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Abstract

Asociation rules are afundamental classof patterns that exist in
data. The key strength of assciation rule mining is its
completeness It finds al assciations in the data that satisfy the
user spedfied minimum suppat and minimum confidence
constraints. This dgrength, however, comes with a major
drawbadk. It often produces a huge number of associations. This
is particularly true for data sets whose dtributes are highly
correlated. The huge number of associations makes it very
difficult, if not imposgble, for ahuman user to analyzein order to
identify those interesting/useful ones. In this paper, we propose a
novel technique to overcome this problem. The technique first
prunes the discovered asciations to remove those insignificant
asciations, and then finds a speda subset of the unpruned
asciations to form a summary of the discovered asciations.
We cadl this subset of aswciations the direction setting (DS) rules
as they set the diredions that are followed by the rest of the
asciations. Using this simmary, the user can focus on the
esential aspeds (or relationships) of the domain and seledively
view the relevant details. The gproach is effedive becaise
experiment results show that the set of DS rules is typicdly very
smal. They can be aalyzed manualy by a human user. The
proposed technique has aso been applied succesdully to a
number of red-life gplications.

1. Introduction

Association rules are a ¢ass of important regularities in
data. Association rule mining is commonly stated as foll ows
[2]: Let | ={iy, ..., in} be aset of items, and D be aset of
data caes. Each data case mnsists of a subset of itemsin I.
An association rule is an implication of the form X - Y,
where X O I, YOIl,and X n Y=0. Therule X - Y holds
in D with confidencec if c% of data caesin D that suppaort
X aso suppat Y. The rule has suppat sin D if s% of the
data cae in D contains X O Y. The problem of mining
asociation rules is to generate dl asciation rules that
have suppart and confidence greaer than the user-spedfied
minimum suppart and minimum confidence

A typicd assciation rule mining algorithm works in two
steps. The first step finds all large itemsets (a set of items)
that med the minimum suppart constraint. The second step
generates rules from all large itemsets that satisfy the
minimum confidence @nstraint.

The key strength of association rule mining is that it can
efficiently discover the complete set of associations that
exist in data. These asciations provide acomplete picture
of the underlying regularities in the domain. However, this
strength comes with a major drawbadk. The number of
discovered associations can be hugg, easily in the thousands
or tens of thousands (see Sedion 8). Clealy, such a large
number of asociations are very difficult, if not impossble,
to be aalyzed by a human user. This problem is
particularly bad with those data sets whose items are highly
correlated.

However, it will not be satisfadory to simply give an
arbitrary small subset of the rules to the user if there ae
indeed a large number of them that exist in the data because
this gnall subset can only give a partia picture of the
domain. The question then is. “Can we preserve the full
power of aswociation rule mining (i.e., its completeness
without overwhelming the user?” This paper showsthat it is
possble. A novel technique is proposed to prune those
insignificent rules and to find a spedal subset of assciation
rules that represent the essntial underlying relationships in
the data. We cdl this aibset of asciations the direction
setting (DS) rules. The DS rules give asummary of the
behavior of the discovered associations. They represent the
esential relationships or structure (or skeleton) of the
domain. The non-DS rules smply give alditional details.
Using the DS rules as a summary, the user can interadively
focus on the key aspeds of the domain and seledively view
the relevant detail s (non-DSrules).

In this work, we focus on association rule mining from a
relational table, which consists of a set of reaords described
by a number of attributes. An itemis an attribute value pair,
i.e., (attribute = value) (numeric atributes are discretized).
Assciation rule mining in such data is typicdly targeted at
a spedfic atribute becaise the user normally wants to know
how other attributes are related to this target attribute
(which can have many values) [13, 4]. With a target
attribute, we can expressan itemset as follows (instead of a
set of itemsasin[2]):

X~y
wherey is an item (or avalue) of the target attribute, and X
is a set of items from the rest of the dtributes. For



simplicity, we cdl this itemset a rule heredter, regardless
of whether it is dgnificant or not. We dso say arule is
largeif it meds the minimum suppart.

Note that we do not use minimum confidence in our
framework, although we can also use it (see Sedion 6).
Minimum confidence does not refled the underlying
relationship of the domain represented by the data [4].
Instead we use statisticd correlation as the basis for finding
rules that represent the fundamental relations of the domain.

Figure 1 shows the mnceptual flow of the proposed
technique', which consists of two steps, pruning and
summarizaion. Below, we introduce them briefly.

Significant Summarization
rules

Figure 1. The proposed technique

Discovered\Pruning
largerules

1.1 Pruning the discovered associations

It is well known that many discovered associations are
redundant or minor variations of others. Their existence
may simply be due to chance rather than true correlation.
Thus, those spurious and insignificant rules sould be
removed. This is dmilar to pruning of overfitting rules in
clasdficaion [21]. Rules that are very spedfic (with many
conditions) tend to overfit the data and have littl e predictive
power. Althoughassociation rules are not normally used for
prediction, rules that only cagpture the irregularities and
idiosyncrasies of the data have no value and should be
removed. An example of such aruleis siown below.

Example 1: We have the foll owing two rules,
R1: Job=yes - Loan = approved
[sup = 60%, conf = 90%)]
R2: Job=yes, Credit_history=good - Loan= approved
[sup = 40%, conf = 91%]
If we know R1, then R2 is insignificant because it gives
little extra information. Its dightly higher confidence is
more likely due to chance than to true correlation. It thus
should be pruned. R1 is more genera and simple. General
and simplerules are preferred.
In this work, we measure the significance of arule using
chi-square test (x?) for correlation from statistics[17].

