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tThis paper studies the 
uid models of two-station multi
lass queueing networks with deterministi
routing. A 
uid model is globally stable if the 
uid network eventually empties under ea
h non-idling dispat
h poli
y. We expli
itly 
hara
terize the global stability region in terms of the arrivaland servi
e rates. We show that the global stability region is de�ned by the nominal workload
onditions and the \virtual workload 
onditions" and we introdu
e two intuitively appealing phe-nomena: virtual stations and push starts, that explain the virtual workload 
onditions. When anyof the workload 
onditions is violated, we 
onstru
t a 
uid solution that 
y
les to in�nity, showingthat the 
uid network is unstable. When all of the workload 
onditions are satis�ed, we solve a net-work 
ow problem to �nd the 
oeÆ
ients of a pie
ewise linear Lyapunov fun
tion. The Lyapunovfun
tion de
reases to zero proving that the 
uid level eventually rea
hes zero under any non-idlingdispat
h poli
y. Under 
ertain assumptions on the interarrival and servi
e time distributions, aqueueing network is stable or positive Harris re
urrent if the 
orresponding 
uid network is stable.Thus, the workload 
onditions are suÆ
ient to ensure the global stability of two-station multi
lassqueueing networks with deterministi
 routing.
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Introdu
tionQueueing networks o�er an appealing method for modeling 
omplex manufa
turing pro
esses andhave been used to model tele
ommuni
ation networks and manufa
turing systems like wafer fabri-
ation fa
ilities. Unfortunately, they are themselves generally too 
omplex for su

essful analysis.For example, the primary tool for evaluating the performan
e of a given dispat
h poli
y is simula-tion. In fa
t, we generally resort to simulation even to determine whether a queueing network isstable under a given dispat
h poli
y or whether the servers are unable to manage the workload.Even very simple queueing networks exhibit surprising and often 
ounterintuitive behavior.Consider the simple two-station re-entrant queueing network depi
ted in Figure 1, where mk is theaverage pro
essing time for stage k and jobs arrive at rate �. The two re
tangles indi
ate the twostations, Station A and Station B, and the line tra
es the route the jobs follow between them. Inthis example, ea
h job passes through �ve stages of pro
essing: the �rst, at Station A, lasts anaverage of m1 time units; the se
ond, at Station B, lasts an average of m2 time units; the third,again at Station A, lasts an average of m3 time units, and so on. At any point in time, Station A,for example, may have jobs waiting in all three of the stages it serves and must de
ide whi
h job topro
ess next. A strategy for making these de
isions at ea
h station 
onstitutes a dispat
h poli
y. Daiand Vande Vate (1996) showed that under 
ertain non-idling (or work-
onserving) dispat
h poli
iesthe servers are unable to serve jobs as qui
kly as they arrive even when the nominal workload atea
h station is signi�
antly less than 100%, i.e., �(m1 +m3 +m5) < 1 and �(m2 +m4) < 1. Infa
t, Dai and Vande Vate (1996) showed that if the servers give highest priority to jobs at stages 2and 5, they will be unable to serve the jobs as qui
kly as they arrive unless the nominal utilizationat ea
h station is less than 100% and �(m2 +m5) < 1:For example, if the average servi
e times are(0:1; 0:6; 0:1; 0:1; 0:6);servers employing this dispat
h poli
y will be able to keep up with the workload only if the arrivalrate to the system satis�es � < 1=(m2 +m5) = 5=6. The 
ondition �(m2 +m5) < 1 re
e
ts thefa
t that under this dispat
h poli
y Station A and Station B 
an serve their high priority stages
- -----
Station A Station B� m1 m2m3 m4m5
Figure 1: A �ve 
lass network2



simultaneously only during a transient initial period. Thus, although they are served by di�erentstations, these two stages 
an form a bottlene
k that determines the 
apa
ity of the entire system.We dis
uss this phenomenon, whi
h we 
all a \virtual station", in more detail in Se
tion 2.This paper fo
uses on the deterministi
 
uid network 
orresponding to a given queueing network.For the 
uid network 
orresponding to the queueing network pi
tured in Figure 1, 
uid arrives
ontinuously from the outside at rate �. The server at Station A pumps 
uid in stages 1, 3 and5 and the server at Station B pumps 
uid in stages 2 and 4. When a server devotes its full e�ortto stage k 
uid, it pumps at a maximum rate of �k = 1=mk, assuming there is stage k 
uid,k = 1; : : : ; 5. A dispat
h poli
y in the 
uid network 
ontext des
ribes how to allo
ate ea
h server'spumping 
apa
ity at ea
h time among the di�erent stages it serves. A 
uid network is stable undera dispat
h poli
y if it will eventually empty no matter what the initial 
uid levels are.Our work is largely motivated by a result of Dai (1995) showing that, under 
ertain distributionalassumptions on interarrival and servi
e times, a queueing network is stable or positive Harrisre
urrent if the 
orresponding 
uid network is stable. Related work 
an be found in Rybko andStolyar (1992), Chen (1995), Dai and Meyn (1995), Stolyar (1994), Meyn (1995), Dai (1996) andBramson (1998a).We develop ne
essary and suÆ
ient 
onditions for a two-station 
uid network to be globallystable or stable under any non-idling dispat
h poli
y. Determining the global stability region isespe
ially important when it is diÆ
ult or impossible to implement a well-studied dispat
h poli
y.In su
h systems, it is possible for servers to unwittingly employ a poli
y under whi
h the systemis unstable even though the traÆ
 intensity or nominal workload at ea
h station is less than one.Although it is sometimes diÆ
ult to avoid su
h bad poli
ies, we 
an avoid their 
onsequen
es bymaintaining servi
e times that are in the global stability region. In this way, we 
an ensure thateven under bad poli
ies, the system will remain stable.We show that a two-station 
uid network is globally stable if and only if the pro
essing timessatisfy the nominal workload 
onditions and the \virtual workload 
onditions". In parti
ular, weintrodu
e two intuitively appealing phenomena, virtual stations and push starts, that give rise to thetwo 
lasses of virtual workload 
onditions: \virtual station 
onditions" and \push start 
onditions".Virtual stations a�e
t the global stability of two-station 
uid networks be
ause, under somenon-idling dispat
h poli
ies, 
ertain groups of stages 
annot be served simultaneously even thoughthey are served at di�erent stations. Thus, just as at stations, the traÆ
 intensities at these groupsmust be less than one.Push starts magnify the in
uen
e of virtual stations in 
uid networks by giving highest priorityto the �rst few stages. Fluid passes through these stages to the rest of the network as qui
kly as itarrives, but having fo
used so mu
h attention on the �rst few stages, the servers have less 
apa
ityto dedi
ate to the rest of the network. Push starts do not in
uen
e the 
apa
ity of a single stationbe
ause the work required to serve the remaining stages at a station is redu
ed by exa
tly the e�ortrequired to expedite the �rst few stages. Push starts do in
uen
e the 
apa
ity of virtual stations,however, be
ause they involve stages at both stations: the e�ort spent expediting stages at onestation does not redu
e the work remaining at the other.Under 
ertain distributional assumptions, the virtual workload 
onditions together with thenominal workload 
onditions are suÆ
ient to ensure the global stability of two-station queueingnetworks. An independent argument in a 
ompanion paper Dai and Vande Vate (1996) shows thatthe virtual station 
onditions are also ne
essary for the global stability of two-station queueingnetworks. The push start 
onditions, however, are not in general ne
essary. See, for example, Daiand Vande Vate (1996).There has been a re
ent surge in the study of stability 
onditions for multi
lass queueing3



networks. These studies were primarily motivated by Kumar and Seidman (1990), Lu and Ku-mar (1991), Rybko and Stolyar (1992), Bramson (1994a, 1994b) and Seidman (1994), whi
h demon-strated that a number of non-idling dispat
h poli
ies are unstable even if the traÆ
 intensity atea
h station is less than one. In these unstable examples, the total number of jobs in the systemgoes to in�nity with time. Other re
ent work on the stability of queueing networks and 
uid net-works in
ludes: Harrison and Nguyen (1995), Bramson (1997, 1998b), Bertsimas, Gamarnik andTsitsiklis (1996), Dumas (1996, 1997), Dai and Weiss (1996), Foss and Rybko (1995), Winogradand Kumar (1996), Kumar and Meyn (1995, 1996), Chen and Zhang (1997, 1998), Morrison andKumar (1998), Hasenbein (1997).Re
ently, Bertsimas, Gamarnik and Tsitsiklis (1996) showed that a two-station 
uid network isglobally stable if and only if a 
ertain linear program has bounded obje
tive value. In this paper weextend the results of Bertsimas et al. by stating expli
itly in terms of the arrival rates and servi
etimes, ne
essary and suÆ
ient 
onditions for a two-station 
uid network to be globally stable.The expli
it des
ription of ne
essary and suÆ
ient 
onditions for the global stability of two-station 
uid networks provides a number of 
orollaries not immediately available from the lin-ear programming 
hara
terization of Bertsimas, Gamarnik and Tsitsiklis (1996). Most importantamong these is a 
omplete understanding of global stability in two-station 
uid networks via virtualstations and push starts. In addition, our 
onditions demonstrate that the global stable region of atwo-station 
uid network is monotone, i.e., redu
ing servi
e times maintains global stability. Thisis not the 
ase for stability with respe
t to a given dispat
h poli
y. It is possible for a dispat
hpoli
y to be stable for a given 
uid network, but unstable when the servi
e times are redu
ed. For
uid networks with more than two stations, even the global stable region need not be monotone(see, for example, Dai, Hasenbein and Vande Vate 1998).Our approa
h relies on the fa
t that a 
uid network is stable if there is a pie
ewise linearLyapunov fun
tion for it. We formulate the problem of determining the 
oeÆ
ients of the Lya-punov fun
tion as a linear programming problem, whi
h has unbounded obje
tive values only ifthe 
oeÆ
ients and hen
e the Lyapunov fun
tion exist. Our linear program arises dire
tly fromthe pie
ewise linear Lyapunov fun
tion introdu
ed in Dai and Weiss (1996), whi
h generalizes thatof Botvi
h and Zamyatin (1992) and is simpler than that independently formulated by Down andMeyn (1994).We transform our linear program into a parametri
 network 
ow problem in an a
y
li
 network.The 
uid network is globally stable if there is a value of the parameter for whi
h the minimum 
owin this network is suÆ
iently small. Thus, invoking the Min-Flow Max-Cut Theorem, we see thatthe 
uid network is globally stable if there is a value of the parameter for whi
h the 
apa
ity ofea
h 
ut in the a
y
li
 network is suÆ
iently small. Finally, we show that these \
ut 
onditions"are equivalent to the more easily understood virtual workload 
onditions.In Dai and Vande Vate (1996), we show that the virtual station 
onditions are ne
essary forthe stability of two-station queueing networks by showing that under 
ertain non-idling dispat
hpoli
ies, both stations 
annot simultaneously serve the 
lasses of a virtual station. This impliesthat the virtual station 
onditions are also ne
essary for the stability of two-station 
uid networks.We also provide an example showing that the push start 
onditions need not be ne
essary for globalstability in these networks. In this paper, we o�er a dire
t 
onstru
tion showing that both the virtualstation 
onditions and the push start 
onditions are ne
essary for the stability of two-station 
uidnetworks. In parti
ular, when the servi
e times stri
tly violate the virtual workload 
onditions, we
onstru
t a non-idling dispat
h poli
y that 
auses the work-in-pro
ess to grow without bound. Weare able to 
onstru
t the poli
y without knowing the spe
i�
 servi
e times sin
e it depends onlyon the violated 
onditions. In every 
ase, we identify a �nite sequen
e of states through whi
h the4




uid network 
y
les with greater work-in-pro
ess in ea
h su

essive 
y
le.The proof in Dai and Vande Vate (1996) that the virtual station 
onditions are ne
essary toensure global stability requires less detailed analysis and applies to a broader 
lass of networksen
ompassing both queueing networks and 
uid networks. The proof presented here is ratherdetailed and applies only to two-station 
uid networks. It does, however, demonstrate the ne
essityof the push start 
onditions for two-station 
uid networks and show exa
tly how the work-in-pro
essin an unstable system swings from 
lass to 
lass as it grows to in�nity. Further, it is not apparenthow to extend the simpler proof given in Dai and Vande Vate (1996) to 
ertain 
lasses of 
onditionsne
essary to ensure the global stability of 
uid networks with more than two stations. These largernetworks appear to require the more dire
t proof te
hnique used in this paper (see, for example,Dai, Hasenbein and Vande Vate 1998).We show that whenever the 
uid network is unstable, there is a stati
 bu�er priority dispat
hpoli
y under whi
h the work-in-pro
ess goes to in�nity. Thus, the 
lass of stati
 bu�er prioritydispat
h poli
ies is \worst" among all non-idling poli
ies in the sense that a two-station 
uidnetwork is globally stable if and only if it is stable under all stati
 bu�er priority dispat
h poli
ies.We introdu
e the virtual workload 
onditions in Se
tion 2 and show that they are suÆ
ient forstability in Se
tions 3 through 6. Finally, we prove they are ne
essary for stability in Se
tion 7.1 PreliminariesBefore introdu
ing the virtual workload 
onditions, we give a brief review of the Minimum FlowProblem and introdu
e our notation for 
uid networks. For an ex
ellent and a

