
Sublinear Time Algorithms for Metric Space Problemspiotr indyk �Computer Science DepartmentStanford University(650)-723-4532indyk@cs.stanford.eduAbstractIn this paper we give approximation algorithms for thefollowing problems on metric spaces: Furthest Pair, k-median, Minimum Routing Cost Spanning Tree, Multi-ple Sequence Alignment, Maximum Traveling SalesmanProblem, Maximum Spanning Tree and Average Dis-tance. The key property of our algorithms is that theirrunning time is linear in the number of metric spacepoints. As the full speci�cation o`f an n-point metricspace is of size �(n2), the complexity of our algorithmsis sublinear with respect to the input size. All previ-ous algorithms (exact or approximate) for the problemswe consider have running time 
(n2). We believe thatour techniques can be applied to get similar bounds forother problems.1 IntroductionIn recent years there has been a dramatic growth ofinterest in algorithms operating on massive data sets.This poses new challenges for algorithm design, as algo-rithms quite e�cient on small inputs (for example, hav-ing quadratic running time) can become prohibitivelyexpensive for input sizes of, say, several gigabytes. For-tunately, applications like similarity search, clustering,data visualisation and representation [7] often demandanswers which are not necessarily entirely accurate orcomplete. This makes approximate computation a promis-ing tool for coping with large data sizes.There was a lot of recent algorithmic research alongthese lines. This includes research on approximate near-est neighbor [4, 11, 10, 12, 9, 1] which shows that e�-cient algorithms can be designed even for large high di-mensional data sets. In particular, the results of [10, 9]show that almost linear time/space algorithms can bedesigned for approximate proximity problems, like �nd-ing near(est) points, closest pair of points, minimum�Supported by Stanford Graduate Fellowship and NSF GrantIIS-9811904

spanning tree or other variants of hierarchical cluster-ing (see also [1]). Unfortunately, these algorithms arerestricted to speci�c (usually geometric) metric spaces,making them unsuitable for non-geometric ones like editdistance (used in molecular biology) or other domain-speci�c measures. It is therefore desirable to considerthese problems in the general metric space setting.In this paper we address these issues by providingapproximation algorithms for the following metric spaceproblems: k-median, Minimum Routing Cost SpanningTree (MRCST)/Multiple Sequence Alignment (MSA),Maximum Traveling Salesman Problem (MaxTSP), Max-imum Spanning Tree (MaxST) and Average Distance(AvgD) (see the de�nitions in Section 2). The exactrunning times of the algorithms are given in Table 1.The crucial property of our algorithms is that they runin time linear1 in n. As the size of the metric space is�n2�, their complexity is in fact sublinear with respect tothe input size. We also provide lower bounds for sub-linear time randomized algorithms for several problems(see page 9). Notice that for MaxST, MaxTSP and Fur-thest Pair the upper and lower bounds match.Our techniques (described in more detail at the endof this section) are quite general and their applicabil-ity does not seem restricted to our problems. Thereforewe expect that similar results can be obtain for otherproblems on metric spaces. We also note that our algo-rithms are easy to implement and have small constantsin the running time. In fact our k-median algorithm isvery similar to the Scatter/Gather clustering procedureby Cutting et al [3]. To our best knowledge we providethe �rst formal analysis of that algorithm (or in fact ofany sampling-based clustering algorithm).In the remainder of this section, we �rst motivatethe problems considered in this paper. Then we discussthe relation of our work to several notions developedrecently in the theory of algorithms, in particular toproperty testing and spot checking. Finally, we give anoverview of our techiques.The problems. The k-median problem is of inter-est in many areas such as facility location, informationretrieval and data mining. In the latter two areas thevalue of k is usually much smaller than n and there-fore our algorithm o�ers a signi�cant improvement in1If a constant probability of success is required; otherwise therunning time is multiplied by log 1=p where 1� p is the requiredprobability of success



problem running time approximation factor output objectiveFurthest pair O(n) 12 points p; q max d(p; q)k-median O(nk3 log k=�2 log 1=�) [3(1 + �)(2 + �); 2�] points c1 : : : ck minPpmini d(p; ci)1-median O(n=�5) 1 + �MaxTSP O(n=�) 12 � � a tour T maxPe2T d(e)MRCST O(n=�) 2 + � a tree T minPp;q dT (p; q)MaxST O(n log 1=�� ) 12 � � a tree T maxPe2T d(e)AvgD O(n=�7=2) 1 + � 1(jXj2 )Pp;q d(p; q)Table 1: The result table. The notation [a; b] means the algorithm returns bk median with cost a times the optimalk-median cost. The (�;�) are the bounds for the local search algorithm of [13], which are either (1 + �;3 + 5=�) or(1 + 5=�; 3 + �) .running time over previous 
