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Abstract

This paper describes the DIGITAL Continuous Profiling Istrac-
ture, a sampling-based profiling system designed to runirmont
ously on production systems. The system supports multgzsars,
works on unmodified executables, and collects profiles faireen
systems, including user programs, shared libraries, amoperat-
ing system kernel. Samples are collected at a high rate G20
samples/sec per 333-MHz processor), yet with low overh&a8%
slowdown for most workloads).

Analysis tools supplied with the profiling system use the sam
ple data to produce an accurate accounting, down to the d&dvel
pipeline stalls incurred by individual instructions, of ere time is
being spent. When instructions incur stalls, the toolsfifiepossi-
ble reasons, such as cache misses, branch mispredictimhfsirec-
tional unit contention. The fine-grained instruction-leaeaalysis
guides users and automated optimizers to the causes ofiparioe
problems and provides important insights for fixing them.

1 Introduction

The performance of programs running on modern high-
performance computer systems is often hard to understara. P
cessor pipelines are complex, and memory system effects &dav
significant impact on performance. When a single programnor a
entire system does not perform as well as desired or expeicted
can be difficult to pinpoint the reasons. The DIGITAL Contius
Profiling Infrastructure provides an efficient and accuragey of
answering such questions.

The system consists of two parts, each with novel featurdata
collection subsystem that samples program counters aratd®c
them in an on-disk database, and a suite of analysis todisitiza
lyze the stored profile information at several levels, frdra frac-
tion of CPU time consumed by each program to the number df stal
cycles for each individual instruction. The informatiomguced by
the analysis tools guides users to time-critical sectidreode and
explains in detail the static and dynamic delays incurrecchgh
instruction.

We faced two major challenges in designing and implement-
ing our profiling system: efficient data collection for a vérgh
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sampling rate, and the identification and classificationro€pssor
stalls from program-counter samples. The data collectimtesn
uses periodic interrupts generated by performance couateil-
able on DIGITAL Alpha processors to sample program counter
values. (Other processors, such as Intel's Pentium Pro &id S
R10K, also have similar hardware support.) Profiles arescteid

for unmodified executables, and all code is profiled, inaigdap-
plications, shared libraries, device drivers, and the &erThou-
sands of samples are gathered each second, allowing usefild

to be gathered in a relatively short time. Profiling is alsficefnt:
overhead is about 1-3% of the processor time, depending®n th
workload. This permits the profiling system to be run convinsly

on production systems and improves the quality of the pofile
minimizing the perturbation of the system induced by pnodli

The collected profiles contain time-biased samples of pogr
counter values: the number of samples associated with izylart
program counter value is proportional to the total time $pme-
cuting that instruction. Samples that show the relative ipemof
cache misses, branch mispredictions, etc. incurred byithatl in-
structions are also collected.

Some of the analysis tools use the collected samples to-gener
ate the usual histograms of time spent per image, per proeedu
per source line, or per instruction. Other analysis tooks agle-
tailed machine model and heuristics described in Sectiand®h-
vert time-biased samples into the average number of cyplests
executing each instruction, the number of times each iottm
was executed, and explanations for any static or dynanlis.sta

Section 3 contains several examples of the output from als to
As discussed there, the combination of fine-grained instme
level analysis and detailed profiling of long-running war&dtls has
produced insights into performance that are difficult toieedwith
other tools. These insights have been used to improve therper
mance of several major commercial applications.

The output of the analysis tools can be used directly by pnogr
mers; it can also be fed into compilers, linkers, post-liskeand
run-time optimization tools. The profiling systemis frealailable
on the Web [7]; it has been running on DIGITAL Alpha proces-
sors under DIGITAL Unix since September 1996, and portsrare i
progress to Alpha/NT and OpenVMS. Work is underway to feed th
output of our tools into DIGITAL's optimizing backend [3] diinto
the Spike/OM post-linker optimization framework [5, 6]. Vsee
also studying new kinds of profile-driven optimizations ragubs-
sible by the fine-grained instruction-level profile infortioa pro-
vided by our system.

Section 2 discusses other profiling systems. Section 3rifites
the use of our system. Sections 4 and 5 describe the desigreand
formance of our data collection system, highlighting trehteiques
used to achieve low overhead with a high sampling rate. Geéti
describes the subtle and interesting techniques used iaralysis
tools, explaining how to derive each instruction’s CPI, @x@®n
frequency, and explanations for stalls from the raw samepiets.
Finally, Section 7 discusses future work and Section 8 surzes
our results.



2 Related Work

Few other profiling systems can monitor complete systenv-acti
ity with high-frequency sampling and low overhead; onlysand
Morph [26] are designed to run continuously for long periaas
production systems, something that is essential for oioiginseful
profiles of large complex applications such as databaseaddir
tion, we know of no other system that can analyze time-biased
ples to produce accurate fine-grained information abouttimeber
of cycles taken by each instruction and the reasons forsstle
only other tools that can produce similar information usaida-
tors, at much higher cost.

Table 1 compares several profiling systems. ®dherheacol-
umn describes how much profiling slows down the target progra
low overhead is defined arbitrarily as less than 20%. Fbepe
column shows whether the profiling system is restricted tmgls
application (App) or can measure full system activity (Syshe
grain column indicates the range over which an individual mea-
surement applies. For example, gprof counts proceduraigres,
whereas pixie can count executions of each instructionf gves
even further and reports the time spent executing eachuirt&in,
which, given the wide variations in latencies of differenstruc-
tions, is often more useful than just an execution count. Sthts
column indicates whether and how well the system can sulelivi
the time spent at an instruction into components like cactss m
latency, branch misprediction delays, etc.

System Overhead| Scope| Grain Stalls
pixie High App inst count none
gprof High App proc count none

jprof High App proc count none
quartz High App proc count none
MTOOL High App inst count/time| inaccurate
SimOS High Sys inst time accurate
Speedshop (pixie)| High App inst count none
Vtune (dynamic) || High App inst time accurate
prof Low App inst time none
iprobe High Sys inst time inaccurate
Morph Low Sys inst time none
Vtune (sampler) || Low Sys inst time inaccurate
SpeedShop (timer| Low Sys inst time inaccurate

and counters)
DCPI Low Sys inst time accurate

Table 1: Profiling systems

The systems fall into two groups. The first includgesie [17],
gprof[11], jprof [19], quartz[1], MTOOL[10], SimOJ20], part of
SGI's SpeedShof25], and Intel'sVtunedynamic analyzer [24].
These systems use binary modification, compiler supporti-or
rect simulation of programs to gather measurements. Théaad
high overhead and usually require significantuser inteéiganThe
slowdown is too large for continuous measurements durirg pr
duction use, despite techniques that reduce instrumentatier-
head substantially [2]. In addition, only the simulatioaskd sys-
tems provide accurate information about the locations andes
of stalls.

The systems in the second group use statistical samplinglto ¢
lect fine-grained information on program or system behaBome
sampling systems, includinglorph [26], prof [18], and part of
SpeedShop, rely on an existing source of interrupts (érgertin-
terrupts) to generate program-counter samples. This pteveem
from sampling within those interrupt routines, and can aksult
in correlations between the sampling and other systemigctity
using hardware performance counters and randomizing tiee in
val between samples, we are able to sample activity withiemres

tially the entire system (except for our interrupt handiself) and
to avoid correlations with any other activity.

Other systems that use performance counters, including
iprobe[13], the Vtunesampler [24], and part of SpeedShop, share
some of the characteristics of our system. However, iprai a
Vtune cannot be used for continuous profiling, mostly beedusy
need a lot of memory for sample data. In addition, iprobe\Wume
sampler, and SpeedShop all fail to map the sample data aetyura
back to individual instructions. In contrast, our tools guce an
accurate accounting of stall cycles incurred by each instra and
the reasons for the stalls.

3 Data Analysis Examples

Our system has been used to analyze and improve the perfoeman
of a wide range of complex commercial applications, inahgdi
graphics systems, databases, industry benchmark suite €.0m-
pilers. For example, our tools pinpointed a performancéigm in
a commercial database system; fixing the problem reducegkthe
sponse time of an SQL query from 180 to 14 hours. In another ex-
ample, our tools’ fine-grained instruction-level analy&imntified
opportunities to improve optimized code produced by DIGLEA
compiler, speeding up the mgr&bPedp95 benchmark by 15%.

Our system includes a large suite of tools to analyze profites
different levels of detail. In this section, we present salexam-
ples of the following tools:

¢ dcpiprof: Display the number of samples per procedure (or
perimage).

¢ dcpicalc: Calculate the cycles-per-instruction and basic block
execution frequencies of a procedure, and show possible
causes for stalls (see Section 6).

e dcpistats Analyze the variations in profile data from many
runs.

Other tools annotate source and assembly code with samphes;o
highlight the differences in two separate profiles for thesaro-
gram, summarize where time is spentin an entire progranpiine
centage of cycles spent waiting for data-cache missesset Fig-
ure 4 for an example of this kind of summary for a single proce-
dure), translate profile data into pixie format, and prodisemat-

ted Postscript output of annotated control-flow graphs.