essible treatmentof network 
ows, see Ahuja et al. (1993).1.1 The Minimum Flow ProblemConsider a dire
ted network (N;E) with node set N and edge set E. We distinguish two verti
ess, the sour
e, and t, the sink. Given (possibly in�nite) lower bounds ` = (`ij) and upper boundsu = (uij), we wish to �nd a minimum 
ow from the sour
e s to the sink t subje
t to 
ow 
onservation
onstraints and edge 
apa
ity 
onstraints. Thus, the minimum 
ow problem is:minimize vsubje
t toXj2N xsj �Xj2N xjs = v(1.1) Xj2N xij �Xj2N xji = 0 for ea
h node i 2 N n fs; tg(1.2) Xj2N xtj �Xj2N xjt = �v(1.3) `ij � xij � uij for ea
h edge (i; j) 2 E:(1.4)Suppose (x; v) satis�es (1.1){(1.4). We refer to the ve
tor x as a feasible 
ow and the value v asthe value of the 
ow x. A minimum 
ow is a feasible 
ow with smallest value among all feasible
ows.An s; t-
ut in the network (N;E) is a partition of N into two sets S and T with s 2 S and5



t 2 T . The 
apa
ity of the 
ut (S; T ), denoted 
(S; T ), is:
(S; T ) = X(i;j)2E:i2S;j2T `ij � X(i;j)2E:i2T;j2S uij :Note that our de�nition of 
apa
ity inter
hanges the roles of upper and lower bounds in the usualde�nition as applied to the maximum 
ow problem. This de�nition is appropriate for the minimum
ow problem and is sometimes referred to as the 
oor of a 
ut. A maximum s; t-
ut is one withlargest 
apa
ity among all s; t-
uts. Theorem 1.1 is a 
lassi
 result of network 
ows and 
an befound in Ahuja et. al. (1993, Exer
ise 6.18, pp. 202).Theorem 1.1. The value of a minimum 
ow equals the 
apa
ity of a maximum s; t-
ut.1.2 Multi-Type Fluid NetworksWe 
onsider 
uid networks with two single-server stations, denoted A and B, and a set I of di�erent
uid types. Type i 
uid arrives at a 
onstant rate �i > 0 and follows a pres
ribed route visitingone station and then the other a number of times before exiting the system. Di�erent types of 
uidmay follow di�erent routes. We number the stages 
uid i passes through 
onse
utively from 1 to
i and let Ai and Bi denote the stages in whi
h 
uid i is served at Station A and at Station B,respe
tively.We refer to type i 
uids waiting for the kth stage as 
lass (i; k) 
uids, whi
h reside in bu�er(i; k). Ea
h unit of 
lass (i; k) 
uid requires servi
e lasting mik > 0 units of time. The servi
e timemik is the time it takes the station to pro
ess one unit of 
lass (i; k) 
uid. Equivalently, �ik = 1=mikis the rate at whi
h the server depletes 
lass (i; k) 
uid from the bu�er when it devotes all its e�ortsto serving that 
lass.A 
uid solution is a ve
tor (Q(�); T (�)) = (Qik(�); T ik(�))i2I;k=1;::: ;
i of fun
tions of time satisfying:Qik(t) = Qik(0) + �ik�1T ik�1(t)� �ikT ik(t) � 0; for t � 0; i 2 I; k = 1; : : : ; 
i;(1.5) T ik(0) = 0 and T ik(t) is nonde
reasing for all i 2 I; and k = 1; : : : ; 
i;(1.6) t�Xi2I Xk2Ai T ik(t) is nonde
reasing;(1.7) t�Xi2I Xk2Bi T ik(t) is nonde
reasing;(1.8)where T i0(t) = t and �i0 = �i for ea
h type i 2 I to model the exogenous arrival of 
uids.We interpret Qik(t) as the volume of 
lass (i; k) 
uid in the bu�er at time t, and T ik(t) asthe 
umulative time spent serving 
lass (i; k) 
uids up to time t. The relationship between thebu�er levels and the 
umulative allo
ations of e�ort is given by (1.5) for ea
h 
lass of 
uid. Theseequations simply relate the bu�er levels to the initial bu�er levels and the total volume of 
uidentering and leaving ea
h bu�er. Conditions (1.6) ensure that no work is 
ompleted before time0. Conditions (1.7) and (1.8) ensure that ea
h server divides its time between serving the various
lasses and a

umulating idle time.Ea
h 
uid solution (Q(�); T (�)) has derivatives at almost all times t > 0 (with respe
t Lebesguemeasure on [0;1)); see Dai and Weiss (1996). A point t 2 [0;1) is a regular point of the 
uidsolution (Q;T ) if T is di�erentiable at t. We hen
eforth use _f(t) to denote the derivative of f at t.6



We 
onsider 
uid networks under non-idling dispat
h poli
ies or poli
ies that do not allow aserver to be idle when there is work for it to do. We 
an express this restri
tion via the \
omple-mentarity" 
onditions on 
uid solutions (Q(�); T (�)):Xi2I Xk2Ai _T ik(t) = 1 whenever Xi2I Xk2AiQik(t) > 0 and ;(1.9) Xi2I Xk2Bi _T ik(t) = 1 whenever Xi2I Xk2BiQik(t) > 0;(1.10)for ea
h regular point t of (Q(�); T (�)). The 
umulative idle time at Station A up to time t is simplyt�Xi2I Xk2Ai T ik(t)and Condition (1.7) ensures that it is nonde
reasing. Condition (1.9) further ensures that whenStation A is a

umulating idle time, the bu�ers it serves are empty. The 
umulative idle time atStation B is de�ned similarly. Hen
eforth, we 
onsider only 
uid solutions satisfying (1.5){(1.10).When there is only a single type of 
uid, we omit referen
es to the type and speak of 
lass k 
uidas having bu�er levels Qk(t), et
.A bu�er priority is a one-to-one mapping � from the set of bu�ers onto f1; : : : ; 
g, where 
 isthe total number of 
lasses in the network. When �(i; k) > �(j; `) for two 
lasses both served atthe same station, 
lass (i; k) has higher priority than 
lass (j; `). A stati
 bu�er priority dis
iplinewith bu�er priorities � stipulates that, in addition to (1.5){(1.10), every 
uid solution (Q(�); T (�))must also satisfy: Xi2I;k2Ai;�(i;k)��(j;`) _T ik(t) = 1 whenever Xi2I;k2Ai;�(i;k)��(j;`)Qik(t) > 0(1.11)for ea
h j 2 I and ` 2 Aj, and regular point t of (Q(�); T (�)) andXi2I;k2Bi;�(i;k)��(j;`) _T ik(t) = 1 whenever Xi2I;k2Bi;�(i;k)��(j;`)Qik(t) > 0(1.12)for ea
h j 2 I and ` 2 Bj and regular point t of (Q(�); T (�)). Equations (1.11)-(1.12) di
tate thatwhenever a bu�er a

umulates 
uid, no lower priority bu�er at the same station 
an re
eive servi
e.The 
uid network is said to be stable under non-idling dispat
h poli
ies, or simply globally stable,if there is some �nite time � > 0 beyond whi
h any 
uid solution (Q(�); T (�)) that begins with oneunit of work-in-pro
ess or WIP, i.e., withXi2I 
iXk=1Qik(0) = 1;will have no WIP, i.e., Xi2I 
iXk=1Qik(t) = 0;for all t � � . Dai (1995) showed if a 
uid network is stable, the 
orresponding queueing network ispositive Harris re
urrent under some distributional assumptions.7
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Station A Station B� m1 m2m3 m4m5 m6m7
Figure 2: A seven 
lass networkA 
uid solution (Q(�); T (�)) is said to be unstable if there exists ftng with tn ! 1 su
h thatQ(tn) 6= 0 for ea
h n. A 
uid solution (Q(�); T (�)) is said to diverge to in�nity if the WIP goes toin�nity as time t!1. A divergent 
uid solution is 
learly unstable.The traÆ
 intensities or nominal workloads at the stations are:�A =Xi2I Xk2Ai �imik and �B =Xi2I Xk2Bi �imik:It is well-known (see, for example, Dai 1996) that the 
uid network 
an only be stable if the traÆ
intensities are less than one, i.e., �A < 1 and �B < 1:(1.13)2 Virtual Workload ConditionsThe stability 
onditions for a two-station 
uid network take two forms: the nominal workload
onditions (1.13) that arise be
ause 
lasses at the same station must share the server's time; andthe virtual workload 
onditions, generalizing 
ondition �(m2 + m5) < 1 for the 
uid network inFigure 1, that arise through the intera
tions between virtual stations and push starts.Two intuitively appealing phenomena give rise to the virtual workload 
onditions. The intuitionbehind the �rst of these phenomena is best des
ribed in the 
ontext of queueing networks. These
ond phenomenon is most easily understood in the 
ontext of 
uid networks.Figure 1 illustrates a simple single-type queueing network. If we give highest priority to 
lass 5at Station A and to 
lass 2 at Station B, these two 
lasses 
an only be served simultaneously duringa transient initial period, see Dai and Vande Vate (1996, Lemma 3.1). Thus, these two 
lasses forma \virtual station" and, although they are served at di�erent stations, the workload at these two
lasses 
annot ex
eed 1. This virtual station gives rise to the virtual workload 
ondition:�(m2 +m5) < 1;whi
h we refer to as a \virtual station 
ondition". These 
onditions also apply to 
uid networks.8



The 
uid network of Figure 2 illustrates the se
ond phenomenon giving rise to virtual workload
onditions. Assume that the nominal workload 
onditions (1.13) hold. If we give highest priority to
lass 1 at Station A and to 
lass 2 at Station B in this network, the 
uid levels in these two bu�erswill rea
h zero and remain zero thereafter. For the sake of our dis
ussion, we assume that these twobu�ers are always empty. Then, the server at Station A will 
onstantly devote a fra
tion �m1 of itstime to 
lass 1 to keep the bu�er empty, and hen
e have only a fra
tion 1��m1 of its time left forother 
lasses at Station A. Similarly, the server at Station B will 
onstantly devote a fra
tion �m2of its time to 
lass 2 and have only a fra
tion 1��m2 of its time left for the other 
lasses at StationB. Note that in a queueing network we 
annot anti
ipate a 
onstant, uninterrupted devotion oftime to these 
lasses, but we 
an in a 
uid network. The fa
t that the servers are slowed by theire�orts on 
lasses 1 and 2 magni�es the time required to serve ea
h unit of 
uid in the remaining
lasses. In parti
ular, the server at Station A will require m7=(1� �m1) units of time to 
ompleteone unit of 
lass 7 
uid and the server at Station B will require m4=(1 � �m2) units of time to
omplete one unit of 
lass 4 
uid. Be
ause bu�ers 1 and 2 remain empty, 
uid passes through themas qui
kly as it arrives, and hen
e arrives at bu�er 3 at rate �. Thus, push starting the �rst two
lasses magni�es the virtual station 
ondition:�(m4 +m7) < 1in the indu
ed network to give the virtual workload 
ondition:�m41� �m2 + �m71� �m1 < 1;ensuring that the virtual station 
an divide its time between serving the two 
lasses. We refer tothis 
ondition as a \push start 
ondition".Together, these two phenomena explain all the virtual workload 
onditions of two-station 
uidnetworks. Although these ideas are intuitively appealing, formalizing them is more involved. Weformalize the 
onditions under whi
h 
lasses at di�erent stations 
annot re
eive servi
e simultane-ously in the following way.The �rst notion in our 
hara
terization of virtual stations is the idea of an ex
ursion or set of
onse
utive 
lasses at the same station. In the network of Figure 3 ea
h type makes four ex
ursionsat Station A and four ex
ursions at Station B. For example, the se
ond ex
ursion for type 2 
onsistsof 
lasses (2; 2) and (2; 3).We let E denote the set of ex
ursions and, for ea
h type i 2 I, we let Ei denote the set ofex
ursions for type i 
ustomers, whi
h we number 
onse
utively from 1 to ni. We partition Ei intoEiA, the set of ex
ursions at Station A, and EiB , those at Station B. Sin
e an ex
ursion at onestation must be followed by an ex
ursion at the other (unless it is the last ex
ursion), one of these isthe set of odd numbered ex
ursions and the other is the set of even numbered ex
ursions dependingon where type i 
ustomers �rst enter the network. We use [i; e℄ to denote the eth ex
ursion for typei 
uid. Re
all that (i; k) denotes the type i 
uid that is waiting for its kth servi
e.We let E[i; e℄ denote the 
lasses of ex
ursion [i; e℄ and we partition these 
lasses into the last
lass and all the rest, whi
h we 
all �rst 
lasses of the ex
ursion. We let `[i; e℄ denote the last 
lassand f [i; e℄ the set of �rst 
lasses in E[i; e℄. If an ex
ursion 
onsists of only one 
lass, that 
lass isthe last 
lass and the ex
ursion has no �rst 
lasses. For example, in the twenty-eight 
lass networkof Figure 3, `[1; 1℄ = (1; 1), f [1; 1℄ = ;, `[1; 2℄ = (1; 3), f [1; 2℄ = f(1; 2)g, : : : , `[1; 8℄ = (1; 14) andf [1; 8℄ = ;. When e > ni, both E[i; e℄ and f [i; e℄ are empty. To simplify notation, we sometimesuse `[i; e℄ to denote the stage number of the last 
lass and f [i; e℄ to denote the set of stage numbersof the �rst 
lasses in ex
ursion E[i; e℄. 9
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Figure 3: A twenty-eight 
lass 
uid network with two types of 
uidDe�nition 2.1. The neighbors of a set X of ex
ursions is the set�(X) = f[i; e℄ 2 E : [i; e� 1℄ or [i; e+ 1℄ is in Xg:De�nition 2.2. A set S of ex
ursions is said to be separating if it 
ontains no 
onse
utive ex
ur-sions. Thus, a set S of ex
ursions is separating if S \ �(S) = ;.De�nition 2.3. A separating set S is said to be A-stri
tly separating if it 
ontains no �rst ex
ur-sion at Station A, i.e., if S \ f[i; 1℄ 2 EiA : i 2 Ig = ;. Similarly, a separating set S is said tobe B-stri
tly separating if it 
ontains no �rst ex
ursion at Station B, i.e., if S \ f[i; 1℄ 2 EiB : i 2Ig = ;. A separating set S is said to be stri
tly separating if it 
ontains no �rst ex
ursion, i.e., ifS � f[i; e℄ : i 2 I; e = 2; : : : ; nig.The set of ex
ursions at Station A, for example, is B-stri
tly separating. Likewise, the set ofex
ursions at Station B is A-stri
tly separating. We refer to these two separating sets as trivialseparating sets.Ea
h stri
tly separating set S of ex
ursions indu
es a virtual station V (S) or maximal 
olle
tionof 
lasses with the property that if we give highest priority to these 
lasses the two servers 
ansimultaneously serve 
lasses of V (S) only during a transient initial period.De�nition 2.4. Ea
h separating set S of ex
ursions indu
es a 
olle
tion V (S) 
onsisting of the
lasses in ex
ursions of S together with the �rst 
lasses of ex
ursions whose immediate prede
essoris not in S. Thus, V (S) = �[[i;e℄2SE[i; e℄�[�[[i;e℄2EinSf [i; e+ 1℄� :When S is stri
tly separating we refer to V (S) as a virtual station.A virtual station V , then, is a set of 
lasses satisfying:10