(n2)-time algorithms. Thesecond problem (MRCST) has applications to networkdesign [18] and molecular biology. The latter applica-tion follows from its connection to Multiple SequenceAlignment (MSA), where the goal is to �nd a commonalignment of n genetic sequences. Speci�cally, Gus-�eld [8] showed that any tree within cost at most ctimes the sum of all distances between the sequencescan be used to �nd an alignment within factor c awayfrom optimal. The alignment computation step is linearin n and thus our tree computation procedure speedsup Gus�eld's algorithm as well. The next two prob-lems (MaxTSP and MaxST) are maximization versionsof classical optimization problems; unlike the minimiza-tion problems (see page 9) they can be approximated upto a small constant factor. They are included mainly be-cause of theoretical interest .Finally, the last algorithm(for the Average Distance problem) is a useful tool forgathering statistics over the metric space. For example,we can apply it to estimate the gap between the actualsolution to MSA and its lower bound.Property testing and spot checking. In the lasttwo decades there has been signi�cant work on estimat-ing the complexity of checking graph properties. In par-ticular, Rivest and Vuillemin [17] showed that decidingof any non-trivial monotone graph property requires in-spection of at least 
(n2) edges; the same bound is con-jectured to hold for randomized algorithms as well. Veryfew non-trivial graph properties have subquadratic com-plexity.The notion of approximate property testing (intro-duced by Goldreich et al [6]) is a relaxation of the abovede�nition. Speci�cally, it is assumed that the inputgraph either satis�es a property P or is within dis-tance at least �n2 from any graph satisfying P ; thedistance between two graphs is the Hamming distancebetween their adjacency matrices. Goldreich et al [6]showed many interesting results on complexity of test-ing approximate properties; in particular they obtainedpoly(1=�) and exp(1=�) bounds on the complexity ofcolorability, clique, cut and bisection problems. Theirwork was later extended by Ergun et al [5], who in-troduced the notion of spot-checking. They applied itto a variety of problems on graphs, sets and algebraobtaining algorithms with running times varying fromO(log npoly(1=�)) to O(pnpoly(1=�)), where n is the in-put/output size and �n is the distance from the correctsolution.The main di�erence between approximate property

testing/spot-checking and our approach is that we donot need to relax the original problem w.r.t the \close-ness" to the correct solution. Rather than that, we relaxthe quality of the output, which is a more standard wayof de�ning approximate versions of problems.2 On theother hand, our techniques seem to be limited to prob-lems over metric spaces only.Our techniques. All of our algorithms employ ran-dom sampling. There are two basic properties of a ran-dom sample of a metric space points which we use. The�rst property is that large distances \cannot hide" ina metric space (more speci�cally, if there is any pair ofvertices of distance �, then there are at least n otherpairs of distance at least �=2 (by triangle inequality).Thus we can spot one such a pair by random samplingor inspection of a neighborhood of one vertex (this forexample gives an immediate solution to the FurthestPair problem). Another property we use is that a ran-domly sampled edge e from a set S has expected lengthd(e) equal to the average weight of edges in S. Thiscan be used for �nding approximation of S or its cost,provided that we can prove additional properties of theexpectation or variance of w(e).2 PreliminariesAssume we are given a metric space (X;d), such thatjXj= n. The problems are then de�ned as follows.De�nition 1 (k-median): Find k medians c1 : : : ck 2X which minimize the value ofXp2X mini=1:::k d(p; ci):The problem is MAX SNP-hard. Lin and Vitter [15,16] gave a bicriterion (1 + �; 2(1 + 1=�))-approximationalgorithm for any � > 0, i.e. the algorithm outputs2(1 + 1=�)k medians with cost at most (1 + �) timesthe minimum k-median cost. Their algorithm uses lin-ear programming and its running time is a large degreepolynomial in n. Korupolu et al [13] gave a di�erentalgorithm with running time O(n2k2) (see Table 1 forapproximation factors). Recently, Charikar et al [2] gavea O(1; O(1))-approximation algorithm for this problem.2In some cases these two approaches coincide; for example itwas shown in [6] that by using their techniques one can obtaina (1 + �)-approximation of MAX-CUT in dense graphs in timelinear in the number of vertices.



