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Abstract

We have added multiple threads of control to the Standard ML programming language. Standard
ML's support for first-class functions and automatic storage management influenced the design in
a number of ways. We demonstrate how other concurrency and synchronization operations, such
as cobegin/coend, futures, and events, can beimplemented in terms of the thread interface. Finally,
we describe three implementations of the thread interface: a coroutine version, a uniprocessor
preemptive version, and a multiprocessor M ach-based version.
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1 Introduction

There is no way to express explicit parallelism in the Standard ML programming language [26].
A compiler may, of course, introduce parallelism implicitly, but the state of the art in thisareais
not sufficiently advanced for our purposes. Instead, we need a means of creating and manipulating
multiplethreads of control within asingle Standard ML program.

A thread represents a sequential flow of control or an abstraction of a processor. Threads are also
known as lightweight processes, but we avoid that term to eliminate confusion with the UNIX?*
notion of (heavyweight) process. An implementation of threads may require support from the
compiler, the language runtime system, and the underlying operating system.

Threads are needed for two main reasons: to expressthenaturally concurrent structure of distributed
and interactive systems, and to achieve parallelism on real multiprocessors. Programs constructed
with multiplethreads can be simpler and more modul ar than programs using alternative mechanisms.

A system constructed from multiple threads can use simple synchronousinterfaces that are easy to
understand. Whether or not amoduleisinternally multithreaded is purely an implementationissue,
and is not visiblein itsinterface. Thisimproves modularity and allows programs to be devel oped
by composition, with no fear of unpredictable interactions between components.

Implementors of distributed and interactive applications must deal with asynchronous events such
as incoming network messages, users keystrokes, expiration of timers, and so on. The principles
of modularity and information hiding dictate that different events be detected and processed in
different modules. The use of multiple threads, each waiting for the appropriate class of events,
supports this programming methodol ogy.

The aternativesto multiplethreadsin systems programming languagesinclude software interrupts;
non-blocking operationsthat permit polling; or an operation that allowsa program to wait for any of
aset of events. In UNIX, for example, al of these mechanisms are provided, adding considerable
complexity to the system interface.

None of the alternatives to threads provides modularity. If polling or some form of sel ect

operation is used, the programmer must write one portion of code to detect and dispatch events
appropriately to their handlers; this polling loop violates modularity by “knowing” about all the
event-processing modules in the system. Similarly, if software interrupts (such as UNIX signals)
are used, logically unrelated modules must share a common signal handler.

We have therefore added multiple threads to Standard ML. We describe the design of a thread
module that can be used directly by parallel applications, as well as by higher-level constructs for
paralle programming (such as Multilisp futures [21] and CSP communication channels[23]). The
thread packageisaStandard ML module; no modificationsto the syntax of thelanguage were made.

11 Standard ML

The Standard ML programming language (SML) is a mostly functional language with a complete
formal specification of itssemantics[26]. It providesfirst-classfunctions(closures), static (compile-
time) typing, polymorphism, exceptions, automatic storage management (garbage collection), and
a powerful module facility.

The Standard ML of New Jersey (SML/NJ) implementation [3, 7] supports type-safe, first-class

LUNIX isatrademark of AT& T Bell Laboratories.



| Hoare'smonitors[22] |

| Mesaprocesses[25] |

| Modula-2+ threads[9, 10, 33] |

| CMA[17] | | Cthreads[15] | | Wand'scoroutines[38] |
| POSIX threads[24] | | Ramsey’sand Reppy's coroutines[28, 30] |
| SML threads |

Figure 1: Genealogy of thread interfaces

continuationswith callcc and throw, and provides asynchronous exception handling facilitiesin the
form of signal handlers[32]. We havefound that these extensions, along with the clean organization
of the compiler and runtime system, make experimentation with threads considerably easier.

1.2 Related Work

The conceptual ancestor of most of the thread interfaces in common use is Hoare's monitor con-
struct [22]. This proposal separated the two most common uses of Dijkstra's semaphores (P and
V operations) into mutual exclusion and synchronization via condition variables. This separation,
along with syntactic support in the programming language, eliminated many sources of errors with
semaphores.

The first practical use of the monitor idea occurred at Xerox PARC, with the implementation of
processes in Mesa [25]. The precise semantics of Hoare monitors were modified, however, to
permit asimpler, more robust implementation. In particular, no guarantee was madethat signaling a
process would result init being the next process to enter the critical region. Asaresult, a“wakeups
as hints” style is required, in which processes always recheck the condition for which they are
waiting, and go back to sleep if necessary.

At DEC SRC, the researchers who implemented processes and monitors in Mesa went on to add
threads to Modula-2 for the Firefly multiprocessor workstation. The DEC SRC thread design [9,
10, 33] is the ancestor of various thread interfaces for UNIX and C [15, 17, 24], as well as the
current work. This similarity in ancestry has an important practical implication: there is a large,
common subset of functionality in al of these packages. For example, Birrell’s excellent tutorial
on programming with threads [10] is directly applicable to the SML threads described here.

Other researchers have examined concurrency in conjunction with SML. However, most have
adopted message passing as the means of communication and synchronization. Reppy’s work on
first-class synchronous operations[31] describes an implementation of coroutine-based threads and
a number of higher-level constructs (channels and events). Ramsey presents a similar message-
passing, coroutine threads package based on CSP [28]. Both implementations use continuationsto
simulate concurrency [38].

The genealogy of the SML thread modul e described here is summarized in Figure 1.



signature THREAD =

sig
val fork : (unit -> unit) -> unit
val exit : unit ->'a
val yield : unit -> unit
type nutex
val mutex : unit -> nutex
val acquire : mutex -> unit
val try_acquire : nutex -> bool
val release : mutex -> unit
val with_nmutex : nmutex -> (unit ->’'a) ->"a
type condition
val condition : nmutex -> condition
val mutex_of : condition -> nutex
val with_condition : condition -> (unit ->'a) ->'a
val signal : condition -> unit
val broadcast : condition -> unit
val wait : condition -> unit
val await : condition -> (unit -> bool) -> unit
exception Undefi ned
type 'a var
val var : unit -> ’la var
val get : "a var ->"'a
val set : "a var ->'a -> unit
end

Figure 2: The SML Thread Interface

2 Threadsin Standard ML

The SML thread interface is given in Figure 2. In the following sections, we describe the interface
and give some justification for each of the constructs.

2.1 Creation and Destruction

The basic abstraction in the thread moduleis, naturally, the notion of athread: a sequential activity
in acomputation. Although acobegin . .. coend control structureisoneway of (implicitly) creating
and destroying threads, most current thread packagesuseafork. .. joinmodel. Thisismoregenera,
sinceit can create arbitrary thread relationships, not just nested ones. We follow a slightly different
approach, providing fork but not join.

val fork : (unit -> unit) -> unit



The f or k function starts an invocation of its argument executing as an independent thread of
control. Theeffect issimilar to simply calling the function, except that the caller and callee proceed
in separate threads.

Althoughthefunctionintheforked thread takes no argument, closures can be used easily to simulate
passing argumentsto the child:

fun fork with_argument f x = fork (fn () =>f x)

(The f n construction in SML denotes a lexicaly closed anonymous function, like a | anbda
expression in Scheme.)

