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abstract

This paper studies the fluid models of two-station multiclass queueing networks with deterministic
routing. A fluid model is globally stable if the fluid network eventually empties under each non-
idling dispatch policy. We explicitly characterize the global stability region in terms of the arrival
and service rates. We show that the global stability region is defined by the nominal workload
conditions and the “virtual workload conditions” and we introduce two intuitively appealing phe-
nomena: virtual stations and push starts, that explain the virtual workload conditions. When any
of the workload conditions is violated, we construct a fluid solution that cycles to infinity, showing
that the fluid network is unstable. When all of the workload conditions are satisfied, we solve a net-
work flow problem to find the coefficients of a piecewise linear Lyapunov function. The Lyapunov
function decreases to zero proving that the fluid level eventually reaches zero under any non-idling
dispatch policy. Under certain assumptions on the interarrival and service time distributions, a
queueing network is stable or positive Harris recurrent if the corresponding fluid network is stable.
Thus, the workload conditions are sufficient to ensure the global stability of two-station multiclass
queueing networks with deterministic routing.
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Introduction

Queueing networks offer an appealing method for modeling complex manufacturing processes and
have been used to model telecommunication networks and manufacturing systems like wafer fabri-
cation facilities. Unfortunately, they are themselves generally too complex for successful analysis.
For example, the primary tool for evaluating the performance of a given dispatch policy is simula-
tion. In fact, we generally resort to simulation even to determine whether a queueing network is
stable under a given dispatch policy or whether the servers are unable to manage the workload.

Even very simple queueing networks exhibit surprising and often counterintuitive behavior.
Consider the simple two-station re-entrant queueing network depicted in Figure 1, where m,, is the
average processing time for stage k& and jobs arrive at rate A\. The two rectangles indicate the two
stations, Station A and Station B, and the line traces the route the jobs follow between them. In
this example, each job passes through five stages of processing: the first, at Station A, lasts an
average of m, time units; the second, at Station B, lasts an average of m, time units; the third,
again at Station A, lasts an average of mg time units, and so on. At any point in time, Station A,
for example, may have jobs waiting in all three of the stages it serves and must decide which job to
process next. A strategy for making these decisions at each station constitutes a dispatch policy. Dai
and Vande Vate (1996) showed that under certain non-idling (or work-conserving) dispatch policies
the servers are unable to serve jobs as quickly as they arrive even when the nominal workload at
each station is significantly less than 100%, i.e., A(mq; + m3 + mys) < 1 and A(my +my) < 1. In
fact, Dai and Vande Vate (1996) showed that if the servers give highest priority to jobs at stages 2
and 5, they will be unable to serve the jobs as quickly as they arrive unless the nominal utilization
at each station is less than 100% and

A(my +mg) < 1.
For example, if the average service times are
(0.1,0.6,0.1,0.1,0.6),

servers employing this dispatch policy will be able to keep up with the workload only if the arrival
rate to the system satisfies A\ < 1/(m, + my) = 5/6. The condition A(mg + m5) < 1 reflects the
fact that under this dispatch policy Station A and Station B can serve their high priority stages

Station A Station B
A
> m > 2
> 3 > M
> m5 >

Figure 1: A five class network



simultaneously only during a transient initial period. Thus, although they are served by different
stations, these two stages can form a bottleneck that determines the capacity of the entire system.
We discuss this phenomenon, which we call a “virtual station”, in more detail in Section 2.

This paper focuses on the deterministic fluid network corresponding to a given queueing network.
For the fluid network corresponding to the queueing network pictured in Figure 1, fluid arrives
continuously from the outside at rate A. The server at Station A pumps fluid in stages 1, 3 and
5 and the server at Station B pumps fluid in stages 2 and 4. When a server devotes its full effort
to stage k fluid, it pumps at a maximum rate of p; = 1/my, assuming there is stage k fluid,
k=1,...,5. A dispatch policy in the fluid network context describes how to allocate each server’s
pumping capacity at each time among the different stages it serves. A fluid network is stable under
a dispatch policy if it will eventually empty no matter what the initial fluid levels are.

Our work is largely motivated by a result of Dai (1995) showing that, under certain distributional
assumptions on interarrival and service times, a queueing network is stable or positive Harris
recurrent if the corresponding fluid network is stable. Related work can be found in Rybko and
Stolyar (1992), Chen (1995), Dai and Meyn (1995), Stolyar (1994), Meyn (1995), Dai (1996) and
Bramson (1998a).

We develop necessary and sufficient conditions for a two-station fluid network to be globally
stable or stable under any non-idling dispatch policy. Determining the global stability region is
especially important when it is difficult or impossible to implement a well-studied dispatch policy.
In such systems, it is possible for servers to unwittingly employ a policy under which the system
is unstable even though the traffic intensity or nominal workload at each station is less than one.
Although it is sometimes difficult to avoid such bad policies, we can avoid their consequences by
maintaining service times that are in the global stability region. In this way, we can ensure that
even under bad policies, the system will remain stable.

We show that a two-station fluid network is globally stable if and only if the processing times
satisfy the nominal workload conditions and the “virtual workload conditions”. In particular, we
introduce two intuitively appealing phenomena, virtual stations and push starts, that give rise to the
two classes of virtual workload conditions: “virtual station conditions” and “push start conditions”.

Virtual stations affect the global stability of two-station fluid networks because, under some
non-idling dispatch policies, certain groups of stages cannot be served simultaneously even though
they are served at different stations. Thus, just as at stations, the traffic intensities at these groups
must be less than one.

Push starts magnify the influence of virtual stations in fluid networks by giving highest priority
to the first few stages. Fluid passes through these stages to the rest of the network as quickly as it
arrives, but having focused so much attention on the first few stages, the servers have less capacity
to dedicate to the rest of the network. Push starts do not influence the capacity of a single station
because the work required to serve the remaining stages at a station is reduced by exactly the effort
required to expedite the first few stages. Push starts do influence the capacity of virtual stations,
however, because they involve stages at both stations: the effort spent expediting stages at one
station does not reduce the work remaining at the other.

Under certain distributional assumptions, the virtual workload conditions together with the
nominal workload conditions are sufficient to ensure the global stability of two-station queueing
networks. An independent argument in a companion paper Dai and Vande Vate (1996) shows that
the virtual station conditions are also necessary for the global stability of two-station queueing
networks. The push start conditions, however, are not in general necessary. See, for example, Dai
and Vande Vate (1996).

There has been a recent surge in the study of stability conditions for multiclass queueing



networks. These studies were primarily motivated by Kumar and Seidman (1990), Lu and Ku-
mar (1991), Rybko and Stolyar (1992), Bramson (1994a, 1994b) and Seidman (1994), which demon-
strated that a number of non-idling dispatch policies are unstable even if the traffic intensity at
each station is less than one. In these unstable examples, the total number of jobs in the system
goes to infinity with time. Other recent work on the stability of queueing networks and fluid net-
works includes: Harrison and Nguyen (1995), Bramson (1997, 1998b), Bertsimas, Gamarnik and
Tsitsiklis (1996), Dumas (1996, 1997), Dai and Weiss (1996), Foss and Rybko (1995), Winograd
and Kumar (1996), Kumar and Meyn (1995, 1996), Chen and Zhang (1997, 1998), Morrison and
Kumar (1998), Hasenbein (1997).

Recently, Bertsimas, Gamarnik and Tsitsiklis (1996) showed that a two-station fluid network is
globally stable if and only if a certain linear program has bounded objective value. In this paper we
extend the results of Bertsimas et al. by stating explicitly in terms of the arrival rates and service
times, necessary and sufficient conditions for a two-station fluid network to be globally stable.

The explicit description of necessary and sufficient conditions for the global stability of two-
station fluid networks provides a number of corollaries not immediately available from the lin-
ear programming characterization of Bertsimas, Gamarnik and Tsitsiklis (1996). Most important
among these is a complete understanding of global stability in two-station fluid networks via virtual
stations and push starts. In addition, our conditions demonstrate that the global stable region of a
two-station fluid network is monotone, i.e., reducing service times maintains global stability. This
is not the case for stability with respect to a given dispatch policy. It is possible for a dispatch
policy to be stable for a given fluid network, but unstable when the service times are reduced. For
fluid networks with more than two stations, even the global stable region need not be monotone
(see, for example, Dai, Hasenbein and Vande Vate 1998).

Our approach relies on the fact that a fluid network is stable if there is a piecewise linear
Lyapunov function for it. We formulate the problem of determining the coefficients of the Lya-
punov function as a linear programming problem, which has unbounded objective values only if
the coefficients and hence the Lyapunov function exist. Our linear program arises directly from
the piecewise linear Lyapunov function introduced in Dai and Weiss (1996), which generalizes that
of Botvich and Zamyatin (1992) and is simpler than that independently formulated by Down and
Meyn (1994).

We transform our linear program into a parametric network flow problem in an acyclic network.
The fluid network is globally stable if there is a value of the parameter for which the minimum flow
in this network is sufficiently small. Thus, invoking the Min-Flow Max-Cut Theorem, we see that
the fluid network is globally stable if there is a value of the parameter for which the capacity of
each cut in the acyclic network is sufficiently small. Finally, we show that these “cut conditions”
are equivalent to the more easily understood virtual workload conditions.

In Dai and Vande Vate (1996), we show that the virtual station conditions are necessary for
the stability of two-station queueing networks by showing that under certain non-idling dispatch
policies, both stations cannot simultaneously serve the classes of a virtual station. This implies
that the virtual station conditions are also necessary for the stability of two-station fluid networks.
We also provide an example showing that the push start conditions need not be necessary for global
stability in these networks. In this paper, we offer a direct construction showing that both the virtual
station conditions and the push start conditions are necessary for the stability of two-station fluid
networks. In particular, when the service times strictly violate the virtual workload conditions, we
construct a non-idling dispatch policy that causes the work-in-process to grow without bound. We
are able to construct the policy without knowing the specific service times since it depends only
on the violated conditions. In every case, we identify a finite sequence of states through which the



fluid network cycles with greater work-in-process in each successive cycle.

The proof in Dai and Vande Vate (1996) that the virtual station conditions are necessary to
ensure global stability requires less detailed analysis and applies to a broader class of networks
encompassing both queueing networks and fluid networks. The proof presented here is rather
detailed and applies only to two-station fluid networks. It does, however, demonstrate the necessity
of the push start conditions for two-station fluid networks and show exactly how the work-in-process
in an unstable system swings from class to class as it grows to infinity. Further, it is not apparent
how to extend the simpler proof given in Dai and Vande Vate (1996) to certain classes of conditions
necessary to ensure the global stability of fluid networks with more than two stations. These larger
networks appear to require the more direct proof technique used in this paper (see, for example,
Dai, Hasenbein and Vande Vate 1998).

We show that whenever the fluid network is unstable, there is a static buffer priority dispatch
policy under which the work-in-process goes to infinity. Thus, the class of static buffer priority
dispatch policies is “worst” among all non-idling policies in the sense that a two-station fluid
network is globally stable if and only if it is stable under all static buffer priority dispatch policies.

We introduce the virtual workload conditions in Section 2 and show that they are sufficient for
stability in Sections 3 through 6. Finally, we prove they are necessary for stability in Section 7.

