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IntrodutionQueueing networks o�er an appealing method for modeling omplex manufaturing proesses andhave been used to model teleommuniation networks and manufaturing systems like wafer fabri-ation failities. Unfortunately, they are themselves generally too omplex for suessful analysis.For example, the primary tool for evaluating the performane of a given dispath poliy is simula-tion. In fat, we generally resort to simulation even to determine whether a queueing network isstable under a given dispath poliy or whether the servers are unable to manage the workload.Even very simple queueing networks exhibit surprising and often ounterintuitive behavior.Consider the simple two-station re-entrant queueing network depited in Figure 1, where mk is theaverage proessing time for stage k and jobs arrive at rate �. The two retangles indiate the twostations, Station A and Station B, and the line traes the route the jobs follow between them. Inthis example, eah job passes through �ve stages of proessing: the �rst, at Station A, lasts anaverage of m1 time units; the seond, at Station B, lasts an average of m2 time units; the third,again at Station A, lasts an average of m3 time units, and so on. At any point in time, Station A,for example, may have jobs waiting in all three of the stages it serves and must deide whih job toproess next. A strategy for making these deisions at eah station onstitutes a dispath poliy. Daiand Vande Vate (1996) showed that under ertain non-idling (or work-onserving) dispath poliiesthe servers are unable to serve jobs as quikly as they arrive even when the nominal workload ateah station is signi�antly less than 100%, i.e., �(m1 +m3 +m5) < 1 and �(m2 +m4) < 1. Infat, Dai and Vande Vate (1996) showed that if the servers give highest priority to jobs at stages 2and 5, they will be unable to serve the jobs as quikly as they arrive unless the nominal utilizationat eah station is less than 100% and �(m2 +m5) < 1:For example, if the average servie times are(0:1; 0:6; 0:1; 0:1; 0:6);servers employing this dispath poliy will be able to keep up with the workload only if the arrivalrate to the system satis�es � < 1=(m2 +m5) = 5=6. The ondition �(m2 +m5) < 1 reets thefat that under this dispath poliy Station A and Station B an serve their high priority stages
- -----
Station A Station B� m1 m2m3 m4m5
Figure 1: A �ve lass network2



simultaneously only during a transient initial period. Thus, although they are served by di�erentstations, these two stages an form a bottlenek that determines the apaity of the entire system.We disuss this phenomenon, whih we all a \virtual station", in more detail in Setion 2.This paper fouses on the deterministi uid network orresponding to a given queueing network.For the uid network orresponding to the queueing network pitured in Figure 1, uid arrivesontinuously from the outside at rate �. The server at Station A pumps uid in stages 1, 3 and5 and the server at Station B pumps uid in stages 2 and 4. When a server devotes its full e�ortto stage k uid, it pumps at a maximum rate of �k = 1=mk, assuming there is stage k uid,k = 1; : : : ; 5. A dispath poliy in the uid network ontext desribes how to alloate eah server'spumping apaity at eah time among the di�erent stages it serves. A uid network is stable undera dispath poliy if it will eventually empty no matter what the initial uid levels are.Our work is largely motivated by a result of Dai (1995) showing that, under ertain distributionalassumptions on interarrival and servie times, a queueing network is stable or positive Harrisreurrent if the orresponding uid network is stable. Related work an be found in Rybko andStolyar (1992), Chen (1995), Dai and Meyn (1995), Stolyar (1994), Meyn (1995), Dai (1996) andBramson (1998a).We develop neessary and suÆient onditions for a two-station uid network to be globallystable or stable under any non-idling dispath poliy. Determining the global stability region isespeially important when it is diÆult or impossible to implement a well-studied dispath poliy.In suh systems, it is