1.2 Summarizing the unpruned rules

Pruning can reduce the number of rules substantialy.
However, the number of rules left can still be very large.
This gep finds a subset of the rules, cdled dredion setting
rules (or DS rules), to summarize the unpruned rules.
Esentialy, DS rules are significant association rules that
set the diredions for non-DS rules to follow. The diredion
of a rule is the type of correlation it has, i.e., positive
correlation or negative correlation or independence, which
is also computed using x2test. Let us e a example.

! Here, it is presented as a post-processng method. In implementation, it
is combined with rule mining.

Example 2: We have the foll owing discovered rules:
R1: Job=yes - Loan = approved
[sup = 40%, conf = 70%)]
R2: Own_house = yes — Loan = approved
[sup = 30%, conf = 75%)]
X% analysis sows that having a job is positively correlated
to the grant of aloan, and owning a house is also pdsitively
correlated to oltaining a loan. Then, the following
association isnot so surprising to us:
R3: Job = yes, Own_house = yes - Loan = approved
[sup = 20%, conf =90%]
becaise it intuitively follows R1 and R2. We can use R1
and R2 to provide asummary of the threerules. R1 and R2
are DS rules as they set the diredion (paositive @rrelation)
that isfollowed by R3. In red-life data sets, a large number
of asciations are like R3.

From the example, we see that the DS rules give the
esential relationships of the domain. The non-DS rule is
not surprising if we drealy know the DS rules. However,
this, by no means, says that non-DS rules are not
interesting. Non-DS rules can provide further detail s about
the domain. For example, the non-DS rule éove (R3) gives
a higher confidence, which may be of interest to the user.
Using DS rules to form a summary is analogous to
summarization of a text article. From the summary, we
know the essnce of the aticle. If we ae interested in the
details of a particular asped, the summary can paint us to
them in the aticle. In the same way, the DS rules give the
essnce of the domain and pants the user to those related
non-DS rules. Non-DS rules are basicdly combinations of
DS rules. In the dove Example 2, R3 is a cmbination of
R1 and R2.

Experiment results, including red-life gplicaions,
show that although the number of discovered rules can be
huge, the number of DS rulesis very small (see Sedion 8).
They can be analyzed manually by the human user to oktain
the esential relationships in the data. He/she can then focus
higher attention on those interesting aspeds of the
relationships, and to see the relevant non-DS rules. This
process can be eaily fadlitated by an interadive user
interface (Sedion 7). The proposed technique makes
asociation rule mining effedive and pradicd for data sets
whose items are highly correlated. The user can now obtain
a omplete picture of the domain without being
overwhelmed by a huge number of rules.

2. Related Work

The problem of too many rules has been studied by many
reseachers. [8] proposed an approac to alow the user to
spedfy what he/she wants to see using templates. The
system then retrieves those match rules from the set of
discovered rules. This method, however, does not prune
those insignificant rules and dces not provide asummary of
the discovered rules.

In subjedive interestingness research in data mining,
[22, 11, 12, 19] propaosed a number of methods for finding
unexpeded rules. Instead of asking the user to spedfy what
he/she wants to see & in [8], these gpproacdes ask the user



to spedfy higher existing krowledge aout the domain.
The system then finds those unexpeded rules by comparing
the user’'s knowledge with the discovered rules. Again,
these methods do not prune axd do not attempt to
summarizethe association rules.

[259] and [18] investigated using item constraints
spedfied by the user in rule mining to generate only the
relevant rules. Essentialy, the nstraints restrict the items
or combination of items allowed to participate in mined
rules. This approach also does not prune those insignificant
rules and dces not summarizethe unpruned rules.

[26] introduces the mncept of asociation rule wver for
pruning asociation rules. A cover is basicdly a subset of
the discovered asciations that can cover the database. The
number of rules in a cover can be quite small. A grealy
algorithm is proposed to find a good cover and the
remaining rules are pruned. The problem with this method
is that the advantage of asciation rules, its completeness
is lost. Clealy, a better approach is to summarize the
discovered rules. From this simmary, the user can obtain an
overall picture of the domain.

[4] proposed a rule pruning technique using minimum
improvement, which is the difference between the
confidence of a rule and the @nfidence of any proper sub-
rule with the same ansequent. Those rules that do not mee
this minimum improvement in confidence ae pruned. [24]
also proposed a related technique. Our pruning method is
similar. However, we use di-square test as the basis for
pruning (minimum improvement can be eaily incorporated
in our framework). We will seein Sedion 8 that even after
pruning the number of rules left can still be very large.
Summarization is thus important. The methodsin [4, 24] do
not perform summarization.

There ae dso a number of other methods in
clasgfication research for rule pruning such as pessmistic
error rate [21] and minimum description length based
pruning [15]. In our work, we doase the widely used chi-
square test statistics for rule pruning.

[1] introduces a technique to remove two types of
redundant rules, i.e, simple ad strict redundancy.
Esentialy, a rule is redundant with resped to another rule
if the suppat and confidence of the redundant rule ae
always at leest as large & the suppart and confidence of the
latter. Simple redundancy tries to remove those rules that
are derived from the same itemset. For example, AB => C
is redundant with resped to the rule A => BC. This,
however, does not happen in our situation becaise in our
case one itemset represents only one rule. Strict redundancy
applies to two itemsets and one is a subset of the other, e.g.,
X =>Y is redundant with resped to X => YZ. This
Situation also does not apply in our situation becaise we
focus on asociation rules that use only one fixed attribute
on the right hand side. Also our propased technique does
not use minimum confidence for rule generation (see the
problems with minimum confidence in [4]), but statisticd
correlation (or significance).