The child function returns no result; it is executed purely for effect. Results can be communicated
between threads via shared mutabl e objects, and wrapper functions can be used to implement the
necessary synchronization and termination protocol. An example, in the form of a futures module,
is presented in Section 3.2.

The SML f or k operation differs from its ancestors in Figure 1 in that no “handl€’ is returned to
identify the newly created thread of control. Indeed, there is no “thread” data type exported by
theinterface at al. Instead, the per-thread state described in Section 2.4 generalizes the notions of
thread identifier and thread-local variables.

Thread termination occurs either implicitly when the top-level function of the thread returns, or
explicitly when exi t iscaled.

val exit : unit -> "a

The exi t function terminates the thread that calls it; since it never returns, its invocation is
considered to have arbitrary type.

No synchronization with other threads occurs upon exit, and no join operation is provided at this
level. Application-specific termination protocols can be implemented by using an appropriate
wrapper function asthe argument to f or k; the implementation of futuresin Section 3.2 offers one
example of this.

2.2 Mutual Exclusion

If two threads perform conflicting operations on the same data, the result is unpredictable—it
depends on detail s of scheduling, relative execution speed, compiler code generation, and hardware
architecture. A classic exampleisan attempt by two threads to increment a counter at the sametime.
Thearbitrary interleaving of each thread’ sload-increment-store sequenceresultsinthecounter being
incremented by an unpredictable amount. This problem is solved by introducing mutual exclusion
locks, of type mut ex, dongwithacqui r e and r el ease operations.

type nutex
val nmutex : unit -> nutex

val try_acquire : nutex -> bool
val acquire : nutex -> unit
val release : nutex -> unit



The nmut ex function creates a new mutex vaue.

The acqui r e operation attempts to lock a mutex and does not return until it succeeds, at which
point the calling thread is said to hold the mutex. At most one thread may hold a given mutex at any
time. The case of athread attempting to acquire a mutex it already holdsis not treated specialy;
the thread will block forever.

Thetry_acquire operationis similar to acqui r e except that it does not wait to acquire the
mutex; it tries once and returns an indication of whether or not it succeeded. For example, a
busy-waiting version of the acqui r e function could be written interms of t ry_acquire as
follows:

fun acquire nutex =
if try_acquire nutex then () else acquire nutex

Ther el ease operation unlocks a mutex, giving other threads a chance to acquire it.
The following code uses mutex operationsto increment a counter safely:

val m= mutex ()
val counter =ref O

acquire m
counter := (!counter) + 1;
rel ease m

Theacqui re andr el ease operations on a given mutex must always be correctly paired, even
in the presence of exceptions. This common source of errors is remedied in other languages by
additiona syntax, such as the LOCK statement of Modula-3 [13]. We can achieve the same effect
in SML simply by delaying the body:

val with_mutex : mutex -> (unit ->’a) ->'a

fun with_nutex m body =
let val result = (acquire m
body () handle exn =>
(rel ease n raise exn))

rel ease m
resul t
end

Thewi t h_rut ex operation acquires the mutex while executing the given function, then releases
it before returning the value of the function call. It also catches any exception raised and rel eases
themutex beforere-raising it. The support for closuresin SML makesthisconstruct usabledirectly,
without the additional syntactic sugar required in Modula-3.

The exampl e of incrementing a counter can now be expressed as follows:

with_mutex m(fn () => counter := (!counter) + 1)



2.3 Synchronization

A condition variable allows one thread to wait until another thread indicates that some event has
occurred. The association between the condition variableand thisevent ismaintained entirely by the
application. The event istypically a change to shared data, and requires some application-specific
test to detect. A mutex must be used to prevent one thread from testing the shared datawhile another
isupdating it; this mutex is specified at the timethe condition is created.

type condition

val condition : nutex -> condition

val mutex_of : condition -> nutex

val with_condition : condition -> (unit ->"a) ->'a

val signal : condition -> unit
val broadcast : condition -> unit
val wait : condition -> unit

Thecondi ti on function creates a new condition variable, to be used under the protection of the
specified mutex.

Thermut ex_of function returns the mutex associated with acondition. Thewi t h_condi ti on
function isjust the composition of wi t h_mut ex and mut ex_of .

Thesi gnal operationisused toindicatethat an event has occurred. If any threads are waiting for
the specified condition variable, at least one of them is awakened. The br oadcast operationis
similar, except that it guarantees to awaken all threads waiting for the condition.

Thewai t operation atomically rel eases the mutex associated with the specified condition and waits
for another thread to signa it. The awakened thread then reacquires the mutex before returning.
The application must ensure that the event associated with the condition can occur only while the
mutex isheld.

Other threads may execute between the time that the condition is signaled and the time that the
caller reacquires the mutex. One must therefore view wakeups merely as hints, and always retest
the shared data. Theawai t operation implementsthisas follows:

val await : condition -> (unit -> bool) -> unit

fun await c test =
if test () then

0

el se
(wait c; await c test)

Theyi el d operation advises the runtime system to schedul e another thread to run on the current
Processor.

val yield : unit -> unit



2.4 Thread State

Thread stateisprovided by thevar type constructor and itsassociated operations. A var issimilar
toar ef , but the contents of avar are maintained on a per-thread basis, rather than shared among
al threads.

type 'a var
val var : unit -> 'la var

excepti on Undefi ned
val get : "a var ->"a
val set : "a var ->’"a -> unit

Unlikear ef , avar that isdefined in one thread may be undefined in another, hence dereferencing
it may raise the exception Undef i ned. Weak type variables are required to handle polymorphic
var types, in the same way they are used for polymorphic r ef types.

Thisabstraction of per-thread state allowsdifferent “ subsystems” to define their own formsof thread
identification without conflicting with one another. For example, alock package might only need
to identify threads with unique values of some type that admits equality, so it can tell whether a
requesting thread already holds a lock. A master-slave package might need to guarantee that the
thread 1Ds had additional properties, likelyingintherange 1... N. Another system might require
per-thread transaction IDs. Rather than choosing asingleform of thread ID, different packages can
use different per-thread variables whose values have whatever semantics they need. An example,
in the form of recursive mutex locks, isgiven in Section 3.1.

3 Building Abstractionson Top of Threads

The SML thread interface was designed to provide the minimal set of constructs and mechanisms
needed to support efficient concurrent programming. In this section, we demonstrate how higher-
level constructs and mechanisms can be built on top of the thread interface.

3.1 Recursive Mutex Locks

Aswas stated before, the case of athread attempting to acquire alock a second time before rel easing
itisnot treated specialy. In someimplementations, thethread could block forever. Recursive mutex
locksallow athread to acquire al ock any number of timesbeforerel easing it acorresponding number
of times. Often, this can make composition of subsystems easier.

Recursive mutex locks are implemented by a functor parameterized by the Thr ead structure, as
shown in Figure 3. This example shows how the basic thread interface can be used to implement
higher-level facilities. In particular, it demonstrates how per-thread state can be used by one
particular subsystem without having to worry about name clashes with other subsystems.

