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1 IntroductionThe view-based approach to 3-D object recognition represents an object as a collection of2-D views, sometimes called aspects or characteristic views [16]. The advantage of such anapproach is that it avoids having to construct a 3-D model of an object as well as having tomake 3-D inferences from 2-D features. Many approaches to view-based modeling representeach view as a collection of extracted features, such as extracted line segments, curves,corners, line groups, regions, or surfaces (Ikeuchi and Kanade [13], Burns and Kitchen [3],Ullman and Basri [33], Dickinson et al. [8], and Pope and Lowe [24]). The success ofthese view-based recognition systems depends on the extent to which they can extract theirrequisite features. With real images of real objects in unconstrained environments, theextraction of such features can be both time consuming and unreliable.In contrast to the feature-based view-based recognition paradigm, a number of image-based view-based recognition systems have emerged. Beginning with the eigenface approachproposed by Turk and Pentland [32], these image-based approaches avoid extracting complexfeatures from an image; instead, they retain the entire raw image as a single feature in ahigh-dimensional space. Turk and Pentland focused on the domain of faces and thereforedid not require a large set of model views for each face. Nayar and Murase extended thiswork to general 3-D objects where a dense set of views was acquired for each object [22].Although avoiding costly and often unreliable feature extraction, these image-based ap-proaches pay the price of sensitivity to lighting conditions, image translation, image rotation,depth rotation, occlusion, and minor shape variation, all of which a�ect an image's pixel val-ues and result in a change in the image's location in some high-dimensional space. Recentresults have shown some progress towards solving these problems, e.g., the work of Belheumerand Kriegman [1] (limited invariance to illumination changes) and the work of Leonardis andBischo� [17] and Schmid and Mohr [26] (limited invariance to occlusion). Nevertheless, thelack of abstraction from raw image data to the model means that the model de�nes a veryspeci�c object instance.The concept of computing coarse-to-�ne image descriptions has much support in the2



computer vision community; some examples include [4, 14, 18, 23, 30, 31]. In some cases,attention models have been developed that use a multiscale description to decide where in theimage to apply some operation. Lindeberg has based this selection process on a quantitativeanalysis of gray-level blobs in scale space [18]. J�agersand [14] uses an information theoreticmeasure to compute \informativeness" of image regions at di�erent scales, while others havede�ned some measure of \importance" and used it to drive an attention process [23, 30, 31].Although suitable for locating objects in images for further processing, the above multiscaledescriptions, often called saliency maps, lose the detailed shape information required forobject recognition. We will adopt this de�nition of saliency as \informedness" or, moreconcretely, the signi�cance of an energy response as computed by a �lter (or set of �lters)[19, 2].Some multiscale image descriptions have been used to locate a particular target objectin the image. For example, Rao et al. use correlation to compare a multiscale saliency mapof the target object with a multiscale saliency map of the image in order to �xate on theobject [25]. Although these approaches are e�ective in �nding a target in the image, they,like any template-based approach, do not scale to large object databases. Their bottom-updescriptions of the image are not only global, o�ering little means for segmenting an imageinto objects or parts, but o�er little invariance to occlusion, object deformation, and othertransformations.Wiskott et al. [34] use Gabor wavelet jets to extract salient image features. Wavelet jetsrepresent an image patch (containing a feature of interest) with a set of wavelets across thefrequency spectrum. Each collection of wavelet responses represents a node in a grid-likeplanar graph covering overlapping regions of the image. Image matching reduces to a formof elastic graph matching, in which the similarity between the corresponding Gabor jets ofnodes is maximized. Correspondence is proximity-based, with nodes in one graph searchingfor (spatially) nearby nodes in another graph. E�ective matching therefore requires that thegraphs be coarsely aligned in scale and image rotation.Another related approach is due to Crowley et al. [6, 5, 7]. From a Laplacian pyramidcomputed on an image, peaks and ridges at each scale are detected as local maxima. The3



peaks are then linked together to form a tree structure, from which a set of peaks pathsare extracted, corresponding to the branches of the tree. During matching, correspondencebetween low-resolution peak paths in the model and the image are used to solve for thepose of the model with respect to the image. Given this initial pose, a greedy matchingalgorithm descends down the tree, pairing higher-resolution peak paths from the image andthe model. Using a log likelihood similarity measure on peak paths, the best correspondingpaths through the two trees is found. The similarity of the image and model trees is basedon a very weak approximation of the trees' topology and geometry, restricted, in fact, to asingle path through the tree.A more recent approach by Halvadar, Medioni, and Stein also uses path structure to indexinto a database [12]. From an intensity image, a graph is constructed in which nodes representperceptual groups of contours and arcs capture relations between the groups. Computingthe k-th power of the resulting adjacency matrix yields all possible paths of length k betweenany two nodes in the graph, with each path consisting of an ordered sequence of structuralrelations among the vertices in the graph. In the interest of e�ciency, they compute onlypaths of length two (i.e., two edges and three vertices). Paths are used as keys for indexinginto an object database of model graphs, with each path component voting for a set ofmodel graphs sharing that subpath. In a veri�cation phase, model paths belonging to thesame object and receiving signi�cant votes are clustered to form maximal subgraphs. Thesubgraph having maximal cardinality is chosen as the best matching model.In this paper, we present a multiscale view-based representation of 3-D objects that, onone hand, avoids the need for complex feature extraction, such as lines, curves, or regions,while on the other hand, provides the locality of representation necessary to support occludedobject recognition as well as invariance to minor changes in both illumination and shape. Incomputing a representation for a 2-D image (whether model image or image to be recognized),a multiscale wavelet transform is applied to the image, resulting in a hierarchical saliencymap of the image that o�ers advantages over a Laplacian pyramid.This saliency map is represented as a hierarchical graph structure, called the saliency mapgraph, that encodes both the topological and geometrical information found in the saliency4



