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Abstract—We present a technique for constructing random fields from a
set of training samples. The learning paradigm builds incrasingly complex
fields by allowing potential functions, or features, that ae supported by
increasingly large subgraphs. Each feature has a weight thas trained
by minimizing the Kullback-Leibler divergence between themodel and the
empirical distribution of the training data. A greedy algorithm determines
how features are incrementally added to the field and an itertive scaling
algorithm is used to estimate the optimal values of the weigh.

The random field models and techniques introduced in this paer differ
from those common to much of the computer vision literature n that the
underlying random fields are non-Markovian and have a large mmber of
parametersthat must be estimated. Relations to other leating approaches,
including decision trees, are given. As a demonstration ohe method, we
describe its application to the problem of automatic word cassification in
natural language processing.

Keywords—Random field, Kullback-Leibler divergence, iterative scd
ing, maximum entropy, EM algorithm, statistical learning, clustering, word
morphology, natural language processing.

[. INTRODUCTION
N this paper we present a method for incrementally constru

ing random fields. Our method builds increasingly complex

fields to approximate the empirical distribution of a setrafrt-
ing examples by allowing potential functions, or featurbsit
are supported by increasingly large subgraphs. Each fe&ur

assigned a weight, and the weights are trained to minimiee th
Kullback-Leibler divergence between the field and the eimpirS

cal distribution of the training data. Features are incretaidy
added to the field using a top-down greedy algorithm, with t
intent of capturing the salient properties of the empirsai-
ple while allowing generalization to new configurations. eTh
general problem that the methods we propose address isfth
discovering the structure inherent in a set of sample patdteks
one of the fundamental aims of statistical inference anthlea

ing, this problem is central to a wide range of tasks inclgdin

classification, compression, and prediction.

To illustrate the nature of our approach, suppose we wi
to automatically characterize spellings of words accaydima
statistical model; this is the application we develop int®ec

5. A field with no features is simply a uniform distribution on youse, menttering, and,

AScCII strings (where we take the distribution of strileggthsas
given). The most conspicuous feature of English spelliatjsat
they are most commonly comprised of lower-
induction algorithm makes this observation by first conging
the field

1
p(w) _ Ee Zl >‘[a—z] X[a—z](wl)

wherey is an indicator function and the weighg,_; associated
with the feature that a character is lower-case is chosereto

case letters. Th

the same string without a lowercase letter in that positibime
following collection of strings was generated from the téag
field by Gibbs sampling. (As for all of the examples that wél b
shown, this sample was generated with annealing, to coratent
the distribution on the more probable strings.)

msmGh, pcp, d, oziVlal, hzagh, yzop, io, advzmxnv,
ijv_bolft, x, emx, kayerf, mlj, rawzyb, jp, ag,
ctdnnnbg, wgdw, t, kguv, cy, spxcq, uzflbbf,

dxtkkn, cxwx, jpd, ztzh, Iv, zhpkvnu, I, r, gee,
nynrx, atze4n, ik, se, w, Irh, hp+, yrgyka'h,
zcngotenx, igcump, zjcjs, lgpwWiqu, cefmfhe, o, Ib,
fdeY, tzby, yopxmvk, by, fz,, t, govyccm,

ijjyiduwfzo, 6xr, duh, ejv, pk, pjw, I, fl, w

The second most important feature, according to the alyorits
that two adjacent lower-case characters are extremely ammm
The second-order field now becomes

Ct () = iezwjA[H—Z][H—Z]X[H—Z][H—Z](sz)+zlA[a—z]X[a_z](wz)
A4

where the weighh,_ ;s associated with adjacent lower-case
letters is approximately.&0.

The first 1000 features that the algorithm induces incluée th
tringss>, <re , ly> , anding> , where the charactex” de-
notes beginning-of-string and the charactet denotes end-of-

r%ring. In addition, the first 1000 features include the tegex-

pressiong0-9][0-9] (with weight 915) and[a-z][A-Z]
(with weight—5.81) in addition to the first two featurga-z]
Q)d[a-z][a-z] . A set of strings obtained by Gibbs sampling
rom the resulting field is shown here:

was, reaser, in, there, to, will, ,, was, by,

homes, thing, be, reloverated, ther, which,

conists, at, fores, anditing, with, Mr., proveral,

the, ,, *** on’t, prolling, prothere, ,, mento,

sht, yaou, 1, chestraing, for, have, to, intrally,

of, qut, ., best, compers, *** cluseliment, uster,

of, is, deveral, this, thise, of, offect, inatever,

thifer, constranded, stater, vill, in, thase, in,

., of, in, verate, of, to

These examples are discussed in detail in Section 5.

eThe induction algorithm that we present has two pafés-
ture selectiorandparameter estimatianThe greediness of the
algorithm arises in feature selection. In this step eactufean

a pool of candidate features is evaluated by estimatingettheo-
tion in the Kullback-Leibler divergence that would resutbrh
adding the feature to the field. This reduction is approxadat
gs a function of a single parameter, and the largest valueisf t

approximately 1944. This means that a string with a Iowercas_@nCtion is called th@ain of the candidate. This approximation

letter in some position is about=Z ¢1-944times more likely than
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is one of the key elements of our approach, making it practica
to evaluate a large number of candidate features at each atag
the induction algorithm. The candidate with the largeshdsi
added to the field. In the parameter estimation step, therpara
ters of the field are estimated using an iterative scalingréttgm.
The algorithm we use is a new statistical estimation alpanit
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that we calllmproved Iterative Scalinglt is an improvement is to incrementally construct an increasingly detaileddfitd
of the Generalized Iterative Scaling algorithm of Darroctd a approximate areference distributipnTypically the distribution
Ratcliff [12] in that it does not require that the featuresnsio p is obtained as the empirical distribution of a set of tragnin
a constant. The improved algorithm is easier to implemesnt thexamples. After establishing our notation and defining tmnf
the Darroch and Ratcliff algorithm, and can lead to an ireeeaof the random field models we consider, we present the trginin
in the rate of convergence by increasing the size of the ategt problem as a statement of two equivalent optimization Enisl.
toward the maximum at each iteration. In Section 4 we giveVle then discuss the notions of a candidate feature and the gai
simple, self-contained proof of the convergence of the oupd of a candidate. Finally, we give a statement of the induction
algorithm that does not make use of the Kuhn-Tucker theorergorithm.
or other machinery of constrained optimization. Moreoweer; ]
proof does notrely on the convergence of alternating lgmopn  A- Form of the random field models
as in Csiszar's proof [10] of the Darroch-Ratcliff proceeu Let G = (E, V) be afinite graph with vertex sét and edge

Both the feature selection step and the parameter estimatiet 7, and letA be a finite alphabet. Theonfiguration space
step require the solution of certain algebraic equationssgh Q is the set of all labelings of the vertices in by letters in
coefficients are determined as expectation values witheatspA4. If ¢ C V andw € Q is a configuration, thew denotes
to the field. In many applications these expectations cabeotthe configuration restricted t6'. A random fieldon G is a
computed exactly because they involve a sum over an expongfobability distribution onQ. The set of all random fields is
tially large number of configurations. This is true of the Bpp nothing more than the simplex of all probability distributions
cation that we develop in Section 5. In such cases itis plassibn Q. If f : Q — R then thesupportof £, written supgf),
to approximate the equations that must be solved using Moigehe smallest vertex subsét C V having the property that
Carlo techniques to compute expectations of random vasablwhenevew,w’ € Q withwe = w/- thenf(w) = f(w').
The application that we present uses Gibbs sampling to ctempu We consider random fields that are given by Gibbs distribu-
expectations, and the resulting equations are then solsied u tions of the form
Newton’s method. 1

