
Improving the Cache Locality of Memory Allocation

Dirk Grunwald Benjamin Zorn Robert Henderson
Department of Computer Science

Campus Box #430
University of Colorado, Boulder 80309–0430Abstract

The allocation and disposal of memory is a ubiquitous operation in
most programs. Rarely do programmers concern themselves with
details of memory allocators; most assume that memory allocators
provided by the system perform well. This paper presents a per-
formance evaluation of the reference locality of dynamic storage
allocation algorithms based on trace-driven simulation of five large
allocation-intensive C programs. In this paper, we show how the
design of a memory allocator can significantly affect the reference
locality for various applications. Our measurements show that poor
locality in sequential-fit allocation algorithms reduces program per-
formance, both by increasing paging and cache miss rates. While
increased paging can be debilitating on any architecture, cache
misses rates are also important for modern computer architectures.
We show that algorithms attempting to be space-efficient by coa-
lescing adjacent free objects show poor reference locality, possibly
negating the benefits of space efficiency. At the other extreme, algo-
rithms can expend considerable effort to increase reference locality
yet gain little in total execution performance. Our measurements
suggest an allocator design that is both very fast and has good
locality of reference.1 Introduction
.

The allocation and disposal of memory is a ubiquitous operation
in most programs, yet one largely ignored by most programmers.
Some programmers use domain-specific knowledge to improve the
speed or memory utilization of memory allocators; however, the
majority of programmers use the memory allocator provided in a
given programming environment, believing it to be efficient in time
and/or space. In virtual memory systems, space efficiency is usu-
ally a secondary concern, although important in some applications.
Rarely are programmers concerned with “secondary” effects, such
as cache locality.

In this paper, we show that the structure of dynamic storage
allocation (DSA) implementations contribute to the page and cache
miss rate. Our measurements show that increased cache misses can

0This paper will appear in the SIGPLAN’93 Conference on Programming Language
Design and Implementation, June 1993, Albuquerque, New Mexico

increase program execution time on conventional architectures by
up to 25%.

In a previous paper [8], we measured and compared the time and
space efficiency of standard memory allocators. Based on empiri-
cal observations[29], we designed a program (CUSTOMALLOC) that
synthesizes a memory allocator customized for a specific applica-
tion. Empirical measurements show that the synthesized allocators
are uniformly faster than the allocators distributed with widely-used
operating systems (e.g., BSD) and are also more space efficient. In
that study, we measured the number of machine instructions used
to allocate and free memory, and did not account for the effects of
the memory hierarchy, which is the focus of this paper.1.1 The Importance of Reference Locality
In recent years, faster processorspeedshave shifted interest in mem-
ory system performance from slower main memories to high-speed
cache memories. Cache memories must be able to provide instruc-
tions and data to processors at increasingly faster rates. As proces-
sors and cache memories increase in speed, the cost of missing in
the cache and retrieving data from main memory increases. Jouppi
estimates the cost of a cache miss will increase to over 100 cycles
if current trends continue [11]. Mogul and Borg evaluate the effect
of context switches on a hypothetical two-level cache that requires
200 cycles to service a second-level cache miss [19]. Although the
performance of caches is improving, new processors commonly use
a smaller on-chip primary cache, with a larger secondary cache.

Increased cache misses are difficult to detect. Some recent
tools [7, 17] indicate what regions of a program incur excessive
cache misses. However, they do not indicate the reason for those
misses. Although the cache misses may be seen in one region of
the program, the cause may arise elsewhere. More insidiously, the
increased cache misses may be spread over all program sections
that reference heap allocated objects, belying the true influence of
the DSA algorithm. We believe that some algorithmic and imple-
mentation decisions in DSA design influence the overall reference
locality of a program. Furthermore, unlike the related problem of
virtual memory locality, it is difficult to devote more resources to
reduce cache misses. Although main memory can be expanded to
reduce page faults in an existing system, it is often impossible to
expand the size of a primary or secondary cache. Thus, for existing
computers, improved management of the cache resource is the only
alternative.

In this paper, we investigate the effects of DSA algorithms and
implementation choices on cache locality and total performance in a
number of significant allocation-intensive programs. We show that
these choices affect the overall performance of allocation-intensive
programs by up to 25%. Misses are increased directly by DSA im-



plementations with poor reference locality and indirectly by imple-
mentations that fill valuable cache space with storage management
overhead. Combining the results of this paper with our previous
work on synthesizedDSA implementations, we expect it is possible
to design fast, space-conservative DSA implementations that have
very good cache locality. Reference locality and allocator speed are
two aspects of memory allocation that must be balanced to achieve
high performance.1.2 Structure of the Paper
In the next section, we describe the DSA implementations con-
sidered in this paper and review the previous work in measuring
the locality of DSA implementations. In x3, we describe our ex-
perimental methodology including the suite of programs used to
compare the different DSA implementations. Section 4 presents
the results of our simulation study, both for page locality and cache
locality. Finally, in x5 we summarize the salient features of memory
allocators that are both fast and have high reference locality.2 Previous Work2.1 Memory Allocation Algorithms
General purpose algorithms for dynamic storage allocation have
been proposed, analyzed and tuned for many years. Knuth [13],
Bozman et al [3], and Korn and Vo [14] all carefully describe and
evaluate various allocation strategies and implementations. Tradi-
tionally, these algorithms have sought to minimize CPU overhead
and reduce total memory usage.

Standish [22] divides algorithms for dynamic storage allocation
into three broad categories: sequential-fit algorithms (e.g., first-fit
and best-fit), buddy-system methods (e.g., binary-buddy and Fi-
bonacci), and segregated-storage algorithms, which is a catch-all
category involving a number of different approaches. Our previous
research on DSA customization [8] has given us first-hand experi-
ence with several of the most widely-used implementations.