1 Preliminaries

Before introducing the virtual workload conditions, we give a brief review of the Minimum Flow
Problem and introduce our notation for fluid networks. For an excellent and accessible treatment
of network flows, see Ahuja et al. (1993).

1.1 The Minimum Flow Problem

Consider a directed network (N, E) with node set N and edge set E. We distinguish two vertices
s, the source, and ¢, the sink. Given (possibly infinite) lower bounds £ = (¢;;) and upper bounds
u = (u45), we wish to find a minimum flow from the source s to the sink ¢ subject to flow conservation
constraints and edge capacity constraints. Thus, the minimum flow problem is:

minimize v

subject to
(1.1) szj_zxjs = v
JEN JEN
(1.2) Z Tij — Z zj; = 0 for each nodei € N\ {s,t}
jEN jEN
(1.3) Z Tyj — Z Tjp = —v
JEN JEN
(1.4) lij < mij < uj for each edge (i,7) € E.

Suppose (z,v) satisfies (1.1) (1.4). We refer to the vector = as a feasible flow and the value v as
the value of the flow . A minimum flow is a feasible flow with smallest value among all feasible
flows.

An s,t-cut in the network (N, E) is a partition of N into two sets S and T with s € S and



t € T. The capacity of the cut (S,T), denoted ¢(S,T), is:

c(S,T) = Z lij — Z Uij-

(i,j)EEHE€S,j€T (i,j)EEHET,jES

Note that our definition of capacity interchanges the roles of upper and lower bounds in the usual
definition as applied to the maximum flow problem. This definition is appropriate for the minimum
flow problem and is sometimes referred to as the floor of a cut. A mazimum s,t-cut is one with
largest capacity among all s,#-cuts. Theorem 1.1 is a classic result of network flows and can be
found in Ahuja et. al. (1993, Exercise 6.18, pp. 202).

Theorem 1.1. The value of a minimum flow equals the capacity of a mazimum s,t-cut.

1.2 Multi-Type Fluid Networks

We consider fluid networks with two single-server stations, denoted A and B, and a set [ of different
fluid types. Type i fluid arrives at a constant rate A; > 0 and follows a prescribed route visiting
one station and then the other a number of times before exiting the system. Different types of fluid
may follow different routes. We number the stages fluid ¢ passes through consecutively from 1 to
¢; and let A; and B; denote the stages in which fluid 7 is served at Station A and at Station B,
respectively.

We refer to type ¢ fluids waiting for the kth stage as class (i, k) fluids, which reside in buffer
(i, k). Each unit of class (4, k) fluid requires service lasting m} > 0 units of time. The service time
mfc is the time it takes the station to process one unit of class (i, k) fluid. Equivalently, ,u}c = l/mfc
is the rate at which the server depletes class (i, k) fluid from the buffer when it devotes all its efforts
to serving that class.

A fluid solution is a vector (Q(-), T(-)) = (Q%(-), Ti(-))ies k=1,... c; of functions of time satisfying:

(1.5) QL(t) = Q4(0) + pb TP |(t) — piTi(t) > 0,for t >0, i€ LLk=1,... ¢,
Ti(0) = 0 and T}(t) is nondecreasing for all i € I, and k = 1,... ,¢;,

(1.7) t— Z Z Ti(t) is nondecreasing,
iel keA,

(1.8) t— Z Z Ti(t) is nondecreasing,

1€l keB;

where T{(t) =t and p, = )\; for each type i € I to model the exogenous arrival of fluids.

We interpret Q% (t) as the volume of class (i,k) fluid in the buffer at time ¢, and TF(t) as
the cumulative time spent serving class (i,k) fluids up to time ¢. The relationship between the
buffer levels and the cumulative allocations of effort is given by (1.5) for each class of fluid. These
equations simply relate the buffer levels to the initial buffer levels and the total volume of fluid
entering and leaving each buffer. Conditions (1.6) ensure that no work is completed before time
0. Conditions (1.7) and (1.8) ensure that each server divides its time between serving the various
classes and accumulating idle time.

Each fluid solution (Q(-),T'(-)) has derivatives at almost all times ¢ > 0 (with respect Lebesgue
measure on [0,00)); see Dai and Weiss (1996). A point ¢ € [0,00) is a regular point of the fluid
solution (Q,T) if T is differentiable at t. We henceforth use f(¢) to denote the derivative of f at ¢.



We consider fluid networks under non-idling dispatch policies or policies that do not allow a
server to be idle when there is work for it to do. We can express this restriction via the “comple-
mentarity” conditions on fluid solutions (Q(-),T(-)):

(1.9) Z Z T,é(t) = 1 whenever Z Z Qi.(t) > 0 and ,

i€l keA; i€l keA;
(1.10) Z Z T,é(t) = 1 whenever Z Z Qi(t) >0,
i€l keB; i€l keB;

for each regular point ¢ of (Q(-),T'(+)). The cumulative idle time at Station A up to time ¢ is simply

t=> > Tit)

1€l keA;

and Condition (1.7) ensures that it is nondecreasing. Condition (1.9) further ensures that when
Station A is accumulating idle time, the buffers it serves are empty. The cumulative idle time at
Station B is defined similarly. Henceforth, we consider only fluid solutions satisfying (1.5)—(1.10).
When there is only a single type of fluid, we omit references to the type and speak of class k fluid
as having buffer levels Q. (), etc.

A buffer priority is a one-to-one mapping 7 from the set of buffers onto {1,... ,c}, where ¢ is
the total number of classes in the network. When 7 (i, k) > m(j,£) for two classes both served at
the same station, class (i, k) has higher priority than class (j,£). A static buffer priority discipline
with buffer priorities 7 stipulates that, in addition to (1.5) (1.10), every fluid solution (Q(-),T'(-))
must also satisfy:

(1.11) Z Ti(t) = 1 whenever Z Qi(t) >0

’ie[:keAiyﬂ(iak)Zﬂ(jl) ’ie[:keAiyﬂ(iak)Zﬂ(jl)

for each j € I and £ € A;, and regular point ¢ of (Q(-),T(-)) and

(1.12) Z T,z(t) = 1 whenever Z QL(t) >0

i€T,keB;,m(i,k)>m(j,L) ielkeBi,m(i,k) 27 (j,¢)

for each j € I and £ € B; and regular point ¢ of (Q(:),7(-)). Equations (1.11)-(1.12) dictate that
whenever a buffer accumulates fluid, no lower priority buffer at the same station can receive service.

The fluid network is said to be stable under non-idling dispatch policies, or simply globally stable,
if there is some finite time 7 > 0 beyond which any fluid solution (Q(-),7'(-)) that begins with one
unit of work-in-process or WIP, i.e., with

ci
2.2 Qi) =1,
iel k=1
will have no WIP, i.e.,
ci
YD Qi =0,
iel k=1

for all t > 7. Dai (1995) showed if a fluid network is stable, the corresponding queueing network is
positive Harris recurrent under some distributional assumptions.
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Figure 2: A seven class network

A fluid solution (Q(:),T'(+)) is said to be unstable if there exists {¢,} with #, — oo such that
Q(tn) # 0 for each n. A fluid solution (Q(-), T (-)) is said to diverge to infinity if the WIP goes to
infinity as time ¢ — oo. A divergent fluid solution is clearly unstable.

The traffic intensities or nominal workloads at the stations are:

PA = Z Z )\imf€ and pp = Z Z )\Zm?C

i€l kEA; i€l kEB;

It is well-known (see, for example, Dai 1996) that the fluid network can only be stable if the traffic
intensities are less than one, i.e.,

(1.13) pa<l and pp<l1.

2 Virtual Workload Conditions

The stability conditions for a two-station fluid network take two forms: the nominal workload
conditions (1.13) that arise because classes at the same station must share the server’s time; and
the wirtual workload conditions, generalizing condition A\(mg + m5) < 1 for the fluid network in
Figure 1, that arise through the interactions between virtual stations and push starts.

Two intuitively appealing phenomena give rise to the virtual workload conditions. The intuition
behind the first of these phenomena is best described in the context of queueing networks. The
second phenomenon is most easily understood in the context of fluid networks.

Figure 1 illustrates a simple single-type queueing network. If we give highest priority to class 5
at Station A and to class 2 at Station B, these two classes can only be served simultaneously during
a transient initial period, see Dai and Vande Vate (1996, Lemma 3.1). Thus, these two classes form
a “virtual station” and, although they are served at different stations, the workload at these two
classes cannot exceed 1. This virtual station gives rise to the virtual workload condition:

)\(mQ + m5) <1,

4

which we refer to as a “virtual station condition”. These conditions also apply to fluid networks.



The fluid network of Figure 2 illustrates the second phenomenon giving rise to virtual workload
conditions. Assume that the nominal workload conditions (1.13) hold. If we give highest priority to
class 1 at Station A and to class 2 at Station B in this network, the fluid levels in these two buffers
will reach zero and remain zero thereafter. For the sake of our discussion, we assume that these two
buffers are always empty. Then, the server at Station A will constantly devote a fraction Am, of its
time to class 1 to keep the buffer empty, and hence have only a fraction 1 — Am; of its time left for
other classes at Station A. Similarly, the server at Station B will constantly devote a fraction Am,
of its time to class 2 and have only a fraction 1 — Am,, of its time left for the other classes at Station
B. Note that in a queueing network we cannot anticipate a constant, uninterrupted devotion of
time to these classes, but we can in a fluid network. The fact that the servers are slowed by their
efforts on classes 1 and 2 magnifies the time required to serve each unit of fluid in the remaining
classes. In particular, the server at Station A will require m,/(1 — Amy) units of time to complete
one unit of class 7 fluid and the server at Station B will require m,/(1 — Am,) units of time to
complete one unit of class 4 fluid. Because buffers 1 and 2 remain empty, fluid passes through them
as quickly as it arrives, and hence arrives at buffer 3 at rate A. Thus, push starting the first two
classes magnifies the virtual station condition:

)\(m4 + Wl7) <1

in the induced network to give the virtual workload condition:

Amy, n Am;
1—2Am, 1—2Amy

<1,

ensuring that the virtual station can divide its time between serving the two classes. We refer to
this condition as a “push start condition”.

Together, these two phenomena explain all the virtual workload conditions of two-station fluid
networks. Although these ideas are intuitively appealing, formalizing them is more involved. We
formalize the conditions under which classes at different stations cannot receive service simultane-
ously in the following way.

The first notion in our characterization of virtual stations is the idea of an excursion or set of
consecutive classes at the same station. In the network of Figure 3 each type makes four excursions
at Station A and four excursions at Station B. For example, the second excursion for type 2 consists
of classes (2,2) and (2, 3).

We let E denote the set of excursions and, for each type i € I, we let E' denote the set of
excursions for type i customers, which we number consecutively from 1 to n;. We partition £’ into
Efél, the set of excursions at Station A, and EiB, those at Station B. Since an excursion at one
station must be followed by an excursion at the other (unless it is the last excursion), one of these is
the set of odd numbered excursions and the other is the set of even numbered excursions depending
on where type i customers first enter the network. We use [i, €] to denote the et? excursion for type
i fluid. Recall that (i, k) denotes the type i fluid that is waiting for its kR service.