3.1 Procedure-Level Bottlenecks

Dcpiprof provides a high-level view of the performance of arky
load. It reads a set of sample files and displays a listing ef th
number of samples per procedure, sorted by decreasing mwhbe
samples. (It can also list the samples by image, rather tlyan b
procedure.) Figure 1 shows the first few lines of the output of
dcpiprof for a run of an X11 drawing benchmark. For example,
thef f b8Zer oPol yAr ¢ routine accounts for 33.87% of the cy-
cles for this workload. Notice that this profile includes ead the
kernel {( viruni x) as well as code in shared libraries.

3.2 Instruction-Level Bottlenecks

Dcpicalc provides a detailed view of the time spent on eastni-
tion in a procedure. Figure 2 illustrates the output of dafzidor
the key basic block in a McCalpin-like copy benchmark [15h+
ning on an AlphaStation 500 5/333. The copy benchmark ruas th
following loop wheren = 2000000 and the array elements are 64-bit
integers:
for (i
cli]

i ++)



Total sanples for event type cycles = 6095201, imiss =

1117002

The counts given bel ow are the nunber of sanples for each |isted event type.

cycl es % cun® imss % pr ocedur e
2064143 33.87% 33.87% 43443  3.89% ffb8Zer oPol yArc
517464  8.49% 42.35% 86621 7. 75% ReadRequest FronC i ent
305072 5.01% 47.36% 18108 1.62% m Creat eETandAET
271158 4.45% 51.81% 26479 2. 37% m Zer oAr cSet up
245450 4.03% 55.84% 11954 1.07% bcopy
209835 3.44% 59.28% 12063 1.08% Di spatch
186413 3.06% 62.34% 36170 3.24%ffDb8Fill Pol ygon
170723  2.80% 65.14% 20243 1.81% i n_checksum
161326 2.65% 67.78% 4891  0.44%m I nsert Edgel nET
133768  2.19% 69.98% 1546 0. 14% mi X1Y1X2Y2l nReg

i mge
lusr/shlib/X11/1ib_dec_ffb_ev5.so
/usr/shlib/X11/1i bos. so
/usr/shlib/X11/1ibm.so
/usr/shlib/X11/1ibm.so

/ vimuni x

[usr/shlib/X11/1i bdi x. so
lusr/shlib/X11/1ib_dec_ffb_ev5.so
/ vmuni x

/usr/shlib/X11/1ibm.so

ion /usr/shlib/X11/1ibm.so

Figure 1: The key procedures from an x11perf run.

The compiler has unrolled the loop four times, resulting duirf
loads and stores per iteration. The code shown drives theamyem
system at full speed.

At the beginning of the basic block, dcpicalc shows summaty i
formation for the block. The first two lines display the beate
and actual cycles per instruction (CPI) for the block. Thetlmse
scenario includes all stalls statically predictable frdm tnstruc-
tion stream but assumes that there are no dynamic seatjs &ll
load instructions hit in the D-cache). For the copy benctinae
see that the actual CPl is quite high at 10.77, whereas thétees
retical CPI (if no dynamic stalls occurred) is only 0.62. §ehows
that dynamic stalls are the significant performance prolftarthis
basic block.

Dcpicalc also lists the instructions in the basic block, @ated
with information about the stall cycles (and program soame, if
the image contains line number information). Above eachmabdy
instruction that stalls, dcpicalc insetisbblego show the duration
and possible cause of the stall. Each line of assembly conessh

*** Best-case 8/13 = 0.62CPI
*** Actual 140/13 = 10.77CPI
Addr I nstruction Sanpl es CPI  Culprit

pD  (p = branch mispredict)

pD (D =DTB miss)
009810 |dq t4, 0(t1) 3126  2.0cy
009814 addq t0, 0x4, tO 0 (dual issue)
009818 | dq t5, 8(t1) 1636 1. 0cy
00981c |dq t6, 16(t1) 390 0.5cy
009820 | dq a0, 24(t1) 1482 1. 0cy
009824 | da t1, 32(tl) 0 (dual issue)

dwD (d = D-cache miss)

dwD 18. Ocy

dwD  (w = write-buffer overflow)
009828 stq t4, 0(t2) 27766 18.0cy 9810
00982c cnpult tO, vO, t4 0 (dual issue)
009830 stq t5, 8(t2) 1493  1.0cy

S (s = slotting hazard)

dwD

dwD ... 114.5cy

dwD
009834 stq t6, 16(t2) 174727 114.5cy 981lc

s

009838 stq a0, 24(t2) 1548 1. 0cy
00983c | da t2, 32(t2) 0 (dual issue)
009840 bne t4, 0x009810 1586 1.0cy

Figure 2: Analysis of Copy Loop.

from left to right, the instruction’s address, the instiant the num-
ber of PC samples at this instruction, the average numberaiés
this instruction spent at the head of the issue queue, anddhe
dresses of other instructions that may have caused thisiatisin
to stall. Note that Alpha load and load-address instrustiarite
their first operand; 3-register operators write their thoperand.

Each line in the listing represents a half-cycle, so it isydasee
if instructions are being dual-issued. In the figure, we baethere
are two large stalls, one for 18.0 cycles at instruction @& &nd
anotherfor 114.5 cycles at instruction 009834. The bubblesled
dwD before the stalledst q instruction at 009828 indicate three
possible reasons: a D-cache miss incurred byl ithg@ at 009810
(which provides the data needed by #teq), a write-buffer over-
flow, or a DTB miss. Thet g instruction at 009834 is also stalled
for the same three possible reasons. The lines lateledicate
static stalls; in this case they are caused by the 21164 riog) be
able to dual-issue adjacesit g instructions.

As expected, the listing shows that as the copy loop streams
through the data the performance bottleneck is mostly dugetim-
ory latency. Also, the six-entry write buffer on the 21164nist
able to retire the writes fast enough to keep up with the cdepu
tion. DTB miss is perhaps not a real problem since the loojxsval
through each page and may incur DTB misses only when crossing
a page boundary. Dcpicalc will likely rule out DTB miss if giv
DTBMISSsamples but lists it as a possibility here because our anal-
ysis is designed to make pessimistic assumptions whemiafiion
is limited.

3.3 Comparing Performance

Several benchmarks that we used to analyze the performénce o
the data collection system showed a noticeable varianaeinimg
times across different runs. We used our tools to examineobne
these benchmarks, wave5 from the sequest#adp95 workload,

in more detail.

We ran wave5 on an AlphaStation 500 5/333 and observed run-
ning times that varied by as much as 11%. We ran dcpistats on 8
sets of sample files to isolate the procedures that had tlaegte
variance; dcpistats reads multiple sets of sample files ampates
statistics comparing the profile data in the different s€ke output
of dcpistats for wave5 is shown in Figure 3.

The figure shows the procedures in the wave5 program, soyted b
the normalized rangéeg., the difference between the maximum and
minimum sample counts for that procedure, divided by the stim
the samples. We see that the procedureot h had a much larger
range than any of the other procedures. Next, we ran dcpizalc
snoot h for each profile, obtaining a summary of the fraction of



Number of sanpl es of type cycles
set 1 = 860301 set 2 = 862645
set 5 = 942929 set 6 = 893154

set 3
set 7

871952
890969

set 4
set 8

870780 7144601

951871

TOTAL

Statistics calculated using the sanple counts for each procedure from8 different sanple set(s)

range% sum sunto N mean st d-dev mn max procedure
11.32% 441040. 00 6.17% 8 55130.00 21168.70 38155.00 88075.00 snoot h_
1.44% 72385.00 1.01% 8 9048. 12 368.74 8578. 00 9622. 00 fftb_
1.39% 71129.00 1.00% 8 8891. 12 327.68 8467. 00 9453. 00 ffef_
0. 94% 4242079.00 59.37% 8 530259.87 14097.11 515253.00 555180.00 par mvr _
0.68% 378622.00 5. 30% 8  47327.75 1032.09 46206.00 48786.00 putb_
0.65% 410929. 00 5. 75% 8 51366.13 1161.61 50420.00 53110.00 vslvip_

Figure 3: Statistics across eight runs of 8redp95 benchmark waveb.

cycles consumed by each type of dynamic and static stallirwith
the procedure.

The summary for the fastest run (the profile with the fewest-sa
ples) is shown in Figure 4. The summary for the slowest runt (no
shown) shows that the percentages of stall cycles attdbiateD-
cache miss, DTB miss, and write buffer overflow increase @tam
cally to 44.8-44.9%, 14.0-33.9%, and 0.0-18.3% respdgtiviche
increase is probably in part due to differences in the virtaa
physical page mapping across the different runs—if difiexdata

4 Data Collection System

The DIGITAL Continuous Profiling Infrastructure periodiya
samples the program counterd) on each processor, associates
each sample with its corresponding executable image, arebsa
the samples on disk in compact profiles.

