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Inducing Features of Random Fields
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Abstract—We present a technique for constructing random fields from a
set of training samples. The learning paradigm builds increasingly complex
fields by allowing potential functions, or features, that are supported by
increasingly large subgraphs. Each feature has a weight that is trained
by minimizing the Kullback-Leibler divergence between themodel and the
empirical distribution of the training data. A greedy algor ithm determines
how features are incrementally added to the field and an iterative scaling
algorithm is used to estimate the optimal values of the weights.

The random field models and techniques introduced in this paper differ
from those common to much of the computer vision literature in that the
underlying random fields are non-Markovian and have a large number of
parameters that must be estimated. Relations to other learning approaches,
including decision trees, are given. As a demonstration of the method, we
describe its application to the problem of automatic word classification in
natural language processing.

Keywords— Random field, Kullback-Leibler divergence, iterative scal-
ing, maximum entropy, EM algorithm, statistical learning, clustering, word
morphology, natural language processing.

I. INTRODUCTIONIN this paper we present a method for incrementally construct-
ing random fields. Our method builds increasingly complex

fields to approximate the empirical distribution of a set of train-
ing examples by allowing potential functions, or features,that
are supported by increasingly large subgraphs. Each feature is
assigned a weight, and the weights are trained to minimize the
Kullback-Leibler divergence between the field and the empiri-
cal distribution of the training data. Features are incrementally
added to the field using a top-down greedy algorithm, with the
intent of capturing the salient properties of the empiricalsam-
ple while allowing generalization to new configurations. The
general problem that the methods we propose address is that of
discovering the structure inherent in a set of sample patterns. As
one of the fundamental aims of statistical inference and learn-
ing, this problem is central to a wide range of tasks including
classification, compression, and prediction.

To illustrate the nature of our approach, suppose we wish
to automatically characterize spellings of words according to a
statistical model; this is the application we develop in Section
5. A field with no features is simply a uniform distribution on
ASCII strings (where we take the distribution of stringlengthsas
given). The most conspicuous feature of English spellings is that
they are most commonly comprised of lower-case letters. The
induction algorithm makes this observation by first constructing
the field p(!) = 1Z ePi �[a�z] �[a�z](!i)
where� is an indicator function and the weight�[a�z] associated
with the feature that a character is lower-case is chosen to be
approximately 1:944. This means that a string with a lowercase
letter in some position is about 7� e1:944 times more likely than
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the same string without a lowercase letter in that position.The
following collection of strings was generated from the resulting
field by Gibbs sampling. (As for all of the examples that will be
shown, this sample was generated with annealing, to concentrate
the distribution on the more probable strings.)

m, r, xevo, ijjiir, b, to, jz, gsr, wq, vf, x, ga,
msmGh, pcp, d, oziVlal, hzagh, yzop, io, advzmxnv,
ijv_bolft, x, emx, kayerf, mlj, rawzyb, jp, ag,
ctdnnnbg, wgdw, t, kguv, cy, spxcq, uzflbbf,
dxtkkn, cxwx, jpd, ztzh, lv, zhpkvnu, lˆ, r, qee,
nynrx, atze4n, ik, se, w, lrh, hp+, yrqyka’h,
zcngotcnx, igcump, zjcjs, lqpWiqu, cefmfhc, o, lb,
fdcY, tzby, yopxmvk, by, fz,, t, govyccm,
ijyiduwfzo, 6xr, duh, ejv, pk, pjw, l, fl, w

The second most important feature,according to the algorithm, is
that two adjacent lower-case characters are extremely common.
The second-order field now becomesp(!) = 1Z ePi�j �[a�z][a�z]�[a�z][a�z] (!ij)+Pi �[a�z]�[a�z](!i)
where the weight�[a�z][a�z] associated with adjacent lower-case
letters is approximately 1:80.

The first 1000 features that the algorithm induces include the
stringss> , <re , ly> , anding> , where the character “<” de-
notes beginning-of-string and the character “>” denotes end-of-
string. In addition, the first 1000 features include the regular ex-
pressions[0-9][0-9] (with weight 9:15) and[a-z][A-Z]
(with weight�5:81) in addition to the first two features[a-z]
and[a-z][a-z] . A set of strings obtained by Gibbs sampling
from the resulting field is shown here:

was, reaser, in, there, to, will, ,, was, by,
homes, thing, be, reloverated, ther, which,
conists, at, fores, anditing, with, Mr., proveral,
the, ,, ***, on’t, prolling, prothere, ,, mento,
at, yaou, 1, chestraing, for, have, to, intrally,
of, qut, ., best, compers, ***, cluseliment, uster,
of, is, deveral, this, thise, of, offect, inatever,
thifer, constranded, stater, vill, in, thase, in,
youse, menttering, and, ., of, in, verate, of, to

These examples are discussed in detail in Section 5.
The induction algorithm that we present has two parts:fea-

ture selectionandparameter estimation. The greediness of the
algorithm arises in feature selection. In this step each feature in
a pool of candidate features is evaluated by estimating the reduc-
tion in the Kullback-Leibler divergence that would result from
adding the feature to the field. This reduction is approximated
as a function of a single parameter, and the largest value of this
function is called thegainof the candidate. This approximation
is one of the key elements of our approach, making it practical
to evaluate a large number of candidate features at each stage of
the induction algorithm. The candidate with the largest gain is
added to the field. In the parameter estimation step, the parame-
ters of the field are estimated using an iterative scaling algorithm.
The algorithm we use is a new statistical estimation algorithm
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that we callImproved Iterative Scaling. It is an improvement
of the Generalized Iterative Scaling algorithm of Darroch and
Ratcliff [12] in that it does not require that the features sum to
a constant. The improved algorithm is easier to implement than
the Darroch and Ratcliff algorithm, and can lead to an increase
in the rate of convergence by increasing the size of the step taken
toward the maximum at each iteration. In Section 4 we give a
simple, self-contained proof of the convergence of the improved
algorithm that does not make use of the Kuhn-Tucker theorem
or other machinery of constrained optimization. Moreover,our
proof does not rely on the convergence of alternating I-projection
as in Csiszár’s proof [10] of the Darroch-Ratcliff procedure.

Both the feature selection step and the parameter estimation
step require the solution of certain algebraic equations whose
coefficients are determined as expectation values with respect
to the field. In many applications these expectations cannotbe
computed exactly because they involve a sum over an exponen-
tially large number of configurations. This is true of the appli-
cation that we develop in Section 5. In such cases it is possible
to approximate the equations that must be solved using Monte
Carlo techniques to compute expectations of random variables.
The application that we present uses Gibbs sampling to compute
expectations, and the resulting equations are then solved using
Newton’s method.

Our method can be viewed in terms of theprinciple of max-
imum entropy[19], which instructs us to assume an exponen-
tial form for our distributions, with the parameters viewedas
Lagrange multipliers. The techniques that we develop in this
paper apply to exponential models in general. We formulate
our approach in terms of random fields because this provides a
convenient framework within which to work, and because our
main application is naturally cast in these terms.

Our method differs from the most common applications of
statistical techniques in computer vision and natural language
processing. In contrast to many applications in computer vision,
which involve only a few free parameters, the typical applica-
tion of our method involves the estimation of thousands of free
parameters. In addition, our methods apply to general exponen-
tial models and random fields–there is no underlying Markov
assumption made. In contrast to the statistical techniquescom-
mon to natural language processing, in typical applications of
our method there is no probabilistic finite-state or push-down
automaton on which the statistical model is built.