We let Eli,e] denote the classes of excursion [i,e] and we partition these classes into the last
class and all the rest, which we call first classes of the excursion. We let £[i, e] denote the last class
and f[i, e] the set of first classes in E[i, e]. If an excursion consists of only one class, that class is
the last class and the excursion has no first classes. For example, in the twenty-eight class network
of Figure 3, ¢[1,1] = (1,1), f[1,1] = 0, ¢[1,2] = (1,3), f[1,2] = {(1,2)}, ..., £[1,8] = (1,14) and
f[1,8] = (0. When e > n;, both E[i,e] and f[i,e] are empty. To simplify notation, we sometimes
use /[i, e] to denote the stage number of the last class and f[i, €] to denote the set of stage numbers
of the first classes in excursion E[i, e].
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Figure 3: A twenty-eight class fluid network with two types of fluid

Definition 2.1. The neighbors of a set X of excursions is the set
INX) ={[i,e] € E:[i,e —1] or [i,e+1] is in X}.

Definition 2.2. A set S of excursions is said to be separating if it contains no consecutive excur-
sions. Thus, a set S of excursions is separating if SNT(S) = 0.

Definition 2.3. A separating set S is said to be A-strictly separating if it contains no first excur-
sion at Station A, i.e., if SN{[i,1] € EY, : i € I} = 0. Similarly, a separating set S is said to
be B-strictly separating if it contains no first excursion at Station B, i.e., if SN {[i,1] € B :i €
I} = 0. A separating set S is said to be strictly separating if it contains no first excursion, i.e., if
SC{li,e]:ie€l,e=2,...,n;}.

The set of excursions at Station A, for example, is B-strictly separating. Likewise, the set of
excursions at Station B is A-strictly separating. We refer to these two separating sets as trivial
separating sets.

Each strictly separating set S of excursions induces a virtual station V' (.S) or maximal collection
of classes with the property that if we give highest priority to these classes the two servers can
simultaneously serve classes of V(S) only during a transient initial period.

Definition 2.4. Each separating set S of excursions induces a collection V(S) consisting of the
classes in excursions of S together with the first classes of excursions whose immediate predecessor
18 not in S. Thus,

V(S) = (U aesBli. e]) | (Ui gennsfli-e + 1) .

When S is strictly separating we refer to V(S) as a virtual station.

A virtual station V, then, is a set of classes satisfying:

10



1. No class of a first excursion is in V, i.e., E[i,1] NV = () for each type i.

2. If the last class of an excursion is in V', then every class of that excursion is in V' and if a first
class of an excursion is in V, then every first class of that excursion is in V. Thus, a virtual
station must have either none of the classes, all of the classes, or all but the last class of each
excursion.

3. The last class of an excursion (except a last excursion) is in V' if and only if no class of the next
excursion is in V, i.e., for each excursion e < n;, £[i,e] € V if and only if E[i,e + 1]NV = (.

In the network of Figure 1, the separating set S = {2, 5} of excursions gives rise to the virtual
station V(S) consisting of classes 2 and 5 (there are no first classes in excursion 3). This is the
only virtual station that is not itself a subset of the classes at a station.

The second phenomenon determining the global stability of a two-station fluid network is push
starting. Giving highest priority to the first few classes of each type can magnify the effects of
virtual stations in the subnetwork consisting of the remaining classes.

Definition 2.5. Let e = (e;)ic; be a vector with 1 < e; < n; for each type i. We let F<(e) denote
the push start set consisting of the collection of all classes up to but not including the last class of
excursion [i,e;] for each type i € I and we let R(e) denote all the remaining classes. Thus,

F<(e)={(i,k):i € [,L1 <k </[i,e;]}
and

R(e) = {(i k) :i € I, 4[i,e;] <k < ¢}
We let F<(e) denote the collection of all classes up to and including the last class of excursion
[i,e;] for each type i € 1. Thus,

F<(e)={(i,k):i € 1,1 <k </fi,e]}

Note that if V(S) is a virtual station and F<(e) is a push start set, then V(S) \ F<(e) is the
classes of a virtual station in the subnetwork consisting of the classes of R(e).

Given a set X of classes, we define X 4 to be the classes of X served at Station A and Xpg to be
those served at station B. For example, we use V4(S) to denote the classes of the virtual station
V(S) at Station A and we use F§(e) to denote the classes of F<(e) at Station A. Further, to
simplify our notation, we adopt the convention that for each set X of classes,

Am(X) = Z il
(i,k)eX
Theorem 2.1. A two-station fluid network is globally stable if and only if
(2.1) pa <1, pp<l1,
and for each vector e = (e;)ic; of excursions and each separating set S, we have

An(Va(S)\ Fi(e)) . am(Vg(S)\ Fj(e))
1 Am(F5(e)) 1 — Am(Fj (e))

(2.2)

Furthermore, if some vector e = (€;)ic; of excursions and separating set S satisfy

Am(Va(S)\ Fx(e) | dm(Vi(S) \ Fj(e))
1 — Am(F5(e)) 1 —Am(Fg5(e))
then there exists a non-idling fluid solution such that the WIP diverges to infinity with time.

(2.3) > 1,
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We refer to the conditions (2.2) as the virtual workload conditions. When F'<(e) = (), we refer
to the virtual workload condition (2.2) as a virtual station condition. Otherwise, the condition
involves push starting F'<(e) and we refer to it as a push start condition. For example, the virtual
workload conditions of the fluid network in Figure 2 are:

A(my +my +my) < 1,

A(my +my +my) < 1,
Amg
amg < 1,
lfAml_l_ e
A A
o o<

1—)\m2+1—)\m1

The remainder of this paper is devoted to proving that the nominal workload conditions and the
virtual workload conditions are necessary and sufficient to ensure the global stability of two-station
fluid networks. We argue in Sections 3 and 4 that we can construct a certain piecewise linear
Lyapunov function showing that the WIP will eventually go to zero and remain zero if the arrival
rates and service rates satisfy certain constraints. We then argue in Sections 5 and 6 that these
rather complicated constraints are equivalent to the virtual workload conditions.

In Section 7, we show that the virtual workload conditions (2.2) are necessary to ensure the
global stability of the fluid network. We offer a direct proof that explicitly demonstrates a non-
idling dispatch policy under which, if some vector e = (e;);c; of excursions and separating set S
satisfy (2.3), WIP levels grow without bound. In fact, we demonstrate the trajectory of the fluid
network through a finite sequence of states with greater and greater WIP in each successive cycle.

3 A Piecewise-Linear Lyapunov Function

We show that the virtual workload conditions of Theorem 2.1 are sufficient to ensure global stability
of a two-station fluid network by showing that when they are satisfied there is a potential function
or Lyapunov function G proving that the WIP drains to zero regardless of the initial conditions.
Consider a fluid solution (Q(-),7'(-)). We let Z}(t) denote the volume of fluid i that has already
entered the network by time ¢, but has not yet received class (i, k) service, i.e.,

Zi(t) = Z{(0) + Nt — i Ti () = 3 Qi(h).
<k

We define G to be the maximum of two linear functions of (Z:(¢))  one for each station  and
so it is a piecewise-linear function of the buffer levels (Q%(¢)). In particular, given weights z = (z%)
for the classes, we define the linear functions at Station A and Station B to be:

Ga(z,t) = > Y #Zi(t)/N and

i€l keA;

Gplz,t) = > > @i Zi(t)/ N

i€l keB;

Let
G(z,t) = max{Ga(z,t),Gp(x,t)}.

If there is € > 0 such that

12



e G(z,t) >0 and

o G(z,t) = aGE()T’t) < —¢,

whenever the WIP is not zero at time ¢ and Q(-) and G(z, -) are differentiable at ¢, then after time
7 = G(z,0)/e all buffers will have drained to zero; proving that the fluid network is globally stable.
Dai and Weiss (1996) showed that G will satisfy these conditions if there is € > 0 and weights > 0
such that:

(3.1) Ga(z,t) < Gp(r,t) whenever » > Qi(t) =0,
i€l keA;
(3.2) Gp(z,t) < Ga(w,t) whenever Y > Qi(t) =0,
i€l keB;
(3.3) %AT(:’Q < —e whenever Z Z Qi (t) >0, and
i€l keA;
(3.4) %BT(:J) < —e whenever Z Z Qi(t) >0,
i€l keB;

where conditions (3.1) and (3.2) apply for all £ and conditions (3.3) and (3.4) apply only when # is
a regular point of (Q(-),T(-)). Thus, we have the following proposition.

Proposition 3.1. If there exists € > 0 and © > 0 such that (3.1)-(3.4) hold, the fluid network is
stable under non-idling dispatch policies.

4 A Linear Programming Formulation

We transform the problem of finding weights = such that Ga(z,t) and Gpg(z,t) satisfy (3.1)
(3.4) into a linear programming problem. The linear program has a solution with strictly positive
objective value if and only if the desired weights z exist and any solution with strictly positive
objective value provides weights satisfying the desired conditions.

We first transform (3.1) into linear constraints on z. When

(4.1) > Qi) =0,
i€l keA;

G 4 reduces to:

(4.2) S5 e Y Qi o= Y3 ek S i/

i€l keA; LeB; <k i€l LeB; keA; k>1

and G g reduces to:
(4.3) Yool > @wn] o= DD Qi D w/h
icl kEB; LEB; (<k icl ¢eB; keB; k>0

It follows that (3.1) is satisfied if:

(4.4) D S D

kEA; k>t kEB; k>t
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for each 7 € I and £ € B;. Since the weights z are non-negative, we can restrict attention to those
constraints of (4.4) where £ € B;, but £+ 1 ¢ B;. In other words, (4.4) is equivalent to

(45) Yoomo < Y 4
keA; k>Lie] ke B;,k>{[ie]

for each excursion [7, e| at Station B.
Similar analysis leads to the conclusion that G 4 and G p satisfy (3.2) if:

(4.6) Yoom < Y 4
kEB; k>1[i.e] k€ A; k>0[ie]

for each excursion [4, e] at Station A.
We next transform (3.3) into linear conditions on z. When

Y Qi) >0,

1€l keA;

the non-idling condition (1.9) ensures that Station A is not accumulating idle time and so,

(4.7) DD HOESS

i€l keA;

Now,

Galt) = D alZi)/ A

i€l keA;

= 33w (1 mTin/x)
i€l keA;

DI EDIPBE HHOILY
i€l keA; i€l keA;

Thus, (3.3) is satisfied if:
(48) DD wte < appi/N
jET kEA;

for each 1 € I and ¢ € A;.
Similar analysis shows that (3.4) is satisfied if:

(4.9) N> al e < aiul/n

jEI kEB;

for each 1 € I and ¢ € B;.
Finding the largest possible value of € for which there are weights z satisfying (4.5) (4.6) and
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(4.8)—(4.9) reduces to solving the following linear program for € and x:

(4.10) maximize €

subject to:

(4.11) Z Tt — Z zi < 0for each i € I and [i,e] € By
keA;,k>L[i.e] keB;,k>1[ie]
(4.12) Z zh — Z zi < 0foreach i€ I and [i,e] € EY
ke B; k>L[i.e] ke A k> e]
(4.13) Z Zfri —xiut/Ni+e < Ofori€land /€ A,
JEL kEA;
(4.14) Z Z 7‘% —xbut/Ni+e < Oforieland/€ B,
jel keB;
(4.15) ze > 0

The constraints (4.11)—(4.15) define a cone with the single extreme point given by z = 0 and
€ = 0. Thus, we have the following proposition:

Proposition 4.1. If the linear program (4.10) (4.15) has unbounded objective values, then each
solution (xz,€) with € > 0 provides weights x > 0 such that G(x,t) is a piecewise-linear Lyapunov
function proving that the fluid network is stable.