map.The similarity between a test image and a model image is de�ned as the similaritybetween their respective saliency map graphs. We address the problem of matching twosaliency map graphs, leading to two matching algorithms. The �rst algorithm �nds the bestmapping between two saliency map graphs in terms of their topological structure, while thesecond algorithm factors in the geometry of the two graphs. In each case, we present anevaluation function that determines the overall quality of the match, i.e., the similarity of thetwo graphs. We demonstrate and evaluate our image representation and our two matchingalgorithms using the Columbia University COIL image database. In addition, we assess theviewpoint invariance of our representation and matching algorithms.2 A Scale-Space Saliency Representation of an ImageTo reduce the complexity in matching input image representations to model view represen-tations, we seek a scale-space or coarse-to-�ne representation of images that allows us to �rstmatch or index based on the coarse-level features in the image. Coarse-level correspondencecan then be used to constrain a �ne-level matching of the remaining features. Furthermore,we would like our image representation to be invariant to slight variations in the illuminationfalling on the object, image-plane rotation, translation, and scaling of the object, slight ro-tation in depth of the object, slight deformations of the shape of the object, e.g., stretching,bending, etc., and occlusion of the object.Traditional view-based object representations that are image based, e.g., [32, 22, 1, 17,26, 25], are neither coarse-to-�ne nor invariant to the above transformations due to the globalnature of their representations (although some o�er limited invariance to particular trans-formations). However, the advantage of these approaches is that complex feature extraction,grouping, or abstraction is not required. Systems based on more invariant view-based imagedescriptions, e.g., [13, 3, 33, 8, 24], have relied on complex feature extraction (e.g., edges,lines, regions, etc.) which is not only unreliable but often requires domain-speci�c parametertuning. 5



To address these shortcomings, we compute a scale-space representation of an image inwhich image objects (homogeneous regions) are located at the coarsest scale which capturestheir salient shape properties. Moreover, both the geometrical and topological relationsbetween the regions will be explicitly encoded in the representation. Finally, computingthese regions and relations requires the setting of very few parameters.2.1 The Multiscale Wavelet TransformThe scale-space image representation that we have selected is based on a multiscale wavelettransform [28]. The advantage of the wavelet decomposition lies in its e�ective time (space){frequency (scale) localization. Unlike other image transforms, e.g., the Laplacian/Gaussianpyramid [4, 5], which spread the information across their basis functions, the wavelet trans-form allows us to compute better localized object representations. In the output of thetransform, as illustrated in Figure 1, the salient shape of small objects is best captured bysmall wavelets, while the converse is true for large objects. Searching from �ner to coarserscales (right to left in Figure 1), we select the scale which captures the most e�cient encod-ing of an object's salient shape; above the chosen scale, extraneous information is encoded,while below the chosen scale, the object is overly \blurred." The region de�ning the objectat the chosen scale is called the scale-space cell (SSC) [21].The dyadic wavelet transform of a function f 2 L2(R) at the scale 2j and at the positionk is given by the inner products of the function with the family of wavelets(Wf)(j; k) = hf;  j;ki = 2�j=2 Z +1�1 f(x) (2�jx� k) dx (1)where the overline denotes the complex conjugate. This inner product may also be viewedas a convolution product (Wf) (j; k) = f �  j;k or as a �ltering of the function f with aband-pass �lter whose impulse response is  j;k.Detecting the scale-space cells requires analysis of the wavelet transform response at eachscale. The scale-space cell of an image object is located at the scale which is approximatelyone octave below the scale at which the object's response becomes indistinguishable fromother image objects of the same size. At this scale, the object's response resembles the6
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Figure 2: An illustration of the object's characteristic scale. The left column shows theanalyzing wavelets  i;k at the corresponding scales. The middle column shows two examples(A and B) of a function f(x) (top) and their wavelet transforms (below). Beginning withthe characteristic scale I = 4, the (W �)(I + j; x) takes the shape of  I+j;k; j = 1; 2; :::. Theright column shows the reconstruction of the original function by replacing the (W �)(i; x)with the  i;k.at the scales (6,5), (6,5,4), and (6,5,4,3), respectively, with the analyzing wavelets. Theerror in reconstruction is very small if the replacement takes place at scales greater than thecharacteristic scale; the error increases signi�cantly as the replacement takes place at the�ner scales. In the general case, interactions between the neighboring objects will distort thewavelet transform response. However, even for complex signals, each object will eventuallyyield the (approximate) impulse response at the appropriate scale determined by the size ofthe object.In order to �nd the characteristic scale of an image object in the 1{D case, one can8



Cβ

Cα

Cγ

−10

−5

0

5

−10
−5

0
5

10

0

.005

.010

.015

(a) (b)Figure 3: (a) The clusters formed by the centers of the 1{D SSCs associated with the cross-sections through an object. (b) One of the �lter kernels #(�; x; y) used in computing thesaliency of the SSC's (Eq. (3)). The kernel is obtained by computing the oriented energy at� = 0� for a disc.measure the correlation between the wavelet transform of the object and the basis functionat any given scale. At each location (x; y), one can then select the �nest scale at whichthe correlation exceeds some threshold. We will now proceed to examine the detection of ascale-space cell in two dimensions.2.3 Saliency Detection Algorithm in Two DimensionsIn the two-dimensional case, the characteristic scale I(�) may be di�erent for any particularorientation � of a 1{D cross-section through an object. Any object other than a circularone (disc) will become a point at di�erent scales in di�erent directions, e.g., an elongatedobject, occluded object, etc. In this case, the object will extend over several SSC's atany scale j < max�fI(�)g. Therefore, in the 2{D case, we apply the 1{D procedure in anumber of directions and search for clusters of 1{D centers, as shown in Figure 3(a). Ourentire procedure for detecting the SSC's in an image therefore consists of the following foursteps [21]: 9