De�nition 2 (Maximum Spanning Tree - MaxST):Find a spanning tree T of X such that the sum of itsedge lengths is maximized.This problem can be solved exactly in O(n2)-timeby minimum spanning tree techniques.De�nition 3 (MaximumTraveling Salesman Prob-lem - MaxTSP): Find a simple cycle of length n suchthat the sum of its edge lengths is maximized.The problem is MAX SNP-hard. Kosaraju et al [14]gave a 57 -approximation algorithm for this problem.De�nition 4 (Minimum Routing Cost SpanningTree - MRCST): Find a spanning tree T such that themetric dT induced by T minimizes the value ofXp;q2X dT (p; q):The problem is NP-hard. Wong [19] showed how toconstruct (in O(n2)-time) a tree with cost at most twicethe sum of pairwise distances of the originalmetric, thusalso at most twice of the minimum RCST cost. Wu etal [18] gave a (1 + �)-approximation algorithm runningin time nO(1=�).De�nition 5 (Average Distance - AvgD): Com-pute 1(jXj2 )Pp<q2X d(p; q).The problem can be solved trivially in O(n2)-time.3 1-medianIn this section we present an O(n=�5)-time (1 + �)-approximation algorithm for the 1-median problem.For a given point p let S(p) = Pq2X d(p; q). Themain part of our algorithm is a O(1=�5)-time procedurewhich given any two points p and q performs an approx-imate comparison of S(p) and S(q). More speci�cally, ifS(p) > (1 + �)S(q), then with probability 2=3 (say) thealgorithm will return p; if S(q) > (1+ �)S(p) then withsame probability the algorithm will return q; otherwisethe output is arbitrary. Using this probabilistic compar-ison as a subroutine, we can approximate the smallestS(q) using O(n) comparisons.The comparison procedure is as follows. Assumethat � < 12 . Let t = d(p; q), let r = 4t=� + 1 and let Bbe the set of points within distance r from p. The algo-rithm starts from estimating the value of 
 = jBjn . Morespeci�cally, it chooses uniformly at random a set S ofs = O(1=�) points from X and computes 
0 = jS\BjjSj .Then it checks if 
0 > �=5; if so, it concludes that
 > �=6, otherwise, it concludes that 
 < �=4 (the con-stants are chosen mainly for clarity of exposition). It iseasy to see that with large constant probability the con-clusions are correct. In the following, we show that inboth cases we can quickly approximately compare S(p)and S(q). In the �rst case (if 
 � �=6) then we can easilysample points from B. Moreover, the distances d(u; p)and d(u; q) for u 2 B are bounded from above; also weshow that the larger of S(p) and S(q) can be bounded

from below. Therefore we can estimate the sum of thedistances within B by random sampling (the distancesoutside of B are again similar for p and q). In the sec-ond case, most points u 2 X are so far away from bothp and q that the di�erence between d(p; u) and d(q; u)is relatively small, which implies that S(p) and S(q) areclose to each other and any choice is correct.Consider �rst the case when 
 < �=4. In this case weshow that the di�erence between S(p) and S(q) is negli-gible (i.e. smaller than ��min(S(p); S(q))), so any choicemade by the algorithm is correct. The argument is asfollows. For v 2 X de�ne S1(v) = Pu2B d(v; u) andS2(v) = Pu=2B d(v; u). Observe that S(p) = S1(p) +S2(p) and S(q) = S1(q) + S2(q). Notice that due to thefact that for any u 2 X the triangle inequality impliesjd(p; u)� d(q; u)j � d(p; q) = t, we have� = jS(p)� S(q)j � n � t � �4 rn:On the other hand S(p) � S2(p) � (1 � 
