
Resilient Multicast Support for Continuous-Media ApplicationsX. Rex Xu Andrew C. Myers Hui Zhang Raj YavatkarCarnegie Mellon University Intel Corporationfrexx, acm, hzhangg@cs.cmu.edu yavatkar@ideal.jf.intel.comAbstractThe IP multicast delivery mechanism provides apopular basis for delivery of continuous media to manyparticipants in a conferencing application. However,the best-e�ort nature of multicast delivery results inpoor playback quality in the presence of network con-gestion and packet loss. Contrary to widespread beliefthat the real-time nature of continuous media applica-tions precludes the possibility of recovery of lost pack-ets using retransmissions, we have found that theseapplications o�er an interesting tradeo� between thedesired playback quality and the desired degree of in-teractivity.In particular, we propose a new model of multi-cast delivery called resilient multicast in which each re-ceiver in a multicast group can decide its own tradeo�between reliability and real-time requirements. To bee�ective, error recovery mechanisms in such a modelneed to be both fast (due to the real-time constraint)and have a low overhead (due to high volume of con-tinuous media data).We have designed a resilient multicast protocolcalled STORM (STructure-Oriented Resilient Multi-cast) in which senders and receivers collaborate to re-cover from lost packets using two key ideas. First,group participants self-organize themselves into a dis-tribution structure and use the structure to recoverlost packets from adjacent nodes. Second, the dis-tribution structure is dynamic and a lightweight al-gorithm is used to adapt the structure to changingnetwork tra�c conditions and group membership. Wehave implemented STORM in both VAT and a packetlevel simulator. Experimental results using both theMBONE and a simulation model demonstrate the ef-fectiveness of our approach.1 IntroductionAvailability of IP multicast has prompted the de-velopment of a suite of continuous media applications(nv, vat, vic, ivs) to support multimedia conferenc-ing over the Internet. Because delivery of packets inreal-time is essential for continuous playback of au-dio/video streams, it has been widely believed that itis not important or even feasible to attempt to recoverfrom lost packets by retransmitting them. Instead, ithas been observed that continuous media applicationscan tolerate a certain amount of packet loss and, there-fore, most of the research in audio/video transport hasconcentrated on devising adaptation techniques thatminimize the e�ect of packet loss and variable delays

on the quality of audio/video playback. However, wemake two important observations about the require-ments of such applications.First, there is a tradeo� between the desired levelof playback quality and interactivity. The amountof interactivity within an application has an impor-tant bearing on the exibility in packet delivery times.When an application requires a high degree of interac-tivity, real-time delivery of packets is essential. How-ever, the desired degree of interactivity varies signi�-cantly across di�erent applications. At one extreme, arecording application involves no interactivity. Today,many MBONE tools are used mostly for broadcastevents, where there is little interaction among partici-pants and most receivers are only passive listeners. Insuch cases, playback quality can be greatly improvedby waiting for delayed packets and by recovering lostpackets using retransmissions. On the other hand, ifa high degree of interactivity is desired, the packetdelivery delay must be very small, which means thatlost packets cannot be retransmitted and packets withlarge delays must be discarded.Second, receiver requirements vary widely in termsof tolerable playback quality and desired degree of in-teractivity. Within the same application, the desireddegree of interactivity typically varies from one partic-ipant to another. For instance, even in a conferencingsession such as an IETF meeting using MBONE tools,there are usually many more passive participants thanactive participants. Passive participants would ratherprefer high playback quality, which can be achieved bya combination of delayed playback and retransmissionof lost packets.Existing continuous media MBONE applications,designed only to trade quality for interactivity uni-formly over all participants, fail to take this tradeo�into account and never allow retransmission. We pro-pose a new model of multicast delivery called resilientmulticast that allows each receiver in a multicast groupto independently decide its own tradeo� between de-sired quality (reliability in delivery) and interactivity(latency in delivery).In this paper, we study error recovery strategies forresilient multicast. Since the amount of data trans-mitted by continuous media applications is large, it isdesirable to reduce the relative overhead of error re-covery packets. In addition, since resilient multicasthas real-time requirements, it is important to mini-mize the delay in recovering lost packets. We proposethe Structure-Oriented Resilient Multicast (STORM)1



protocol that is based on two key ideas: First, groupparticipants self-organize themselves into a distribu-tion structure and use the structure to recover lostpackets from adjacent nodes. Second, the distributionstructure itself is built dynamically using a lightweightalgorithm that takes into account changes in networktra�c conditions and multicast group membership.We have evaluated and veri�ed the e�ectivenessof our approach using both the experiments acrossMBONE and a simulation model. The rest of thispaper is organized as follows. We �rst begin with adescription of the resilient multicast and how it dif-fers from the conventional notion of reliable multi-cast (Section 2). Section 3 summarizes Scalable Re-liable Multicast (SRM) [9], a well-known protocol forachieving large-scale, reliable multicast using receiver-driven error recovery, and points out its relevance toour work. We then describe the details of a new proto-col called STORM (Structure-Oriented Resilient Mul-ticast) based on our approach (Section 4). Section5 describes the results of a systematic performanceevaluation using both MBONE experiments and large-scale simulations.2 Characteristics of Resilient Multi-castTo motivate the need for resilient multicast, we will�rst discuss the important di�erences between resilientand reliable multicast. Reliable multicast transport istypically needed by a data dissemination applicationsuch as a whiteboard (e.g. wb) where a sender wishesto reliably deliver all the parts of its presentation to allthe receivers. Many researchers [9, 13, 26, 25, 10] haveexamined ways of reliably delivering data to all the re-cipients within a multicast group. Resilient multicast,on the other hand, is directed at continuous media(CM) applications, creating signi�cant di�erences inthe delivery requirements of the two sets of applica-tions:1. In the wb case, every member requires a uniformlevel of reliability (all the packets must be deliv-ered eventually) whereas in the case of CM ap-plications, there are real-time requirements, andeach member has its own reliability requirementbased on its playback delay.2. In wb applications, tra�c tends to be more burstythan in CM applications and overall data ratetends to be much lower than in CM applica-tions. This has important consequences. First,enough bandwidth can be assumed to be availablefor retransmissions within a wb session. Tra�cis continuous with CM applications, bandwidthrequirements are high, and the bandwidth con-sumed by retransmissions can interfere with nor-mal transmissions. Second, to avoid contribut-ing to tra�c congestion and interference, resilientmulticast must also rely on localized recovery (re-covery using retransmissions from nearby groupmembers) as much as possible.3. In the wb case, each participant maintains per-sistent state of the session (e.g., bu�ers all the