Other related work includes correlation rule mining in
[5]. It uses chi-square test to measure the rrelation. A

correlation rule is a set of correlated items. It does not
perform pruning or summarization. [10] introduces a
technique for clustering asoociation rules. It mainly deds
with generation of numeric asciations, i.e., how to join
the ajacent intervals to produce more general rules and
fewer rules. Clealy, both works are diff erent from ours.

3. Chi-Square Test for Independence and
Correlation

Chi-square test statistics (x°) is a widely used method for
testing independence ad/or correlation [17]. In our
proposed technique, it is used in pruning as well as in
finding diredion setting rules. Below, we give a
introduction to chi-square test.

Esentialy, x* test is based on the cmparison of
observed frequencies with the @rresponding expeded
frequencies. The doser the observed frequencies are to the
expeded frequencies, the greder is the weight of evidence
in favor of independence

Example 3: In a loan applicaion domain, we have 500
people who applied for loan in a bank. Out of the 500
people, 300 had a job and 200 dd not have ajob. 280
people were granted loan and 220 were not. We dso
know that 200 people who had a job were granted loan,
which can also be expressed as an aswciation rule:

Job=yes - Loan = approved
[sup = 200’500, conf = 200300
This information gves us a 2x2 contingency table
containing four cdls (Figure 2). Note that the table has
only 1 degree of freedom, which is sifficient for our
work. See[17] or any standard statistics text for more
detail s about degrees of freedom.

Loan = approved Loan = not-approved Row Total:

Job=yes 200 100 300
Job=no 80 120 200
Column Tota: 280 220 500

Figure 2. Contingency table for Job and Loan

Our question is“Is loan approval dependent on whether one
has ajob a not?’ In deding with this problem we set up
the hypothesis that the two attributes are independent. We
then compute the expeded frequency for ead cdl as
follows: Of the 500 people included in the sample, 300
(60% of the total) had a job, while 200 (40% of the total)
had no job. If the two attributes are truly independent, we
would exped the 280 approved cases to be divided between
job = yes and job = no in the same ratio (60% and 40%);
similarly, we would exped the 220 not-approved cases to
be divided in the same fashion.

X°is used to test the significance of the deviation from
the expeded values. Let f, be a1 observed frequency, and f
be an expedted frequency. The x* value is defined as:

» fo—f)?



-y Row Total

Suppat court of Xin data

Suppat court of =X in data

y
Satisfies X Suppat court of X - y Suppat court of X - 1y
Does nat satisfy X Suppat court of =X - y Suppat court of = X - =y
Column Total: Suppat court of y in data Suppat court of ~yin data

Total no. of casesin data

Figure 3. A generic 2x2 contingency table

A x* value of 0 implies the atributes are statisticdly
independent. If it is higher than a cetain threshold value
(e.g. 3.84 at the 95% significance level [17]), we regjed the
independence asumption. For our example, we obtain x* =
34.63. This value is much larger than 3.84. The
independence asumption is rejeded. Thus, we say that the
loan approval is correlated to (or dependent on ) whether
one hasajob.

However, we still do not know how they are crrelated,
e.g., whether having a job is positively or negatively
correlated to the gprova of a loan. Below, we give the
definitions in the context of assciation rule mining.

Definition 1 (correlated): Let s be aminimum suppart and
¢ be asignificancelevel. X and y of arule, X - vy, are
said to be (s, ¢) correlated (hereafter, merely correlated)
if the foll owing two conditi ons are met:

1. Therul€e's sippat excealss.
2. The x* value for the rule with resped to the whole
data exceals the x° value & the significancelevel c.

Definition 2 (uncorrelated or independent): Let s be a
minimum suppat and ¢ be asignificance level. X and y
of arule, X - vy, are said to be (s, ¢) uncorrelated
(hereafter, merely uncorrelated or independent) if the
foll owing two conditions are met:

1. Therule's sippat excealss.

2. The x? value for the rule with resped to the whole
data does not exceal the x? value & the sigrificance
level c.

Similar to those in [5], we define threetypes of correlation

of arule. For this work, we dso cdl them the diredions of

arule.

Definition 3 (type of correlation or direction):

Positive correlation: if X and y of aruler, X - vy, are
correlated and f, / f > 1, we say that r is a positive
correlation (or we say r is significant). We use 1 to
denote a positive mrrelation. We dso say that the
direction of r is 1.

Negative correlation: if Xandy of aruler, X - vy, are
correlated but f,/ f < 1, we say that r is a negative
correlation. We use -1 to denote a negative
correlation. We dso say that the direction of r is-1.

Independence: if X and y of aruer, X - vy, are
independent, we say that r shows independence. We
use 0 to denote independence The direction of r isO.

In this paper, we ae only interested in the paositively
correlated rules (see “Additional feaures’ in Sedion 6 if
the other two types of rules are dso of interest). Therulein
Example 3 represents a positive orrelation becaise its

ohserved frequency is 200 (i.e., the suppat cournt of the
rule) and its expeded frequency is only 168 (= 300* 280/
500).

?)n general, computing the type of correlation (or the
diredion) of an asociation ruler, X - v, isto compare the
rule with the whole population or the whole data set. Or
more spedficdly, it isto compare with the rule that has the
same onclusion as r but no condition, i.e, - y. The
generic ocontingency table used is siown in Figure 3.

Note that in the table, we use the term support count
rather than frequency to conform to asciation rule mining.
All suppart counts are avail able from the two rules (i.e., X
- y and - vy), after runnng a mining agorithm. For
example, to test the rule in Example 3 (R1), we compare it
with R2:

R1: Job=yes - Loan= oved

Y [sup gp %O’SOQ conf = 200300

R2: - Loan=approved

[sup = 280/500, conf = 280’500

Clealy, these two rules edfy completely the mntingency
table in Figure 2 (or Figure 3). R2, which has no condition,
gives the column total for approved (280 and the total
number of cases (500) in the data. R1, which represents the
first cdl in the table, aso has the number 300 for the row
total (which is smply the suppart count of Job = yes). With
all thisinformation, the rest of the cdls can be computed.