In this paper, we compare the reference locality of five algo-
rithm implementations that are described below. These particular
algorithms were chosen because they are well-known, considered
to be efficient (either in time, space, or both), and widely-used.

FIRSTFIT: This algorithm is an implementation of a first-fit strategy
with optimizations suggestedby Knuth [13] and implemented
by Mark Moraes. In this algorithm, free blocks are connected
together in a doubly-linked freelist that is scanned during
allocation for the first free block that is sufficiently large.
This block is split into two blocks, one of the appropriate
size that is returned, and the other that is placed back in the
freelist. As an optimization, if the extra piece is too small
(in this case less than 24 bytes), the block is not split. The
freelist pointer is implemented as a “roving” pointer, which
eliminates the aggregation of small blocks at the front of the
freelist.

Allocated blocks in this algorithm require two extra words of
overhead (boundary tags), one at each end of the block, which
contain the size of the block and its current status (allocated or
free). Boundary tags allow objects to be freed and coalesced
with adjacent free storage in constant time.

GNU G++: This algorithm, implemented by Doug Lea [16], en-
hances the standard first-fit algorithm by using an array of
freelists segregated by object size. In each freelist, free blocks
are connected together in a doubly-linked list. An appropri-
ate freelist is selected based on the logarithm of the allocation

request; this is done to increase the probability of a better fit.
In other respects, this algorithm is similar to FIRSTFIT.

BSD: Chris Kingsley implemented a fast segregated-storage algo-
rithm that was distributed with the 4.2 BSD Unix release [12].
Kingsley’s algorithm rounds object size requests to powers
of two minus a constant and a freelist of objects of each size
class is maintained. If no objects of a particular size class
are available, more storage is allocated. No attempt is made
to coalesce objects. Because this algorithm is so simple, its
implementation is very fast. On the other hand, it also wastes
considerable space, especially if the size requests are often
slightly larger than the size classes provided.

GNU LOCAL: Mike Haertel implemented a hybrid of the first-
fit and segregated-storage algorithms that is available to the
public as the Free Software Foundation implementation of
malloc/free [9]. In Haertel’s algorithm, requests larger than
a specific size (e.g., 4096 bytes) are managed using a first-
fit strategy, while objects smaller than this are allocated in
specific size classes (powers of two), like the BSD algorithm.

Haertel’s approach actively seeks to improve the locality of
reference during allocation by dividing allocated storage up
into page-sized chunks and storing information about these
chunks in small, highly-localized chunk headers. Instead
of traversing the entire heap attempting to find a fit, only
the information in the chunk headers must be traversed. This
algorithm also reduces the per-object spaceoverhead required
by other algorithms (such as the boundary-tags in the first-fit
algorithms) in the following way. Chunks are allocated so
that all objects in a chunk are the same size. The address
of any object can be used to locate the chunk header, which
contains information about the object size associated with the
chunk. The chunk header also contains a count of the number
of free blocks within a chunk and deallocates entire chunks
when all the objects in the chunk have been freed.

QUICKFIT: Weinstock and Wulf describe a fast segregated-storage
algorithm based on an array of freelists[24, 22]. Like the
GNU LOCAL algorithm, QUICKFIT is a hybrid algorithm that
allocates small and large objects in different ways. Large
objects are handled by a general algorithm, while objects
smaller than a certain threshold are allocated and deallocated
very quickly. The algorithm is very fast because the object
request size is used as an index into the freelist array,returning
the appropriate freelist in a small number of instructions.
Deallocation requires identifying the size of the object being
freed (using a boundary tag in our implementation), indexing
the freelist array to get the appropriate freelist, and placing
the free object on that list. Both the BSD and QUICKFIT

algorithms make no attempt to coalesce free objects. Unlike
the BSD algorithm, which rounds sizes to powers of two,
QUICKFIT rounds to multiples of word sizes (e.g, 4, 8, or 16
bytes), reducing internal fragmentation. The configuration
of QUICKFIT that we measured handles allocation requests
of 4–32 bytes (rounded to word size) with the fast array
and larger requests using a general purpose first-fit algorithm
(GNU G++, in our case).2.2 Measurements of Locality

Most studies of reference locality in DSA implementations concern
garbage collection (GC) algorithms [15, 18, 20, 23, 25, 26, 27, 28].
The main reason for this emphasis is that references made during
garbage collection have poor locality compared to program ref-
erences. This poor locality can result in thrashing of the virtual



memory paging system when a program’s address space is larger
than the physical memory. Experiences with thrashing led to the
developmentof generationalGC algorithms, which focus the efforts
of garbage collection on a relatively small part of the total address
space [18]. A number of reports, including those of Moon [20] and
Ungar [23], indicate that generational GC successfully reduces the
page-fault rates in garbage-collected language systems such as Lisp
and SmallTalk. Other attempts to improve the reference locality
of garbage collection have focused on improving the traversal or-
der of objects in memory during a collection. Techniques such as
breadth-first, depth-first, approximate depth-first, hierarchical de-
composition, and type-directed traversals have been implemented
and measured [20, 15, 26].

More recently, there has been greater emphasis on the cache
locality of these algorithms. Zorn measured the cache locality of
generational copying and non-copying garbage collection [27, 28].
Wilson also reports on issues related to the cache locality of copying
generational collection, including the effect of cache associativity,
cache size, and algorithm design on miss rate [25].