)n(r � t) �(1� �4 )nr and the same bound holds for S(q). Thus onecan verify that indeed � � �min(S(p); S(q)).Consider now the case when 
 > �=6. In this casewe �rst choose a random sample R of l points fromB; notice that by choosing O(l=�) random elements ofX and rejecting those which do not belong to B, wecan obtain such a sample in O(l=�) time with constantprobability. Then we compute S0(p) = Pu2R d(p; u)and S0(q) =Pu2R d(q; u) and choose p if S0(p) > S0(q)or q in the opposite case.To prove correctness of the above procedure, we �rstobserve that if (say) S(p) > (1 + �)S(q), then S1(p) >(1 + �)S1(q), as otherwise we would haveS(p) = S1(p)+S2(p) � (1+�)S1(q)+(1+�=4)S2(q) � (1+�)S(q):Thus if we show that S0(p) estimates ljBjS1(p) (andS0(q) estimates ljBjS1(p)) with an additive error at most�3 ljBj max(S1(p); S1(q))we are done. Since the expected value of S0(p) is equalto ljBjS1(p) and a similar fact holds for q, we just needto bound the variance of S0(p) and S0(q) with respectto their expectations. To this end we observe that bothvariances D2[S0(p)] and D2[S0(q)] are bounded by lr2.On the other hand, we know that for any point u 2 Lwe have d(p; u) + d(u; q) � d(p; q) = t and thusmax(S1(p); S1(q)) � S1(p) + S1(q)2 � jBjt=2and therefore max(E[S0(p)]; E[S0(q)]) � lt=2. Recallthat we assume S1(p) > S1(q). By Chebyshev inequal-ity Pr[jS0(p)� E[S0(p)]j � a � plr] � 1a :If we choose l > a24(4=�+1)2 �9=�2 then pl �3 t2 � ar andthe deviation of S0(p) from E[S0(p)] can be bounded bya � plr � �3 t2 l � �3E[S0(p)] = �3S1(p) ljBj



which was to be shown. The same error bound can beobtained for S0(q) as well. This completes the proof ofcorrectness for the second case and the whole compari-son procedure.Using the probabilistic comparator as a subroutine,we can easily get an O(npoly(log n; 1=�)-time algorithmfor (1 + �)-approximate 1-median in the following way.Construct a binary tournament tree over the points inX, where each internal node performs a comparison ofvalues of the function S() of its children and selectsthe smaller one. Set the comparison quality parame-ter �0 to �= log n and perform each comparison O(log n)times, thus achieving a high probability of correctnessof all comparisons. Since the smallest element S(p) iscompared at most log n times, the value of the selectedelement S(q) is bounded by (1 + �0)log n � 1 +O(�).We can achieve a better running time by applyingthe randomized tournament technique by Kleinberg [11].The details are very similar, thus we omit the descrip-tion here.4 k-medianIn this section we present an O(n)-time approximationalgorithm for the k-median problem. Our procedureuses the (�;�)-approximation algorithm by Korupoluet al [13], which we refer to as KPR. Let s = apkn log kfor a > 1 determined later. The algorithm is as follows.1. Choose a set S of s points sampled without re-placement from X2. Run the KPR k-median algorithm on S, let C 0 =c01 : : : c0�k denote the output3. Assign each point p 2 X to a point in C 0 withinsmallest distance from p; let d(p;C 0) denote thatdistance4. Select the setM containing the points p with m =b kns log k largest values of d(p;C 0), for b deter-mined later5. Run the KPR algorithm on M , let C 00 denote theoutput6. Output C 0 and C 00In the following we will use a = �(1=�plog 1=�)and b = �(1=�2 log 1=�). It is easy to verify that therunning time of the algorithm is O(k3n log k=�2 log 1=�).It remains to prove its correctness.Theorem 1 For any constant � > 0 the above algo-rithm computes a ((1 + �)3(2 +�); 2�)-approximate so-lution for the k-median problem with probability 