slides in a presentation) as the sender may referback and forth to di�erent parts of the presenta-tion. Thus, every member is equally capable ofhelping other members with recovery from datathey have not received. This is not the case withCM applications. Since every member chooses itsown playback delay (and, therefore, the amountof data it bu�ers), a participant's ability to helpwith error recovery varies widely.To motivate our design further, we describe the pre-viously used techniques for reliable multicast in thenext section and point out the need for a new ap-proach for achieving resilient multicast.3 Reliable Multicast ProtocolsLoss detection and retransmission strategy are twoimportant aspects in the design of any reliable proto-col. In a traditional point-to-point reliable protocolsuch as TCP, positive acknowledgements are used todetect loss and the sender is responsible for retrans-mission of the packet. In a multipoint communication,if multiple receivers send back positive acknowledg-ments, the sender would become a bottleneck. Thisproblem is known as an ACK implosion. Therefore,reliable multicast protocols rely on a combination ofnegative acknowledgements (NACKs) and selective re-transmissions to recover from lost packets. In addi-tion, some form of NACK aggregation may be usedto further increase e�ciency. Among several reliablemulticast protocols proposed in the literature, Scal-able Reliable Multicast (SRM) protocol [9], used inthe popular Internet wb program, is a good exampleof such a protocol. We will use SRM's error recov-ery mechanisms to motivate our design of a protocolfor resilient multicast. In the following subsection, weprovide an overview of the recovery scheme used inthe SRM protocol.3.1 Overview of the SRM ProtocolIn SRM, whenever a receiver detects a packet loss,it multicasts a NACK packet to the entire group.Upon receiving the NACK packet, any member inthe group having the packet can multicast a repairpacket. To avoid duplicate NACK and repair pack-ets, a suppression algorithm is used in which a nodesets a random timer before multicasting a NACK orrepair packet. If a node receives the same NACK orrepair packet from another node before the timer ex-pires, it will cancel the planned multicast. Such analgorithm is simple and robust. However, the algo-rithm will end up consuming a lot of bandwidth whenthere is little correlation of losses among receivers. Forexample, in a group of 1000 receivers, even when onlyone receiver loses a packet, all 1000 receivers need toprocess the multicast NACK and repair packets. Thisintroduces signi�cant overhead for both the networkand the receivers. The problem becomes more severeas the number of receivers in the group increases be-cause the probability that at least one receiver doesnot receive a multicast packet also increases. In theworst case, for every multicast packet, at least one re-ceiver does not receive the packet, which means everypacket needs to be transmitted to the whole group at



0

50

100

150

200

250

300

350

400

70 80 90 100 110 120

H
os

ts
 C

ou
nt

TTL

Result of Multicast Ping

SDR (CMU, Aug. 4, 1996)
SDR (Berkeley, Jun. 24, 1996)

Figure 1: Number of hosts reachable by a given TTLleast twice { this is assuming that the NACK and re-pair suppression algorithm work perfectly. In reality,in order to reduce the number of duplicate packets, therandom timer needs to be set to a rather large value,delaying repair and NACK packets further. This isundesirable for CM applications where packets will beuseless after a certain �xed delay.3.2 Improvements in the SRM ApproachOne possible method of improving SRM's e�ciencyis to use localized recovery. The idea is to multicastNACKs and repairs locally to a limited area instead ofto the whole group. Clever use of local recovery canimprove the protocol performance in terms of bothlatency and bandwidth consumption, but requires ane�ective multicast scope control mechanism.Using the TTL (Time To Live) �eld in the IP packetheader is one possible way to implement scope control.Each link at a multicast router is con�gured with somethreshold value so that only those packets with TTLvalues greater than or equal to the threshold can beforwarded to the next hop. As in a traditional IProuter, TTL is also decreased by one at each multicastrouter.To evaluate how well TTL can be used to con-trol multicast scope, we performed experiments withthe mping program. We ping'ed the popular sdr ad-dress (224.2.127.254) with di�erent TTL values, andthen counted the hosts reached with these TTL val-ues. Figure 1 shows the results for two experimentsperformed at two hosts, Berkeley and CMU. The �g-ure only shows TTL values from 64 to 128 becausewhen the TTL is less than 64, only hosts within a lo-cal region can be reached, and hosts in the same regionusually share the same packet loss pattern, reducingthe probability that they will be able to provide re-pairs to each other.From the �gure, it can be seen that TTL is nota good measure of locality. The number of reach-able hosts does not increase linearly with TTL values.Rather, the curve has large jumps for certain TTL val-ues and remains at for other TTL values. In addition,our experiments showed that the TTL values between