In the following section we describe the form of the random
field models considered in this paper and the general learning
algorithm. In Section 3 we discuss the feature selection step of
the algorithm and briefly address cases when the equations need
to be estimated using Monte Carlo methods. In Section 4 we
present the Improved Iterative Scaling algorithm for estimating
the parameters, and prove the convergence of this algorithm.
In Section 5 we present the application of inducing featuresof
spellings, and finally in Section 6 we discuss the relation between
our methods and other learning approaches, as well as possible
extensions of our method.

II. THE LEARNING PARADIGM

In this section we present the basic algorithm for building
up a random field from elementary features. The basic idea

is to incrementally construct an increasingly detailed field to
approximate a reference distribution ˜p. Typically the distributionp̃ is obtained as the empirical distribution of a set of training
examples. After establishing our notation and defining the form
of the random field models we consider, we present the training
problem as a statement of two equivalent optimization problems.
We then discuss the notions of a candidate feature and the gain
of a candidate. Finally, we give a statement of the induction
algorithm.

A. Form of the random field models

Let G = (E; V ) be a finite graph with vertex setV and edge
setE, and letA be a finite alphabet. Theconfiguration space
Ω is the set of all labelings of the vertices inV by letters inA. If C � V and! 2 Ω is a configuration, then!C denotes
the configuration restricted toC. A random fieldon G is a
probability distribution onΩ. The set of all random fields is
nothing more than the simplex∆ of all probability distributions
on Ω. If f : Ω ! R then thesupportof f , written supp(f),
is the smallest vertex subsetC � V having the property that
whenever!; !0 2 Ω with !C = !0C thenf(!) = f(!0).

We consider random fields that are given by Gibbs distribu-
tions of the form p(!) = 1Z ePC VC(!)
for ! 2 Ω, whereVC : Ω! R are functions with supp(VC) =C. The field isMarkov if wheneverVC 6= 0 thenC is aclique,
or totally connected subset ofV . This property is expressed in
terms of conditional probabilities asp(!u j!v; v 6= u) = p(!u j!v; (u; v) 2 E)
whereu andv are arbitrary vertices. We assume that eachC is
a path-connected subset ofV and thatVC(!) = X

1�i�nC �Ci fCi (!) = �C � fC (!)
where�Ci 2 R andfCi (!) 2 f0; 1g. We say that the values�Ci
are theparametersof the field and that the functionsfCi are the
featuresof the field. In the following, it will often be convenient
to use notation that disregards the dependence of the features
and parameters on a vertex subsetC, expressing the field in the
form p(!) = 1Z ePi �i fi(!) = 1Z e ��f(!) :
For every random field(E; V; f�i; fig) of the above form, there
is a field(E0; V; f�i; fig) that is Markovian, obtained by com-
pleting the edge setE to ensure that for eachi, the subgraph
generated by the vertex subsetC = supp(fi) is totally con-
nected.

If we impose the constraint�i = �j on two parameters�i and�j , then we say that these parameters aretied. If �i and�j are
tied, then we can write�ifi(!) + �jfj(!) = �g(!)
whereg = fi + fj is anon-binaryfeature. In general, we can
collapse any number of tied parameters onto a single parameter
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associated with a non-binary feature. Having tied parameters is
often natural for a particular problem, but the presence of non-
binary features generally makes the estimation of parameters
more difficult.

An automorphism� of a graph is a permutation of the vertices
that takes edges to edges:(u; v) 2 E if and only if(�u; �v) 2 E.
A random field(E; V; f�i; fig) is said to havehomogeneous
featuresif for each featurefi and automorphism� of the graphG = (E; V ), there is a featurefj such thatfj(�!) = fi(!)
for ! 2 Ω. If in addition �j = �i, then the field is said to
be homogeneous. Roughly speaking, a homogeneous feature
contributes the same weight to the distribution no matter where
in the graph it appears. Homogeneous features arise naturally in
the application of Section 5.

The methods that we describe in this paper apply to expo-
nential models in general; that is, it is not essential that there is
an underlying graph structure. However, it will be convenient
to express our approach in terms of the random field models
described above.

B. Two optimization problems

Suppose that we are given an initial modelq0 2 ∆, a reference
distribution p̃, and a set of featuresf = (f0; f1; : : : ; fn). In
practice, it is often the case that ˜p is the empirical distribution of
a set of training samples!(1); !(2) : : :!(N), and is thus given
by p̃(!) = c(!)N
wherec(!) = P

1�i�N �(!; !(i)) is the number of times that
configuration! appears among the training samples.

We wish to construct a probability distributionq? 2 ∆ that
accounts for these data, in the sense that it approximates ˜p but
does not deviate too far fromq0. We measure distance between
probability distributionsp andq in ∆ using the Kullback-Leibler
divergence D(p k q) = X!2Ω

p(!) log
p(!)q(!) : (1)

Throughout this paper we use the notationp[g] = X!2Ω

g(!) p(!)
for the expectation of a functiong : Ω ! R with respect to
the probability distributionp. For a functionh : Ω ! R and a
distributionq, we use both the notationh �q andqh to denote the
generalized Gibbs distribution given byqh(!) = (h �q)(!) = 1Zq(h)e h(!) q(!) :
Note thatZq(h) is not the usual partition function. It is a normal-
ization constant determined by the requirement that(h � q)(!)
sums to 1 over!, and can be written as an expectation:Zq(h) = q[e h] :

There are two natural sets of probability distributions deter-
mined by the data ˜p, q0, andf . The first is the setP(f; p̃) of

all distributions that agree with ˜p as to the expected value of the
feature functionf :P(f; p̃) = fp 2 ∆ : p[f ] = p̃[f ] g :
The second is the setQ(f; q0) of generalized Gibbs distributions
based onq0 with feature functionf :Q(f; q0) = f(� � f) � q0 : � 2 Rn g :
We letQ̄(f; q0) denote the closure ofQ(f; q0) in ∆ (with respect
to the topology it inherits as a subset of Euclidean space).

There are two natural criteria for choosing an elementq? from
these sets:� Maximum Likelihood Gibbs Distribution. Chooseq? to

be a distribution inQ̄(f; q0) with maximum likelihood with
respect to ˜p: qML? = arg minq2Q̄(f;q0)D(p̃ k q)� Maximum Entropy Constrained Distribution. Chooseq?
to be a distribution inP(f; p̃) that has maximum entropy
relative toq0: qME? = arg minp2P(f;p̃)D(p k q0)

Although these criteria are different, they determine the same
distribution: q? = qML? = qME? . Moreover, this distribution is
the unique element of the intersectionP(f; p̃)\ Q̄(f; q0), as we
discuss in detail in Section 4.1 and Appendix A.

When p̃ is the empirical distribution of a set of training ex-
amples!(1); !(2) : : :!(N), minimizingD(p̃ k p) is equivalent to
maximizing the probability that the fieldp assigns to the training
data, given byY

1�i�N p(!(i)) = Y!2Ω

p(!) c(!) / e�ND(p̃ kp) :
With sufficiently many parameters it is a simple matter to con-
struct a field for whichD(p̃ kp) is arbitrarily small. This is the
classic problem ofover training. The idea behind the method
proposed in this paper is to incrementally construct a field that
captures the salient properties of ˜p by incorporating an increas-
ingly detailed collection of features, allowing generalization to
new configurations; the resulting distributions arenotabsolutely
continuous with respect to the empirical distributionof the train-
ing sample. The maximum entropy framework for parameter
estimation tempers the over training problem; however, theba-
sic problem remains, and is out of the scope of the present paper.
We now present the random field induction paradigm.