Our method can be viewed in terms of thenciple of max- plw) = 7€ 2 Velw)
imum entropy{19], which instructs us to assume an exponen-
tial form for our distributions, with the parameters viewas forw € Q, whereV : Q — R are functions with suppyc) =
Lagrange multipliers. The techniques that we develop is thi'. The field isMarkovif wheneverl~ # 0 thenC' is aclique,
paper apply to exponential models in general. We formulabe totally connected subset &f. This property is expressed in
our approach in terms of random fields because this provideteams of conditional probabilities as
convenient framework within which to work, and because our
main application is naturally cast in these terms. pwu |wy, v # u) = plwy |wy, (u,v) € E)

Our method differs from the most common applications %hereu andv are arbitrary vertices. We assume that eécts
statistical techniques in computer vision and natural legg a path-connected subsetisfand that
processing. In contrast to many applications in computsomw,

which involve only a few free parameters, the typical applic Ve(w) = Z ACFE (W) = AC - O (w)
tion of our method involves the estimation of thousands eé fr
parameters. In addition, our methods apply to general expon
tial models and random fields—there is no underlying MarkovhereX{ € R andff (w) € {0, 1}. We say that the valueg’
assumption made. In contrast to the statistical techniqoes ~are theparametersf the field and that the function’ are the
mon to natural language processing, in typical applicatioh featuresof the field. In the following, it will often be convenient
our method there is no probabilistic finite-state or pushwo to use notation that disregards the dependence of the ésatur

1<i<nc

automaton on which the statistical model is built. and parameters on a vertex subSeexpressing the field in the
In the following section we describe the form of the randoriorm 1 1
field models considered in this paper and the general legrnin p(w) = 7€ Do diw) Z € Afw)

algorithm. In Section 3 we discuss the feature selectiom ste

the algorithm and briefly address cases when the equatieuas neor every random fieldZ, V, {\;, f;}) of the above form, there
to be estimated using Monte Carlo methods. In Section 4 vgea field (', V, {);, fi}) that is Markovian, obtained by com-
present the Improved lIterative Scaling algorithm for estimg  pleting the edge set’ to ensure that for each the subgraph
the parameters, and prove the convergence of this algarittginerated by the vertex subsét= supf f;) is totally con-
In Section 5 we present the application of inducing featafes nected.

spellings, and finally in Section 6 we discuss therelatiawben ~ |f we impose the constrain; = A; on two parameters; and
our methods and other learning approaches, as well as possiy, then we say that these parameterstae If A; and; are
extensions of our method. tied, then we can write

Il. THE LEARNING PARADIGM Aifilw) + A fi(w) = Ag(w)

In this section we present the basic algorithm for buildinghereg = f; + f; is anon-binaryfeature. In general, we can
up a random field from elementary features. The basic ideallapse any number of tied parameters onto a single paeamet
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associated with a non-binary feature. Having tied pararaéte all distributions that agree with ds to the expected value of the
often natural for a particular problem, but the presenceasf-n feature functiory:

binary features generally makes the estimation of parasete

more difficult. P(f,p)={ped: plfl=pl/1}.

An automorphisna- of a graph is a permutation of the vertice
thattakes edgesto edggs, v) € Fifandonlyif(cu, ov) € E.
A random field(E,V, {X;, f;}) is said to havehomogeneous
featuresf for each fe_zaturqi and automorphism of the graph O(f,q0) = {(A\- f)oqo: AER" }.

G = (E,V), there is a featurg; such thatf;(ocw) = fi(w) _

forw € Q. If in addition A\; = J;, then the field is said to We letQ(f, o) denote the closure @ f, ¢o) in A (with respect
be homogeneous Roughly speaking, a homogeneous featute the topology it inherits as a subset of Euclidean space).
contributes the same weight to the distribution no matteenh  There are two natural criteria for choosing an elemgritom
in the graph it appears. Homogeneous features arise rigtural these sets:

Srhe second is the s€l(f, qo) of generalized Gibbs distributions
based onyg with feature functiory:

the application of Section 5. e Maximum Likelihood Gibbs DistributionChooseg, to
The methods that we describe in this paper apply to expo- be adistributionirQ( f, go) with maximum likelihood with

nential models in general; that is, it is not essential thate is respect tgp?’

an underlying graph structure. However, it will be convenie w _ .

to express our approach in terms of the random field models ¢~ = argmin D(§ | q)

described above. q€Q(/,90)

¢ Maximum Entropy Constrained DistributioilChoosey,
to be a distribution inP(f, p) that has maximum entropy
Suppose that we are given an initial mogigk A, a reference relative toqo:
distributiony, and a set of featureg = (fo, f1,...,fn). In _
practice, it is often the case thais'the empirical distribution of gy = arg min D(p Il 90)
a set of training samples, w@ .. .w™) and is thus given PEP(/F)
by Although these criteria are different, they determine thmes
Plw) = cw) distribution: ¢, = ¢/~ = ¢}*. Moreover, this distribution is
N the unique element of the intersectiB(f, p) N Q(f, ¢0), as we
wherec(w) = > cicn 9w, w(i)) is the number of times that discuss in detail in Section 4.1 and Appendix A.
configuration. appears among the training samples. Wheny'is the empirical distribution of a set of training ex-
We wish to construct a probability distributian € A that ampless®, w® W) minimizing D(§ || p) is equivalent to
accounts for these data, in the sense that it approximebes ~maximizing the probability that the fiejdassigns to the training
does not deviate too far frogy. We measure distance betweesata, given by
probability distributiong andg in A using the Kullback-Leibler

B. Two optimization problems

divergence [T pw®) = [ plw) s o« e¥P@EIP)
1<i<N weQ
D(pllq) = Z p(w) log % . (1)  with sufficiently many parameters it is a simple matter to-con

wen struct a field for whichD(j || p) is arbitrarily small. This is the

classic problem obver training The idea behind the method

proposed in this paper is to incrementally construct a fileht t

plg] = Z g(w) p(w) _captures t_he salient properties;oby incorpprating an increas-

ingly detailed collection of features, allowing generatinn to
new configurations; the resulting distributions acgabsolutely

for the expectation of a function : Q — R. with respect to continuous with respect to the empirical distribution af thain-

the probability distributiop. For a functions : O — R anda jng sample. The maximum entropy framework for parameter

Throughout this paper we use the notation

wEQ

generalized Gibbs distribution given by sic problem remains, and is out of the scope of the presertpap
1w We now present the random field induction paradigm.
qn(w) = (hog)(w) = e gw) .
Zq(h) C. Inducing field interactions

