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Abstract: Identi�cation of model parameters can be viewed as a problem with
multiple objectives and constraints derived from empirical data (dynamic and steady-
state), physical models and belief, empirical and qualitative belief, desired model
properties etc. A fairly general approach to multi-objective system identi�cation based
on constrained optimization is suggested, and here we formalize the method for the
identi�cation of FIR models. Particular attention is paid to the analysis and selection
of tradeo�s between conicting objectives and constraints.
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1. INTRODUCTION

The main objective of system identi�cation is to
identify a model with good prediction capabilities
in the sense that it is able to accurately predict
the system's response to a given class of excita-
tions. Hence, a common identi�cation objective is
to minimize some penalty on mismatch between
model prediction and observed data, which is the
underlying principle of the least squares method,
maximum likelihood and the prediction error
methods, see e.g. (S�oderstr�om and Stoica 1988).
However, in practical system identi�cation it is
often desirable to introduce additional objectives
and constraints into the identi�cation problem.
There are several reasons for this:

(1) The data sequence used for identi�cation
may be incomplete or uncertain. Hence, it
contains information only about certain as-
pects of the system, like a certain frequency
interval or a certain region of the state space,
while it may be desired to apply the model
to a wider class of excitation signals or oper-
ating conditions.

(2) The model structure need not be identi�able,
i.e. there may be several parameter vectors
that yield the same model predictions for any
excitations. Then there are excessive degrees
of freedom available in the model that may
be applied to meet di�erent objectives.

(3) There is often additional information avail-
able. It makes sense to use this information
to improve the accuracy and validity of the

model. In general, any additional information
will reduce the variance of the model due
to uncertain data. Such information may be
qualitative, such as stability, or it may be
quantitative, such as steady-state data or
explicit knowledge about the model response
derived from experiments or other models.

(4) There may be some properties that we may
want the model to have, for certain reasons.
For example, regularity (or smoothness) of
the model is usually desirable both for vari-
ance reduction reasons and because is pro-
vides advantages for model application.

The potential bene�ts with multi-objective sys-
tem identi�cation is better models, and reduced
model development costs because less experimen-
tal data may be needed, or data from normal
operation could replace data from designed exper-
iments.

Here a quite general framework for multi-objective
model identi�cation based on multi-objective op-
timization is presented, and in particular its ap-
plication to the identi�cation of FIR models. The
motivation for the special attention given to the
FIR model representation is twofold; it is simple
to treat analytically, and it is of great practical
importance, for example as a basis for model pre-
dictive control (Qin and Badgwell 1996).

The multi-objective approach to system identi�-
cation is certainly not new, but its potential has
not been fully explored and exploited. Single con-
straints or penalties on the parameter space have



been suggested, for example to ensure stability
(Tulleken 1993, Johansen 1996), convexity of opti-
mizing control criterion (Foss and Johansen 1997),
ful�llment of balance equations and steady-state
data (Thompson and Kramer 1994), and explicit
belief about parameter values (Moons and De
Moor 1995, Pages et al. 1996). Furthermore, reg-
ularization is sometimes applied to reduce the
variance of the identi�ed model (Tikhonov and
Arsenin 1977, Larsen and Hansen 1994, Johansen
1997b, Dayal and MacGregor 1996). In (Eskinat
1995), it is also shown that constrained iden-
ti�cation has the same variance-reducing e�ect.
Moreover, penalties derived from explicit belief
about parameters (Sj�oberg et al. 1993) and other
a prior known model (Thompson and Kramer
1994, Johansen 1996) have also been suggested.
Prior knowledge in terms of constraints and penal-
ties can be implemented directly in a predic-
tion error method (PEM) framework, (Johansen
1996, Johansen 1997a), or the penalties can be
reformulated into equivalent prior distributions
in a Bayesian system identi�cation framework
(Peterka 1981, Tulleken 1993).

The FIR (�nite impulse response) model is
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where it is assumed that the input vector u(t) 2
Rr and output vector y(r) 2 Rm both have zero
mean. Furthermore, it is assumed that the in-
puts and outputs are properly scaled. The system
identi�cation problem is to determine the Markov
parameters hkij . Let � be a vector containing all
the model parameters (Markov parameters) that
are to be chosen to meet the given objectives and
constraints.