two hosts are usually not symmetric. That host A canreach host B with some TTL value does not imply thathost B can reach host A with the same TTL. When agroup member receives a NACK message with a spe-ci�c TTL value, it does not know which TTL value touse to multicast the repair. To make matters worse,there might be some other members who have alsoreceived the same NACK and suppressed their ownNACKs. The repairer is expected to provide repair tothese members also, but it has no way of knowing theappropriate TTL value to use to reach them all.To summarize, the SRM protocol represents a sim-ple and robust approach for large-scale recovery basedon persistent state, suppression of duplicate NACKsand repairs, and global retransmissions. However,global recovery may incur large overhead both in termsof network bandwidth and end system processing time.In addition, e�ective suppression in a large group re-quires higher timer values, which will increase recov-ery latency. Localized recovery using TTL to limitthe scope of multicast NACKs and repairs does notwork well. Other approaches for limiting the scopeof multicast recovery such as modi�cations to the un-derlying multicast routing algorithms need further in-vestigation. Next, we will describe STORM, whichis designed to overcome these limitations and providequick recovery from lost packets.4 Structure-Oriented Resilient Multi-castIn designing error recovery algorithms for resilientmulticast, we want to (a) minimize the overhead ofcontrol packets as continuous media applications al-ready consume relatively large amount of bandwidth,and (b) minimize the delay in recovery as packets ar-riving late will be discarded. In the previous section,we argued that multicasting every NACK and repairpacket to the entire group will result in large overhead.This will be veri�ed by experiments presented in Sec-tion 5. While local multicast may alleviate this prob-lem, the TTL-based scoping mechanism has a numberof drawbacks that severely limit its use.In this section, we present our solution, STORM.4.1 Overview of the ProtocolA key idea in STORM is to distribute the NACKand repair packets along a structure that is overlaid onapplication endpoints. Unlike other distribution struc-tures such as the multicast routing tree where interiornodes are routers, both interior and leaf nodes areapplication endpoints in our structure. The construc-tion and maintenance of the structure is lightweightin the sense that the algorithm keeps a small amountof local state and avoids the use of distributed anddynamic state that needs to be consistent. As willbe explained later in this section, besides the packetsin the playback bu�er, each node needs to keep thefollowing STORM related state: a short list of par-ent nodes, a quality estimator for each parent node, alevel number, a delay histogram of all packets receivedby the node, a list of timers for the NACK packetsthat are sent to its parent, and a list of NACK pack-ets from its children for which repair packets have not



been sent. All state information is local except the listof NACK packets, which is shared by a pair of childand parent nodes. For the NACK-related state, theonly possible inconsistency occurs when a NACK orrepair packet is lost, causing a parent and child dis-agree about which packets the child lacks, in whichcase the child will timeout and initiate another re-quest. As a result, most decisions are local and only asmall number of control packets are needed to main-tain the structure. By not guaranteeing full reliability,we are able to avoid some expensive operations suchas keeping track of exact group membership and ag-gregating positive acknowledgments to verify deliveryto all group members.The recovery algorithm works as follows. Each re-ceiver maintains a list of parent nodes, which are othermembers in the multicast group. Whenever a receiverdiscovers a packet is missing, it selects one node fromthe parent list and sends a NACK for that packet tothe parent. If, after some timeout, the host has notreceived a repair, it will choose another parent on thelist to which it will send another NACK. This goeson until the packet is recovered or the packet becomesobsolete and there's no need to recover it any more.The purpose of using multiple parents instead of a sin-gle parent is to balance load among di�erent membersand to make the recovery mechanism more robust.When a parent receives a NACK from a child for apacket that the parent has in its bu�er, it will unicastthe packet to the child immediately. If the parentdoes not have the packet, it will wait for the packetto arrive, and then send it to the child. The packetmay not have arrived at the parent for two reasons:either because the packet from the source is delayed,or because the packet was lost and the parent itself isin the process of recovering the packet from its ownparent.In our protocol, NACK and repair messages aresent using unicast UDP except in a LAN environment,where the cost of a multicast and unicast is identical.We avoid large scale multicast of NACKs and repairsto reduce recovery overhead. In addition, NACK andrepair packets are sent immediately so that recoverylatency is minimized, which is critical for continuousmedia applications using resilient multicast service.In the following sections, we describe four key as-pects of STORM:1. a lightweight and scalable protocol to build andmaintain the structure distributedly;2. an algorithm for choosing parents based on thesemantics of resilient multicast;3. a distributed loop avoidance mechanism;4. a technique for adapting the structure to changesin network conditions and multicast group mem-bership.4.2 Building the Recovery StructureThe recovery structure is a multi-parent tree withapplication endpoints being both the interior and leaf

nodes. The structure is incrementally built as re-ceivers join the multicast group.When a receiver �rst joins the group, it uses an ex-panding ring search (ERS) technique to look for poten-tial parents. An ERS consists of sending out queriesto the multicast group with increasing TTL values.Members that are already part of the structure cananswer ERS queries they receive with a unicast reply.The reply packet contains an indication of the per-ceived loss rate as a function of the playback delay.The next section describes how a new receiver usesthis information to select a parent. When the new re-ceiver collects enough candidates for parent, it stopsits ERS.Note that the ERS query is the only control mes-sage that uses multicast in our protocol and TTL val-ues are used to limit the multicast scope, ensuring thatwe locate suitable parents in a scalable manner. An-other advantage of ERS is that usually, adjacent nodesare found as parents, creating a reasonable structure.However, to make the structure optimal for error re-covery, parent nodes should be selected carefully. Theselection procedure is described below.4.3 Selection of Parent NodesEach receiver keeps track of a set of measuredpacket losses as a function of the playout bu�er size.The loss rate is a monotonically decreasing functionof the playback bu�er size as a larger playback bu�ersize will allow packets experiencing longer delays andretransmitted packets to arrive in time to be playedback. When a new member is looking for a parent, itknows how long a packet arrival can be delayed andstill be useful (based on its own playback bu�er size)and therefore, can use a candidate parent's loss rateto determine whether to accept it as a parent or not.As an extremely oversimpli�ed example, consider a re-ceiver with a 200 ms bu�er that is looking at two po-tential parents, A and B. Suppose A received 90% ofits packets within 10 ms and 92% of its packets within100 ms, while B received 80% of its packets within 10ms and 95% of its packets within 150 ms, the receivershould choose B as its parent. It does not matter howslowly a packet arrives as long as the packet arrives intime to be useful.The data source timestamps each packet with thetime the packet was sent. When a member receivesthe source's packet, it �nds the adjusted arrival time,ta, which is the di�erence between the time the mem-ber received the packet and the timestamp inside thepacket. The member keeps a histogram recording howmany packets it received for each value of ta. Whenthe loss rate at time t, L(t), is requested, a memberreturns1� Pti=0 number of packets for which ta = itotal number of packets expected :To choose from a group of potential parents, thechild uses a potential parent's value of L(ta + B �dparent;child) where B is the child's bu�er size (in mil-liseconds), dparent;child is the one{way propagation de-lay from the parent to the child, and ta is the typical