3.2 Futures

Here is how one can define a variant of Multilisp futures [21].



signature REC MJTEX =

sig
type T
val new : unit -> T
val lock : T -> unit
val unlock : T -> unit
end

functor Rec_Miutex (Thread : THREAD) : REC MUTEX =
st ruct
datatype thread_id = ID of unit ref

val self : thread_id Thread.var = Thread.var ()
fun me () = Thread.get self

handl e Thread. Undefi ned =>
let val id = 1D (ref ())

in
Thread.set self id; id
end
datatype T = RMof { owner : thread_id ref,
count : int ref,
nmutex : Thread. nutex }
fun new () = RM{ owner =ref (me ()),
count = ref O,
mutex = Thread.mutex () }

fun lock (RM{ owner, count, nutex }) =
if 'count = O orelse !'owner <> ne () then
(Thread. acquire mnutex; count := 1; owner
el se
i nc count

excepti on Not Omner

fun unlock (RM{ owner, count, nutex }) =

if 'count = 0 orelse !'owner <> ne () then
rai se Not Oaner

else if lcount = 1 then
(dec count; Thread.rel ease mnutex)

el se
dec count

end

Figure 3: Recursive mutex locks

me ())



signature FUTURE =
sig
type 'a future
val future : ("a ->"'2b) ->"a ->'2b future
val touch : "a future -> "a
end

functor Future (Thread : THREAD) : FUTURE =
st ruct
datatype 'a cell = BUSY | DONE of "a | EXN of exn

datatype 'a future =
FUTURE of Thread.condition * "a cell ref

fun future function arg =
let val ¢ = Thread.condition (Thread.nutex ())
val f = ref BUSY
fun wapper () =
let val result = DONE (function arg)
handl e exn => EXN exn

in
Thread.with_condition c
(fn () => (f :=result; Thread. broadcast c))
end
in
Thr ead. fork wrapper;
FUTURE (c, f)
end

fun touch (FUTURE (c, f)) =
et fun touch’ () =

case !f of
BUSY => (Thread.wait c; touch ())
| DONE x => X
| EXN exn => raise exn
in
Thread.with_condition c touch’
end

end

Figure 4: A variant of Multilisp futures



An « future represents a computation of a value of type « that may not yet have finished. To use
the value, the function t ouch must be applied to the future; this will block if necessary until the
computationisfinished. UnlikeMultilisp futures, which can be used interchangeably with “normal”
values, our variant requiresthat t ouch always be used, even after the future has completed.

Theimplementation of futuresin Figure 4 shows how result-producing computations can be started
as threads, with appropriate wrapper functions to provide synchronization between the producer
and consumers of the results. This example shows that a “join” protocol need not be provided by
the threads module.

A cobegin ... coend control structure can be implemented trivialy in terms of the f ut ur e and
t ouch functions:

val cobegin : (unit -> wunit) list -> unit

fun cobegin fns =
app touch (map (fn f => future f ()) fns)

The cobegi n function takes alist of procedures, starts each one executing in its own thread, and
then waits for them all to finish before returning.

3.3 Channels

We can use the thread interface to define a simple buffered message passing system, as shown in
Figure 5. We use bounded (» = 1) buffers with mutual exclusion to facilitate the communication.
The cr eat e operation creates a new typed channel.> The put and get operations allow one to
send and receive vaues through a channel. Note that a get operation blocks until the buffer is
non-empty, while the put operation blocks until the buffer is non-full.

Figure 6 shows how we can simulate remote procedure call (RPC) using channels. An RPC-vaue
consists of an « channel used for input, and a 5 channel used for output. The accept operation
takes an RPC-value and an @ — (3 function, gets an « value from its input channel, applies the
function to that value, and putsthe result of type 5 initsoutput channel. Thecal | operation takes
an RPC-value and an « value, sends the value to the acceptor, waits until a § value is sent back,
and returns this value as the result of the operation.

3.4 Other Constructs

It is possibleto implement many other concurrency constructs using the thread interface, including
but not limited to:

e CSP guarded commands [23], the Ada rendezvous and select [37], and variants such as
Charlesworth’s multiway rendezvous [14]. (See Section B.3 for an implementation of ren-
dezvous and select.)

¢ Reppy’sfirst-class synchronous operations (events) [30].

2Sincewe user ef s to implement channels, we are forced to use a“weak” type variable in the specification.
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signature CHANNEL =

sig
type 'a T
val create : unit ->’'1la T
val put c’aT->"a->unit
val get ’aT->"a
end

functor Channel (Thread : THREAD) : CHANNEL =
st ruct
datatype 'a T

CHAN of { here : Thread. condition,
gone : Thread.condition,
value : "a option ref }

fun create ()
let val m
in

Thr ead. nutex ()

CHAN { here = Thread.condition m
gone Thread. condition m
val ue ref NONE }

end

fun put (CHAN { here, gone, value }) v =
let fun put’ () =
case !val ue of
SOVE _ => (Thread.wait gone;
put’ ())
| NONE => (value := SOWE v;
Thr ead. br oadcast here)
in
Thread. wi th_condi ti on gone put’
end

fun get (CHAN { here, gone, value }) =
let fun get’ () =
case !val ue of
SOVE v => (val ue := NONE;
Thr ead. br oadcast gone;
v)
| NONE => (Thread.wait here;
_ get’ ())
in
Thread. wi th_condition here get’
end
end

Figure 5: Buffered channels
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signature RPC =

sig
type ("a, 'b) T
val create : unit -> ("1la, "1b) T
val accept : ('2a ->'b) -> ('2a, 'b) T -> unit
val call s ('a, '2b) T ->"a ->"2b
end

functor RPC (Channel : CHANNEL) : RPC =
st ruct
datatype ('a, 'b) T =T of ("a Channel. T * "b Channel.T)

fun create () = T (Channel.create (), Channel.create ())

fun accept f (T (inChan, outChan)) =
Channel . put out Chan (f (Channel.get inChan))

fun call (T (outChan, inChan)) value =
(Channel . put out Chan val ue; Channel . get inChan)
end

Figure 6: Remote procedure call using channels

Of these, Reppy’seventsare by far the most difficult to implement, due primarily to their generality.
Basically, an event is a synchronous value that may be “invoked” by async operation. Example
event producing functionsincludet ransmi t andr ecei ve, which synchronize with communi-
cation over channels, and wai t , which synchronizeswith thetermination of athread. Thechoose
operation takes alist of events and produces a new event, representing a non-deterministic choice
among theeventsinthelist. When sync isapplied to an event, the base events that compriseit are
polled? to see if any are immediately satisfiable. If so, then one such base event is chosen and the
corresponding synchronization (and communication, if appropriate) takes place. If no base events
are immediately satisfiable, then the thread is blocked until one is satisfiable, at which point the
corresponding synchronization takes place.

The similarities between events and other languages' select constructs are apparent, but there are
three main differences:

1. Events are values, while select statements are, of course, just statements. This implies that
no singlethread “owns’ an event.

2. Events may be composed at run time using choose, whereas the form of select statements
isfixed at compiletime.

3. “Output” event values are alowed in argumentsto choose, whereas most select statements
do not alow output commands in guards.

3When polled, each event returns one of three indications: ready, any, or blocked. The any statusis used to indicate a
satisfiable event that should only be chosen if there are no ready events. Eventsthat are blocked will never be chosen.
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Each of these differences makes implementing events quite difficult. (Reppy gives a coroutine
implementation [31], but many of the difficulties arise in the presence of true paralelism.) In
particular, the last problem has been atopic of quite abit of research [8, 34, 35]. Nevertheless, we
have been able to implement events using the thread interface [27].