Sampling relies on the Alpha processor’s performance-tun
hardware to count various events, such as cycles and caskesni
for all instructions executed on the processor. Each pemragen-
erates a high-priority interrupt after a specified numbeewénts

items are located on pages that map to the same location in thenas occurred, allowing the interrupted instruction andeotton-

board cache, the number of conflict misses will increase.

*** Best-case 14686/36016 = 0.41CPl,

*** Actual 35171/36016 = 0. 98CPI

* k%

*** | -cache (not |TB) 0.0%to 0.3%

xR | TB/ | -cache niss 0.0%to 0.0%

xRk D-cache nmiss 27.9%to 27. 9%

ok DTB mi ss 9.2%to 18.3%

xRk Wite buffer 0.0%to 6.3%

i Synchroni zati on 0.0%to 0%

* k%

***  Branch m spredict 0.0%to 2.6%

ok IMJLL busy 0.0%to 0.0%

ok FDIV busy 0.0%to 0.0%

ok O her 0.0%to 0.0%

* k%

***  Unexpl ai ned stall 2.3%to 2.3%

i Unexpl ained gain -4.3%to -4.3%

K K K e e e e e e e e e e e - -
i Subt ot al dynami ¢ 44. 1%
* k k

i Slotting 1. 8%

i Ra dependency 2. 0%

i Rb dependency 1. 0%

i Rc dependency 0. 0%

i FU dependency 0. 0%

K K K o o e e e e e e e e e e e e e = -
xRk Subtotal static 4.8%
K K K o e e e e e e e e e e e = -
xRk Total stall 48. 9%
xRk Execut i on 51.2%
*** Net sanpling error -0. 1%
K K K o e e e e e e e e e e e e = -
ok Total tallied 100. 0%
*** (35171, 93.1% of all sanples)

Figure 4: Summary of how cycles are spent in the procedure
snoot h for the fast run of thesPEdp95 benchmark waves.

text to be captured. Over time, samples accumulate to peosid
accurate statistical picture of the total number of evess®aiated
with each instruction in every executable image run on theesy.
(There are a few blind spots in uninterruptible code; howesk
other code is profiled, unlike systems that rely on the rizaéd-t
clock interrupt or other existing system functions to obtaam-
ples.) The accumulated samples can then be analyzed, assist
in Section 6, to reveal useful performance metrics at varieuels
of abstraction, including execution counts and the averageber
of stall cycles for each instruction.

The key to our system’s ability to support high-frequencytoo
uous profiling is its efficiency: it uses about 1-3% of the CRil
modest amounts of memory and disk. This is the direct redult o
careful design. Figure 5 shows an overview of the data ciidlec
system. At an abstract level, the system consists of thiteesict-
ing components: a kerndkvice driverthat services performance-
counter interrupts; a user-modaemon procedhat extracts sam-
ples from the driver, associates them with executable imaaed
merges them into a nonvolatile profile database; amddified sys-
tem loaderand other mechanisms for identifying executable images
and where they are loaded by each running process. The riss$ of
section describes these pieces in more detail, beginnitig thwe
hardware performance counters.

4.1 Alpha Performance Counters

Alpha processors [9, 8] provide a small set of hardware perfo
mance counters that can each be configured to count a specified
event. The precise number of counters, set of supportedsgven
and other interface details vary across Alpha processoteimp
mentations. However, all existing Alpha processors camtau
wide range of interesting events, including processor kclog-
cles CYCLES), instruction cache missesA|SS), data cache misses
(bmiss), and branch mispredictionBRANCHMP).

When a performance counter overflows, it generates a high-
priority interrupt that delivers thec of the next instruction to be
executed [21, 8] and the identity of the overflowing counighen
the device driver handles this interrupt, it records thecpss iden-
tifier (P1D) of the interrupted process, tire delivered by the inter-
rupt, and the event type that caused the interrupt.
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Figure 5: Data Collection System Overview

Our system’s default configuration monitas cLEsandIMISS
events: Monitoring CYCLES results in periodic samples of the
program counter, showing the total time spent on each iotsbmt
Monitoring IMISS events reveals the number of times each instruc-
tion misses in the instruction cache. Our system can alsmbe c
figured to monitor other events.g, DMISSandBRANCHMP), giv-
ing more detailed information about the causes for dynataitss
Since only a limited number of events can be monitored sameht
ously (2 on the 21064 and 3 on the 21164), our system also sup-
ports time-multiplexing among different events at a verg fimain.
(SGI's Speedshop [25] provides a similar multiplexing daifiy.)

4.1.1 Sampling Period

Performance counters can be configured to overflow at differe
values; legal settings vary on different Alpha processafghen
monitoring cYCLES on the Alpha 21064, interrupts can be gener-
ated every 64K events or every 4K events. On the 21164, each
16-bit performance counter register is writable, allowany inter-
interrupt period up to the maximum of 64K events to be chosen.
To minimize any systematic correlation between the timifithe
interrupts and the code being run, we randomize the lengtheof
sampling period by writing a pseudo-random value [4] inte pler-
formance counter at the end of each interrupt. The defanipting
period is distributed uniformly between 60K and 64K when imon
toring CYCLES.

4.1.2 Attributing Events to PCs

To accurately interpret samples, it is important to ungerdtthe
pcdelivered to the interrupt handler. On the 21164, a perfoicea
counter interrupt is delivered to the processor six cychesr dhe
counter overflows. When the interrupt is delivered, the hamid
invoked with thepc of the oldest instruction that was in the issue
gueue at the time of interrupt delivery. The delayed dejivdwes
not skew the distribution of cycle counter overflows; it jssiifts
the sampling period by six cycles. The number of cycle caunte
samples associated with each instruction is still stati#lji propor-
tional to the total time spent by that instruction at the hefthe
issue queue. Since instructions stall only at the head ofsthes
gueue on the 21064 and 21164, this accounts for all occuesfc
stalls.

1We monitorcycLESto obtain the information needed to estimate in-
struction frequency and cpi; see Section 6 for details. Vge ahonitor
IMISS because theviss samples are usually accurate, so they provide im-
portant additional information for understanding the esusf stalls; see the
discussion in Section 4.1.2.

Events that incur more than six cycles of latency can maskthe
terrupt latency. For example, instruction-cache missesaflistake
long enough that the interrupt is delivered to the procebsfore
the instruction that incurred the1ss has issued. Thus, the sam-
pledpcfor animiss eventis usually (though not always) correctly
attributed to the instruction that caused the miss.

For other events, the six-cycle interrupt latency can caige
nificant problems. The samples associated with events ddnyse
a given instruction can show up on instructions a few cycisr|
in the instruction stream, depending on the latency of thexiéic
eventtype. Since a dynamically varying number of instartdi in-
cluding branches, can occur during this interval, usefigrimation
may be lost. In general, samples for events other thanLes and
IMISs are helpful in tracking down performance problems, but less
useful for detailed analysis.

4.1.3 Blind Spots: Deferred Interrupts

Performance-counter interrupts execute at the highestekeri-
ority level (spl devrt), but are deferred while running non-
interruptible PALcode [21] or system code at the highest priority
level? Events inpALcode and high-priority interrupt code are still
counted, but samples for those events will be associatédttt
instruction that runs after theaLcode finishes or the interrupt level
drops belowspl devrt .

For synchronousaL calls, the samples attributed to the instruc-
tion following the call provide useful information aboutethime
spent in the call. The primary asynchronaus. call is “deliver
interrupt,” which dispatches to a patrticular kernel entging; the
samples for “deliver interrupt” accumulate at that entrynpoThe
other samples for high-priority asynchronoess. calls and inter-
rupts are both relatively infrequent and usually spreadughout
the running workload, so they simply add a small amount o§@oi
to the statistical sampling.

4.2 Device Driver

Our device driver efficiently handles interrupts generagdAl-
pha performance counter overflows, and providesaot | inter-
face that allows user-mode programs to flush samples fromeker
buffers to user space.

The interrupt rate is high: approximately 5200 interrupts p
second on each processor when monitodngcLES on an Alpha
21164 running at 333 MHz, and higher with simultaneous moni-
toring of additional events. This raises two problems. tfitise
interrupt handler has to be fast; for example, if the intetrhan-
dler takes 1000 cycles, it will consume more than 1.5% of tR&JC
Note that a cache miss all the way to memory costs on the order
of 100 cycles; thus, we can afford to execute lots of instomst
but not to take many cache misses. Second, the samples tgenera
significant memory traffic. Simply storing the raw data (16D,
64-bit Pc, and 2-biteVENT) for each interrupt in a buffer would
generate more than 52 KB per processor per second. This dhta w
be copied to a user-level process for further processingraarding
into on-disk profiles, imposing unacceptable overhead.