In Section 5, we transform the linear program (4.10)—(4.15) into a parametric network flow
problem and, by exploiting a dual formulation, derive sufficient conditions for stability of a two-
station fluid network. In Section 6, we show that these conditions are equivalent to the conditions
of Theorem 2.1.

5 A Network Flows Formulation

The linear program (4.10) (4.15) offers a computationally attractive method for determining whether
or not a two-station fluid network with specified service times is globally stable. A network with
given arrival rates and service times is globally stable if the linear program (4.10) (4.15) has un-
bounded objective values. Otherwise, as we show in Section 7, it is not. The linear program does
not, however, provide a theoretically attractive characterization of the global stability region for a
two-station fluid network.

In order to obtain an explicit characterization of the arrival rates and service times under which
a two-station fluid network is globally stable, we translate the linear program (4.10)—(4.15) into an
equivalent parametric network flow problem. The parametric network flow problem is equivalent
to the linear program in the sense that the linear program has unbounded objective values if and
only if there is a value of the parameter for which the network flow problem has strictly positive
objective value.

To transform (4.10)—(4.15) into an equivalent network flow problem, we first observe that since
(4.11) (4.15) defines a cone, there is a solution (z,€) to (4.11) (4.15) with e > 0 if and only if there
is a solution with € > 0 and

(5.1) YN a+e=1

i€l keA;
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Although we can arbitrarily scale the sum of the weights on classes at one station, (we have chosen
Station A) to 1, we cannot simultaneously scale the sum of the weights on classes at the other
station to a fixed value. Thus, we let G denote the sum of the weights on the classes served at
Station B:

(5.2) YN apte=p

1€l keB;

We do not know a priori a value of 8 at which e is maximized, but by treating it as a parameter
rather than a variable, we can express the constraints (4.13) (4.14) as lower bounds:

(5.3) il <zt fori €I and k € A;
,BAlm}C < ’I‘;c fori € I and k € B;.

Next, we add slack variables s = (s.) and write the constraints (4.11)-(4.12) as:

e

(5.5) Z T — Z zh + s =0 for each i € I and [i,e] € EY
ke A k>Lie] ke By k>i.e]

(5.6) Z Tt — Z Tt + st =0 for each i € I and [i,e] € EY.
keB;,k>L[ie] keA;,k>{[i.e]

Adding (5.5) for an excursion [i, €] at Station B and (5.6) for excursion [i,e + 1] at Station A
and multiplying by —1, we obtain:

(5.7) — Z Tt + mé[iye} — st —sl =0
ke flie+1]

Similarly, adding (5.6) for excursion [4, €] at Station A and (5.5) for excursion [, e+ 1] at Station
B, we obtain

(5.8) Z Tt — xé[i’e} + st + st =0.
ke fliet1]

Adopting the convention that 521-4-1 = 0, we can write (5.5) for a last excursion [i,n;] € EY as:

iy i i i
- § : Tkt Tylin,) ~ Sy~ Sng41 = 0
ke flini+1]

and we can write (5.6) for a last excursion [i,n;] € EY, as:

i i i i _
Z Tr — Tl ] +5,, +5p,41 = 0.
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Combining these transformations gives the following linear program:

(5.9) maximize e
subject to:
(5.10) Z Tt — m;}[i gt si+si,, = 0Oforielandie] € E)
ke flie+1]
(5.11) — Z :ri—i—xfé[ie]—sfz—sé“ = OforieIand[ie] € EY
ke flie+1]
(5.12) o> apte =1
i€l keA;
(5.13) Y > ai e = B
icl keB;
(5.14) )\Zm}c < Tf,c foriel and k € A;
(5.15) Brimi, < zi fori€ I and k € B,
(5.16) z,s,e > 0.

There is a value of the parameter 3 such that the linear program (5.9) (5.16) has optimum objective
value € > 0 if and only if the linear program (4.10)—(4.15) has unbounded objective values.

The linear program (5.9) (5.16) is a network flow problem with right-hand-sides and lower
bounds that depend on the parameter 3. The nodes of the network are:

e A node for each excursion [4, €] corresponding to the constraints (5.10) and (5.11).
e A node for each Station A and B corresponding to the constraints (5.12) and (5.13).

e A node called the root corresponding to the redundant constraint

I DI DI R INE D I B

i€l \keB;Nf[i,1] ke A;Nf[i,1] i€l:L[i,1]€B; icl:L[i,1]€A;
obtained by adding (5.10) (5.13) and multiplying by —1.
The edges of the network are:

E.1. An edge from the node for Station A to the node for excursion [i,e] at Station A. This edge
corresponds to the variable .’I,‘é[i ] and has lower bound )\imfé[i o

E.2. An edge from the node for excursion [i,e] at Station B to the node for Station B. This edge
corresponds to the variable .’I,‘é[i ] and has lower bound ﬁ)\imf,;[i o

E.3. An edge from the node for Station A to the node for excursion [i, e] at Station B for each class
(i,k) in f[i,e + 1]. These edges correspond to the variables z¢ for the classes in f[i,e + 1].
The edge for class (i, k) has lower bound A\;m}.

E.4. An edge from the node for excursion [7, ¢] at Station A to the node for Station B for each class
(i,k) in f[i,e + 1]. These edges correspond to the variables z¢ for the classes in f[i,e + 1].
The edge for class (i, k) has lower bound B\;m_.
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€e>0

Ty > BAimg

[1,2]
>0
T > \m] 1= zy > BAimy
() e (2
1 2 2 -3
T5 > Aamn
23 > Xam’ 2= 7 s2>0 x> BAom]
s3>0
2,2 2,1
z3 > Bram] 3 > fAam
T2 > Aagm?
s3>0
2,4 ‘ 2,3
[2,4] 250 [2,3]

Figure 4: This parametric network flow problem is equivalent to the linear program (5.9) (5.16) as
applied to the fluid network in Figure 5. The source A has supply 1. The sink B has demand 5. If
B > 1, the root has supply § — 1. If 8 < 1, the root has demand 1 — 3.
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E.8.
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E.10.

E.11.

Station A Station B
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ml ml

my myg

2 2 A2

My my

m? m?

mg m3

Figure 5: A twelve class fluid network with two types of fluid

An edge from the node for Station A to the root for each class (i, k) in f[i, 1] served at Station
A. These edges correspond to the variables z} for the classes in f[i,1] served at Station A.
The edge for class (i, k) has lower bound A\;m?.

An edge from the root to the node for Station B for each class (i, k) in f[i, 1] served at Station
B. These edges correspond to the variables z} for the classes in f[i, 1] served at Station B.
The edge for class (i, k) has lower bound BA;md.

An edge from the node for excursion [i, 1] at Station A to the root. This edge corresponds to
the variable s¢ and has lower bound 0.

An edge from the root to the node for excursion [z, 1] at Station B. This edge corresponds to
the variable s% and has lower bound 0.

An edge from the node for excursion [i, €] at Station A to the node for excursion [i,e — 1] at
Station B. This edge corresponds to the variable s’ and has lower bound 0.

An edge from the node for excursion [i,e — 1] at Station A to the node for excursion [i, €] at
Station B. This edge corresponds to the variable s’ and has lower bound 0.

An edge from the node for Station A to the node for Station B. This edge corresponds to the
variable e.

The node for A has a supply of 1 and the node for B has a demand for §. The remaining supply

(if 8 > 1) or demand (if 8 < 1) is at the root. The linear program (4.10)—(4.15) has unbounded
objective values if and only if there is a value of § > 0 such that there is a feasible flow in this
network with € > 0. Figure 4, illustrates this construction for the fluid network in Figure 5.

Rather than consider separately the two cases > 1 and 8 < 1, we model the supply or demand

at the root by changing the supply at the node for A and the demand at the node for B to max{1, 5}
and adding two additional edges:

e An edge from the node for A to the root with lower bound max{0, 5 — 1} representing any
supply at the root.
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e An edge from the root to the node for B with lower bound max{0,1 — 3} representing any
demand at the root.

The linear program (4.10)—(4.15) has unbounded objective values if and only if there is § > 0 such
that there is a feasible flow with value max{1, 3} and € > 0. Figure 6, illustrates this construction
for the fluid network in Figure 5.

Finally, for given 8 > 0, there is a flow of value max{1, 8} from A to B in this network (see,
for example, Figure 6) with a strictly positive flow on the edge corresponding to € if and only if
the minimum flow from the node for A to the node for B in this network without the edge for e
(see, for example, Figure 7) is strictly less than max{1, 3}  the remaining flow can be assigned to
€. Thus, we henceforth omit the edge for € from the network and consider the resulting Minimum
Flow Problem.

To summarize, given a feasible solution (x, €) to the linear program (5.9)—(5.16) for some § > 0,
we can construct a feasible solution to the minimum flow problem with value max{1,3} — € by
sending max{0, 5 — 1} on the new edge from A to the root and max{0,1— 3} on the new edge from
the root to B. Conversely, given a feasible flow z for the minimum flow problem for some g > 0
with value max{1, 3} — ¢, (z,¢€) is a feasible solution to the linear program (5.9)—(5.16).

From Theorem 1.1, the value of a minimum flow equals the capacity of a maximum A, B-cut
and so, there are weights z satisfying (5.10) (5.16) if and only if, for some value of 3 > 0, each
A, B-cut in this network has capacity strictly less than max{1,3}. Thus, we have proved the
following lemma.

Lemma 5.1. A two-station fluid network is globally stable if there is a value of B > 0 for which
the capacity of a mazimum A, B-cut is strictly less than max{1, 5}.

Given an A, B-cut (L, R), we let L4 denote the excursions in L that are served at Station A
and Lp denote those served at Station B. Similarly, we let R4 denote the excursions in R served
at Station A and Rp denote those at Station B.

We refer to an A, B-cut with the root in L as an L-cut. An A, B-cut with the root in R is an
R-cut. Note that since the upper bound on each edge is infinite, an A, B-cut (L, R) in this network
has capacity —oo if some edge extends from a node in R to a node in L. That is to say, an A, B-cut
(L, R) in this network has finite capacity if and only if no edge extends from a node in R to a node
in L, i.e., if and only if (L, R) satisfies:

Rule 1. If [i,e] € Lp, then [i,e + 1] is in L4, otherwise the edge corresponding to the variable
5t41 (see E.9) extends from a node in R to a node in L,

Rule 2. If [i,e] € R4, then excursion [i,e + 1] is in Rp, otherwise the edge corresponding to the
variable s} | (see E.10) extends from a node in R to a node in L,

Rule 3. If (L, R) is an R-cut, then [i,1] & Lp for each type i, otherwise the edge corresponding
to the variable s} (see E.8) extends from a node in R to a node in L, and

Rule 4. If (L, R) is an L-cut, then [i, 1] ¢ R4 for each type i, otherwise the edge corresponding to
the variable s} (see E.7) extends from a node in R to a node in L.

Thus, we have the following lemma, which allows us to speak in terms of separating sets rather
than cuts.

