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Abstract
Association rules are a fundamental class of patterns that exist in
data. The key strength of association rule mining is its
completeness. It finds all associations in the data that satisfy the
user specified minimum support and minimum confidence
constraints. This strength, however, comes with a major
drawback. It often produces a huge number of associations. This
is particularly true for data sets whose attributes are highly
correlated. The huge number of associations makes it very
diff icult, if not impossible, for a human user to analyze in order to
identify those interesting/useful ones. In this paper, we propose a
novel technique to overcome this problem. The technique first
prunes the discovered associations to remove those insignificant
associations, and then finds a special subset of the unpruned
associations to form a summary of the discovered associations.
We call this subset of associations the direction setting (DS) rules
as they set the directions that are followed by the rest of the
associations. Using this summary, the user can focus on the
essential aspects (or relationships) of the domain and selectively
view the relevant details. The approach is effective because
experiment results show that the set of DS rules is typically very
small . They can be analyzed manually by a human user. The
proposed technique has also been applied successfully to a
number of real-li fe applications.

1. Introduction
Association rules are a class of important regularities in
data. Association rule mining is commonly stated as follows
[2]: Let I = { i1, …, in} be a set of items, and D be a set of
data cases. Each data case consists of a subset of items in I.
An association rule is an implication of the form X → Y,
where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The rule X → Y holds
in D with confidence c if c% of data cases in D that support
X also support Y. The rule has support s in D if s% of the
data case in D contains X ∪ Y. The problem of mining
association rules is to generate all association rules that
have support and confidence greater than the user-specified
minimum support and minimum confidence.

A typical association rule mining algorithm works in two
steps. The first step finds all large itemsets (a set of items)
that meet the minimum support constraint. The second step
generates rules from all l arge itemsets that satisfy the
minimum confidence constraint.

The key strength of association rule mining is that it can
eff iciently discover the complete set of associations that
exist in data. These associations provide a complete picture
of the underlying regularities in the domain. However, this
strength comes with a major drawback. The number of
discovered associations can be huge, easily in the thousands
or tens of thousands (see Section 8). Clearly, such a large
number of associations are very diff icult, if not impossible,
to be analyzed by a human user. This problem is
particularly bad with those data sets whose items are highly
correlated.

However, it will not be satisfactory to simply give an
arbitrary small subset of the rules to the user if there are
indeed a large number of them that exist in the data because
this small subset can only give a partial picture of the
domain. The question then is: “Can we preserve the full
power of association rule mining (i.e., its completeness)
without overwhelming the user?” This paper shows that it is
possible. A novel technique is proposed to prune those
insignificant rules and to find a special subset of association
rules that represent the essential underlying relationships in
the data. We call this subset of associations the direction
setting (DS) rules. The DS rules give a summary of the
behavior of the discovered associations. They represent the
essential relationships or structure (or skeleton) of the
domain. The non-DS rules simply give additional details.
Using the DS rules as a summary, the user can interactively
focus on the key aspects of the domain and selectively view
the relevant details (non-DS rules).

In this work, we focus on association rule mining from a
relational table, which consists of a set of records described
by a number of attributes. An item is an attribute value pair,
i.e., (attribute = value) (numeric attributes are discretized).
Association rule mining in such data is typically targeted at
a specific attribute because the user normally wants to know
how other attributes are related to this target attribute
(which can have many values) [13, 4]. With a target
attribute, we can express an itemset as follows (instead of a
set of items as in [2]):

X → y
where y is an item (or a value) of the target attribute, and X
is a set of items from the rest of the attributes. For
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simplicity, we call this itemset a rule hereafter, regardless
of whether it is significant or not. We also say a rule is
large if it meets the minimum support.

Note that we do not use minimum confidence in our
framework, although we can also use it (see Section 6).
Minimum confidence does not reflect the underlying
relationship of the domain represented by the data [4].
Instead we use statistical correlation as the basis for finding
rules that represent the fundamental relations of the domain.

Figure 1 shows the conceptual flow of the proposed
technique1, which consists of two steps, pruning and
summarization. Below, we introduce them briefly.

Figure 1. The proposed technique

1.1 Pruning the discovered associations
It is well known that many discovered associations are
redundant or minor variations of others. Their existence
may simply be due to chance rather than true correlation.
Thus, those spurious and insignificant rules should be
removed. This is similar to pruning of overfitting rules in
classification [21]. Rules that are very specific (with many
conditions) tend to overfit the data and have littl e predictive
power. Although association rules are not normally used for
prediction, rules that only capture the irregularities and
idiosyncrasies of the data have no value and should be
removed. An example of such a rule is shown below.
Example 1:  We have the following two rules,

R1: Job = yes → Loan = approved
[sup = 60%, conf = 90%]

R2: Job=yes, Credit_history=good → Loan= approved
  [sup = 40%, conf = 91%]
If we know R1, then R2 is insignificant because it gives
littl e extra information. Its slightly higher confidence is
more likely due to chance than to true correlation. It thus
should be pruned. R1 is more general and simple. General
and simple rules are preferred.

In this work, we measure the significance of a rule using
chi-square test (χ2) for correlation from statistics [17].

1.2 Summarizing the unpruned rules
Pruning can reduce the number of rules substantially.
However, the number of rules left can still be very large.
This step finds a subset of the rules, called direction setting
rules (or DS rules), to summarize the unpruned rules.
Essentially, DS rules are significant association rules that
set the directions for non-DS rules to follow. The direction
of a rule is the type of correlation it has, i.e., positive
correlation or negative correlation or independence, which
is also computed using χ2 test. Let us see an example.
                                                                
1 Here, it is presented as a post-processing method. In implementation, it

is combined with rule mining.