Step 1|Wavelet Transform: Compute the wavelet pyramid of an image with `dyadic scales using oriented quadrature bandpass �lters tuned to 16 di�erent orienta-tions, i.e. � = 0�; 22:5�; 45�; :::; 337:5�. See [29] for a detailed derivation and descriptionof computing the wavelet pyramid using steerable basis �lters.Step 2|Local Energies: Compute the oriented local energies using the equation:E(�; s; x; y) = hG�(s; x; y)i2 + hH�(s; x; y)i2 (2)where G�(s; x; y) and H�(s; x; y) are the outputs of a quadrature pair of analyzingwavelet �lters at the scale-space coordinate (s; x; y), oriented at the angle �. For eachimage point, 16 di�erent oriented local energies are computed.Step 3|Saliency Maps: Compute ` saliency maps. The saliency of each particularSSC is computed using the convolution:saliency SSC(s; x; y) =X� [E(�; s; x; y) � #(�; x; y)] (3)where #(�; x; y) is the �lter kernel obtained by computing the sum of the squaredimpulse responses of the two analyzing wavelet �lters G�(s; x; y) and H�(s; x; y), asshown in Figure 3(b). As discussed above, circular shape has the highest saliency asmeasured by this scheme.Step 4|Peaks in Saliency Maps: Moving from �ner to coarser scales at everylocation, we select the �rst saliency map for the which a peak (local maximum) at thatlocation exceeds a given threshold. By using a series of oriented 1-D �lters to detectthe characteristic scale, we can detect objects that are not perfectly circular in shape.For example, if a non-circular shape's variation in diameter does not reach neighboringscales above or below the current scale, then a circularly-symmetric �lter, such as thatused by Crowley [6, 5, 7], will give a weak response for the shape. In our approach,however, the 1-D �lters are slightly adjusted in width (bounded by neighboring scales).The result is a cluster of oriented peaks from which we compute the 2-D shape's locationas the centroid of these peaks. The salience of the 2-D shape is computed as the sum10



of the oriented saliencies of the oriented peaks near this centroid. Finally, we applya non-maximum suppression process to eliminate closely overlapping salient SSC's ateach scale.The contents of each scale-space cell (SSC) is a 2-D matrix of wavelet coe�cients. Thesize of this matrix is invariant to both the scale at which the SSC is detected and thecomplexity of the shape contained in the SSC's corresponding image region. In the currentimplementation, only the scale, position, and saliency of a SSC is exploited during thematching of two saliency maps. However, one could include the actual content of the SSC asspeci�ed by the wavelet coe�cient matrix. The fact that all the SSC matrices are self-similarand small (in our case, 16�16) means that e�cient comparisons can be made between SSC'sat di�erent scales.Figure 4 illustrates how a complex object's saliency map (a) is largely invariant to scaling(b), translation (c), image plane rotation (d), and limited rotation in depth (e), where theilluminated left side of the face exhibits little change in its saliency map. Circles in the imagecorrespond to scale-space cells, while their intensity is proportional to the their saliency. Notethat the size of the circle appears to be slightly larger than its corresponding image feature.This is due to the fact that the size of the circle is determined by the largest extent of the�lter shown in Figure 3(b), i.e., where the response approaches zero. For di�erent imagestaken under di�erent conditions, there cannot be true invariance in the sense that salientregions are identical in di�erent views. However, approximate invariance su�ces for therecognition scheme that we propose below.To illustrate the illumination invariance of the representation, we have conducted twoexperiments in which the illumination of the scene is systematically varied and the saliencymaps computed. In Figures 5(a) through (d), the average scene illumination is 13, 15,25, and 50 candles per square foot, respectively. Note that the most salient regions areapproximately invariant to the changes in illumination. Note the the lower left large SSCrepresents the concave structure de�ned by the base, the bird's leg, and the bird's breast.In Figures 6(a) through (e), the average scene illumination is 6, 13, 25, 30, and 50 candlesper square foot, respectively. Note that while the majority of SSC's remain invariant across11
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(d) (e) (f)Figure 4: Extracting the most salient SSC's in an image: (a) original image and its saliencymap; (b) scale invariance; (c) translation invariance; (d) image rotation invariance; (e) in-variance to rotation in depth (illuminated left side of face exhibits little change in its saliencymap); and (f) the saliency map graph (SMG) of the original image in (a).the illumination range, Figure 6(e) loses the lower left large SSC. In fact, this same SSC isprogressively weaker as the illumination (or contrast) is increased. This is due to the factthat the higher contrast will improve the response of the higher frequency SSC's, which aresmaller in area. The relative strength of the smaller SSC's thereby increases, reducing therelative strength of the large SSC. To avoid overcrowding the picture, only those SSCs whosesaliency exceeds 50% of the most salient SSC at their scale are displayed.To better illustrate exactly what is encoded by the saliency map, Figure 7 gives anexample of synthesizing an image from the wavelet coe�cients retained in the scale-space12