Lemma 5.2. An L-cut (L, R) has finite capacity if and only if LU R4 is an A-strictly separating
set. Similarly, an R-cut (L, R) has finite capacity if and only if Lg U R4 is a B-strictly separating
set.
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e>0

1 1
Ty > my

0,81 _
A max{0, — 1} root B
x5 > Ao /U
max{1, 3} w3 > Aami s2>0 7 > [Brami —max{1, 8}
s3>0
[2,2] [2,1]
. . 2 > BAam?
xi > Bhamj 5 2 Boms
T2 > Aam?

[2, 4] 2, 3]

Figure 6: For given 8 > 0, there is a feasible flow in the network of Figure 4 if and only if there is
a feasible flow in this network with value max{1, 5} and ¢ > 0.
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1 1
Ty > my

A max{0, 5 — 1} root — B
v 2 2 23 > Aami /U 2 2 2 —v
3 > Xam3 s3>0 x> Blamg
s3>0
2,2 2.1
22 > Blam?
2§ > fAam} = s
T2 > Aom?

[2,4] [2,3]

Figure 7: For given 3 > 0, there is a feasible flow in the network of Figure 6 with value max{1, 3}
and € > 0 if and only if the minimum flow in this network has value v strictly less than max{1, 8}.
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We can express the capacity of a finite capacity L-cut (L, R) in terms of the corresponding
A-strictly separating set Lg U R4 and the collection V(L U R4) of classes it generates as follows:

¢(L,R) = dm(Va(Lp U R4)) + fAm(Ve(Lp U R4)) + max{0,1 — 8}.

To see this observe that every edge contributing a positive amount to the capacity of an L-cut
either starts at A or ends at B. The first term Am(V4(Lp U R4)) captures the contributions of
edges that start at A and the second term SAm(Vg(Lp U R4)) captures the contributions of edges
that end at B except for the edge from the root to B, which contributes max{0,1 — $}. The edges
starting at A that contribute to the capacity of the cut are:

e The last class of each excursion [i,e] € R4. These are the edges corresponding to edges E.1
that cross the cut.

e The first classes of each excursion [i,e] € A such that [i,e — 1] € Rp. These are the edges
corresponding to edges E.3 that cross the cut.

These are exactly the classes of V4(LpUR4). The classes of the virtual station served at A include
all the classes of R4 and the first classes of those excursions [i,e] € L4 such that [i,e — 1] € Lp.
If [i,e] € R4, then, by Rule 1, [i,e — 1] € Rp and so all the classes of the excursion cross the cut.
If i,e] € La and [i,e — 1] € Rp then all the first classes of the excursion cross the cut, but not
the last class. Analogous arguments verify that SAm(Vp(Lp U R4)) is exactly the contribution of
edges that end at B crossing the cut except for the edge from the root to B whose contribution is
captured in the third term.

Thus, assuming the service times satisfy the nominal workload conditions, each finite capacity
L-cut (L, R) imposes the condition:

)\m(VA(LB U RA))

(5.17) 1= Am(Vp(Lp URy))

<p

on 3. One exception to (5.17) arises when R, is empty and Lg consists of all the excursions at
Station B, i.e., when Lg U R, is the trivial separating set consisting of all excursions at Station
B. In this case, Va(Lp U R4) = () and the condition ¢(L, R) < 1 reduces to the nominal workload
condition at Station B.

Similarly, we can express the capacity of a finite capacity R-cut (L, R) in terms of the corre-
sponding B-strictly separating set L U R4 and the collection V(L U R4) of classes it generates
as follows:

C(L, R) = )\m(VA(LB U RA)) + ,BAm(VB(LB U RA)) + maX{O,ﬂ — 1}.
Thus, each finite capacity R-cut (L, R) imposes the condition:

1 —Am(Va(LUR4))

(5.18) Am(Vg(Lp U Ra))

> p

on 3. One exception to (5.18) arises when Lp is empty and R4 consists of all the excursions at
Station A, i.e., when Lg U R4 is the trivial separating set consisting of all excursions at Station
A. In this case, Vg(Lg U R4) = () and the condition ¢(L, R) < 1 reduces to the nominal workload
condition at Station A.

Combining (5.17) and (5.18) with Lemma 5.2 proves the following theorem, which provides
explicit constraints on the service times sufficient to ensure the global stability of a two-station
fluid network. In Section 6, we show that these “cut conditions” are equivalent to the virtual
workload conditions, which we prove are also necessary to ensure global stability.
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Theorem 5.1. A two-station fluid network with service times m and arrival rates X\ = (X\;)icr
satisfying the nominal workload conditions is globally stable if (1.13) holds and for each non-trivial
A-strictly separating set S’ and non-trivial B-strictly separating set S,

Am(Va(S)) 1 Am(Va(9))

(5.19) 1= xm(Vs(9) ~  Am(Vs(S))

6 Sufficiency

In Section 5, we showed that a two-station fluid network satisfying the nominal workload conditions
is globally stable if the arrival rates and service times satisfy the cut conditions. We show that the
virtual workload conditions are also sufficient to ensure global stability by showing that the arrival
rates and service times satisfy the cut conditions if they satisfy the virtual workload conditions.

Theorem 6.1. A two-station fluid network satisfying the nominal workload conditions (1.13) is
globally stable if for each vector e = (e;)icr of excursions and each separating set S, we have

An(Va(S)\ Fx(e))  Am(Vg(S)\ Fj(e))

< 1.

Proof. Each cut condition (5.19) is defined by a pair of non-trivial separating sets: an A-strictly
separating set S’ and a B-strictly separating set S. We show that the cut condition induced by the
pair (S’,5) is implied by a pair of virtual workload conditions.

For each type i € I, let ¢; be the largest index such that:

a. Every earlier excursion served at Station B is in S’ (and hence no earlier excursion served at
Station A is in §'),

b. Every earlier excursion served at Station A is in S (and hence no earlier excursion served at
Station B is in 5).

Note that [i,e;] € S. To see this observe that if [i,e;] € S, then it must be in Ef4 and since every
earlier excursion served at Station A is in S and every earlier excursion served at Station B is in
S’ either S is trivial or e; + 1 satisfies (a) and (b). A similar argument shows that [i,e;] € S’

The vector € = (e;);c; of excursions and the separating set S’ induce the virtual workload
condition:

Am(Va(8)\ F5(e)) | Am(Vi(S) \ F§(e))

T wn(Fy(e)) T—m(Fgle) -

(6.2)

Similarly, the vector e and the separating set S induce the virtual workload condition:

Am(Va($) \ Fx(e)) | Am(Vi(S) \ i (e))

(6.3) 1 — am(F(e)) 1 — Am(Fg(e))

<1

We show that (6.2) and (6.3) imply the cut condition for the pair (S, S).
From (6.2) we have that

Am(Va(S') \ Fi (e)) L am(FR(e)
1= Am(F5(e)) — Am(Va(S') \ Fs(e)) 1 —Am(Fg(e))
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and from (6.3) we have that

1= dm(F5(e) = Am(Va(S) \ F5(e)) _ 1= Im(Fj(e))

Am(V(S) \ Fi (e)) T Am(Fg (e))
Thus,
L= Am(F5 () = Am(Va(S) \ Fj (e)) Am(Va(S') \ F5(e)
(6.4) = > > = :
Am(Vg(S) \ Fg (e)) 1 —Am(Fg(e)) — Am(Vi(S') \ Fiz(e))

Now, since [i,¢e;] € S for each i € I,
Am(Va(S) \ F5 (€)) + Am(F7 (e)) > Am(Va(S)).
Further, since e; satisfies (b),
Am(Vi(8) \ Fs (€) = Am(Vs(S)).
Likewise, since [i, e;] € S’ for each i € I,
Am(Vi(S') \ Fi5(€)) + Am(Fj (e)) > Am(Vis(S")).
And, since e; satisfies (a),
Am(VA(S)\ 5 (e)) = Am(Va(S")).
Thus, (6.4) implies that

1 —2m(Va(S)) Am(Va(S"))
Am (Vg (S)) 1 —xm(Vg(9"))’

which is exactly the cut condition for the pair S” and S. O

7 Necessity

In this section, we show that the virtual workload conditions (2.2) are necessary to ensure the
global stability of a two-station fluid network.

We first generalize to virtual stations the argument used to show the necessity of the nominal
workload conditions to ensure global stability.

Lemma 7.1. Let C be a set of classes such that
Am(C) > 1.

Each non-idling fluid solution (Q(-),T(-)) satisfying

(7.1) Y T <1

for each regular point t is unstable.
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Proof. Consider a non-idling fluid solution (Q(-),T(-)) satisfying (1.5)—(1.10) and (7.1). Define

k
(7.2) W(QW) = > miZit) = mi Y Q1)

(i,k)eC (ik)ec  1=1
to be the total workload for the classes of C. Since

Zj(t) = Zi(0) + At — Ti(t)/mi,

W(Q) = WQO)+ Y. Xmit— > Ti(t)
(i,k)eC (i,k)eC
> W(Q(0) + (Am(C) — 1) t.

Hence the workload for the classes of C' grows linearly with time and the fluid solution diverges. [

The classes of any set C satisfying (7.1) can be viewed as being served by a single “virtual”
server, which allocates its efforts among them. We show that under the appropriate static buffer
priority policy, a virtual station as defined in Definition 2.4 satisfies (7.1), hence the moniker “virtual
station”.

We next show how expediting the first few classes magnifies the influence of virtual stations in
the remaining network. This concept was originally introduced under the rubric of push starting
in Dai and Vande Vate (1996).

Let e = (e;)ier be a vector of excursions, one for each type. The vector e partitions the classes
of the network into the classes of F'<(e) and the remainder of the classes, which we denote by R(e).
Let

(7.3) mi, = mj,/ (1 — Am(F5 (e))) for (i,k) € Rale),
(7.4) i, = mp/

Consider the induced fluid model on the classes of R(e):

(7.5) Qi (1) = Q(0) + i T, (1) — A Ti(H) > 0, £ >0, (i,k) € R(e),
T, (0) = 0 and T} (-) is nondecreasing, (i, k) € R(e),
(7.7) t— Z Ti(t) is nondecreasing,
(i.k)ERA(€)
(7.8) t— Z Ti(t) is nondecreasing,
(i.k)ERp(€)
(7.9) Z T,z(t) = 1 whenever Z Q(t) > 0 and ¢ is a regular point,
(i,k)ERA(€) (i.k)ERA(€)
(7.10) Z T,z(t) = 1 whenever Z Qi (t) > 0 and ¢ is a regular point,
(i,k)eRp(€) (i,k)eRp(€)

where, ;1}'6 = 1/7?1}C for (i,k) € R(e). Note that for each type i € I, £[i,e;] is the index of the first
class of type i in R(e). Thus, for each type i € I, we let [12[ = \; and TZ[Z. eim1] (t) =t to model
the arrivals to the induced fluid network.

i,e;—1]
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Lemma 7.2. If the fluid model (7.5)—(7.10) is unstable, then the fluid model (1.5)—-(1.10) is un-
stable.

We leave the proof of this lemma to the appendix.