C. Inducing field interactions

We begin by supposing that we have a set ofatomicfeaturesFatomic � fg : Ω �! f0; 1g; supp(g) = vg 2 V g
each of which is supported by a single vertex. We use atomic
features to incrementally build up more complicated features.
The following definition specifies how we shall allow a field to
be incrementally constructed, orinduced.
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Definition 1: Suppose that the fieldq is given byq = (� �f) � q0. The featuresfi are called theactive features ofq. A
featureg is acandidatefor q if eitherg 2 Fatomic, or if g is of the
form g(!) = a(!)fi(!) for an atomic featurea and an active
featurefi with supp(g) 	 supp(fi) 2 E. The set of candidate
features ofq is denotedC(q).
In other words, candidate features are obtained by conjoining
atomic features with existing features. The condition on supports
ensures that each feature is supported by a path-connected subset
of G.

If g 2 C(q) is a candidate feature ofq, then we call the 1-
parameter family of random fieldsq�g = (�g) � q the induction
of q byg. We also defineGq(�; g) = D(p̃ k q) �D(p̃ k q�g) : (2)

We think ofGq(�; g) as the improvement that featureg brings
to the model when it has weight�. As we show in the following
section,Gq(�; g) is \-convex in�. (We use the suggestive
notation\-convex and[-convex in place of the less mnemonic
concave and convex terminology.) We defineGq(g) to be the
greatest improvement that featureg can give to the model while
keeping all of the other features’ parameters fixed:Gq(g) = sup� Gq(�; g) :
We refer toGq(g) as thegainof the candidateg.

D. Incremental construction of random fields

We can now describe our algorithm for incrementally con-
structing fields.

Field Induction Algorithm.

Initial Data:
A reference distributioñp and an initial modelq0.

Output:
A field q? with active featuresf0; : : : ; fN such thatq? =
arg minq2Q̄(f;q0)D(p̃ k q).

Algorithm:
(0) Setq(0) = q0.
(1) For each candidateg 2 C(q(n)) compute the gainGq(n) (g).
(2) Let fn = arg maxg2C(q(n) ) Gq(n) (g) be the feature with the

largest gain.
(3) Compute q? = arg minq2Q̄(f;q0) D(p̃ k q), where f =(f0; f1; : : : ; fn).
(4) Setq(n+1) = q? andn n+ 1, and go to step (1).

This induction algorithm has two parts:feature selectionand
parameter estimation. Feature selection is carried out in steps (1)
and (2), where the featureyielding the largest gain is incorporated
into the model. Parameter estimation is carried out in step (3),
where the parameters are adjusted to best represent the reference
distribution. These two computations are discussed in more
detail in the following two sections.

III. FEATURE SELECTION

The feature selection step of our induction algorithm is based
upon an approximation. We approximate the improvement due
to adding a single candidate feature, measured by the reduction
in Kullback-Leibler divergence, by adjusting only the weight
of the candidate and keeping all of the other parameters of the
field fixed. In general this is only an estimate, since it may well
be that adding a feature will require significant adjustments to
all of the parameters in the new model. From a computational
perspective, approximating the improvement in this way can
enable the simultaneous evaluation of thousands of candidate
features, and makes the algorithm practical. In this section we
present explain the feature selection step in detail.

Proposition 1: Let Gq(�; g), defined in (2), be the approxi-
mate improvement obtained by adding featureg with parameter� to the fieldq. Then if g is not constant,Gq(�; g) is strictly\-convex in� and attains its maximum at the unique point ˆ�
satisfying p̃[g] = q�̂g[g] : (3)

Proof: Using the definition (1) of the Kullback-Leibler di-
vergence we can writeGq(�; g) = X!2Ω

p̃(!) log
Z�1q (�g) e�g(!)q(!)q(!)= X!2Ω

p̃(!) ��g(!) � logq �e�g��= �p̃[ g ]� logq �e�g� :
Thus @@�Gq(�; g) = p̃[g]� q[ge�g]q[e�g]= p̃[g]� q�g[g] :
Moreover, @2@�2

Gq(�; g) = q[ge�g]2q[e�g]2 � q[g2e�g ]q[e�g]= �q�g[�g � q�g[g]�2]
Hence, @2@�2Gq(�; g) � 0, so thatGq(�; g) is \-convex in�. Ifg is not constant, then@2@�2Gq(�; g), which is minus the variance
of g with respect toq�g, is strictly negative, so thatGq(�; g) is
strictly convex.

Wheng is binary-valued, its gain can be expressed in a par-
ticularly nice form. This is stated in the following proposition,
whose proof is a simple calculation.

Proposition 2: Suppose that the candidateg is binary-valued.
ThenGq(�; g) is maximized at�̂ = log

� p̃[ g ](1� q[ g ])q[ g ](1� p̃[ g ])�
and at this value,Gq(g) = Gq(�̂; g) = D(Bp kBq)
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whereBp andBq are Bernoulli random variables given byBp(1) = p̃[ g ] Bp(0) = 1� p̃[ g ]Bq(1) = q[ g ] Bq(0) = 1� q[ g ] :
For features that are not binary-valued, but instead take values

in the non-negative integers, the parameter ˆ� that solves (3) and
thus maximizesGq(�; g) cannot, in general, be determined in
closed form. This is the case for tied binary features, and it
applies to the application we describe in Section 5. For these
cases it is convenient to rewrite (3) slightly. Let� = e� so that@=@� = �@=@�. Letgk =X! q(!) �(k; g(!))
be the total probability assigned to the event that the feature g
takes the valuek. Then (3) becomes� @@� Gq(log�; g) = p̃[g]� PNk=0 k gk�kPNk=0 gk�k = 0 (4)

This equation lends itself well to numerical solution. The gen-
eral shape of the curve� 7! �@=@� Gq(log�; g) is shown in
Figure 1.

Fig. 1. Derivative of the gain

The limiting value of�@Gq(log�; g)=@� as� ! 1 is p̃[g]�N . The solution to equation (4) can be found using Newton’s
method, which in practice converges rapidly for such functions.

When the configuration spaceΩ is large, so that the coeffi-
cientsgk cannot be calculated by summing over all configura-
tions, Monte Carlo techniques may be used to estimate them.
It is important to emphasize that thesameset of random con-
figurations can be used to estimate the coefficientsgk for each
candidateg simultaneously. Rather than discuss the details of
Monte Carlo techniques for this problem we refer to the exten-
sive literature on this topic. We have obtained good resultsusing
the standard technique of Gibbs sampling [17] for the problem
we describe in Section 5.

IV. PARAMETER ESTIMATION

In this section we present an algorithm for selecting the pa-
rameters associated with the features of a random field. The
algorithm is a generalization of the Generalized IterativeScal-
ing algorithm of Darroch and Ratcliff [12]. It reduces to the
Darroch-Ratcliff algorithm when the features sum to a constant;
however, the new algorithm does not make this restriction.

Throughout this section we hold the set of featuresf =(f0; f1; : : : ; fn), the initial modelq0 and the reference distri-
bution p̃ fixed, and we simplify the notation accordingly. In

particular, we write
 � q instead of(
 � f) � q for 
 2 Rn. We
assume that ˜p(!) = 0 wheneverq0(!) = 0. This condition is
commonly written ˜p� q0, and it is equivalent toD(p̃k q0) <1.

A description of the algorithm requires an additional pieceof
notation. Let f#(!) = nXi=0

fi(!) :
If the features are binary, thenf#(!) is the total number of
features that are “on” for the configuration!.

Improved Iterative Scaling.