Note thatZ, (%) is notthe usual partition function. Itisanormal- We begin by supposing that we have a settoimicfeatures
ization constant determined by the requirement {thatq)(w) _
sums to 1 ovew, and can be written as an expectation: Faromic C {91 Q—{0,1}, supfly) = vy € V}

Zy(h) = qle h. each of which is supported by a single vertex. We use atomic
features to incrementally build up more complicated fesgur
There are two natural sets of probability distributionsettet The following definition specifies how we shall allow a field to
mined by the data, g, and f. The first is the seP(f,p) of be incrementally constructed, mduced
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Definition 1: Suppose that the fielg is given byg = (A - [ll. FEATURE SELECTION
f)ogo. The features; are called theactive features ofy. A
featurey is acandidatdor ¢ if eitherg € F.;omic, Orif g is of the
form g(w) = a(w)fi(w) for an atomic feature and an active

The feature selection step of our induction algorithm issbas
upon an approximation. We approximate the improvement due
_ X to adding a single candidate feature, measured by the fieduct
feature ; W'Fh suprly) © supitf) € E. The set of candidate in Kullback-Leibler divergence, by adjusting only the wig
features of is denote¢(q). ) .. of the candidate and keeping all of the other parameterseof th
In other words, c_and|d_at_e features are obtamgo_l by comginige|q fixed. In general this is only an estimate, since it mayl we
atomic features with eX|st|ng features. The condition p&uts po ihat adding a feature will require significant adjustraent
ensures that each feature is supported by a path-connetisets o of e parameters in the new model. From a computational
of G. perspective, approximating the improvement in this way can

If g € C(q) is a candidate feature qf then we call the 1- gnapje the simultaneous evaluation of thousands of caredida
parameter family of random fields,; = («g) o ¢ theinduction  teatres, and makes the algorithm practical. In this seaiie

of ¢ by g. We also define present explain the feature selection step in detail.
- - Proposition 1: Let Gy («, ¢), defined in (2), be the approxi-
Gola,g) = D(B1lg) = D(5l gag) - @) mate improvement obtained by adding featyngith parameter

« to the fieldg. Then ifg is not constant(z,(«, ¢) is strictly
N-convex ina and attains its maximum at the unique point ~
satisfying

We think of G4 («, ¢) as the improvement that featugebrings
to the model when it has weight As we show in the following
section, Gy («, g) is N-convex in«. (We use the suggestive o] = 4a0l0] 3)
notationn-convex andJ-convex in place of the less mnemonic g

concave and convex terminology.) We defifig(¢) to be the  Proof: Using the definition (1) of the Kullback-Leibler di-
greatest improvement that featurean give to the model while vergence we can write

keeping all of the other features’ parameters fixed:
Zy M ag) e*9q(w)

Gyla,g9) = Zﬁ(w)log 4

Gqlg) = Sngq(a,g) . veo q(w)
_ ~ _ ag
We refer toGG,(g¢) as thegainof the candidatg. N %p(w) (ag(w) ~logy [¢*])
D. Incremental construction of random fields = aj[g]—logg [e*] .
We can now describe our algorithm for incrementally corfFhus
structing fields. 5 [gc%]
~ qige
5-Gola,g) = plg]—
Field Induction Algorithm. 5o Cal:9) 2 q[e9]
Initial Data: = plg] — qagla]-
A re.ference distributiofi and an initial modeto. Moreover.
Output:
A field ¢, with active featuregy, ..., fx such thaty, = 92 glge®?  q[g2e]
argmin D(ﬁ”‘]) WGq(Oz,g) = agl2 ag
9€Q(f,90) @ ale*] ale*’]
: ¢ 2
Algorithm: = —qagl(g — qagld])’]

(0) Setg® = qo.

(lé For each candidate € C(¢'™) compute the gain Hence,%Gq(a,g) < 0, so that7,(a, g) is N-convex ina. If

(Z)qtégg;- _ argmax G, (g) be the feature with the ! is not constant, theg%(}q(a,g),which is minus the variance
" g€C(g(m) 4 of g with respect toy., is strictly negative, so that',(«, g) is

largest gain. strictly convex. 0
(3) Computeq, = argmin D(pllq), where f = Wheny is binary-valued, its gain can be expressed in a par-
9€Q(f,90) ticularly nice form. This is stated in the following propten,
(fo, f1,- -+, fn)- whose proof is a simple calculation.
(4) Sety"+tV) = ¢, andn + n + 1, and go to step (1). Proposition 2: Suppose that the candidatés binary-valued.

_ . . . ThenGy, (e, ¢) is maximized at
This induction algorithm has two partfeature selectiomand

parameter estimatiar-eature selection is carried out in steps (1) ) Plel(1—qlg])
and (2), where the feature yielding the largest gain is ipoated a = log (m)
into the model. Parameter estimation is carried out in sBp (

where the parameters are adjusted to best represent thenede and at this value,

distribution. These two computations are discussed in more

detail in the following two sections. Gq(9) = G4(a,9) = D(B, || By)
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whereB, andB, are Bernoulli random variables given by particular, we writey o ¢ instead of(y - f) . ¢ forv € R™. We
assume thap(&) = 0 wheneverg(w) = 0. This condition is
B,(1) = plg] B,(0) =1-p[g] commonly writterp™< ¢o, and itis equivalentt®(p|| ¢o) < oo.
By(1) = q[g] By(0)=1—4¢[g]. A description of the algorithm requires an additional piete
For features that are not binary-valued, but instead takesga notation. Let

in the non-negative integers, the parametehat solves (3) and _ . '

thus maximizess,(«, g) cannot, in general, be determined in fulw) = ;fl (@)

closed form. This is the case for tied binary features, and it

applies to the application we describe in Section 5. Forethel the features are binary, thefi(w) is the total number of

cases it is convenient to rewrite (3) slightly. Let= ¢ so that features that are “on” for the configuratian

0/0a = pO/Jp. Let
/ #0108 Improved Iterative Scaling.

gk =Y a(w)d(k, g(w)) Initial Data:
w A reference distributiorp and an initial modekg, with
P < qo, and non-negative featurgs, f1, ..., fn-

be the total probability assigned to the event that the featu

Output:
takes the valué. Then (3) becomes The distributiony, = argmin D(7 | q)
7€Q(f,90)
d - Y reok gk Algorithm:
B+ Gyllogs,g) = plgl - =F———=0 (4 g :
ap a(l0g 5, g) [9] Eiv:ogkﬁk @) (0) Setq® = ¢.
) ) ) ) _ (1) Foreachi Iet%(k) € [—0, o) be the unique solution of
This equation lends itself well to numerical solution. Theng
i i () ~
le:ral shape of the curve — 30/08 G4(logg, g) is shown in q(k)[fi eI = LS (5)
igure 1.
(2) Setg*+V) = ~F) o ¢5) andk « k + 1.
(3) If ¢'*) has converged, set = ¢'*) and terminate. Oth-
erwise go to step (1).
In other words, this algorithm constructs a distributipn =
liM—s 00 Ym o o Wherey,, = S0t v and%(k) is determined
as the solution to the equation
() ~
Fig. 1. Derivative of the gain Z (](k)(a)) filw)e™: folw) — ZP(W) filw).