Proof of Theorem 2.1. In light of Lemma 7.2, it is enough to show that if the virtual station V(S)
corresponding to some strictly separating set S satisfies

(7.11) Am(V (S)) > 1,

then there is an unstable fluid solution. Because V(S) is a virtual station in the corresponding
queueing network, there is a static buffer priority discipline under which no two classes in V' (.S) can
be served simultaneously; see Dai and Vande Vate (1996). Therefore, any fluid limit (Q(-),7'(-))
as defined in Dai (1996) is a fluid solution that satisfies (7.1). By Lemma 7.1, the fluid network is
not globally stable. When (2.3) is satisfied or (7.11) is strictly satisfied, the same argument shows
that the WIP goes to infinity. O

8 Unstable Cycles

Although the preceding proof of Theorem 2.1 is succinct, it involves a rather circuitous argument
via queueing networks and fluid limits. We provide a more direct, but somewhat longer argument
establishing the necessity of the virtual workload conditions to ensure stability of a two-station fluid
network. When the arrival rates and service times satisfy the nominal workload conditions, but do
not satisfy the virtual workload conditions, we provide an explicit construction of a non-idling fluid
solution (Q(-),7(-)) that is unstable. This argument is not only more direct, but also illustrates
how the work-in-process in an unstable system swings from station to station as it grows to infinity.
Iterations like those presented here are indispensable when studying the stability of fluid networks
with more than two stations. See, for example, Dai, Hasenbein and Vande Vate (1998).

Suppose the arrival rates and service times satisfy the nominal workload conditions, but do not
satisfy the virtual workload conditions. We choose a strictly separating set S and a push start set
F<(e) so that among all such pairs,

Xm(Va($)\ Fi(e))  Am(Vi(S)\ F(e))
L Am(Fie) " 1 Am(Fj(e))

is maximum. Thus, we assume that

An(Va(S)\ Fx(e))  Am(Vg(S)\ Fj(e))

&1 fm(Fie) 1 am(Fle)
and for each strictly separating set S’ and push start set F<(e'),
(8.2)
Am(Va(S) \ F5 (e)) L AmVs(S) \ F5(e)) S Am(Va(S') \ F3()  Am(Vp(S')\ F5(e))
Tm(Fe) T T am(Fgle) S 1-Am(Fe) T 1-Am(Fg(e)

Note that since e; > 1 for each type i, the set F<(e) will include all the classes of every first
excursion. Thus we may, without loss of generality, restrict attention to strictly separating sets S
as we have above.
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In order to construct an unstable fluid solution, we must consider in greater detail the struc-
ture of the strictly separating set S. The notation required to describe this dissection of strictly
separating sets in full generality is somewhat involved, but the ideas are relatively straightforward.
We first partition S into monotype separating sets or separating sets consisting of excursions for a
single type of fluid. In particular, we let S* = SN E’, be the excursions of S for fluid type i.

We further partition the union of each monotype separating set and its neighbors into intervals
or sets of consecutive excursions. We use [, s,t) to denote the interval {[i,e] € E' : s < e < t} and
(i,s,t) to denote the interval {[i,e] € E' : s < e < t}.

A maximal interval with the property that all its excursions at one station are in S’ and,
consequently, none of its excursions at the other station are in S? is called a section of S*. We refer
to a section X of S¢ with X4 C §* and X N S%, = () as an A-section of S*. Similarly, we refer to a
section Y of S* with Yz C §" and Y N Si] = () as a B-section of S’. A typical A-section is of the
form [i, s,t) with s € Ef,; The ending excursion ¢ is either in Ef4 or t = n; + 1. Similarly a typical
B-section is of the form [i,s,t) with s € E, and t € E% or t = n; + 1. In either case, the end
excursions s and ¢ are not in the separating set S and s —1 ¢ S.

For example, consider the strictly separating set

(8.3) S ={[1,2],[1,7],[2,3],[2, 5], 2, 8]}
in Figure 3. Following the definition of virtual station in Definition 2.4,

V(s) = {(1,2),(1,3),(1,6),(1,8),(1,10), (1,12),(1,13),
(2,2),(2,4),(2,5), (2,8),(2,9),(2,12), (2,14)}.

~—

,6]} of excur-

The intervals [1,1,4) = {[1,1],[1,2],[1,3]} and [2,2.7) = {[2.2],[2,3],[2,4],[2,5],[2,6
[1,6],[1,7],[1,8]} and

sions are the A-sections of this separating set. The B-sections are [1,6,9) = {[1, 6],
2,7,9) = {[277]7[278]}' ) )

The sections of S’ partition S* UT'(S?) into intervals. We partition the remaining excursions of
E" into trivial sections. In particular, each excursion of E'\ (§* UT'(S")) forms a trivial section of
S®. Each excursion [i,e] € EY \ (S*UT(S?)) forms a trivial B-section of S° (because {[i,e]} N EY} =
0 C S and {[i,e]} N S% = 0). Likewise, each excursion [i,e] € Ej; \ (S* UT(S")) forms a trivial
A-section of S'. For example, [1,5,6) = {[1,5]} is a trivial A-section and [1,4,5) = {[1,4]} and
(2,1,2) = {[2,1]} are the trivial B-sections of the separating set (8.3) in Figure 3.

When we include the trivial sections, the sections of S partition the excursions of E° into
intervals and, if we order these intervals in the natural way, they alternate between A-sections and
B-sections.

Our construction relies on coordinating the activities of the servers across classes related to,
but offset from, the classes of each section. In particular, we associate with each section [i, s,t) the
collection of classes

C([iasut)) = {E[z,s]} Uee(i,s,t) E[Z’ve} U f[ivt]

called a block. Note that the block C([i,s,t)) differs from the classes of the section [i, s,t) in that
we omit the first classes of the first excursion in [4,s,¢) and we add the first classes of the first
excursion of the next section. In the example of Figure 3, C([1,1,4)) = {(4,k) : 1 < k < 6} and
C([2,2,7) ={(2,k) : 3 <k <12},

The following lemma should help motivate our definition of sections and blocks. Its proof is
postponed to the appendix.
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Lemma 8.1. Let S be a strictly separating set and F<(e) a push-start set satisfying (8.1) and
(8.2). Then for each A-section X = [i,s,t) of S*, where s € E% and t € EY;,

An(Ca(X)\ F5 (€)) _ Am(Cy(X) \ F (e))
I—wm(Fi(e) = 1-Am(Fgle)

(8.4)

Likewise, for each B-section Y = [i,s,t) of S', where s € EYy and t € EY,

Am(Ca(Y) \ F5(e)) _ Am(Ca(Y) \ F5(e))
I am(Fj(e))  —  1—Am(Fy(e))

(8.5)

The transformations (7.3) — (7.4) allow us to assume, without loss of generality, that F<(e) is
empty. Implicit in this is the assumption that for each type i € I, e; = 1 and the first excursion
consists only of the the class (7, 1).

Let I4 be the set of types with first excursion [z, 1] € Ef4 and Ip the types with first excursion
[i,1] € E%. For i € I4, the sections of S’ alternate between B-sections and A-sections beginning
with a B-section. We denote these sections as:

Y17X2ﬂ }/3 3 X47 v aYQbiflaXQbia

where b; is the total number of B-sections and X;bi is possibly empty. Similarly, for ¢ € Ig, the

sections of S” alternate between A-sections and B-sections beginning with an A-section. We denote
these sections as:
X1,Yy, X5, Y, Xy 1, Yy,

with YZib,- possibly empty. The sections Yf and X{ are called input sections.
In the example of Figure 3, type 1 is in I and type 2 is in I4. The sections for type 1 are:

X! =[1,1,4), Yy =[1,4,5), X3 = [1,5,6),Y,' =[1,6,9).
The sections for type 2 are:

VP =1(2,1,2), X5 =[2,2,7),Y¢ = [2,7,9).

Therefore,
C(YQI) = {(L 7)a (1a 8)}7
C(X3) = {(1,9), (1,10)},
C(Y}h) ={(1,11),(1,12),(1,13),(1,14)},
C(Y?) ={(2,1),(2,2)},
C(X2)={(2,k):k=3,...,12},
C(Y$) = {(2,13),(2,14)}.

The following lemma is a direct consequence of our definitions.

Lemma 8.2. The virtual station V(S) has the following decomposition.

V(S) = UiEIA Ubi:l (CB(YZirfl) U CA(Xér)) UiEIB Ulrjlzl (CA(Xérfl) U CB(YQZT))

T
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Let us restate part of Theorem 2.1.

Theorem 8.1. Assume that there is a strictly separating set S and push start set F<(e) such
that (8.1) and (8.2) hold. Omne can construct an unstable non-idling fluid solution (Q(-),T(-)).
Furthermore, the unstable fluid solution satisfies the static buffer priority conditions (1.11) (1.12).

Proof. In light of Lemma 7.2, we may assume that the push start set F<(e) is empty. This would
be the case, for example, if e; = 1 and f[i, 1] = 0 for each type 7 € I, which is true of the induced
network on R(e) obtained from the construction used in the proof of Lemma 7.2. Thus, we assume
that the arrival rates and service times satisfy the nominal workload conditions, but violate the
virtual workload condition for a strictly separating set S, i.e.,

Am(V(S5)) > 1.
Under this transformation, (8.4) reduces to
(8.6) Am(Ca(X)) > Am(C (X))
for each A-section X, and (8.5) reduces to
(8.7) Am(Cp(Y)) > Am(Ca(Y))

for each B-section Y.
For the example in Figure 3, we have

A1 (mg 4+ m3 + mg + mg + mig + miy + miz) + Aa(m3 + mi 4+ mE +mg 4+ m§ +miy +miy) > 1,
and

my +ms + mg > my +my +ms,

méZm%,

mézm%m

Mty + Mg > My + g,

m3 > m3,

mZ—l—m%—l—m%-l—mg-l-mé ng-l-mg—l—m%—l—m%—l—m%l,

2 2
My 2 Mi3.

We now construct a non-idling fluid solution (Q(-),7'(-)) such that

o T <1

(i,k)eV(S)

for each regular point ¢. Let

0L = Ti(t).
We intentionally drop the variable ¢ from 9}; since, in our construction, T,z() is piecewise linear and
hence 6], is piecewise constant. If the fluid solution (Q(-),7'(-)) is linear in an interval [a,b], it is
enough to specify Q(a), T'(a) and (0%) to completely characterize the fluid solution throughout the
interval. In fact, for ¢ € [a, b],

(8.8) Tit) = Tila) + 04t — a), N
8.9 Qr(t) = Qpla) +pp 10k 1t —a) — ppfi(t — a).
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Note that 9}; is the fraction of its effort the server allocates to class (i, k) and Mi% is the rate at
which fluid leaves the buffer and hence the rate at which it enters the next buffer. Throughout our
construction we show that not only must

Yo Tty = > 6 <1

i€l keA; i€l keA;

and

Yo Tt = > 6 <1

i€l ,keB; i€l ,keB;

at each time ¢, but also the two stations cannot serve classes in V(S) simultaneously. Thus, we
show that whenever 6(V4(S)) > 0, 6(Vp(S)) = 0 and whenever 8(V(S)) > 0, 8(V4(S)) = 0 from
which it immediately follows that

. T <1

(i,k)eV(S)

for each regular point ¢. Again, for a set X of classes, we let §(X) = Z(i,k)eX 0:.