1. No 
lass of a �rst ex
ursion is in V , i.e., E[i; 1℄ \ V = ; for ea
h type i.2. If the last 
lass of an ex
ursion is in V , then every 
lass of that ex
ursion is in V and if a �rst
lass of an ex
ursion is in V , then every �rst 
lass of that ex
ursion is in V . Thus, a virtualstation must have either none of the 
lasses, all of the 
lasses, or all but the last 
lass of ea
hex
ursion.3. The last 
lass of an ex
ursion (ex
ept a last ex
ursion) is in V if and only if no 
lass of the nextex
ursion is in V , i.e., for ea
h ex
ursion e < ni, `[i; e℄ 2 V if and only if E[i; e + 1℄ \ V = ;.In the network of Figure 1, the separating set S = f2, 5g of ex
ursions gives rise to the virtualstation V (S) 
onsisting of 
lasses 2 and 5 (there are no �rst 
lasses in ex
ursion 3). This is theonly virtual station that is not itself a subset of the 
lasses at a station.The se
ond phenomenon determining the global stability of a two-station 
uid network is pushstarting. Giving highest priority to the �rst few 
lasses of ea
h type 
an magnify the e�e
ts ofvirtual stations in the subnetwork 
onsisting of the remaining 
lasses.De�nition 2.5. Let e = (ei)i2I be a ve
tor with 1 � ei � ni for ea
h type i. We let F<(e) denotethe push start set 
onsisting of the 
olle
tion of all 
lasses up to but not in
luding the last 
lass ofex
ursion [i; ei℄ for ea
h type i 2 I and we let R(e) denote all the remaining 
lasses. Thus,F<(e) = f(i; k) : i 2 I; 1 � k < `[i; ei℄gand R(e) = f(i; k) : i 2 I; `[i; ei℄ � k � 
ig:We let F�(e) denote the 
olle
tion of all 
lasses up to and in
luding the last 
lass of ex
ursion[i; ei℄ for ea
h type i 2 I. Thus,F�(e) = f(i; k) : i 2 I; 1 � k � `[i; ei℄g:Note that if V (S) is a virtual station and F<(e) is a push start set, then V (S) n F�(e) is the
lasses of a virtual station in the subnetwork 
onsisting of the 
lasses of R(e).Given a set X of 
lasses, we de�ne XA to be the 
lasses of X served at Station A and XB to bethose served at station B. For example, we use VA(S) to denote the 
lasses of the virtual stationV (S) at Station A and we use F<A (e) to denote the 
lasses of F<(e) at Station A. Further, tosimplify our notation, we adopt the 
onvention that for ea
h set X of 
lasses,�m(X) = X(i;k)2X �imik:Theorem 2.1. A two-station 
uid network is globally stable if and only if�A < 1; �B < 1;(2.1)and for ea
h ve
tor e = (ei)i2I of ex
ursions and ea
h separating set S, we have�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) < 1:(2.2)Furthermore, if some ve
tor e = (ei)i2I of ex
ursions and separating set S satisfy�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) > 1;(2.3)then there exists a non-idling 
uid solution su
h that the WIP diverges to in�nity with time.11



We refer to the 
onditions (2.2) as the virtual workload 
onditions. When F<(e) = ;, we referto the virtual workload 
ondition (2.2) as a virtual station 
ondition. Otherwise, the 
onditioninvolves push starting F<(e) and we refer to it as a push start 
ondition. For example, the virtualworkload 
onditions of the 
uid network in Figure 2 are:�(m2 +m5 +m7) < 1;�(m2 +m4 +m7) < 1;�m31� �m1 + �m6 < 1;�m41� �m2 + �m71� �m1 < 1:The remainder of this paper is devoted to proving that the nominal workload 
onditions and thevirtual workload 
onditions are ne
essary and suÆ
ient to ensure the global stability of two-station
uid networks. We argue in Se
tions 3 and 4 that we 
an 
onstru
t a 
ertain pie
ewise linearLyapunov fun
tion showing that the WIP will eventually go to zero and remain zero if the arrivalrates and servi
e rates satisfy 
ertain 
onstraints. We then argue in Se
tions 5 and 6 that theserather 
ompli
ated 
onstraints are equivalent to the virtual workload 
onditions.In Se
tion 7, we show that the virtual workload 
onditions (2.2) are ne
essary to ensure theglobal stability of the 
uid network. We o�er a dire
t proof that expli
itly demonstrates a non-idling dispat
h poli
y under whi
h, if some ve
tor e = (ei)i2I of ex
ursions and separating set Ssatisfy (2.3), WIP levels grow without bound. In fa
t, we demonstrate the traje
tory of the 
uidnetwork through a �nite sequen
e of states with greater and greater WIP in ea
h su

essive 
y
le.3 A Pie
ewise-Linear Lyapunov Fun
tionWe show that the virtual workload 
onditions of Theorem 2.1 are suÆ
ient to ensure global stabilityof a two-station 
uid network by showing that when they are satis�ed there is a potential fun
tionor Lyapunov fun
tion G proving that the WIP drains to zero regardless of the initial 
onditions.Consider a 
uid solution (Q(�); T (�)). We let Zik(t) denote the volume of 
uid i that has alreadyentered the network by time t, but has not yet re
eived 
lass (i; k) servi
e, i.e.,Zik(t) = Zik(0) + �it� �ikT ik(t) = X̀�kQì(t):We de�ne G to be the maximum of two linear fun
tions of (Zik(t)) | one for ea
h station | andso it is a pie
ewise-linear fun
tion of the bu�er levels (Qik(t)). In parti
ular, given weights x = (xik)for the 
lasses, we de�ne the linear fun
tions at Station A and Station B to be:GA(x; t) = Xi2I Xk2Ai xikZik(t)=�i andGB(x; t) = Xi2I Xk2Bi xikZik(t)=�i:Let G(x; t) = maxfGA(x; t); GB(x; t)g:If there is � > 0 su
h that 12



� G(x; t) > 0 and� _G(x; t) � �G(x;t)�t � ��;whenever the WIP is not zero at time t and Q(�) and G(x; �) are di�erentiable at t, then after time� = G(x; 0)=� all bu�ers will have drained to zero; proving that the 
uid network is globally stable.Dai and Weiss (1996) showed that G will satisfy these 
onditions if there is � > 0 and weights x > 0su
h that: GA(x; t) � GB(x; t) whenever Xi2I Xk2AiQik(t) = 0;(3.1) GB(x; t) � GA(x; t) whenever Xi2I Xk2BiQik(t) = 0;(3.2) �GA(x; t)�t � �� whenever Xi2I Xk2AiQik(t) > 0; and(3.3) �GB(x; t)�t � �� whenever Xi2I Xk2BiQik(t) > 0;(3.4)where 
onditions (3.1) and (3.2) apply for all t and 
onditions (3.3) and (3.4) apply only when t isa regular point of (Q(�); T (�)). Thus, we have the following proposition.Proposition 3.1. If there exists � > 0 and x > 0 su
h that (3.1){(3.4) hold, the 
uid network isstable under non-idling dispat
h poli
ies.4 A Linear Programming FormulationWe transform the problem of �nding weights x su
h that GA(x; t) and GB(x; t) satisfy (3.1){(3.4) into a linear programming problem. The linear program has a solution with stri
tly positiveobje
tive value if and only if the desired weights x exist and any solution with stri
tly positiveobje
tive value provides weights satisfying the desired 
onditions.We �rst transform (3.1) into linear 
onstraints on x. WhenXi2I Xk2AiQik(t) = 0;(4.1)GA redu
es to:Xi2I Xk2Ai0�xik X`2Bi;`<kQì(t)=�i1A = Xi2I X`2Bi0�Qì(t) Xk2Ai;k>`xik=�i1A(4.2)and GB redu
es to:Xi2I Xk2Bi0�xik X`2Bi;`�kQì(t)=�i1A = Xi2I X`2Bi0�Qì(t) Xk2Bi;k�`xik=�i1A :(4.3)It follows that (3.1) is satis�ed if: Xk2Ai;k>`xik � Xk2Bi;k�`xik(4.4) 13



for ea
h i 2 I and ` 2 Bi. Sin
e the weights x are non-negative, we 
an restri
t attention to those
onstraints of (4.4) where ` 2 Bi, but `+ 1 62 Bi. In other words, (4.4) is equivalent toXk2Ai;k>`[i;e℄xik � Xk2Bi;k�`[i;e℄xik(4.5)for ea
h ex
ursion [i; e℄ at Station B.Similar analysis leads to the 
on
lusion that GA and GB satisfy (3.2) if:Xk2Bi;k>`[i;e℄xik � Xk2Ai;k�`[i;e℄xik(4.6)for ea
h ex
ursion [i; e℄ at Station A.We next transform (3.3) into linear 
onditions on x. WhenXi2I Xk2AiQik(t) > 0;the non-idling 
ondition (1.9) ensures that Station A is not a

umulating idle time and so,Xi2I Xk2Ai _T ik(t) = 1:(4.7)Now, _GA(t) = Xi2I Xk2Ai xik _Zik(t)=�i= Xi2I Xk2Ai xik �1� �ik _T ik(t)=�i�= Xi2I Xk2Ai xik �Xi2I Xk2Ai xik�ik _T ik(t)=�i:Thus, (3.3) is satis�ed if: Xj2I Xk2Aj xjk + � � xì�ì=�i(4.8)for ea
h i 2 I and ` 2 Ai.Similar analysis shows that (3.4) is satis�ed if:Xj2I Xk2Bj xjk + � � xì�ì=�i(4.9)for ea
h i 2 I and ` 2 Bi.Finding the largest possible value of � for whi
h there are weights x satisfying (4.5){(4.6) and
14