(�).By running the above procedure O(1=�) times andtaking the solution with the smallest cost, we can reducethe error probability to any constant.Proof: The 2� factor is clear, thus we focus on prov-ing the �rst bound. Let c1 : : : ck denote the optimal me-dians and let D denote the optimal cost. Let Ci denotethe set of points in X closer to ci than to any other

cj (for simplicity assume there are no ties). Also, letC 0i = S \ Ci. Let t = bns log k. Let L = fi : jCij � tg,l =Pi2L jCij and l0 =Pi2L jC 0ij. Clearly l � n� kt.Claim 1Pr[Xi2L Xp2C0i d(ci; p) � sn (1+ �)Xi Xp2Ci d(ci; p)] � 11 + �Proof: Consider any sampled element p. With aprobability of ln this element belongs to Ci for i 2L. Conditioned on this event, the expected value ofd(p;C) is 1l Pi2LPp2Ci d(ci; p). Thus the expectedvalue ofPi2LPp2C0i d(ci; p) is s 1l lnPiPp2Ci d(ci; p).The Claim follows from Markov inequality. 2Claim 2 For any 
 > 0 we havePr[for every i 2 P; jCijjC 0ij � ns (1 + 
)] � 1� 2ke �st3n
2Proof: Follows from Cherno� bound. 2Assume that both assertions of the above Claimshold (which is true with probability �(�) for a properchoice of a and b). We show that the centers C 0 providea good solution for all points from [i2LCi. Fix any suchCi and consider any function qi : Ci ! C 0i such that anyelement from C 0i has at most jCi jjC0i j elements assigned toit. For any q 2 C 0i let c0(q) denote the median c0i closestto q. By triangle inequalityd(p;C 0) � d(p; ci) + d(ci; qi(p)) + d(qi(p); c0(qi(p))):ThusXi2L Xp2Ci d(p; C 0) � Xi2L[Xp2Ci d(p; ci)+ jCijjC 0ij Xq2C0i(d(ci; q) + d(q; c0(q)))]� D + ns (1 + 
)(1 + �)Xi2L Xp2C0i d(ci; p)� D + ns (1 + 
)(1 + �)(1 + �) snD= (1 + 
)(1 + �)(2 + �)D= (1 + �)(2 + �)DAs l = j [i2L Cij � n� kt, we know that the cost ofthe points in X �M with respect to medians C 0 doesnot exceed (1 + �)(2 + �) as well. Thus it is su�cientto bound the cost of clustering of M . To this end no-tice, that there exists a clustering of M with a cost atmost 2D (just replace each ci by its closest neighborin M). By repeating the above argument, we concludethat with a constant probability the cost of clusteringM does not exceed (1 + �)(2 + �)2D. Thus the totalcost does not exceed (1 + �)(2 + �)3D. 2



5 Maximum Spanning TreeIn this section we present two approximation algorithmsfor MaxST, both running in O(n) time. The �rst oneoutputs a tree of cost at least 14 times the optimal, whilethe second one improves the factor to 12 .Let T denote the tree with maximum cost C(T ) andlet � be the diameter of the graph. The �rst algorithmfollows from the following Lemma.Lemma 1 A tree T of cost at least n4� can be found inO(n) time.Proof: Let a; b 2 X be points such that d(a; b) = �.Consider arbitrary point q. As � = d(a; b) � d(a; q) +d(q; b), we can �nd a vertex u such that d(q; u) � �2 .Consider now two stars: Sq centered at q and Su cen-tered at u. We can lower bound the sum of their costsby Xp d(q; p) + d(u; p) �Xp d(q; u) � n�2Thus one of Sq and Su has cost at least �4 n. 2The second algorithm uses similar idea, but the pair(q; u) is found by random sampling rather than using theabove algorithm. Speci�cally, we prove that the longestamong the O(n) sampled edges has length close to C(T )n�1 .The bound then follows from the above argument.In order to analyze the sampling algorithm, we needthe following Lemma (which can be thought of as a re-verse version of Markov inequality).Lemma 2 Let X be a random variable with values fromthe set [0;B] such that E[X] � Ba for some a > 1. Thenfor any � > 0 Pr[X � (1� �)E[X]] � �a :Proof: Similar to the proof of Markov inequality. 