possible for servers to unwittingly employ a poliy under whih the systemis unstable even though the traÆ intensity or nominal workload at eah station is less than one.Although it is sometimes diÆult to avoid suh bad poliies, we an avoid their onsequenes bymaintaining servie times that are in the global stability region. In this way, we an ensure thateven under bad poliies, the system will remain stable.We show that a two-station uid network is globally stable if and only if the proessing timessatisfy the nominal workload onditions and the \virtual workload onditions". In partiular, weintrodue two intuitively appealing phenomena, virtual stations and push starts, that give rise to thetwo lasses of virtual workload onditions: \virtual station onditions" and \push start onditions".Virtual stations a�et the global stability of two-station uid networks beause, under somenon-idling dispath poliies, ertain groups of stages annot be served simultaneously even thoughthey are served at di�erent stations. Thus, just as at stations, the traÆ intensities at these groupsmust be less than one.Push starts magnify the inuene of virtual stations in uid networks by giving highest priorityto the �rst few stages. Fluid passes through these stages to the rest of the network as quikly as itarrives, but having foused so muh attention on the �rst few stages, the servers have less apaityto dediate to the rest of the network. Push starts do not inuene the apaity of a single stationbeause the work required to serve the remaining stages at a station is redued by exatly the e�ortrequired to expedite the �rst few stages. Push starts do inuene the apaity of virtual stations,however, beause they involve stages at both stations: the e�ort spent expediting stages at onestation does not redue the work remaining at the other.Under ertain distributional assumptions, the virtual workload onditions together with thenominal workload onditions are suÆient to ensure the global stability of two-station queueingnetworks. An independent argument in a ompanion paper Dai and Vande Vate (1996) shows thatthe virtual station onditions are also neessary for the global stability of two-station queueingnetworks. The push start onditions, however, are not in general neessary. See, for example, Daiand Vande Vate (1996).There has been a reent surge in the study of stability onditions for multilass queueing3



networks. These studies were primarily motivated by Kumar and Seidman (1990), Lu and Ku-mar (1991), Rybko and Stolyar (1992), Bramson (1994a, 1994b) and Seidman (1994), whih demon-strated that a number of non-idling dispath poliies are unstable even if the traÆ intensity ateah station is less than one. In these unstable examples, the total number of jobs in the systemgoes to in�nity with time. Other reent work on the stability of queueing networks and uid net-works inludes: Harrison and Nguyen (1995), Bramson (1997, 1998b), Bertsimas, Gamarnik andTsitsiklis (1996), Dumas (1996, 1997), Dai and Weiss (1996), Foss and Rybko (1995), Winogradand Kumar (1996), Kumar and Meyn (1995, 1996), Chen and Zhang (1997, 1998), Morrison andKumar (1998), Hasenbein (1997).Reently, Bertsimas, Gamarnik and Tsitsiklis (1996) showed that a two-station uid network isglobally stable if and only if a ertain linear program has bounded objetive value. In this paper weextend the results of Bertsimas et al. by stating expliitly in terms of the arrival rates and servietimes, neessary and suÆient onditions for a two-station uid network to be globally stable.The expliit desription of neessary and suÆient onditions for the global stability of two-station uid networks provides a number of orollaries not immediately available from the lin-ear programming haraterization of Bertsimas, Gamarnik and Tsitsiklis (1996). Most importantamong these is a omplete understanding of global stability in two-station uid networks via virtualstations and push starts. In addition, our onditions demonstrate that the global stable region of atwo-station uid network is monotone, i.e., reduing servie times maintains global stability. Thisis not the ase for