Initial Data:
A reference distributioñp and an initial modelq0, withp̃� q0, and non-negative featuresf0; f1; : : : ; fn.

Output:
The distributionq? = arg minq2Q̄(f;q0)D(p̃ k q)

Algorithm:
(0) Setq(0) = q0.
(1) For eachi let 
(k)i 2 [�1;1) be the unique solution ofq(k)[ fi e 
(k)i f# ] = p̃[ fi ] : (5)

(2) Setq(k+1) = 
(k) � q(k) andk  k + 1.
(3) If q(k) has converged, setq? = q(k) and terminate. Oth-
erwise go to step (1).

In other words, this algorithm constructs a distributionq? =
limm!1 
m �q0 where
m =Pmk=0 
(k) and
(k)i is determined
as the solution to the equationX! q(k)(!) fi(!) e 
(k)i f#(!) =X! p̃(!) fi(!) :
When used in then-th iteration of the field induction algorithm,
where a candidate featureg = fn is added to the fieldq = qn, we
choose the initial distributionq0 to beq0 = q�̂g, where�̂ is the
parameter that maximizes the gain ofg. In practice, this provides
a good starting point from which to begin iterative scaling.In
fact, we can view this distribution as the result of applyingone
iteration of an Iterative Proportional Fitting Procedure [5], [9]
to projectq�g onto the linear family of distributions withg-
marginals constrained to ˜p[g].

Our main result in this section is
Proposition 3: Supposeq(k) is the sequence in∆ determined

by the Improved Iterative Scaling algorithm. ThenD(p̃ k q(k))
decreases monotonically toD(p̃ k q?) andq(k) converges toq? =
arg minq2Q̄ D(p̃ k q) = arg minp2P D(p k q0).

In the remainder of this section we present a self-contained
proof of the convergence of the algorithm. The key idea of
the proof is to express the incremental step of the algorithmin
terms of an auxiliary function which bounds from below the
log-likelihood objective function. This technique is the standard
means of analyzing the EM algorithm [13], but it has not previ-
ously been applied to iterative scaling. Our analysis of iterative
scaling is different and simpler than previous treatments.In
particular, in contrast to Csiszár’s proof of the Darroch-Ratcliff
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procedure [10], our proof does not rely upon the convergenceof
alternating I-projection [9].

We begin by formulating the basic duality theorem which
states that the maximum likelihood problem for a Gibbs dis-
tribution and the maximum entropy problem subject to linear
constraints have the same solution. We then turn to the task of
computing this solution. After introducingauxiliary functions in
a general setting, we apply this method to prove convergenceof
the Improved Iterative Scaling algorithm. We finish the section
by discussing Monte Carlo methods for estimating the equations
when the size of the configuration space prevents the explicit
calculation of feature expectations.

A. Duality

The duality between the maximum likelihood and maximum
entropy problems is expressed in the following Proposition.

Proposition 4: Suppose that ˜p � q0. Then there exists a
uniqueq? 2 ∆ satisfying

(1) q? 2 P \ Q̄
(2) D(p k q) = D(p k q?) + D(q? k q) for any p 2 P andq 2 Q̄
(3) q? = arg minq2Q̄ D(p̃ k q)
(4) q? = arg minp2P D(p k q0).

Moreover, any of these four properties determinesq? uniquely.
This result is well known, although perhaps not quite in this

packaging. In the language of constrained optimization, itex-
presses the fact that the maximum likelihood problem for Gibbs
distributions is the convex dual to the maximum entropy prob-
lem for linear constraints. Property (2) is called thePythagorean
propertysince it resembles the Pythagorean theorem if we imag-
ine thatD(p k q) is the square of Euclidean distance and(p; q?; q)
are the vertices of a right triangle.

We include a proof of this result in Appendix A to make this
paper self-contained and also to carefully address the technical
issues arising from the fact thatQ is not closed. The proposition
would not be true if we replaced̄Q with Q; in fact, P \ Q
might be empty. Our proof is elementary and does not rely
on the Kuhn-Tucker theorem or other machinery of constrained
optimization.

B. Auxiliary functions

We now turn to the task of computingq?. Fix p̃ and letL : ∆! R be the log-likelihood objective functionL(q) = �D(p̃ k q) :
Definition 2: A functionA : Rn � ∆ ! R is an auxiliary

function forL if

(1) For allq 2 ∆ and
 2 RnL(
 � q) � L(q) + A(
; q)
(2) A(
; q) is continuous inq 2 ∆ andC1 in 
 2 Rn withA(0; q) = 0 andddt j t=0 A(t
; q) = ddt j t=0 L((t
) � q) :

We can use an auxiliary functionA to construct an iterative
algorithm for maximizingL. We start withq(k) = q0 and
recursively defineq(k+1) byq(k+1) = 
(k) � q(k) with 
(k) = arg max
 A(
; q(k)) :
It is clear from property (1) of the definition that each step of
this procedure increasesL. The following proposition implies
that in fact the sequenceq(k) will reach the maximum ofL.

Proposition 5: Supposeq(k) is any sequence in∆ withq(0) = q0 and q(k+1) = 
(k) �q(k)
where
(k) 2 Rn satisfiesA(
(k); q(k)) = sup
 A(
; q(k)) : (6)

Then L(q(k)) increases monotonically to maxq2Q̄ L(q) and q(k)
converges toq? = arg maxq2Q̄ L(q).
Equation (6) assumes that the supremum sup
 A(
; q(k)) is
achieved at finite
. In Appendix B, under slightly stronger
assumptions, we present an extension that allows some compo-
nents of
(k) to take the value�1.

To use the proposition to construct a practical algorithm we
must determine an auxiliary functionA(
; q) for which 
(k)
satisfying the required condition can be determined efficiently.
In Section 4.3 we present a choice of auxiliary function which
yields the Improved Iterative Scaling updates.

To prove Proposition 5 we first prove three lemmas.
Lemma 1: If m 2 ∆ is a cluster point ofq(k), thenA(
;m) �

0 for all 
 2 Rn.

Proof: Let q(kl) be a sub-sequence converging tom. Then
for any
A(
; q(kl)) � A(
(kl); q(kl)) � L(q(kl+1)) � L(q(kl))� L(q(kl+1))� L(q(kl)) :
The first inequality follows from property (6) of
(nk). The sec-
ond and third inequalities are a consequence of the monotonicity
of L(q(k)). The lemma follows by taking limits and using the
fact thatL andA are continuous.

Lemma 2: If m 2 ∆ is a cluster point ofq(k), thenddt j t=0 L((t
) �m) = 0 for any
 2 Rn.

Proof: By the previous lemma,A(
;m) � 0 for all 
. SinceA(0;m) = 0, this means that
 = 0 is a maximum ofA(
;m)
so that

0 = ddt j t=0 A(t
;m) = ddt j t=0 L((t
) �m) :
Lemma 3:Supposefq(k)g is any sequencewith only oneclus-

ter pointq�. Thenq(k) converges toq�.
Proof: Suppose not. Then there exists an open setB contain-

ing q� and a subsequenceq(nk) 62 B. Since∆ is compact,q(nk)
has a cluster pointq0� 62 B. This contradicts the assumption thatfq(k)g has a unique cluster point.
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Proof of Proposition 5: Suppose thatm is a cluster point ofq(k). Then it follows from Lemma 2 thatddt j t=0 L((t
) �m) =
0, and som 2 P \ Q̄ by Lemma 2 of Appendix A. Butq? is the
only point inP \ Q̄ by Proposition 4. It follows from Lemma 3
thatq(k) converges toq?.