Unfortunately, many of the locality issues related to GC al-
gorithms are not relevant for explicit dynamic storage allocation
because there is no need for explicit algorithms to traverse the set
of living objects. Furthermore, garbage collection techniques that
copy data are also not applicable in languages such as C, where dy-
namicly allocated objects can not be relocated. One possible reason
for the dearth of prior work on the reference locality of explicit DSA
algorithms is the perception that the reference locality of existing
algorithms is good enough. We see in x4 that reference locality can
have a dramatic effect on program performance, even with explicit
DSA algorithms.3 Experimental Design
In this section, we describe our measurement methods. The results
in x4 are based on measurements of actual allocation-intensive pro-
grams. We believe that dynamic memory allocation will play an
increasingly important role in existing and future systems. We only
consider allocation-intensive programs to better illustrate the prob-
lems encounted. Here, we provide information about the programs
measured and the tools used to measure them.3.1 Application Programs

Our goal is to investigate the effect of DSA algorithms on cache
locality in programs that are of interest to a wide class of users. We
collected five allocation intensive programs, described in Table 1
and Table 2, representing a variety of allocation-intensive applica-
tion domains including language interpreters (GAWK and GS), a lan-
guage translator (PTC), a program dependenceanalysis tool (MAKE),
and a PLA logic optimizer (ESPRESSO). As Table 2 shows, the in-
put sets used exercise the storage allocation system significantly,
resulting in hundreds of thousands of allocations while executing
more than a billion instructions.

In this study, we did not modify the applications; any change
in cache misses using different DSA algorithms arises either from
references in the DSA subroutines or because the representation of
allocated objects has some effect on the locality of the application.
In general, it is difficult to measure the exact contribution of these
direct and indirect effects on the overall cache miss rate. As with
any programmer, we are concerned with the influence of DSA
implementation on total execution time.

Figure 1 shows the fraction of execution time the application
programs spend doing dynamic storage allocation (both allocation

Espresso GS Ptc Gawk Make
0.0

10.0

20.0

30.0

40.0

%
 E

xe
cu

tio
n 

S
pe

nt
 In

 M
al

lo
c&

F
re

e

FirstFit
QuickFit
G++
BSD
GNU Local

Figure 1: Percent of Time in Malloc and Free (as % of Execution
Time)

and deallocation), as measured by counting instructions and assum-
ing no cache miss penalty; in x4.2, we measure the influence of
cache miss penalties. As the figure shows, the choice of allocator
dramatically affects the fraction of time spent doing allocation. For
the programs considered, the time spent doing allocation ranges
from a few percent to � 30%, depending on the allocator and
application.3.2 Measurement Tools
We measured execution time in terms of machine instructions us-
ing Larus and Ball’s QP utility [1]. This tool provides a dynamic
execution count for each subroutine in terms of instructions. Using
this tool removes any variability in counting program instructions,
greatly simplifying the experimental design.

To measure cache locality, we instrumented the programs using
PIXIE [6]. Although PIXIE can also provide execution information
similar to that of QP, we found the output format of QP more useful
in our study. Using PIXIE, the instrumented programs emit coded
information allowing us to reconstruct the data references. We
modified a version of the TYCHO [10] cache simulator to imple-
ment execution-driven cache simulation. Since the cache simulator
directly consumed the trace from the instrumented application, we
were able to quickly trace a large number of references without
storing large trace files. We used traces varying from 17 million
references to almost 600 million references (see Table 2 for the data
references generated by the FIRSTFIT allocator; other allocators
have a similar number of references.)

We chose to simulate a direct-mapped cache with a 32-byte
block size. All cache miss rates presented are the miss rates for the
data cache; in all cases, we assume the instruction cache miss rate
is 0%, making our predictions of the cache effect on execution time
conservative. Likewise, our miss rate results are conservative be-
cause we intentionally avoid introducing the effects of intermittent
cache flushes on the miss rate. Because the tools we use generate
deterministic results, our experiments did not require statistically
averaging multiple runs. We used VMSIM, a fast implementation
of a stack simulation algorithm [27], to measure page fault rates; a
page size of 4 kilobytes was used for all page fault measurements.



ESPRESSO Espresso, version 2.3, is a logic optimization program. The input file is an example provided with the
release code.

GS GhostScript, version 2.1, is a publicly available interpreter for the PostScript page-description lan-
guage. The input files were a variety of small and large files, including a 126-page user manual. This
execution of GhostScript did not run as an interactive application as it is often used, but instead was
executed with the NODISPLAY option that simply forces the interpretation of the Postscript(without
displaying the results).

PTC PTC, version 2.3, is a Pascal to C translator. The input file was a 19,500 line Pascal program
(mf2psv.p) that is part of the TEX release.

GAWK Gnu Awk, version 2.11, is a publicly available interpreter for the AWK report and extraction language.
The input script formatted words in a dictionary.

MAKE Gnu-make, version 3.62 is a version of the common ‘make’ utility used on UNIX. The input set was
the makefile of another large application.

Table 1: General Information about the Test Programs

Exec. Total Data Max. Heap Objects Objects
Program Time Instr. Refs. Size Alloc’ed Freed

(sec.) (�106) (�106) (Kbytes) (1000s) (1000s)
ESPRESSO 155.1 2506 595 396 1673 1666
GS 131.3 1344 421 4129 924 898
PTC 25.1 367 125 3146 103 0
GAWK 76.7 1215 374 60 1704 1702
MAKE 4.0 56 17 380 24 13

Table 2: Test Program Performance Information. Execution times were measured on a DECstation 5000/120 workstation (MIPS architecture)
with 24 megabytes of memory. All values provided are for the FIRSTFIT allocator, which is used as a baseline in later figures.4 Comparison
We traced the execution of the five applications using the five dif-
ferent DSA implementations described. We used these traces to
measure the page fault rate and cache miss rate.4.1 Page Reference Locality
We measured the page fault rate of five applications using the dif-
ferent DSA implementations. Figures 2 and 3 show the page fault
rates expressed in faults per memory reference for two applications,
GS and PTC. In both figures, the symbols on the horizontal axis in-
dicate the total amount of memory requested by the program using
the different DSA implementations. Although each application has
different behavior, these datasets effectively capture the range of
effects of DSA implementation on the page fault rate.

