (cir0) + (g, ¢' ()]
< D+g(1+,7)(1+a)22d(w)
i€L pecC!
< D44+ +a) 149D

(
L+ 71+ 2 +a)D
= (14+6)2+a)D

Asl =|User Ci| > n — kt, we know that the cost of
the points in X — M with respect to medians C’ does
not exceed (14 6)(2 4+ ) as well. Thus it is sufficient
to bound the cost of clustering of M. To this end no-
tice, that there exists a clustering of M with a cost at
most 2D (just replace each ¢; by its closest neighbor
in M). By repeating the above argument, we conclude
that with a constant probability the cost of clustering
M does not exceed (1 4 6)(2 + a)2D. Thus the total
cost does not exceed (14 6)(2 4+ a)3D. O



5 Maximum Spanning Tree

In this section we present two approximation algorithms
for MaxST, both running in O(n) time. The first one
outputs a tree of cost at least i times the optimal, while
the second one improves the factor to L.

Let T' denote the tree with maximum cost C(7) and
let A be the diameter of the graph. The first algorithm
follows from the following Lemma.

Lemma 1 A tree T' of cost at least A can be found in
O(n) time.

Proof: Let a,b € X be points such that d(a, b) =
Consider arbitrary point q. As A = d(a,b) < d(a,q
d(q,b), we can find a vertex u such that d(q,u) >
Consider now two stars: Sq centered at g and S, cen-
tered at u. We can lower bound the sum of their costs

by
qu, )+ d(u, p) >qu,

Thus one of S, and S, has cost at least Tn. 0

The second algorithm uses similar idea, but the pair
(g, u) is found by random sampling rather than using the

above algorithm. Specifically, we prove that the longest
(1)

n—1"

A.
)+

A

2

>n—

among the O(n) sampled edges has length close to
The bound then follows from the above argument.

In order to analyze the sampling algorithm, we need
the following Lemma (which can be thought of as a re-
verse version of Markov inequality).

Lemma 2 Let X be a random variable with values from

the set [0, B] such that E[X] > £ for somea > 1. Then
for any a >0

PI{X > (1 —a)E[X]) >

Q|Q

Proof: Similar to the proof of Markov inequality. O

We can now proceed with the proof of correctness of
the sampling procedure. lLet e ...e., denote cn edges
sampled at random; let X = max;d(e;). As for any
e > 0 and ¢ = O(log1/e) we have the probability of
1—e of hitting a (random) edge from T, we have E[X] >

(1- e)%_zll Therefore (by Lemma 2) we conclude that
with a probability of O(a) we have X > (1—a —e)ﬂzz

=
Thus we have proven the following theorem.

Theorem 2 Foranyé > 0 thereisa g;é-approximation

algorithm for MaxzST running in O(nIOng/é) time.

6 Maximum TSP

Let T denote the tour with maximum cost C(T') and let
T’ be tour chosen uniformly at random from the space
of all (n — 1)! tours.

Lemma 3 E[C(T")] > 91,

: ; T a(p,9)
Proof: We can write E[C as Z Z(#p i
Fix p and let T'(p) denote the successor of pin the tour

T. By triangle inequality we know that for any g we
have d(p, T(p)) > d(p,q) + d(T(p), ¢) which implies

p) 2> dp,q) +d(T(p),a).

Therefore

(1)

> d(p,T

< Z%Zd(p, q) +d(T(p), a)
= %sz(p, q)
< 2B[C(T)]

[}

Thus by Lemmas 2 and 3 we have the following the-
orem.

Theorem 3 For anyé > 0 thereis a g;é-approximation

algorithm for Maz TSP running in O(%) time.

7 Minimum Routing Cost Spanning Tree

In this section we describe the approximation algorithm
for the MRCST problem. The algorithm proceeds by
by choosing ¢ € X at random and reporting a star Sy
rooted at that vertex. Below we show that the proba-
bility the cost C(S;) exceeds C' = 2 Z )(1+6)

is at most 1 — thus by repeating thls procedure

1
145
O(1/6) times and taking best star we obtain a constant
probability of success.

The probability bound is obtained as follows. Con-

sider the expectation E[C(S;)]. We know that
1
= C(S0)

q

1
= = 0> dpa) +dar)

7 pr
= 2 Z d(p,r)
»r

The probability bound follows by Markov inequality.