Figure 5: Illumination Invariance Experiment 1: Average Illumination of (a) 13, (b) 15, (c)25, and (d) 50 candles per square foot.
Figure 6: Illumination Invariance Experiment 2: Average Illumination of (a) 6, (b) 13, (c)25, (d) 30, (e) 50 candles per square foot. 13



cells. Only the features represented in the saliency map (see Figure 4a) are reconstructed.Note that the quality of the reconstruction depends on the density of scale-space cells withina region. In Figures 7(b)-(d), an increasing number of salient cells were used to reconstructthe image.
Figure 7: An example of image reconstruction by inverse wavelet transform of scale-spacecells in the order of decreasing saliency. (a) The original image. Image reconstructed using 6most salient cells (b), 12 most salient cells (c), and 20 most salient cells (d) from Figure 4a.2.4 Limitations of the RepresentationUnder normal circumstances, an object (or one of its component features) should produce apeak at its corresponding location in the saliency map. However, there are several exceptionswhich do not properly �t within the SSC framework. The evolution of the saliency map at asingle scale as the object becomes degenerate, in the sense of the SSC framework, is shownin Figure 8. The exceptions arise due to wavelet transform scale sub-sampling, crowdedobjects, and elongated objects. As expected, combinations of these will create even moredi�culties.As shown in Figure 8(a), the saliency peak detector will �nd one salient region for theobject at the left side, whereas it will �nd several salient regions for larger objects on theright side. This e�ect will occur when the size of an object is intermediate between two14



(a)

(b)

(c)Figure 8: The evolution of the saliency map at a single scale for the exception cases. Theleft side shows the original images and the right side shows the corresponding saliency mapsat one scale. (a) As the object size increases, a peak in the saliency map corresponding tothe object turns into a \crater." (b) As the objects approach closer to one another, the\anti-object" between them becomes the most salient. (c) Instead of peak(s) in the saliencymap, elongated objects produce \mountain ridges."(octave) scales, and can be minimized by increasing the number of scales. In Figure 8(b),the detector will �nd four salient regions for the distant objects at left, but will �nd only oneregion in the center of the four close objects at right. This phenomenon occurs when a setof objects enclose a compact background region; the detector cannot separate �gure fromground. One could argue that such a regular pattern represents a form of texture that shouldbe treated as a single object. Again, if there were more scales, this composite object wouldbe detected at a coarser scale. Finally, in Figure 8(c), the detector will �nd several salientregions positioned along the elongated object. In this case, a salient region grouper couldsearch for a string of co-curvilinear SSC's at a given scale and group them into a compositestructure which could easily be accommodated by our graph representation and matchingmethods outlined below. An approach similar to this was proposed by Crowley for detectingridges in a Laplacian pyramid [7]. 15



2.5 The Saliency Map as a GraphThe computed saliency map can be represented as a hierarchical graph with nodes repre-senting saliency regions and specifying region location (in the image), region size, regionsaliency, and scale level. More formally, we de�ne the Saliency Map Graph (SMG) to bea directed acyclic graph G = (V;E), with each saliency region ri having a vertex vi in V .(vi; vj) is a directed edge in E if and only if the scale level of region ri is less than the scalelevel of region rj, and the center of the region rj lies entirely in the interior of the region ri.All the edges of G will therefore be directed from vertices at a coarser scale to vertices at a�ner scale, as shown in Figure 4 (lower-right).2 Finally, to construct the database of objectviews, a set of views is obtained for each object from a �xed number of viewpoints (e.g., aregularly sampled tessellation of a viewing sphere centered at the object). For each view,the Saliency Map Graph is computed and stored in the database.3 Matching Two Saliency Map GraphsGiven the SMG computed for an input image to be recognized and an SMG computed fora given model object image (view), we propose two methods for computing their similarity.In the �rst method, we compare only the topological or structural similarity of the graphs, aweaker distance measure designed to support limited object deformation invariance. In thesecond method, we take advantage of the geometrical information encoded in an SMG andstrengthen the similarity measure to ensure geometric consistency, a stronger distance mea-sure designed to support subclass or instance matching. It is imperative that each methodsupport a measure of subgraph similarity in order to support occluded object matching.3.1 Problem FormulationTwo graphs G = (V;E) and G0 = (V 0; E 0) are said to be isomorphic if there exists a bijectivemapping f : V ! V 0 satisfying, for all x; y 2 V (x; y) 2 E , (f(x); f(y)) 2 E 0: To2This graph structure is more compact than Crowley's Laplacian pyramid approach [6, 5, 7] since herepresents every local peak in his graph, whereas we retain peaks only at their most characteristic scale.16