4. Direction Setting Rules

Diredion setting (DS) rules are the pasitively correlated
asciation rules that set the diredions for non-diredion
setting (non-DYS) rulesto foll ow. We give some definiti ons.

Definition 4 (direction setting rule): A rule r is a
direction setting (DS) rule, if it satisfies the following
conditions:

1. It hasthe diredion of 1 (positive arrelation).
2. Its diredion is not an element of the set of expected
directions.

Definition 5 (expected directions): The set of expected
directions of aruler is defined as foll ows:

1. If r is a 1l-condition rule, the set of expeded
diregion is {0} (i.e. the andition and the
consequent are expeded to be independent in the
absence of prior knowledge).

2. Ifrisak-conditionruler (k > 1) of the form:

r: A, 8, ., & - Y
the set of expeded dredions is computed as
follows: We view r as a combination of 2 rules, a
1-condition rule r, and a (k-1)-condition rule r e,



with the same cnsequent y:?
rq: a -y Iest- ap, ag, ..., - Y
where {ay, @z, ..., &} = {&y, ap, ..., at} - {&}. The
expeded diredion for this combination, denoted
by E;, is defined below (x.dir denotes the diredion
of rule x):
(8). if ry.dir =ryeq.dir =1then E = 1.
(b). if (ry.dir =1 and req.dir = 0) or
(r;.dir = 0 and ryeq.dir = 1) then E = 1.
(). if ro.dir =rieq.dir =0then E; = 0.
(d). otherwise, E; = unknown.
Since there ae k such combinations, the set of
expected directionsof r is{E},i =1, ..., k.

Lemma: All positively correlated 1-condition rules are
diredion setting rules.

Proof: It follows direaly from Definition 4 and 5.

Notes about the éove two definitions:
* In Definition 5, the assumptions (a) to (d) are
reasonable because they foll ow our human intuiti ons:
(@) Two pcsitive correlations generaly lead to
another positive correlation (Example 2).

(b) A positive wrrelation and an independence
generally suggest a positive oorrelation.

(c) Two independence relations lead to another
independence relation.

(d) For the rest of the situations, we dther cannot
dedde what is the expeded diredion (e.g., 1 and
-1 combination), or we simply do not care (e.g., -
1 and -1 combination).

* The second condition (2) of Definition 4 basicdly
says that if arule’s diredion is expeded with resped
to any one mmbination, it is not a DS rule. This is
reasonable becauise @ long as there is one possble
justification for r’s diredion, we cainot say that r
sets anew diredion. Thus, r isnot aDSrule.

To further explain the definitions, we list al possble

diredion combinations of ry, e and r (Figure 4) using the

notation:

r.dir, reeg.dir := r.dir or reeg.dir, rodir ;= r.dir

A (1 1,1:=1 B (1) 1,0:=1 C (1) 0,0:=0
2 1,1:=-1 (2 1,0 :=-1 (2=60==12
(3 1,1:= (3 1,0 := 0 (3 0,0:=-1

D (1)-1,-1:=-1 E (1)-1,0:=-1 F (1) -1,1:=0
(2 T==—12 (2 =50===12 (HEEE
3-1,-1:=0 (3-1,0:= 0 3 -1,1:=-1

Figure 4. All posdble diredion combinations of
rq, Meg and r

A(1), B(1) and C(1) conform to our expedations (a), (b)
and (c) in Definition 5. That is, given the diredions of r;
and r,e4 on the left-hand-side of “:=", if r has the diredion

2 Wecan also view the rule r as a ombination of more than two shorter
rules. The numbers of conditions in the shorter rules do not have to be
1 and k-1, but any possble partition. However, these aternatives
require much more computation. Conceptually, they do not seem to
have any advantage over our 1 and k-1 combination.

on the right-hand-side of “:=", we say r’'s diredion is
expeded. In fad, D(1), E(1) and F(1) can also be seen as
expeded. However, they are not interesting becaise we ae
only interested in the positively correlated rules. The
interesting situations occur in C(2), D(2), E(2) and F(2)
(shaded in Figure 4) because the diredion of r is 1, but the
expeded dredion of the r; and r..g combination is 0 or
unkmown, which are our cases (c) and (d) in Definition 5.
When such situations occur, we say that r sets a new
diredion. We cdl r a potential DS rule. r will be cdled a
DS rule if for all possble cmmbinations of r; and req, the
diredion of r is different from the expeded dredions.
Since we ae only interested in positive correlations, the
remaining situations in Figure 4 are not relevant (see &so
Sedion 6).
Definition 6 (non-direction setting rules): A non-
direction setting (non-DS) rule is a positively correlated
rule that isnot aDS rule.

5. Pruning the Discovered Association Rules
and Finding Direction Setting Rules

This sdion presents the basic ideas of pruning and finding
diredion setting rules. The next sedion gves the detailed
algorithm, which performs both tasks.

5.1. Pruning of association rules

Sedion 3 shows that to test for correlation between the
condition and the mnsequent of a rule r, X - vy, we
compare it with the rule R, - vy, to see whether r is
significant with resped to R. Those rules that are not
paositively correlated are removed. However, we can do
much better than that. Consider again Example 1 (which is
reproduced here & Example 4).
Example 4: We have the following two rules,
R: Job=yes - Loan = approved
[sup = 60%, conf = 90%]
r: Job=yes, Credit_history = good -
Loan= approved [sup = 40%, conf = 91%)]
If we know R, then r is of limited use becaise it gives
little extra information. Its dightly higher confidence is
more likely due to chancethan to true correlation.