stability with respet to a given dispath poliy. It is possible for a dispathpoliy to be stable for a given uid network, but unstable when the servie times are redued. Foruid networks with more than two stations, even the global stable region need not be monotone(see, for example, Dai, Hasenbein and Vande Vate 1998).Our approah relies on the fat that a uid network is stable if there is a pieewise linearLyapunov funtion for it. We formulate the problem of determining the oeÆients of the Lya-punov funtion as a linear programming problem, whih has unbounded objetive values only ifthe oeÆients and hene the Lyapunov funtion exist. Our linear program arises diretly fromthe pieewise linear Lyapunov funtion introdued in Dai and Weiss (1996), whih generalizes thatof Botvih and Zamyatin (1992) and is simpler than that independently formulated by Down andMeyn (1994).We transform our linear program into a parametri network ow problem in an ayli network.The uid network is globally stable if there is a value of the parameter for whih the minimum owin this network is suÆiently small. Thus, invoking the Min-Flow Max-Cut Theorem, we see thatthe uid network is globally stable if there is a value of the parameter for whih the apaity ofeah ut in the ayli network is suÆiently small. Finally, we show that these \ut onditions"are equivalent to the more easily understood virtual workload onditions.In Dai and Vande Vate (1996), we show that the virtual station onditions are neessary forthe stability of two-station queueing networks by showing that under ertain non-idling dispathpoliies, both stations annot simultaneously serve the lasses of a virtual station. This impliesthat the virtual station onditions are also neessary for the stability of two-station uid networks.We also provide an example showing that the push start onditions need not be neessary for globalstability in these networks. In this paper, we o�er a diret onstrution showing that both the virtualstation onditions and the push start onditions are neessary for the stability of two-station uidnetworks. In partiular, when the servie times stritly violate the virtual workload onditions, weonstrut a non-idling dispath poliy that auses the work-in-proess to grow without bound. Weare able to onstrut the poliy without knowing the spei� servie times sine it depends onlyon the violated onditions. In every ase, we identify a �nite sequene of states through whih the4



uid network yles with greater work-in-proess in eah suessive yle.The proof in Dai and Vande Vate (1996) that the virtual station onditions are neessary toensure global stability requires less detailed analysis and applies to a broader lass of networksenompassing both queueing networks and uid networks. The proof presented here is ratherdetailed and applies only to two-station uid networks. It does, however, demonstrate the neessityof the push start onditions for two-station uid networks and show exatly how the work-in-proessin an unstable system swings from lass to lass as it grows to in�nity. Further, it is not apparenthow to extend the simpler proof given in Dai and Vande Vate (1996) to ertain lasses of onditionsneessary to ensure the global stability of uid networks with more than two stations. These largernetworks appear to require the more diret proof tehnique used in this paper (see, for example,Dai, Hasenbein and Vande Vate 1998).We show that whenever the uid network is unstable, there is a stati bu�er priority dispathpoliy under whih the work-in-proess goes to in�nity. Thus, the lass of stati bu�er prioritydispath poliies is \worst" among all non-idling poliies in the sense that a two-station uidnetwork is globally stable if and only if it is stable under all stati bu�er priority dispath poliies.We introdue the virtual workload onditions in Setion 2 and show that they are suÆient forstability in Setions 3 through 6. Finally, we prove they are neessary for stability in Setion 7.1 PreliminariesBefore introduing the virtual workload onditions, we give a brief review of the Minimum FlowProblem and introdue our notation for uid networks. For an exellent