2. OBJECTIVES AND CONSTRAINTS

In this section we describe some model objectives
and constraints, and suggest possible mathemati-
cal formulations. The list is by no means complete,
and one can think of numerous variations.

2.1 Time-series data

The most common objective (and usually the only
explicit one) in system identi�cation is that the
model should have good prediction capabilities,
in some sense. This objective is typically imple-
mented as a least squares penalty on the mismatch
between the model prediction and the measured
output, using a sequence of input and output data
(u(1); :::; u(N)) and (y(1); :::; y(N)):
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This equation can be written in the form

Vts-data(�) =
1

Nm
(Y � ��)

T �
Y ��T �

�
where the Markov parameters are stacked in the
p� 1 vector �, where p = (T + 1)mr, the output
data is stacked in theN�1 vector Y , and the input
data is properly organized in the N � p matrix �.

2.2 Steady-state gain

The steady-state gain of the system is often of
great importance, for example when the model is
used in a controller that do not contain integral
action. The steady-state gain is typically found
by a step-response experiment or from a steady-
state model/simulator. Another objective may
therefore be that the model's steady-state gain
matrix should match some given m � r matrix
G, i.e. y = Gu at steady state. This can be
implemented as a set of constraints
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where gij is the ith element of the matrix G, and
� is the sampling interval. It is assumed that �T
is much larger than the largest time-constant of
the system. The constraints and penalty can be
written in matrix form

Gss-gain(�) = Ag� � bg = 0

or

Vss-gain(�) = (Ag� � bg)
T (Ag� � bg)

where Ag is a mr � p matrix with zeros and ones
in appropriate places, and the mr � 1 vector bg
containts the elements of G.

2.3 Regularity

Regularity properties (such as smoothness) of the
impulse response are usually desirable, but should
not be expected from the standard least squares



estimation algorithm when there are many param-
eters (T is large). Another objective may therefore
be that the impulse response function is a smooth
funciton of time. This can be implemented as a
penalty on an approximation to the squared sec-
ond derivative of the impulse response function:
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where � is the sampling interval, and wij is a
weighting function. It is easy to see that this can
be written in the matrix form

Vregl(�) = �TSTS�

where S is a positive de�nite p� p matrix.

Regularity penalties are often imposed the the
reason of reducing the identi�ed model's variance.
It can be seen that regularization (or any penalty
or active constraint) will in general reduce the
model's e�ective number of degrees of freedom,
which as a direct consequence reduces the model's
variance (Johansen 1997b).

2.4 Vanishing tail

The impulse response of stable processes are char-
acterized by a vanishing tail. This objective can
be implemented as
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where �ij is a weighting function. In matrix form,
this can be written as

Vtail(�) = �TQTQ�

for some p� p matrix Q.

2.5 Parameter bounds

Some knowledge of the impulse response may be
available, and an objective may be that the identi-
�ed impulse reponse shold match this knowledge.
This knowledge may originate from simulation of
rigorous mathematical models, observed behavior
of the system or the belief of engineers. Some
quite general implementations of such knowledge
are as upper and lower constraints on the impulse
response

hkij � hkij � h
k
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for i = 1; :::;m, j = 1; :::; r, k = 0; :::; T , or
as penalty on deviation from an a priori given
impulse reponse function ~hkij
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where �ij is a weighting function. These imple-
mentations can be written in matrix form

Hp(�) = Ap� � bp � 0

for some 2p � p matrix Ap and 2p � 1 vector bp,
or

Vprior(�) = (� � ~�)TW TW (� � ~�)

respectively. W is a p � p weighting matrix, and
~� constain the parameters of the a priori impulse
response function matrix ~h.

Quite often, model knowledge is available in the
frequency domain as belief or partial knowledge
about the system's frequency response matrix, see
also (Eskinat 1995). The frequency response ma-
trix H(ej!) is related to the Markov parameters
by the discrete Fourier transform

Hij(e
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Thus, if Hij(e
�j!l) is known for certain !1; :::; !M

we get the following pairs of constraints on the
Markov parameters:
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for l = 1; 2; :::;M . Similar constraints can be con-
structed if upper or lower bounds on the frequency
response matrix is known.