We say r can be pruned with resped to R becaise within
the subset of data cases covered by R, r is not significant.
(A rule covers a set of data caes, if the data cases stisfy
the mnditions of the rule.) The pruning proceels as that in
Sedion 3. However, instead of using the whole data set,
here we test the correlation of r with resped to R asr only
covers a subset of the data cases that are covered by R. If r
does not show a positive crrelation with resped to R, it
should be pruned. In general, pruningis done & foll ows:
e Given aruler, we try to prune r using ead ancestor
rule R (which has the same mnsequent as r but fewer or
0 conditions) of r. That is, we perform a x? test on r
with resped to R. If the test shows a podtive
correlation, it is kept. Otherwise, r is pruned. The
resson for the pruning is because within the data
covered by R, r isnot significant.



5.2 Finding DSrules

The processfor finding DS rules is as follows: x° test is
first used to evaluate ead 1-condition rule to determine
its diredion status, i.e,, 1 (positive oorrelation), -1
(negative rrelation), or 0 (independence). Then, it
procedls level-by-level to analyze eab rule and dedde
whether it foll ows the direction that has already been set
by rules at previous levels, or whether it sets a new
diredion. That is, at level 2 we analyze only 2-condition
rules, at level 3, we only analyze 3-condition rules and
so on. (For easy discusson, from now on we will use the
level number and the number of conditions of a rule
interchangeably). The analysis proceals as follows: At
level k (k >1), for ead k-condition rule r, we first
determine its diredion. We then examine eat
combination of 1-condition rule r; and (k-1)-condition
rule req Of r to determine whether r follows the
expeded direction set by r; and req. If r follows the
diredion set by at least one such combination, we say r
isnot aDSrule. If r does not follow the diredion set by
any combination, we say r sets a new diredion, and it is
aDSrule.

The mputation with ead combination can be
illustrated using the following if-statement (Figure 5)
(the oorresponding situations in Figure 4 are dso
indicated):

1 A if ridir =r.g.dir =1then

2 AQD) if r.dir=1then risnotaDSrule

3 AQ®) else r.dir = undefined ® /* seefootnote */

4 B elseif (ry.dir =1 andreq.dir =0) or
(ry.dir =0 and req.dir = 1) then

5 B(1) if r.dir=1then risnotaDSrule

6 B(2)(3) elser.dir = undefined  /* seefootnote */

7 C elseif rq.dir =r,e.dir =0 then

8 C(1) if r.dir =0then nothing

9 C(2) elseif r.dir=1then risapotential DSrule

10 C(3 elser.dir = undefined  /* seefootnote */

11 D,E, F else
12 D(2),E(2),F(2) ifr.dir =1then risapotentia DSrule
13 D()(3), E(D)(3),
FD(3) elser.dir = undefined
14 endif
Figure 5. Identifying a potential DS rule
We now state the key theorem of our technique.

Theorem: Using the &ove procedure to identify DS
rules, every non-DSrule, X — v, isa combination of
one or more DS rules and zero or more O diredion 1-
condition rules with the same mnsequent y. That is,
with a suitable re-arrangement of its conditions (as
the ordering of the conditions are not important) any
non-DS rule car be expressed as.

dsr+ zr*
where dsr is any DS rule, and zr is any O diredion 1-
condition rule.

Proof: See[14] for the full proof.

/* seefootnote */

3 We ned to assgn undefined here to prevent some undesirable
situations, see[14] for details.

Note that the @ove theorem does not say that any
posdble mbination of some DS rules and/or
independence rules (0 diredion) is a non-DS rule. The
reason is that such a combination may not med the
minimum support, or may not show positive correlation.

From the definition of DS rules and the theorem, we
can derive threeimportant points:

e Every DS ruler is unexpected with resped to all r;
and r,es combinations because r does not foll ow their
diredions.

» After sedng the DS rules, the diredions of non-DS
rules are no longer surprising as they are just some
combinations of DS rules and independence rules
(the diredion of 0). That is, the non-DS rules are
somewhat expeded if the DS rules are known.

« DSrules can gude the user to seethe related non-DS
rules, if he/she is interested. The non-DS rules can
provide further detail s with regard to the DS rules.

These points enable us to build a simple user interface

that all ows the user to focus on the essential aspeds (DS

rules) of the domain and seledively view the relevant

detail s (non-DS rules). See Sedion 7.

6. TheAlgorithm

Figure 6 gives the dgorithm (cdled P-DS) for both pruning
and finding DS rules. The input parameters are F and T. F
is the set of discovered large rules. T is the x* value & a
particular significancelevel. Two pdntsto be noted:

* In the definitions of DS and non-DS rules, we did not
mention how pruning is related. Clealy, those pruned
ruleswill not beincluded in the set of DS rules or the set
of non-DSrules.

» For easy understanding, the dgorithm is presented as a
post-procesing method o the discovered rules.
However, it can be eaily incorporated into a rule miner
itself. In fad, we implemented our system that way.