Figures 2 and 3 indicate two interesting metrics for each DSA
implementation: the maximum required space and the slope of the
paging rate for each DSA implementation. Large page fault rates are
so debilitating that few systems can tolerate even the small amount
of paging implied by the subtle differences between the efficient
allocators shown in Figures 2 and 3 for a fixed memory size. It
is generally true that reducing the amount of memory needed by
an application has the greatest influence on the paging rate. Thus,
the most effective measure to reduce paging is to select a very
space efficient allocator. The slope of the paging rate for each DSA
implementation in Figures 2 and 3 indicates the “resiliency” of the
allocators to restricted resources. For example, the performance
of the FIRSTFIT algorithm in the GhostScript application would
rapidly degrade if memory was unavailable, while the performance
of QUICKFIT would degrade less rapidly.

Two of the DSA implementations, FIRSTFIT and GNU G++, are
variants of the classic first-fit algorithm. They find free regions

of memory by traversing a linked-list data structure and coalesce
contiguous free regions. These algorithms tend to have poor page
locality because the allocator examines several objects in the linked
list and those objects may be scattered throughout the address space.
Furthermore, when searching for a large object, all entries in the
linked list may be visited. Recall that the FIRSTFIT implementation
uses a single doubly-linked list structure to hold all objects, while
GNU G++ uses multiple doubly-linked lists, segregated by the size
of the free objects. On average, the GNU G++ allocator examines
fewer objects than FIRSTFIT when allocating memory. The effect
of this simple algorithmic change is dramatic. By searching less
objects in the freelist, the GNU G++ algorithm is more “resilient,”
and would fault less frequently. As shown in Figures 1 and 2, the
conventional FIRSTFIT algorithm increases both the raw execution
time and the page fault rate.

Another factor that affects both FIRSTFIT and GNU G++ is the
decision to coalesce contiguous objects on the freelist. This is
usually done either by maintaining a sorted freelist or by using
a doubly-linked freelist and boundary tags. Both decisions have
drawbacks. Maintaining a sorted list takes considerable CPU time
and many pages will be visited when objects are inserted in order.
Although the overhead of doubly-linked freelists is smaller, they
require that three objects be modified to insert an item in the list
(the newly freed object, its predecessor and successor), and these
references may be to different pages. In our previous studies [29,
8], we found that most allocation requests were for one of a few
different object sizes. Consequently, if an object has already been
allocated, coalescingan object when it is deallocated may have little
benefit because it will be re-used immediately. This design decision
influences both the basic execution time of the algorithms and their
reference locality.

To one extent or another, this observation of frequent re-use is
exploited by the remaining allocators, which form a distinctly sep-



0 1000 2000 3000 4000
Memory Size (Kbytes)

0.001

0.010

0.100

1.000

10.000

100.000

P
ag

e 
F

au
lt 

R
at

e 
(*

1E
6)

First Fit
QuickFit
GNU g++
BSD
GNU local

Figure 2: Page Fault Rate for GhostScript (GS) as a function of
physical memory size

0 1000 2000 3000 4000
Memory Size (Kbytes)

0.001

0.010

0.100

1.000

10.000

100.000

P
ag

e 
F

au
lt 

R
at

e 
(*

1E
6)

First Fit
QuickFit
GNU g++
BSD
GNU local

Figure 3: Page Fault Rate for Pascal To C (PTC) as a function of
physical memory size

arate class with greater resiliency. However, even in this group, the
page fault rate evinces algorithmic differences. The BSD imple-
mentation spends relatively little time actually allocating memory,
but the BSD implementation suffers from severe internal fragmenta-
tion because it allocates� 2dlgNe bytes for anN byte object; much
of the allocated space may be wasted. This increases the page fault
rate for BSD, because more pages must be resident to access the
same set of allocated objects. On the other hand, allocating exactlyN bytes implies that the number of size classes, or distinct groups
of allocation request sizes, will increase. This can increase the CPU
time to allocate objects and decrease object re-use.

For some applications, such as GS, increased paging caused by
the space wasted by BSD may offset the advantages of the faster al-
gorithm. For other applications, such as PTC, there is little effective
difference between the space needed by the different DSA imple-
mentations. For example, the design of the GNU LOCAL allocator
attempts to explicitly increase reference locality, at considerable
expense in execution performance (see Figure 1), but appears to
gain little by this careful design.

The impact of DSA design on the page fault rate is dramatic.
Some of the DSA design principles that reduce cache misses will
also reduce page faults, but the most important DSA design goal
should be to reduce space requirements without sacrificing execu-

Espresso GS Ptc Gawk Make
0.75

1.00

1.25

1.50

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

FirstFit
QuickFit
GNU g++
BSD
GNU local

Figure 4: Normalized program execution time with 16K direct-
mapped cache, 25-cycle cache miss penalty, overlaid on normalized
execution time when we ignore the memory hierarchy.

Espresso GS Ptc Gawk Make
0.75

1.00

1.25

1.50

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

FirstFit
QuickFit
GNU g++
BSD
GNU local

Figure 5: Similar normalized program execution time, assuming a
64K direct-mapped cache with 25-cycle cache miss penalty.

tion speed. We now consider how to improve cache miss rates
because it is difficult to expand the size of an existing cache and
it is more difficult for programmers to detect the influence of DSA
design on cache locality.4.2 Cache Reference Locality
In a uniprocessor, cachemisses occureither becauseof a “cold start”
(when an an item is brought into cache for the first time) or cache
overflow (where a referenced item was forced out of the cache to
make room for a new item). Because we have simulated reasonably
long traces and we are considering moderate cache sizes, we believe
that “cold start” misses play a minor role in our study.

Cache misses can be reduced by prefetching data. Prefetching
may be directed by software [4], but usually arises when cache lines
contain multiple words [21] — referencing one word automatically
brings other words into the cache. In this paper, we consider only
the effect of hardware prefetching.