and aessible treatmentof network ows, see Ahuja et al. (1993).1.1 The Minimum Flow ProblemConsider a direted network (N;E) with node set N and edge set E. We distinguish two vertiess, the soure, and t, the sink. Given (possibly in�nite) lower bounds ` = (`ij) and upper boundsu = (uij), we wish to �nd a minimum ow from the soure s to the sink t subjet to ow onservationonstraints and edge apaity onstraints. Thus, the minimum ow problem is:minimize vsubjet toXj2N xsj �Xj2N xjs = v(1.1) Xj2N xij �Xj2N xji = 0 for eah node i 2 N n fs; tg(1.2) Xj2N xtj �Xj2N xjt = �v(1.3) `ij � xij � uij for eah edge (i; j) 2 E:(1.4)Suppose (x; v) satis�es (1.1){(1.4). We refer to the vetor x as a feasible ow and the value v asthe value of the ow x. A minimum ow is a feasible ow with smallest value among all feasibleows.An s; t-ut in the network (N;E) is a partition of N into two sets S and T with s 2 S and5



t 2 T . The apaity of the ut (S; T ), denoted (S; T ), is:(S; T ) = X(i;j)2E:i2S;j2T `ij � X(i;j)2E:i2T;j2S uij :Note that our de�nition of apaity interhanges the roles of upper and lower bounds in the usualde�nition as applied to the maximum ow problem. This de�nition is appropriate for the minimumow problem and is sometimes referred to as the oor of a ut. A maximum s; t-ut is one withlargest apaity among all s; t-uts. Theorem 1.1 is a lassi result of network ows and an befound in Ahuja et. al. (1993, Exerise 6.18, pp. 202).Theorem 1.1. The value of a minimum ow equals the apaity of a maximum s; t-ut.1.2 Multi-Type Fluid NetworksWe onsider uid networks with two single-server stations, denoted A and B, and a set I of di�erentuid types. Type i uid arrives at a onstant rate �i > 0 and follows a presribed route visitingone station and then the other a number of times before exiting the system. Di�erent types of uidmay follow di�erent routes. We number the stages uid i passes through onseutively from 1 toi and let Ai and Bi denote the stages in whih uid i is served at Station A and at Station B,respetively.We refer to type i uids waiting for the kth stage as lass (i; k) uids, whih reside in bu�er(i; k). Eah unit of lass (i; k) uid requires servie lasting mik > 0 units of time. The servie timemik is the time it takes the station to proess one unit of lass (i; k) uid. Equivalently, �ik = 1=mikis the rate at whih the server depletes lass (i; k) uid from the bu�er when it devotes all its e�ortsto serving that lass.A uid solution is a vetor (Q(�); T (�)) = (Qik(�); T ik(�))i2I;k=1;::: ;i of funtions of time satisfying:Qik(t) = Qik(0) + �ik�1T ik�1(t)� �ikT ik(t) � 0; for t � 0; i 2 I; k = 1; : : : ; i;(1.5) T ik(0) = 0 and T ik(t) is nondereasing for all i 2 I; and k = 1; : : : ; i;(1.6) t�Xi2I Xk2Ai T ik(t) is nondereasing;(1.7) t�Xi2I Xk2Bi T ik(t) is nondereasing;(1.8)where T i0(t) = t and �i0 = �i for eah type i 2 I to model the exogenous arrival of uids.We interpret Qik(t) as the volume of lass (i; k) uid in the bu�er at time t, and T ik(t) asthe umulative time spent serving lass (i; k) uids up to time t. The relationship between thebu�er levels and the umulative alloations of e�ort is given by (1.5) for eah lass of uid. Theseequations simply relate the bu�er levels to the initial bu�er levels and the total volume of uidentering and leaving eah bu�er. Conditions (1.6) ensure that no work is ompleted before time0. Conditions (1.7) and (1.8) ensure that eah server divides its time between serving the variouslasses and aumulating idle time.Eah uid solution (Q(�); T (�)) has derivatives at almost all times t > 0 (with respet Lebesguemeasure on [0;1)); see Dai and Weiss (1996). A point t 2 [0;1) is a regular point of the uidsolution (Q;T ) if T is di�erentiable at t. We heneforth use _f(t) to denote the derivative of f at t.6