We could reduce these problems by resorting to lower-fraque
event sampling, but that would increase the amount of timeired
to collect useful profiles. Instead, we engineered our daltaction
system to reduce the overhead associated with processingam-
ple. First, we reduce the number of samples that have to bedop
to user space and processed by the daemon by counting, irthe d
vice driver, the number of times a particular sample has wedu
recently. This typically reduces the data rate by a factc2@br

2This makes profiling the performance-counter interruptdiendiffi-
cult. We have implemented a “meta” method for obtaining daswithin
the interrupt handler itself, but space limitations preldwa more detailed
discussion.



more. Second, we organize our data structures to minimizkeca
misses. Third, we allocate per-processor data structoresdice
both writes to shared cache lines and the synchronizatiquined
for correct operation on a multiprocessor. Fourth, we dwily-
namically among specialized versions of the interrupt tewrtd re-
duce the time spent checking various flags and run-time aatsst
The rest of this section describes our optimizations in noetil.

4.2.1 Data Structures

Each processor maintains its own private set of data strestuA
processor’s data structures are primarily modified by therinpt
routine running on that processor. However, they can alseae

and modified by the flush routines that copy data to user space.

Synchronization details for these interactions are diseds$n Sec-
tion 4.2.3.

Each processor maintainshash tablethat is used to aggregate
samples by counting the number of times eaein(PC, EVENT)
triple has been seen. This reduces the amount of data ged &t
a factor of 20 or more for most workloads, resulting in lessmoey
traffic and lower processing overhead per aggregated sampke
hash table is implemented with an array of fixed size buclétsre
each bucket can store four entries (each entry consisteai,ac,
andeVvENT, plus a count).

A pair of overflow bufferstores entries evicted from the hash

but these are all packed into the 64 byte per-processortstaide-
scribed above. Therefore these accesses do not generateasny
cache misses.

4.2.3 Reducing Synchronization

Synchronization is eliminated between interrupt handtersdif-
ferent processors in a multiprocessor, and minimized betvibe
handlers and other driver routines. Synchronization df®ra (in
particular, memory barriers [21]) are expensive, costingle or-
der of 100 cycles, so even a small number of them in the irpéerru
handler would result in unacceptable overhead. The datatates
used by the driver and the techniques used to synchronizsscc
to them were designed to eliminagdl expensive synchronization
operations from the interrupt handler.

We use a separate hash table and pair of overflow buffers per
processor, so handlers running on different processorsrmesed
to synchronize with each other. Synchronization is onlyuresyl
between a handler and the routines that copy the contentseof t
hash table and overflow buffers used by that handler to useresp
Each processor’s hash table is protected by a flag that cartbe s
only on that processor. Before a flush routine copies the tash
ble for a processor, it performs an inter-processor infarfLp1) to
that processor to set the flag indicating that the hash tatideing
flushed. Ther1 handler raises its priority level to ensure that it exe-

table. Two buffers are kept so entries can be appended to onecutes atomically with respect to the performance-counteriupts.
while the other is copied to user space. When an overflow buffe If the hash table is being flushed, the performance counterirpt

is full, the driver notifies the daemon, which copies the éuftb
user space.

The interrupt handler hashes tho, Pc, andeEVENT to obtain a
bucket index; it then checks all entries at indeéx If one matches
the sample, its count is incremented. Otherwise one enéayicted

to an overflow buffer and is replaced by the new sample with a

count of one. The evicted entry is chosen using a madunter
that is incremented on each eviction. Each entry occupidyyss;
therefore, a bucket occupies one cache line (64 bytes) origraA
21164, so we incur at most one data-cache miss to searchtitee en
bucket.

The four-way associativity of the hash table helps to préven
thrashing of entries due to hashing collisions. In Sectiavexdis-
cuss experiments conducted to evaluate how much greatesiass
tivity might help.

4.2.2 Reducing Cache Misses

A cache miss all the way out to memory costs on the order of 100

cycles. Indeed, it turns out that cache misses, for bothuasbns

and data, are one of the dominant sources of overhead in the in

terrupt handler; we could execute many more instructioribaut
a significant impact on overhead as long as they did not rasult
cache misses.

To reduce overhead, we designed our system to minimize the

handler writes the sample directly into the overflow buflése of
the overflow buffers is synchronized similarly.

Althoughipis are expensive, they allow us to remove all memory
barriers from the interrupt handler, in exchange for insiag the
cost of the flush routines. Since the interrupt handler ruagshm
more frequently than the flush routines, this is a good tréideo

4.3 User-Mode Daemon

A user-mode daemon extracts samples from the driver and asso
ciates them with their corresponding images. Users may ralso
guest separate, per-process profiles for specified imadesdata

for each image is periodically merged into compact profiteses!

as separate files on disk.

4.3.1 Sample Processing

The main daemon loop waits until the driver signals a fullrfieey
buffer; it then copies the buffer to user space and procesaels
entry. The daemon maintains image maps for each active ggpce
it uses theriD and thepc of the entry to find the image loaded at
thatpcin that process. Thecis converted to an image offset, and
the result is merged into a hash table associated with tegaet
image an@&VENT. The daemon obtains its information aboutimage
mappings from a variety of sources, as described in theiilig
section.

number of cache misses. In the common case of a hash table hit,

the interrupt handler accesses one bucket of the hash telieus
private per-processor state variables such as a pointéettotal
hash table, the seed used for period randomization, etcglabdl
state variables such as the size of the hash table, the setitomed
events, and the sampling period.

On the 21164, the hash table search generates at most oree cact}J

miss. Additionally, we pack the private state variables ssad-
only copies of the global variables into a 64 byte per-preoedata
structure, so at most one cache miss is needed for them. Bypgiak
copies of all shared state, we also avoid interprocessdrectae
thrashing and invalidations.

Periodically, the daemon extracts all samples from theeddata
structures, updates disk-based profiles and discards tlatiuses
associated with terminated processes. The time intersatscéated
with periodic processing are user-specified parametersigiigult,
the daemon drains the driver every 5 minutes, and in-memiary p
file data is merged to disk every 10 minutes. This simple tiateo
ased approach can cause undesirable bursts of intensenlaem
tivity; the next version of our system will avoid this by upihay
disk profiles incrementally. A complete flush can also bdated
by a user-level command.

4.3.2 Obtaining Image Mappings

In the uncommon case of a hash table miss, we evict an old en-We use several sources of information to determine whergésa

try from the hash table. This eviction accesses one extrlaedate
for the empty overflow buffer entry into which the evictedmgris
written. Some per-processor and global variables are alsessed,

are loaded into each process. First, a modified version oflhe
namic system loadef 6bi n/ | oader) notifies our system’s dae-
mon whenever an image is loaded into a process. The notificati
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Workload Meanbase Platform Description
runtime (secs)
Uniprocessor workloads
SPEGNt95 13226+ 258 | 333 MHz ALPHASTATION 500 The specbenchmark suite compiled using both tese and
SPEdP95 17238+106 | 333 MHz ALPHASTATION 500 PEAK compilation flags and run with theinspedriver [22].
Several tests from the x11perf X server performance tegiiog
x11perf N/A 333 MHz ALPHASTATION 500 gram. The tests chosen are representative of CPU-bousd 1€t
McCalpin N/A 333 MHz ALPHASTATION 500 The McCaIplnSTREAMSbenchmqu, consisting of four loops th
measure memory-system bandwidth [15].
Multiprocessor workloads
AltaVista 31942 | 300 MHz 4-CPUALPHASERVERA4100 | A lface of 28622 queries made to the 3.5 GB AltaVista newsiing
The system was driven so as to maintain 8 outstanding querieg
DSS 27864+ 35 | 300 MHz 8-CPUALPHASERVERS400 | A deCision-support system (DSS) query based upon the TP
specification [23].
parallel 2777+ 168 | 300 MHz 4-CPUALPHASERVERA100 T_he SPEdP95 programs, parallelized by the Stanford SUIF co
SPeEdp piler [12].
A timeshared server used for office and technical applicatioun-
timesharing 7 days 300 MHz 4-CPUALPHASERVER4100 | ning thedefaultconfiguration of our system. We used this wor|
load to gather statistics for a long-running profile session

Table 2: Description of Workloads

contains therID, a unique identifier for each loaded image, the ad-
dress at which it was loaded, and its filesystem pathnames Thi
mechanism captures all dynamically loaded images.

Second, the kernelxec path invokes a chain of recognizer rou-
tines to determine how to load an image. We register a spexcial
tine at the head of this chain that captures information abdu
static images. The recognizer stores this data in a kertfiertibat
is flushed by the daemon every few seconds.

Finally, to obtain image maps for processes already activenw
the daemon starts, on start-up the daemon scans all activegses
and their mapped regions using Mach-based system callablei
in DIGITAL Unix.

Together, these mechanisms are able to successfullyfglagsi
tually all samples collected by the driver. Any remaininckoown
samples are aggregated into a special profile. In our expEie
the number of unknown samples is considerably smaller than 1
a typical fraction from a week-long run is 0.05%.