(4.8){(4.9) redu
es to solving the following linear program for � and x:maximize �(4.10) subje
t to:Xk2Ai;k>`[i;e℄xik � Xk2Bi;k�`[i;e℄xik � 0 for ea
h i 2 I and [i; e℄ 2 EiB(4.11) Xk2Bi;k>`[i;e℄xik � Xk2Ai;k�`[i;e℄xik � 0 for ea
h i 2 I and [i; e℄ 2 EiA(4.12) 0�Xj2I Xk2Aj xjk1A� xì�ì=�i + � � 0 for i 2 I and ` 2 Ai(4.13) 0�Xj2I Xk2Bj xjk1A� xì�ì=�i + � � 0 for i 2 I and ` 2 Bi(4.14) x; � � 0(4.15)The 
onstraints (4.11){(4.15) de�ne a 
one with the single extreme point given by x = 0 and� = 0. Thus, we have the following proposition:Proposition 4.1. If the linear program (4.10){(4.15) has unbounded obje
tive values, then ea
hsolution (x; �) with � > 0 provides weights x > 0 su
h that G(x; t) is a pie
ewise-linear Lyapunovfun
tion proving that the 
uid network is stable.In Se
tion 5, we transform the linear program (4.10){(4.15) into a parametri
 network 
owproblem and, by exploiting a dual formulation, derive suÆ
ient 
onditions for stability of a two-station 
uid network. In Se
tion 6, we show that these 
onditions are equivalent to the 
onditionsof Theorem 2.1.5 A Network Flows FormulationThe linear program (4.10){(4.15) o�ers a 
omputationally attra
tive method for determining whetheror not a two-station 
uid network with spe
i�ed servi
e times is globally stable. A network withgiven arrival rates and servi
e times is globally stable if the linear program (4.10){(4.15) has un-bounded obje
tive values. Otherwise, as we show in Se
tion 7, it is not. The linear program doesnot, however, provide a theoreti
ally attra
tive 
hara
terization of the global stability region for atwo-station 
uid network.In order to obtain an expli
it 
hara
terization of the arrival rates and servi
e times under whi
ha two-station 
uid network is globally stable, we translate the linear program (4.10){(4.15) into anequivalent parametri
 network 
ow problem. The parametri
 network 
ow problem is equivalentto the linear program in the sense that the linear program has unbounded obje
tive values if andonly if there is a value of the parameter for whi
h the network 
ow problem has stri
tly positiveobje
tive value.To transform (4.10){(4.15) into an equivalent network 
ow problem, we �rst observe that sin
e(4.11){(4.15) de�nes a 
one, there is a solution (x; �) to (4.11){(4.15) with � > 0 if and only if thereis a solution with � > 0 and Xi2I Xk2Ai xik + � = 1:(5.1) 15



Although we 
an arbitrarily s
ale the sum of the weights on 
lasses at one station, (we have 
hosenStation A) to 1, we 
annot simultaneously s
ale the sum of the weights on 
lasses at the otherstation to a �xed value. Thus, we let � denote the sum of the weights on the 
lasses served atStation B: Xi2I Xk2Bi xik + � = �:(5.2)We do not know a priori a value of � at whi
h � is maximized, but by treating it as a parameterrather than a variable, we 
an express the 
onstraints (4.13){(4.14) as lower bounds:�imik � xik for i 2 I and k 2 Ai(5.3) ��imik � xik for i 2 I and k 2 Bi:(5.4)Next, we add sla
k variables s = (sie) and write the 
onstraints (4.11){(4.12) as:Xk2Ai;k>`[i;e℄xik � Xk2Bi;k�`[i;e℄xik + sie = 0 for ea
h i 2 I and [i; e℄ 2 EiB(5.5) Xk2Bi;k>`[i;e℄xik � Xk2Ai;k�`[i;e℄xik + sie = 0 for ea
h i 2 I and [i; e℄ 2 EiA:(5.6)Adding (5.5) for an ex
ursion [i; e℄ at Station B and (5.6) for ex
ursion [i; e + 1℄ at Station Aand multiplying by �1, we obtain:� Xk2f [i;e+1℄xik + xì[i;e℄ � sie � sie+1 = 0:(5.7)Similarly, adding (5.6) for ex
ursion [i; e℄ at Station A and (5.5) for ex
ursion [i; e+1℄ at StationB, we obtain Xk2f [i;e+1℄xik � xì[i;e℄ + sie + sie+1 = 0:(5.8)Adopting the 
onvention that sini+1 = 0, we 
an write (5.5) for a last ex
ursion [i; ni℄ 2 EiB as:� Xk2f [i;ni+1℄xik + xì[i;ni℄ � sini � sini+1 = 0and we 
an write (5.6) for a last ex
ursion [i; ni℄ 2 EiA as:Xk2f [i;ni+1℄xik � xì[i;ni℄ + sini + sini+1 = 0:
16



Combining these transformations gives the following linear program:maximize �(5.9) subje
t to:Xk2f [i;e+1℄xik � xì[i;e℄ + sie + sie+1 = 0 for i 2 I and [i; e℄ 2 EiA(5.10) � Xk2f [i;e+1℄xik + xì[i;e℄ � sie � sie+1 = 0 for i 2 I and [i; e℄ 2 EiB(5.11) Xi2I Xk2Ai xik + � = 1(5.12) �Xi2I Xk2Bi xik � � = ��(5.13) �imik � xik for i 2 I and k 2 Ai(5.14) ��imik � xik for i 2 I and k 2 Bi(5.15) x; s; � � 0:(5.16)There is a value of the parameter � su
h that the linear program (5.9){(5.16) has optimum obje
tivevalue � > 0 if and only if the linear program (4.10){(4.15) has unbounded obje
tive values.The linear program (5.9){(5.16) is a network 
ow problem with right-hand-sides and lowerbounds that depend on the parameter �. The nodes of the network are:� A node for ea
h ex
ursion [i; e℄ 
orresponding to the 
onstraints (5.10) and (5.11).� A node for ea
h Station A and B 
orresponding to the 
onstraints (5.12) and (5.13).� A node 
alled the root 
orresponding to the redundant 
onstraintXi2I 0� Xk2Bi\f [i;1℄xik � Xk2Ai\f [i;1℄xik1A+ Xi2I:`[i;1℄2Bi si1 � Xi2I:`[i;1℄2Ai si1 = � � 1obtained by adding (5.10){(5.13) and multiplying by �1.The edges of the network are:E.1. An edge from the node for Station A to the node for ex
ursion [i; e℄ at Station A. This edge
orresponds to the variable xì[i;e℄ and has lower bound �imì[i;e℄.E.2. An edge from the node for ex
ursion [i; e℄ at Station B to the node for Station B. This edge
orresponds to the variable xì[i;e℄ and has lower bound ��imì[i;e℄.E.3. An edge from the node for Station A to the node for ex
ursion [i; e℄ at Station B for ea
h 
lass(i; k) in f [i; e + 1℄. These edges 
orrespond to the variables xik for the 
lasses in f [i; e + 1℄.The edge for 
lass (i; k) has lower bound �imik.E.4. An edge from the node for ex
ursion [i; e℄ at Station A to the node for Station B for ea
h 
lass(i; k) in f [i; e + 1℄. These edges 
orrespond to the variables xik for the 
lasses in f [i; e + 1℄.The edge for 
lass (i; k) has lower bound ��imik.17



� > 0

A root B

s14 � 0[1; 3℄ s13 � 0 [1; 4℄
s12 � 0 [1; 2℄[1; 1℄

x15 � �1m15 x14 � �1m14

[2; 2℄
s11 � 0 s21 � 0 [2; 1℄s22 � 0

s24 � 0 s23 � 0 [2; 3℄[2; 4℄

x11 � �1m11x23 � �2m23
x24 � ��2m24

x16 � ��1m16

x25 � ��2m25x26 � �2m26
x22 � �2m22 x12 � ��1m12 x13 � ��1m13x21 � ��2m211 ��� � 1

Figure 4: This parametri
 network 
ow problem is equivalent to the linear program (5.9){(5.16) asapplied to the 
uid network in Figure 5. The sour
e A has supply 1. The sink B has demand �. If� > 1, the root has supply � � 1. If � � 1, the root has demand 1� �.
18
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Station A

m21m24m25m22m23m26
Station B

Figure 5: A twelve 
lass 
uid network with two types of 
uidE.5. An edge from the node for Station A to the root for ea
h 
lass (i; k) in f [i; 1℄ served at StationA. These edges 
orrespond to the variables xik for the 
lasses in f [i; 1℄ served at Station A.The edge for 
lass (i; k) has lower bound �imik.E.6. An edge from the root to the node for Station B for ea
h 
lass (i; k) in f [i; 1℄ served at StationB. These edges 
orrespond to the variables xik for the 
lasses in f [i; 1℄ served at Station B.The edge for 
lass (i; k) has lower bound ��imik.E.7. An edge from the node for ex
ursion [i; 1℄ at Station A to the root. This edge 
orresponds tothe variable si1 and has lower bound 0.E.8. An edge from the root to the node for ex
ursion [i; 1℄ at Station B. This edge 
orresponds tothe variable si1 and has lower bound 0.E.9. An edge from the node for ex
ursion [i; e℄ at Station A to the node for ex
ursion [i; e � 1℄ atStation B. This edge 
orresponds to the variable sie and has lower bound 0.E.10. An edge from the node for ex
ursion [i; e � 1℄ at Station A to the node for ex
ursion [i; e℄ atStation B. This edge 
orresponds to the variable sie and has lower bound 0.E.11. An edge from the node for Station A to the node for Station B. This edge 
orresponds to thevariable �.The node for A has a supply of 1 and the node for B has a demand for �. The remaining supply(if � > 1) or demand (if � < 1) is at the root. The linear program (4.10){(4.15) has unboundedobje
tive values if and only if there is a value of � > 0 su
h that there is a feasible 
ow in thisnetwork with � > 0. Figure 4, illustrates this 
onstru
tion for the 
uid network in Figure 5.Rather than 
onsider separately the two 
ases � > 1 and � < 1, we model the supply or demandat the root by 
hanging the supply at the node for A and the demand at the node for B to maxf1; �gand adding two additional edges:� An edge from the node for A to the root with lower bound maxf0; � � 1g representing anysupply at the root. 19



� An edge from the root to the node for B with lower bound maxf0; 1 � �g representing anydemand at the root.The linear program (4.10){(4.15) has unbounded obje
tive values if and only if there is � > 0 su
hthat there is a feasible 
ow with value maxf1; �g and � > 0. Figure 6, illustrates this 
onstru
tionfor the 
uid network in Figure 5.Finally, for given � > 0, there is a 
ow of value maxf1; �g from A to B in this network (see,for example, Figure 6) with a stri
tly positive 
ow on the edge 
orresponding to � if and only ifthe minimum 
ow from the node for A to the node for B in this network without the edge for �(see, for example, Figure 7) is stri
tly less than maxf1; �g | the remaining 
ow 
an be assigned to�. Thus, we hen
eforth omit the edge for � from the network and 
onsider the resulting MinimumFlow Problem.To summarize, given a feasible solution (x; �) to the linear program (5.9){(5.16) for some � > 0,we 
an 
onstru
t a feasible solution to the minimum 
ow problem with value maxf1; �g � � bysending maxf0; ��1g on the new edge from A to the root and maxf0; 1��g on the new edge fromthe root to B. Conversely, given a feasible 
ow x for the minimum 
ow problem for some � > 0with value maxf1; �g � �, (x; �) is a feasible solution to the linear program (5.9){(5.16).From Theorem 1.1, the value of a minimum 
ow equals the 
apa
ity of a maximum A;B-
utand so, there are weights x satisfying (5.10){(5.16) if and only if, for some value of � > 0, ea
hA;B-
ut in this network has 
apa
ity stri
tly less than maxf1; �g. Thus, we have proved thefollowing lemma.Lemma 5.1. A two-station 
uid network is globally stable if there is a value of � > 0 for whi
hthe 
apa
ity of a maximum A;B-
ut is stri
tly less than maxf1; �g.Given an A;B-
ut (L;R), we let LA denote the ex
ursions in L that are served at Station Aand LB denote those served at Station B. Similarly, we let RA denote the ex
ursions in R servedat Station A and RB denote those at Station B.We refer to an A;B-
ut with the root in L as an L-
ut. An A;B-
ut with the root in R is anR-
ut. Note that sin
e the upper bound on ea
h edge is in�nite, an A;B-
ut (L;R) in this networkhas 
apa
ity �1 if some edge extends from a node in R to a node in L. That is to say, an A;B-
ut(L;R) in this network has �nite 
apa
ity if and only if no edge extends from a node in R to a nodein L, i.e., if and only if (L;R) satis�es:Rule 1. If [i; e℄ 2 LB, then [i; e + 1℄ is in LA, otherwise the edge 
orresponding to the variablesie+1 (see E.9) extends from a node in R to a node in L,Rule 2. If [i; e℄ 2 RA, then ex
ursion [i; e + 1℄ is in RB, otherwise the edge 
orresponding to thevariable sie+1 (see E.10) extends from a node in R to a node in L,Rule 3. If (L;R) is an R-
ut, then [i; 1℄ 62 LB for ea
h type i, otherwise the edge 
orrespondingto the variable si1 (see E.8) extends from a node in R to a node in L, andRule 4. If (L;R) is an L-
ut, then [i; 1℄ 62 RA for ea
h type i, otherwise the edge 
orresponding tothe variable si1 (see E.7) extends from a node in R to a node in L.Thus, we have the following lemma, whi
h allows us to speak in terms of separating sets ratherthan 
uts.Lemma 5.2. An L-
ut (L;R) has �nite 
apa
ity if and only if LB [RA is an A-stri
tly separatingset. Similarly, an R-
ut (L;R) has �nite 
apa
ity if and only if LB [RA is a B-stri
tly separatingset. 20