We first measured a base execution time, ignoring effects of the
memory hierarchy. For each application, the execution time for
the different DSA implementations was normalized relative to the
FIRSTFIT DSA implementation. The shaded values in Figure 4 and
5 show the normalized execution time for each application and allo-



Exec. Total Data Max. Heap Objects Objects
Program Time Instr. Refs. Size Alloc’ed Freed

(sec.) (�106) (�106) (Kbytes) (1000s) (1000s)
GS-Small 17.0 195 66 1092 109 102
GS-Medium 51.3 539 172 2721 567 551
GS-Large 131.3 1344 421 4129 924 898

Table 3: Characteristics of Different Input Sets for GhostScript

cator. These values are overlaid with the normalized execution time
when we include the additional delays introduced by the memory
hierarchy. Although some applications execute significantly longer
than others, the execution time for different DSA implementations
within a single application usually differs by less than 10%-20%,
as indicated by Figure 1. The clear blocks overlaying the nor-
malized execution time in Figures 4 and 5 show the normalized
execution time for each application when we consider cache misses
in small (16K) and medium (64K) direct-mapped caches using a
modest cache miss penalty (25 cycles). These figures include only
the effects of data cache misses. If an application executed I in-
structions with D data references, a data cache miss rate of M and
a miss penalty of P , we estimated the total execution time to beI + (M � P )D. We assume all instructions, including loads and
stores, complete in a single machine cycle, and ignore the effects of
page faults, instruction cache misses and other cache design issues.
Page faults are not considered for reasons described in x4.1, and
other effects (such as instruction cache misses) are relatively con-
sistent across the different DSA implementations and less relevant
to our study.

Figures 4 and 5 show that the reference locality of DSA imple-
mentations can significantly influence the overall execution time of
a program. However, there is no single DSA implementation that
increases reference locality in any significant way across all appli-
cations. Figures 4 and 5 show the effect of cache misses for only a
small range of cache sizes and for a single input set for each applica-
tion. When considering all applications, allocators and cache sizes,
the quantity of data precludes an exhaustive presentation, and we
will use one application (GhostScript) to illustrate several points in
the remainder of this section because Figures 4 and 5 show the most
variance for the GhostScript application. We ran the GhostScript
application using three different input sets. Table 3 shows that each
input set evoked significantly different execution characteristics.
Figures 6, 7 and 8 show the cache miss rates for these different
input sets while we vary the size of the direct-mapped cache from
16K to 256K.

These figures illustrate several important points for this appli-
cation. First, there are significant differences in the cache miss
rate for different DSA implementations across all the input sets and
cache sizes. Quite naturally, these differences are muted for the
smaller input set that ostensibly allocates and references a smaller
amount of data. For each input set, we see that the DSA imple-
mentation with the largest cache miss ratio is FIRSTFIT. Recall that
this implementation also suffered from extremely poor page ref-
erence locality. The remainder of the DSA implementations have
markedly better cache locality, although the other first-fit imple-
mentation (GNU G++) has the second highest miss rate. In the other
applications, no other DSA implementation has such exceptionally
poor behavior.

From this data, we can conclude that searching a freelist, as
done by FIRSTFIT and GNU G++, is disastrous for page reference
and cache locality. As noted, our earlier study [8] indicated that
this searching bestowed little advantage on these algorithms; they

tend to use slightly less space than other DSA implementations, but
at a sizable execution time penalty. Although these allocators have
attributes that are theoretically appealing, they are not suitable DSA
implementations for modern architectures and programming styles.
This is not caused by a naı̈ve implementation; both FIRSTFIT and
GNU G++ are well crafted and exploit many of the improvements
that have been suggested for first-fit allocators.

The differences between the remaining DSA implementations
we considered is inconclusive. Indeed, Figures 6, 7 and 8 show
that each implementation has the smallest miss rate in one of the
different data sets. This is surprising, because one implementa-
tion, GNU LOCAL, expends considerable effort to garner reference
locality. Tables 4 and 5 show that, for 16K and especially for 64K
direct-mapped caches, this is largely successful. Each table shows
the total estimated execution time for each allocator and application
and the portion of that execution time attributable to cache misses.1

The GNU LOCAL allocator does reduce delays from cache misses,
but it doesn’t take advantage of the rapid allocation and dealloca-
tion techniques used in the QUICKFIT or BSD allocators and thus
the overall execution time for GNU LOCAL is larger than QUICKFIT
or BSD. However, for caches with very high miss penalties, the
reduced miss rate may have a more significant effect. The algorith-
mic changesto enhance locality are more effective for moderate size
caches. Small caches can not contain enough of the working set and
suffer from high cache misses. Large caches contain enough of the
working set that all algorithms begin to perform well, discounting
the additional effort expended by GNU LOCAL. Clearly, “large,”
“moderate” and “small” are not absolute measure – the important
cache sizes depend on the application behavior.4.3 Design Decisions for Improving Reference Locality
The focus of this paper is to highlight the design principles for
developing a DSA implementation that achieves high reference lo-
cality. Reference locality, both at the level of pages and caches,
is important because it can increase the actual program execution
time, as shown by Figures 4 and 5. Efficient storage management
for DSA implementations can affect the page reference locality, as
shown in Figure 2. Many DSA algorithms, such as FIRSTFIT, GNU
G++ and GNU LOCAL attempt to reduce the amount of memory
requested from the operating system. In computers lacking virtual
memory or having very limited physical memory, this is an ap-
propriate consideration. However, on most modern architectures,
space considerations should, within reason, be secondary to overall
performance. If an allocator requests memory pages, but they are
not actively referenced, then they have little effect on the program
performance.