Thefact that so many higher-level constructs can be efficiently implemented in terms of the thread
interface (with help from SML's first-class functions, polymorphic types, and module system)
reinforces our belief that we have chosen a good set of primitives. The advantage of our low-
level approach isthat it can be implemented efficiently on both uniprocessors and shared-memory
multiprocessors, as we will show in the remainder of this paper. It can then be used as the basis
for multiple higher-level facilities, all of which will interoperate. In alarge system, for example,
a module that uses futures can be composed with another modul e that uses synchronous events
and channels. The alternative—providing a high-level mechanism as the sole means of expressing
concurrency—is much less attractive: it may not be natural for all applications, and implementing
other paradigms efficiently in terms of it may be difficult (consider using a rendezvous simply to
acquire alock!)

4 Simulating Concurrent Threads

Inthefollowing sections, we givesomedetail sregarding two implementationsof thethread interface
that we have developed purely in SML/NJ. Thefirst isacoroutineversion that uses SML/NJ sfirst-
class continuations to multiplex control. The second is also a continuation-based version, but uses
UNIX signals and SML/NJ's asynchronous signal-handling facility to provide preemption. Both
implementations provide the functionality needed for simulating concurrency on uniprocessors.

4.1 Using Continuationsto Simulate Concurrency

A continuation of some expression isafunction that takes the result of the expression and computes
the “rest of the program”. SML/NJ provides continuations as abstract types with the following
signature [18]:

type 'a cont
val callcc : ("acont ->'"a) ->"a
val throw : 'a cont -> ("a ->"'bh)

Thecal | cc operation isused to create acont that can be applied using thet hr ow operation.

Wand is generally credited with showing how to simulate concurrency using first-class continua
tions[38]. The key ideais that continuations represent the state of a computation; since they are
first-class, they can be stored in a data structure (such as a queue) and invoked at a later time.

Thus, to provide coroutines in SML/NJ, we can map a thread directly onto a continuation. When
a thread must block (e.g., in awai t ), we can capture its continuation using cal | cc, store the
continuation appropriately, and invoke it using t hr ow at some later time when the thread is no
longer blocked.

To provide a concrete example, Figure 7 gives a simplified implementation of the f or k op-
eration. The full coroutine implementation is given in Appendix A. The runni ng_queue
holds continuationsfor all threads that are not blocked (except for the currently executing thread).
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fun fork child =
callcc (fn parent =>
(enqueue parent runni ng_queue;
child ();
t hrow (dequeue runni ng_queue) ()))

Figure 7: Implementing f or k

fun alarmhandler (_, k) =
if (in_atomc_region ()) then
(signal _occurred := true; k)
el se
(enqueue runni ng_queue Kk;
dequeue runni ng_queue)

Figure 8: Context switching signal handler

When we f or k anew chi | d, we capture the par ent thread's continuation, enqueue it on the
runni ng_queue, and invoke the chi | d. When the chi | d completes, we dequeue a thread
fromther unni ng_queue and invoke its continuation.

Implementing a coroutine version of the full thread interface using SML/NJ s continuationsis quite
simple, as evidenced by the size of our code (154 linesincluding white space).

4.2 Using Signalsfor Preemption

There are certain advantages to coroutines. simplicity, lack of race conditions, and repeatable
interleaving. However, a magjor disadvantage of any coroutine implementation is the lack of
preemption among threads. Without preemption, threads may be “starved” from doing any work
since athread could run quite along time before coming to any synchronization point. This sort of
behavior is particularly undesirable in interactive programs.

Fortunately, SML/NJ provides the mechanisms needed to turn our coroutine implementation into
a preemptively-scheduled uniprocessor threads package. In particular, we are provided with user-
programmable asynchronous signal handlers[32]. We can use one such handler to catch UNIX
timer signals and trigger a context switch.

An SML/NJsigna handler has the type:

(int * unit cont) -> unit cont
Different signal handlers may be installed for different signals. The first argument of the handler
indicates the number of times the signal has been received before the handler was called. Signas
are masked when a handler is executing, so it ispossiblethat asignal could have been sent multiple
times before the corresponding handler is executed. The second argument of the handler is the
current continuation of the computation that was taking place at the time the signal was received.*

“Thisis not entirely accurate: SML/NJ records the signal when it is received, but lets the computation continue until
it reachesa convenient point at which a continuation can be captured. See Reppy’s paper [32] for acomplete description.
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The handler should return a continuation to be invoked as its result.

Tofacilitate preemptive context switching, we usethe UNIX SI GALRMsignal (set to go off at some
appropriate interval such as 20 msec) and a handler similar to the one found in Figure 8. When
a Sl GALRMis received, the handler will be passed the thread that was running as a continuation
k. A check isdoneto seeif k was in some “aomic” region (e.g., doing a test-and-set) when the
signal was received. If so, instead of doing the context switch, the signal is recorded, and k is
returned so it may complete its atomic operation before switching contexts. If the thread was not
in an atomic region when the signal was received, k is enqueued on ther unni ng_queue. Then,
another thread is dequeued and returned as the result continuation to be invoked.

5 A Multiprocessor | mplementation of Threads

The continuation-based implementations of the thread interface are simple and portable, but they
havetwo disadvantages. Thefirstisthat callsto the operating systemto perform aservicesuchas|/O
will block all threads until the service is complete. It ispossible for certain operations to do a non-
blocking system call (suchasUNIX’ssel ect ) before performing the blocking operation, but other
common operations (such as a page fault) have no such “hooks’. The second disadvantageis that
thereisno provisionin SML/NJto specify that computation should actually take place concurrently.
Consequently, we cannot take advantage of parallelism on multiprocessor architectures.

To address these two disadvantages, we have modified the SML/NJ system to support a multi-
processor implementation of the thread interface. In the following sections, we give a high-level
description of these modifications and some details regarding the threads implementation built on
top of the system.

5.1 Mach

The Mach operating system “provides a set of low-level, language-independent primitives for
mani pul ating threads of control” [1]. Mach also provides novel memory management facilities and
inter-process communication. Combined with the UNIX BSD server, which allows BSD binaries
to be run on top of Mach [20], these facilities provide an attractive operating system platform on
which to build shared-memory, parallel programming languages. Consequently, we have chosen
Mach as the foundation for our multiprocessor SML system, SML/Mach.

Since Mach isan ongoing research project at Carnegie Mellon, and SML/NJis an ongoing research
project at AT& T Bell Laboratories and Princeton (among others), we chose as one of our goals to
have " minimal impact” onthe SML/NJsystem. In particular, we decided to concentrate our work on
modifying the runtime system of SML/NJand avoid touching the compiler. As aresult, we expect
to be able to keep up with and take advantage of new developments in both SML/NJ and Mach.
Furthermore, it should be possibletointegrate, with minimal modifications, other compiler-oriented
research such asthe SML to C compiler [36].