We onsider uid networks under non-idling dispath poliies or poliies that do not allow aserver to be idle when there is work for it to do. We an express this restrition via the \omple-mentarity" onditions on uid solutions (Q(�); T (�)):Xi2I Xk2Ai _T ik(t) = 1 whenever Xi2I Xk2AiQik(t) > 0 and ;(1.9) Xi2I Xk2Bi _T ik(t) = 1 whenever Xi2I Xk2BiQik(t) > 0;(1.10)for eah regular point t of (Q(�); T (�)). The umulative idle time at Station A up to time t is simplyt�Xi2I Xk2Ai T ik(t)and Condition (1.7) ensures that it is nondereasing. Condition (1.9) further ensures that whenStation A is aumulating idle time, the bu�ers it serves are empty. The umulative idle time atStation B is de�ned similarly. Heneforth, we onsider only uid solutions satisfying (1.5){(1.10).When there is only a single type of uid, we omit referenes to the type and speak of lass k uidas having bu�er levels Qk(t), et.A bu�er priority is a one-to-one mapping � from the set of bu�ers onto f1; : : : ; g, where  isthe total number of lasses in the network. When �(i; k) > �(j; `) for two lasses both served atthe same station, lass (i; k) has higher priority than lass (j; `). A stati bu�er priority disiplinewith bu�er priorities � stipulates that, in addition to (1.5){(1.10), every uid solution (Q(�); T (�))must also satisfy: Xi2I;k2Ai;�(i;k)��(j;`) _T ik(t) = 1 whenever Xi2I;k2Ai;�(i;k)��(j;`)Qik(t) > 0(1.11)for eah j 2 I and ` 2 Aj, and regular point t of (Q(�); T (�)) andXi2I;k2Bi;�(i;k)��(j;`) _T ik(t) = 1 whenever Xi2I;k2Bi;�(i;k)��(j;`)Qik(t) > 0(1.12)for eah j 2 I and ` 2 Bj and regular point t of (Q(�); T (�)). Equations (1.11)-(1.12) ditate thatwhenever a bu�er aumulates uid, no lower priority bu�er at the same station an reeive servie.The uid network is said to be stable under non-idling dispath poliies, or simply globally stable,if there is some �nite time � > 0 beyond whih any uid solution (Q(�); T (�)) that begins with oneunit of work-in-proess or WIP, i.e., withXi2I iXk=1Qik(0) = 1;will have no WIP, i.e., Xi2I iXk=1Qik(t) = 0;for all t � � . Dai (1995) showed if a uid network is stable, the orresponding queueing network ispositive Harris reurrent under some distributional assumptions.7
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Station A Station B� m1 m2m3 m4m5 m6m7
Figure 2: A seven lass networkA uid solution (Q(�); T (�)) is said to be unstable if there exists ftng with tn ! 1 suh thatQ(tn) 6= 0 for eah n. A uid solution (Q(�); T (�)) is said to diverge to in�nity if the WIP goes toin�nity as time t!1. A divergent uid solution is learly unstable.The traÆ intensities or nominal workloads at the stations are:�A =Xi2I Xk2Ai �imik and �B =Xi2I Xk2Bi �imik:It is well-known (see, for example, Dai 1996) that the uid network an only be stable if the traÆintensities are less than one, i.e., �A < 1 and �B < 1:(1.13)2 Virtual Workload ConditionsThe stability onditions for a two-station uid network take two forms: the nominal workloadonditions (1.13) that arise beause lasses at the same station must share the server's time; andthe virtual workload onditions, generalizing ondition �(m2 + m5) < 1 for the uid network inFigure 1, that arise through the interations between virtual stations and push starts.Two intuitively appealing phenomena give rise to the virtual workload onditions. The intuitionbehind the �rst of these phenomena is best desribed in the ontext of queueing networks. Theseond phenomenon is most easily understood in the ontext of uid networks.Figure 1 illustrates a simple single-type queueing network. If we give highest priority to lass 5at Station A and to lass 2 at Station B, these two lasses an only be served simultaneously duringa transient initial period, see Dai and Vande Vate (1996, Lemma 3.1). Thus, these two lasses forma \virtual station" and, although they are served at di�erent stations, the workload at these twolasses annot exeed 1. This virtual station gives rise to the virtual workload ondition:�(m2 +m5) < 1;whih we refer to as a \virtual station ondition". These onditions also apply to uid networks.8