4.3.3 Profile Database

[ Workload [ cycles (%) ] default (%) ] mux (%) |
Uniprocessor workloads
SPEANt95 2.0£0.8 2.8+0.9 | 3.0£0.7
SPEdpP95 06+1.0 05+1.1 1.1+£1.1
x11perf
noop 1.6+ 0.5 1.9+05 | 224105
circle10 2.8+0.6 24+£04 | 24+£0.4
ellipsel0 1.5+0.2 1.8+0.2 | 23+04
64poly10 1.1+£04 | 20405 | 24406
ucreate 2.7+ 0.7 42407 | 5.0£0.7
McCalpin
assign 09+£0.1 09+£0.1 | 1.1+£0.1
saxpy 1.0+0.1 1.14+0.1 | 1.3+£0.1
scale 1.1+£0.1 1.1+£0.1 1.2+£0.1
sum 1.1+£0.1 1.1+£0.1 1.2+£0.1
Multiprocessor workloads
AltaVista 0.5+ 0.8 1.3+£1.8 | 1.6+0.5
DSsS 1.2+£1.1 1.8+26 | 0.61+0.3
parallelspedp 6.0+ 3.5 31+£18 | 75+ 4.6

Table 3: Overall Slowdown (in percent)

The daemon stores samples in an on-disk profile database. Thi we summarize the results of experiments designed to metire

database resides in a user-specified directory, and mayebedshy
multiple machines over a network. Samples are organizechioi-
overlappingepochs each of which contains all samples collected
during a given time interval. A new epoch can be initiated by a
user-level command. Each epoch occupies a separate sdbedyr

of the database. A separate file is used to store the profila for
given image an@VENT combination.

The profile files are written in a compact binary format. Since
significant fractions of most executable images consistyofiml
tables and instructions that are never executed, profitetypically
smaller than their associated executables by an order ofiitualg,
even after days of continuous profiling. Although disk spasage
has not been a problem, we have also designed an improvedtform
that can compress existing profiles by approximately a fasto
three.

5 Profiling Performance

Performance is critical to the success of a profiling systeenided
to run continuously on production systems. The system muist ¢
lect many thousands of samples per second yet incur sufficien
low overhead that its benefits outweigh its costs. In thidigec

performance of our system and to explore tradeoffs in itégies

We evaluated our profiling system’s performance under ttifee
ferent configurationscycles in which the system monitors only
cycles, default in which the system monitors both cycles and
instruction-cache misses, analx in which the system monitors
cycles with one performance counter and uses multiplexinmadn-
itor instruction-cache misses, data-cache misses, amtivnais-
predictions with another counter. Table 2 shows the woukdoa
used, their average running times (from a minimum of 10 runs,
shown with 95%-confidence intervals) in thaseconfiguration
without our system, and the machines on which they ran.

5.1 Aggregate Time Overhead

To measure the overhead, we ran each workload a minimum of
10 times in each configuration, and ran many workloads as many
as 50 times. Table 3 shows the percentage overhead (with 95%-
confidence intervals) imposed by the three different coméiions

of our system compared to th@seconfiguration. (The timesharing
workload is not included in the table; since it was measured love
system, we cannot run it in each configuration to determirez-ov

all slowdown.) McCalpin and x11perf report their resultsrates
(MB/sec for McCalpin, and operations/sec for x11perf); thoese,
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the table shows the degradation of the rates. For the othec-wo
loads, the table shows the increase in running time. The ewnb
in Table 3 show that the overall overhead imposed by our sy&te
quite low, usually 1 to 3%. The variation in performance fraim

to run of each workload is typically much greater than outayss
overhead.

Figure 6 shows the data in more detail for three programs: Al-
taVista; the gcc portion of thePEGnt95 workload (peak version);
and the wave5 portion of thePEdp95 workload (peak version).
Each graph gives a scatter plot of the running times in sectord
all four configurations. The x-axis is centered at the mbase
value; the range of the y-axis is from 90% to 135% of the mean
value. 95%-confidence intervals are also shown.

AltaVista is representative of the majority of the worklsatiat
we studied: the profiling overhead is small and there iselitthri-
ance across the different runs. In contrast, our systenrsmela-
tively high overhead on gcc (about 4% to 10%). This benchmark
compiles 56 pre-processed source files into assembly fées; fde
requires a separate invocation of the program and thus hiasrectl
PID. Since samples with distinetd’s do not match in the hash ta-
ble, the eviction rate is high, resulting in higher overhések sec-
tion 5.2). Finally, the wave5 data shows an apparent spefeolnp
running DCPI in our experiments. In this and similar casks, t
running time variance exceeded our profiling overhead.

The overheads we measured are likely to be slightly highaar th
would be experienced in practice, since as discussed indke n
section, all measurements were done using an instrumeatsibx
of the system that logged additional statistics, imposmerioead
that would not normally be incurred.

5.2 Components of Time Overhead

There are two main components to our system’s overheadt Firs
is the time to service performance-counter interrupts. o8dds

the time to read samples from the device driver into the daemo
and merge the samples into the on-disk profiles for the apiatep
images. To investigate the cost of these two components e p
formed all the experiments with our system instrumentedbttect
several statistics: (1) the number of cycles spent in owrinpt
handler, collected separately for the cases when samplesrhiss

in the hash table; (2) the eviction rate from the hash tabid;(8)
the total number of samples observed. For real workloadsarere
able to directly measure only the time spent in our interrogb-
dler, which does not include the time to deliver the intetmugr the
time to return from the interrupt handler. Experimentatioith a
tight spin loop revealed the best-case interrupt setup eadiown
time to be around 214 cycles (not including our interruptdian
itself). Under real workloads, this value is likely to inase due to
additional instruction-cache misses.

To evaluate the daemon’s per-sample cost of processingxall
periments were configured to gather per-process samplethédor
daemon itself; this showed how many cycles were spent bdtiein
daemon and in the kernel on behalf of the daemon. Dividing thi
by the total number of samples processed by the driver ghes t
per-sample processing time in the daeron.

These statistics are summarized for each workload in Tafue 4
each of the three profiling configurations. We also separatela-
sured the statistics for the gcc program in #rednt95 workload
to show the effects of a high eviction rate. The table shows th
workloads with low eviction rates, such aBedp95 and AltaVista,
not only spend less time processing each interrupt (becabieén
the hash table is faster), but also spend less time progesaith
sample in the daemon because many samples are aggregated int
a single entry before being evicted from the hash table. Farkw
loads with a high eviction rate, the average interrupt cokigher;
in addition, the higher eviction rate leads to more overflaries
and a higher per-sample cost in the daemon.

5.3 Aggregate Space Overhead

Memory and disk resources are also important. Memory is con-
sumed by both the device driver and the daemon, while diskespa
is used to store nonvolatile profile data.

As described in Section 4, the device driver maintains a hash
table and a pair of overflow buffers for each processor in non-
pageable kernel memory. In all of our experiments, eachflover
buffer held 8K samples and each hash table held 16K samples, f
a total of 512KB of kernel memory per processor.

The daemon consumes ordinary pageable memory. It alloaates
buffer large enough to flush one overflow buffer or hash takele p
processor, as well as data structures for every active pseoed im-
age. Memory usage grows with the number of active proceasds,
also depends upon workload locality. Per-process datatates
are reaped infrequently (by default, every 5 minutes), ardges
for eachimage are buffered until saved to disk (by defauttinge10
minutes); as a result, the daemon’s worst-case memory agmsu
tion occurs when the profiled workload consists of many slivet
processes or processes with poor locality.

Table 5 presents the average and peak resident memory ésoth t
and data) used by the daemon for each workload. For most work-
loads, memory usage is modest. The week-long timesharimkrwo
load, running on a four-processor compute server with heahslof
active processes, required the most memory. However, siise
multiprocessor has 4GB of physical memory, the overalitfoacof
memory devoted to our profiling systemis less than 0.5%.