5.2 TheSML/NJ Runtime

The SML/NJruntimesystem isdescribed el sewhere[5], but we will point out some of the highlights
that are relevant to this paper.
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Theruntimesystemfor SML/NJiswrittenin C and providesacoroutineinterfacetoML code. When
ML requires a runtime service (e.g., 1/0), it setsa global variable r equest to avalue indicating
which service isdesired, savesitsregister set in agloba state vector, loads the C registers from the
C stack® and begins to execute the C code that will provide the service. When the runtime service
is complete, the C registers are saved on the C stack, the ML registers re-loaded, and execution of
ML code continues. Two assembly language routines, saver egs and r est or er egs, handle
the machine-specific task of crossing this ML/C boundary.

One of the most important services provided by the runtime sy stem is garbage collection. SML/NJ
uses a simple (but efficient) two-generation, copying collector [4]. Allocation is inlined by the
compiler, making it quite fast. At the entrance of each codetree,® a check ismade to seeif enough
heap space exists for the maximum amount of alocation that the code tree might do. If thereis not
enough space, a trap instruction is used to initiate garbage collection. The runtime system catches
the exception caused by the GC-trap and performs the following steps [32].

1. Theruntime routine ghandl| e catches the trap and records the program counter of the trap
location in the state vector, setsr equest to REQ _GC and returns control to the assembly
coderoutinesaver egs.

2. Saver egs savesthe ML statein the state vector and passes control tor un_m .
3. Thegarbage collector isthen run, using the state vector as the root set.

4. After garbage collection, r un_m callsr est or er egs, which loads the machine registers
from the state vector, and returns to the trap location.

5.3 Support for Thread Creation

Given the organization of the SML/NJ runtime, the primary obstacle to providing support for
multiple Mach threads running ML code is the ML/C boundary. One of two approaches could
be taken: either have each thread run ML code only and treat the C runtime as a server, or allow
each Mach thread to execute both ML and C runtime code. Obviously, the latter approach is more
attractive, since no synchronization must take place. Consequently, our implementation takes this
approach.

To allow each Mach thread to execute both ML and C runtime code, it is necessary that each thread
haveits own state vector aswell asits own C runtime stack. In fact, each thread must haveits own
copy of ther equest variable and many other variables that are unique, “global” variablesin the
SML/NJ system.

To provide this functionality, we divide the UNIX stack segment for the entire process into sub-
stacks, one for each thread. The sub-stacks are aligned in such a way that by masking a thread’'s
stack pointer appropriately, we can determine the base of the thread’s sub-stack. A special routine,
t hr ead_sel f, doesthis masking.

SContrary to some published claims|[5, 32], SML/NJ does use a runtime stack. However, the stack is only used by the
C code that comprises the runtime system. The ML code does all of its allocation (including closures) in the ML heap
and does not use the stack.

S5According to Reppy [32], “a code tree or extended basic block is an acyclic set of blocks with one entry point and
one or more exits.”
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A thread’s state vector and “global” variables are stored at the base of its sub-stack.” Since the ML
code does not usethe stack (and fortunately does not usethe stack pointer register), t hr ead_sel f
can be called at any time to gain access to the per-thread information. Therefore, routines such
as saver egs and r est or er egs were modified to uset hr ead_sel f to locate their calling
thread's state vector.

Thus, to create a Mach thread to execute some ML code, we take the following steps:

1. Obtain astack for the new thread.
2. Obtain a portion of the allocation areafor the thread. (Thisis explained in Section 5.4.)

3. Place an initialized thread-state vector at the base of the stack. The vector will contain the
address of the ML code to execute, the continuation, the closure, etc. It will also have
request setto REQ RETURN.

4, Makeat hread_creat e cal to Mach.

5. Make acal to amachine-specific routine, M_t hr ead_set up, which sets up the thread to
execute the C routine r un_m . Thisis done by calling the Mach t hr ead_set _state
routineto initialize the program counter and other registers.

6. Cal theMacht hr ead_r esune routine. At thispoint, the Mach kernel will schedule the
thread to run.

When the new thread starts running, it will call the r un_m routine which will check r equest ,
seethatitisset to REQ RETURN, and “return” to the appropriate ML code. It does so by making a
call to the modifiedr est or er egs as explained in the previous section.

54 Heap Management

Once a Mach thread is running, it needs to be able to alocate memory from the ML heap. There
are basically two approaches we can take towards allocation: have each thread share the allocation
area and acquire a lock on the current heap-limit pointer before doing an allocation, or divide the
allocation area among the threads.

There are two main reasons why the latter approach is more attractive. First, the extra overhead of
acquiring a lock and updating a shared limit pointer would be unacceptable, since alocations are
quite frequent in ML. (The SML/NJ compiler dedicates a register to hold the limit pointer; on a
typical RISC machine, changing to a shared limit pointer would add 4 memory operations to the
single register operation currently required.) Second, since SML/NJ generates inlined allocation
code, we would have to modify the compiler to support the former approach.

Consequently, we give each thread a separate portion of the allocation area. Each thread hasitsown
heap-limit pointer, allocation is till inlined, no synchronization is necessary for allocation, and no
changes are needed in the compiler. In addition, each thread’s heap can have pointers into other
threads' heaps, so the partitioningisinvisibleto the SML programmer.

Now that a Mach thread can allocate memory, we need to be able to garbage collect (GC) it.
There are many approaches we can take towards GC in a multi-threaded system, but our self-
imposed constraint of modifying only the runtime system limitsour options. Asafirst cut, we have

"This is basically the same approach taken by the Mach C Threads package[15].
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Master Code

1. The thread that caused the GC trap enters the trap handler and acquires a lock on a
gc_nast er variable.

2. If gc_mast er isdready set, the thread executes the Slave code. Otherwise, the thread
designatesitself asthe master by setting gc_nmast er appropriately.

3. The master stops al threads that are running and sets their heap-limit pointers so that they
will each call the GC handler upon entrance to their next code tree.

4. Themaster releasesthe gc_mast er lock and waits until all other threads that were running
have entered the GC handler.

5. The master gathers all of thethreads' rootsand calls the garbage collector.

6. Whenthegarbage collector returns, the master re-dividesthe heap among thethreads, acquires
thegc_mast er lock, gives each thread itsroots back, and allows them to continue.

7. Themaster clears gc_mast er and releases the lock. It then continueswithitsML code.
Slave Code

1. Theslavereleasesthelock ongc_nast er .

2. Thedavetelsthe master that it is ready for the GC and passes its roots to the master.

3. Theslavewaitsfor the master to signal that the GC isdone, at which point it receivesits new
roots.

4. The slave continueswithits ML code.
Figure 9: Synchronization for GC

chosen to stop al threads when a single thread exhaustsits all ocation area. When the threads have
synchronized, we gather their roots, and call the same copying collector that is used in the SML/NJ
system.

Recall from Section 5.2 that when a code tree is entered, a heap limit check is done and a GC trap
occursif thereis not enough space. We use this facility to synchronize our threads. The details of
the synchronization appear in Figure 9. Specia care must be taken to ensure that deadl ock does not
occur, especially for threads that are blocked at the time of the GC.