In Appendix B we prove an extension of Proposition 5 that
allows the components of
 to equal�1. For this extension,
we assume that all the components of the feature functionf are
non-negative: fi(!) � 0 for all i and all!. (7)

This is not a practical restriction since we can replacefi byfi �min! fi(!).
C. Improved Iterative Scaling

We now prove the monotonicity and convergence of the Im-
proved Iterative Scaling algorithm by applying Proposition5 to
a particular choice of auxiliary function. We now assume that
each component of the feature functionf is non-negative.

Forq 2 ∆ and
 2 Rn, defineA(
; q) = 1+ 
 � p̃[f ]�X! q(!)Xi f(i j!) e 
if#(!)
wheref(i j!) = fi(!)f#(!) . It is easy to check thatA extends to a
continuous function on(R [�1)n � ∆.

Lemma 4:A(
; q) is an extended auxiliary function forL(q).
The key ingredient in the proof of the lemma is the\-convexity
of the logarithm and the[-convexity of the exponential, as ex-
pressed in the inequalitiesePi ti�i �Xi ti e�i if ti � 0,

Pi ti = 1 (8)

logx � x� 1 for all x > 0: (9)

Proof of Lemma 4: BecauseA extends to a continuous func-
tion on (R [�1)n � ∆, it suffices to prove that it satisfies
properties (1) and (2) of Definition 2. To prove property (1) note
that L(
 � q)� L(q) = 
 � p̃[f ]� log

X! q(!) e
�f(!) (10)� 
 � p̃[f ] + 1�X! q(!) e
�f(!) (11)� 
 � p̃[f ] + 1�X! q(!)Xi f(i j!) e
if#(!) (12)= A(
; q) : (13)

Equality (10) is a simple calculation. Inequality (11) follows
from inequality (9). Inequality (12) follows from the definition
of f# and Jensen’s inequality (8). Property (2) of Definition 2 is
straightforward to verify.

Proposition 3 follows immediately from the above lemma and
the extended Proposition 5. Indeed, it is easy to check that
(k)
defined in Proposition 3 achieves the maximum ofA(
; q(k)),
so that it satisfies the condition of Proposition 5 in AppendixB.

D. Monte Carlo methods

The Improved Iterative Scaling algorithm described in the
previous section is well-suited to numerical techniques since all
of the features take non-negative values. In each iterationof this
algorithm it is necessary to solve a polynomial equation foreach
featurefi. That is, we can express equation 5 in the formMXm=0

a(k)m;i � mi = 0

whereM is the largest value off#(!) =Pi fi(!) anda(k)m;i = 8<: P! q(k)(!) fi(!) �(m; f#(!)) m > 0�p̃[ fi ] m = 0
(14)

whereq(k) is the field for thek-th iteration and�i = e
(k)i . This
equation has no solution precisely whena(k)m;i = 0 for m > 0.
Otherwise, it can be efficiently solved using Newton’s method
since all of the coefficientsa(k)m;i,m > 0, are non-negative. When
Monte Carlo methods are to be used because the configuration
spaceΩ is large, the coefficientsa(k)m;i can be simultaneously
estimated for alli andm by generating a single set of samples
from the distributionq(k).

V. APPLICATION: WORD MORPHOLOGY

Word clustering algorithms are useful for many natural lan-
guage processing tasks. One such algorithm [6], called mutual
information clustering, is based upon the construction of simple
bigram language models using the maximum likelihood crite-
rion. The algorithm gives a hierarchical binary classification of
words that has been used for a variety of purposes, includingthe
construction of decision tree language and parsing models,and
sense disambiguation for machine translation [7].

A fundamental shortcoming of the mutual information word
clustering algorithm given in [6] is that it takes as fundamental
the word spellings themselves. This increases the severityof
the problem of small counts that is present in virtually every
statistical learning algorithm. For example, the word “Hamil-
tonianism” appears only once in the 365,893,263-word corpus
used to collect bigrams for the clustering experiments described
in [6]. Clearly this is insufficient evidence on which to basea
statistical clustering decision. The basic motivation behind the
feature-based approach is that by querying features of spellings,
a clustering algorithm could notice that such a word begins with
a capital letter, ends in “ism” or contains “ian,” and profit from
how these features are used for other words in similar contexts.

In this section we describe how we applied the random field
induction algorithm to discover morphological features ofwords,
and we present sample results. This application demonstrates
how our technique gradually sharpens the probability mass from
the enormous set of all possible configurations, in this caseASCII

strings, onto a set of configurations that is increasingly similar to
those in the training sample. It achieves this by introducing both
“positive” features which many of the training samples exhibit,
as well as “negative” features which do not appear in the sample,
or appear only rarely. A description of how the resulting features



8 IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 4, APRIL 1997

were used to improve mutual information clustering is givenin
[20], and is beyond the scope of the present paper; we refer the
reader to [6], [20] for a more detailed treatment of this topic.

In Section 5.1 we formulate the problem in terms of the no-
tation and results of Sections 2, 3, and 4. In Section 5.2 we
describe how the field induction algorithm is actually carried out
in this application. In Section 5.3 we explain the results ofthe
induction algorithm by presenting a series of examples.

A. Problem formulation

To discover features of spellings we take as configuration
space the set of all stringsΩ = A� in theASCII alphabetA. We
construct a probability distributionp(!) onΩ by first predicting
the lengthj! j, and then predicting the actual spelling; thus,p(!) = pl(j! j)ps(! j j! j) wherepl is the length distribution
andps is the spelling distribution. We take the length distribution
as given. We model the spelling distributionps(� j l) over strings
of lengthl as a random field. LetΩl be the configuration space
of all ASCII strings of lengthl. ThenjΩl j = O(102l) since each!i is anASCII character.

To reduce the number of parameters, we tie features, as de-
scribed in Section 2.1, so that a feature has the same weight
independent of where it appears in the string. Because of this it
is natural to view the graph underlyingΩl as a regularl-gon. The
group of automorphisms of this graph is the set of all rotations,
and the resulting field is homogeneous as defined in Section 2.

Not only is each fieldps homogeneous, but in addition, we tie
features across fields for different values ofl. Thus, the weight�f of a feature is independent ofl. To introduce a dependence
on the length, as well as on whether or not a feature applies at
the beginning or end of a string, we adopt the following artificial
construction. We take as the graph ofΩl an (l + 1)-gon rather
than anl-gon, and label a distinguished vertex by the length,
keeping this label held fixed.

To complete the description of the fields that are induced, we
need to specify the set of atomic features. The atomic features
that we allow fall into three types. The first type is the classof
features of the formfv;c(!) = n 1 if !v = c

0 otherwise.

wherec is anyASCII character, andv denotes an arbitrary char-
acter position in the string. The second type of atomic features
involve the special vertex<l> that carries the length of the string.
These are the featuresfv;l(!) = n

1 if !v = <l>
0 otherwisefv;<>(!) = n
1 if !v = <l> for somel
0 otherwise

The atomic featurefv;<> introduces a dependence on whether a
string of characters lies at the beginning or end of the string, and
the atomic featuresfv;l introduce a dependence on the length of
the string. To tie together the length dependence for long strings,
we also introduce an atomic featurefv;7+ for strings of length 7
or greater.