2.6 Absolute noise bound

If it is assumed that an upper bound on the
uncertainty on each output variable is known,
say ni, one may use this to impose the following
constraints on the parameters:

yi(t)� ni �

TX
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hkijuj(t� k) � yi(t) + ni

This is similar to set membership identi�cation.



3. MULTI-OBJECTIVE OPTIMIZATION

Let a set of scalar objective functions V1; :::; Vn,
scalar inequality constraints F1; :::; Fl and equal-
ity constraints H1; :::; Hq be given. These can
be any mixture of the objectives and criteria in
section 2, or di�erent ones. Notice that all the
penalties in section 2 are quadratic and convex
and all constraints are linear. In this case, the opti-
mization problem is a convex quadratic program.

3.1 Single Weighted Objective

There are several approaches to multi-objective
optimization in the literature. One simple and
common approach is to formulate a single weighted
objective function

V (�; 1; :::; n) = 1V1(�) + :::+ nVn(�)

on the basis of the multiple objective functions.
The weighting parameters are required to satisfy
1; :::; n � 0. This leads to the optimization
problem

min
�

V (�; 1; :::; n) (1)

subject to

F1(�) � 0; :::; Fl(�) � 0 (2)

H1(�) = 0; :::; Hq(�) = 0 (3)

Hence, the relative weighting of the objectives
must be de�ned a priori in terms of the weighting
parameters. The multiple goals and constraints
will typically be conicting, to some degree. For
example, the best �t to the time-series data may
be in some conict with the preference for smooth-
ness of the impulse response. Also, prior belief
about the impulse response (implemented as a
penalty on deviation from the prior guess) may
not always be consistent with the best �t to
the time-series data (either due to unmodelled
phenomena or incorrect prior knowledge). Some
such conicts may be acceptable, while others may
indicate serious de�ciencies in the data, models or
prior belief/knowledge. Moreover, the ideal trade-
o� between the various objectives and constraints
is typically not known a priori. Multi-objective
identi�cation is therefore a highly interactive ses-
sion where in each iteration the user will modify
the weighting parameters and possibly also the
objectives and constraints themseleves to get a
better model.

To understand the tradeo�s the user faces in
multi-objective system identi�cation, consider the
Karush-Kuhn-Tucker conditions (Luenberger 1984)

that characterizes an optimal solution �? (assum-
ing it exists) to the problem (1)-(3) for a given
1; :::; n:
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The Lagrange multipliers �1; :::; �q and �1; :::; �l
are uniquely de�ned by an optimal solution ��.
Eq. (4) has some interesting interpretations. The
di�erent terms in (4) characterizes the tradeo�
between the conicting objectives and constraints.
If a term is zero, it means that �? is the opti-
mal solution for the corresponding single objec-
tive in addition to being the optimal solution to
the multi-objective problem. This means that this
objective or constraint is in no conict with the
other objectives and constraints. On the other
hand, a non-zero term indicates that improved
ful�llment of that single objective can be achieved
by sacri�cing attainment of other objectives. A
simple geometric interpretation is illustrated in
Fig. 1. Each term in (4) is a vector pointing in
the direction of largest increase for each single ob-
jective, or perpendicular to the constraint surface.
The vectors sum to zero, since �? is the optimum
for the multiple objectives and constraints. The
length of each vector can be interpreted as the
degree of mismatch between the corresponding
objective or constraint and the other objectives
and constraints. This is useful information that
can be used to detect inconsistencies in the pro-
cess knowledge, data and desired properties, and
also be used to tune the weighting parameters to
get a sensible tradeo� between the objectives and
constraints.