2We can now proceed with the proof of correctness ofthe sampling procedure. Let e1 : : : ecn denote cn edgessampled at random; let X = maxi d(ei). As for any� > 0 and c = O(log 1=�) we have the probability of1�� of hitting a (random) edge from T , we have E[X] �(1� �)C(T )n�1 . Therefore (by Lemma 2) we conclude thatwith a probability of O(�) we have X � (1����)C(T )n�1 .Thus we have proven the following theorem.Theorem 2 For any � > 0 there is a 1��2 -approximationalgorithm for MaxST running in O(n log 1=�� ) time.6 Maximum TSPLet T denote the tour with maximum cost C(T ) and letT 0 be tour chosen uniformly at random from the spaceof all (n� 1)! tours.Lemma 3 E[C(T 0)] � C(T )2 :Proof: We can write E[C(T 0)] as PpPq 6=p d(p;q)n�1 .Fix p and let T (p) denote the successor of p in the tour

T . By triangle inequality we know that for any q wehave d(p; T (p)) � d(p; q) + d(T (p); q) which impliesnd(p; T (p)) �Xq d(p; q) + d(T (p); q):ThereforeC(T ) = Xp d(p; T (p))� Xp 1nXq d(p; q) + d(T (p); q)= 2nXp Xq d(p; q)� 2E[C(T 0)] 2Thus by Lemmas 2 and 3 we have the following the-orem.Theorem 3 For any � > 0 there is a 1��2 -approximationalgorithm for MaxTSP running in O(n� ) time.7 Minimum Routing Cost Spanning TreeIn this section we describe the approximation algorithmfor the MRCST problem. The algorithm proceeds byby choosing q 2 X at random and reporting a star Sqrooted at that vertex. Below we show that the proba-bility the cost C(Sq) exceeds C = 2Pp;q d(p; q)(1 + �)is at most 1 � 11+� , thus by repeating this procedureO(1=�) times and taking best star we obtain a constantprobability of success.The probability bound is obtained as follows. Con-sider the expectation E[C(Sq)]. We know thatE[C(Sq)] � 1nXq C(Sq)= 1nXq Xp;r d(p; q) + d(q; r)= 2Xp;r d(p; r)The probability bound follows by Markov inequality.8 Average DistanceIn this section we give an approximation algorithm forthe Average Distance problem. The algorithm �nds thevalue of the sum of all the distances (call it A) with mul-tiplicative error (1 + �) in time O(n=�7=2). The actualalgorithm is simple - we sample a set S (of cardinalitys = an) of edges by including each edge with probabilitysm , compute the sum of their length and multiply by ms ,where m = �n2�. The running time of the algorithm isclearly O(s) with high probability. Below we prove thatfor s = O(n=�7=2) the result is a good approximation ofA. Note that the assumption of (X;d) being a metric



is crucial for this result: otherwise one could assign ar-bitrarily large weight (say w) to one edge, which wouldnot be included in S with high probability and thus theestimation of A would be incorrect. The metric spaceassumption allows us to avoid this problem, as we knowthat if d(p; q) > w then for each a 2 X either d(p; x) ord(q; x) is greater than w=2, thus with a good probabilitywe hit one of these edges.Let � be the diameter of the metric and assume thatthe minimum interpoint distance is 1. Let c = 1+ �, forsome 0 < � < �. Split the interval [1 : : :�] of possibledistances into intervals Ii = [ci; ci+1), for i � 0. Let nibe the number of distances falling into interval Ii andlet si be the number of distances from S falling intoIi. De�ne ~A = Pi cini, A0 = Pe2S