The dgorithm processes the discovered rules level-by-
level (line 1) from level-1 to level-n (where n is the highest
level). For eadh rule r, X - vy, a a particular level the
algorithm works as follows: The procedure compDir
computes the type of correlation (or diredion) of r (in line
2), which is given to r.dir. “ - y” is a rule without any
condition. In line 3 and 4, if r is a level-1 rule ad its
diredionis 1, thenr isa DS rule (DSR contains the set of
al DS rules). If r's diredion is not 1, we record that r is
pruned by “ - y” by asdgning “ - y” to r.prune (line 5).
This sved information is important for subsequent pruning
(see procedure evalPrune in Figure 8). (r.prune is
initialized to O, indicding that r is not pruned.) Line 6
processesr using all pairsof itsancestorsr; and rieg. Inline
7, if r ispruned and r cannot be aDS rule, we can exit the
for-loop. Anyone of the two conditions would not be
sufficient for the exit. Evaluation of pruningis donein line
8 using the procedure evalPrune. Line 9 cheds to see
whether it has been determined that r cannot be aDS rule.
If so, there is no need to proceel. From line 10-21, the
algorithm analyzes r by considering the four cases. This
part has been discussed in Sedion 5.2. r.justify is used to



Procedure P-DS(F, T)

1 foreatir (X - y)OF fromlevel-1to level-n do

2 r.dir = compDir(r, “ - y", T);

3 if risalevel-1 rulethen

4 if r.dir =1then DSR=DSR O {r}; /* risaDSrule*/

5 else r.prune="-y’; /* record that r is pruned by “ — y* */
6 else for ead pair, ry (X —» y) andrieg (Xieg - ) Of 1, where X; O X, and Xee = X = { X} doO

7 if r ispruned andr canna be aDS rule then exit-for;

8 if r isnot pruned then eval Prune(r, ryes); /* no need to prune against ry */
9 if ris gill apotential DSrulethen

10 if ridir =r.q.dir =1then

11 if r.dir =1 then rjustify =0 /* risnot aDSrule*/

12 else r.dir = undsfined

13 elseif (ry.dir =1 andreg.dir = 0) or (ri.dir = 0 and r,eq.dir = 1) then

14 if r.dir =1 thenr justify=0 /* risnotaDSrule*/

15 else r.dir = undefined

16 elseif ry.dir =req.dir =0then

17 if r.dir =0then r.justify =0 /* risnot aDSrule*/

18 esaf r.dir = 1then rjustify =r.justify O {(r1, reg)}  /* risapotential DSrule*/

19 else r.dir = undefined

20 else if r.dir = 1 then r.justify = r.justify O {(ri,rrex)} /* r isapotential DS rule */
21 eser.dir = undefined

22 endfor

23 if r.justify # O then /* r sets anew direction */

24 if r ispruned then r.dir = undefined /* Although r sets a new direction, it is pruned */
25 elseDSR=DSR O {r} [* risaDSrule*/

26 endif

27 endfor;

28 unprnRules={r O F |r.dir =1, r isnot pruned};

29 non-DSR = unprnRules - DSR

/* all the unpruned rules */
/* all the non-DS rules */

Figure 6. Algorithm P-DS

record all r; and r¢ combinations that justify r to be a
potential DS rule (line 18 and 20. This information is
helpful to the user in urderstanding the DS rules (see
Sedion 7). When we know that r is not a DS rule (line 11,
14 and 17), no recordingis neaded (we set r.justify = 0).

After completing the inner for-loop, if r.justify # O, r is
justified to be a DS rule. However, if r can be pruned
(r.prune # 0, see &so Figure 8), then it will not be aDS rule
(line 23). r.dir is st to undefined (line 24) so that r can be
used in the future to justify arule for beinga DS rule. If r
cannot be pruned (r.prune = 0), then it is a true DS rule
(line 25), and it is included in DSR. All unpruned rules are
in unprnRules (line 28), and al non-DS rules are in non-
DSR (line 29).

Below, we describe the two procedures compDir and
eval Prune. Procedure compDir (Figure 7) uses the x° test to
compute the crrelation or diredion of r. R is an ancestor
rule of r and bah have the same mnsequent.

Procedure compDir(r, R, T)

1 if ¥4r, R) > T then

2 if r.sup > r.cover * (R.sup / R.cover) then
3 return(l)

4 else return(-1)

5 elsereturn(0)

Figure 7. Computing the diredion or correlation of aruler
against amore general ruleR
In line 1, if x¥’(r, R) > T, we rejed the independence
asaumption, i.e., the oonditions and the cnsequent are
correlated. Line 2-5 determine the type of correlation or

diredion (Definition 3). “r.cover*(R.sup/R.cover)” is the
expeded frequency. x.cover isthe number of data cases that
satisfy the conditions of rule x.

The evalPrune procedureis sown in Figure 8. It triesto
prune r using req. IN line 1, if r. itself has been pruned
previoudly (i.e., rieg.prune # 0). Then, the dgorithm neels
to find the rule that prunes reg. Thisis down inline 2. In
line 3 and 4, if r does not represent a positive crrelation, it
is pruned. We set r.prune = rg to provide alink for
pruning of higher level rules than r. In line 5, if r is a
positive correlation, then we try to compare it with rpeq
using chi-square test. If r does not show a positive
correlation within the subset of the data covered by ryeq, it is
pruned by r.4 (line 6).

Procedur e eval Prune(r, ryeq)

1 if reg.prune# Othen 1% 1f rreq has been pruned */

2 Ireg = lreg-Prung;

3 ifrdir#1then

4 r.prune = req

5 elsaf compDir(r, rreq) # 1 then I* 1 is not significant
compared to rrest */

6 r.prune = req /* r can be pruned */

Figure 8. Evaluating pruning of aruler with resped to its
ancestor rule

Complexity of the algorithm: Let M be the number of
discovered large rules, and N be the maximum number
of conditions of a rule. The time mmplexity of the
agorithm is thus O(MN) (x* test is very efficient and
can be seen as constant). Since N is normally small, less



than 10, then the dgorithm is linea in the number of

largerules.