We begin with . units in the first buffer of C(X!) for each A-section X! so that all the WIP is
initially at Station B. So, in the example of Figure 3, we begin with u] units in buffer (1,1) (the
first class of the block C(X1)), u} units in buffer (1,9) (the first class of the block C(X31)) and u3
units in buffer (2,3) (the first class of the block C'(X3)).

Step 1. One at a time, for each non-input A-section X’ = [i, s,t) drain the contents of £[i, s], the
first buffer of C'(X}), into the first buffer of C4(X{) and the first buffer [z, t] of C(Y}", ;) (or out of
the system if X is the last section for type i) both at Station A. This process continues until the
first buffer of C(X?) is empty. Figure 8 illustrates this step for the A-sections X3 and X3 in the
example of Figure 3.

At the end of this step all the buffers at Station B in the blocks of non-input sections are empty.
To see that this is consistent with a non-idling dispatch policy, observe that the system defining
the flows is:

|
—

O(Ca(XE)) Since work is accumulating at Station A,
(C’B(XZ)) Since there is work accumulated at Station B,
pe0t —pt 0 = 0 For each class (i,k) in C(X!) except the first two. The first
class’s buffer is draining, so the rate of flow out is faster than
the rate of flow in. The second class’s buffer is accumulating
fluid, so the rate of flow in is greater than the rate of flow out.

I
—_

This system has the unique solution:

i
my

-~ m(Ca(X}))

for each class in C'(X!) except the first one. This class, £[s, i], has

i

Myls,i m(Ca(X})) —m(Cp(X])))
m(Ca(X})) m(Ca(X}))

Oyisi] =
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(1,10) (1,11) Station A (2,4) (2,5) (2,8) (2,9) (2,12) (2,13)

A A

(1,9) Station B (2,3) (2,6) (2,7) (2,10) (2,11)

Figure 8: This figure depicts the flows when Step 1 is applied to X1, shown in part (a), and to X2,
shown in part (b), in the example of Figure 3. Only the relevant classes are shown. Arrows depict
the flows and an open box in front of a class denotes a buffer that may contain a positive quantity
of fluid during the step. Plus signs inside a buffer indicate that it is accumulating fluid while minus
signs indicate that it is draining. All other indicated buffers remain empty throughout the step.

which, by (8.6), is at least as great as ‘
Mg il
m(Ca(X7))

Thus,

Hofi,e)%e]s,i) = m = Hls,il+1Y0s,i]+1

and so fluid is arriving at the second buffer of C(X!) at least as fast as the server at Station A
processes it. Thus, both stations are busy until the first buffer in C'(X?) is emptied. The contents
of the buffer have moved to the first buffer of the next excursion and the first buffer of C(Y;", ;) —
both at Station A.

Both servers are fully busy during this entire step and so any fluids arriving to the system
during this period simply accumulate at their first buffers.

Step 2. Next, for each non-input A-section X! = [i,s,t) one at a time in any order, drain the
first buffer of C4(X}) into the first buffer of C(Y;',;) (or out of the system if this is a last section).
When the first buffer of C4(X}) is emptied, we have accumulated in the first buffer of C(Y;' ;)
(if there is one) all the flow originally in the first buffer of C(X/). Figure 9 illustrates this step for
the A-sections X1 and X2 in the example of Figure 3.
The system defining the flows for each of these A-sections is:
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(1,2) (1,10) (1,11) Station A (1,2) (2,4) (2,5) (2,8) (2,9) (2,12) (2,13)
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(1,1) (1,9) Station B (1i1) (2,3) (2,6) (2,7) (2,10) (2,11)
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(@) (b)
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Figure 9: This figure depicts the flows when Step 2 is applied to X1, shown in part (a), and to X2,
shown in part (b). Only the relevant classes are shown. Arrows depict the flows and an open box
in front of a class denotes a buffer that may contain a positive quantity of fluid during the step.
Plus signs inside a buffer indicate that it is accumulating fluid while minus signs indicate that it is
draining. The signs + inside a buffer indicate that it may either accumulate fluid or drain during
the step, depending on the balance of flows into and out of the buffer. The signs @ inside a buffer
indicate that it may either accumulate fluid or be empty. All other indicated buffers remain empty
throughout the step.

0(Ca(XE)) = 1 Since work is accumulated at Station A,
piol —pt 6 For each class (i, k) in C(X!) except the first two. We emptied
the buffer of the first class in Step 1 and we are draining the
buffer of the second class.

This system has the unique solution:
0, = —————
m(Ca(X}))

for each class in the block except the first, which has Gé[s’i} = 0.

These flows keep the server at Station A busy, but, by Lemma 8.1, may not keep the server
at Station B busy. Whenever these flows do not keep the server at Station B busy, it can process
fluids that have accumulated at classes (1,4) for i € I 5. However, since the server at Station A is
busy, these fluids will accumulate at the first buffer of their second excursion.

At the end of Step 2, all the fluid initially in the first buffer of C'(X!) for each non-input A-
section X has been moved to the first buffer of C(Y;",;). For the example in Figure 3, fluid in
buffers (1,9) and (2, 3) has been moved to buffers (1,11) and (2,13). For each A-section X!, moving
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(1,2) (1,3) (1,6) (1,7 Station A (1,2)  (1,3) (1,6) (1,7)
| A | A
; :
T Y T \
(1,1)  (1,4) (1,5 Station B (1,1)  (1,4) (1,5
A A
by ‘ {

(a) (b)

Figure 10: This figure depicts the flows when Steps 3 and 4 are applied to to the example in Figure
Figure 3. Only the relevant classes are shown. Arrows depict the flows and an open box in front
of a class denotes a buffer that may contain a positive quantity of fluid during the step. Plus signs
inside a buffer indicate that it is accumulating fluid while minus signs indicate that it is draining.
All other indicated buffers remain empty throughout the step.

u’. units through the classes of C'(X?) requires time u’m(C4(X")). Thus, we spend

(8.10) Z Z“Qr (Ca(X3,)) + Z Z“Qr 1 (Ca(X5, 1))

i€lq r=1 iclg r=2

on Steps 1 and 2.
Note that these two steps are consistent with a static buffer priority dispatch policy, which uses
the last-buffer-first-served dispatch policy within the block of each non-input A-section.

Step 3. One at a time, for each type i € I'g in order, drain the the fluid that has accumulated
in class (4,1) of C(X}) into (4,2), the first buffer of C4(X?}), and the first buffer of C(Y3) (or out
of the system if X? is the last section for type i), while keeping the buffers of C(X?) empty for all
earlier types j € I'g, with j < i. This process continues until buffer (i, 1) is empty. Figure 10 (a)
illustrates this step for type 1 in the example of Figure 3.

At the end of this step all the buffers at Station B are empty. To see that this is consistent
with a non-idling dispatch policy, observe that the system defining the flows for each type i € Ip
is:
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Y jelp i<i G(CA(X{)) = 1 Since work is accumulating at Station A,
€Ty j<i H(CB(Xf)) = 1 Since there is work accumulated at Station B,
pl6) = X; For each type j € Iy with j <1,
,ui@ﬂ ,uk 19j 0  For each class (j,k) in C(X{) where j € Ig, 7 < i and
k>1,
piot —pt 0 = 0  For each class (i, k) in C(X?) except the first two. The first

class’s buffer is draining, so the rate of flow out is faster than
the rate of flow in. The second class’s buffer is accumulating
fluid, so the rate of flow in is greater than the rate of flow

out.
This system has the unique solution:

Hi = )\fcmfc for each class (j, k) € C(X{) where j € Ip and j < i
w1 Sjerpe dm(CalX)))) .

0, = for each class (i, k) € C(X7) except class (i, 1
k m(Ca(X?})) (i, k) € C(X7) (4,1)
. mll (1 - ZjeIB j<i Am(CA(X] ) .

o — A + ( (Ca(XT)) — Am(C X?),

JEIB,j<i
which, by (8.6), is at least as great as

mll (1 - ZjeIB,j<i Am(CA(X{)))
m(Ca(X7)) '

Thus,

- ZjelB,j<i Am(CA(Xf))
m(Ca(X1))

and so fluid is arriving at class (i,2) at least as fast as the server at Station A processes it. Thus,
both stations are busy until buffer (i, 1) is emptied. The contents of the buffer have moved to buffer
(4,2) and the first buffer of C(YJ) — both at Station A.

Both servers are fully busy during this entire step and so any fluids arriving to Station A during
this period simply accumulate at their first buffers.

= ity

6] >

Step 4. One at a time, for each type ¢ € I'p in order, empty buffer (i,2) while keeping empty
both buffer (i,1) and the buffers of C(X7{) for all earlier types j € I, with j < i. Figure 10 (b)
illustrates this step for type 1 in the example of Figure 3.

The system defining the flows is:
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Y iely.j<i H(CA(Xf)) = 1 Since work is accumulating at Station A,

67 = X; For each type j € Ip with j <1,
,uiﬁi fp£719i71 = 0 For each class (j,k) in C(X{) where j € Ig, j < i and
k>1,
pift —pt 0 . = 0  Foreach class (i, k) in C(X?) except the first two. The first

class’s buffer is empty and, to keep it that way, its output
rate must match the rate of exogenous arrivals. The second
class’s buffer is draining, so the rate of flow out is greater
than the rate of flow in.

This system has the unique solution:

Hi = )\fcmfc for each class (j, k) € C(X{) where j € Ip and j < i
w1 Serpge dm(CalXY))) |

0, = : . for each class (i, k) € C(X7) except class (i, 1
; m(Ca(X7)) (i, k) € C(X7) (i,1)

Note that since the arrival rates and service times satisfy the nominal workload conditions,
is between 0 and 1. Further, as in Step 2, the server at Station A is fully busy during this entire
step, but the server at Station B may not be. To see this observe that

(m(Cu(XD) ~ m1)) (1 Sjeryies Am(Ca(X])))

_ + Amb.
m(Ca(X1)) !

0(Eg)= Y. Im(Cs(X]))+

JjelB,j<i
By (8.6),

m(Cp(X1))

|
m(Ca(X})) —

and since the arrival rates and service times satisfy the nominal workload conditions,

1 - Zje[B,j<i Am(CB(Xf))
m(Ca(X1))

Thus,
Q(EB) < 1.

Whenever the server at Station B has remaining capacity, he again drains the contents of
subsequent buffers (j,1) with j € Iy and j > 4. Since the server at Station A is busy, however,
these fluids accumulate in their second buffers.

Continue in this way until all buffers in C(X?), i € I, are empty. Let 7 be the additional time
needed to complete Steps 3 and 4, then

T=(n+7) Y Am(Ca(X])) + Y wlm(Ca(X]))

JEIB J€EIB
M1 ey MCA])) + Fjer, uim(Ca(XY))
1*Zje[B Am(Ca(X7)) ‘

T2 =
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At the end of this step, the buffers of each block C(X!) are empty and only the first buffer of each
block C(Y,!) has any accumulated fluid. Thus, all the WIP is at Station A.
Let

Sier, vy b, m(Ca(XE)) + ey, S0 uh,ym(Ca(X3,_y))
1 - ZjelB Am(Ca(X7))

For each i € I, the first buffer in the block C(Y{), (4,1), has accumulated \;7 fluid, i.e., Q%(7) =
M\i7. For each i € Ip, the first buffer in the block C(Yy) has accumulated ;7 + % fluid. For each
remaining B-section, the first buffer of C(Y,!) has accumulated the u! | fluids that were initially
in the first buffer of C'(X! ).