d(e) and ~A0 =ms P cisi. Clearly, A = ~A(1 � �) and A0 = ~A0(1 � �),thus it is su�cient to show that ~A0 well approximates ~A.To this end notice that E[ ~A0] = ~A, thus it is su�cient tobound the variance of ~A0 and use Chebyshev inequality.The variance D2[ ~A0] can be bounded bym2s2 Xi c2ini sm = ms X c2ini:Thus by Chebyshev inequality we getP = Pr[j ~A0� E[ ~A0] � � �E[ ~A]]� 1�2E2 [ ~A0]D2[ ~A0]= D2[ ~A0]�2E2[ ~A0]As E2[ ~A0] �P c2in2i , it is su�cient to bound fromthe above the ratio F = P c2iniP c2in2i :In order to do this we make the following observa-tion (this is the only place where we use the fact thatd is a metric). Let a; b 2 X be a pair of points suchthat d(a; b) = �. Then for any p 2 X we know thatd(a; p) + d(p; b) � �, thus at least one of d(a; p) andd(p; b) is greater than �=2. Let k be such that ck = �.By pigeonhole principle there exists 0 � j � logc 2such that nk�j � n= logc 2. This enables us to boundF as follows. Let P = fi : ni � tg � fk � jg fort = �n, where � is chosen later. We can write F asN1+N2M1+M2 , where M1 = Pi2P c2in2i , M2 = Pi=2P c2in2i ,N1 =Pi2P c2ini and N2 =Pi=2P c2ini.Now we observe that N1M1 � 1t (from the de�nition)and N2 � tX c2i � t c2(k+1)c2 � 1 � �2(1 + �)2� twhile M2 � (�2 nlog2c 2)2thus N2M2 � 1n 4 log2c 2�(1 + �)2� :

problem approx. factor not achievable in timeClosest Pair any o(n2)Furthest Pair > 12 o(n2)MaxST/MaxTSP > 12 o(n2)MinST/MinTSP O(1) o(n2)Table 2: Lower bounds for metric space problemsThereforeF � max(N1M1 ; N2M2 ) = 1n max(4 log2c 2(1 + �)2� �; 1�)and by setting � = �(�3=2) we obtain that F = O( 1�3=2 1n ).Thus P = O( 1�2 man 1�3=2 1n ) = O( 1a�7=2 )and by setting � = �(�) and a = O( 1�7=2 ) we provethe approximation bound. In this way we proved thefollowing Theorem.Theorem 4 For any � > 0, there is a (1+�)-approximationalgorithm for the Average Distance problem running inO( n�7=2 ) time.9 Lower boundsIn this section we investigate limitations of sublineartime algorithms in metric spaces. Our results are de-picted in the Table 9; they hold for randomized algo-rithms. When combined with our bounds, one can ob-serve interesting phenomenon: the minimization prob-lems are di�cult to approximate, while the maximiza-tion problems are approximable to within a small con-stant factor. Intuitively, this is due to the fact thatsmall distances can be easily \hidden" in the metricspace, while the triangle inequality prevents large dis-tances from \hiding".Proof: The proofs are as follows (only sketches aregiven):Closest pair : Set all distances to 1 except for oneedge chosen at random, which is set to � > 0Furthest pair : Set all distances to 1 except for oneedge chosen at random, which is set to 2MaxST/MaxTSP : Set all distances to 1 except foredges on a random path of length n�1, which areset to 2. The optimal cost of both MaxST andMaxTSP is (2� �)n, but �nding �n edges set to 2for any � > 0 requires 
(n2) time.MinST/MinTSP : For any B = O(1) choose a ran-dom path of length n � 1, set all edges on thatpath to 1 and consider the metric obtained by tak-ing the shortest paths metric induced by the unitedges and limiting the maximum distance to someB. One can observe that the optimum solutionhas cost close to n, but �nding �n edges with cost< B for any � > 0 requires 
(n2) time. 2Acknowledgments: The author would like to thankAshish Goel for helpful comments on the preliminaryversion of this paper.
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