Additional features: The @ove dgorithm can be enhanced
with many interesting feaures to make it more powerful.
Below we give two suggestions:

1. The proposed technique does not use minimum
confidence However, it can be incorporated easily
into the dgorithm as an addtiona pruning
medhanism.

2. The dgorithm does not report rules with negative
correlation (or the diredion of -1). Sometime
negative correlations can aso be useful. For
example, it may be interesting to know the situations
A(2) and B(2) in Figure4 (i.e,1,1:=-1and 1, 0 :=
-1). Such rules can be eaily reported by adding
additional “elseif” statementsin the dgorithm.

7. Interactive Exploration of DS Rules and
non-DS Rules

As mentioned ealier, DS rules form the summary of the
regularities in the data and non-DS rules can provide further
details. A user interfacehas been built to alow the user to
interadively focus on the esential aspeds (DS rules) of the
domain and seledively view the relevant details (non-DS
rules). The interface has many functions for interadive
exploration of DS and non-DS rules. Due to space
limitations, we only give threemain functions here.

* The user can view the DS rules acoording to their levels
(or the number of conditions). This alows the user to
gradually seethe esential regularities that exist in the
data. In some gplications, the DS rules themselves are
arealy sufficient.

» For eadt DS rule, the user can view the reasons for
clasdfyingit asaDSrule. A DSruler is essentialy
unexpeded with resped to its ancestor rules r; and
e Decaise r does not follow their diredions. For
example, we have the following rules at level 1 (the
number after Ri is the rule’s diredion; the DS rules
are dso labeled)

R1: -1 Age=young - Loan = approved
R2: 1(DS) Age=young - Loan = not-approved
R3: 1(DS) Own_house=yes - Loan=approved
R4: -1 Own_house=yes —
Loan = not-approved
and, we have the following DS rule & level 2
R5 1(DS) Age=young Own_house=yes -
Loan = approved
If the user is interested in seeéng why R5 is a DS rule,
the system will display R1 and R3 together with their
diredions. This alows the user to gain a better
understanding of the domain.

* The user can view the relevant non-DS rules. When the
user islooking at a particular DS rule, he/she may wish
to seemore detail s, i.e., the non-DS rules that foll ow its
diredion. For example, we have the following DS rules
at level 1,

R1: 1 (DS) Job=yes - Loan = approved
R2: 1 (DS) Own_house = yes - Loan = approved

and the following ron-DS rule & level 2, which foll ows
the diredion of R1 and R2:
R3: 1 (non-DS) Job=yes, Own_house = yes -
Loan = approved

When the user clicks to view the relevant non-DS
rules that follows the diredion of R1 or R2, R3 will
be displayed (if there ae more rules, all of them will
be given to the user in some sorted order, e.g.,
acording to their supports or confidences).

8. Empirical Evaluation

We study the dfedivenessof the dgorithm for pruning and
finding DS rules. We used 30 dita sets in our experiments.
25 d them are obtained from the UCI Madine Leaning
Repository [16], and 5 are our red-life gplicaion data
sets. All these data sets contain huge numbers of
asciations, which present a major problem for using
asciation rule mining to give a omplete picture of the
underlying domains. Currently, the 25 public domain data
sets are mainly used for clasdficaion reseach. However,
clasdficaion can only give the user a partial picture of the
data, i.e.,, many interesting/useful rules are not discovered
[20, 13]. With our proposed technique, we show that
asgciation rule mining can rmow be dfedively and
pradicdly applied to these data sets to give a omplete
picture of the underlying relationshipsin the data.

Below, we report the experiment results with the 30 cata
sets. In all the experiments, we use afixed attribute (target
attribute) on the right hand side of assciation rules. The
target attribute is a cdegoricd attribute and can have a
number of values (cdled target items). For the 25 UCI data
sets, the target attribute in ead data set is the class attribute
used for clasdficaion. For our 5 red-life data sets, the
target attributes are suggested by our users. For al these
data sets, even with a target attribute, the numbers of
asciations discovered are huge (note that our modified
asciation rule miner is able to use the target attribute
[13]). Many data sets cause ombinatorial explosion. Due
to this reason, we set a hard limit of 80,000 o, the total
number of large rules processed in memory. Even with such
a large limit, mining cannot be cmpleted for many data
sets. Using a hard limit is justified becaise procealing
further only generates rules with many conditions that are
hard to understand and difficult to use.

Many data sets we use @ntain numeric atributes. We
discretize these dtributes into intervals using the target
attribute. There ae anumber of discretization algorithmsin
madine leaning literature for the purpose. We use the
entropy-based method given in [6]. The mde is taken from
MLC++[9].

The eperiments were repeded using different
significance levels for the x* test (95% and 90%) and
different minimum suppart (mi nsupg values (2% and 1%).
The 95% significancelevel for the x“ test is commonly used
[17]. A lower level of 90% is used to show the dfed of this
on the results. We used the minimum supparts of 2% and
1% because it is own in [13] that for these data sets, rules
with these suppart thresholds are sufficiently predictive.