Example 2:  We have the following discovered rules:
R1: Job = yes → Loan = approved

[sup = 40%, conf = 70%]
R2: Own_house = yes → Loan = approved

[sup = 30%, conf = 75%]
χ2 analysis shows that having a job is positively correlated
to the grant of a loan, and owning a house is also positively
correlated to obtaining a loan. Then, the following
association is not so surprising to us:

R3: Job = yes, Own_house = yes → Loan = approved
 [sup = 20%, conf =90%]
because it intuitively follows R1 and R2. We can use R1
and R2 to provide a summary of the three rules. R1 and R2
are DS rules as they set the direction (positive correlation)
that is followed by R3. In real-li fe data sets, a large number
of associations are like R3.

From the example, we see that the DS rules give the
essential relationships of the domain. The non-DS rule is
not surprising if we already know the DS rules. However,
this, by no means, says that non-DS rules are not
interesting. Non-DS rules can provide further details about
the domain. For example, the non-DS rule above (R3) gives
a higher confidence, which may be of interest to the user.
Using DS rules to form a summary is analogous to
summarization of a text article. From the summary, we
know the essence of the article. If we are interested in the
details of a particular aspect, the summary can point us to
them in the article. In the same way, the DS rules give the
essence of the domain and points the user to those related
non-DS rules. Non-DS rules are basically combinations of
DS rules. In the above Example 2, R3 is a combination of
R1 and R2.

Experiment results, including real-li fe applications,
show that although the number of discovered rules can be
huge, the number of DS rules is very small (see Section 8).
They can be analyzed manually by the human user to obtain
the essential relationships in the data. He/she can then focus
his/her attention on those interesting aspects of the
relationships, and to see the relevant non-DS rules. This
process can be easily facilit ated by an interactive user
interface (Section 7). The proposed technique makes
association rule mining effective and practical for data sets
whose items are highly correlated. The user can now obtain
a complete picture of the domain without being
overwhelmed by a huge number of rules.

2. Related Work
The problem of too many rules has been studied by many
researchers. [8] proposed an approach to allow the user to
specify what he/she wants to see using templates. The
system then retrieves those match rules from the set of
discovered rules. This method, however, does not prune
those insignificant rules and does not provide a summary of
the discovered rules.

In subjective interestingness research in data mining,
[22, 11, 12, 19] proposed a number of methods for finding
unexpected rules. Instead of asking the user to specify what
he/she wants to see as in [8], these approaches ask the user
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to specify his/her existing knowledge about the domain.
The system then finds those unexpected rules by comparing
the user’s knowledge with the discovered rules. Again,
these methods do not prune and do not attempt to
summarize the association rules.

[25] and [18] investigated using item constraints
specified by the user in rule mining to generate only the
relevant rules. Essentially, the constraints restrict the items
or combination of items allowed to participate in mined
rules. This approach also does not prune those insignificant
rules and does not summarize the unpruned rules.

[26] introduces the concept of association rule cover for
pruning association rules. A cover is basically a subset of
the discovered associations that can cover the database. The
number of rules in a cover can be quite small . A greedy
algorithm is proposed to find a good cover and the
remaining rules are pruned. The problem with this method
is that the advantage of association rules, its completeness,
is lost. Clearly, a better approach is to summarize the
discovered rules. From this summary, the user can obtain an
overall picture of the domain.

[4] proposed a rule pruning technique using minimum
improvement, which is the difference between the
confidence of a rule and the confidence of any proper sub-
rule with the same consequent. Those rules that do not meet
this minimum improvement in confidence are pruned. [24]
also proposed a related technique. Our pruning method is
similar. However, we use chi-square test as the basis for
pruning (minimum improvement can be easily incorporated
in our framework). We will see in Section 8 that even after
pruning the number of rules left can still be very large.
Summarization is thus important. The methods in [4, 24] do
not perform summarization.

There are also a number of other methods in
classification research for rule pruning such as pessimistic
error rate [21] and minimum description length based
pruning [15]. In our work, we choose the widely used chi-
square test statistics for rule pruning.

[1] introduces a technique to remove two types of
redundant rules, i.e., simple and strict redundancy.
Essentially, a rule is redundant with respect to another rule
if the support and confidence of the redundant rule are
always at least as large as the support and confidence of the
latter. Simple redundancy tries to remove those rules that
are derived from the same itemset. For example, AB => C
is redundant with respect to the rule A => BC. This,
however, does not happen in our situation because in our
case one itemset represents only one rule. Strict redundancy
applies to two itemsets and one is a subset of the other, e.g.,
X => Y is redundant with respect to X => YZ. This
situation also does not apply in our situation because we
focus on association rules that use only one fixed attribute
on the right hand side. Also our proposed technique does
not use minimum confidence for rule generation (see the
problems with minimum confidence in [4]), but statistical
correlation (or significance).

Other related work includes correlation rule mining in
[5]. It uses chi-square test to measure the correlation. A

correlation rule is a set of correlated items. It does not
perform pruning or summarization. [10] introduces a
technique for clustering association rules. It mainly deals
with generation of numeric associations, i.e., how to join
the adjacent intervals to produce more general rules and
fewer rules. Clearly, both works are different from ours.

3. Chi-Square Test for Independence and
Correlation

Chi-square test statistics (χ2) is a widely used method for
testing independence and/or correlation [17]. In our
proposed technique, it is used in pruning as well as in
finding direction setting rules. Below, we give an
introduction to chi-square test.