The direction of the vector also contain informa-
tion about the tradeo�, but it is hard to interpret
in higher dimensions. A compromise would be
to consider some measure of directional match
between any pair of vectors �1 and �2, such as

�= cos�1
�

�T1 �2

jj�1jj2 � jj�2jj2

�

3.2 Goal Programming

Another common approach to multi-objective op-
timization is goal programming, where a quan-
titative goal �i is associated with each objective
function, and the following problem is solved

min
x;�

x
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Fig. 1. Tradeo� between conicting objectives and
constraints. The solid curves are contour lines
for the �rst objective, while the dashed curves
are contour lines for the second objective.
The shaded region represents an infeasible
region of the parameter space.

subject to

V1(�)� xs1 � �1; :::; Vn(�) � xsn � �n

F1(�) � 0; :::; Fp(�) � 0

H1(�) = 0; :::; Hq(�) = 0

The scalar parameters s1; :::; sn � 0 de�ne the
reward or penalty on over- and under-attainment
of the goal. Minimizing the scalar dummy variable
x leads to be best trade-o�, in this sense.

4. ILLUSTRATIVE SIMULATION EXAMPLE

The following non-minimum phase linear system
is simulated

h(s) =
�2s+ 1

(s+ 3)(s+ 0:4)(s+ 0:2)

A random input signal with 801 samples was
generated by bandpass �ltering white noise. The
input was applied to this system, with a sampling
frequency fs = 4 Hz. The power spectra of the
input and output signals are given in Figure 2.
We observe that the experiment design is sub-
optimal since there is very little low frequency
excitation (the transfer function h(s) has poles
corresponding to frequencies well below 1 rad/s).
Consequently, the identi�cation results in Figure
3 with this data sequence show a FIR model with
poor low-frequency accuracy using the pure least
squares algorithm, as expected. It can also be
seen that the results can be improved in various
ways by utilizing additional prior knowledge to
the data:

� Prior knowledge of the steady-state gain.
� Smoothness, regularization.
� Penalty on tail, stability.
� Upper and lower bounds on response.
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Fig. 2. Estimated power spectra of input (solid
line) and output (dashed line) data.

The problem was solved by specifying weights
on the di�erent terms in the compostite obective
function.

Consider the model identi�ed on the mixture of
all the objectives and the constraint. The contri-
bution of the di�erent terms in the Karush-Kuhn-
Tucker equation (4) can be seen in Figure 4. We
observe that only the time-series pentalty and the
smoothness penalty have large contributions to
(4). From this, we make the following conclusions:

� Since the terms corresponding to the steady-
state gain and stability are very small, it is
clear that the optimal model is consistent
with these speci�cations. Furthermore, it can
be concluded that there objectives are not in
conict with the evidence in the time series
data or the smoothness objective.

� However, it is not possible to conclude that
the assumed steady-state gain is correct,
since another gain may still not be in conict
with the evidence in the data. In this case the
assumed steady-state gain is actually correct,
but using a di�erent assumption here leads
to a quite di�erent impulse response model
that is still consistent with the other pieces
of data and belief. The reason for this is the
lack of low-frequency information in the data,
which means that the data are useless for the
purpose of falsifying the low-frequency part
of the model.

� The term correponding to the parameters
bounds is nonzero, but fairly small. Since
it is nonzero, the parameter bounds have a
inuence on the model. The term is small
since the bounds constrains mainly the low-
frequency part of the model, for which there
is no evidence in the data, as discussed above.

� The time-series penalty and non-smoothness
penalty balances each other and thus corre-
sponds to conicting objectives. Any further
reduction of either of these objectives can
only be achieved by accepting a higher degree
of violation of one or more other objectives.
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Fig. 3. Example: Identi�ed FIR models. Dashed-
dotted curves show the true system impulse
response, while solid lines show the models'
impulse responses.
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5. CONCLUDING REMARKS

An approach to identi�cation of FIR models based
on empirical data, prior knowledge and belief is
suggested. The approach relies on multi-objective
programming. The name of the game is thus to
�nd an appropriate balance between our belief in
the di�erent pieces of data and knowledge in order
to end up with a good model despite the fact
that each on the pieces on data and belief may
be incomplete or inaccurate. Rather than relying
on objective statistical considerations (such as
the bias/variance tradeo� (Johansen 1997b)), the
method is subjective and driven by the engineer's
choices. The di�erent terms in the Karush-Kuhn-
Tucker optimality conditions can be utilized to
diagnose the model, i.e. to detect inconsistencies
or consistency between di�erent pieces of data and
belief.
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