� > 0

A root B

s14 � 0[1; 3℄ s13 � 0
s12 � 0[1; 1℄

x15 � �1m15 x14 � �1m14

[2; 2℄
s11 � 0 s21 � 0s22 � 0

s24 � 0 s23 � 0

x11 � �1m11x23 � �2m23
x24 � ��2m24

x16 � ��1m16

x25 � ��2m25x26 � �2m26
x22 � �2m22 x12 � ��1m12 x13 � ��1m13x21 � ��2m21maxf0; � � 1g maxf0; 1� �gmaxf1; �g �maxf1; �g

[2; 4℄ [2; 3℄
[2; 1℄
[1; 2℄
[1; 4℄

Figure 6: For given � > 0, there is a feasible 
ow in the network of Figure 4 if and only if there isa feasible 
ow in this network with value maxf1; �g and � > 0.
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A root B

s14 � 0[1; 3℄ s13 � 0 [1; 4℄
s12 � 0 [1; 2℄[1; 1℄

x15 � �1m15 x14 � �1m14

[2; 2℄
s11 � 0 s21 � 0 [2; 1℄s22 � 0

s24 � 0 s23 � 0 [2; 3℄[2; 4℄

x11 � �1m11x23 � �2m23
x24 � ��2m24

x16 � ��1m16

x25 � ��2m25x26 � �2m26
x22 � �2m22 x12 � ��1m12 x13 � ��1m13x21 � ��2m21maxf0; � � 1g maxf0; 1� �gv �v

Figure 7: For given � > 0, there is a feasible 
ow in the network of Figure 6 with value maxf1; �gand � > 0 if and only if the minimum 
ow in this network has value v stri
tly less than maxf1; �g.
22



We 
an express the 
apa
ity of a �nite 
apa
ity L-
ut (L;R) in terms of the 
orrespondingA-stri
tly separating set LB [RA and the 
olle
tion V (LB [RA) of 
lasses it generates as follows:
(L;R) = �m(VA(LB [RA)) + ��m(VB(LB [RA)) + maxf0; 1 � �g:To see this observe that every edge 
ontributing a positive amount to the 
apa
ity of an L-
uteither starts at A or ends at B. The �rst term �m(VA(LB [ RA)) 
aptures the 
ontributions ofedges that start at A and the se
ond term ��m(VB(LB [RA)) 
aptures the 
ontributions of edgesthat end at B ex
ept for the edge from the root to B, whi
h 
ontributes maxf0; 1� �g. The edgesstarting at A that 
ontribute to the 
apa
ity of the 
ut are:� The last 
lass of ea
h ex
ursion [i; e℄ 2 RA. These are the edges 
orresponding to edges E.1that 
ross the 
ut.� The �rst 
lasses of ea
h ex
ursion [i; e℄ 2 A su
h that [i; e � 1℄ 2 RB. These are the edges
orresponding to edges E.3 that 
ross the 
ut.These are exa
tly the 
lasses of VA(LB [RA). The 
lasses of the virtual station served at A in
ludeall the 
lasses of RA and the �rst 
lasses of those ex
ursions [i; e℄ 2 LA su
h that [i; e � 1℄ 62 LB .If [i; e℄ 2 RA, then, by Rule 1, [i; e � 1℄ 2 RB and so all the 
lasses of the ex
ursion 
ross the 
ut.If [i; e℄ 2 LA and [i; e � 1℄ 2 RB then all the �rst 
lasses of the ex
ursion 
ross the 
ut, but notthe last 
lass. Analogous arguments verify that ��m(VB(LB [RA)) is exa
tly the 
ontribution ofedges that end at B 
rossing the 
ut ex
ept for the edge from the root to B whose 
ontribution is
aptured in the third term.Thus, assuming the servi
e times satisfy the nominal workload 
onditions, ea
h �nite 
apa
ityL-
ut (L;R) imposes the 
ondition: �m(VA(LB [RA))1� �m(VB(LB [RA)) < �(5.17)on �. One ex
eption to (5.17) arises when RA is empty and LB 
onsists of all the ex
ursions atStation B, i.e., when LB [ RA is the trivial separating set 
onsisting of all ex
ursions at StationB. In this 
ase, VA(LB [RA) = ; and the 
ondition 
(L;R) < 1 redu
es to the nominal workload
ondition at Station B.Similarly, we 
an express the 
apa
ity of a �nite 
apa
ity R-
ut (L;R) in terms of the 
orre-sponding B-stri
tly separating set LB [RA and the 
olle
tion V (LB [ RA) of 
lasses it generatesas follows: 
(L;R) = �m(VA(LB [RA)) + ��m(VB(LB [RA)) + maxf0; � � 1g:Thus, ea
h �nite 
apa
ity R-
ut (L;R) imposes the 
ondition:1� �m(VA(LB [RA))�m(VB(LB [RA)) > �(5.18)on �. One ex
eption to (5.18) arises when LB is empty and RA 
onsists of all the ex
ursions atStation A, i.e., when LB [ RA is the trivial separating set 
onsisting of all ex
ursions at StationA. In this 
ase, VB(LB [RA) = ; and the 
ondition 
(L;R) < 1 redu
es to the nominal workload
ondition at Station A.Combining (5.17) and (5.18) with Lemma 5.2 proves the following theorem, whi
h providesexpli
it 
onstraints on the servi
e times suÆ
ient to ensure the global stability of a two-station
uid network. In Se
tion 6, we show that these \
ut 
onditions" are equivalent to the virtualworkload 
onditions, whi
h we prove are also ne
essary to ensure global stability.23



Theorem 5.1. A two-station 
uid network with servi
e times m and arrival rates � = (�i)i2Isatisfying the nominal workload 
onditions is globally stable if (1.13) holds and for ea
h non-trivialA-stri
tly separating set S0 and non-trivial B-stri
tly separating set S,�m(VA(S0))1� �m(VB(S0)) < 1� �m(VA(S))�m(VB(S)) :(5.19)6 SuÆ
ien
yIn Se
tion 5, we showed that a two-station 
uid network satisfying the nominal workload 
onditionsis globally stable if the arrival rates and servi
e times satisfy the 
ut 
onditions. We show that thevirtual workload 
onditions are also suÆ
ient to ensure global stability by showing that the arrivalrates and servi
e times satisfy the 
ut 
onditions if they satisfy the virtual workload 
onditions.Theorem 6.1. A two-station 
uid network satisfying the nominal workload 
onditions (1.13) isglobally stable if for ea
h ve
tor e = (ei)i2I of ex
ursions and ea
h separating set S, we have�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) < 1:(6.1)Proof. Ea
h 
ut 
ondition (5.19) is de�ned by a pair of non-trivial separating sets: an A-stri
tlyseparating set S0 and a B-stri
tly separating set S. We show that the 
ut 
ondition indu
ed by thepair (S0; S) is implied by a pair of virtual workload 
onditions.For ea
h type i 2 I, let ei be the largest index su
h that:a. Every earlier ex
ursion served at Station B is in S0 (and hen
e no earlier ex
ursion served atStation A is in S0),b. Every earlier ex
ursion served at Station A is in S (and hen
e no earlier ex
ursion served atStation B is in S).Note that [i; ei℄ 62 S. To see this observe that if [i; ei℄ 2 S, then it must be in EiA and sin
e everyearlier ex
ursion served at Station A is in S and every earlier ex
ursion served at Station B is inS0, either S is trivial or ei + 1 satis�es (a) and (b). A similar argument shows that [i; ei℄ 62 S0.The ve
tor e = (ei)i2I of ex
ursions and the separating set S0 indu
e the virtual workload
ondition: �m(VA(S0) n F�A (e))1� �m(F<A (e)) + �m(VB(S0) n F�B (e))1� �m(F<B (e)) < 1:(6.2)Similarly, the ve
tor e and the separating set S indu
e the virtual workload 
ondition:�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) < 1:(6.3)We show that (6.2) and (6.3) imply the 
ut 
ondition for the pair (S0; S).From (6.2) we have that �m(VA(S0) n F�A (e))1� �m(F<B (e))� �m(VB(S0) n F�B (e)) < 1� �m(F<A (e))1� �m(F<B (e))24



and from (6.3) we have that1� �m(F<A (e))� �m(VA(S) n F�A (e))�m(VB(S) n F�B (e)) > 1� �m(F<A (e))1� �m(F<B (e)) :Thus, 1� �m(F<A (e))� �m(VA(S) n F�A (e))�m(VB(S) n F�B (e)) > �m(VA(S0) n F�A (e))1� �m(F<B (e))� �m(VB(S0) n F�B (e)) :(6.4)Now, sin
e [i; ei℄ 62 S for ea
h i 2 I,�m(VA(S) n F�A (e)) + �m(F<A (e)) � �m(VA(S)):Further, sin
e ei satis�es (b), �m(VB(S) n F�B (e)) = �m(VB(S)):Likewise, sin
e [i; ei℄ 62 S0 for ea
h i 2 I,�m(VB(S0) n F�B (e)) + �m(F<B (e)) � �m(VB(S0)):And, sin
e ei satis�es (a), �m(VA(S0) n F�A (e)) = �m(VA(S0)):Thus, (6.4) implies that 1� �m(VA(S))�m(VB(S)) > �m(VA(S0))1� �m(VB(S0)) ;whi
h is exa
tly the 
ut 
ondition for the pair S0 and S.7 Ne
essityIn this se
tion, we show that the virtual workload 
onditions (2.2) are ne
essary to ensure theglobal stability of a two-station 
uid network.We �rst generalize to virtual stations the argument used to show the ne
essity of the nominalworkload 
onditions to ensure global stability.Lemma 7.1. Let C be a set of 
lasses su
h that�m(C) � 1:Ea
h non-idling 
uid solution (Q(�); T (�)) satisfyingX(i;k)2C _T (t) � 1(7.1)for ea
h regular point t is unstable. 25



Proof. Consider a non-idling 
uid solution (Q(�); T (�)) satisfying (1.5){(1.10) and (7.1). De�neW (Q(t)) = X(i;k)2CmikZik(t) = X(i;k)2Cmik kX̀=1Qì(t)(7.2)to be the total workload for the 
lasses of C. Sin
eZik(t) = Zik(0) + �it� T ik(t)=mik;W (Q(t)) = W (Q(0)) + X(i;k)2C �imikt� X(i;k)2C T ik(t)� W (Q(0)) + (�m(C)� 1) t:Hen
e the workload for the 
lasses of C grows linearly with time and the 
uid solution diverges.The 
lasses of any set C satisfying (7.1) 
an be viewed as being served by a single \virtual"server, whi
h allo
ates its e�orts among them. We show that under the appropriate stati
 bu�erpriority poli
y, a virtual station as de�ned in De�nition 2.4 satis�es (7.1), hen
e the moniker \virtualstation".We next show how expediting the �rst few 
lasses magni�es the in
uen
e of virtual stations inthe remaining network. This 
on
ept was originally introdu
ed under the rubri
 of push startingin Dai and Vande Vate (1996).Let e = (ei)i2I be a ve
tor of ex
ursions, one for ea
h type. The ve
tor e partitions the 
lassesof the network into the 
lasses of F<(e) and the remainder of the 
lasses, whi
h we denote by R(e).Let ~mik = mik=�1� �m(F<A (e))� for (i; k) 2 RA(e);(7.3) ~mik = mik=�1� �m(F<B (e))� for (i; k) 2 RB(e):(7.4)Consider the indu
ed 
uid model on the 
lasses of R(e):Qik(t) = Qik(0) + ~�ik�1T ik�1(t)� ~�ikT ik(t) � 0; t � 0; (i; k) 2 R(e);(7.5) T ik(0) = 0 and T ik(�) is nonde
reasing; (i; k) 2 R(e);(7.6) t� X(i;k)2RA(e) T ik(t) is nonde
reasing;(7.7) t� X(i;k)2RB(e) T ik(t) is nonde
reasing;(7.8) X(i;k)2RA(e) _T ik(t) = 1 whenever X(i;k)2RA(e)Qik(t) > 0 and t is a regular point;(7.9) X(i;k)2RB(e) _T ik(t) = 1 whenever X(i;k)2RB(e)Qik(t) > 0 and t is a regular point;(7.10)where, ~�ik = 1= ~mik for (i; k) 2 R(e). Note that for ea
h type i 2 I, `[i; ei℄ is the index of the �rst
lass of type i in R(e). Thus, for ea
h type i 2 I, we let ~�ì[i;ei�1℄ = �i and T ì[i;ei�1℄(t) = t to modelthe arrivals to the indu
ed 
uid network. 26