3The per-sample metric is used to allow comparison with tirespenple
time in the interrupt handler, and is different from the tispent processing
each entry from the overflow buffer (since multiple samples‘processed”
for entries with counts higher than one).



cycles default mux
per sample cost (cycles) per sample cost (cycles) per sample cost (cycles)
Workload miss intr cost daemon|| miss intr cost daemon|| miss intr cost daemon
rate avg (hit/miss) cost rate avg (hit/miss) cost rate avg (hit/miss) cost

SPEQNt95 6.7% | 435 (416/700) 175 9.5% | 451 (430/654) 245 9.5% | 582 (554/842) 272
gcc 38.1% | 551 (450/716) 781 || 44.5% | 550 (455/669) 927 || 44.2% | 667 (558/804) 982
sPEdp95 0.6% | 486 (483/924) 59 1.4% | 437 (433/752) 95 1.5% | 544 (539/883) 107
x11perf 2.1% | 464 (454/915) 178 5.6% | 454 (436/763) 266 5.5% | 567 (550/868) 289
McCalpin 0.7% | 388(384/1033) 51 1.4% | 391 (384/916) 70 1.1% | 513(506/1143) 72
AltaVista 0.5% | 343(340/748) 21 1.7% | 349 (344/661) 56 1.6% | 387 (382/733) 47
DSS 0.5% | 230 (227/755) 41 0.9% | 220 (216/660) 49 0.9% | 278(273/815) 60
parallelsPEdp 0.3% | 356 (354/847) 29 0.7% | 355(352/713) 47 0.9% | 444 (440/854) 58

timesharing not measured 0.7% | 202 (199/628) 66 not measured

Table 4: Time overhead components
cycles default mux
Space (KBytes) Space (KBytes) Space (KBytes)
Workload Uptime Memory Disk Uptime Memory Disk Uptime Memory Disk

avg (peak) | usage avg (peak) usage avg (peak) usage
SPEQNt95 14:57:50| 6600 (8666)| 2639 15:00:36 | 8284 (13500)| 4817 || 15:08:45| 8804 (11250)| 6280
gcc 5:49:37 | 8862(11250)| 1753 5:42:10 9284 (9945)| 3151 5:47:44 | 11543 (12010)| 4207
sPEdp95 19:15:20| 2364 (3250)| 1396 19:14:17 2687 (3750)| 2581 || 19:22:37 2958 (3800)| 3182
x11perf 0:21:25| 1586 (1750)| 216 0:20:58 1786 (1917)| 356 0:21:31 1959 (2141)| 434
McCalpin 0:09:10 | 1568 (2000)| 108 0:09:07 1716 (2179)| 155 0:09:09 1812 (2311)| 157
AltaVista 0:26:49 | 2579(3000)| 265 0:27:04 2912 (3286)| 470 0:27:09 3156 (3571)| 571
DSS 3:55:14 | 4389(5500)| 634 3:56:23 5126 (5288)| 1114 3:53:41 5063 (5242)| 1389
parallelsPEdp 8:10:49 | 2902(3250)| 1157 7:57:02 3384 (3636)| 2028 8:17:34 3662 (3950)| 2616

timesharing not measured 187:43:46| 10887 (14200) 8 not measured

Table 5: Daemon Space Overhead

On workstations with smaller configurations (64MB to 128MB) large number of samples. Memory copy costs could also be re-
the memory overhead ranges from 5 to 10%. Since the curreatda duced by mapping kernel sample buffers directly into thewta®s
mon implementation has not been carefully tuned, we expdet s  address space. We estimate that these and other changeésabul

stantial memory savings from techniques such as redudiiotie the overhead due to the daemon by about a factor of 2.
storage costs of hash tables and more aggressive reapimaotif/e
structures. 6 Data Analysis Overview

Finally, as shown in Table 5, the disk space consumed by pro- _
file databases is small. Most sets of profiles required onigva f  The CYCLES samples recorded by the data collection subsystem

megabytes of storage. Even the week-long timesharing wadkl tell us approximately how much total time was spent by eaeh in
which stored botttycLEsandimiss profiles for over 480 distinct ~ struction at the head of the issue queue. However, when we see
executable images, used just 13MB of disk space. a large sample count for an instruction, we do not know immedi

ately from the sample counts whether the instruction waplsim
5.4 Potential Performance Improvements executed many times or whether it stalled most of the times#

. . . executed. In addition, if the instruction did stall, we dd know
While the driver has been carefully engineered for perfora®& \jhy The data analysis subsystem fills in these missing piete
there is still room for improvement. In addition, the perfamce of information. Note that the analysis is done offline, aftemptes
the daemon can probably be improved substantially. have been collected.

_As shown in Section 5.2, the performance of our system isheav  Gjyen profile data, the analysis subsystem produces forieach
ily dependent on the effectiveness of the hash table in agtjrey struction:

samples. To explore alternative designs, we constructeaca-t
driven simulator that models the driver’'s hash table stmesg. Us-
ing sample traces logged by a special version of the driverew
amined varying associativity, replacement policy, ovdedile size

¢ A frequencywhich is proportional to the number of times the
instruction was executed during the profiled period;

and hash function. ¢ A cpi, which is an estimate of the average number of cycles
Our experiments indicate that (1) increasing associgtiv@m spent by that instruction at the head of the issue queue &r ea

4-way to 6-way, by packing more entries per processor cdnke | execution during the profiled period; and

(which would also increase the total number of entries intthgh

table), and (2) using swap-to-front on hash-table hits asdirting e A set of culprits, which are possible explanations for any

new entries at the beginning of the line, rather than the denain wasted issue slots (due to static or dynamic stalls).

policy we currently use, would reduce the overall systent bys

10-20%. We intend to incorporate both of these changes itugefu The analysis is done in two phases; the first phase estintages t

version of our system. frequency and cpi for each instruction, and the second pidase

Unlike the driver, the user-mode daemon has not been heavily tifies culprits for each stall. The analysis is designed focpssors
optimized. A few key changes should reduce the time to pmces that execute instructions in order; we are working on exiregd to

each raw driver sample significantly. One costly activityiie dae- out-of-order processors.
mon involves associating a sample with its correspondiragien For programs whose executions are deterministic, it is iptess
this currently requires three hash lookups. Sorting eadfebof to measure the execution counts by instrumenting the codettyi

raw samples by1D andpPc could amortize these lookups over a (e.g, using pixie). In this case, the first phase of the analydischw



estimates the frequency, is not necessary. However, megye/sgs- Addr  Instruction Si Mi Si/Mi
tems .9, databases) are not deterministic; even for deterministic 509810 | dq t4, 0(t1) 3126 1 “3126
programs, the ability to derive frequency estimates fromza 009814 addq tO, Ox4, tO 0O 0
counts eliminates the need to create and run an instrumerted 009818 | dq t5, 8(tl) 1636 1 1636
sion of the program, simplifying the job of collecting prefihfor- 00981c |dq t6, 16(t1) 390 O
mation. 009820 |dq a0, 24(t1) 1482 1 1482 *
009824 | da t1, 32(t1) 0 ©
; : 009828 stq t4, 0(t2) 27766 1 27766
6.1 Estimating Frequency and CPI 00982¢ crpult t0. VO, t4 o 0
The crux of the problem in estimating instruction frequerzyd 883222 S:q :g ?ét t2)2 171%3? i 171%33 i
cpiis that the sample data provides information about tted tione 009838 ; q a0. 24§t 2; 1548 1 1548 *
spent by each instruction at the head of the issue queuehvigic 00983c | dg t2' 32(12) 0 0
proportional to the product of its frequency and its cpi; veed to 009840 bne t4: 0x009810 1586 1 1586 *

factor that product. For example, if the instruction’s séempunt

is 1000, its frequency could be 1000 and its cpi 1, or its fezoy
could be 10 and its cpi 100; we cannot tell given only its sampl
count. However, by combining information from several inst
tions, we can often do an excellent job of factoring the ttitag 6.1.3 Estimating Frequency From Sample Counts

spent by an instruction into its component factors. The heuristic for estimating the frequency of an equivateciass

The bulk of the estimation process is focused on estimatieg t of instructions works on one class at a time. All instruction a
frequency,F;, of each instruction. F is simply the number of  Class have the same frequency, henceforth cdlled
times the instruction was executed divided by the averaggpkag The heuristic is based on two assumptions: first, that at leas
period, P, used to gather the samples. The sample cSushould some instructions in the class encounter no dynamic stall$sec-
be approximately; C;, whereC; is the average number of cycles  ond, that one can statically compute, for most instructitims min-
instruction: spends at the head of the issue queue. Our analysisimum number of cycled/; that instructioni spends at the head of

Figure 7: Estimating Frequency of Copy Loop.

first finds F;; C; is then easily obtained by division. the issue queue in the absence of dynamic stalls.
The analysis estimates tfi% values by examining one procedure M is obtained by scheduling each basic block using a model of
at a time. The following steps are performed for each proredu the processor on which it was rui; may be 0. In practice};

is O for all but the first of a group of multi-issued instruet® An
issue points an instruction with/; > 0.

If issue point has no dynamic stalls, the frequenicyshould be,
modulo sampling errorS; /M;. If the issue point incurs dynamic
stalls,S; will increase. Thus, we can estimateby averaging some
of the smaller ratiosS; / M; of the issue points in the class.

As an example, Figure 7 illustrates the analysis for the ¢opy
shown previously in Figure 2. Th&/; column shows the output
from the instruction scheduler, and ti$¢/M; column shows the
ratio for each issue point. The heuristic used various naesoose
the ratios marked with to be averaged, computing a frequency of
1527. This is close to 1575.1, the true frequency for thisygxa.

There are several challenges in making accurate estinfites.
an equivalence class might have few issue points. In gertael
smaller the number of issue points, the greater the chamteth
of them encounter some dynamic stall. In this case, the $tauri
Some details are given below. will overestimateF'. At the extreme, a class might have no issue
o points,e.g, because it contains no basic blocks. In this case, the
6.1.1 Buildinga CFG best we can do is exploit flow constraints of the CFG to compute

The CFG is built by extracting the code for a procedure from th ~frequency in the propagation phase.