compute the similarity of two SMG's, we consider a generalization of the graph isomorphismproblem, which we will call the SMG similarity problem: Given two SMG's G1 = (V1; E1)and G2 = (V2; E2) and a partial mapping from f : V1 ! V2, let E be a real-valued errorfunction de�ned on the set of all partial mappings. Our error function, E, incorporates twocomponents with respect to any partial mapping: 1) we would like to reward correspondingnodes which are similar in terms of their topology, geometry, and salience; and 2) we wouldlike to penalize a set of correspondences the more they exclude nodes from the model. Adetailed discussion on the error function is provided in Appendix A. We say that a partialmapping f is feasible if f(x) = y implies that there are parents px of x and py of y, suchthat f(px) = py. Our goal is therefore to �nd a feasible mapping f which minimizes E(f).3.2 A Matching Algorithm Based on Topological SimilarityIn this section, we describe an algorithm which �nds an approximate solution to the SMGsimilarity problem. The focus of the algorithm is to �nd a minimum weight matching betweenvertices of G1 and G2 which lie in the same level. Our algorithm starts with the verticesat level 1. Let A1 and B1 be the set of vertices at level 1 in G1 and G2, respectively. Weconstruct a complete weighted bipartite graph G(A1; B1; E) with a weight function de�nedfor edge (u; v) (u 2 A1 and v 2 B1) as w(u; v) = js(v)� s(u)j.3 Next, we �nd a maximumcardinality, minimum weight matching M1 in G using [10]. All the matched vertices aremapped to each other; that is, we de�ne f(x) = y if (x; y) is a matching edge in M1.The remainder of the algorithm proceeds in phases as follows, as shown in Figure 9. Inphase i, the algorithm considers the vertices of level i. Let Ai and Bi be the set of verticesof level i in G1 and G2, respectively. Construct a weighted bipartite graph G(Ai; Bi; E) asfollows: (v; u) is an edge of G if either of the following is true: (1) Both u and v do nothave any parent in G1 and G2, respectively, or (2) They have at least one matched parentof depth less than i; that is, there is a parent pu of u and pv of v such that (pu; pv) 2Mj forsome j < i. We de�ne the weight of the edge (u; v) to be js(u)� s(v)j. The algorithm �nds3G(A;B;E) is a weighted bipartite graph with weight matrix W = [wij] of size jAj � jBj if, for all edgesof the form (i; j) 2 E, i 2 A, j 2 B, and (i; j) has an associated weight = wi;j.17
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graph before terminating.Figure 9: Illustration of the SMGBM Algorithm (see text for explanation).a maximum cardinality, minimum weight matching in G and proceeds to the next phase.The above algorithm terminates after ` phases, where ` is the minimum number of scalesin the saliency maps (or SMG's) of two graphs. The partial mapping M of SMG's canbe simply computed as the union of all Mi's for i = 1; : : : ; `. Finally, using the errormeasure de�ned in Appendix A, we compute the error of the partial mapping M . Eachphase of the algorithm requires simple operations with the time to complete each phase beingdominated by the time to compute a minimum weight matching in a bipartite graph. Thetime complexity for �nding such a matching in a weighted bipartite graph with n vertices isO(n2pn log log n) time, using the scaling algorithm of Gabow, Gomans and Williamson [11].The entire procedure, as currently formulated, requires O(`n2pn log log n) steps.18



3.3 A Matching Algorithm Based on Geometric SimilarityThe SMGBM similarity measure captured the structural similarity between two SMG's interms of branching factor and node saliency similarity; no geometric information encoded inthe SMG was exploited. In this section, we describe a second similarity measure, called SMGSimilarity using an A�ne Transformation (SMGAT), that includes the geometric properties(e.g., relative position and orientation) of the saliency regions.Given G1 = (V1; E1) and G2 = (V2; E2), we �rst assume, without loss of generality, thatjV1j � jV2j. First, as shown in Figure 10, the algorithm will hypothesize a correspondencebetween three regions of G1, say (r1; r2; r3), and three regions (r01; r02; r03) of G2. The mappingf(r1 ! r01); (r2 ! r02); (r3 ! r03)g will be considered as a basis for alignment if the followingconditions are satis�ed:� ri and r0i have the same level in the SMG's, for all i 2 f1; : : : ; `g.� (ri; rj) 2 E1 if and only if (r0i; r0j) 2 E2, for all i; j 2 f1; : : : ; `g, which implies thatselected regions should have the same adjacency structure in their respective SMG's.Once regions (r1; r2; r3) and (r01; r02; r03) have been selected, we solve for the a�ne trans-formation (A; b), that aligns the corresponding region triples by solving the following systemof linear equalities: 26666666666666664 xr1 yr1 1 0 0 0xr2 yr2 1 0 0 0xr3 yr3 1 0 0 00 0 0 xr1 yr1 10 0 0 xr2 yr2 10 0 0 xr3 yr3 1
3777777777777777526666666666666664 a11a12b1a21a22b2

37777777777777775 = 26666666666666664 xr01xr02xr03yr01yr02yr03
37777777777777775 : (4)The a�ne transformation (A; b) will be applied to all regions in G1 to form a new graph G0.Next, a procedure similar to the minimum weight matching, used in the SMGBM is applied tothe regions in graphs G0 and G2. Instead of matching regions which have maximum similarityin terms of saliency, we match regions which have minimum Euclidean distance from each19
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other. Given two regions u and v, the distance between them can be de�ned as the L2 normof the distance between their centers, denoted by d(u; v) = q(xu � xv)2 + (yu � yv)2. In aseries of steps, SMGAT constructs weighted bipartite graphs Gi = (Ri; R0i; Ei) for each leveli of the two SMG's, where Ri and R0i represent the set of vertices of G0 and G2 at the i-thlevel, respectively. The constraints for having an edge in Ei is the same as SMGBM: (u; v)is an edge in Gi if either of the followings holds:� Both u and v do not have any parents in G0 and G2, respectively.� They have at least one matched parent of depth less than i.The corresponding edge will have weight equal to w(u; v) = d(u; v). A maximum car-dinality, minimum weight bipartite matching Mi will be found for each level Gi, and thepartial mapping f(A;b) for the a�ne transformation (A; b) will be formed as the union of allMi's. Finally, the error of this partial mapping E(f(A;b)) will be computed as the sum overeach Ei of the Euclidean distance separating Ei's nodes weighted by the nodes' di�erence insaliency (see Appendix A). Once the total error is computed, the algorithm proceeds to thenext valid pair of region triples. Among all valid a�ne transformations, SMGAT choosesthat one which minimizes the error of the partial mapping.In terms of algorithmic complexity, solving for the a�ne transformation (eq. 4) takes onlyconstant time, while applying the a�ne transformation toG1 to formG0 is O(max(jV1j; jE1j)).The execution time for each hypothesized pair of region triples is dominated by the complex-ity of establishing the bipartite matching between G2 and G0, which is O(`n2pn log log n),for SMG's with n vertices and ` scales. Although in the worst case, i.e., when both saliencymap graphs have only one level, there are O(n6) pairs of triples. However, in practice, thevertices of an SMG are more uniformly distributed among the levels of the graph, greatlyreducing the number of possible correspondences of base triples. For a discussion of how thecomplexity of the bipartite matching step can be reduced, see [27].21