5.5 Support for Locking and Synchronization

To support mut ex locks, we have added two assembly language routines to the runtime system,
try_acquire and rel ease, which operate on ML i nt ref vaues. These routines are
machine dependent, but essentially translate into atomic “test-and-set” and “clear” operations.®

To support condi ti on variables, we have added three routines to the runtime system. The

8Thisis actually quite difficult to implement on MIPS machinesthat do not provide an atomic test-and-set instruction.
We are indebted to Alessandro Forin of the Mach project for providing a solution for uniprocessors[19].
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first, t hread_wai t _port, returns a representation of a Mach port that the thread can use to
block itself. The second, t hr ead_wai t , is used by a thread when it wishes to block. This
is accomplished by performing a Mach nsg_r ecei ve onitswai t _port. The third routine,
t hr ead_si gnal , takes a representation of a Mach port and signals the corresponding thread.
Thisisaccomplished by doingaMach msg_send on the port.

These routines, together with the modifications mentioned in the two previous sections, are al the
support that was needed to implement the thread interface for Mach multiprocessors. Currently,
SML/Mach runson VAX, MIPS, SPARC, and 680x0 based machines.

5.6 VirtualizingMach Threads

In our current implementation, SML/Mach provides only a fixed number of Mach threads for use by
the programmer. The number of Mach threads is determined when the SML/Mach system begins
execution. Our intent was to map one Mach thread (or any fixed number) onto each processor, and
use continuations to multiplex ML threads on individual processors. In the degenerate case of a
uni processor, this should be equivaent to our non-Mach coroutine implementation.

There are several reasons why we undertook this approach. Thefirst reasonisthat it leads to fewer
modifications to the runtime system. For instance, instead of allocating a runtime stack for each
thread, we can dividethe single UNIX stack segment into » pieces, where n isthe number of Mach
threads.

The second reason isthat it is quite simpleto “virtualize” the fixed number of Mach threads using
continuations. Essentialy, each continuation-based thread is placed in a shared run-queue. Each
Mach thread executes an infinite loop as follows:

1. Block until a continuation is available and atomically dequeue it.
2. Invoke the continuation. If an exception israised, catch it, and print it to the terminal.

3. Gotostep 1.

Note that if a continuation-thread becomes blocked on a mutex or condition, and that mutex or
condition is later garbage collected, the continuation and hence the logica thread will aso be
garbage collected. Since the thread could never have been awakened, thisis precisely what should

happen.

Thethird reason we decided to virtualize M ach threads using continuationsisthat we claim context
switching of SML/NJ continuation threads is cheaper than context switching of Mach threads. To
substantiate this claim, we measured the wall clock time of two threads doing context switches on
a DECstation 3100. Essentiadly the same benchmark was run for both C Threads running under
Mach 2.5 and SML coroutine threads running on the SML/NJ version 0.65 system. The results
of this benchmark are summarized in Figure 10. It is apparent that context switching for SML/NJ
continuations takes less time than context switching for Mach threads.

The primary reason that Mach threads are more expensive than continuations is the need to go
throughthekernel to doan operationsuch ast hr ead_swi t ch. Another reason why continuations
are cheaper than Mach threads is that the SML/NJ system uses continuation-passing style code
generation and allocatesall closures on the heap [3]. Thus, continuation creation consists of merely
alocating and initializing a closure. No migration from a stack to the heap needs to take place.
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C Mach Threads 86 j1sec
SML Coroutine Threads | 39 pzsec

Figure 10: Context Switch Times on DECstation 3100

System Lock/Unlock Sgnal Handoff
C Coroutines 20pusec | 0.7 psec 49.2 nisec
C/Mach 94 usec | 0.7 usec | 215.4 psec
SML Coroutines 14.4 psec | 109 usec | 307.9 psec

SML Coroutines-2 109 usec | 5.7 usec | 270.4 psec

SML Preemptive 64.6 sec | 43.1 usec | 625.0 usec

SML/Mach 107.3 pusec | 56.8 usec | 1379.2 usec

Figure 11: Comparison of C and SML Threads on DECstation 3100

6 FutureWork

There are many other issues that we would like to address concerning the addition of threads to
Standard ML. In the following two sections, we present some of these issues and discuss possible
approaches.

6.1 Optimizations

As stated before, one of our goals was to have minimal impact on the SML/NJ system. However,
this has kept us from pursuing paths that could lead to better performance. Figure 11 gives some
comparison between C Mach threads, C coroutine threads, and the different implementations of
SML threads. All benchmarks were performed on a20 Mbyte DECstation 3100 running Mach 2.5
and SML/NJ version 0.65. The Lock/Unlock column gives the time needed to do a (successful)
try_acquire followed by arelease. The Sgnal column gives the time needed to do si gnal
on acondition that has no threads waiting onit. The Handoff column givesthe time needed for two
threadsto acqui r e, awai t , update ashared flag, si gnal theother thread, and r el ease. The
SML Coroutines-2 implementation is essentially the SML Coroutines implementation with queue
operationsinlined by hand. The SML Preemptive implementation was run with a 10 msec interval
between context switches. While not quite afair comparison®, it is still apparent that we have quite
away to go before we have a production quality threads package.

Many of theinefficienciesin the SML threads packages are by-products of SML/NJ s treatment of
ref cells, which isitself a by-product of the generational copying collection scheme employed.

9For instance, the SML times include the cost (and benefits) of garbage collection.
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Essentially, reading a mutable object can cost twice as much in SML/NJ as C (due to indirection),
while updating a mutable abject can cost up to 5 times as much (due to the need to log the update.)

The main inefficiency for SML/Mach, however, is that a call to one of the thread routines (e.g.,
fork, acquire, rel ease, etc) will cross the ML/C boundary, do the operation, and then
re-cross the ML/C boundary. Each crossing of the ML/C boundary constitutes a context switch
in and of itself. By adding new primitive operations (e.g., t ry_acquire, rel ease, etc) to
the SML/NJ compiler, we can eliminate the need to cross this boundary for most of the routines.
Furthermore, thiswill allow the simple routines to be inlined by the compiler.

While providing a fixed number of Mach threads has eased our implementation, we really should
provide afacility for forking any number of Mach threads dynamically. To do this, we would have
to modify stack allocation and the assignment of allocation areas to threads. The former problem
seems quite easy to handle given Mach’s virtual memory capabilities, and in fact seems to work
directly on most architectures. However, on some architectures (notably the Sun-3), this fragments
the address space and requires a rewrite of the routines that export an executable imagefile.

We fed that a change should be made in the assignment of allocation areas to threads, regardless of
whether we choose to allow dynamic Mach thread creation. We plan to modify SML/Mach so that
each thread is given asmall, fixed-size chunk of allocation area. When athread exhausts a chunk, a
check will be madeif more chunks are available. If not, then we will have to delay the thread until
a GC occurs. If achunk isavailable, then we can giveit to the thread and let it continue.

This strategy would have the advantage that a GC could be delayed until every chunk was used.
The current system does a GC whenever one thread exhausts its alocation area. We aso fed that
the chunk strategy would provide a better interface for different GC agorithms. However, this
strategy has the disadvantage that intra-chunk fragmentation can be quite high. Tuning the size of
the chunks will be quite important.

We are interested in exploring concurrent, incrementa garbage collection as proposed by Appd,
Ellisand Li [6]. The Mach virtual memory primitives have been shown to provide the functionality
necessary to implement such a collector [16, 29]. An incremental collector will be necessary for
developing interactive and real-time programsin SML.