1. Build a control-flow graph (CFG) for the procedure.

2. Group the basic blocks and edges of the CFG into equivalenc
classes based on frequency of execution.

3. Estimate the frequency of each equivalence class th&tiosn
instructions with suitable sample counts.

4. Use alinear-time local propagation method based on flow co
straints in the procedure’s CFG to propagate frequency esti
mates around the CFG.

5. Use a heuristic to predict the accuracy of the estimates.

executable image. Basic block boundaries are identifiem iro Second, an equivalence class might have only a small nunfiber o
structions that change control flos,g, branches and jumps. For  samples. In this case, we estimdteas) . 5:/ > . M;, wherei
indirect jumps, we analyze the preceding instructionsyddrde- ranges over the instructions in the class. This increasestim-

termine the possible targets of the jump. Sometimes thifysisa ber of samples used by our heuristic and generally improles t
fails, in which case the CFG is noted as missing edges. Therdur estimate.
analysis does not identify interprocedural edgeg,(from calls to

) . . Third, M; may not be statically determinable. For example, the
longjmp), nor does it note their absence.

number of cycles an instruction spends at the head of the issu
gueue may in general depend on the code executed before-the ba
sic block. When a block has multiple predecessors, there ane

If the CFG is noted as missing edges, each block and each &dge i static code schedule for computidd;. In this case, we currently
assigned its own equivalence class. Otherwise, we use andsd ignore all preceding blocks. For the block listed in Figuretis
version of the cycle equivalence algorithm in [14] to id&ntets limitation leads to an error}; for thel dq instruction at 009810

of blocks and edges that are guaranteed to be executed thee samshould be 2 instead of 1 because the processor cannot i$sige a
number of times. Each such set constitutes one equivaldase.c  two cycles after thest g at 009838 from the previous iteration.
Our extension to the algorithm is for handling CFG'’s with it Thus, a static stall was misclassified as a dynamic stalllaissue
loops,e.g, the idle loop of an operating system. point was ignored.

6.1.2 Determining Frequency Equivalence



Fourth, dynamic stalls sometimes make th& values inaccu-
rate. Suppose an issue point instructiodepends on a preced-
ing instructiony, either because uses the result of or because
1 needs to use some hardware resource also usgd Bhus,M;
is a function of the latency of. If an instruction between and
¢ incurs a dynamic stall, this will causeo spend fewer thai/;
cycles at the head of the issue queue because the latepavef-
laps the dynamic stall. To address this problem, we use the ra
tio D, _iv1 Sk/ D41 Mi for the issue point when there are
instructions between andi:. This estimate is more reliable than
S /M; because the dependence oh ; ensures that the statically
determined latency between them will not be decreased bgrdim
stalls ofy or intervening instructions.

Finally, one must select which of the ratios to include in &éve
erage. In rough terms, we examine clusters of issue poiat$itive
relatively small ratios, where a cluster is a set of issuatsaihat
have similar ratios€.g, maximum ratio in clustex 1.5 * mini-
mum ratio in cluster). However, to reduce the chance of usster
mating F', the cluster is discarded if its issue points appear to have
anomalous values fof; or M;, e.g, because the cluster contains
less than a minimum fraction of the issue points in the clasee
cause the estimate fdr would imply an unreasonably large stall
for another instruction in the class.

6.1.4 Local Propagation

Local propagation exploits flow constraints of the CFG to mad-
ditional estimates. Except for the boundary case whereckliias
no predecessors (or successors), the frequency of a blocitcshe
equal to the sum of the frequencies of its incoming (and datgo
edges.

The flow constraints have the same form as dataflow equations
so for this analysis we use a variant of the standard, iteratl-
gorithm used in compilers. The variations are (1) whenevesa
estimate is made for a block or an edge, the estimate is immedi
ately propagated to all of the other members in the block ge&d
equivalence class, and (2) no negative estimates are allofVae
flow equations can produce negative values because thesfiegu
values are only estimates.) Because of the nature of the fhow c
straints, the time required for local propagation is lineeathe size
of the CFG.

We are currently experimenting with a global constrainvsol
to adjust the frequency estimates where they violate the ¢lonv
straints.

6.1.5 Predicting Accuracy of Estimates

The analysis uses a second heuristic to predict the accafaach
frequency estimate as beitay, medium or high confidenceThe
confidence of an estimate is a function of the number of issirgp
used to compute the estimate, how tightly the ratios of tBads
points were clustered, whether the estimate was made bygasp
tion, and the magnitude of the estimate.

6.2 Evaluating the Accuracy of Estimates

A natural question at this point is how well the frequencyraates
produced by our tools match the actual frequencies. To atalu
the accuracy of the estimates, we ran a suite of program®twic
once using the profiling tools, and once using dcpix, a plikie-
tool that instruments both basic blocks and edges at bramiaksgo
obtain execution counts. We then compared the estimatedtar
countsF'P, whereF' is the frequency estimate aftithe sampling
period, to the measured execution counts — the values stbeuld
approximately equal (modulo sampling error) for prograntsse
execution is deterministic.

For this experiment, we used a subset of e @5 suite. The
subset contains the “base” versions of all floating pointhemarks,
and the “peak” versions of all integer benchmarks exceptjijirhe
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Figure 9: Distribution of Errors in Edge Frequencies (Weaghby
Edge Executions)

other executables lacked the relocation symbols requiyedtpix,
and the instrumented version of ijpeg did not work. The pesfil
were generated by running each program orsitg @5 workload
three times.

Figure 8 is a histogram showing the results for instructim f
qguencies. The x-axis is a series of sample buckets. Eachebuck
covers a range of errors in the estimatey, the -15% bucket con-
tains the samples of instructions wherd”> was between’5 and
.90 times the execution count. The y-axis is the percentagel of al
CYCLESsamples.

As the figure shows, 73% of the samples have estimates that are
within 5% of the actual execution counts; 87% of the samples a
within 10%; 92% are within 15%. Furthermore, nearly all sdasp
whose estimates are off by more than 15% are marked low confi-
dence.

Figure 9 is a measure of the accuracy of the frequency estémat
of edges. Edges never get samples, so here the y-axis is the pe
centage of all edge executions as measured by dcpix. As ayte mi
expect, the edge frequency estimates, which are made dtlglire
using flow constraints, are not as accurate as the block ércu
estimates. Still, 58% of the edge executions have estimétem
10%.



To gauge how the accuracy of the estimates is affected by the of all possible reasons for dynamic stalls in general andamule
number ofcyCLES samples gathered, we compared the estimates out those that are impossible or extremely unlikely in thecsfic

obtained from a profile for a single run of the integer worklea
with those obtained from 80 runs. For the integer workloasla a
whole, results in the two cases are similar, although thienasts

based on 80 runs are somewhat more tightly clustered nees%he

bucket. E.g., for a single run, 54% of the samples have estimates

within 5% of the actual execution counts; for 80 runs, th@@ases

to 70%. However, for the individual programs such as gcc oiclvh
our analysis does less well using data from a small numbent,r
the estimates based on 80 runs are significantly better. &\thgle
run of the gcc workload, only 23% of the samples are within 5%;
with 80 runs, this increases to 53%.

Even using data from 80 runs, however, thd5% bucket does

not get much smaller for gcc: it decreases from 21% to 17%. We

suspectthat the samples in this bucket come from frequendya
lence classes with only one or two issue points where dynstailis
occur regularly. In this case, gathering marecLESsamples does
not improve the analysis.

The analysis for estimating frequencies and identifyintpits
is relatively quick. It takes approximately 3 minutes to lgma the
suite of 17 programs, which total roughly 26 MB of executable
Roughly 20% of the time was spent blocked for 1/O.

6.3 Identifying Culprits

Identifying which instructions stalled and for how long eals
wherethe performance bottlenecks are, but users (and, eveptuall
automatic optimizers) must also knomhy the stalls occurred in
order to solve the problems. In this section, we outline tifert
mation our tools offer, how to compute it, and how accurate th
analysis is.

Our tools provide information at two levels: instructiondgoro-
cedure. At the instruction level, we annotate each stali witlprits
(i.e, possible explanations) and, if applicable, previougirtitons
that may have caused the stall. Culprits are displayed adddb
bubbles between instructions as previously shown in Figuieor
example, the analysis may indicate that an instructioriestdie-
cause of a D-cache miss and point to the load instructiorhfetc
ing the operand that the stalled instruction needs. At tbeguure
level, we summarize the cycles spentin the procedure, stydvaw

case in question. Even if a candidate cannot be eliminatedes
times we can estimate an upper bound on how much it can con-
tribute to the stall. When uncertain, we assume the careliddie

a culprit. In most cases, only one or two candidates remdear af
elimination. If all have been ruled out, the stall is markedua-
explained, which typically accounts for under 10% of the pka®
in any given procedure (8.6% overall in the entfeE®5 suite).
The candidates we currently consider are I-cache missescbe
misses, instruction and data TLB misses, branch mispiedit
write-buffer overflows, and competition for function unitaclud-
ing the integer multiplier and floating point divider. Eachruled
out by a different technique. We illustrate this for I-cachisses.