Lemma 7.2. If the 
uid model (7.5){(7.10) is unstable, then the 
uid model (1.5){(1.10) is un-stable.We leave the proof of this lemma to the appendix.Proof of Theorem 2.1. In light of Lemma 7.2, it is enough to show that if the virtual station V (S)
orresponding to some stri
tly separating set S satis�es�m(V (S)) � 1;(7.11)then there is an unstable 
uid solution. Be
ause V (S) is a virtual station in the 
orrespondingqueueing network, there is a stati
 bu�er priority dis
ipline under whi
h no two 
lasses in V (S) 
anbe served simultaneously; see Dai and Vande Vate (1996). Therefore, any 
uid limit (Q(�); T (�))as de�ned in Dai (1996) is a 
uid solution that satis�es (7.1). By Lemma 7.1, the 
uid network isnot globally stable. When (2.3) is satis�ed or (7.11) is stri
tly satis�ed, the same argument showsthat the WIP goes to in�nity.8 Unstable Cy
lesAlthough the pre
eding proof of Theorem 2.1 is su

in
t, it involves a rather 
ir
uitous argumentvia queueing networks and 
uid limits. We provide a more dire
t, but somewhat longer argumentestablishing the ne
essity of the virtual workload 
onditions to ensure stability of a two-station 
uidnetwork. When the arrival rates and servi
e times satisfy the nominal workload 
onditions, but donot satisfy the virtual workload 
onditions, we provide an expli
it 
onstru
tion of a non-idling 
uidsolution (Q(�); T (�)) that is unstable. This argument is not only more dire
t, but also illustrateshow the work-in-pro
ess in an unstable system swings from station to station as it grows to in�nity.Iterations like those presented here are indispensable when studying the stability of 
uid networkswith more than two stations. See, for example, Dai, Hasenbein and Vande Vate (1998).Suppose the arrival rates and servi
e times satisfy the nominal workload 
onditions, but do notsatisfy the virtual workload 
onditions. We 
hoose a stri
tly separating set S and a push start setF<(e) so that among all su
h pairs,�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e))is maximum. Thus, we assume that�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) � 1(8.1)and for ea
h stri
tly separating set S0 and push start set F<(e0),�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) � �m(VA(S0) n F�A (e0))1� �m(F<A (e0)) + �m(VB(S0) n F�B (e0))1� �m(F<B (e0)) :(8.2)Note that sin
e ei � 1 for ea
h type i, the set F�(e) will in
lude all the 
lasses of every �rstex
ursion. Thus we may, without loss of generality, restri
t attention to stri
tly separating sets Sas we have above. 27



In order to 
onstru
t an unstable 
uid solution, we must 
onsider in greater detail the stru
-ture of the stri
tly separating set S. The notation required to des
ribe this disse
tion of stri
tlyseparating sets in full generality is somewhat involved, but the ideas are relatively straightforward.We �rst partition S into monotype separating sets or separating sets 
onsisting of ex
ursions for asingle type of 
uid. In parti
ular, we let Si = S \Ei, be the ex
ursions of S for 
uid type i.We further partition the union of ea
h monotype separating set and its neighbors into intervalsor sets of 
onse
utive ex
ursions. We use [i; s; t) to denote the interval f[i; e℄ 2 Ei : s � e < tg and(i; s; t) to denote the interval f[i; e℄ 2 Ei : s < e < tg.A maximal interval with the property that all its ex
ursions at one station are in Si and,
onsequently, none of its ex
ursions at the other station are in Si is 
alled a se
tion of Si. We referto a se
tion X of Si with XA � Si and X \ SiB = ; as an A-se
tion of Si. Similarly, we refer to ase
tion Y of Si with YB � Si and Y \ SiA = ; as a B-se
tion of Si. A typi
al A-se
tion is of theform [i; s; t) with s 2 EiB. The ending ex
ursion t is either in EiA or t = ni + 1. Similarly a typi
alB-se
tion is of the form [i; s; t) with s 2 EiA, and t 2 EiB or t = ni + 1. In either 
ase, the endex
ursions s and t are not in the separating set S and s� 1 62 S.For example, 
onsider the stri
tly separating setS = f[1; 2℄; [1; 7℄; [2; 3℄; [2; 5℄; [2; 8℄g(8.3)in Figure 3. Following the de�nition of virtual station in De�nition 2.4,V (S) = f(1; 2); (1; 3); (1; 6); (1; 8); (1; 10); (1; 12); (1; 13);(2; 2); (2; 4); (2; 5); (2; 8); (2; 9); (2; 12); (2; 14)g:The intervals [1; 1; 4) = f[1; 1℄; [1; 2℄; [1; 3℄g and [2; 2; 7) = f[2; 2℄; [2; 3℄; [2; 4℄; [2; 5℄; [2; 6℄g of ex
ur-sions are the A-se
tions of this separating set. The B-se
tions are [1; 6; 9) = f[1; 6℄; [1; 7℄; [1; 8℄g and[2; 7; 9) = f[2; 7℄; [2; 8℄g.The se
tions of Si partition Si [�(Si) into intervals. We partition the remaining ex
ursions ofEi into trivial se
tions. In parti
ular, ea
h ex
ursion of Ei n �Si [ �(Si)� forms a trivial se
tion ofSi. Ea
h ex
ursion [i; e℄ 2 EiA n �Si [ �(Si)� forms a trivial B-se
tion of Si (be
ause f[i; e℄g\EiB =; � Si and f[i; e℄g \ SiA = ;). Likewise, ea
h ex
ursion [i; e℄ 2 EiB n �Si [ �(Si)� forms a trivialA-se
tion of Si. For example, [1; 5; 6) = f[1; 5℄g is a trivial A-se
tion and [1; 4; 5) = f[1; 4℄g and[2; 1; 2) = f[2; 1℄g are the trivial B-se
tions of the separating set (8.3) in Figure 3.When we in
lude the trivial se
tions, the se
tions of Si partition the ex
ursions of Ei intointervals and, if we order these intervals in the natural way, they alternate between A-se
tions andB-se
tions.Our 
onstru
tion relies on 
oordinating the a
tivities of the servers a
ross 
lasses related to,but o�set from, the 
lasses of ea
h se
tion. In parti
ular, we asso
iate with ea
h se
tion [i; s; t) the
olle
tion of 
lasses C([i; s; t)) = f`[i; s℄g [e2(i;s;t) E[i; e℄ [ f [i; t℄
alled a blo
k. Note that the blo
k C([i; s; t)) di�ers from the 
lasses of the se
tion [i; s; t) in thatwe omit the �rst 
lasses of the �rst ex
ursion in [i; s; t) and we add the �rst 
lasses of the �rstex
ursion of the next se
tion. In the example of Figure 3, C([1; 1; 4)) = f(i; k) : 1 � k � 6g andC([2; 2; 7)) = f(2; k) : 3 � k � 12g.The following lemma should help motivate our de�nition of se
tions and blo
ks. Its proof ispostponed to the appendix. 28



Lemma 8.1. Let S be a stri
tly separating set and F<(e) a push-start set satisfying (8.1) and(8.2). Then for ea
h A-se
tion X = [i; s; t) of Si, where s 2 EiB and t 2 EiA,�m(CA(X) n F<A (e))1� �m(F<A (e)) � �m(CB(X) n F<B (e))1� �m(F<B (e)) :(8.4)Likewise, for ea
h B-se
tion Y = [i; s; t) of Si, where s 2 EiA and t 2 EiB,�m(CB(Y ) n F<B (e))1� �m(F<B (e)) � �m(CA(Y ) n F<A (e))1� �m(F<A (e)) :(8.5)The transformations (7.3) { (7.4) allow us to assume, without loss of generality, that F<(e) isempty. Impli
it in this is the assumption that for ea
h type i 2 I, ei = 1 and the �rst ex
ursion
onsists only of the the 
lass (i; 1).Let IA be the set of types with �rst ex
ursion [i; 1℄ 2 EiA and IB the types with �rst ex
ursion[i; 1℄ 2 EiB . For i 2 IA, the se
tions of Si alternate between B-se
tions and A-se
tions beginningwith a B-se
tion. We denote these se
tions as:Y i1 ;Xi2; Y i3 ;Xi4; : : : ; Y i2bi�1;Xi2bi ;where bi is the total number of B-se
tions and Xi2bi is possibly empty. Similarly, for i 2 IB , these
tions of Si alternate between A-se
tions and B-se
tions beginning with an A-se
tion. We denotethese se
tions as: Xi1; Y i2 ;Xi3; Y i4 ; : : : ;Xi2bi�1; Y i2bi ;with Y i2bi possibly empty. The se
tions Y i1 and Xi1 are 
alled input se
tions.In the example of Figure 3, type 1 is in IB and type 2 is in IA. The se
tions for type 1 are:X11 = [1; 1; 4); Y 12 = [1; 4; 5);X13 = [1; 5; 6); Y 14 = [1; 6; 9):The se
tions for type 2 are: Y 21 = [2; 1; 2);X22 = [2; 2; 7); Y 23 = [2; 7; 9):Therefore, C(X11 ) = f(1; k) : k = 1; : : : ; 6g;C(Y 12 ) = f(1; 7); (1; 8)g;C(X13 ) = f(1; 9); (1; 10)g;C(Y 14 ) = f(1; 11); (1; 12); (1; 13); (1; 14)g;C(Y 21 ) = f(2; 1); (2; 2)g;C(X22 ) = f(2; k) : k = 3; : : : ; 12g;C(Y 23 ) = f(2; 13); (2; 14)g:The following lemma is a dire
t 
onsequen
e of our de�nitions.Lemma 8.2. The virtual station V (S) has the following de
omposition.V (S) = [i2IA [bir=1 �CB(Y i2r�1) [ CA(Xi2r)� [i2IB [bir=1�CA(Xi2r�1) [ CB(Y i2r)�:29



Let us restate part of Theorem 2.1.Theorem 8.1. Assume that there is a stri
tly separating set S and push start set F<(e) su
hthat (8.1) and (8.2) hold. One 
an 
onstru
t an unstable non-idling 
uid solution (Q(�); T (�)).Furthermore, the unstable 
uid solution satis�es the stati
 bu�er priority 
onditions (1.11){(1.12).Proof. In light of Lemma 7.2, we may assume that the push start set F<(e) is empty. This wouldbe the 
ase, for example, if ei = 1 and f [i; 1℄ = ; for ea
h type i 2 I, whi
h is true of the indu
ednetwork on R(e) obtained from the 
onstru
tion used in the proof of Lemma 7.2. Thus, we assumethat the arrival rates and servi
e times satisfy the nominal workload 
onditions, but violate thevirtual workload 
ondition for a stri
tly separating set S, i.e.,�m(V (S)) � 1:Under this transformation, (8.4) redu
es to�m(CA(X)) � �m(CB(X))(8.6)for ea
h A-se
tion X, and (8.5) redu
es to�m(CB(Y )) � �m(CA(Y ))(8.7)for ea
h B-se
tion Y .For the example in Figure 3, we have�1(m12 +m13 +m16 +m18 +m110 +m112 +m113) + �2(m22 +m24 +m25 +m28 +m29 +m212 +m214) � 1;and m12 +m13 +m16 � m11 +m14 +m15;m18 � m17;m19 � m110;m112 +m113 � m111 +m114;m22 � m21;m24 +m25 +m28 +m29 +m212 � m23 +m26 +m27 +m210 +m211;m214 � m213:We now 
onstru
t a non-idling 
uid solution (Q(�); T (�)) su
h thatX(i;k)2V (S) _T ik(t) � 1for ea
h regular point t. Let �ik = _T ik(t):We intentionally drop the variable t from �ik sin
e, in our 
onstru
tion, T ik(�) is pie
ewise linear andhen
e �ik is pie
ewise 
onstant. If the 
uid solution (Q(�); T (�)) is linear in an interval [a; b℄, it isenough to spe
ify Q(a), T (a) and (�ik) to 
ompletely 
hara
terize the 
uid solution throughout theinterval. In fa
t, for t 2 [a; b℄,T ik(t) = T ik(a) + �ik(t� a);(8.8) Qik(t) = Qik(a) + �ik�1�ik�1(t� a)� �ik�ik(t� a):(8.9) 30