Essentially, χ2 test is based on the comparison of
observed frequencies with the corresponding expected
frequencies. The closer the observed frequencies are to the
expected frequencies, the greater is the weight of evidence
in favor of independence.
Example 3: In a loan application domain, we have 500

people who applied for loan in a bank. Out of the 500
people, 300 had a job and 200 did not have a job. 280
people were granted loan and 220 were not. We also
know that 200 people who had a job were granted loan,
which can also be expressed as an association rule:

Job = yes → Loan = approved 
[sup = 200/500, conf = 200/300]

This information gives us a 2×2 contingency table
containing four cells (Figure 2). Note that the table has
only 1 degree of freedom, which is suff icient for our
work. See [17] or any standard statistics text for more
details about degrees of freedom.

Loan = approved   Loan = not-approved Row Total:

Job = yes 300

Job = no 200

Column Total: 280 220 500

Figure 2. Contingency table for Job and Loan

Our question is “ Is loan approval dependent on whether one
has a job or not?” In dealing with this problem we set up
the hypothesis that the two attributes are independent. We
then compute the expected frequency for each cell as
follows: Of the 500 people included in the sample, 300
(60% of the total) had a job, while 200 (40% of the total)
had no job. If the two attributes are truly independent, we
would expect the 280 approved cases to be divided between
job = yes and job = no in the same ratio (60% and 40%);
similarly, we would expect the 220 not-approved cases to
be divided in the same fashion.

χ2 is used to test the significance of the deviation from
the expected values. Let f0 be an observed frequency, and f
be an expected frequency. The χ2 value is defined as:
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A χ2 value of 0 implies the attributes are statistically
independent. If it is higher than a certain threshold value
(e.g. 3.84 at the 95% significance level [17]), we reject the
independence assumption. For our example, we obtain χ2 =
34.63. This value is much larger than 3.84. The
independence assumption is rejected. Thus, we say that the
loan approval is correlated to (or dependent on ) whether
one has a job.

However, we still do not know how they are correlated,
e.g., whether having a job is positively or negatively
correlated to the approval of a loan. Below, we give the
definitions in the context of association rule mining.

Definition 1 (correlated): Let s be a minimum support and
c be a significance level. X and y of a rule, X → y, are
said to be (s, c) correlated (hereafter, merely correlated)
if the following two conditions are met:
1. The rule's support exceeds s.
2. The χ2 value for the rule with respect to the whole

data exceeds the χ2 value at the significance level c.

Definition 2 (uncorrelated or independent): Let s be a
minimum support and c be a significance level. X and y
of a rule, X → y, are said to be (s, c) uncorrelated
(hereafter, merely uncorrelated or independent) if the
following two conditions are met:
1. The rule's support exceeds s.
2. The χ2 value for the rule with respect to the whole

data does not exceed the χ2 value at the significance
level c.

Similar to those in [5], we define three types of correlation
of a rule. For this work, we also call them the directions of
a rule.

Definition 3 (type of correlation or direction):
Positive correlation: if X and y of a rule r, X → y, are

correlated and fo / f > 1, we say that r is a positive
correlation (or we say r is significant). We use 1 to
denote a positive correlation. We also say that the
direction of r is 1.

Negative correlation: if X and y of a rule r, X → y, are
correlated but fo / f < 1, we say that r is a negative
correlation. We use -1 to denote a negative
correlation. We also say that the direction of r is -1.

Independence: if X and y of a rule r, X → y, are
independent, we say that r shows independence. We
use 0 to denote independence. The direction of r is 0.

In this paper, we are only interested in the positively
correlated rules (see “Additional features” in Section 6 if
the other two types of rules are also of interest). The rule in
Example 3 represents a positive correlation because its

observed frequency is 200 (i.e., the support count of the
rule) and its expected frequency is only 168 (= 300 * 280 /
500).

In general, computing the type of correlation (or the
direction) of an association rule r, X → y, is to compare the
rule with the whole population or the whole data set. Or
more specifically, it is to compare with the rule that has the
same conclusion as r but no condition, i.e., → y. The
generic contingency table used is shown in Figure 3.

Note that in the table, we use the term support count
rather than frequency to conform to association rule mining.
All support counts are available from the two rules (i.e., X
→ y and → y), after running a mining algorithm. For
example, to test the rule in Example 3 (R1), we compare it
with R2:

R1: Job = yes → Loan = approved
[sup = 200/500, conf = 200/300]

R2: → Loan = approved
[sup = 280/500, conf = 280/500]

Clearly, these two rules specify completely the contingency
table in Figure 2 (or Figure 3). R2, which has no condition,
gives the column total for approved (280) and the total
number of cases (500) in the data. R1, which represents the
first cell i n the table, also has the number 300 for the row
total (which is simply the support count of Job = yes). With
all this information, the rest of the cells can be computed.

4. Direction Setting Rules
Direction setting (DS) rules are the positively correlated
association rules that set the directions for non-direction
setting (non-DS) rules to follow. We give some definitions.

Definition 4 (direction setting rule): A rule r is a
direction setting (DS) rule, if it satisfies the following
conditions:
1. It has the direction of 1 (positive correlation).
2. Its direction is not an element of the set of expected

directions.

Definition 5 (expected directions): The set of expected
directions of a rule r is defined as foll ows:
1. If r is a 1-conditi on rule, the set of expected

direction is { 0} (i.e. the conditi on and the
consequent are expected to be independent in the
absence of prior knowledge).