adjusted arrival time experienced by the child. Notethat ta is computed relative to the child's time frame,so we need to convert it to the parent's time frame.To make the conversion, we need to �nd the clocko�set between the potential parent and the child.When the child sends the parent a message, it times-tamps the message (call this value t1). The parentrecords the time it receives the message (t2) and in-cludes this value in its reply to the child, which itwill also timestamp (t3). The child records the timeat which it receives the parent's reply (t4). Now theclock o�set can be computed as half of the sum ofo�sets between (t1, t2) and (t4, t3), as:offset = t1 � t2 + t4 � t32Finally, the child can ask its parent to return L(ta�offset +B � dparent;child).The loss statistic used to judge a parent's suitabilityis a unique aspect of STORM designed to mesh wellwith our goal of resilience.4.4 Loop AvoidanceSince the recovery structure is built in a distributedmanner, loops can be formed during the ERS. Loopsare undesirable because they can prevent recoveryfrom packet loss. For example, when a loop is formedamong a few receivers, any packet loss shared by thesereceivers will not be recovered. Therefore, STORMshould build a structure that is a loop-free multi-parent tree rooted at the data source.To retain the distributed nature of STORM, ourgoal was to design a loop avoidance scheme that doesnot require active coordination and exchange of stateinformation among nodes in the tree. Each node isassigned a level number to reect its position in thetree. A new node can only choose nodes with a levelnumber lower than its own as its parents. The roothas the lowest level, which is 0. The level should beassigned to the node soon after it joins the multicastgroup, and should not change during its lifetime. Itis also desirable that the level should somehow reectthe network topology; for example, those closer to theroot should have a lower level than those further away.We have considered two methods to assign levels tohosts:� Use hop count to the root as level. When anode joins the multicast group, it tries to �ndout its hop count to the root and use it as itslevel. Hop count is usually static (assuming thenetwork routing does not change very frequently)and to some extent reects the distance betweentwo hosts. However, the current Unix socket APImakes it di�cult for a user level application to getaccess to the TTL information, which encodes thehop count, in an IP datagram header.� Use the estimated round-trip time (RTT) to theroot as level. In our implementation, we use theestimated RTT from a node to the root as a sub-stitute for the hop count. Since RTT can be esti-mated with one packet exchange, each node can

send a message to the root when it joins the groupto determine its level. (To solve the implosion ofsuch requests when many new members join thegroup at the same time, each member can wait fora random time before it sends the message to theroot.) A minor aw in using the RTT estimateis that it depends on the network load and maynot represent accurately the distance between twohosts. This is acceptable most of the time, sinceit is not necessary and not possible to make thelevel always an accurate estimation of the networktopology.Sometimes more than one node may have the samelevel. In most cases, this is acceptable, but when alarge number of hosts have the same level, the numberof eligible parents for these hosts can be unacceptablysmall. To avoid such a situation, each receiver's levelis augmented with a random number, known as theminor level. When two hosts have the same level, theminor level is used as a tie breaker with lower minorlevel deciding which node gets to be the parent.Our experiments show that the level-based mecha-nism prevents loops successfully and helps in buildinga structure that reects the physical network topol-ogy. Figure 3 shows a typical structure built in oneof our experiments, with level numbers marked besideeach node.4.5 Adapting the StructureThe structure, once built, is not �nal. As networkconditions and packet loss characteristics change overtime, a parent may fail to provide timely recovery inmany cases. One possible cause of degraded parentalperformance is an increase in the loss rate in somepart of the network. In the extreme case, a parentsimply leaves the group so that it no longer providesany repairs at all.To adapt to changing conditions, each receiver pe-riodically reevaluates the quality of each of its parentsby computing the ratio of the number of repairs sup-plied by a parent to the number of NACKs sent tothe parent. This ratio, which serves as a dynamic rat-ing of a parent's performance, is updated by periodicexponential smoothing. The ratio is checked period-ically and if it drops below some threshold, then theparent is removed from the parent list. To �nd a re-placement, a node can start another round of ERS to�nd a better parent or select a node that was foundin a previous ERS but not yet used as a parent.The ratio of NACKs sent to repairs received com-bined with the metrics used to choose the parents isused to rank parents in the parent list. The num-ber of NACKs sent to a parent is proportional to itsrank in the parent list. For example, if two parentshave ranks 1 and 2, then the latter will receive twiceas many NACKs as the former. Dynamic adaptationis an important feature of STORM; successful adapta-tion makes the protocol more robust in the presence ofchanging group membership and network conditions.4.6 Distributed State ManagementThe main di�culty in making distributed algo-rithms scalable and robust is maintaining distributed



state that is both dynamic and consistent. In our de-sign, we try to minimize the amount of state infor-mation kept at each node. In addition, we avoid dy-namic and distributed state that needs to be consistentacross several nodes. For example, in our protocol,while a child node keeps track of its parent nodes, aparent node does not keep track of its children. Theparent{child state information is kept at the child in-stead of at both the parent and child. Another ex-ample is the design of the loop avoidance algorithmwhere each receiver acquires a level number that re-mains unchanged during the receiver's lifetime. In theprotocol, node A can pick node B as its parent only ifnode A has a larger level number than node B. Sincethe level numbers de�ne a partial ordering relation-ship that is time invariant, change of a parent nodebecomes a local operation.In contrast, with Lorax, parent nodes explicitlykeep a list of children, and children also keep a list oftheir siblings. To ensure loop-free structure, each nodeincludes its identi�er in messages where the identi�erencodes the path from the root to the node. Sincethe path changes dynamically, when a node changesparent, all descendants have to be noti�ed and theinformation has to be updated after each change inmembership. Compared to the method in Lorax, ouralgorithm is much simpler.5 EvaluationTo evaluate the performance of STORM, we imple-mented both STORM and SRM in the audio programvat, and conducted experiments over the MBONE. Inaddition, we implemented both protocols in a packetlevel simulator, which allows us to compare STORMand SRM in a controlled environment and to evaluateSTORM's scalability.5.1 Performance MetricsWe evaluate the e�ectiveness of an error recoveryprotocol along two dimensions: the performance im-provement to the application, and the overhead in-curred by the protocol. In the context of resilientmulticast, application performance is characterized bythe loss rate given a �xed size playback bu�er. Weuse two performance indices: the initial loss rate ofa receiver is the fraction of packets that are origi-nally multicasted by the sender but not received intime by the receiver, the �nal loss rate of a receiver isone minus the fraction of packets that arrive in timefor playback among all the packets that are originallymulticasted by the sender. Multiple packets with thesame sequence number are counted just once. Theapplication performance is characterized by the �nalloss rate. The lower the �nal loss rate, the better theperformance. Since the �nal loss rate also depends onthe network conditions during experiments, we use theinitial loss rate as a reference.There are two types of overhead, the network band-width consumed due to the transmission of NACK andrepair packets, and the time spent to process thesepackets at each node. The processing overhead at anode can be measured by the number of NACK/repairpackets sent and received by the node. The bandwidth