The limiting value ofgdG,(log 3, ¢)/05 asf — oo is plg] — . e : A . .
N The solution to equation (4) can be found using Newtonvghen used in the-th iteration of the field induction algorithm,

method, which in practice converges rapidly for such fumtsi where a candidate featuye= /,, is added tothe field = ¢,, we

When the configuration space is large, so that the coeffi- choose the initial distributiog t0 bego = gz, Wherea'is the

. : : 2g)arameter that maximizes the gairyofin practice, this provides
cientsg; cannot be calculated by summing over all configura- . . ; L . .
z%ngood starting point from which to begin iterative scalirg.

%ac‘t, we can view this distribution as the result of applyorge

It is important to emphasize that tisameset of random con- iteration of an Iterative Proportional Fitting Procedure, [H]

figurations can be used to estimate the coefficigptior each . . . 2T !
. ) . . ta projectg., onto the linear family of distributions witlg-
candidatey simultaneously. Rather than discuss the details of " . ;
. : marginals constrained tg4].
Monte Carlo techniques for this problem we refer to the exten . Lo L
Our main result in this section is

sive literature on thi_s topic. We have obt_ained good resislitsg Proposition 3: Suppose ¥ is the sequence i determined
the standard technique of Gibbs sampling [17] for the pmubleby the Improved Iterative Scaling algorithm. Ther|| ¢*))

we describe in Section 5. . ~
decreases monotonically (7 || ¢ ) andg(*) converges tq, =

IV. PARAMETER ESTIMATION argmin D( || ¢) = argmin D(p|| go).
qEQ peP

In this section we present an algorithm for selecting the pa-In the remainder of this section we present a self-contained
rameters associated with the features of a random field. Tfmof of the convergence of the algorithm. The key idea of
algorithm is a generalization of the Generalized IteraBeal- the proof is to express the incremental step of the algorithm
ing algorithm of Darroch and Ratcliff [12]. It reduces to theéerms of an auxiliary function which bounds from below the
Darroch-Ratcliff algorithm when the features sum to a canst log-likelihood objective function. This technique is tharsdard
however, the new algorithm does not make this restriction. means of analyzing the EM algorithm [13], but it has not previ

Throughout this section we hold the set of featufes= ously been applied to iterative scaling. Our analysis ohifee
(fo, f1,. .., [n), the initial modelgo and the reference distri- scaling is different and simpler than previous treatmenits.
bution p fixed, and we simplify the notation accordingly. Inparticular, in contrast to Csiszar's proof of the Darrdrhtcliff
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procedure [10], our proof does not rely upon the convergefice We can use an auxiliary functios to construct an iterative

alternating I-projection [9]. algorithm for maximizingZ. We start withq®*) = ¢, and
We begin by formulating the basic duality theorem whichecursively defing*t% by

states that the maximum likelihood problem for a Gibbs dis- (k1) B) k) %) %)

tribution and the maximum entropy problem subject to linear ¢ =7""eg with 4" = argmaxA(y, ¢**/) .

constraints have the same solution. We then turn to the task o K

computing this solution. Afterintroducingauxiliary fulnensin It is clear from property (1) of the definition that each stdp o

a general setting, we apply this method to prove convergehcethis procedure increasds The following proposition implies

the Improved Iterative Scaling algorithm. We finish the Eect that in fact the sequengé®) will reach the maximum of..

by discussing Monte Carlo methods for estimating the equati  Proposition 5: Suppose*) is any sequence it with

when the size of the configuration space prevents the ekplici

calculation of feature expectations. g% =g0 and ¥tV =k 4H)
A. Duality wherey*) ¢ R” satisfies

The duality between the maximum likelihood and maximum AR g®)) = supA(y, ¢y . (6)
entropy problems is expressed in the following Proposition. gl

Proposition 4: Suppose thap < ¢o. Then there exists a

: i Then L(¢®)) increases monotonically to mak(q) and ¢(*)
uniqueg,. € Asatlifylng (¢") y o (9) q
(1) ePnNQ converges tq, = argmax L(q).
(2) D(pllg) = D(pllg:) + D(ax |l ¢) for anyp € P and _ 9€Q _
g€ 0 Equation (6) assumes that the supremum_ sty ¢*)) is

(3) ¢« = argmin D(|| q) achieved at finitey. In Appendix B, under slightly stronger
q€Q assumptions, we present an extension that allows some eompo

(4) ¢, = argmin D(p|| q0). nents ofy(*) to take the value-c.
pEP

) ) ) To use the proposition to construct a practical algorithm we
Moreover, any of these four properties determigesniquely. st determine an auxiliary functiod (v, ¢) for which ()

This result is well known, although perhaps not quite in thigytisfying the required condition can be determined efiitye
packaging. In the language of constrained optimizatioaxit |, section 4.3 we present a choice of auxiliary function vahic
presses the fact that the maximum likelihood problem foldSib ia|ds the Improved Iterative Scaling updates.
distributions is the convex dual to the maximum entropy prog To prove Proposition 5 we first prove three lemmas.

lem for linear constraints. Property (2) is called thghagorean | emma 1:1f m € Ais a cluster pointof(¥), thenA(y, m) <
propertysince it resembles the Pythagorean theorem if we imagzqy a1 ~ € R T

inethatD(p || ¢) is the square of Euclidean distance §ndy., q) _
are the vertices of a right triangle. Proof: Let ¢'*!) be a sub-sequence converging#o Then

We include a proof of this result in Appendix A to make thigor anyy
paper self-contained and also to carefully address thenteah (k1)
issues arising from the fact thétis not closed. The proposition (v, ™)
would not be true if we replaced with @; in fact, P N @

might be empty. Our proof is elementary and does not raé;ﬁ o . ne)
on the Kuhn-Tucker theorem or other machinery of constihin e first m_eqt_JaIlty fOI.l(.)WS from property (6) of . The Sec
ond and third inequalities are a consequence of the moraitpni

optimization. of Z(¢'*)). The lemma follows by taking limits and using the
B. Auxiliary functions fact thatl. and A are continuous. O

Lemma2:If m € A is a cluster point of¢*), then
4= L((ty) o m) = O foranyy € R".

A(y*0, gy < L(gRHD) — L(g*Y)
L

< q
< Lg%y — L(g™).