2. If r is a k-conditi on rule r (k > 1) of the form:
r: a1, a2, …, ak → y

the set of expected directions is computed as
foll ows: We view r as a combination of 2 rules, a
1-conditi on rule r1 and a (k-1)-conditi on rule rrest,

y ¬y Row Total

Satisfies X Support count of X in data

Does not satisfy X Support count of ¬X in data

Column Total: Support count of y in data Support count of ¬y in data Total no. of cases in data

Figure 3. A generic 2x2 contingency table

Support count of X → y Support count of X → ¬y

Support count of ¬X → y Support count of ¬X → ¬y



with the same consequent y:2

r1: ai → y rrest: a1, a2, …, aj → y
where { a1, a2, …, aj} = { a1, a2, …, ak} - { ai} . The
expected direction for this combination, denoted
by Ei, is defined below (x.dir denotes the direction
of rule x):

(a). if r1.dir = rrest.dir = 1 then Ei = 1.
(b). if (r1.dir = 1 and rrest.dir = 0) or

(r1.dir = 0 and rrest.dir = 1)  then Ei = 1.
(c). if r1.dir = rrest.dir = 0 then Ei = 0.
(d). otherwise, Ei = unknown.

Since there are k such combinations, the set of
expected directions of r is { Ei} , i = 1, …, k.

Lemma: All positi vely correlated 1-conditi on rules are
direction setting rules.

Proof:  It foll ows directly from Definiti on 4 and 5.

Notes about the above two definiti ons:
• In Definiti on 5, the assumptions (a) to (d) are

reasonable because they foll ow our human intuiti ons:
(a) Two positi ve correlations generall y lead to

another positi ve correlation (Example 2).
(b) A positi ve correlation and an independence

generall y suggest a positi ve correlation.
(c) Two independence relations lead to another

independence relation.
(d) For the rest of the situations, we either cannot

decide what is the expected direction (e.g., 1 and
-1 combination), or we simply do not care (e.g., -
1 and -1 combination).

• The second conditi on (2) of Definiti on 4 basicall y
says that if a rule’ s direction is expected with respect
to any one combination, it is not a DS rule. This is
reasonable because as long as there is one possible
justification for r’ s direction, we cannot say that r
sets a new direction. Thus, r is not a DS rule.

To further explain the definitions, we list all possible
direction combinations of r1, rrest and r (Figure 4) using the
notation:

r1.dir, rrest.dir  :=  r.dir   or    rrest.dir, r1.dir :=  r.dir

A (1)    1, 1 :=  1 B (1)  1, 0 :=  1 C (1)   0, 0 :=  0

(2)    1, 1 := -1 (2) 1, 0 := -1 (2)   0, 0 :=  1

(3)    1, 1 :=  0 (3) 1, 0 :=  0 (3)   0, 0 := -1

D (1)  -1, -1 := -1 E (1) -1, 0 := -1 F (1)  -1, 1 :=  0

(2)  -1, -1 :=  1 (2) -1, 0 :=  1 (2)  -1, 1 :=  1

(3)  -1, -1 :=  0 (3) -1, 0 :=  0 (3)  -1, 1 := -1

Figure 4. All possible direction combinations of
 r1, rrest and  r

A(1), B(1) and C(1) conform to our expectations (a), (b)
and (c) in Definition 5. That is, given the directions of r1

and rrest on the left-hand-side of “ :=” , if r has the direction
                                                                
2 We can also view the rule r as a combination of more than two shorter

rules. The numbers of conditions in the shorter rules do not have to be
1 and k-1, but any possible partition. However, these alternatives
require much more computation. Conceptually, they do not seem to
have any advantage over our 1 and k-1 combination.

on the right-hand-side of “ :=” , we say r’s direction is
expected. In fact, D(1), E(1) and F(1) can also be seen as
expected. However, they are not interesting because we are
only interested in the positively correlated rules. The
interesting situations occur in C(2), D(2), E(2) and F(2)
(shaded in Figure 4) because the direction of r is 1, but the
expected direction of the r1 and rrest combination is 0 or
unknown, which are our cases (c) and (d) in Definition 5.
When such situations occur, we say that r sets a new
direction. We call r a potential DS rule. r will be called a
DS rule if for all possible combinations of r1 and rrest, the
direction of r is different from the expected directions.
Since we are only interested in positive correlations, the
remaining situations in Figure 4 are not relevant (see also
Section 6).

Definition 6 (non-direction setting rules): A non-
direction setting (non-DS) rule is a positively correlated
rule that is not a DS rule.

5. Pruning the Discovered Association Rules
and Finding Direction Setting Rules

This section presents the basic ideas of pruning and finding
direction setting rules. The next section gives the detailed
algorithm, which performs both tasks.

5.1. Pruning of association rules

Section 3 shows that to test for correlation between the
condition and the consequent of a rule r, X → y, we
compare it with the rule R, → y, to see whether r is
significant with respect to R. Those rules that are not
positively correlated are removed. However, we can do
much better than that. Consider again Example 1 (which is
reproduced here as Example 4).
Example 4:  We have the following two rules,

R: Job = yes → Loan = approved
[sup = 60%, conf = 90%]

r: Job = yes, Credit_history = good →
Loan= approved  [sup = 40%, conf = 91%]

If we know R, then r is of limited use because it gives
littl e extra information. Its slightly higher confidence is
more likely due to chance than to true correlation.