Note that �ik is the fra
tion of its e�ort the server allo
ates to 
lass (i; k) and �ik�ik is the rate atwhi
h 
uid leaves the bu�er and hen
e the rate at whi
h it enters the next bu�er. Throughout our
onstru
tion we show that not only mustXi2I;k2Ai _T ik(t) = Xi2I;k2Ai �ik � 1and Xi2I;k2Bi _T ik(t) = Xi2I;k2Bi �ik � 1at ea
h time t, but also the two stations 
annot serve 
lasses in V (S) simultaneously. Thus, weshow that whenever �(VA(S)) > 0, �(VB(S)) = 0 and whenever �(VB(S)) > 0, �(VA(S)) = 0 fromwhi
h it immediately follows that X(i;k)2V (S) _T ik(t) � 1for ea
h regular point t. Again, for a set X of 
lasses, we let �(X) =P(i;k)2X �ik.We begin with uir units in the �rst bu�er of C(Xir) for ea
h A-se
tion Xir so that all the WIP isinitially at Station B. So, in the example of Figure 3, we begin with u11 units in bu�er (1; 1) (the�rst 
lass of the blo
k C(X11 )), u13 units in bu�er (1; 9) (the �rst 
lass of the blo
k C(X13 )) and u22units in bu�er (2; 3) (the �rst 
lass of the blo
k C(X22 )).Step 1. One at a time, for ea
h non-input A-se
tion Xir = [i; s; t) drain the 
ontents of `[i; s℄, the�rst bu�er of C(Xir), into the �rst bu�er of CA(Xir) and the �rst bu�er `[i; t℄ of C(Y ir+1) (or out ofthe system if Xir is the last se
tion for type i) both at Station A. This pro
ess 
ontinues until the�rst bu�er of C(Xir) is empty. Figure 8 illustrates this step for the A-se
tions X13 and X22 in theexample of Figure 3.At the end of this step all the bu�ers at Station B in the blo
ks of non-input se
tions are empty.To see that this is 
onsistent with a non-idling dispat
h poli
y, observe that the system de�ningthe 
ows is:�(CA(Xir)) = 1 Sin
e work is a

umulating at Station A,�(CB(Xir)) = 1 Sin
e there is work a

umulated at Station B,�ik�ik � �ik�1�ik�1 = 0 For ea
h 
lass (i; k) in C(Xir) ex
ept the �rst two. The �rst
lass's bu�er is draining, so the rate of 
ow out is faster thanthe rate of 
ow in. The se
ond 
lass's bu�er is a

umulating
uid, so the rate of 
ow in is greater than the rate of 
ow out.This system has the unique solution: �ik = mikm(CA(Xir))for ea
h 
lass in C(Xir) ex
ept the �rst one. This 
lass, `[s; i℄, has�ì[s;i℄ = mì[s;i℄m(CA(Xir)) + m(CA(Xir))�m(CB(Xir))m(CA(Xir))31
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Figure 8: This �gure depi
ts the 
ows when Step 1 is applied to X13 , shown in part (a), and to X22 ,shown in part (b), in the example of Figure 3. Only the relevant 
lasses are shown. Arrows depi
tthe 
ows and an open box in front of a 
lass denotes a bu�er that may 
ontain a positive quantityof 
uid during the step. Plus signs inside a bu�er indi
ate that it is a

umulating 
uid while minussigns indi
ate that it is draining. All other indi
ated bu�ers remain empty throughout the step.whi
h, by (8.6), is at least as great as mì[s;i℄m(CA(Xir)) :Thus, �ì[i;s℄�ì[s;i℄ � 1m(CA(Xir)) = �ì[s;i℄+1�ì[s;i℄+1and so 
uid is arriving at the se
ond bu�er of C(Xir) at least as fast as the server at Station Apro
esses it. Thus, both stations are busy until the �rst bu�er in C(Xir) is emptied. The 
ontentsof the bu�er have moved to the �rst bu�er of the next ex
ursion and the �rst bu�er of C(Y ir+1) |both at Station A.Both servers are fully busy during this entire step and so any 
uids arriving to the systemduring this period simply a

umulate at their �rst bu�ers.Step 2. Next, for ea
h non-input A-se
tion Xir = [i; s; t) one at a time in any order, drain the�rst bu�er of CA(Xir) into the �rst bu�er of C(Y ir+1) (or out of the system if this is a last se
tion).When the �rst bu�er of CA(Xir) is emptied, we have a

umulated in the �rst bu�er of C(Y ir+1)(if there is one) all the 
ow originally in the �rst bu�er of C(Xir). Figure 9 illustrates this step forthe A-se
tions X13 and X22 in the example of Figure 3.The system de�ning the 
ows for ea
h of these A-se
tions is:
32
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(b)Figure 9: This �gure depi
ts the 
ows when Step 2 is applied to X13 , shown in part (a), and to X22 ,shown in part (b). Only the relevant 
lasses are shown. Arrows depi
t the 
ows and an open boxin front of a 
lass denotes a bu�er that may 
ontain a positive quantity of 
uid during the step.Plus signs inside a bu�er indi
ate that it is a

umulating 
uid while minus signs indi
ate that it isdraining. The signs � inside a bu�er indi
ate that it may either a

umulate 
uid or drain duringthe step, depending on the balan
e of 
ows into and out of the bu�er. The signs � inside a bu�erindi
ate that it may either a

umulate 
uid or be empty. All other indi
ated bu�ers remain emptythroughout the step.�(CA(Xir)) = 1 Sin
e work is a

umulated at Station A,�ik�ik � �ik�1�ik�1 = 0 For ea
h 
lass (i; k) in C(Xir) ex
ept the �rst two. We emptiedthe bu�er of the �rst 
lass in Step 1 and we are draining thebu�er of the se
ond 
lass.This system has the unique solution: �ik = mikm(CA(Xir))for ea
h 
lass in the blo
k ex
ept the �rst, whi
h has �ì[s;i℄ = 0.These 
ows keep the server at Station A busy, but, by Lemma 8.1, may not keep the serverat Station B busy. Whenever these 
ows do not keep the server at Station B busy, it 
an pro
ess
uids that have a

umulated at 
lasses (1; i) for i 2 IB . However, sin
e the server at Station A isbusy, these 
uids will a

umulate at the �rst bu�er of their se
ond ex
ursion.At the end of Step 2, all the 
uid initially in the �rst bu�er of C(Xir) for ea
h non-input A-se
tion Xir has been moved to the �rst bu�er of C(Y ir+1). For the example in Figure 3, 
uid inbu�ers (1; 9) and (2; 3) has been moved to bu�ers (1; 11) and (2; 13). For ea
h A-se
tion Xir, moving33
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(a) (b)Figure 10: This �gure depi
ts the 
ows when Steps 3 and 4 are applied to to the example in FigureFigure 3. Only the relevant 
lasses are shown. Arrows depi
t the 
ows and an open box in frontof a 
lass denotes a bu�er that may 
ontain a positive quantity of 
uid during the step. Plus signsinside a bu�er indi
ate that it is a

umulating 
uid while minus signs indi
ate that it is draining.All other indi
ated bu�ers remain empty throughout the step.uir units through the 
lasses of C(Xir) requires time uirm(CA(Xir)). Thus, we spend�1 = Xi2IA biXr=1 ui2rm(CA(Xi2r)) + Xi2IB biXr=2 ui2r�1m(CA(Xi2r�1))(8.10)on Steps 1 and 2.Note that these two steps are 
onsistent with a stati
 bu�er priority dispat
h poli
y, whi
h usesthe last-bu�er-�rst-served dispat
h poli
y within the blo
k of ea
h non-input A-se
tion.Step 3. One at a time, for ea
h type i 2 IB in order, drain the the 
uid that has a

umulatedin 
lass (i; 1) of C(Xi1) into (i; 2), the �rst bu�er of CA(Xi1), and the �rst bu�er of C(Y i2 ) (or outof the system if Xi1 is the last se
tion for type i), while keeping the bu�ers of C(Xj1) empty for allearlier types j 2 IB , with j < i. This pro
ess 
ontinues until bu�er (i; 1) is empty. Figure 10 (a)illustrates this step for type 1 in the example of Figure 3.At the end of this step all the bu�ers at Station B are empty. To see that this is 
onsistentwith a non-idling dispat
h poli
y, observe that the system de�ning the 
ows for ea
h type i 2 IBis:
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Pj2IB;j�i �(CA(Xj1)) = 1 Sin
e work is a

umulating at Station A,Pj2IB;j�i �(CB(Xj1)) = 1 Sin
e there is work a

umulated at Station B,�j1�j1 = �j For ea
h type j 2 IB with j < i,�jk�jk � �jk�1�jk�1 = 0 For ea
h 
lass (j; k) in C(Xj1) where j 2 IB, j < i andk > 1,�ik�ik � �ik�1�ik�1 = 0 For ea
h 
lass (i; k) in C(Xi1) ex
ept the �rst two. The �rst
lass's bu�er is draining, so the rate of 
ow out is faster thanthe rate of 
ow in. The se
ond 
lass's bu�er is a

umulating
uid, so the rate of 
ow in is greater than the rate of 
owout.This system has the unique solution:�jk = �jkmjk for ea
h 
lass (j; k) 2 C(Xj1) where j 2 IB and j < i�ik = mik �1�Pj2IB;j<i �m(CA(Xj1))�m(CA(Xi1)) for ea
h 
lass (i; k) 2 C(Xi1) ex
ept 
lass (i; 1)�i1 = mi1 �1�Pj2IB;j<i �m(CA(Xj1))�m(CA(Xi1)) + Xj2IB;j<i��m(CA(Xj1))� �m(CB(Xj1))� ;whi
h, by (8.6), is at least as great asmi1 �1�Pj2IB;j<i �m(CA(Xj1))�m(CA(Xi1)) :Thus, �i1�i1 � 1�Pj2IB;j<i �m(CA(Xj1))m(CA(Xi1)) = �i2�i2and so 
uid is arriving at 
lass (i; 2) at least as fast as the server at Station A pro
esses it. Thus,both stations are busy until bu�er (i; 1) is emptied. The 
ontents of the bu�er have moved to bu�er(i; 2) and the �rst bu�er of C(Y i2 ) | both at Station A.Both servers are fully busy during this entire step and so any 
uids arriving to Station A duringthis period simply a

umulate at their �rst bu�ers.Step 4. One at a time, for ea
h type i 2 IB in order, empty bu�er (i; 2) while keeping emptyboth bu�er (i; 1) and the bu�ers of C(Xj1) for all earlier types j 2 IB , with j < i. Figure 10 (b)illustrates this step for type 1 in the example of Figure 3.The system de�ning the 
ows is:
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Pj2IB;j�i �(CA(Xj1)) = 1 Sin
e work is a

umulating at Station A,�j1�j1 = �j For ea
h type j 2 IB with j � i,�jk�jk � �jk�1�jk�1 = 0 For ea
h 
lass (j; k) in C(Xj1) where j 2 IB , j < i andk > 1,�ik�ik � �ik�1�ik�1 = 0 For ea
h 
lass (i; k) in C(Xi1) ex
ept the �rst two. The �rst
lass's bu�er is empty and, to keep it that way, its outputrate must mat
h the rate of exogenous arrivals. The se
ond
lass's bu�er is draining, so the rate of 
ow out is greaterthan the rate of 
ow in.This system has the unique solution:�jk = �jkmjk for ea
h 
lass (j; k) 2 C(Xj1) where j 2 IB and j < i�ik = mik �1�Pj2IB;j<i �m(CA(Xj1))�m(CA(Xi1)) for ea
h 
lass (i; k) 2 C(Xi1) ex
ept 
lass (i; 1)�i1 = �imi1:Note that sin
e the arrival rates and servi
e times satisfy the nominal workload 
onditions, �is between 0 and 1. Further, as in Step 2, the server at Station A is fully busy during this entirestep, but the server at Station B may not be. To see this observe that�(EB) = Xj2IB;j<i�m(CB(Xj1)) + �m(CB(Xi1))�mi1�)�1�Pj2IB;j<i �m(CA(Xj1))�m(CA(Xi1)) + �mi1:By (8.6), m(CB(Xi1))m(CA(Xii )) � 1and sin
e the arrival rates and servi
e times satisfy the nominal workload 
onditions,1�Pj2IB;j<i �m(CB(Xj1))m(CA(Xi1)) > �i:Thus, �(EB) < 1:Whenever the server at Station B has remaining 
apa
ity, he again drains the 
ontents ofsubsequent bu�ers (j; 1) with j 2 IB and j > i. Sin
e the server at Station A is busy, however,these 
uids a

umulate in their se
ond bu�ers.Continue in this way until all bu�ers in C(Xi1), i 2 IB , are empty. Let �2 be the additional timeneeded to 
omplete Steps 3 and 4, then�2 = (�1 + �2) Xj2IB �m(CA(Xj1)) + Xj2IB uj1m(CA(Xj1))or �2 = �1Pj2IB �m(CA(Xj1)) +Pj2IB uj1m(CA(Xj1))1�Pj2IB �m(CA(Xj1)) :36