gatech

berkeley

isi

cmu

umass
virginia

ucla

ukyFigure 2: Network topology used in experiments.overhead incurred by a packet is more di�cult to mea-sure as it depends on the route taken by the packet.In addition, the costs of multicast and unicast packetsare quite di�erent. In our evaluation, we assume allunicast packets incur same overhead to the network.For a multicast packet that is transmitted to N re-ceivers, we assume it has a cost N=2 times the cost ofa unicast packet [18]. We call this the normalized costfor a multicast packet.We use an additional performance metric to charac-terize both the application performance improvementand the protocol overhead. We de�ne the average costof a recovered packet to be the average number ofNACK/repair packets sent and received for each re-covered packet.5.2 Experiments over the MBONEWemodi�ed the MBONE audio tool vat to use bothSTORM and SRM and then ran a series of experi-ments among 8-12 sites scattered on the MBONE. Fig-ure 2 is a rough approximation of the network topologyconnecting the 8 hosts involved in the experiments pre-sented here. The topology was generated by �ndingthe multicast route between each pair of sites using theprogram mr [23] and then combining common routesfound in mr's output. Figure 3 shows the snapshotof a typical recovery structure created by the hostsduring an experiment.For the SRM implementation, each host in the mul-ticast group exchanges a periodic, low-frequency ses-sion message so that the distance between any twohosts can be estimated. We used the following set ofparameters in the SRM protocol [9]: C1 = C2 = 2:5and D1 = D2 = 2:5, which, according to our experi-ence, provide acceptable performance.For both STORM-based vat and SRM-based vat,we ran many experiments at di�erent times of day,with di�erent hosts as the data source. Due to spacelimitations, this paper only presents results collectedfrom 6 sets of experiments where each set includesresults from one run of STORM and one of SRM. Tomake sure network conditions are consistent betweenruns of SRM and STORM, we ran SRM-based vat



isi(64)

gatech(36)

cmu(0)

virginia(57)

uky(64)

berkeley(60)

ucla(75)

umass(54)

Figure 3: A typical structure built in the experiments.The numbers specify the level assigned to each site.Nodes that are higher in the �gure can become parentsof lower nodes. Initial FinalSite STORM SRM STORM SRMBerkeley 3.71% 4.11% 0.01% 0.09%Ga. Techy 4.37% 4.02% 0.00% 0.29%ISI 3.82% 3.97% 0.04% 0.11%UCLAy 3.82% 3.97% 0.35% 0.11%Kentucky 10.19% 6.88% 0.52% 0.62%U. Massy 10.65% 14.46% 0.05% 6.68%Virginia 42.95% 45.57% 0.17% 22.67%Table 1: Loss rate (with and without recovery) of allreceivers in one of the data sets. Hosts marked witha (y) used a 200 ms playback bu�er while unmarkedhosts used a 500 ms playback bu�er.right after STORM-based vat. The interval betweenthe two experiments was usually less than 10 minutes.We used the same con�guration for all experiments:each experiment lasted 5 minutes; a sender at CMUsent PCM-encoded audio in 172 byte packets at a rateof 50 packets per second. All other hosts acted asreceivers, some (Ga. Tech, UCLA, U. Mass) with 200ms playback bu�ers and the rest with 500 ms playbackbu�ers.Table 1 shows the loss rate observed by all thereceivers in one of our 6 sets of experiments. Thecolumns, marked \Initial" and \Final," show the ini-tial and �nal loss rates respectively. Tables 2 and 3show the loss rate seen at receivers Berkeley and U.Mass in all 6 runs of experiments. From these tableswe can see the �nal loss rates achieved by STORM andSRM are usually similar. For sites with a high initialloss rate such as the University of Virginia, STORM

Initial FinalRun STORM SRM STORM SRM1 5.73% 5.69% 0.04% 0.17%2 3.71% 4.11% 0.01% 0.09%3 1.51% 1.21% 0.01% 0.01%4 1.83% 1.16% 0.00% 0.00%5 5.65% 3.88% 0.05% 0.07%6 1.06% 1.38% 0.00% 0.01%Table 2: Loss rate seen by receiver Berkeley in 6 runsof experiments.Initial FinalRun STORM SRM STORM SRM1 14.16% 11.63% 1.01% 3.35%2 10.65% 14.46% 0.05% 6.68%3 5.77% 3.64% 0.22% 1.42%4 2.60% 2.25% 0.02% 0.88%5 8.87% 11.60% 0.17% 3.17%6 4.41% 6.00% 0.20% 2.78%Table 3: Loss rate seen by receiver U. Mass in 6 runsof experiments.performs much better than SRM. One explanationis that because MBONE and unicast routes betweenhosts di�er, congestion in the MBONE will not a�ectunicast packets. Since repair packets in SRM take thesame route as original packets, repair packets will ex-perience the same high loss rate. For STORM, repairpackets were sent via unicast, avoiding the congestion.While STORM and SRM provide sim-ilar application-level performance, the overheads theyincur are quite di�erent. This is illustrated by Fig-ure 4, which depicts the average cost of a recoveredpacket, the average number of NACKs/repairs sent orreceived for each packet recovered. The bars marked\Normalized" show the cost of SRM's multicast pack-ets in terms of the cost of unicast packets. The �nalcolumns in each graph are data from a simulation of10 hosts using a randomly generated topology.There are several noteworthy points about Fig-ure 4. First, in all experiments, the average costof recovering a packet, both in terms of the numberof NACK/repair packets received and the normalizednumber of NACK/repair packets sent, is much lowerfor STORM than for SRM. This is a direct conse-quence of the fact that STORM uses unicast to recoverpackets from neighboring nodes while SRM uses globalmulticast for all NACK/repair packets. One bene�tof SRM is that it sends fewer packets than STORM.However, since each packet is sent to the whole group,it results in higher network overhead, which is reectedin the normalized number of packets sent and num-ber of packets received. The second thing to notice isthat there are certain relationships between the datapresented. In particular, the number of packets sentand received for STORM are nearly equal. This isa consequence of using unicast rather than multicastfor recovery. Also, the number of packets received in