3.4 Limitations of the Matching AlgorithmsThere are two major limitations of both matching algorithms. First, since both algorithmsseek a minimum weight, maximum cardinality matching in a bipartite graph that spanscorresponding levels of two saliency map graphs, corresponding nodes in the two graphsmust therefore lie at the same levels in their respective SMG's. This implies that a sceneSMG cannot be vertically expanded or compressed relative to a model SMG. Furthermore,an image object that is detected at a scale di�erent from that of its corresponding modelobject cannot be correctly matched.To overcome this problem, consider a model SMG corresponding to a particular view ofsome object and let the initial scene SMG be exactly equal to the model SMG. Next, considera perturbation of the scene SMG in which any scene SMG node can migrate up or down asmall number of levels, k, provided that the scene SMG topology remains intact, i.e., sameparent-child relationships with parents and/or children changing levels. For a �xed, smallk, the bandwidth of the bipartite graph mapping solution will increase from 1 to 2k + 1.In other words, the bipartite graph previously generated at each level will now encompassnodes at neighboring levels. The resulting complexity of both algorithms will be the sameexcept for a constant scaling factor to account for the increased (constant) number of nodesin each bipartite graph.The restriction that corresponding nodes lie at the same level or scale has an importantimplication for matching cluttered scenes. If the scale of background objects is comparableto the object being recognized, the saliency map graph corresponding to the scene is approx-imately the saliency map corresponding to the object with additional nodes added to one ormore levels. In this case, our assumption that corresponding nodes exist at the same levelis not violated. However, if a background object dominates the object being recognized, thee�ect will be to \push" the object down to a �ner scale while the background object occupiesthe coarser scales. This migration of the target object would violate our assumption thatcorresponding SMG nodes lie at the same scale.If we assume that some model SMG, consisting of ` levels, occupies any ` continuouslevels of a scene SMG, then to overcome this second problem requires that we apply either22



algorithm to each level of the scene SMG. This will mean that the complexity of bothalgorithms will increase by a multiplicative factor of h, the number of scales in the sceneSMG. In the experiments reported in the following section, we assume a bipartite graph ofbandwidth 1 and assume that any background objects do not dominate the target object.4 ExperimentsTo illustrate our approach to shape representation and matching, we apply it to a databaseof model object views generated by Murase and Nayar at Columbia University. Views of eachof the 20 objects are taken from a �xed elevation every 5 degrees (72 views per object) for atotal of 1440 model views. The top row of images in Figure 11 shows three adjacent modelviews for one of the objects (piggy bank) plus one model view for each of two other objects(bulb socket and cup). The second row shows the computed saliency maps for each of the�ve images, while the third row shows the corresponding saliency map graphs. The time tocompute the saliency map averaged 156 seconds/image for the �ve images on a Sun Sparc20, but can be reduced to real-time on a system with hardware support for convolution, e.g.,a Datacube MV200. The average time to compute the distance between two SMG's is 50ms using SMGBM, and 1.1 second using SMGAT (an average of 15 nodes per SMG).4.1 Unoccluded ScenesTo illustrate the matching of an unoccluded image to the database, we compare the middlepiggy bank image (Figure 11(b)) to the remaining images in the database. Table 1 showsthe distance of the test image to the other images in Figure 11; the two other piggy bankimages (Figures 11 (a) and (c)) were the closest matching views in the entire database.Table 1 also illustrates the di�erence between the two matching algorithms. SMGBM is aweaker matching algorithm, searching for a topological match between two SMG's. SMGAT,on the other hand, is more restrictive, searching for a geometrical match between the twoSMG's. For similar views, the two algorithms are comparable; however, as two views divergein appearance, their similarity as computed by SMGAT diverges more rapidly than their23



(a) (b) (c) (d) (e)Figure 11: A sample of views from the database: top row represents original images, secondrow represents saliency maps, while third row represents saliency map graphs.SMGBM similarity.In the second experiment, we choose three di�erent objects and repeat the procedure,as shown in Figure 12. In this case, each of the 5 views is compared to the other 4 views,leading to a 5 by 5 table, as shown in Table 2. Entries above the diagonal are computed usingthe SMGBM algorithm, while entries below the diagonal are computed using the SMGATalgorithm. Again, both algorithms perform well, with the SMGAT distance diverging morerapidly as the objects become more dissimilar.Algorithm 11(a) 11(c) 11(d) 11(e)SMGBM 9.57 10.06 14.58 23.25SMGAT 8.91 12.27 46.30 43.83Table 1: Distance of Figure 11(b) to other images in Figure 1124



(a) (b) (c) (d) (e)Figure 12: A second sample of views for the second experiment.12(a) 12(b) 12(c) 12(d) 12(e)12(a) - 6.64 7.11 12.24 13.7712(b) 5.31 - 6.76 13.93 14.7112(c) 8.24 4.12 - 11.45 12.6112(d) 39.35 34.43 36.40 - 21.7212(e) 45.88 41.47 41.15 58.18 -Table 2: Pairwise distance between �gures in Figure 12. Entries above the diagonal are dis-tances as computed by SMGBM, while entries below the diagonal are computed by SMGAT.In the third experiment, we compare every image to every other image in the database,resulting in over 1 million trials. There are three possible outcomes: 1) the image removedfrom the database is closest to one of its neighboring views of the correct object; 2) theimage removed from the database is closest to a view belonging to the correct object butnot a neighboring view; and 3) the image removed from the database is closest to a viewbelonging to a di�erent object. The results are shown in Table 3. As we would expect,the SMGAT algorithm, due to its stronger matching criterion, outperforms the SMGBMalgorithm. If we include as a correct match any image belonging to the same object, bothalgorithms (SMGBM and SMGAT) perform extremely well, yielding success rates of 97.4%and 99.5%, respectively. 25