The final type of atomic feature asks whether a character lies
in one of four sets,[a-z] , [A-Z] , [0-9] , [@-&] , denoting

arbitrary lowercase letters, uppercase letters, digits, and punctu-
ation. For example, the atomic featurefv;[a-z] (!) = n 1 if !v 2 [a-z]

0 otherwise

tests whether or not a character is lowercase.
To illustratethe notation that we use, let us suppose that the the

following features are active for a field: “ends inism ,” “a string
of at least 7 characters beginning with a capital letter” and“con-
tainsian .” Then the probability of the word “Hamiltonianism”
would be given aspl(14) ps(Hamiltonianism j j! j = 14) =pl(14) 1Z14

e�7+<[A-Z] +�ian +�ism> :
Here the�’s are the parameters of the appropriate features, and
we use the characters< and> to denote the beginning and ending
of a string (more common regular expression notation would be
ˆ and$). The notation7+<[A-Z] thus means “a string of at
least 7 characters that begins with a capital letter,” corresponding
to the feature fu;7+ fv;[A-Z] ;
whereu and v are adjacentpositions in the string, recalling
from Definition 2.1 that we require the support of a feature tobe
a connected subgraph. Similarly,ism> means “ends in -ism”
and corresponds to the featurefu;i fv;s fw;mfx;<>

whereu; v; w; x are adjacent positions in the string andian
means “contains ian,” corresponding to the featurefu;i fv;a fw;n :
B. Description of the algorithm

We begin the random field induction algorithm with a model
that assigns uniformprobability to all strings. We then incremen-
tally add features to a random field model in order to minimize
the Kullback-Leibler divergence between the field and the un-
igram distribution of the vocabulary obtained from a training
corpus. The length distribution is taken according to the lengths
of words in the empirical distribution of the training data.The
improvement to the model made by a candidate feature is eval-
uated by the reduction in relative entropy, with respect to the
unigram distribution, that adding the new feature yields, keeping
the other parameters of the model fixed. Our learning algo-
rithm incrementally constructs a random field to describe those
features of spellings that are most informative.

At each stage in the induction algorithm, a set of candidate
features is constructed. Because the fields are homogeneous, the
set of candidate features can be viewed as follows. Each active
feature can be expressed in the formfs(!) = n1 substrings appears in!

0 otherwise

wheres is a string in the extended alphabetA of ASCII characters
together with the macros[a-z] , [A-Z] , [0-9] , [@-&] , and
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the length labels<l> and <>. If ffsgs2S is the set of active
features, (includings = �, the empty string) using this repre-
sentation, then the set of candidate features is precisely the setffa�s; fs�aga2A;s2S , wherea�s denotes concatenation of strings.
As required by Definition 2, each such candidate increases the
support of an active feature by a single adjacent vertex.

Since the model assigns probability to arbitrary word strings,
the partition functionZl can be computed exactly for only the
smallest string lengthsl. We therefore compute feature expec-
tations using a random sampling algorithm. Specifically, we
use the Gibbs sampler to generate 10,000 spellings of random
lengths. When computing the gainGq(g) of a candidate fea-
ture, we use these spellings to estimate the probabilitygk that
the candidate featureg occursk times in a spelling (see equa-
tion (4)–for example, the featurefv;[a-z] occurs two times in
the stringThe), and then solve for the corresponding� using
Newton’s method foreachcandidate feature. It should be em-
phasized that only a single set of random spellings needs to be
generated; the same set can be used to estimategk for each
candidateg. After adding the best candidate to the field, all of
the feature weights are readjusted using the Improved Iterative
Scaling algorithm. To carry out this algorithm, random spellings
are again generated, this time incorporating the new feature,
yielding Monte Carlo estimates of the coefficientsa(k)m;i. Recall

thata(k)m;i is the expected number of times that featurei appears
(under the substring representation for homogeneous features)
in a string for which there is a total ofm active features (see
equation 14)). Given estimates for these coefficients, Newton’s
method is again used to solve equation (14), to complete a single
iteration of the iterative scaling algorithm. After convergence of
the Kullback-Leibler divergence, the inductive step is complete,
and a new set of candidate features is considered.

C. Sample results

We began with a uniform field, that is, a field with no features
at all. For this field, allASCII strings of a given length are equally
likely, and the lengths are drawn from a fixed distribution. Here
is a sample of strings drawn from this distribution:

˜, mo, !ZP*@, m/TLL, ks;cm 3, *LQdR, D, aW f,
5&TL|4, tc, ?!@, sNeiO+, wHo8zBr", pQlV, m, H!&,
h9, #Os, :, Ky gFM?, LW, ",8 g, 89Lj, -P, A, !, H, ‘,
Yˆ:Du:, 1xCl, 1!’J#F*u., w=idHnM), ˜, 2, 2leW2,
I,bw˜tk1, 3", ], ], b, +JEmj6, +E*, nqjqe"-7f, |al2,
T, ˜(sOc1+2ADe, &, np9oH, i;, $6, q gO+[, xEv, #U,
O)[83COF, =|B|7%cR, Mqq, ?!mv, n=7G, $i9GAJ D, 5,
,=, +u6@I9:, +, =D, 2E#vz@3-, ˜nu;.+s, 3xJ, GDWeqL,
R,3R, !7v, FX,@y, 4p cY2hU, ˜

It comes as no surprise that the first feature the induction al-
gorithm chooses is[a-z] ; it simply observes that characters
should be lowercase. The maximum likelihood (maximum en-
tropy) weight for this feature is� = e� � 6:99. This means
that a string with a lowercase letter in some position is about 7
times more likely than the same string without a lowercase letter
in that position.

When we now draw strings from the new distribution (using
annealing to concentrate the distribution on the more probable
strings), we obtain spellings that are primarily made up of low-
ercase letters, but that certainly do not resemble English words:

m, r, xevo, ijjiir, b, to, jz, gsr, wq, vf, x, ga,
msmGh, pcp, d, oziVlal, hzagh, yzop, io, advzmxnv,
ijv bolft, x, emx, kayerf, mlj, rawzyb, jp, ag,
ctdnnnbg, wgdw, t, kguv, cy, spxcq, uzflbbf,
dxtkkn, cxwx, jpd, ztzh, lv, zhpkvnu, l ,̂ r, qee,
nynrx, atze4n, ik, se, w, lrh, hp+, yrqyka’h,
zcngotcnx, igcump, zjcjs, lqpWiqu, cefmfhc, o, lb,
fdcY, tzby, yopxmvk, by, fz,, t, govyccm,
ijyiduwfzo, 6xr, duh, ejv, pk, pjw, l, fl, w

In the following table we show the first 10 features that the
algorithm induced, together with their associated parameters.
Several things areworth noticing. Thesecond featurechosen was
[a-z][a-z] , which denotes adjacent lowercase characters.
The third feature added was the lettere, which is the most
common letter. The weight for this feature is� = e� = 3:47.
The next feature introduces the first dependence on the length of
the string:[a-z]>1 denotes the feature “a one character word
ending with a lowercase letter.” Notice that this feature has a
small weight of 0.04, corresponding to our intuition that such
words are uncommon. Similarly, the featuresz , q, j , andx
are uncommon, and thus receive small weights. The appearance
of the feature* is explained by the fact that the vocabulary for
our corpus is restricted to the most frequent 100,000 spellings,
and all other words receive the “unknown word” spelling*** ,
which is rather frequent. (The “end-of-sentence” marker, which
makes its appearance later, is given the spelling| .)

feature [a-z] [a-z][a-z] e [a-z]>1 t� 6.64 6.07 3.47 0.04 2.75
feature * z q j x� 17.25 0.02 0.03 0.02 0.06

Shown below are spellings obtained by Gibbs sampling from the
resulting collection of fields.

frk, et, egeit, edet, eutdmeeet, ppge, A, dtgd,
falawe, etci, eese, ye, epemtbn, tegoeed, ee, *mp,
temou, enrteunt, ore, erveelew, heyu, rht, *,
lkaeu, lutoee, tee, mmo, eobwtit, weethtw, 7, ee,
teet, gre, /, *, eeeteetue, hgtte, om, he, *,
stmenu, ec, ter, eedgtue, iu, ec, reett, *,
ivtcmeee, vt, eets, tidpt, lttv, *, etttvti, ecte,
X, see, *, pi, rlet, tt, *, eot, leef, ke, *, *,
tet, iwteeiwbeie, yeee, et, etf, *, ov

After inducing 100 features, the model finally begins to be
concentrated on spellings that resemble actual words to some
extent, particularly for short strings. At this point the algorithm
has discovered, for example, thatthe is a very common 3-letter
word, that many words end ined , and that long words often end
in ion . A sample of 10 of the first 100 features induced, with
their appropriate weights is shown in the table below.