We now turn to the task of computing.. Fix p and let
L : A — R be the log-likelihood objective function
Proof: By the previous lemmad(~, m) < O forally. Since

L(g) = =Dl q) - A(0,m) = 0, this means that = 0 is a maximum ofA (v, m)
so that
Definition 2: A function A : R” x A — R is anauxiliary 4 4
function forL if 0= |rm0 A(ty,m) = — |20 L((t7) o m)..
(1) Forallg € Aandy € R” dt dt
O
L(yoq) > L(q) + A(y,9) Lemma 3:Supposé¢'*) } is any sequence with only one clus-

. . . 1 . terpointg.. Theng*) converges tq..
(2) A(y,q) is continuous iy € AandC™ iny € R™ with

A(0,¢) = 0and Proof: Suppose not. Then there exists an opemsaintain-
ing ¢. and a subsequengés) ¢ B. SinceA is compactg ()
has a cluster point, ¢ B. This contradicts the assumption that

d d
E' t=0 Ally,0) = E' t=0 L({17)04). {¢®)} has a unique cluster point. O
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Proof of Proposition 5: Suppose that: is a cluster point of D. Monte Carlo methods
¢'®). Then it follows from Lemma 2 thag: | ;=0 L((ty) om) =
0, and san € P N Q by Lemma 2 of Appendix A. Bug, is the

only pointin N Q by Proposition 4. It follows from Lemma 3 of the features take non-negative values. In each iterafitims

(k) i o . .
thatg™™ converges 1q.. algorithmit is necessary to solve a polynomial equatiorefah

In Appendix B we prove an extension of Proposition 5 th%aturefi. That is, we can express equation 5 in the form
allows the components of to equal—co. For this extension,

The Improved lIterative Scaling algorithm described in the
previous section is well-suited to numerical techniquesesill

we assume that all the components of the feature fungtiare M
non-negative: > a® gm =0
m=0 7
filw) >0 foralliand allw. (7)

where}M is the largest value of,(w) = ", fi(w) and
This is not a practical restriction since we can replgceby

i — min, £ (w). "~ { > aW(W) fiw) d(m, fiw)) m>0

a . = (14)
—plfi] m=0

m,t

)

C. Improved Iterative Scaling

We now prove the monotonicity and convergence of the Im- ) ; , . : L (8) .
proved Iterative Scaling algorithm by applying Propositioro  Whereq'™” is the field for thek-th iteration a)nd?i =e™ . This
a particular choice of auxiliary function. We now assumet thgguation has no solution precisely Whﬁ&Si = 0form > 0.

each component of the feature functipis non-negative. Otherwise, it can be efficiently solved using Newton’s metho
Forq € Aandy € R", define since all ofthe Coeﬁicientsﬁf?i,m > 0, are non-negative. When
Monte Carlo methods are to be used because the configuration
Ay, ) = 147 Bl =D alw) D f(i|w) e ) spaceQ is large, the coefficientaﬁf?i can be simultaneously
w i estimated for ali andm by generating a single set of samples

from the distributiory*).
wheref(i|w) = % It is easy to check that extends to a
continuous function R U —cc)™ x A. V. APPLICATION. WORD MORPHOLOGY

Lemma 4: A(v, ¢) is an extended auxiliary function fdr(q). Word clustering algorithms are useful for many natural lan-
The key ingredient in the proof of the lemma is the&onvexity guage processing tasks. One such algorithm [6], called ahutu
of the logarithm and the-convexity of the exponential, as ex-information clustering, is based upon the constructiorimpe
pressed in the inequalities bigram language models using the maximum likelihood crite-

rion. The algorithm gives a hierarchical binary classifimatof
DIRILE < Zti e ift; >0,5,t;, =1 (8) wordsthathas been used for a variety of purposes, inclutimg
i construction of decision tree language and parsing modats,
logr <z —1 forallz > 0. (9) sense disambiguation for machine translation [7].

A fundamental shortcoming of the mutual information word
clustering algorithm given in [6] is that it takes as fundaaé
the word spellings themselves. This increases the sewefrity
the problem of small counts that is present in virtually gver
statistical learning algorithm. For example, the word “Hiam
tonianism” appears only once in the 365,893,263-word c®rpu

s Fw used to collect bigrams for the clustering experiments rilesd
Lyeq) = Lig) =~ - 1A - IogZ afw)e? o) in [6]. Clearly this is insufficient evidence on which to base
. y statistical clustering decision. The basic motivationibdthe
>z vyl +1- Z g(w) et ) (11)  feature-hased approach is that by querying features oliispe|
v a clustering algorithm could notice that such a word begiits w
> ~y-p[f]+1- Z q(w) Z fi|w) ¢if#w)  (12) acapital letter, ends in “ism” or contains “ian,” and profibii
w i how these features are used for other words in similar cégitex
= A(y,q). (13) In this section we describe how we applied the random field
induction algorithm to discover morphological featuressofds,
Equality (10) is a simple calculation. Inequality (11) fsdls and we present sample results. This application demoastrat
from inequality (9). Inequality (12) follows from the defiin how our technique gradually sharpens the probability masa f
of f, and Jensen’s inequality (8). Property (2) of Definition 2 ithe enormous set of all possible configurations, in this sasa
straightforward to verify. [0 strings, onto a set of configurations that is increasinghylsir to

Proposition 3 follows immediately from the above lemma arithose in the training sample. It achieves this by introdg&ioth
the extended Proposition 5. Indeed, it is easy to checktfiat “positive” features which many of the training samples &idi
defined in Proposition 3 achieves the maximumAdf, ¢(*)), as well as “negative” features which do not appear in the $amp
so that it satisfies the condition of Proposition 5 in Appertglix or appear only rarely. A description of how the resultingéeas

Proof of Lemma 4: Becaused extends to a continuous func-
tion on (RU —o0)™ x A, it suffices to prove that it satisfies
properties (1) and (2) of Definition 2. To prove property (bje
that
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were used to improve mutual information clustering is giiren arbitrary lowercase letters, uppercase letters, digitd,@nctu-
[20], and is beyond the scope of the present paper; we reder #gtion. For example, the atomic feature
reader to [6], [20] for a more detailed treatment of this topi .
In Section 5.1 we formulate the problem in terms of the no- folaz) (W)= 1 ifw, €[a-z]
tation and results of Sections 2, 3, and 4. In Section 5.2 we 0 otherwise
describe how the field induction algorithm is actually aadarout tests whether or not a character is lowercase.

in this application. In Section 5.3 we explain the resultshef  Toillustrate the notation that we use, let us suppose tledti

induction algorithm by presenting a series of examples. following features are active for a field: “endsiam ,” “a string

of at least 7 characters beginning with a capital letter”‘awch-

tainsian .” Then the probability of the word “Hamiltonianism”
To discover features of spellings we take as configuratievould be given as

space the set of all string® = .4* in theAscil alphabetd. We

construct a probability distributio(.) on Q by first predicting pi(14) ps(Hamiltonianism | |w| = 14) =

the length|w |, and then predicting the actual spelling; thus,

pw) = pi(Jw |)ps(w || w|) wherep; is the length distribution

andp; is the spelling distribution. We take the length distrilouti , .

as given. We model the spelling distributias{- | 1) over strings Here theX’s are the parameters of the appro_prlgte features_, and

of lengthl as a random field. Le®; be the configuration space'Ve Use the charactersand> to denote the beginning and ending

of all Ascli strings of lengtti. Then| Q, | = O(10?) since each Pf a string (more common regular expression notation woeld b

w; is anAscIl character. and$). The notatior7+<[A-Z] thus means “a string of at
To reduce the number of parameters, we tie features, as [§@St 7 characters that begins with a capital letter,” apoading

scribed in Section 2.1, so that a feature has the same weiljhthe feature

independent of where it appears in the string. Because sftthi fut foinz)

is natural to view the graph underlyi€y as a regulat-gon. The where« and v are adjacentpositions in the string, recalling
group of automorphisms of this graph is the set of all rot&io from Definition 2.1 that we require the support of a featurbeo

and the resulting field is homogeneous as defined in Section g.connected subgraph. Similarlgm> means “ends in -ism”
Not only is each fielgh, homogeneous, but in addition, we tieand corresponds to the feature

features across fields for different valued offhus, the weight
Ay of a feature is independent of To introduce a dependence Jui fos fomfe <
on the length, as well as on whether or not a feature applies at
the beginning or end of a string, we adopt the following anigli Where u, v, w, » are adjacent positions in the string aizh
construction. We take as the graph@f an (I 4 1)-gon rather means “contains ian,” corresponding to the feature
than ani-gon, and label a distinguished vertex by the length,
keeping this label held fixed. fui foafun.