Finally, moreinteraction isdesirabl e between Mach and the SML/M ach runtime system concerning
the availability of processors and physical memory. For instance, if the operating system knew
that it was going to take away a processor, it could inform the SML/Mach runtime, as suggested
by Anderson et al. [2]. The runtime could then decide to adjust the number of Mach threads to
keep the proper thread to processor ratio. As another exampl e, we aready use mutex handoffs'® to
facilitate context switching [11]. This user-level scheduling approach is an ongoing research topic
being explored by the Mach project and we hope to take advantage of any “hooks’ they expose.

6.2 Shortcomings

One potentia shortcoming of the thread interface is the inability to communicate asynchronously
with athread. To understand why such afacility is desirable, consider the following scenario: A
thread is forked in an interactive system to invert a 100 x 100 matrix. During the middle of the
inversion, the user decides that he or she does not need the inverted matrix and presses the “cancel”
button. However, unlessthe matrix inversion routine was written in such away that it periodically

101 athread is about to block becauseit failed to acquire a lock, it tells Mach to descheduleit and gives a “hint” that
the owner of the lock should be run. Thus, the processor is handed off from one thread to another.
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checks whether or not it has been canceled, the computation will continue.

To addressthis shortcoming, we could add an alert mechanismto theinterface, asin Modula-2+[9].
Perhaps the best way to do soisto provide Al ert asasigna producing function and use Reppy’s
signal handlers to catch the alert. Thiswould require that a handle for a thread be returned so the
user could indicate which thread was to be alerted. It would also require that signal handlers be
definable on a per-thread basis.

Unfortunately, the whole notion of UNIX signals in multi-threaded programs is ill-defined. The
problem is that certain signals should be “broadcast” to al threads, while some signals should
only be sent to a single thread. For instance, it would seem desirable in an interactive system for
SI GQUI T (quit) to be broadcast to al threads. However, the SI GFPE (floating point error) signa
should only be sent to the thread that caused the error.

M ach defines ageneral exception mechanismthat can be used to emulate UNIX signalsand provides
a precise semantics even in the presence of concurrency [12]. Presently, we use this mechanism
to catch a GC trap and plan to extend our use to handle the entire range of exceptions that Mach
provides.'t

A rather serious shortcoming of the thread interface is the lack of integration with the Definition
of SML. In fact, it is quite interesting that our rather modest changes to SML/NJ's runtime have
completely invalidated the Definition. It would seem desirable to model the dynamic semantics of
SML/Mach using some concurrency model such as CCS or CSP. Thisis certainly arich topic for
researchers to pursue and we hope that SML/Mach will provide a concrete reference point.

7 Summary and Conclusions

We have presented aninterface for multiplethreads of control for Standard ML, including provisions
for locking, synchronization, and per-thread state. One of the primary advantages of the interface
isthat the conceptsintroduced are similar to those in threads packages that have been demonstrated
to be of practical use.

One might argue that using the store to communicate is contrary to the philosophy of SML, since
the language is “mostly functional”. However, we have shown how the interface can be used
to build higher-level concurrency constructs and mechanisms such as Multilisp-style futures and
synchronous message passing. Furthermore, we argue that building these abstractions in terms
of threads provides efficient implementations of these mechanisms for uniprocessors and shared-
memory multiprocessors.

However, having worked with the thread interface extensively, we have found that it is best to
structure one's program around these higher-level constructs, only “dipping down” into the thread
interface when efficiency iscalled for.

We have presented three implementations of the interface. All of the implementations make use
of SML/NJ's first-class continuations and provide a concrete justification for their inclusion in
the language. Our multiprocessor Mach-based implementation was built with the goa of having
“minimal impact” on the NJ system. Asaresult, we expect to keep up with the rapid developments
of both SML/NJand Mach. We have pointed out some of the problems with our approach, as well
as possible solutions.

1 Using the native Mach exception handling facilities instead of the full emulation of UNIX signals should also provide
better performance.
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A Coroutine Implementation of SML Threads

This section presents a coroutine-based implementation of the thread interface given in Figure 2,
using continuations in Standard ML of New Jersey. The Thr ead functor is parameterized by a
polymorphic queue modul e with the following signature:

signature QUEUE =
sig
type 'a T
exception Deq
val create : unit ->'1la T

val eng: '"a T ->"a -> unit

val deq : 'a T ->"a

val len: '"a T ->int

val contents : "a T ->"a list
end

The Queue structureis used for the run queue, mutex queues, and condition queues.

functor CoThread (Queue : QUEUE) : THREAD =
st ruct

(*********************)

(* Per-thread state. *)

(*********************)

type env = unit ref
datatype 'a var = VAR of (env * "a) list ref
exception Undefi ned
fun new env () =ref ()
val current_env = ref (new_env ())
fun var () = VAR (ref [])
fun find _ [] = raise Undefined

| find env ((e, a) :: rest) =

if e =env then a else find env rest

fun get (VAR v) = find (!'current_env) (!v)

fun replace env [] a = [(env, a)]

| replace env ((pair as (e, _)) :: rest) a =
if e =env then (e, a) :: rest
else pair :: replace env rest a
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fun set (VAR V) a = (v := replace (!current_env) (!v) a)

(*************************************************)

(* Thread creation, destruction, and scheduling. *)

(*************************************************)

dat atype thread = THREAD of unit cont * env

fun thread k = THREAD (k, !current_env)

val run_queue : thread Queue. T = Queue.create ()
fun reschedul e thread = Queue.enq run_queue thread
exception Deadl ock

fun run_next () =
l et val THREAD (k, env) = Queue.deq run_gueue
handl e Queue. Deq => rai se Deadl ock
in
current_env := env,
throw k ()
end

fun exit () = run_next ()

fun bl ock queue =
callcc (fn k => (Queue. enq queue (thread k);
run_next ()))

fun yield () = block run_queue

fun fork f =
callcc (fn k =>

(reschedul e (thread k);

current_env := new_env ();

f () handle exn =>

print ("Unhandl ed exception "

System exn_nane exn ~
" raised in thread.\n");

run_next ()))

(****************)

(* Miutex | ocks. *)

(****************)
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dat at ype nutex =
MUTEX of bool ref * thread Queue. T

fun mutex () =
MUTEX (ref false, Queue.create ())

fun try_acquire (MJTEX (held, _)) =
if not (!held) then
(held := true; true)
el se
fal se

fun acquire (mas MJTEX (held, q)) =
if try_acquire mthen

0

el se
bl ock ¢

fun rel ease (MJTEX (held, q))
reschedul e (Queue.deq Q)
handl e Queue.Deq => held :

fal se

fun with_mutex m body =
let val result = (acquire m
body () handle exn =>
(release nm raise exn))

rel ease m
result
end

(***************)

(* Conditions. *)

(***************)

dat atype condition =
CONDI TI ON of nutex * thread Queue. T

fun condition m =
CONDI TION (m Queue.create ())

fun mutex_of (CONDITION (m _)) =m

val with condition = with_rmutex o nutex_of

fun awaken (CONDI TION (mas MJTEX (_, nqg), cq))
l et val thread = Queue. deq cq
in
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if try_acquire mthen
reschedul e thread
el se
Queue.enqg ng thread
end

fun repeat f (f (); repeat f)
fun signal ¢ =
awaken c handl e Queue. Deq => ()

fun broadcast c =
repeat (fn () => awaken c¢) handl e Queue.Deq => ()

fun wait (CONDITION (m q)) =
(release n1 block Q)

fun await c test =
if test () then
()
el se
(wait c; await c test)
end
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B Further Examples

The following sections give further examples that make use of the thread interface.