1 2 3 4 5 6 Simulation
Experiment number

0

5

10

15

20

25

P
ac

ke
ts

 r
ec

ei
ve

d 
pe

r 
pa

ck
et

 r
ec

ov
er

ed

ST
O

R
M

 
SR

M
 

Repairs

NACKs

(a) Received 1 2 3 4 5 6 Simulation
Experiment number

0

5

10

15

20

25

P
ac

ke
ts

 s
en

t 
pe

r 
pa

ck
et

 r
ec

ov
er

ed

ST
O

R
M

 
SR

M
 

N
or

m
al

iz
ed

Repairs

NACKs

(b) SentFigure 4: Average number of NACKs and repairs received and sent per recovered packet in 6 experiments and 1simulation.SRM is slightly less than half the normalized numberof packets sent. This is to be expected given that thenumber of multicast packets sent is multiplied by N=2to yield the normalized data and that without packetloss, the number of received packets would be N timesthe number of received packets. Finally, we note thatthe simulation data matches with the experimentationdata closely. The simulator represents a more con-trolled environment than the MBONE, increasing ourcon�dence in the fact that STORM's lower overhead isnot due to di�ering network conditions between runsof STORM and SRM.In all the experiments we presented so far, the mem-bership of the multicast group does not change, i.e. allthe receivers join the group simultaneously and stay inthe group until the end of the session. In order to eval-uate the the adaptivity of STORM in the presence ofdynamic membership, we performed a number of ex-periments in which receivers join the multicast groupsequentially with certain intervals between joins, stayin the group for a �xed time, and then leave the group.We ran these experiments back to back with experi-ments without dynamic leave/join. Table 4 comparesone typical run of the two experiments. In these ex-periments all hosts used a 500 ms playback bu�er. Itcan be seen from the table that dynamic joins andleaves do not signi�cantly degrade performance.5.3 Simulation ExperimentsThe main goals of the simulation are to explore howwell our protocol scales to a large number of receiversand to evaluate various aspects of the protocol. Beforepresenting the experimental setup and results, we will�rst discuss relevant features of the simulator.We use a discrete event packet level simula-tor. Identical implementations or code segments ofSTORM and SRM are used in the experiments onreal networks and in the simulator. In the simulator,both unicast and multicast packets are routed alongpaths that minimize the number of hops. Each link i

Initial With RecoverySite Static Dynamic Static DynamicBerkeley 1.31% 2.68% 0.0% 0.0%Ga Tech 1.32% 4.76% 0.0% 0.0%ISI 4.55% 3.97% 0.0% 0.0%UCLA 4.55% 4.76% 0.0% 0.0%Kentucky 3.96% 5.38% 0.59% 1.04%U. Mass 2.64% 5.50% 0.0% 0.03%Virginia 3.94% 4.95% 0.0% 0.0%Table 4: Loss rate of two experiments with STORM,one with static and the other with dynamic groupmembership. All hosts used a 500 ms playback bu�er.is characterized by two parameters: a loss rate li anda typical delay di. For each packet traversing link i,the probability that the packet gets dropped is li. Ifthe packet is not dropped, it will be forwarded with adelay that is uniformly distributed between di and 2di.With this model, we do not model delay and loss cor-relations among packets. Furthermore, unlike a realnetwork, the link delay and loss properties are inde-pendent of the number of packets traversing the link.The result is that simulations will favor protocols thatgenerate more data. Since SRM with global multicastgenerates more packets than STORM, the simulatoris likely to be overly optimistic about SRM's perfor-mance.Network topologies for use in the simulator are ran-domly generated. There are two levels of routers in asimulated network: a top level backbone and secondlevel regional networks. Each router at the backboneconnects to a second level regional network and eachrouter at the regional network connects to a host thatparticipates in the multicast group. Routers on thebackbone are randomly connected to each other suchthat on average, each router is connected to 4 other



10 50 100 200 400
Number of receivers

0

2

4

6

P
ac

ke
ts

 r
ec

ei
ve

d 
pe

r 
pa

ck
et

 r
ec

ov
er

ed

Repairs

NACKs

Figure 5: Number of protocol packets received perpacket recovered (500 ms playback bu�er)routers. Routers in each regional network are con-nected in the same way. Backbone links are assignedtypical delays on the order of 20 to 40 millisecondswhile regional network links are assigned delays of 1to 5 milliseconds. All links are assigned loss probabil-ities in the range of 0.1% to 0.5%.Hosts in the randomly generated topologies tendnot to be isolated in contrast to our sites on the Inter-net, which are all signi�cantly distant from each other.Hosts that are close to each other in the network tendto have a high loss correspondence since they sharemany links in the multicast distribution tree. Due tothe nature of the parent search, it is more likely thata neighbor will be picked as a parent, all other thingsbeing equal. When a host loses a packet, the parentto which it sends the NACK is more likely to havealso lost the packet. The host needs to wait for itsparent to get a repair, increasing the delay to receivea repair slightly and causing more NACKs to be sentin the simulator than in our MBONE experiments dueto timeouts.All hosts joined the multicast group simultaneouslyat the very beginning of the simulation and remaineduntil the end, 10 minutes later (in simulated time).The e�ect of all hosts joining the multicast simultane-ously is that hosts will have fewer parents to choosefrom, on average, than if they joined in series sincehosts are only able to pick a parent that has alreadyjoined the recovery structure. This may lead to a lessoptimal recovery structure at �rst, but parent reeval-uation and adaptation will subsequently improve thestructure.In order to evaluate how well STORM scales withrespect to network size and number of receivers, weran simulations on topologies with 10, 50, 100, 200,and 400 hosts and with playback bu�er sizes of 200and 500 ms. Figure 5 depicts the average overheadfor each host as a function of the group size, wherethe overhead is measured as the average number of