The uid network of Figure 2 illustrates the seond phenomenon giving rise to virtual workloadonditions. Assume that the nominal workload onditions (1.13) hold. If we give highest priority tolass 1 at Station A and to lass 2 at Station B in this network, the uid levels in these two bu�erswill reah zero and remain zero thereafter. For the sake of our disussion, we assume that these twobu�ers are always empty. Then, the server at Station A will onstantly devote a fration �m1 of itstime to lass 1 to keep the bu�er empty, and hene have only a fration 1��m1 of its time left forother lasses at Station A. Similarly, the server at Station B will onstantly devote a fration �m2of its time to lass 2 and have only a fration 1��m2 of its time left for the other lasses at StationB. Note that in a queueing network we annot antiipate a onstant, uninterrupted devotion oftime to these lasses, but we an in a uid network. The fat that the servers are slowed by theire�orts on lasses 1 and 2 magni�es the time required to serve eah unit of uid in the remaininglasses. In partiular, the server at Station A will require m7=(1� �m1) units of time to ompleteone unit of lass 7 uid and the server at Station B will require m4=(1 � �m2) units of time toomplete one unit of lass 4 uid. Beause bu�ers 1 and 2 remain empty, uid passes through themas quikly as it arrives, and hene arrives at bu�er 3 at rate �. Thus, push starting the �rst twolasses magni�es the virtual station ondition:�(m4 +m7) < 1in the indued network to give the virtual workload ondition:�m41� �m2 + �m71� �m1 < 1;ensuring that the virtual station an divide its time between serving the two lasses. We refer tothis ondition as a \push start ondition".Together, these two phenomena explain all the virtual workload onditions of two-station uidnetworks. Although these ideas are intuitively appealing, formalizing them is more involved. Weformalize the onditions under whih lasses at di�erent stations annot reeive servie simultane-ously in the following way.The �rst notion in our haraterization of virtual stations is the idea of an exursion or set ofonseutive lasses at the same station. In the network of Figure 3 eah type makes four exursionsat Station A and four exursions at Station B. For example, the seond exursion for type 2 onsistsof lasses (2; 2) and (2; 3).We let E denote the set of exursions and, for eah type i 2 I, we let Ei denote the set ofexursions for type i ustomers, whih we number onseutively from 1 to ni. We partition Ei intoEiA, the set of exursions at Station A, and EiB , those at Station B. Sine an exursion at onestation must be followed by an exursion at the other (unless it is the last exursion), one of these isthe set of odd numbered exursions and the other is the set of even numbered exursions dependingon where type i ustomers �rst enter the network. We use [i; e℄ to denote the eth exursion for typei uid. Reall that (i; k) denotes the type i uid that is waiting for its kth servie.We let E[i; e℄ denote the lasses of exursion [i; e℄ and we partition these lasses into the lastlass and all the rest, whih we all �rst lasses of the exursion. We let `[i; e℄ denote the last lassand f [i; e℄ the set of �rst lasses in E[i; e℄. If an exursion onsists of only one lass, that lass isthe last lass and the exursion has no �rst lasses. For example, in the twenty-eight lass networkof Figure 3, `[1; 1℄ = (1; 1), f [1; 1℄ = ;, `[1; 2℄ = (1; 3), f [1; 2℄ = f(1; 2)g, : : : , `[1; 8℄ = (1; 14) andf [1; 8℄ = ;. When e > ni, both E[i; e℄ and f [i; e℄ are empty. To simplify notation, we sometimesuse `[i; e℄ to denote the stage number of the last lass and f [i; e℄ to denote the set of stage numbersof the �rst lasses in exursion E[i; e℄. 9
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Figure 3: A twenty-eight lass uid network with two types of uidDe�nition 2.1. The neighbors of a set X of exursions is the set�(X) = f[i; e℄ 2 E : [i; e� 1℄ or [i; e+ 1℄ is in Xg:De�nition 2.2. A set S of exursions is said to be separating if it ontains no onseutive exur-sions. Thus, a set S of exursions is separating if S \ �(S) = ;.De�nition 2.3. A separating set S is said to be A-stritly separating if it ontains no �rst exur-sion at Station A, i.e., if S \ f[i; 1℄ 2 EiA : i 2 Ig = ;. Similarly, a separating set S is said tobe B-stritly separating if it ontains no �rst exursion at Station B, i.e., if S \ f[i; 1℄ 2 EiB : i 2Ig = ;. A separating set S is said to be stritly separating if it ontains no �rst exursion, i.e., ifS � f[i; e℄ : i 