. ,>1 3<the tion 4<th y> ed> ion>7+ ent 7+<c
22.36 31.30 11.05 5.89 4.78 5.35 4.20 4.83 5.17 5.37

thed, and, thed, toftion, |, ieention, cention, |,
ceetion, ant, is, seieeet, cinention, and, .,
tloned, uointe, feredten, iined, sonention,
inathed, other, the, id, and, ,, of, is, of, of, ,,
lcers, ,, ceeecion, ,, roferented, |, ioner, ,, |,
the, the, the, centention, ionent, asers, ,,
ctention, |, of, thed, of, uentie, of, and, ttentt,
in, rerey, and, |, sotth, cheent, is, and, of,
thed, rontion, that, seoftr
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A sample of the first 1000 features induced is shown in the
table below, together with randomly generated spellings. No-
tice, for example, that the feature[0-9][0-9] appears with a
surprisingly high weight of 9382.93. This is due to the fact that
if a string contains one digit, then it’s very likely to contain two
digits. But since digits are relatively rare in general, thefeature
[0-9] is assigned a small weight of 0.038. Also, according to
the model, a lowercase letter followed by an uppercase letter is
rare.

s> <re ght> 3<[A-Z] ly> al>7+ ing>
7.25 4.05 3.71 2.27 5.30 94.19 16.18

[a-z][A-Z] ’t> ed>7+ er>7+ ity ent>7+ [0-9][0-9]
0.003 138.56 12.58 8.11 4.34 6.12 9382.93

qu ex ae ment ies <wh ate
526.42 5.265 0.001 10.83 4.37 5.26 9.79

was, reaser, in, there, to, will, ,, was, by,
homes, thing, be, reloverated, ther, which,
conists, at, fores, anditing, with, Mr., proveral,
the, ,, ***, on’t, prolling, prothere, ,, mento,
at, yaou, 1, chestraing, for, have, to, intrally,
of, qut, ., best, compers, ***, cluseliment, uster,
of, is, deveral, this, thise, of, offect, inatever,
thifer, constranded, stater, vill, in, thase, in,
youse, menttering, and, ., of, in, verate, of, to

Finally, we visit the state of the model after inducing 1500
features to describe words. At this point the model is making
more refined judgements regarding what is to be considered a
word and what is not. The appearance of the features{}>
and \[@-&]{ , is explained by the fact that in preparing our
corpus, certain characters were assigned special “macro” strings.
For example, the punctuation characters$, _, %, and & are
represented in our corpus as\${} , \_{} , \%{} , and \&{} .
As the following sampled spellings demonstrate, the model has
at this point recognized the existence of macros, but has notyet
discerned their proper use.

7+<inte prov <der <wh 19 ons>7+ ugh ic>
4.23 5.08 0.03 2.05 2.59 4.49 5.84 7.76
sys ally 7+<con ide nal {}> qui \[@-&]{
4.78 6.10 5.25 4.39 2.91 120.56 18.18 913.22
iz IB <inc <im iong $ ive>7+ <un

10.73 10.85 4.91 5.01 0.001 16.49 2.83 9.08

the, you, to, by, conthing, the, ., not, have,
devened, been, of, |, F., ., in, have, -, ,,
intering, ***, ation, said, prouned, ***,
suparthere, in, mentter, prement, intever, you, .,
and, B., gover, producits, alase, not, conting,
comment, but, |, that, of, is, are, by, from, here,
incements, contive, ., evined, agents, and, be, ˙,
thent, distements, all, --, has, will, said,
resting, had, this, was, intevent, IBM, whree,
acalinate, herned, are, ***, O., |, 1980, but,
will, ***, is, ., to, becoment, ., with, recall,
has, |, nother, ments, was, the, to, of,
stounicallity, with, camanfined, in, this,
intations, it, conanament, out, they, you

While clearly the model still has much to learn, it has at thispoint
compiled a significant collection of morphological observations,
and has traveled a long way toward its goal of statistically char-
acterizing English spellings.

VI. EXTENSIONS ANDRELATIONS TO OTHER APPROACHES

In this section we briefly discuss some relations between our
incremental feature induction algorithm for random fields and
other statistical learning paradigms. We also present somepos-
sible extensions and improvements of our method.

A. Conditional exponential models

Almost all of what we have presented here carries over to
the more general setting of conditional exponential models, in-
cluding the Improved Iterative Scaling algorithm. For general
conditionaldistributionsp(y jx) there may be no underlyingran-
dom field, but with features defined as binary functionsf(x; y),
the same general approach is applicable. The feature induction
method for conditional exponential models is demonstratedfor
several problems in statistical machine translation in [3], where
it is presented in terms of the principle of maximum entropy.

B. Decision trees

Our feature induction paradigm also bears some resemblence
to various methods for growing classification and regression
trees. Like decision trees, our method builds a top-down classi-
fication that refines features. However, decision trees correspond
to constructing features that have disjoint support.

To explain, recall that a decision tree determines a partition�
of a context random variableX 2 X in order to predict the actual
class of the context, represented by a random variableY 2 Y.
Each leaf in the tree corresponds to a sequence of binary featuresfl; fl"; fl""; : : : ; froot
wheren" denotes the parent of noden, each featurefn is a ques-
tion which splitsX , and where eachfn is the negation:fn of the
question asked at its sibling node. The distribution assigned to
a leafl is simply the empirical distribution onY determined by
the training samples(x; y) 2 X � Y for which�(x) = l. Each
leaf l is characterized by the conjunction of these features, and
different leaves correspond to conjunctionswith disjointsupport.
In contrast, our feature induction algorithm generally results in
features that have overlapping support. The criterion of evaluat-
ing questions in terms of the amount by which they reduce the
conditional entropy ofY corresponds to our criterion of max-
imizing the reduction in Kullback-Leibler divergence,Gq(g),
over all candidate featuresg for a fieldq.

By modifying our induction algorithm in the following way,
we obtain an algorithm closely related to standard methods for
growing binary decision trees. Instead of considering the 1-
parameter family of fieldsq�;g to determine the best candidateg = a^f , we consider the 2-parameter family of fields given byq�;�0;f (y jx) = 1Z�;�0;f (x)e�a(x;y)^f(x;y)+�0(:a)(x;y)^f(x;y) :
Since the featuresa^ f and(:a) ^ f have disjoint support, the
improvement obtained by adding both of them is given byGq(a^f) + Gq((:a) ^ f). In general, the resulting distribution is not
absolutely continuous with respect to the empirical distribution.
If the random variableY can take onM valuesy1; : : : yM , then
thestandard decision treealgorithm is obtained if at then-th stage
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we add the 2M (disjoint) featuresfn(x) ^ �(yi; y), :fn(x) ^�(yi; y), for i = 1; : : : ;M . Maximum likelihood training of the
parameters of these features recovers the empirical distribution
of the data at noden.