We say r can be pruned with respect to R because within
the subset of data cases covered by R, r is not significant.
(A rule covers a set of data cases, if the data cases satisfy
the conditions of the rule.) The pruning proceeds as that in
Section 3. However, instead of using the whole data set,
here we test the correlation of r with respect to R as r only
covers a subset of the data cases that are covered by R. If r
does not show a positive correlation with respect to R, it
should be pruned. In general, pruning is done as follows:
• Given a rule r, we try to prune r using each ancestor

rule R (which has the same consequent as r but fewer or
0 conditions) of r. That is, we perform a χ2 test on r
with respect to R. If the test shows a positive
correlation, it is kept. Otherwise, r is pruned. The
reason for the pruning is because within the data
covered by R, r is not significant.



5.2 Finding DS rules
The process for finding DS rules is as foll ows: χ2 test is
first used to evaluate each 1-conditi on rule to determine
its direction status, i.e., 1 (positi ve correlation), -1
(negative correlation), or 0 (independence). Then, it
proceeds level-by-level to analyze each rule and decide
whether it foll ows the direction that has already been set
by rules at previous levels, or whether it sets a new
direction. That is, at level 2 we analyze only 2-conditi on
rules, at level 3, we only analyze 3-conditi on rules and
so on. (For easy discussion, from now on we will use the
level number and the number of conditi ons of a rule
interchangeably). The analysis proceeds as foll ows: At
level k (k >1), for each k-conditi on rule r, we first
determine its direction. We then examine each
combination of 1-conditi on rule r1 and (k-1)-conditi on
rule rrest of r to determine whether r foll ows the
expected direction set by r1 and rrest. If r foll ows the
direction set by at least one such combination, we say r
is not a DS rule. If r does not foll ow the direction set by
any combination, we say r sets a new direction, and it is
a DS rule.

The computation with each combination can be
ill ustrated using the foll owing if-statement (Figure 5)
(the corresponding situations in Figure 4 are also
indicated):
1 A if  r1.dir = rrest.dir = 1 then
2 A(1) if r.dir = 1 then  r is not a DS rule
3 A(2)(3) else  r.dir = undefined 3 /* see footnote * /
4 B elseif  (r1.dir = 1 and rrest.dir = 0) or

(r1.dir = 0 and rrest.dir = 1) then
5 B(1) if r.dir = 1 then    r is not a DS rule
6 B(2)(3) else r.dir = undefined /* see footnote * /
7 C elseif  r1.dir = rrest.dir = 0 then
8 C(1) if r.dir = 0 then nothing
9 C(2) elseif  r.dir=1 then r is a potential DS rule
10 C(3) else r.dir = undefined  /* see footnote * /
11 D, E, F else 
12 D(2), E(2), F(2) if r.dir = 1 then  r is a potential DS rule
13 D(1)(3), E(1)(3),

F(1)(3) else r.dir = undefined /* see footnote * /
14 endif

Figure 5. Identifying a potential DS rule

We now state the key theorem of our technique.

Theorem: Using the above procedure to identify DS
rules, every non-DS rule, X → y, is a combination of
one or more DS rules and zero or more 0 direction 1-
conditi on rules with the same consequent y. That is,
with a suitable re-arrangement of its conditi ons (as
the ordering of the conditi ons are not important) any
non-DS rule can be expressed as:

dsr+ zr*
where dsr is any DS rule, and zr is any 0 direction 1-
conditi on rule.

Proof: See [14] for the full proof.
                                                                
3 We need to assign undefined here to prevent some undesirable

situations, see [14] for details.

Note that the above theorem does not say that any
possible combination of some DS rules and/or
independence rules (0 direction) is a non-DS rule. The
reason is that such a combination may not meet the
minimum support, or may not show positi ve correlation.

From the definiti on of DS rules and the theorem, we
can derive three important points:
• Every DS rule r is unexpected with respect to all r1

and rrest combinations because r does not foll ow their
directions.

• After seeing the DS rules, the directions of non-DS
rules are no longer surprising as they are just some
combinations of DS rules and independence rules
(the direction of 0). That is, the non-DS rules are
somewhat expected if the DS rules are known.

• DS rules can guide the user to see the related non-DS
rules, if he/she is interested. The non-DS rules can
provide further detail s with regard to the DS rules.

These points enable us to buil d a simple user interface
that all ows the user to focus on the essential aspects (DS
rules) of the domain and selectively view the relevant
detail s (non-DS rules). See Section 7.

6. The Algorithm
Figure 6 gives the algorithm (called P-DS) for both pruning
and finding DS rules. The input parameters are F and T. F
is the set of discovered large rules. T is the χ2 value at a
particular significance level. Two points to be noted:
• In the definitions of DS and non-DS rules, we did not

mention how pruning is related. Clearly, those pruned
rules will not be included in the set of DS rules or the set
of non-DS rules.

• For easy understanding, the algorithm is presented as a
post-processing method of the discovered rules.
However, it can be easily incorporated into a rule miner
itself. In fact, we implemented our system that way.
The algorithm processes the discovered rules level-by-

level (line 1) from level-1 to level-n (where n is the highest
level). For each rule r, X → y, at a particular level the
algorithm works as follows: The procedure compDir
computes the type of correlation (or direction) of r (in line
2), which is given to r.dir. “→ y” is a rule without any
condition. In line 3 and 4, if r is a level-1 rule and its
direction is 1, then r is a DS rule (DSR contains the set of
all DS rules). If r’s direction is not 1, we record that r is
pruned by “→ y” by assigning “→ y” to r.prune (line 5).
This saved information is important for subsequent pruning
(see procedure evalPrune in Figure 8). (r.prune is
initialized to 0, indicating that r is not pruned.) Line 6
processes r using all pairs of its ancestors r1 and rrest. In line
7, if r is pruned and r cannot be a DS rule, we can exit the
for-loop. Anyone of the two conditions would not be
suff icient for the exit. Evaluation of pruning is done in line
8 using the procedure evalPrune. Line 9 checks to see
whether it has been determined that r cannot be a DS rule.
If so, there is no need to proceed. From line 10-21, the
algorithm analyzes r by considering the four cases. This
part has been discussed in Section 5.2. r.justify is used to



record all r1 and rrest combinations that justify r to be a
potential DS rule (line 18 and 20). This information is
helpful to the user in understanding the DS rules (see
Section 7). When we know that r is not a DS rule (line 11,
14 and 17), no recording is needed (we set r.justify = ∅).