2 I; e = 2; : : : ; nig.The set of exursions at Station A, for example, is B-stritly separating. Likewise, the set ofexursions at Station B is A-stritly separating. We refer to these two separating sets as trivialseparating sets.Eah stritly separating set S of exursions indues a virtual station V (S) or maximal olletionof lasses with the property that if we give highest priority to these lasses the two servers ansimultaneously serve lasses of V (S) only during a transient initial period.De�nition 2.4. Eah separating set S of exursions indues a olletion V (S) onsisting of thelasses in exursions of S together with the �rst lasses of exursions whose immediate predeessoris not in S. Thus, V (S) = �[[i;e℄2SE[i; e℄�[�[[i;e℄2EinSf [i; e+ 1℄� :When S is stritly separating we refer to V (S) as a virtual station.A virtual station V , then, is a set of lasses satisfying:10



1. No lass of a �rst exursion is in V , i.e., E[i; 1℄ \ V = ; for eah type i.2. If the last lass of an exursion is in V , then every lass of that exursion is in V and if a �rstlass of an exursion is in V , then every �rst lass of that exursion is in V . Thus, a virtualstation must have either none of the lasses, all of the lasses, or all but the last lass of eahexursion.3. The last lass of an exursion (exept a last exursion) is in V if and only if no lass of the nextexursion is in V , i.e., for eah exursion e < ni, `[i; e℄ 2 V if and only if E[i; e + 1℄ \ V = ;.In the network of Figure 1, the separating set S = f2, 5g of exursions gives rise to the virtualstation V (S) onsisting of lasses 2 and 5 (there are no �rst lasses in exursion 3). This is theonly virtual station that is not itself a subset of the lasses at a station.The seond phenomenon determining the global stability of a two-station uid network is pushstarting. Giving highest priority to the �rst few lasses of eah type an magnify the e�ets ofvirtual stations in the subnetwork onsisting of the remaining lasses.De�nition 2.5. Let e = (ei)i2I be a vetor with 1 � ei � ni for eah type i. We let F<(e) denotethe push start set onsisting of the olletion of all lasses up to but not inluding the last lass ofexursion [i; ei℄ for eah type i 2 I and we let R(e) denote all the remaining lasses. Thus,F<(e) = f(i; k) : i 2 I; 1 � k < `[i; ei℄gand R(e) = f(i; k) : i 2 I; `[i; ei℄ � k � ig:We let F�(e) denote the olletion of all lasses up to and inluding the last lass of exursion[i; ei℄ for eah type i 2 I. Thus,F�(e) = f(i; k) : i 2 I; 1 � k � `[i; ei℄g:Note that if V (S) is a virtual station and F<(e) is a push start set, then V (S) n F�(e) is thelasses of a virtual station in the subnetwork onsisting of the lasses of R(e).Given a set X of lasses, we de�ne XA to be the lasses of X served at Station A and XB to bethose served at station B. For example, we use VA(S) to denote the lasses of the virtual stationV (S) at Station A and we use F<A (e) to denote the lasses of F<(e) at Station A. Further, tosimplify our notation, we adopt the onvention that for eah set X of lasses,�m(X) = X(i;k)2X �imik:Theorem 2.1. A two-station uid network is globally stable if and only if�A < 1; �B < 1;(2.1)and for eah vetor e = (ei)i2I of exursions and eah separating set S, we have�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) < 1:(2.2)Furthermore, if some vetor e = (ei)i2I of exursions and separating set S satisfy�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) > 1;(2.3)then there exists a non-idling uid solution suh that the WIP diverges to in�nity with time.11