B.1 Reader/Writer Locks

signature RWLOCK =

sig
type T
val create Dounit -> T
val read with_lock : T -> (unit ->’a) ->"'a
val wite with_lock : T -> (unit ->’'a) ->"'a
end

Reader/writer locks allow multiple readers or a single writer access to some state. The following
functor implements reader/writer locks.

functor RWLock (Thread : THREAD) : RWLOCK =

st ruct
datatype T = RWof { free : Thread. condition,
num readers: int ref,
wite : bool ref }

fun create () = RW{ free
num r eader s
wite

Thr ead. condi ti on (Thread. nut ex
ref O,
ref false }

fun rw_lock read (RW{ free, numreaders, wite })
Thread.with_condition free
(fn () =>
(Thread. anait free (fn () => not (!'wite));
i nc num.readers))

fun rw unlock_read (RW{ free, numreaders, ... })
Thread.with_condition free
(fn () => (dec numreaders;
if I'numreaders = 0 then
Thr ead. br oadcast free
el se

()))

fun rwlock wite (RW{ free, numreaders, wite }) =
Thread.with_condition free
(fn () => (Thread.await free
(fn () => !'numreaders = 0 andalso not (!wite));
wite := true))
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fun rw unlock_ wite (RW{ free, numreaders, wite }) =
Thread.with_condition free
(fn () => (wite := fal se;
if I'numreaders = 0 then
Thr ead. br oadcast free
el se

()))

fun with lock lock fn unlock fn lock f =
let val result = (lock_fn |ock;
f () handle exn =>
(unl ock_fn | ock; raise exn))

unl ock_fn | ock;
resul t
end

val read with [ock =
with Iock rwlock read rw unl ock read

val wite with lock =

with lock rwlock wite rw unlock wite
end
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B.2 Asynchronous Channels

In order to implement an approximation of Ada’'s rendezvous and select constructs, we first define
a CHANNEL signature that allows asynchronous sends and asynchronous receives.

si gnature ASYNC CHANNEL =
sig
i ncl ude CHANNEL

exception Get Now

val get_now : 'aT->"a

val get_wait : "a T -> unit
end

Theput operation putsan object into achannel and returnsimmediately. Theget Wai t operation
waits until some object has been put into the channel. The get Now operation gets avalue from a
channel if avalueisavailable, otherwisethe exception Get Nowisraised. A functor that implements
this channel interface is given below:

functor AsyncChannel (Thread : THREAD) : ASYNC CHANNEL =
st ruct
datatype "a T

CHAN of { here : Thread. condition,
gone : Thread.condition,
value : "a option ref }

fun create () =

et val m= Thread. nutex ()
in
CHAN { here = Thread.condition m
gone = Thread.condition m
value = ref NONE }
end

fun put (CHAN { here, gone, value }) v =
let fun put’ () =
case !val ue of
SOVE _ => (Thread.wait gone;
put’ ())
| NONE => (value := SOWE v;
Thr ead. br oadcast here)
in
Thread. wi th_condi ti on gone put’
end

fun get (CHAN { here, gone, value }) =

let fun get’ () =
case !val ue of
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SOVE v => (val ue := NONE;
Thr ead. br oadcast gone;
V)
| NONE => (Thread.wait here;
_ get’ ())
in
Thread. with_condition here get’
end

fun get_wait (CHAN { here, gone, value }) =

let fun get_wait’ () =

case !val ue of

SOVE _ => ()
| NONE => (Thread.wait here;
get_wait’ ())

in

Thread. with_condition here get_wait’
end

exception Get Now

fun get_now (CHAN { here, gone, value }) =
et fun get_now () =
case !val ue of
SOVE v => (val ue := NONE
Thr ead. si gnal gone;
v)
| NONE => raise GetNow
in
Thread. wi th_condi ti on gone get_now
end
end
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B.3 Rendezvousand Select

The following signature defines a first-class r endezvous type along with a first-class sel ect
type. The former isanaogous to an Adaentry, while the latter is analogous to an Ada select.

si gnat ure RENDEZVOUS =
sig
type ('a, 'b) rendezvous
val rendezvous : ('la -> '1b) -> ('1la, ’'1b) rendezvous

type ("a, 'b) arm
val arm: ((unit -> bool) * ("a, 'b) rendezvous) -> ('a, 'b) arm

type ('a, 'b) select
val select : (('a, 'b) arm) list -> ("a, 'b) select

val accept : ('a, 'b) select -> unit
val call : ('"a, '2b) rendezvous -> "'a ->'2b
end

TheRendezvous functor below implementsthe RENDEZVOUS signature. Each rendezvousvalue
consists of a function and an input and output channel. Each select valueisalist of test functions
(guards) and corresponding rendezvous values.

Thecal | operation sendsavalueon theinput channel of ther endezvous to somereceiver. The
receiver will use the value to compute some new value and return the result on the output channel.

The accept forks a thread to handle each “arm” of the select. Each thread evaluates its guard
to determine if it should attempt to do communication. If so, it waits until a value has arrived
from a caler on the input channel. It then looks to see if any other thread has aready finished its
rendezvous. If so, the thread quietly dies (aborts). Otherwise, the thread grabs the value from the
input channel, usesits rendezvous function to compute the output value, and places the output value
in the output channel. It then sets a shared flag so that other threads associated with the accept
will abort.

functor Rendezvous (structure Thread : THREAD
structure Channel : ASYNC CHANNEL) : RENDEZVOUS

struct
structure Thread = Thread

datatype ('a, 'b) rendezvous =
RV of (("a ->"'b) * ("a Channel.T) * (’b Channel . T))

fun rendezvous f = RV (f, Channel.create (), Channel.create ())
datatype ('a, 'b) arm= ARM of ((unit -> bool) * (’a,’b) rendezvous)

val arm = ARM
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datatype ('a, 'b) select = SEL of ('a, 'b) armlist
val select = SEL

fun call (RV (_, outChan, inChan)) v =
(Channel . put out Chan v;
Channel . get i nChan)

excepti on EnptySel ect
fun threadMap f = map (fn x => Thread.fork (fn () => (f x)))

fun accept (SEL []) = raise EnptySel ect
| accept (SEL 1) =
l et val selectUnfinished = ref true
val selectFinished = Thread.condition (Thread.mutex ())
fun hel per (ARM (test, (r as RV (f, inChan, outChan)))) =
let fun deposit () =
if !'selectUnfinished then
(Channel . put out Chan (f (Channel.getNow inChan));
sel ect Unfi ni shed := fal se;
Thr ead. si gnal sel ect Fi ni shed)
el se ()

if test () then
(Channel . getWait i nChan;
Thread. wi th_condi tion sel ect Fi ni shed deposit
handl e Channel . Get Now =>
(hel per (ARM ((fn () =>true), r))))
el se ()
end

Thread.wi t h_conditi on sel ectFi ni shed
(fn () => (threadvap hel per 1;
Thread. wait sel ect Fi ni shed))
end
end
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