The key to ruling out I-cache misses is the observation that a
instruction is extremely unlikely to stall due to an I-caahéss if
it is in the same cache line as every instruction that canigrec
immediately before ft More specifically, we examine the control
flow graph and the addresses of instructions. If a stalletdlioon
is not at the head of a basic block, it can stall for an I-cache miss
if and only if it lies at the beginning of a cache line. If it isthe
head of a basic block, however, we can determine from theaont
flow graph which basic blocks may execute immediately beiffore
If their last instructions are all in the same cache line asstalled
instruction, an I-cache miss can be ruled out. For this aislye
can ignore basic blocks and control flow edges executed nassh |
frequently than the stalled instruction itself.

If IMISS event samples have been collected, we can use them to
place an upper bound on how many stall cycles can be attdliate
I-cache misses. Given th®liss count on each instruction and the
sampling period, we estimate how many I-cache misses axturr
at any given instruction. From this estimate and the exenute-
guency of the instruction, we then compute the upper boursfaih
cycles by assuming pessimistically that each I-cache m@gried
a cache fill all the way from memory.

How accurate is the analysis? Since in any nontrivial pnogra
there is often no way, short of detailed simulation, to asdemwhy
individual instructions stalled, we cannot validate oualgsis di-
rectly by comparing its results with some “correct” answestead,
we evaluate it indirectly by comparing the number of staltleg

many have gone to I-cache misses, how many to D-cache missesit attributes to a given cause with the corresponding saroplet

etc., by aggregating instruction-level data. A sample samns
shown earlier in Figure 4. With these summaries, users cakigu
identify and focus their effort on the more important penf@ance
issues in any given procedure.

For each stall, we list all possible reasons rather thangdesoul-
prit because reporting only one culprit would often be nasliag.
A stall shown on the analysis output is the average of nungerou
stalls that occurred during profiling. An instruction maglsfor
different reasons on different occasions or even for migltipasons
on the same occasion. For example, an instruction at thehiegi
of a basic block may stall for a branch misprediction at ometand
an |I-cache miss at another, while D-cache misses and wiriterb
overflow may also contribute to the stall if that instruct&tores a
register previously loaded from memory.

To compute the list of culprits for each stall, we considethbo
static and dynamic causes. For static causes, we schedtrigcin
tions in each basic block using an accurate model of the proce
sor issue logic and assuming no dynamic stalls. Detailedrdec
keeping provides how long each instruction stalls due tiicstan-
straints, why it stalls, and which previously issued instians may
cause it to stall. These explain the static stalls. Addé#lostall
cycles observed in the profile data are treated as dynantl. sta

To explain a dynamic stall at an instruction, we follow a ‘igui
until proven innocent” approach. Specifically, we startira list

from event sampling, which serves as an alternative meadtine
performance impact of the same causghough not a direct quan-
titative metric of accuracy, a strong correlation would gest that
we are usefully identifying culprits. Again, we illustratieis with
I-cache misses.

Figure 10 plots I-cache miss stall cycles agaimgss events
for the procedures accounting for 99.9% of the executiore toh
each benchmark in therPE®5 suite, with part of the main graph
magnified for clarity. Each of the 1310 procedures corresigdn
a vertical bar. The x-axis is the projected number of |-cautiisses
in that procedure, calculated by scaling thass counts by the
sampling period. The y-axis is the number of stall cyclestatted
to I-cache misses by our tools, which report a range becaumse s
stall cycles may be caused only in part by I-cache mfsses

4Even so, an I-cache miss is still possible in some scenatiesstalled
instruction is executed immediately after an interruptaftware exception
returns, or the preceding instruction loads data that happelisplace the
cache line containing the stalled instruction from a unifiedhe. These
scenarios are usually rare.

5Event counts alone are not enough to deduce an exact numbtadlof
cycles because events can have vastly different costs. Xeon@e, an |-
cache miss can cost from a few to a hundred cycles, dependimghizh
level of the memory hierarchy actually has the instruction.

6To isolate the effect of culprit analysis from that of freqog estima-
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Figure 10 shows that the stall cycles generally increade thi
IMISS counts, with each set of endpoints clustering around agtirai
line except for a few outlier pairs. In more quantitativenter the
correlation coefficients between theiss count of each procedure
and the top, bottom, and midpoint of the corresponding rasfge
stall cycles are 0.91, 0.86, and 0.90 respectively, all satigg a
strong (linear) correlation. We would expect some pointddui-
ate substantially from the majority because the cost of aeatss
can vary widely and our analysis is heuristic. For examplg; F
ure 10 has two conspicuous outliers near (0.05,3) and (1.8¢4
the first case, the number of stall cycles is unusually laeabse
of an overly pessimistic assumption concerning a singleistthe
compress benchmark ePEdnt95. In the second case, the number
is smaller than expected because the procedwedr v in fpppp
of sSPEdpI5) contains long basic blocks, which make instruction
prefetching especially effective, thus reducing the pgriaturred
by the relatively large number of cache misses.

7 Future Directions

There are a number of interesting opportunities for futesearch.
We plan to focus primarily on new profile-driven optimizatsthat
can exploit the fine-grained information supplied by ourlgsia

tools. Work is already underway to drive existing compited,

link-time, and binary-rewriting optimizations using piefidata,
and to integrate optimizers and our profiling system intoreylei

“continuous optimization” system that runs in the backgmbim-

proving the performance of key programs.

We also plan to further optimize and extend our existingas{r
tructure. We are currently investigating hardware andveae
mechanisms to capture more information with each sampleh su
as referenced memory addresses, register values, andimec-
tions. We have already prototyped two general softwarasxas:
instruction interpretation and double sampling.

Interpretation involves decoding the instruction assteciavith
the sampled PC, and determining if useful information stidnd
extracted and recorded. For example, each conditionathraan
be interpreted to determine whether or not the branch witblien,
yielding “edge samples” that should prove valuable for gsialand

tion in this experiment, the analysis used execution conm@asured with
instrumented executables as described in Section 6.2.

optimization. Double sampling is an alternate techniqaétian be
used to obtain edge samples. During selected performanogero
interrupts, a second interrupt is setup to occur immediaadter
returning from the first, providing twecvalues along an execution
path. Careful coding can ensure that the seconid the very next
one to be executed, directly providing edge samples; twoaem
samples could also be used to form longer execution patHegsofi

We are also developing a graphical user interface to impusve
ability, as well as tools for interactively visualizing aedploring
profile data. Finally, we are working with hardware desigiterde-
velop sampling support for the next generation of Alpha pesors,
which uses an out-of-order execution model that presentsreer
of challenges.

8 Conclusions

The DIGITAL Continuous Profiling Infrastructure transpatly
collects complete, detailed profiles of entire systemsloitsover-
head (typically 1-3%) makes it practical for continuousfitirey
of production systems. A suite of powerful profile analysisls
reveals useful performance metrics at various levels ofratiion,
and identifies the possible reasons for all processor stalls

Our system demonstrates that it is possible to collect preéim-
ples at a high rate and with low overhead. High-rate samptng
duces the amount of time a user must gather profiles beforg usi
analysis tools. This is especially important when usindstdloat
require samples at the granularity of individual instran8 rather
than just basic blocks or procedures. Low overhead is inapbrt
because it reduces the amount of time required to gatherleamp
and improves the accuracy of the samples by minimizing thre pe
turbation of the profiled code.

To collect data at a high rate and with low overhead,
performance-counter interrupt handling was carefullyigiesd to
minimize cache misses and avoid costly synchronizationhfeo-
cessor maintains a hash table that aggregates samplesassdoc
with the samerID, PC, andeVENT. Because of workload locality,
this aggregation typically reduces the cost of storing and@ssing
each sample by an order of magnitude. Samples are assowitted
executable images and stored in on-disk profiles.

To describe performance at the instruction-level, our ysial
tools introduce novel algorithms to address two issues: loog
each instruction stalls, and the reasons for each stall.eferahine
stall latencies, an average CPI is computed for each inginyas-
ing estimated execution frequencies. Accurate frequentisnates
are recovered from profile data by a set of heuristics thaaude-
tailed model of the processor pipeline and the constraingosed
by program control-flow graphs to correlate sample countsliio
ferent instructions. The processor-pipeline model explatatic
stalls; dynamic stalls are explained using a “guilty untéyen in-
nocent” approach that reports each possible cause notelied
through careful analysis.

Our profiling system is freely available via the Web [7]. Doge
of users have already successfully used our system to agtini
wide range of production software, including databasempib
ers, graphics accelerators, and operating systems. In cus8s,
detailed instruction-level information was essentialgorpointing
and fixing performance problems, and continuous profilingrov
long periods was necessary for obtaining a representatiféen
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