At the end of this step, the bu�ers of ea
h blo
k C(Xir) are empty and only the �rst bu�er of ea
hblo
k C(Y ir ) has any a

umulated 
uid. Thus, all the WIP is at Station A.Let � = �1 + �2 = Pi2IAPbir=1 ui2rm(CA(Xi2r)) +Pi2IBPbir=1 ui2r�1m(CA(Xi2r�1))1�Pj2IB �m(CA(Xj1)) :(8.11)For ea
h i 2 IA, the �rst bu�er in the blo
k C(Y i1 ), (i; 1), has a

umulated �i� 
uid, i.e., Qi1(�) =�i� . For ea
h i 2 IB , the �rst bu�er in the blo
k C(Y i2 ) has a

umulated �i� + ui1 
uid. For ea
hremaining B-se
tion, the �rst bu�er of C(Y ir ) has a

umulated the uir�1 
uids that were initiallyin the �rst bu�er of C(Xir�1).It is easy to 
he
k that the 
uid solution (Q(�); T (�)) 
onstru
ted in (8.8){(8.9) satis�es (1.5){(1.10) for t 2 [0; � ℄. Furthermore, none of the 
lasses in blo
ks of B-se
tions has ever been workedon. That is, �(C(Yr)) = 0 for ea
h B-se
tion Yr. Therefore, (Q(�); T (�)) satis�es (7.1) for t in [0; � ℄and, by Lemma 7.1, there is more work at the virtual station V (S) at time � than at time 0.We next repeat Steps 1{4 inter
hanging the roles of Station A and Station B. The 
uid network
ompletes the four steps at time t1 in a state very similar to its initial state: there are ~uir units inthe �rst bu�er of C(Xir) for ea
h A-se
tion Xir and all the other bu�ers are empty. Further, theresulting 
uid solution (Q(�); T (�)) satis�es (1.5){(1.10) and (7.1) for all times t 2 [0; t1℄To 
omplete the argument, we would like to 
on
lude that repeating these eight steps over andover produ
es a 
uid solution (Q(�); T (�)) that satis�es (1.5){(1.10) and (7.1) for all times t � 0.We 
ould then invoke Lemma 7.1 to argue that the workload for the 
lasses of V (S) grows linearlywith time and the 
uid solution diverges. To rea
h this 
on
lusion, however, we must �rst showthatP1n=1 tn !1, where tn is the time required to 
omplete the nth iteration of these eight steps.Otherwise, P1n=1 tn ! t� for some �nite t� and repeating these eight steps only produ
es a 
uidsolution for times t 2 [0; t�℄.To this end, let u be an arbitrary non-negative ve
tor of initial 
uid levels for the �rst bu�ers inthe blo
ks of the A-se
tions Xir. From Equation (8.11) it is 
lear that the time required to 
ompletethe eight steps is a positive linear 
ombination of the initial bu�er levels u, i.e.,t1(u) =X 
iruir;where ea
h 
oeÆ
ient 
ir > 0. Similarly, the initial total workload at the virtual station V (S) (asde�ned in (7.2) with C = V (S)) is a positive linear 
ombination of the initial bu�er levels u, i.e.,W (u) =X airuir;where ea
h 
oeÆ
ient air > 0.Thus, the shortest time t�1 to 
omplete the eight steps given an initial workload W (u) � 1 
anbe found by solving the simple linear program:t�1 = minX 
iruirs.t. X airuir � 1uir � 0Sin
e all the data are positive, t�1 = minf
ir=airg > 0. Thus, if we begin with initial 
uid levelsu with W (u) � 1, we know from Lemma 7.1 that the workload at the virtual station V (S) will notde
rease and so ea
h iteration will require at least time t�1. Hen
e, P1n=1 tn ! 1 and repeatingthe eight steps over and over produ
es a 
uid solution with bu�er levels that 
y
le to in�nity.37



9 Con
luding RemarksThis paper not only provides an expli
it 
hara
terization of the global stability region of two-stationmulti
lass 
uid networks, it also o�ers intuitive explanations of how the 
onstraints de�ning theglobal stability region arise. Namely, the two phenomena of virtual stations and push starts explainall the global stability 
onditions of two-station 
uid networks.Under 
ertain assumptions on the interarrival and servi
e time distributions as spe
i�ed inDai (1995), a queueing network is stable or positive Harris re
urrent if the 
orresponding 
uidnetwork is stable. Thus, the workload 
onditions are suÆ
ient to ensure the global stability of two-station multi
lass queueing networks with deterministi
 routing. In Dai and Vande Vate (1996),we show that under some weaker distributional assumptions, the virtual station 
onditions are alsone
essary to ensure the global stability of the queueing network. The push start 
onditions, on theother hand, are not generally ne
essary for global stability of the queueing network.Weak stability, also 
alled rate stability, is a less restri
tive form of stability in queueing networks(see for example El-Taha and Stidham 1994). Chen(1995) and Dai and Vande Vate (1996) show thatweak stability of the 
uid model implies weak stability of the queueing network. A 
uid network issaid to be weakly stable under non-idling dispat
h poli
ies, or simply globally weakly stable, if any
uid solution (Q(�); T (�)) with initial WIP zero will never have any WIP. The following theorem isa weak stability version of Theorem 2.1. Its proof is parallel to the development in this paper.Theorem 9.1. A two-station 
uid network is globally weakly stable if and only if�A � 1; �B � 1;and for ea
h ve
tor e = (ei)i2I of ex
ursions and ea
h stri
tly separating set S, we have�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) � 1:(9.1)This paper 
hara
terizes the global stability region for 
uid models of two-station queueingnetworks with deterministi
 routing. Hasenbein (1998) extended these results to the 
uid modelsof 
ertain two-station queueing networks with probabilisti
 routing.Theorem 2.1 demonstrates that the global stability region of a two-station 
uid network ismonotone, i.e., redu
ing servi
e times or arrival rates maintains global stability.Corollary 9.1. The global stability region of a two-station 
uid network is monotone.This is not the 
ase for 
uid networks with more than two stations. Humes (1994) and Dai,Hasenbein and Vande Vate (1998) showed that the global stability region is not monotone. Du-mas (1997) showed that the stability region of a priority network is not monotone. These examplesindi
ate a daunting 
hallenge inherent in managing 
omplex re-entrant manufa
turing systems likewafer fabri
ation plants: in
reasing the pro
essing rate for a 
lass 
an redu
e the 
apa
ity of thesystem!The fa
t that the global stability region of a 
uid network with more than two stations 
anbe non-monotone suggests that determining the global stability region for these networks will be
onsiderably more diÆ
ult. For example, the problem of determining the 
oeÆ
ients of a pie
ewiselinear Lyapunov fun
tion for a 
uid network with more than two stations does not generally redu
eto a linear program. Nevertheless, the example studied in Dai, Hasenbein and Vande Vate (1998) isone of an important family of n-station 
uid networks for whi
h this problem is linear and, in fa
t,38



does redu
e to a parametri
 network 
ow problem. Thus, the pie
ewise linear Lyapunov fun
tion ofthis paper does lead to suÆ
ient 
onditions for global stability for this family of n-station networks.The four steps of Se
tion 8 prove that the stati
 bu�er priority poli
ies are the \worst" dispat
hpoli
ies for two-station 
uid networks.Corollary 9.2. A two-station 
uid network is globally stable if and only if it is stable under everystati
 bu�er priority poli
y.This is not the 
ase for n-station 
uid networks. Dai, Hasenbein and Vande Vate (1998)demonstrated arrival rates and servi
e times for whi
h their three-station 
uid network is notglobally stable even though it is stable under all stati
 bu�er priority dis
iplines.A
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tor.A AppendixProof of Lemma 7.2. Assume that the 
uid model (7.5){(7.10) is unstable. Then there is a 
uidsolution ( ~Qik(�), ~T ik(�))(i;k)2R(e) satisfying (7.5){(7.10) that is unstable. That is, there is a sequen
eftng with tn !1 su
h that ~Q(tn) 6= 0 for ea
h n. For (i; k) 2 RA(e), let Qik(t) = ~Qik(t) andT ik(t) = �1� �m(F<A (e))� ~T ik(t):For (i; k) 2 RB(e), let Qik(t) = ~Qik(t) andT ik(t) = �1� �m(F<B (e))� ~T ik(t):For (i; k) 2 F<(e), let Qik(t) = 0 and T ik(t) = �imikt. We show that(Q(�); T (�)) = (Qik(�); T ik(�))i2I;k=1;::: ;
iis a 
uid solution to (1.5){(1.10).First, it is easy to 
he
k that (1.5) and (1.6) hold for (Q(�); T (�)). Se
ond, noti
e thatt� Xi2I;k2Ai T ik(t) = t� X(i;k)2F<A (e) �imikt� X(i;k)2RA(e) T ik(t)= �1� �m(F<A (e))� t� �1� �m(F<A (e))� X(i;k)2RA(e) ~T ik(t)= �1� �m(F<A (e))��t� X(i;k)2RA(e) ~T ik(t)�;
39



whi
h is nonde
reasing and hen
e (1.7) holds. Similarly, we see thatt� Xi2I;k2Bi T ik(t)is non-de
reasing.Assume that t is a regular point of (Q(�); T (�)). WhenXi2I;k2AiQik(t) > 0;we have X(i;k)2RA(e) ~Qik(t) > 0:Hen
e X(i;k)2RA(e) _~T ik(t) = 1;or X(i;k)2RA(e) _T ik(t) = 1� X(i;k)2F<A (e) �imik:The last equation is equivalent to Xi2I;k2Ai _T ik(t) = 1:Hen
e we have proved (1.9). Similarly, we 
an show that (1.8) and (1.10) hold. Therefore,(Q(�); T (�)) is a 
uid solution to (1.5){(1.10). It is obvious that (Q(�); T (�)) is unstable.Proof of Lemma 8.1. Consider an A-se
tion X = [i; s; t) of Si with s > ei. Let S �X = (S nX) [(X n S) be the symmetri
 di�eren
e of S and X. Be
ause s� 1 62 S and t 62 S, S �X is a stri
tlyseparating set. Thus, by (8.2), �m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) ! � �m(VA(S �X) n F�A (e))1� �m(F<A (e)) + �m(VB(S �X) n F�B (e))1� �m(F<B (e)) ! =�m(CA(X))1� �m(F<A (e)) � �m(CB(X))1� �m(F<B (e)) � 0:From whi
h (8.4) follows immediately. The proof for B-se
tions Y = [i; s; t) of Si, where s > ei issimilar.The argument for se
tions [i; s; t), where s � ei, is more involved. Rather than 
hange theseparating set S, we 
hange the push start set F<(e). Consider an A-se
tion X = [i; s; t) of Si,where s � ei, and let e0 = (e0j)j2I , where e0i = t and for ea
h j 6= i, e0j = ej .By (8.2),�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) � �m(VA(S) n F�A (e0))1� �m(F<A (e0)) + �m(VB(S) n F�B (e0))1� �m(F<B (e0))40



and so,�m(VA(S) n F�A (e))1� �m(F<A (e)) � �m(VA(S) n F�A (e0))1� �m(F<A (e0)) � �m(VB(S) n F�B (e0))1� �m(F<B (e0)) � �m(VB(S) n F�B (e))1� �m(F<B (e)) :(A.1)Now, sin
e �m(VA(S) n F�A (e0)) = �m(VA(S) n F�A (e))� �m(CA(X) n F�A (e))and �m(F<A (e0)) = �m(F<A (e)) + �m(CA(X) n F<A (e));�m(VA(S) n F�A (e))1� �m(F<A (e)) � �m(VA(S) n F�A (e0))1� �m(F<A (e0))� �m(CA(X) n F�A (e))�1� �m(F<A (e))� �m(VA(S) n F�A (e))��1� �m(F<A (e0))� �1� �m(F<A (e))� :Similarly, sin
e �m(VB(S) n F�B (e0)) = �m(VB(S) n F�B (e))and �m(F<B (e0)) = �m(F<B (e)) + �m(CB(X) n F<B (e));�m(VB(S) n F�B (e0))1� �m(F<B (e0)) � �m(VB(S) n F�B (e))1� �m(F<B (e))= �m(CB(X) n F<B (e))�m(VB(S) n F�B (e))�1� �m(F<B (e0))� �1� �m(F<B (e))� :Thus, by (A.1) �m(CA(X) n F�A (e))�1� �m(F<A (e))� �m(VA(S) n F�A (e))��1� �m(F<A (e0))� �1� �m(F<A (e))�(A.2) � �m(CB(X) n F<B (e))�m(VB(S) n F�B (e))�1� �m(F<B (e0))� �1� �m(F<B (e))� :Sin
e, �m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) � 1;1� �m(F<A (e))� �m(VA(S) n F�A (e))1� �m(F<A (e)) � �m(VB(S) n F�B (e))1� �m(F<B (e))41



and so from (A.2), �m(CA(X) n F�A (e))1� �m(F<A (e0)) � �m(CB(X) n F<B (e))1� �m(F<B (e0)) ;from whi
h it follows that �m(CA(X) n F<B (e))1� �m(F<A (e)) � �m(CB(X) n F<B (e))1� �m(F<B (e)) :The argument for B-se
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