After completing the inner for-loop, if r.justify ≠ ∅, r is
justified to be a DS rule. However, if r can be pruned
(r.prune ≠ 0, see also Figure 8), then it will not be a DS rule
(line 23). r.dir is set to undefined (line 24) so that r can be
used in the future to justify a rule for being a DS rule. If r
cannot be pruned (r.prune = 0), then it is a true DS rule
(line 25), and it is included in DSR. All unpruned rules are
in unprnRules (line 28), and all non-DS rules are in non-
DSR (line 29).

Below, we describe the two procedures compDir and
evalPrune. Procedure compDir (Figure 7) uses the χ2 test to
compute the correlation or direction of r. R is an ancestor
rule of r and both have the same consequent.

Procedure compDir(r, R, T)
1 if χ2(r, R) > T then
2 if r.sup > r.cover * (R.sup / R.cover)  then
3 return(1)
4 else return(-1)
5 else return(0)

Figure 7. Computing the direction or correlation of a rule r
against a more general rule R

In line 1, if χ2(r, R) > T, we reject the independence
assumption, i.e., the conditions and the consequent are
correlated. Line 2-5 determine the type of correlation or

direction (Definition 3). “r.cover*(R.sup/R.cover)” is the
expected frequency. x.cover is the number of data cases that
satisfy the conditions of rule x.

The evalPrune procedure is shown in Figure 8. It tries to
prune r using rrest. In line 1, if rrest itself has been pruned
previously (i.e., rrest.prune ≠ 0). Then, the algorithm needs
to find the rule that prunes rrest. This is shown in line 2. In
line 3 and 4, if r does not represent a positive correlation, it
is pruned. We set r.prune = rrest to provide a link for
pruning of higher level rules than r. In line 5, if r is a
positive correlation, then we try to compare it with rrest

using chi-square test. If r does not show a positive
correlation within the subset of the data covered by rrest, it is
pruned by rrest (line 6).

Procedure evalPrune(r, rrest)
1 if rrest.prune ≠ 0 then /* If rrest has been pruned * /
2 rrest = rrest.prune;
3 if r.dir ≠ 1 then 
4 r.prune = rrest

5 elseif compDir(r, rrest) ≠ 1 then  /* r is not significant
compared to rrest * /

6 r.prune = rrest /* r can be pruned * /

Figure 8. Evaluating pruning of a rule r with respect to its
ancestor rule rrest

Complexity of the algorithm: Let M be the number of
discovered large rules, and N be the maximum number
of conditions of a rule. The time complexity of the
algorithm is thus O(MN) (χ2 test is very eff icient and
can be seen as constant). Since N is normally small , less

Procedure P-DS(F, T)
1 for each r (X → y) ∈ F from level-1 to level-n  do
2 r.dir = compDir(r, “ → y” , T); 
3 if r is a level-1 rule then
4 if r.dir = 1 then DSR = DSR ∪ { r} ; /* r is a DS rule * /
5 else  r.prune = “→ y” ; /* record that r is pruned by “→ y” * /
6 else for each pair, r1 (XI → y) and rrest (Xrest→ y) of r, where Xi ∈ X, and Xrest = X − {Xi} do
7 if r is pruned and r cannot be a DS rule then exit-for;
8 if r is not pruned then evalPrune(r, rrest); /* no need to prune against r1 * /
9 if r is still a potential DS rule then
10 if  r1.dir = rrest.dir = 1 then
11 if r.dir = 1 then r.justify = ∅ /* r is not a DS rule * /
12 else  r.dir = undefined
13 elseif  (r1.dir = 1 and rrest.dir = 0) or (r1.dir = 0 and rrest.dir = 1) then
14 if r.dir = 1 then r.justify = ∅ /* r is not a DS rule * /
15 else  r.dir = undefined
16 elseif  r1.dir = rrest.dir = 0 then
17 if r.dir = 0 then r.justify = ∅ /* r is not a DS rule * /
18 elseif  r.dir = 1 then r.justify = r.justify ∪ { (r1, rrest)} /* r is a potential DS rule * /
19 else  r.dir = undefined
20 else if r.dir = 1 then r.justify = r.justify ∪ { (r1,rrest)} /* r is a potential DS rule * /
21 else r.dir = undefined
22 endfor
23 if r.justify ≠ ∅ then /*  r sets a new direction * /
24 if r is pruned then r.dir = undefined /* Although r sets a new direction, it i s pruned * /
25 else DSR = DSR ∪ { r} /* r is a DS rule * /
26 endif
27 endfor;
28 unprnRules = { r ∈ F | r.dir = 1, r is not pruned} ; /* all the unpruned rules * /
29 non-DSR = unprnRules - DSR /* all the non-DS rules */

Figure 6. Algorithm P-DS



than 10, then the algorithm is linear in the number of
large rules.