1These are estimated execution times;however, the execution time for the configura-
tion most similar to our test vehicle (a DECstation-5000/120 with 64K direct-mapped
data cache), closely match the actual execution times, some of which are listed in
Table 2.



ESPRESSO GS PTC GAWK MAKE

Total Total Total Total Total
Allocator time (sec)/ time (sec)/ time (sec)/ time (sec)/ time (sec)/

Miss Miss Miss Miss Miss
time (sec) time (sec) time (sec) time (sec) time (sec)

FIRSTFIT 199.67/43.01 113.13/29.11 26.14/3.19 85.85/9.94 3.93/0.38
QUICKFIT 192.16/41.85 90.18/12.22 24.84/2.62 72.02/12.12 3.57/0.21
GNU G++ 188.14/34.94 91.38/15.09 25.50/2.82 77.25/14.87 3.70/0.27
BSD 184.80/34.39 89.65/14.65 24.93/2.62 70.35/10.14 3.55/0.18
GNU LOCAL 213.07/35.40 100.74/16.44 25.36/2.57 89.25/13.84 3.67/0.13

Table 4: Total estimated execution time and time waiting for a 16-kilobyte direct-mapped cache miss in five allocation-intensive programs.

ESPRESSO GS PTC GAWK MAKE
Total Total Total Total Total

Allocator time (sec)/ time (sec)/ time (sec)/ time (sec)/ time (sec)/
Miss Miss Miss Miss Miss

time (sec) time (sec) time (sec) time (sec) time (sec)
FIRSTFIT 164.74/8.08 103.60/19.59 24.16/1.21 79.18/3.27 3.69/0.14
QUICKFIT 159.16/8.85 81.29/3.32 23.27/1.04 61.83/1.92 3.45/0.08
GNU G++ 163.74/10.55 82.96/6.67 23.83/1.16 65.20/2.82 3.53/0.09
BSD 163.14/12.72 78.95/3.95 23.45/1.15 62.40/2.19 3.43/0.06
GNU LOCAL 185.33/7.67 88.15/3.85 23.77/0.98 76.70/1.29 3.60/0.05

Table 5: Total estimated execution time and time waiting for a 64-kilobyte direct-mapped cache miss in five allocation-intensive programs.

Metric ESPRESSO GS PTC GAWK MAKE

GNU LOCAL (w/tags) Miss rate 0.880 0.580 0.600 0.250 0.240
GNU LOCAL (w/tags) Miss penalty
(% of total (no tags) exec. time) 5.27 4.51 4.91 1.99 1.78
GNU LOCAL (no tags) Miss rate (%) 0.680 0.560 0.500 0.210 0.200
GNU LOCAL (no tags) Miss penalty
(% of total (no tags) exec. time) 4.14 4.37 4.13 1.68 1.49
Penalty due to boundary tags
(% of total (no tags) exec. time) 1.13 0.14 0.78 0.31 0.29

Table 6: The effect of boundary tags on execution time in the GNU LOCAL allocator with a 64-kilobye direct-mapped cache. The rows show
the miss penalty and execution time degradation for the GNU LOCAL allocator both with and without boundary tags. The final row shows the
percentage increase in execution time due to cache misses caused by boundary tags.



0 64 128 192 256
Cache Size (Kbytes)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

C
ac

he
 M

is
s 

R
at

e 
(%

)

FirstFit
QuickFit
GNU g++
BSD
GNU local

Figure 6: Data cache miss rate for GhostScript (GS-Small)

0 64 128 192 256
Cache Size (Kbytes)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

C
ac

he
 M

is
s 

R
at

e 
(%

)

FirstFit
QuickFit
GNU g++
BSD
GNU local

Figure 7: Data cache miss rate for GhostScript (GS-Medium)

0 64 128 192 256
Cache Size (Kbytes)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

C
ac

he
 M

is
s 

R
at

e 
(%

)

FirstFit
QuickFit
GNU g++
BSD
GNU local

Figure 8: Data cache miss rate for GhostScript (GS-Large)

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

<=12 <=40 <=80

Figure 9: Mapping Allocation Requests

As mentioned earlier, the BSD allocator can waste considerable
memory, enough so to warrant the “within reason” caveat. This
wasted space occurs because BSD was not designed with sufficient
knowledge of the way programs actually behave [29]. Similarly,
QUICKFIT is efficient for a pre-determined range of “size classes,”
determined by experience and anecdotal evidence; various tech-
niques can make QUICKFIT suitable for most programs [8].

We believe the structure of the QUICKFIT allocator should be
the foundation for high-performance DSA implementations. Are
there ways to improve on QUICKFIT? We believe some techniques
used in the GNU LOCAL allocator are applicable, and will further
improve the reference locality of the QUICKFIT-style allocators.

Recall that the QUICKFIT allocator manages a subset of the
possible allocation request sizes; the remaining requests must be
managed by another, more general allocator. When deallocating
an object, we must determine which allocator is responsible for
that object. The implementation of QUICKFIT we considered uses
boundary tags to indicate the allocator responsible for the object.
Boundary tags “pollute” the cache; the information in the bound-
ary tag is only useful to the allocator, and Figure 1 indicates that
a properly designed allocator should contribute only a small frac-
tion to the total execution time. With boundary tags, the memory
before and after each allocated object records the size of the ob-
ject and indicates whether that object is currently allocated or free.
This information will typically be brought into the cache when the
object is referenced. This wasted space increases the cache miss
rate by reducing the effectiveness of prefetching; boundary tags,
rather than useful data, may be prefetched. Our measurements in
related work [30] confirm previous observations that programs tend
to allocate many small objects; we found that 24 bytes was a very
common allocation request size. Common boundary tag implemen-
tations add eight bytes of overhead information to each allocated
object; thus,�25% of the cache may hold information useful only
to the memory allocation subroutines.