Algorithm % Hit % Miss % Missright object wrong objectSMGBM 89.0 8.4 2.6SMGAT 96.6 2.9 0.5Table 3: An exhaustive test of the two matching algorithms. For each image in the database,the image is removed from the database and compared, using both algorithms, to everyremaining image in the database. The closest matching image can be either one of its trueneighboring views, a di�erent view belonging to the correct object, or a view belonging to adi�erent object.
Figure 13: Occluded Object Matching: (a) original image; (b) saliency map; and (c) saliencymap graph4.2 Occluded ScenesTo illustrate the matching of an occluded image to the database, we compare an imagecontaining the piggy bank occluded by the bulb socket, as shown in Figure 13. Table 4shows the distance of the test image to the other images in Figure 11. The closest matchingview is the middle view of the piggy back which is, in fact, the view embedded in the occludedscene. In a labeling task, the subgraph matching the closest model view would be removedfrom the graph and the procedure applied to the remaining subgraph. After removing thematching subgraph, we match the remaining scene subgraph to the entire database, as shownin Table 5. In this case, the closest view is the correct view (Figure 11(d)) of the socket.26



Algorithm 11(a) 11(b) 11(c) 11(d) 11(e)SMGBM 9.56 3.47 8.39 12.26 14.72SMGAT 24.77 9.29 21.19 30.17 33.61Table 4: Distance of Figure 13(a) to other images in Figure 11. The correct piggy bank view(Figure 11(b)) is the closest matching view.Algorithm 11(a) 11(b) 11(c) 11(d) 11(e)SMGBM 12.42 14.71 14.24 4.53 9.83SMGAT 18.91 20.85 17.08 7.19 15.44Table 5: Distance of Figure 13(a) (after removing from its SMG the subgraph correspondingto the matched piggy back image) to other images in Figure 11.In a second occlusion experiment, consider the duck occluding the toy cat, as shownin Figure 14. The closest matching view in the database is the correct view of the duck(Figure 12(a)). After removing the scene SMG subgraph corresponding to the duck, theremaining subgraph was matched to the entire database, as shown in Table 7. The closestimage is the correct view (Figure 12(d)) of the cat.4.3 An Analysis of Viewpoint InvarianceIn a view-based 3-D object recognition system, an object is represented by a collection ofviews. The more viewpoint-invariant an image representation is, the fewer the number ofviews needed to represent the object. In the above experiments, we computed the saliencymap graphs for the full set of 72 views for each of the 20 objects. In this section, we explorethe viewpoint invariance of our representation by considering a smaller sample of views forAlgorithm 12(a) 12(b) 12(c) 12(d) 12(e)SMGBM 22.71 29.64 33.97 30.57 62.11SMGAT 39.16 47.92 66.04 85.19 105.72Table 6: Distance of Figure 14 to other images in Figure 12.27



Figure 14: Image of occluded object used in second occlusion experimentAlgorithm 12(a) 12(b) 12(c) 12(d) 12(e)SMGBM 78.68 62.41 71.27 27.59 51.03SMGAT 75.92 81.39 68.41 44.37 90.29Table 7: Distance of Figure 14 (after removing from its corresponding SMG the subgraphcorresponding to the matched duck image) to the other images in Figure 12.one of our objects.Our experiment, as shown in Figure 15, consists of successively removing every secondview (model SMG's) of a given object (in this case, the piggy bank) and computing thedistance, using both SMGBM and SMGAT, between each removed view to the remainingviews. Thus, at the �rst iteration, we will remove every second view from the original set of72 views, leaving 36 views of the model object. Each of the 36 views that was removed willthen be compared to each of the 36 remaining model views. If the closest matching modelview is adjacent to the removed view's position in the original set of 72 views, then one canargue that the intermediate view (that was removed) is extraneous. At the next iteration,we remove every second view from the 36 model views and repeat the experiment with the18 removed views.4The results are shown in Table 8. For example, when leaving out 36 views, 91% of the4The n views removed at step ` are maximally distant from the n remaining views; there is no need tomatch the views removed at step `� 1 to the views remaining at step `.28
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Views in Tree 36 18 9SMGBM % 91 50 35SMGAT % 99 84 61Table 8: Evaluating Viewpoint Invariance of the SMG Representation. The �rst row in-dicates the number of model views remaining in the model view set for the piggy bankobject after removing every second view. The second and third rows indicate the percentageof SMGBM-based and SMGAT-based searches, respectively, between each of the removedviews and the remaining model views that result in a \closest" view that is adjacent to theremoved view.SMGBM searches (using a removed view) resulted in a closest view that is adjacent to theremoved view at the next level up (72 views), while for SMGAT, 99% of the searches weresuccessful. Furthermore, this percentage gradually declines for SMGAT and rapidly declinesfor SMGBM. As one might expect, when geometric information is included in the search,neighboring views of a test view exhibit the least geometric distortion. For the SMGBMalgorithm, however, the topological structure of a test view may, in fact, be similar to otherviews of the object despite geometric di�erences.With the proper indexing structure, it is clear that in a recognition framework, thenumber of candidates returned from a topological index will be higher than that returnedfrom a geometric index, given the ambiguity inherent in a topological index. On the otherhand, shape deformations within an object's class may be accommodated by SMGBM andnot by SMGAT. Finally, it must be pointed out that the above analysis was performedon only one object. Although we would expect the same trend to occur with other modelobject view sets, the percentages will vary with the shape and appearance of the object.For example, for an object with many degenerate views, we would expect the percentagesto fall when a sample lies directly on a degenerate view. We are currently conducting morecomprehensive experiments in order to to predict what kind of view sampling resolutions areappropriate for each algorithm. 30