Additional features: The above algorithm can be enhanced
with many interesting features to make it more powerful.
Below we give two suggestions:
1. The proposed technique does not use minimum

confidence. However, it can be incorporated easily
into the algorithm as an additional pruning
mechanism.

2. The algorithm does not report rules with negative
correlation (or the direction of -1). Sometime
negative correlations can also be useful. For
example, it may be interesting to know the situations
A(2) and B(2) in Figure 4 (i.e., 1, 1 := -1 and 1, 0 :=
-1). Such rules can be easily reported by adding
additional “elseif” statements in the algorithm.

7. Interactive Exploration of DS Rules and
non-DS Rules

As mentioned earlier, DS rules form the summary of the
regularities in the data and non-DS rules can provide further
details. A user interface has been built to allow the user to
interactively focus on the essential aspects (DS rules) of the
domain and selectively view the relevant details (non-DS
rules). The interface has many functions for interactive
exploration of DS and non-DS rules. Due to space
limitations, we only give three main functions here.
• The user can view the DS rules according to their levels

(or the number of conditions). This allows the user to
gradually see the essential regularities that exist in the
data. In some applications, the DS rules themselves are
already suff icient.

• For each DS rule, the user can view the reasons for
classifying it as a DS rule. A DS rule r is essentiall y
unexpected with respect to its ancestor rules r1 and
rrest because r does not foll ow their directions. For
example, we have the foll owing rules at level 1 (the
number after Ri is the rule’ s direction; the DS rules
are also labeled)
R1:  -1 Age = young  →  Loan = approved
R2: 1 (DS) Age = young  →  Loan = not-approved
R3: 1 (DS) Own_house = yes  →  Loan = approved
R4: -1 Own_house = yes  →

Loan = not-approved
and, we have the following DS rule at level 2
R5 1 (DS) Age = young, Own_house = yes  →

Loan = approved
If the user is interested in seeing why R5 is a DS rule,
the system will display R1 and R3 together with their
directions. This allows the user to gain a better
understanding of the domain.

• The user can view the relevant non-DS rules. When the
user is looking at a particular DS rule, he/she may wish
to see more details, i.e., the non-DS rules that follow its
direction. For example, we have the following DS rules
at level 1,
R1:  1 (DS) Job = yes → Loan = approved 
R2: 1 (DS) Own_house = yes → Loan = approved

and the following non-DS rule at level 2, which follows
the direction of R1 and R2:
 R3: 1 (non-DS) Job = yes, Own_house = yes →

Loan = approved
When the user cli cks to view the relevant non-DS
rules that foll ows the direction of R1 or R2, R3 will
be displayed (if there are more rules, all of them will
be given to the user in some sorted order, e.g.,
according to their supports or confidences).

8. Empirical Evaluation
We study the effectiveness of the algorithm for pruning and
finding DS rules. We used 30 data sets in our experiments.
25 of them are obtained from the UCI Machine Learning
Repository [16], and 5 are our real-li fe application data
sets. All these data sets contain huge numbers of
associations, which present a major problem for using
association rule mining to give a complete picture of the
underlying domains. Currently, the 25 public domain data
sets are mainly used for classification research. However,
classification can only give the user a partial picture of the
data, i.e., many interesting/useful rules are not discovered
[20, 13]. With our proposed technique, we show that
association rule mining can now be effectively and
practically applied to these data sets to give a complete
picture of the underlying relationships in the data.

Below, we report the experiment results with the 30 data
sets. In all the experiments, we use a fixed attribute (target
attribute) on the right hand side of association rules. The
target attribute is a categorical attribute and can have a
number of values (called target items). For the 25 UCI data
sets, the target attribute in each data set is the class attribute
used for classification. For our 5 real-li fe data sets, the
target attributes are suggested by our users. For all these
data sets, even with a target attribute, the numbers of
associations discovered are huge (note that our modified
association rule miner is able to use the target attribute
[13]). Many data sets cause combinatorial explosion. Due
to this reason, we set a hard limit of 80,000 on the total
number of large rules processed in memory. Even with such
a large limit, mining cannot be completed for many data
sets. Using a hard limit is justified because proceeding
further only generates rules with many conditions that are
hard to understand and diff icult to use.

Many data sets we use contain numeric attributes. We
discretize these attributes into intervals using the target
attribute. There are a number of discretization algorithms in
machine learning literature for the purpose. We use the
entropy-based method given in [6]. The code is taken from
MLC++ [9].

The experiments were repeated using different
significance levels for the χ2 test (95% and 90%) and
different minimum support (minsup) values (2% and 1%).
The 95% significance level for the χ2 test is commonly used
[17]. A lower level of 90% is used to show the effect of this
on the results.  We used the minimum supports of 2% and
1% because it is shown in [13] that for these data sets, rules
with these support thresholds are suff iciently predictive.



Table 1 gave the results obtained using the significance
level of 95% for the χ2 test and minsup = 1%. The other
results can be found in [14], but they are summarized here.
Below, we explain each column in Table 1. The final row
gives the average value for each column.

Column 1: It gives the name of the data set (the last 5 are
our real-li fe data sets). The number of records (or cases)
in these data sets range from a few hundreds to tens of
thousands.

Column 2: It shows the number of items in each data set.
Recall , an item is an attribute and a value (or an interval)
pair, i.e., (<attributei> = <valuej>).

Column 3: It shows the number of items (or values) in the
target attribute of each data set.

Column 4: It gives the number of large rules generated
from each data set. We can see that the number of large
rules generated from an association rule miner is huge for
each data set. Almost half of the data sets cannot be
completed even under the hard limit of 80,000.