As mentioned in x2.1, the GNU LOCAL allocator does not use
boundary tags. Not only does this reduce the total memory needed
because less memory is devoted to boundary tags, it also slightly
improves the reference locality. Table 6 shows the cache miss rates
for a modified version of the GNU LOCAL allocator that allocates
an additional eight bytes of data for each object. This extra space
emulates the effect of cache pollution by the boundary tags without
otherwise influencing the DSA implementation. Boundary tags
increase total execution time by 0.1%-1.1%, and the contribution
would increase as cache miss penalties increase.4.4 An Architecture for E�cient Memory Allocation
We can use the results of our experimentation to guide the design of
efficient DSA implementations by discarding inefficient designs and
identifying the most important characteristics present that provide
efficiency. The inefficient design elements are:



Search & Coalescing: Algorithms that search for free space, such
as FIRSTFIT and GNU G++ are generally slower than other al-
gorithms and have poor reference locality. Fortunately, many
programs do not need these general allocators for every al-
location; most programs have patterns of behavior that can
be handled in more efficient ways. However, these algo-
rithms are needed to allocate infrequently allocated objects
or objects that deviate from the “normal” program behavior.

Explicit Cache Management: Our measurements show that the
GNU LOCAL allocator, which was carefully crafted to provide
good cache locality, did not have miss rates significantly
lower that the BSD or QUICKFIT algorithms. Even though
the miss rates of the GNU LOCAL allocator were sometimes
marginally lower that the BSD or QUICKFIT allocators, the
added CPU overhead in the GNU LOCAL allocator resulted
in longer total execution times based on cache miss penalties
associated with existing computer architectures. In the future,
if cache miss penalties increase dramatically, the added CPU
overhead required to obtain the marginal increase in locality
may then be warranted.

Our measurements have also shown that techniques intended
primarily to decrease execution time also result in increased refer-
ence locality. In particular, segregated-storage allocators such as
BSD and QUICKFIT solve two problems simultaneously: they allow
very rapid allocation and deallocation and at the same time they
promote rapid object re-use leading to higher reference locality.

A central aspect of the design of segregated-storage algorithms
is the choice of object sizes handled by the fast freelists. Algorithms
can choose to merge many object sizes together (e.g., rounding up
to a power of two in the BSD allocator) handling the entire class of
sizes with a single freelist, or algorithms can handle each distinct
size request with a different freelist. Merging sizes enhances rapid
object re-use but wastes storage space due to internal fragmentation.
The BSD algorithm is an example of an allocator that shows good
re-use but excessive fragmentation. The alternative, using many
distinct size freelists, reduces object re-use but eliminates internal
fragmentation problems.

The best allocator strikes a balance between too few and too
many size classes. The choice of these size classes can be based
on several approaches. First, anecdotal evidence about the best
choice of size classes can be used and that kind of evidence was the
basis for the QUICKFIT implementation that we measured. Second,
size classes can be chosen in such a way that the amount of internal
fragmentation is bounded (e.g., if 25% or less internal fragmentation
is tolerated, then objects of size 12–16 bytes are rounded to 16
bytes) [5]. Finally, we advocate basing the choice of size classes
on empirical measurements of a particular program’s behavior. In
previous work [8], we have shown that allocator “customization”
results in very fast allocators. Such customized allocators could also
be designed to promote the most effective object re-use, leading to
enhanced cache locality.

Implementing non-uniform size-merging operations requires al-
locators to implement an arbitrary mapping between the object re-
quest size and the associated size class size. One reason for the
crude powers-of-two mapping used in the BSD algorithm is that
it is easy to compute. However, arbitrary mappings can be im-
plemented efficiently using a size-mapping array, as illustrated in
Figure 9. With such an array, size requests can be rounded-up to
arbitrary sizes.

One way to reduce the space overhead and increase the refer-
ence locality of programs is to eliminate the per-object boundary
tag information for objects needed in the BSD and QUICKFIT im-
plementations. While the GNU LOCAL implementation does elimi-
nate per-object tags, measurements in Table 6 show that the cache

performance improvement associated with eliminating even 8-byte
boundary tags is quite small. We conclude that boundary-tag elim-
ination has mixed performance advantages on current architectures
and is not warranted if the elimination increases the cost of alloca-
tion and deallocation significantly.5 Conclusions
In this paper, we investigated the effect of dynamic storage alloca-
tion on program reference locality. We conclusively showed that the
choice of DSA algorithm has a strong impact on program reference
locality. This impact can significantly reduce program performance
in modern computer architectures.

Using trace-driven simulation, we measured the cache miss rates
and page fault rates for a broad range of cache and memory sizes
in five allocation-intensive programs. We conclude that allocators
based on sequential-fit methods, such as first-fit, best-fit, etc, have
poor reference locality. Even though these algorithms reduce the
total memory requirements of programs, this reduction does not
result in increased reference locality.

We conclude that efforts to reduce total memory utilization in
DSA implementations, such as coalescing adjacent free blocks,
will in most cases both increase total execution time and reduce
program reference locality. Our measurements show that the most
CPU efficient allocators, such as BSD or QUICKFIT, also provide the
best locality of reference. Locality in these algorithms is enhanced
because they are designed on the principle that programs allocate
objects with a small number of distinct sizes, and the allocators
rapidly recycle free objects of those sizes.5.1 Future Work
We are extending our previous work in synthesized allocators using
the information we gained in this study. Ideally, our general-purpose
allocator will work well for many programs and can be improved
further using customization. We also hope to include other work in
program behavior prediction based on call site information [2] in
the synthesized allocators.6 Acknowledgements
This material is based upon work supported by the National Science
Foundation under Grants No. CCR-9010624, CCR-9121269 and
CDA-8922510. We would like to thank James Larus for develop-
ment of the QP utility, which greatly simplified our experimentation,
and Doug Lea, Mike Haertel and Mark Moraes for the use of and
information about their allocators. We also thank the reviewers for
their comments.References

[1] Thomas Ball and James R. Larus. Optimally profiling and
tracing programs. In Conference Record of the Nineteenth
ACM Symposium on Principles of Programming Languages,
pages 59–70, January 1992.