NACK/repair packets received per packet recovered.From the �gure, we can see that the cost remains asmall constant as the group/network size grows from10 to 400.One of the important features of STORM is thatthe recovery structure is built based on a cost func-tion that takes advantage of the semantics of resilientmulticast to choose parents. To evaluate the e�ect ofusing the cost function, we ran two simulations of thesame 100 host topology using STORM with and with-out the cost function enabled. We then extracted eachhost's �nal loss rate and created a histogram summa-rizing how many hosts experienced a given level ofloss.Figure 6 presents histograms comparing the fre-quency of loss for STORM with and without itsparent{choosing metric enabled. These histogramswere generated using 100 host topologies in which eachhost used a 200 ms playback bu�er. The e�ect of themetric is particularly obvious in this con�guration be-cause the short bu�ers leave little time for hosts torecover lost packets. The histograms indicate that us-ing the metric does yield a tangible bene�t, decreasingthe average loss rate from 1.3% to 0.28%. With themetric, it seems that hosts choose parents that aremore able to send repairs in time.6 Related WorkA considerable amount of research has been re-ported in the area of reliable multicast transport [13,26, 17]. Instead of describing each approach and com-paring it to STORM, we will focus here only on salientsimilarities and di�erences between STORM and otherapproaches in the area of distributed error recovery.Some of the earlier work on reliable multicast trans-port used a sender-initiated approach for error recov-ery in which the sender is responsible for ensuring thatall the receivers receive all the data reliably. How-ever, such an approach does not scale very well asthe number of receivers increases. Ramakrishnan andJain [20] were the �rst to explore a receiver-initiatedapproach in which the burden of ensuring reliable de-livery is shifted to the receivers. The SRM protocoldiscussed earlier is an excellent example of this ap-proach in which the receivers are completely respon-sible to ensure reliable delivery. The tradeo� betweensender-initiated and receiver-initiated approaches hasbeen extensively studied [19, 13].STORM also adopts a receiver-initiated mechanismfor error recovery because the resilient multicastmodellets each receiver make its own tradeo� between de-sired latency and the degree of reliability. To facilitatequick, e�cient, and robust recovery, STORM also or-ganizes the group members into an acyclic graph sothat a receiver can recover a lost packet from one ofmany parents in the graph. The idea of using a hi-erarchical error recovery based on a structure amongparticipants is not completely new. TMTP [26] wasthe �rst protocol to suggest a tree-based error recoverywhere the tree is built dynamically among the groupmembers. RMTP [17] is another protocol that uses astatically con�gured, two-level hierarchy for error re-covery. Under TMTP (or RMTP), each receiver has a



0.00 0.01 0.02 0.03

Proportion Lost

0

5

10

15

20

25

N
um

be
r 

of
 H

os
ts

(a) with metric 0.00 0.01 0.02 0.03

Proportion Lost

0

5

10

15

20

25

N
um

be
r 

of
 H

os
ts

(b) without metricFigure 6: STORM loss distribution comparing STORM with and without the parent metric (200 ms playbackbu�er)single parent and an interior node in the tree is usedto aggregate periodic ACKs to ensure feedback on re-liable delivery to the sender. Lorax [13] is anotherprotocol that uses a shared tree structure for error re-covery in an MxN communication. LBRM [10] is acollection of strategies for achieving receiver-initiatedreliable delivery using a hierarchy of logging serversincluding a primary server responsible for sending pos-itive ACKs to the multicast source.Another way of building a recovery structure amongparticipants is the Token Ring Protocol (TRP) byChang and Maxemchuk in which participants are or-ganized into a ring with one of the members acting asthe token site. The token site is responsible for times-tamping new packets and retransmitting missing pack-ets for all the other receivers. By moving the tokensite around all the members in the group, the proto-col ensures a totally ordered reliable service. Anotherprotocol based on Chang and Maxemchuk's work isRMP (Reliable Multicast Protocol) [24].The approach used in STORM di�ers in manyways. First, STORM does not require a parent tomaintain any state information (or aggregation ofACKs) about its children. Instead, every receiveridenti�es potential parents and selects a list of its par-ents based on each parent's loss rate characteristics.Second, the multi-parent tree structure is built dy-namically and adapts as network conditions and lossrates at parents change dynamically. Third, STORMuses a light-weight method for building and maintain-ing a loop-free structure which keeps the overhead verysmall. For example, the level-assignment approach al-lows us to keep the structure loop-free implicitly with-out explicit exchange of state information among the

participants.As pointed out by Pejhan et al. [18], there are threetechniques that are used to deal with transmission er-rors in real-time continuous media applications: au-tomatic repeat request (ARQ), forward error control(FEC), and error concealment (EC). We are using anARQ mechanism for continuous media applications.Recently, Bolot and others [1] proposed use of FEC forCM applications. One advantage of FEC-based errorcontrol is that the recovery latency is smaller thanthe ARQ method provided the packet transmissionrate is high. However, the FEC mechanism usuallyrequires higher bandwidth than the selective retrans-mission approach. Also, the FEC method requires useof CPU-intensive encoding mechanisms that add tothe processing overhead at receivers. Another disad-vantage of the FEC approach is that it builds redun-dancy in transmission assuming homogeneous receiverrequirements and loss rates at receivers. Under theresilient multicast model, we assume that receiver re-quirements are heterogeneous and, therefore, each re-ceiver must be able to make the tradeo� between theoverhead of recovery and the degree of desired relia-bility.Dempsey and Liebeher [7, 8] and Papadopoulos andParulkar [16] were the among �rst to examine the useof retransmission-based error recovery for CM applica-tions. However, their solutions are for unicast sessionsand require tighter coordination between the senderand the receiver to recover lost packets. STORM's er-ror recovery scheme is designed for multicast delivery,does not require tight coupling between a sender andits receivers, and relies on a distributed structure toallow recovery of missing packets from one or more