Column 5: It gives the number of positively correlated
(PC) rules found in each data set. The number is much
smaller. However, on average, there are still more than
20,000 of them.

Column 6: It gives the number of positively correlated
(PC) rules after pruning. The number is reduced
drastically. More than 96% of the PC rules are pruned.
However, on average, the number of unpruned rules is
still l arge, e.g., 705. Such a large number of rules are still

Table 1. Experiment results (minimum support = 1%; significance level = 95%)

1 2 3 4 5 6 7 8 9 10
Data no. of Target Large PC. PC rules 1-cond Total no. No. of conds Exe.

No. sets Items items rules rules Aft. pru DS rules DS rules in DS rules time
1 Anneal 121 6 42893 18843 347 66 99 1.53 6.17
2 Austra 51 2 80000 40668 379 29 94 2.05 3.98
3. Auto 98 7 80000 43781 2175 110 559 2.45 2.91
4 Breast-w 31 2 2757 2362 97 26 27 1.07 0.14
5 Chess 74 2 80000 31939 2314 50 253 2.60 2.40
6 Cleve 30 2 30435 11707 181 21 22 1.22 1.75
7 Crx 55 2 80000 40269 465 31 97 2.92 3.96
8 Diabetes 18 2 1196 565 44 14 14 1.00 0.05
9 German 66 2 80000 21386 496 32 138 2.44 3.44
10 Glass 21 7 1820 1036 153 35 42 1.18 0.07
11 Heart 23 2 10044 3055 131 18 18 1.00 0.50
12 Hepati 36 2 80000 23097 201 22 41 2.44 3.81
13 Horse 66 2 79965 24368 314 41 81 2.26 2.23
14 Hypo 50 2 80000 32543 299 23 49 1.96 3.92
15 Iono 314 2 34463 13710 682 238 405 1.49 1.04
16 Led7all 15 10 1692 1389 691 70 72 1.08 0.06
17 Lymph 51 4 80000 18324 511 40 89 1.89 3.26
18 Pima 18 2 1196 565 44 14 14 1.00 0.04
19 Sick 109 2 80000 23538 456 35 73 1.65 2.69
20 Sonar 82 2 80000 24005 1299 42 54 1.65 3.09
21 Tic-tac 28 2 8315 2712 290 14 90 2.71 0.31
22 Vehicle 68 4 80000 49538 3259 90 474 2.55 3.03
23 Waveform 211 3 35888 30971 1835 174 293 1.67 0.58
24 Wine 37 3 27143 15013 551 40 68 1.54 1.53
25 Zoo 37 7 80000 59270 1159 59 204 2.05 4.56
26 Disease 19 2 1622 462 35 13 13 1.00 0.07
27 Profil e 373 5 80000 29362 1229 77 217 2.28 4.97
28 Quality 45 2 67841 29776 295 40 89 2.88 2.34
29 Results 278 2 54481 16426 995 116 151 1.40 1.43
30 Traff ic 79 3 74610 5916 231 17 94 2.70 4.10

Average 84 3 50545 20553 705 53 131 1.91 2.14

minimum support = 2%; significance level = 95%:
Average 84 3 44280 23885 612 50 93 1.75 2.12

minimum support = 1%; significance level = 90%:
Average 84 3 50545 23297 957 57 162 2.08 2.18

minimum support = 2%; significance level = 90%:
Average 84 3 44280 25978 810 53 109 1.86 2.08



hard to be analyzed by a human user.
Column 7: It gives the number of 1-condition DS rules.
Column 8: It gives the total number of DS rules found in

each data set. The number of DS rules is manageable and
can be analyzed manually. On average, only 131 rules are
DS rules. Many of them are 1-condition DS rules.

Column 9: It gives the average number of conditions in the
DS rules. We can see that the DS rules are mostly short
rules.

Column 10: It gives the running time in second (running on
512MB Sparc 2) for each data set. This time includes
rule generation (data reside on disk), pruning and finding
direction setting rules. We can see that the proposed
technique is very eff icient. We could not log any time for
pruning and finding DS rules alone due to the eff iciency.

From the summary of the other results (below Table 1), we
make the following observation:
• When the minimum support increases, fewer DS rules

are produced. When the significance level is lowered to
90% for the χ2 test, slightly more DS rules are produced.
This is because pruning is less stringent. However, the
numbers of DS rules are still manageable. The running
times are similar because we have the hard limit.

9. Conclusion
Data mining is to find patterns or regularities to summarize
the data. If it also produces a huge number of patterns, it
will be of limited use because a human user does not have
the abilit y to analyze these patterns. However, if such a
huge number of patterns do exist in the data, it will not be
appropriate to arbitrarily discard any of them or to generate
only a small subset of them. It is much more desirable if we
can summarize them. This paper proposes such a technique.
This technique first prunes off those rules that contain littl e
extra information as compared to their ancestors, and then
identifies the direction setting rules to give a global picture
of the underlying relationships in the domain. Although the
number of discovered associations can be very large,
experimental results and real-li fe applications have shown
that the number of direction setting rules is typically very
small and with very few conditions. They can be manually
inspected by a human user without too much effort.

Finally, we believe that in general any data mining
technique that may potentially produce a large number of
patterns should provide a technique to summarize the
findings or the generated patterns. In this way, the user will
be able to obtain an overall picture of the domain without
being overwhelmed by a large number of detailed patterns.
From this summarized information, he/she can then find
some interesting aspects to focus on. The proposed
technique represents a major step towards this direction.
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