It is easy to check that the fluid solution (Q(-),7'(-)) constructed in (8.8) (8.9) satisfies (1.5)
(1.10) for ¢ € [0, 7]. Furthermore, none of the classes in blocks of B-sections has ever been worked
on. That is, (C(Y;)) = 0 for each B-section Y,.. Therefore, (Q(-),T(-)) satisfies (7.1) for ¢ in [0, 7]
and, by Lemma 7.1, there is more work at the virtual station V(S) at time 7 than at time 0.

We next repeat Steps 1-4 interchanging the roles of Station A and Station B. The fluid network
completes the four steps at time ¢ in a state very similar to its initial state: there are ﬂlr units in
the first buffer of C(X!) for each A-section X! and all the other buffers are empty. Further, the
resulting fluid solution (Q(-),7'(-)) satisfies (1.5) (1.10) and (7.1) for all times ¢ € [0, #1]

To complete the argument, we would like to conclude that repeating these eight steps over and
over produces a fluid solution (Q(-),7(-)) that satisfies (1.5) (1.10) and (7.1) for all times ¢ > 0.
We could then invoke Lemma 7.1 to argue that the workload for the classes of V' (S) grows linearly
with time and the fluid solution diverges. To reach this conclusion, however, we must first show
that >~ | t, — oo, where ¢, is the time required to complete the nth iteration of these eight steps.
Otherwise, > >, t, — t* for some finite ¢* and repeating these eight steps only produces a fluid
solution for times ¢ € [0, t*].

To this end, let u be an arbitrary non-negative vector of initial fluid levels for the first buffers in
the blocks of the A-sections Xﬁ From Equation (8.11) it is clear that the time required to complete
the eight steps is a positive linear combination of the initial buffer levels u, i.e.,

ti(u) = Zciui,

where each coefficient ¢! > 0. Similarly, the initial total workload at the virtual station V (S) (as
defined in (7.2) with C = V(5)) is a positive linear combination of the initial buffer levels u, i.e.,

W(u) = ajuj,

(8.11) T=T1+T=

where each coefficient a’ > 0.
Thus, the shortest time ¢ to complete the eight steps given an initial workload W (u) > 1 can
be found by solving the simple linear program:

tl—mlng Cp U,

1,0
s.t. E a,u,

uiZO

Y
—

Since all the data are positive, ¢t} = min{c./a’} > 0. Thus, if we begin with initial fluid levels
u with W (u) > 1, we know from Lemma 7.1 that the workload at the virtual station V(S) will not
decrease and so each iteration will require at least time ¢;. Hence, Y 7, ¢, — oo and repeating
the eight steps over and over produces a fluid solution with buffer levels that cycle to infinity. O
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9 Concluding Remarks

This paper not only provides an explicit characterization of the global stability region of two-station
multiclass fluid networks, it also offers intuitive explanations of how the constraints defining the
global stability region arise. Namely, the two phenomena of virtual stations and push starts explain
all the global stability conditions of two-station fluid networks.

Under certain assumptions on the interarrival and service time distributions as specified in
Dai (1995), a queueing network is stable or positive Harris recurrent if the corresponding fluid
network is stable. Thus, the workload conditions are sufficient to ensure the global stability of two-
station multiclass queueing networks with deterministic routing. In Dai and Vande Vate (1996),
we show that under some weaker distributional assumptions, the virtual station conditions are also
necessary to ensure the global stability of the queueing network. The push start conditions, on the
other hand, are not generally necessary for global stability of the queueing network.

Weak stability, also called rate stability, is a less restrictive form of stability in queueing networks
(see for example El-Taha and Stidham 1994). Chen(1995) and Dai and Vande Vate (1996) show that
weak stability of the fluid model implies weak stability of the queueing network. A fluid network is
said to be weakly stable under non-idling dispatch policies, or simply globally weakly stable, if any
fluid solution (Q(-),T'(:)) with initial WIP zero will never have any WIP. The following theorem is
a weak stability version of Theorem 2.1. Its proof is parallel to the development in this paper.

Theorem 9.1. A two-station fluid network is globally weakly stable if and only if
PA S 17 PB S 17

and for each vector € = (e;)icr of excursions and each strictly separating set S, we have

Am(Va($)\ F5(e)) | Am(Vi(S)\ Fj(e) _,
1= xm(F5(e)) 1—Xm(F5(e) ~

(9.1)

This paper characterizes the global stability region for fluid models of two-station queueing
networks with deterministic routing. Hasenbein (1998) extended these results to the fluid models
of certain two-station queueing networks with probabilistic routing.

Theorem 2.1 demonstrates that the global stability region of a two-station fluid network is
monotone, i.e., reducing service times or arrival rates maintains global stability.

Corollary 9.1. The global stability region of a two-station fluid network is monotone.

This is not the case for fluid networks with more than two stations. Humes (1994) and Dai,
Hasenbein and Vande Vate (1998) showed that the global stability region is not monotone. Du-
mas (1997) showed that the stability region of a priority network is not monotone. These examples
indicate a daunting challenge inherent in managing complex re-entrant manufacturing systems like
wafer fabrication plants: increasing the processing rate for a class can reduce the capacity of the
system!

The fact that the global stability region of a fluid network with more than two stations can
be non-monotone suggests that determining the global stability region for these networks will be
considerably more difficult. For example, the problem of determining the coefficients of a piecewise
linear Lyapunov function for a fluid network with more than two stations does not generally reduce
to a linear program. Nevertheless, the example studied in Dai, Hasenbein and Vande Vate (1998) is
one of an important family of n-station fluid networks for which this problem is linear and, in fact,
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does reduce to a parametric network flow problem. Thus, the piecewise linear Lyapunov function of
this paper does lead to sufficient conditions for global stability for this family of n-station networks.

The four steps of Section 8 prove that the static buffer priority policies are the “worst” dispatch
policies for two-station fluid networks.

Corollary 9.2. A two-station fluid network is globally stable if and only if it is stable under every
static buffer priority policy.

This is not the case for n-station fluid networks. Dai, Hasenbein and Vande Vate (1998)
demonstrated arrival rates and service times for which their three-station fluid network is not
globally stable even though it is stable under all static buffer priority disciplines.
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A Appendix

Proof of Lemma 7.2. Assume that the fluid model (7.5)-(7.10) is unstable. Then there is a fluid
solution (Q(-), T]i('))(z‘,k)eR(e) satisfying (7.5) (7.10) that is unstable. That is, there is a sequence

{t,} with t,, — oo such that Q(t,) # 0 for each n. For (i,k) € Ra(e), let QL(t) = Qk(t) and
Ti) = (1 Mm(FF ()T (1),

For (i, k) € Rg(e), let QL (t) = Qi (t) and

Tii(t) = (1= Am(Fj (€))) Ti(2).

For (i, k) € F<(e), let Q% (t) = 0 and T} (t) = A\;m}t. We show that
(Q0).T()) = (Q() Te())ierk=1,... c:

is a fluid solution to (1.5) (1.10).
First, it is easy to check that (1.5) and (1.6) hold for (Q(:),T'(-)). Second, notice that

b > TE) =t Y Amt— > T

iel keA; (i,k)EFS(€) (i,k)ERA(€)

(1=dm(F5(e)t— (1= m(F5i(e) > Ti®)

= (—am@EFE)(t- Y TO).

(i,k)ERA(€)
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which is nondecreasing and hence (1.7) holds. Similarly, we see that
t— Y. T
iel,keB;

is non-decreasing.
Assume that ¢ is a regular point of (Q(-),7'(-)). When

> Qi) >0,

il keA;
we have
> L) >0
(i,k)eRa(€)
Hence .
> Tiw=t,
(i,k)eRa(€)
Or - . -
Yoo iy =1 > Amp.
(i,k)ERA(€) (i,k)EFS(€)
The last equation is equivalent to
Y T = 1.
el keA;
Hence we have proved (1.9). Similarly, we can show that (1.8) and (1.10) hold. Therefore,
(Q(+),T(-)) is a fluid solution to (1.5)—(1.10). It is obvious that (Q(-),T'(-)) is unstable. O

Proof of Lemma 8.1. Consider an A-section X = [i,s,t) of S* with s > ¢;. Let S® X = (S\ X)U
(X \ S) be the symmetric difference of S and X. Because s — 1 ¢ S and t ¢ S, S @ X is a strictly
separating set. Thus, by (8.2),

m(Va($)\ Fi(e) | Am(Va(S)\ F(e)) )
1 Am(F5(e)) 1— Am(Fg(e))
Mm(Va(S @ X)\ Fi(e)) | Am(Ve(S @ X)\ Fj(e)
1— Am(F5(e)) 1— )\m(F<(e))
xm(Ca(X)) m(Cp(X))

T xm(Fi(e)) 1- Am(Fﬁ(e)) =0

From which (8.4) follows immediately. The proof for B-sections Y = [i,s,t) of S*, where s > ¢; is
similar.

The argument for sections [i, s,t), where s < ¢;, is more involved. Rather than change the
separating set S, we change the push start set F<(e). Consider an A-section X = [i,s,t) of S,
where s < ¢;, and let € = (€]) er, where e; =t and for each j # i, €} = e;.

By (8.2),

An(VA(S)\FE(€) | AmVa($)\ Fi(e) | Wm(Va(S)\ Fi()) | Mm(Vi(S) \ Fi (€)
1= xm(F(e)) T—xm(Fi(e) = 1—xm(Fi(e)) 1= xm(F5 (e'))
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and so,

(A1)
An(Va($) \ Fi(e)  Am(Va(S)\ Fi(e') _ Am(Vi(S)\ Fj(e)  dm(Vi(S)\ Fy
1 — Mn(F5(e)) 1— m(F5(e) — 1— m(F5(e)) 1— m(F5
Now, since
A (Va(S)\ Fi5 (€')) = Mm(Va(S) \ F (e)) — Am(Ca(X) \ Fj (e))
and

Am(F(e')) = Am(F} () + Am(Ca(X) \ F (e)),

Am(Va(S)\ Fi(e)  Am(Va(S)\ F5(e)
1— Am(F5(e) 1— Am(F5(e'))

)
L Am(Cal) \FE(e) (1 dmlFi(e)) — dm(Va($)\ Fi (e)))
- (1 wm(F5(e)) (1 wn(F5(e)) |

Similarly, since
A (V(S) \ iy (€')) = dm(Vi(S) \ F5 (e))

and

(42) 0 an(FL(@) (1 m(Fi (@)
A (Cp(X) \ Fj5(e))dm(V(S) \ Fj (e))
- (1= Am(F5(€")) (1 — Am(Fg (e)))
Since,

L - Am(F5(e) ~ Am(Va(S) \ Fi(e) _ dm(Vis(S) \ Fj ()
1= Am(Fj (e)) T 1= dm(F(e)
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and so from (A.2),

Mn(Ca(X)\ Fi(e)) | Am(Cp(X) \ Fj(e))
L= dm(F5(e) = 1 dm(F5(e)

from which it follows that

An(CA(X) \ Fi(e)) _ Am(C(X) \ F5 (e)
T am(Fi(e) = 1- wn(Fje)

The argument for B-sections Y = [i,s,t) with s < ¢; is similar. O
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