Table 1. Experiment results (minimum support = 1%; significance level = 95%)

1 2 3 4 5 6 7 8 9 10
Data no. of | Target| Large PC. PCrules | 1-cond Total no. | No. of conds| Exe.
No. sets Items | items | rules rules |Aft. pru DSrules | DSrules | in DSrules time
1 Anned 121 6 42893 18843 347 66 99 .5B 6.17
2 Austra 51 2 80000 | 40668 379 29 94 .05 398
3. Auto 98 7 80000 | 43781 2175 110 559 483 291
4 Breast-w 31 2 2757 2362 97 26 27 .az 014
5 Chess 74 2 80000 | 31939 2314 50 253 .60 240
6 Cleve 30 2 30435 11707, 181 21 22 22 175
7 Crx 55 2 80000 | 40269 465 31 97 Re v 396
8 Diabetes 18 2 1196 565 44 14 14 .a0 005
9 German 66 2 80000 | 21386 496 32 138 42 344
10 CGlass 21 7 1820 1036 153 35 42 18 007
11 Heat 23 2 10044 3055 131 18 18 .ap 050
12  Hepati 36 2 80000 [ 23097 201 22 41 o) 381
13 Horse 66 2 79965 | 24368 314 41 81 .25 223
14 Hypo 50 2 80000 [ 32543 299 23 49 .96 392
15 lono 314 2 34463 1371d 682 238 405 49 104
16 Led7all 15 10 1692 1389 691 70 72 .as 0.06
17 Lymph 51 4 80000 18324 511 40 89 .8D 326
18 Pima 18 2 1196 565 44 14 14 .a0 004
19 Sick 109 2 80000 | 23538 456 35 73 .6b 269
20 Sonar 82 2 80000 [ 24005 1299 42 54 .6b 309
21 Tic-tac 28 2 8315 2712 290 14 90 /AN 031
22 Vehicle 68 4 80000 49538 3259 90 474 .58 303
23  Waveform | 211 3 35888 30971 1835 174 293 .61 058
24 Wine 37 3 27143 15013 551 40 68 .54 153
25 _Zzoo | 37 | 7 | 80000 | 5027 _ 1150| 59| 204 | . 08 __| - 456 |
26 Disesse 19 2 1622 462 35 13 13 ao 0.07
27 Profile 373 5 80000 | 29362 1229 77 217 .23 497
28  Quality 45 2 67841 29776 295 40 89 .88 234
29 Results 278 2 54481 16426 995 116 151 .40 143
30 Traffic 79 3 74610 5916 231 17 94 D 410
Average 84 3 50545 [ 20553 705 53 131 .on 214
minimum suppat = 2%; significancelevel = 95%:
Average 84 3 44280 23885 612 50 93 1.75 212
minimum suppat = 1%; significancelevel = 90%:
Average 84 3 50545 23297 957 57 162 2.08 218
minimum suppat = 2%; significancelevel = 90%:
Average 84 3 44280 25978 810 53 109 1.86 208

Table 1 gave the results obtained using the significance
level of 95% for the x° test and minsup = 1%. The other
results can be found in [14], but they are summarized here.
Below, we eplain ead column in Table 1. The final row
givesthe average value for ead column.

Column 1: It gives the name of the data set (the last 5 are
our red-life data sets). The number of records (or cases)
in these data sets range from a few hurdreds to tens of
thousands.

Column 2: It shows the number of items in ead data set.
Recdl, an item is an attribute and a value (or an interval)
pair, i.e., (<attribute> = <valug>).

Column 3: It shows the number of items (or values) in the
target attribute of ead data set.

Column 4: It gives the number of large rules generated
from ead data set. We can seethat the number of large
rules generated from an association rule miner is huge for
ead data set. Almost haf of the data sets cannot be
completed even urder the hard limit of 80,000

Column 5: It gives the number of positively correlated
(PC) rules found in ead data set. The number is much
smaller. However, on average, there ae till more than
20,000 d them.

Column 6: It gives the number of positively correlated
(PC) rules after pruning. The number is reduced
dragticdly. More than 96% of the PC rules are pruned.
However, on average, the number of unpruned rules is
till 1 arge, e.g., 705. Such alarge number of rules are still



hard to be analyzed by a human user.

Column 7: It gives the number of 1-condition DSrules.

Column 8: It gives the total number of DS rules found in
ead data set. The number of DS rules is manageable and
can be analyzed manually. On average, only 131rulesare
DS rules. Many of them are 1-condition DS rules.

Column 9: It gives the arerage number of conditions in the
DS rules. We ca seethat the DS rules are mostly short
rules.

Column 10: It givesthe running time in second (running on
512MB Sparc 2) for ead data set. This time includes
rule generation (data reside on disk), pruning and finding
diredion setting rules. We can see that the proposed
technique is very efficient. We could not log any time for
pruning and finding DS rules alone due to the dficiency.

From the summary of the other results (below Table 1), we
make the foll owing observation:

¢ When the minimum suppart increases, fewer DS rules
are produced. When the significance level is lowered to
90% for the x* test, slightly more DS rules are produced.
This is becaise pruning is less s$ringent. However, the
numbers of DS rules are still manageable. The runring
times are simil ar because we have the hard li mit.

9. Conclusion

Data mining is to find patterns or regularities to summarize
the data. If it also produces a huge number of patterns, it
will be of limited use becaise ahuman user does not have
the aility to analyze these patterns. However, if such a
huge number of patterns do exist in the data, it will not be
appropriate to arbitrarily discard any of them or to generate
only asmall subset of them. It is much more desirable if we
can summarize them. This paper propases sich atechnique.
This technique first prunes off those rules that contain littl e
extra information as compared to their ancestors, and then
identifies the diredion setting rules to give aglobal picture
of the underlying relationships in the domain. Although the
number of discovered assciations can be very large,
experimental results and red-life gplicaions have shown
that the number of diredion setting rules is typicdly very
small and with very few conditions. They can be manually
inspeded by a human user without too much effort.

Finally, we believe that in genera any data mining
technique that may potentially produce alarge number of
patterns sould provide a technique to summarize the
findings or the generated patterns. In this way, the user will
be &le to oltain an overal picture of the domain without
being overwhelmed by a large number of detailed petterns.
From this aimmarized information, he/she ca then find
some interesting aspeds to focus on. The proposed
tedhnique represents a major step towards this diredion.
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