C. Extensions

As mentioned in Section 1, our approach differs from the
most common applications of statistical techniques in computer
vision, since a typical application of our method involves the
estimation of thousands of free parameters. Yet the induction
technique may not scale well to large 2-dimensional image prob-
lems. One potential difficulty is that the degree of the polyno-
mials in the Improved Iterative Scaling algorithm could be quite
large, and it could be difficult to obtain reliable estimatesof
the coefficients since Monte Carlo sampling might not exhibit
sufficiently many instances of the desired features. The extent
to which this is a significant problem is primarily an empirical
issue, dependent on the particular domain to which the method
is applied.

The random field induction method presented in this paper
is not definitive; there are many possible variations on the ba-
sic theme, which is to incrementally construct an increasingly
detailed exponential model to approximate the reference distri-
butionp̃. Because the basic technique is based on a greedy algo-
rithm, there are of course many ways for improving the search
for a good set of features. The algorithm presented in Section 2
is in some respects the most simple possible within the general
framework. But it is also computationally intensive. A natu-
ral modification would be to add several of the top candidates
at each stage. While this should increase the overall speed of
the induction algorithm, it would also potentially result in more
redundancy among the features, since the top candidates could
be correlated. Another modification of the algorithm would be
to add only the best candidate at each step, but then to carry out
parameter estimation only after several new features had been
added to the field. It would also be natural to establish a more
Bayesian framework in which a prior distribution on features
and parameters is incorporated. This could enable a principled
approach for deciding when the feature induction is complete.
While there is a natural class of conjugate priors for the class of
exponential models that we use [14], the problem of incorporat-
ing prior knowledge about the set of candiate features is more
challenging.

APPENDIX

I. DUALITY

In this Appendix we prove Proposition 4 restated here.
Proposition 4: Suppose that ˜p � q0. Then there exists a

uniqueq? 2 ∆ satisfying

(1) q? 2 P \ Q̄
(2) D(p k q) = D(p k q?) + D(q? k q) for any p 2 P andq 2 Q̄
(3) q? = arg minq2Q̄ D(p̃ k q)
(4) q? = arg minp2P D(p k q0).

Moreover, any of these four properties determinesq? uniquely.

Our proof of the proposition will use a few lemmas. The first
two lemmas we state without proof.

Lemma 1:
(1) D(p k q) is a non-negative, extended real-valued func-
tion on∆� ∆.

(2) D(p k q) = 0 if and only ifp = q.
(3) D(p k q) is strictly convex inp andq separately.
(4) D(p k q) isC1 in q.

Lemma 2:
(1) The map(
; p) 7! 
 �p is smooth in(
; p) 2 Rn � ∆.
(2) The derivative ofD(p k� � q) with respect to� isddt j t=0 D(p k (t�) � q) = � � (p[f ]� q[f ]) :

Lemma 3: If p̃� q0 thenP \ Q̄ is nonempty.

Proof: Defineq? by property (3) of Proposition 4; that is,q? = arg minq2Q̄D(p̃ k q). To see that this makes sense, note
that since ˜p � q0, D(p̃ k q) is not identically1 on Q̄. Also,D(p k q) is continuous and strictly convex as a function ofq.
Thus, sinceQ̄ is closed,D(p̃ k q) attains its minimum at a unique
point q? 2 Q̄. We will show thatq? is also inP. SinceQ̄ is
closed under the action ofRn, � � q? is in Q̄ for any �. Thus
by the definition ofq?, � = 0 is a minimum of the function� ! D(p̃ k� �q?). Taking derivatives with respect to� and
using Lemma A.2 we concludeq?[f ] = p̃[f ]. Thusq? 2 P.

Lemma 4: If q? 2 P \ Q̄ then for anyp 2 P andq 2 Q̄D(p k q) = D(p k q?) +D(q? k q) :
Proof: A straightforward calculation shows thatD(p1 k q1) �D(p1 k q2) �D(p2 k q1) +D(p2 k q2)= � � (p1[f ]� p2[f ])

for any p1; p2; q1; q2 2 ∆ with q2 = � � q1. It follows from this
identity and the continuity ofD thatD(p1 k q1)�D(p1 k q2)�D(p2 k q1) +D(p2 k q2) = 0

if p1; p2 2 P and q1; q2 2 Q̄. The lemma follows by takingp1 = q1 = q?.
Proof of Proposition 4: Chooseq? to be any point inP \ Q̄.

Such aq? exists by Lemma A.3. It satisfies property (1) by
definition, and it satisfies property (2) by Lemma A.4. As a
consequence of property (2), it also satisfies properties (3) and
(4). To check property (3), for instance, note that ifq is any point
in Q̄, thenD(p̃ k q) = D(p̃ k q?) +D(q? k q) � D(p̃ k q?).

It remains to prove that each of the four properties (1)–(4)
determinesq? uniquely. In other words, we need to show that
if m is any point in∆ satisfying any of the four properties
(1)–(4), thenm = q?. Suppose thatm satisfies property (1).
Then by property (2) forq? with p = q = m, D(m km) =D(m k q?) + D(q? km). SinceD(m km) = 0, it follows thatD(m; q?) = 0 som = q?. If m satisfies property (2), then
the same argument withq? andm reversed again proves thatm = q?. Suppose thatm satisfies property (3). ThenD(p̃ k q?) � D(p̃ km) = D(p̃ k q?) +D(q? km)
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where the second equality follows from property (2) forq?. ThusD(q? km) � 0 som = q?. If m satisfies property (4), then a
similar proof shows that once againm = q?.

II. DEALING WITH 1
In this Appendix we prove an extension of Proposition 5 that

allows the components of
 to equal�1. For this extension,
we assume that all of the components of the feature functionf
are non-negative:fi(!) � 0 for all i and all!. This can be
assumed with no loss of generality since we can replacefi byfi �min! fi(!) if necessary.

LetR [�1 denote the partially extended real numbers with
the usual topology. The operations of addition and exponentia-
tion extend continuously toR [�1. Let S be the open subset
of (R [�1)n � ∆ defined byS = f (
; q) : q(!)e
�f(!) > 0 for some! g
Observe thatRn � ∆ is a dense subset ofS. The map(
; q) 7!
 �p, which up to this point we defined only for finite
, extends
uniquely to a continuous map from all ofS to ∆. (The condition
on (
; q) 2 S ensures that the normalization in the definition of
 �p is well defined, even if
 is not finite.)

Definition 3: We call a functionA : S ! R [�1 an ex-
tended auxiliary functionfor L if when restricted toRn� ∆ it is
an ordinary auxiliary function in the sense of Definition 2, and
if, in addition, it satisfies property (1) of Definition 2 for any(q; 
) 2 S, even if
 is not finite.

Note that if an ordinary auxiliary function extends to a contin-
uous function onS, then the extension is an extended auxiliary
function.

We have the following extension of Proposition 5:
Proposition 5: Suppose the feature functionf satisfies the

non-negativity condition 7 and supposeA is an extended auxil-
iary function forL. Then the conclusion of Proposition5 contin-
ues to hold if the condition on
(k) is replaced by:(
(k); q(k)) 2S andA(
(k); q(k)) � A(
; q(k)) for any(
; q(k)) 2 S.

Proof: Lemma 1 is valid under the altered condition on
(k) sinceA(
; q) satisfies property (1) of Definition 2 for all(
; q) 2 S. As a consequence, Lemma 2 also is valid, and the
proof of Proposition 5 goes through without change.
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