To complete the description of the fields that are induced, v&e
need to specify the set of atomic features. The atomic featur
that we allow fall into three types. The first type is the clabs  We begin the random field induction algorithm with a model

A. Problem formulation

1 . .
p(14) 5 ATeiaz) Pian D>

Description of the algorithm

features of the form that assigns uniform probability to all strings. We thenrémen-
1 ifwn — tally add features to a random field model in order to minimize
foelw) = Wwy, = c the Kullback-Leibler divergence between the field and the un

0 otherwise. igram distribution of the vocabulary obtained from a traimgi

wherec is anyAscli character, and denotes an arbitrary char-corpus. The length distribution is taken according to timgtas
acter position in the string. The second type of atomic fiestu of words in the empirical distribution of the training datéhe
involve the special vertex/> that carries the length of the stringimprovement to the model made by a candidate feature is eval-
These are the features uated by the reduction in relative entropy, with respecth®e t
unigram distribution, that adding the new feature yield®ping

forlw) = {1 if w, :_<l> the other parameters of the model fixed. Our learning algo-
0 _(;ther\iwse . rithm incrementally constructs a random field to describmséh
Jo<s(w) = { 1w, —_<l> or somel features of spellings that are most informative.
’ 0 otherwise

At each stage in the induction algorithm, a set of candidate

The atomic featurg, < introduces a dependence on whetherfgatures is constructed. Because the fields are homogerireus
string of characters lies at the beginning or end of thegtamd Set of candidate features can be viewed as follows. Eackeacti
the atomic featureg, ; introduce a dependence on the length dgature can be expressed in the form
the string. To tie together the length dependence for o,
we also introduce an atomic featufe,,. for strings of length 7 fs(w)
or greater.

The final type of atomic feature asks whether a character lieberes is a string in the extended alphabébf Ascii characters
in one of four setsfa-z] ,[A-Z] ,[0-9] ,[@-&] ,denoting togetherwiththe macrds-z] ,[A-Z] ,[0-9] ,[@-&] ,and

_ {1 substrings appears i
— L0 otherwise
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features, (including = ¢, the empty string) using this repre- _’T‘S”‘S% pep, d, OZkiV'a'vf hZé}_ghv yZO% io, advzmxnv,
. . . . v _Dolft, X, emx, Kayert, mlj, rawzyo, , ag,
sentation, then the set of candidate features is prembelg&t étdnnnbg wgdw, t, kéuv, Cy,J spxch uzjﬁbbf'g
{fas, fs.a}aca,ses, Wherea-s denotes concatenation of strings. dxtkkn, cxwx, jpd, ztzh, Iv, zhpkvnu, | s 1, gee,
As required by Definition 2, each such candidate increases tmynrx, atze4n, ik, se, w, Irh, hp+, yrqyka'h,
support of an active feature by a single adjacent vertex. fzdcngotcnx, igeump, zjcjs, lgpWiqu, cefmfhc, o, b,
. . o . . cY, tzby, yopxmvk, by, fz,, t, govyccm,
Since the model assigns probability to arbitrary word $f$in  jjyiduwfzo, 6xr, duh, ejv, pk, pjw, I, fl, w
the partition functionZ; can be computed exactly for only the _ '
smallest string lengthls We therefore compute feature expec- In Fhe fqllowmg table we ShQW the .f'rSt 10 features that the
tations using a random sampling algorithm. Specifically, \A;aégorltr:n;_mduced, togE]ethe_r _W|thTt:e|r ass?j(?ated p;r‘;met
use the Gibbs sampler to generate 10,000 spellings of rand fyeralthings are\_/vort hoticing. ' hesecon eafure chaes
lengths. When computing the gafi,(g) of a candidate fea- a-z][a-_z] , which denotes adjacent Iovyercz_ise characters.
ture, we use these spellings to estimate the probabilitshat The thlrdlfeaturihadde(_j hwafs thr? I(?ttar Wh'ci 'SA tie3r2(;st
the candidate featurg occursk times in a spelling (see equa—Common etter. 'he weig t for t_ Is featurefs= ¢” = 3.47.
tion (4)—for example, the featurg, jaz) OCCUIS two times in The next feature introduces the first dependence on thelerfigt

the stringThe), and then solve for the correspondifgusing the string:[a-z]>1 denotes the feature “a one character word

Newton's method foeachcandidate feature. It should be em&Nding with a lowercase letter.” Notice that this featurs ha

phasized that only a single set of random spellings needs tosﬁmﬂl weight of 0.04, corSr_esplorlldlnﬁ t(]z our |ntU|t|9n thz;tlsu
generated; the same set can be used to estigafer each words are uncommon. Similarly, the featusg, j , andx

candidatey. After adding the best candidate to the field, all o€ uncommon, and thl.JS receive small weights. The appearanc
the feature weights are readjusted using the Improvedtitera of the feature® is explained by the fact that the vocabulary for

Scaling algorithm. To carry out this algorithm, random tipgh our corpus is restricted to the most frequent 100,000 syd|i

are again generated, this time incorporating the new featu?nOI all other words receive the “unknown word” spellig

yielding Monte Carlo estimates of the coefficief;é)'. Recall which 'S rather frequent. (Th_e e_nd-of-senten_ce markeriol
i makes its appearance later, is given the spelling

thataﬁfj)i is the expected number of times that featusppears

(under the substring representation for homogeneousrésjtu feature[[a-z] [a-zlla-z] e [a-z]>1 t ]
in a string for which there is a total of: active features (see . p| 6.64 607 347 004 275
equation 14)). Given estimates for these coefficients, Nieist eatu;e 1705 002 003 ‘ooz ods

method is again used to solve equation (14), to completegéesin

iteration of the it_erativg scaling algorif[hm. After congence of Shown below are spellings obtained by Gibbs sampling freem th
the Kullback-Leibler divergence, the inductive step is p&te, resulting collection of fields.
and a new set of candidate features is considered. ]
frk, et, egeit, edet, eutdmeeet, ppge, A, dtgd,
falawe, etci, eese, ye, epemtbn, tegoeed, ee, *mp,
C. Sample results temou, enrteunt, ore, erveelew, heyu, rht, *,
. . . . . . lkaeu, lutoee, tee, mmo, eobwtit, weethtw, 7, ee,
We began with a uniform field, that is, a field with no featuresieet, gre, /, * eeeteetue, hgtte, om, he, *,
atall. For thisfield, alasci strings of a given length are equally stmenu, ec, ter, eedgtue, iu, ec, reett, *,

likely, and the lengths are drawn from a fixed distributiorere]  Vicmeee, vt eets, tidpt, ltv, =, eutvti, ecte,
X, see, *, pi, rlet, tt, *, eot, leef, ke, *, *

is a sample of strings drawn from this distribution: tet, iwteeiwbeie, yeee, et, etf, *, ov