[2] David Barrett and Benjamin Zorn. Using lifetime predictors
to improve memory allocation performance. In SIGPLAN’93
Conference on Programming Language Design and Imple-
mentation, Albuquerque, June 1993.

[3] Gerald Bozman. The software lookasize buffer reduces search
overhead with linked lists. Communications of the ACM,
27(3):222–227, March 1984.



[4] David Callahan, Ken Kennefy, and Allan Porterfield. Software
prefetching. In Fourth Intl. Conf. on Arch. Support for Pro-
gramming Languages and Operating Systems, pages 40–52,
April 1991.

[5] John DeTreville. Heap usage in the Topaz environment. Tech-
nical Report 63, Digital Equipment Corporation System Re-
search Center, Palo Alto, CA, August 1990.

[6] Digital EquipmentCorporation. Unix Manual Page for PIXIE,
ULTRIX V4.2 (rev 96) edition, September 1991.

[7] A. J. Goldberg and J. Hennessy. Performance debugging
shared memory multiprocessor programs with MTOOL. In
Proceedings Supercomputing ’91, pages 481–491, 1991.

[8] Dirk Grunwald and Benjamin Zorn. CUSTOMALLOC:Efficient
Synthesized Memory Allocators. Technical Report CS-CS-
602-92, Department of Computer Science, University of Col-
orado, Boulder, Boulder, CO, July 1992.

[9] Mike Haertel. Description of GNU malloc implementation.
Personal communication, August 1991.

[10] Mark D. Hill. TYCHO. University of Wisconsin, Madison,
WI. Unix manual page.

[11] Norman P. Jouppi. Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache and
prefetch buffers. In Proceedings of the Seventeenth Annual
International Symposium on Computer Architecture, pages
364–373, Seattle, WA, May 1990.

[12] Chris Kingsley. Description of a very fast storage alloca-
tor. Documentation of 4.2 BSD Unix malloc implementation,
February 1982.

[13] Donald E. Knuth. Fundamental Algorithms, volume 1 of The
Art of Computer Programming, chapter 2, pages 435–451.
Addison Wesley, Reading, MA, 2nd edition, 1973.

[14] David G. Korn and Kiem-Phong Vo. In search of a better mal-
loc. In Proceedings of the Summer 1985 USENIX Conference,
pages 489–506, 1985.

[15] M.S. Lam, P. W. Wilson, and T. G.Moher. Object type directed
garbage collection to improve locality. In Proceedings of the
International Workshop on Memory Management, St. Malo,
FRANCE, September 1992. Springer Verlag.

[16] Doug Lea. An efficient first-fit memory allocator. (From
comments in source and personal communication).

[17] Alvin R. Lebeck and David A. Wood. CPROF: A cache per-
formance profiler. Technical report, Computer SciencesDept.,
Univ. of Wisconsin—Madison, July 1992.

[18] Henry Lieberman and Carl Hewitt. A real-time garbage col-
lector based on the lifetimes of objects. Communications of
the ACM, 26(6):419–429, June 1983.

[19] Jeffrey C. Mogul and Anita Borg. The effect of context
switches on cache performance. In Proceedings of the Fourth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-IV),
pages 75–84, Santa Clara, CA, April 1991.

[20] David A. Moon. Garbage collection in a large Lisp system.
In Conference Record of the 1984 ACM Symposium on LISP
and Functional Programming, pages 235–246, Austin, Texas,
August 1984.

[21] A.J. Smith. Line (block) size choice for CPU cache mem-
ories. IEEE Transactions on Computers, 36(9):1063–1075,
September 1987.

[22] Thomas Standish. Data Structures Techniques. Addison-
Wesley Publishing Company, 1980.

[23] David Ungar. Generation scavenging: A non-disruptive
high performance storage reclamation algorithm. In SIG-
SOFT/SIGPLAN Practical Programming Environments Con-
ference, pages 157–167, April 1984.

[24] Charles B. Weinstock and William A. Wulf. Quickfit: An
efficient algorithm for heap storage allocation. ACM SIGPLAN
Notices, 23(10):141–144, October 1988.

[25] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher.
Caching considerations for generation garbage collection. In
Proceedings of the 1992 ACM Conference on LISP and Func-
tional Programming, pages 32–42, San Francisco, CA, June
1992. ACM.

[26] Paul R. Wilson, M.S. Lam, and T.G. Moher. Effective ’static
graph’ reorganization to improve locality in garbage-collected
systems. In Proceedings of the ACM SIGPLAN ’91 Confer-
ence on Programming Language Design and Implementation,
volume 26, pages 177–191, Toronto, Ontario, Canada, June
1991.

[27] Benjamin Zorn. Comparative Performance Evaluation of
Garbage Collection Algorithms. PhD thesis, University of
California at Berkeley, Berkeley, CA, November 1989. Also
appears as tech report UCB/CSD 89/544.

[28] Benjamin Zorn. The effect of garbage collection on cache per-
formance. Technical Report CU-CS-528-91, Department of
Computer Science, University of Colorado, Boulder, Boulder,
CO, May 1991.

[29] Benjamin Zorn and Dirk Grunwald. Empirical measurements
of six allocation-intensive C programs. SIGPLAN Notices,
27(12):71–80, December 1992.

[30] Benjamin Zorn and Dirk Grunwald. Evaluating models of
memory allocation. TechnicalReport CU-CS-603-92, Depart-
ment of Computer Science, University of Colorado, Boulder,
Boulder, CO, July 1992.