(possibly adjacent) members of the multicast group.7 ConclusionThis paper introduces resilient multicast, a newmodel for multicast delivery of continuous mediastreams. Under this model, each receiver in a mul-ticast group determines its own tradeo� between de-sired playback quality and tolerable latency. Basedon the tradeo�, a receiver recovers from lost packetsby requesting retransmissions from other group mem-bers whenever feasible. To facilitate fast recovery andto ensure low retransmission overhead, resilient mul-ticast relies on organizing the participants into a dis-tribution structure (an acyclic graph) for error recov-ery. We have designed a new multicast delivery pro-tocol called STORM that includes a lightweight algo-rithm for dynamically creating the distribution struc-ture and a low-cost mechanism for selecting parentsfor recovery of lost packets.We have evaluated the e�ciency of STORM bycomparing it against the SRM protocol and also veri-�ed its e�ectiveness by using both MBONE-based ex-periments and a simulation model. Our experimen-tal results show that STORM is e�ective and e�cientin error control for real-time multimedia applications.We also show that STORM is adaptive and robust ina real network like MBONE. Further, our simulationresults show that STORM has nice scaling propertiesfor large multicast groups.AcknowledgementWe would like to thank the following people whoprovided us with remote accounts and helped us withour MBONE experiments: Bruce Mah of Univer-sity of California at Berkeley, Dan Massey of Univer-sity of California at Los Angeles, Kevin C. Almerothand Mostafa Ammar of Georgia Institute of Tech-nology, Ted Faber of Information Sciences Institute,Robert Adams of University of Kentucky, Jim Kuroseand Maya Yajnik of University of Massachusetts atAmherst, Deborah Estrin and Pavlin Ivanov Ra-doslavov of University of Southern California, PacoHope and Jorg Liebeherr of University of Virginia,Chuck Cranor, John DeHart, Zubin Dittia and Mar-cel Waldvogel of Washington University at St. Louis,Wieland Holfelder and Rainer Lienhart at Universityof Mannheim, Germany.References[1] J. Bolot, H. Crepin, and A. V. Garcia. Analysisof audio packet loss in the Internet. InProceedings of NOSSDAV'95, pages 163{174,April 1995.[2] S. Casner. Frequently asked questions (FAQ) onthe multicast backbone (MBone), August 1994.[3] S. Casner and S. Deering. First IETF Internetaudiocast. ACM Computer CommunicationReview, July 1992.[4] J. Chang and N. F. Maxemchuk. Reliablebroadcast protocols. ACM Trans. ComputerSystems, 2(3):251{273, August 1984.

[5] S. Deering. Host extension for IP multicasting,August 1989. RFC-1112.[6] S. Deering and D. R. Cheriton. Multicastrouting in datagram internetworks and extendedLANs. ACM Transactions on ComputerSystems, May 1990.[7] B. J. Dempsey. Retransmission-Based ErrorControl for Continuous Media Tra� c inPacket-Switched Networks. PhD thesis,Department of Computer Science, University ofVirginia, 1994.[8] B.J. Dempsey, J. Liebeherr, and A.C. Weaver.On retransmission-based error control forcontinuous media tra�c in packet-switchingnetworks. Computer Networks and ISDNSystems, 1996.[9] S. Floyd, V. Jacobson, S. McCanne, C. G. Liu,and L. Zhang. A reliable multicast frameworkfor light-weight sessions and application levelframing. In Proceedings of the ACM SIGCOMM95, pages 342{356, Boston, MA, August 1995.[10] H. Holbrook, S. K. Singhal, and D. R. Cheriton.Log-based receiver-reliable multicast fordistributed interactive simulation. InProceedings of SIGCOMM'95, pages 328{341,Boston, MA, August 1995.[11] V. Jacobson. Multimedia conferencing on theInternet. SIGCOMM, August 1994. Tutorial 4.[12] V. Jacobson and S. McCanne. A visual audiotool.[13] B. N. Levine, D. B. Lavo, and J. J.Garcia-Luna-Aceves. The case for concurrentreliable multicasting using shared ACK trees. InProceedings of ACM Multimedia'96, November1996.[14] J. Lin and S. Paul. RMTP: A reliable multicasttransport protocol. In Proceedings of IEEEINFOCOM'96, pages 1414{1424, San Francisco,CA, 1996.[15] S. McCanne and V. Jacobson. vic: A exibleframework for packet video. In Proceedings ofACM Multimedia'95, pages 511{522, SanFrancisco, CA, November 1995.[16] C. Papadopoulos and G. Parulkar.Retransmission-based error control forcontinuous media applications. In Proceedings ofthe Sixth International Workshop on Networkand Operating System Support for Digital Audioand Video, pages 5{12, 1996.[17] S. Paul, K. Sabnani, and D. Kristol. MulticastTransport Protocols for High Speed Networks.In Proceedings of Local Computer Networks,1994.



[18] S. Pejhan, M. Schwartz, and D. Anastassiou.Error control using retransmission schemes inmulticast transport protocols for real-timemedia. IEEE/ACM Transactions onNetworking, 4(3):333{344, June 1996.[19] S. Pingali, D. Towsley, and J. Kurose. Acomparison of sender-initiated andreceiver-initiated reliable multicast protocols. InACM Sigmetrics'94, pages 221{230, Nashville,TN, May 1994.[20] S. Ramakrishnan and B.N. Jain. A NegativeAcknowledgment Protocol with Periodic PollingProtocol for Multicast over LANs. InProceedings of INFOCOM '87, pages 502{511,1987.[21] H. Schulzrinne. RTP pro�le for audio and videoconferences with minimal control, January 1996.RFC-1890.[22] H. Schulzrinne, S. Casner, R. Frederick, andV. Jacobson. RTP: A transport protocol forreal-time application, January 1996. RFC-1889.[23] University of Cambridge Computer Lab.http://www.cl.cam.ac.uk/mbone/#Mrouted.[24] B. Whetten, S. Kaplan, and T. Montgomery. Ahigh performance totally ordered multicastprotocol, August 1994. available fromresearch.ivv.nasa.gov as ftp at/pub/doc/RMP/RMP dagstuhl.ps.[25] M. Yajnik, J. Kurose, and D. Towsley. Packetloss correlation in the MBone multicast network.In Proceedings of GLOBECOM'96, 1996.[26] R. Yavatkar, J. Gri�oen, and M. Sudan. Areliable dissemination protocol for interactivecollaborative applications. In Proceedings ofACM Multimedia'95, pages 333{344, 1995.