" mo, IZP*@, m/TLL, ksicm .3, *LQdR, D, aW {, After inducing 100 features, the model finally begins to be
5&TL|4, tc, ?!@, sNeiO+, wHo8zBr", pQIV, m, H!&, trated lli that bl tual ds t

ho, #0s, 5 Ky }FM?, LW, "8 }, 89Lj, -P, A, I, H, * concentrated on spellings that resemble actual words t@som
Y*:Du:, 1xCl, 1'J#F*u., w=idHnM), =, 2, 2leW2, extent, particularly for short strings. At this point thgatithm
IT,ngEﬂg,lS"z,A]b], ?; +JE\mJ'§,H+E_*, 5 }(\)qjﬁe"-gf, I;:JZ. has discovered, for example, thhe is a very common 3-letter

, (sOcl+ e, &, pYon, 1, , g +[, XEeVv, , .

O)[83COF, =[B[7%cR, Mqq, 2Imv, n=7G, $i9GAJ D, 5, yvqrd,that many words end Eml,gndthatlong Worpls often enpl
=, +UB@I9:, +, =D, 2E#vz@3-, “nu:.+s, 3xJ, GDWeqL, inion . A sample of 10 of the first 100 features induced, with
R3R, I7v, FX,@y, 4p cY2hU, ~ their appropriate weights is shown in the table below.

It comes as no surprise that the first feature the induction al
gorithm chooses ifa-z] ; it simply observes that characters [>T 3<the tion 4<th y> ed> jon>7+ ent 7+<c
should be lowercase. The maximum likelihood (maximum en-|22.36 31.30 11.05 5.89 478 535 420 4.83 517 537
tropy) weight for this feature i$ = ¢* ~ 6.99. This means
that a string with a lowercase letter in some position is &ffou thed, and, thed, toftion, |, ieention, cention, |,

times more likely than the same string without a lowercattedle Ceetion. ant, is, seieeet, cinention, and, .,
tloned, uointe, feredten, iined, sonention,

in that position. inathed, other, the, id, and, ,, of, is, of, of, ,,
When we now draw strings from the new distribution (usingicers, ,, ceeecion, ,, roferented, |, ioner, ,, |,

annealing to concentrate the distribution on the more fatgba the. the, the, centention, ionent, asers, ,
. . . . . ctention, |, of, thed, of, uentie, of, and, ttentt,
strings), we obtain spellings that are primarily made upoef rerey, and, |, sotth, cheent, is, and, of,

ercase letters, but that certainly do not resemble Englistlsy  thed, rontion, that, seoftr
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A sample of the first 1000 features induced is shown in the VI. EXTENSIONS AND RELATIONS TO OTHER APPROACHES
table below, together with randomly generated spellings- N
tice, for example, that the featuj@-9][0-9] appears with a
surprisingly high weight of 9382.93. This is due to the fduwztt
if a string contains one digit, then it’s very likely to coimtawo
digits. But since digits are relatively rare in general, thature
[0-9] s assigned a small weight of 0.038. Also, according {8 Conditional exponential models
the model, a lowercase letter followed by an uppercaser listte

In this section we briefly discuss some relations between our
incremental feature induction algorithm for random fieldsl a
other statistical learning paradigms. We also present quose
sible extensions and improvements of our method.

Almost all of what we have presented here carries over to

rare. . I :
the more general setting of conditional exponential madels
cluding the Improved lterative Scaling algorithm. For gethe
s> <re ght> 3<[A-Z]ly> a7+ ing> conditional distributiong(y | #) there may be no underlying ran-
: ][2225] t 48057 3-717 _t2-27t 75-3[8 9]?04-91]9 16.18 dom field, but with features defined as binary functigis, y),
a-z][A- > ed>7+ er>7+ ity ent>7+ [0-9][0- : . -
0.003 13856 1258 811 434 612 938293 the same genera_ll_approach is appllcable. The feature iloduct
qu ex  ae ment _ies _<wh ate method for conditional exponential models is demonstréved
526.42 5265 0.001 10.83 4.37 5.6 9.79 several problems in statistical machine translation in\\8jere
itis presented in terms of the principle of maximum entropy.
was, reaser, in, there, to, will, ,, was, by,
homes, thing, be, reloverated, ther, which, B. Decision trees
conists, at, fores, anditing, with, Mr., proveral, ) ) )
the, ,, ** on't, prolling, prothere, ,, mento, Our feature induction paradigm also bears some resemblence
a;' Yaft)U’ 16 C?eStramgi foi,**havley flf?' 'mtfall%t to various methods for growing classification and regrassio
or, qut, ., best, compers, , Cluseliment, uster, . P . . .
of is, deveral this, thise, of offect, inatever, t_rees. Like dec_lsmn trees, our method bwl_dgatop dowsstia
thifer, constranded, stater, vill, in, thase, in, fication that refines features. However, decision treegspond
youse, menttering, and, ., of, in, verate, of, to to constructing features that have disjoint support.

Finally, we visit the state of the model after inducing 1500 To explain, recall tha’_[ a deC|S|o_n tree determln_es a pertti
features to describe words. At this point the model is makirp%jacontext random variable € .t in order to predict the actual

more refined judgements regarding what is to be considered@ss Of the context, represented by a random Va@‘b@y-
word and what is not. The appearance of the featijes Each leaf in the tree corresponds to a sequence of binanyrésat

and\[@-&]{ , is explained by the fact that in preparing our B f f
corpus, certain characters were assigned special “matings. b Ity ey Jroot

1 0,
For example, the punctuation charactérs_, % and & are wheren{ denotes the parent of nodeeach featur¢,, is a ques-

represented in our corpus &} ,\ {I ,\%{} , and\&{} . fi hich solitst’ and wh isth ti fth
As the following sampled spellings demonstrate, the modsl| hIonW ich splitst', and where each, s the negatio., of the

hi : ed th . ¢ but h guestion asked at its sibling node. The distribution assigio
af(t IS point recognize the existence of macros, but hagatot 5 41 g simply the empirical distribution oy determined by
discerned their proper use.

the training samplegr, y) € X' x Y for whichw(z) = {. Each
leaf! is characterized by the conjunction of these features, and

7+<inte_prov _<der <wh 19 ons>7+ ugh i differentleaves correspond to conjunctions with disjsuiport.
4.23 508 0.03 205 259 4.49 5.84 7.76 In contrast, our feature induction algorithm generallyutesin
sys  ally 7+<conide nal {}>  qui \@-&[ features that have overlapping support. The criterion afieat-

478 610 525 439 291 12056 18.18 91342 . : ; ;
= B <nc <miong  §  Nes7+  <un ing questions in terms of the amount by which they reduce the

10.73 10.85 491 501 0001 1649 2.83 904 conditional entropy ofy” corresponds to our criterion of max-
imizing the reduction in Kullback-Leibler divergencé;,(g),

the, you, to, by, conthing, the, ., not, have, over all candidate featuregsfor a fieldq.