E[C(S)] <

8 Average Distance

In this section we give an approximation algorithm for
the Average Distance problem. The algorithm finds the
value of the sum of all the distances (call it A) with mul-
tiplicative error (14 §) in time O(n/57/2). The actual
algorithm is simple - we sample a set S (of cardinality
s = an) of edges by including each edge with probability
=, compute the sum of their length and multiply by =,

where m = (g)
clearly O(s) with high probability. Below we prove that

The running time of the algorithm is

for s = O(n/57/2) the result is a good approximation of
A. Note that the assumption of (X,d) being a metric



is crucial for this result: otherwise one could assign ar-
bitrarily large weight (say w) to one edge, which would
not be included in S with high probability and thus the
estimation of A would be incorrect. The metric space
assumption allows us to avoid this problem, as we know
that if d(p, ) > w then for each a € X either d(p, z) or
d(q, z) is greater than w/2, thus with a good probability
we hit one of these edges.

Let A be the diameter of the metric and assume that
the minimum interpoint distance is 1. Let ¢ = 1+, for
some 0 < e < 4. Split the interval [1...A] of possible
distances into intervals I; = [¢',c¢'T!), for i > 0. Let n;
be the number of distances falling into interval /; and
let s; be the number of distances from S falling into
I;. Define A = Zl c'n;, A = Zeesd(e) and A/ =
23N c'si. Clearly, A = 121(1 +e)and A = zzl’(l +e),
thus it is sufficient to show that A’ well approximates A.
To this end notice that E[A’] = A, thus it is sufficient to
bound the variance of A’ and use Chebyshev inequality.

The variance D?[A’] can be bounded by

2

m 24 S m 24
— c'ng— = — c'n;.
S - m S

7

Thus by Chebyshev inequality we get

P = Pr[|A'— E[A] > e- E[A]]
_

€2 B2[A’]

D2[A']

D?[AT]

€2 E2[A"]

<

As E?[A] > Zcmn?, it is sufficient to bound from
the above the ratio

F Zcmni

g
In order to do this we make the following observa-
tion (this is the only place where we use the fact that
d is a metric). Let a,b € X be a pair of points such
that d(a,b) = A. Then for any p € X we know that
d(a,p) + d(p,b) > A, thus at least one of d(a,p) and
d(p,b) is greater than A/2. Let k be such that F=A.
By pigeonhole principle there exists 0 < 5 < log, 2
such that nx—; > n/log.2. This enables us to bound
F' as follows. Let P = {¢ : n; > t} — {k — j} for
t = an, where o is chosen later. We can write I as
ﬁiiﬁz, Wherg M, = ZieP c?'n?, M2 = Ziep c?'n?,

Ny = ZieP *'n; and Ny = Ziep *in;.

Now we observe that J\J\;—ll < % (from the definition)

and

2(k+1) A2(1 —|—6)2

i C
N2§th2§tc2_1§ et
while
M, Z(ALQ >
2 logz 2
thus

4logi 2a(1 4+ 6)2

1
< =
n €

N,
M,

problem approx. factor | not achievable in time
Closest Pair any o(n?)
Furthest Pair > 1 o(n?)
MaxST/MaxTSP | > £ o(n?)
MinST/MinTSP | O(1) o(n?)

Table 2: Lower bounds for metric space problems

Therefore

Ni No, 1 4log? 2(1 + ¢)?

F< max(ﬁ17 E) = Emax( . a, é)

and by setting a = ©(¢*/?) we obtain that F' = O( = L.

372
Thus
1m 1 1 1

P =0( ) =O0(—=7)

2anéel?n
and by setting ¢ = O(4) and a = O(#) we prove
the approximation bound. In this way we proved the
following Theorem.

Theorem 4 For anyé > 0, there is a (140)-approzimation

algorithm for the Average Distance problem running in
O(#) time.

9 Lower bounds

In this section we investigate limitations of sublinear
time algorithms in metric spaces. Our results are de-
picted in the Table 9; they hold for randomized algo-
rithms. When combined with our bounds, one can ob-
serve interesting phenomenon: the minimization prob-
lems are difficult to approximate, while the maximiza-
tion problems are approximable to within a small con-
stant factor. Intuitively, this is due to the fact that
small distances can be easily “hidden” in the metric
space, while the triangle inequality prevents large dis-
tances from “hiding”.

Proof: The proofs are as follows (only sketches are
given):

Closest pair : Set all distances to 1 except for one
edge chosen at random, which is set to e > 0

Furthest pair : Set all distances to 1 except for one
edge chosen at random, which is set to 2

MaxST/MaxTSP : Set all distances to 1 except for
edges on a random path of length n — 1, which are
set to 2. The optimal cost of both MaxST and
MaxTSP is (2 — €)n, but finding dn edges set to 2
for any & > 0 requires 2(n?) time.

MinST/MinTSP : For any B = O(1) choose a ran-
dom path of length n — 1, set all edges on that
path to 1 and consider the metric obtained by tak-
ing the shortest paths metric induced by the unit
edges and limiting the maximum distance to some
B. Omne can observe that the optimum solution
has cost close to n, but finding dn edges with cost
< B for any § > 0 requires Q(n?) time.

[}
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