4.4 Limitations of the ExperimentsThe approach presented in this paper has not addressed the indexing problem. For therecognition experiments, each (possibly occluded) \query" view was compared to each andevery model view to return the closest matching view. Although the method returns theclosest model view with high probability, the resulting linear search of the database is simplynot feasible for large databases. In current work, we are exploring the use of recoveredlocal SMG structure (SMG subgraphs covering local regions in the image) to index into thedatabase of model views and return objects whose model view trees have similar structureat their leaves. In addition, we are exploring hierarchical representations of the model viewscorresponding to a given object, leading to a more e�cient (O(log n)) search of an object'smodel views than the current linear search. The evaluation of our approach is also limitedin that by using the Columbia University image database, we were unable to change thelighting conditions, scale, etc., of the images. In future work, we plan to construct our ownimage database, allowing us to more e�ectively evaluate the transformation invariance of ourrepresentation.5 ConclusionsThere is a gap in the view-based object recognition literature between the image-basedsystems and the feature-based systems. While the image-based systems have been shownto work with complex objects, e.g., faces, they are highly sensitive to occlusion, scale, anddeformation. These limitations are due, in part, to the global nature of the representationand the lack of abstraction in the resulting descriptions. The feature-based systems, on theother hand, rely on highly sensitive feature extraction processes that perform poorly in thepresence of surface markings or texture. We have introduced an image representation that�lls this gap. Our saliency map graph o�ers a robust, transformation invariant, multiscalerepresentation of an image that not only captures the salient image structure, but providesthe locality of representation required to support occluded object recognition. We havepresented two graph matching algorithms, SMGBM and SMGAT, that o�er an e�ective31



mechanism for comparing the topological and geometric structure, respectively, of a testimage SMG and a database image SMG.The success of our preliminary experiments suggests that our SMG representation is richenough to distinguish (using our two matching algorithms) between the various views of adatabase of objects. Furthermore, we have evaluated the performance of the two matchersas a function of model view sampling resolution. However, the occlusion and illuminationexperiments, although supporting our claims of invariance, are incomplete. Much moreexperimentation is needed, whereby both the size and position of the occluder and theposition and intensity of the light source are systematically varied. We are in the process ofbuilding a laboratory that can support this type of experimentation.Finally, our graph matching formulation, in terms of topological and geometric similarity,is applicable to any multiscale image representation, e.g., a Laplacian pyramid, which canbe mapped to a vertex-weighted, directed acyclic graph. In current work, we are not onlyseeking to improve our saliency map construction, but are exploring other multiscale imagerepresentations within this framework. We are also embedding our matching algorithms inan object recognition system that uses SMG subgraphs as an indexing structure.AcknowledgementsWe gratefully acknowledge Columbia University's Shree Nayar for providing us with thedatabase of model views. We also gratefully acknowledge the support of the National ScienceFoundation.A Choosing a Suitable Error FunctionThe requirement of feasibility assures that the partial mapping preserves the path structurebetween G1 and G2. It is essential that the error function E is carefully selected so as to yieldoptimal results. Our error function incorporates two components with respect to any partialmapping: 1) we would like to reward corresponding nodes which are similar in terms of their32



topology, geometry, and salience; and 2) we would like to penalize a set of correspondencesthe more they exclude nodes from the model. Excluding the second component, our measureis similar to the objective function used in the f0; 1g integer programming formulation ofthe largest subgraph isomorphism problem [15, 9].Given two SMG's, G1 = (V1; E1) and G2 = (V2; E2), and a partial mapping, f : V1 ! V2,we de�ne the mapping matrix, M(f), between G1 and G2, to be a jV1j � jV2j, f0; 1g matrixas follows: Mu;v = 8><>: 1 if u 2 V1; v 2 V2; u = f(v)0 Otherwise:Since f is a bijective mapping, M(f) will satisfy the following conditions:Pv2V2 Mu;v � 1 8u 2 V1Pu2V1 Mu;v � 1 8v 2 V2:Given this formulation of the mapping, f , we de�ne the error of f to be:E(f) = " Xu2V1 Xv2V2 Mu;v !(u; v) js(u)� s(v)j+(1 � ")0@Xu2V1(1� Xj2V2Mu;j)s(u) + Xv2V2(1� Xi2V1Mi;v)s(v)1A (5)where " = j1tM(f)1j=jV1j represents the ratio of the number of matched vertices to thenumber of vertices (jV1j) in the model SMG (with 1 the identity vector of the appropriatedimension) and s(v) denotes the strength of region v in its saliency map. For the SMG topo-logical similarity algorithm, de�ned in Section 3.2, !(u; v) is always one, while for the SMGgeometrical similarity algorithm, de�ned in Section 3.3, !(u; v) represents the Euclidean dis-tance between the centers of the regions, u and v. Clearly, in the case of perfect similarity,E(f) = 0, while E(f) will be Pu2V1 s(u) +Pv2V2 s(v) if there is no match (1tjM(f)j1 = 0).References[1] P. Belhumeur and D. Kriegman. What is the set of images of an object under all possiblelighting conditions. In IEEE Conference on Computer Vision and Pattern Recognition,pages 270{277, San Francisco, CA, June 1996.33
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