devened, been, of, |, F., ., in, have, -, ,, By modifying our induction algorithm in the following way,

i 1 *kk 1 i *kk . .

intering, ***, ation, said, prouned, *, we obtain an algorithm closely related to standard methods f
suparthere, in, mentter, prement, intever, you, ., . . .. . .

and, B., gover, producits, alase, not, conting, growing bmary_ deC|s_|on trees. Instea_d of considering _the 1
comment, but, |, that, of, is, are, by, from, here, parameter family of fieldg, , to determine the best candidate
incements, contive, ., evined, agents, and, be, g = aA f, we consider the 2-parameter family of fields given by
thent, distements, all, --, has, will, said,

resting, had, this, was, intevent, IBM, whree, 1 ,

acalinate, herned, are, *** 0., |, 1980, but, Doyl e) = = eyl @y)tA (e (@ y)af(zy)

will, ** is, ., to, becoment, ., with, recall, o Z)\y)\lyf(l‘)

has, |, nother, ments, was, the, to, of,

stounicallity, with, camanfined, in, this, Since the features A f and(—a) A f have disjoint support, the

intations, it, t, out, they, . ! . C
niations, L, conanament, out. fhey. you improvement obtained by adding both of them is giverifya A

While clearly the model still has much tolearn, ithas atguimt  f) + G4 ((—a) A f). In general, the resulting distribution is not
compiled a significant collection of morphological obséimas, absolutely continuous with respect to the empirical disttion.
and has traveled a long way toward its goal of statisticdigre If the random variabl@™ can take onV/ valuesys, . . . yar, then
acterizing English spellings. the standard decision tree algorithm is obtained if atttiestage
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we add the 2/ (disjoint) featuresf, (z) A d(yi, y), ~fn(x) A Our proof of the proposition will use a few lemmas. The first

d(yi,y), fori =1,..., M. Maximum likelihood training of the two lemmas we state without proof.

parameters of these features recovers the empirical lolisiton Lemma 1:

of the data at node. (1) D(pll ¢) is a non-negative, extended real-valued func-
tion onA x A.

C. Extensions (2) D(pll ¢) = 0ifand only ifp = q.

As mentioned in Section 1, our approach differs from the (3) D(pllq)is St{'qu convex inp andq separately.
most common applications of statistical techniques in aaep ~ (4) P(pllg) isC*ing.
vision, since a typical application of our method involveet | emma 2:
estimation of thousands of free parameters. Yet the indocti (1) The map(y, p) — v op is smoothin(v, p) € R® x A.
technique may not scale well to large 2-dimensionalimagepr  (2) The derivative oD (p|| A o ¢) with respect to\ is
lems. One potential difficulty is that the degree of the polyn p
mials in the Improved Iterative Scaling algorithm could hete @ oy _
large, and it could be difficult to obtain reliable estimateds dt'tIO Dl @A) o) = A+ (plf] = alf])-
the coefficients since Monte Carlo sampling might not exthibi | emma 3:1f § < ¢o then? N Qis nonempty.
sufficiently many instances of the desired features. Thengxt . . )
to which this is a significant problem is primarily an empaic ~ F700f:  Define g, by property (3) of Proposition 4; that is,
issue, dependent on the particular domain to which the rdetty = a9 Min,e g D(p I¢). To see that this makes sense, note
is applied. that sincep™< qo, D(p || ¢) is not identicallyco on Q. Also,

The random field induction method presented in this papEHr [l ¢) is continuous and strictly convex as a functiongof
is not definitive; there are many possible variations on thae bThus, since is closedD(7 || ¢) attains its minimum at a unique
sic theme, which is to incrementally construct an incregigin POINt¢x € Q. We will show thatg, is also inP. SinceQ is
detailed exponential model to approximate the referensgidi ¢l0sed under the action @&”, Ao ¢, is in Q for any . Thus
butiony. Because the basic technique is based on a greedy algp-the definition ofg,, A = 0'is a minimum of the function
rithm, there are of course many ways for improving the search— D(7 [l Ao qx). Taking derivatives with respect tb and
for a good set of features. The algorithm presented in Se@io USing Lemma A.2 we concludg[f] = p[f]. Thusg, € P. O
is in some respects the most simple possible within the géner | emma 4:1f ¢, € P N Q then for anyp € P andq € 16}
framework. But it is also computationally intensive. A natu
ral modification would be to add several of the top candidates D(pllq) = D(pll ¢x) + D(ax |l q) -
at each stage. While this should increase the overall spked
the induction algorithm, it would also potentially resuitrnore
redundancy among the featL_J_res,_ since the top C_andidatm; cou D(p1llq1) — D(p1l 92) = D(p2]l 41) + D(p2 || 42)
be correlated. Another modification of the algorithm wouéd b = X~ (palf] = p2lf))
to add only the best candidate at each step, but then to catry o b1 b2
parameter est?mation only after several new feature_s hed beor any py, po, g1, 92 € A with o = Ao gq. It follows from this
added to the field. It would also be natural to establish a mQegntity and the continuity oP that
Bayesian framework in which a prior distribution on feature
and parameters is incorporated. This could enable a ptattip  D(p1| q1) — D(p1ll 92) — D(p21l q1) + D(p21| 42) = 0
approach for deciding when the feature induction is coneplet — )
While there is a natural class of conjugate priors for thesiaf i 1,72 € P andgi, ¢z € Q. The lemma follows by taking
exponential models that we use [14], the problem of incapor P1 = 91 = qx- O

ing prior knowledge about the set of candiate features issmor prgof of Proposition 4. Choosey, to be any pointinP N Q.
challenging. Such ag, exists by Lemma A.3. It satisfies property (1) by
definition, and it satisfies property (2) by Lemma A.4. As a
consequence of property (2), it also satisfies propertipard

I. DUALITY (4). To check property (3), for instance, note thati any point

in Q. thenD(§ 1 ¢) = D(§ll ) + D(a |19) > D(5l g..).

It remains to prove that each of the four properties (1)—(4)
terminesy,. uniquely. In other words, we need to show that
if m is any point inA satisfying any of the four properties

%roof: A straightforward calculation shows that

APPENDIX

In this Appendix we prove Proposition 4 restated here.
Proposition 4: Suppose thap < ¢o. Then there exists a e
uniqueg, € A satisfying

1) ¢.ePn@ (1)-(4), thenm = ¢,. Suppose thatn satisfies property (1).
(2 D(plla) = D(pllax) + D(g«ll¢) foranyp € P and Then by property (2) fog, with p = ¢ = m, D(m||m) =
€@ D(m|| ¢x) + D(g« || m). SinceD(m||m) = 0, it follows that
(3) ¢« = argmin D( || q) D(m,qx) = 0 som = g¢,. If m satisfies property (2), then
9€Q the same argument witfy andm reversed again proves that
(4) ¢ = arger;jin D(pll o). m = ¢,. Suppose that satisfies property (3). Then
P

Moreover, any of these four properties determipesniquely. D(Pllgx) > D(pllm) = D ¢x) + D(gx || m)
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