We refer to the onditions (2.2) as the virtual workload onditions. When F<(e) = ;, we referto the virtual workload ondition (2.2) as a virtual station ondition. Otherwise, the onditioninvolves push starting F<(e) and we refer to it as a push start ondition. For example, the virtualworkload onditions of the uid network in Figure 2 are:�(m2 +m5 +m7) < 1;�(m2 +m4 +m7) < 1;�m31� �m1 + �m6 < 1;�m41� �m2 + �m71� �m1 < 1:The remainder of this paper is devoted to proving that the nominal workload onditions and thevirtual workload onditions are neessary and suÆient to ensure the global stability of two-stationuid networks. We argue in Setions 3 and 4 that we an onstrut a ertain pieewise linearLyapunov funtion showing that the WIP will eventually go to zero and remain zero if the arrivalrates and servie rates satisfy ertain onstraints. We then argue in Setions 5 and 6 that theserather ompliated onstraints are equivalent to the virtual workload onditions.In Setion 7, we show that the virtual workload onditions (2.2) are neessary to ensure theglobal stability of the uid network. We o�er a diret proof that expliitly demonstrates a non-idling dispath poliy under whih, if some vetor e = (ei)i2I of exursions and separating set Ssatisfy (2.3), WIP levels grow without bound. In fat, we demonstrate the trajetory of the uidnetwork through a �nite sequene of states with greater and greater WIP in eah suessive yle.3 A Pieewise-Linear Lyapunov FuntionWe show that the virtual workload onditions of Theorem 2.1 are suÆient to ensure global stabilityof a two-station uid network by showing that when they are satis�ed there is a potential funtionor Lyapunov funtion G proving that the WIP drains to zero regardless of the initial onditions.Consider a uid solution (Q(�); T (�)). We let Zik(t) denote the volume of uid i that has alreadyentered the network by time t, but has not yet reeived lass (i; k) servie, i.e.,Zik(t) = Zik(0) + �it� �ikT ik(t) = X̀�kQì(t):We de�ne G to be the maximum of two linear funtions of (Zik(t)) | one for eah station | andso it is a pieewise-linear funtion of the bu�er levels (Qik(t)). In partiular, given weights x = (xik)for the lasses, we de�ne the linear funtions at Station A and Station B to be:GA(x; t) = Xi2I Xk2Ai xikZik(t)=�i andGB(x; t) = Xi2I Xk2Bi xikZik(t)=�i:Let G(x; t) = maxfGA(x; t); GB(x; t)g:If there is � > 0 suh that 12



� G(x; t) > 0 and� _G(x; t) � �G(x;t)�t � ��;whenever the WIP is not zero at time t and Q(�) and G(x; �) are di�erentiable at t, then after time� = G(x; 0)=� all bu�ers will have drained to zero; proving that the uid network is globally stable.Dai and Weiss (1996) showed that G will satisfy these onditions if there is � > 0 and weights x > 0suh that: GA(x; t) � GB(x; t) whenever Xi2I Xk2AiQik(t) = 0;(3.1) GB(x; t) � GA(x; t) whenever Xi2I Xk2BiQik(t) = 0;(3.2) �GA(x; t)�t � �� whenever Xi2I Xk2AiQik(t) > 0; and(3.3) �GB(x; t)�t � �� whenever Xi2I Xk2BiQik(t) > 0;(3.4)where onditions (3.1) and (3.2) apply for all t and onditions (3.3) and (3.4) apply only when t isa regular point of (Q(�); T (�)). Thus, we have the following proposition.Proposition 3.1. If there exists � > 0 and x > 0 suh that (3.1){(3.4) hold, the uid network isstable under non-idling dispath poliies.4 A Linear Programming FormulationWe transform the problem of �nding weights x suh that GA(x; t) and GB(x; t) satisfy (3.1){(3.4) into a linear programming problem. The linear program has a solution with stritly positiveobjetive value if and only if the desired weights x exist and any solution with stritly positiveobjetive value provides weights satisfying the desired onditions.We �rst transform (3.1) into linear onstraints on x. WhenXi2I Xk2AiQik(t) = 0;(4.1)GA redues to:Xi2I Xk2Ai0�xik X`2Bi;`<kQì(t)=�i1A = Xi2I X`2Bi0�Qì(t) Xk2Ai;k>`xik=�i1A(4.2)and GB redues to:Xi2I Xk2Bi0�xik X`2Bi;`�kQì(t)=�i1A = Xi2I X`2Bi0�Qì(t) Xk2Bi;k�`xik=�i1A :(4.3)It follows that (3.1) is satis�ed if: Xk2Ai;k>`xik � Xk2Bi;k�`xik(4.4) 13



for eah i 2 I and ` 2 Bi. Sine the weights x are non-negative, we an restrit attention to thoseonstraints of (4.4) where ` 2 Bi, but `+ 1 62 Bi. In other words, (4.4) is equivalent toXk2Ai;k>`[i;e℄xik � Xk2Bi;k�`[i;e℄xik(4.5)for eah exursion [i; e℄ at Station B.Similar analysis leads to the onlusion that GA and GB satisfy (3.2) if:Xk2Bi;k>`[i;e℄xik � Xk2Ai;k�`[i;e℄xik(4.6)for eah exursion [i; e℄ at Station A.We next transform (3.3) into linear onditions on x. WhenXi2I Xk2AiQik(t) > 0;the non-idling ondition (1.9) ensures that Station A is not aumulating idle time and so,Xi2I Xk2Ai _T ik(t) = 1:(4.7)Now, _GA(t) = Xi2I Xk2Ai xik _Zik(t)=�i= Xi2I Xk2Ai xik �1� �ik _T ik(t)=�i�= Xi2I Xk2Ai xik �Xi2I Xk2Ai xik�ik _T ik(t)=�i:Thus, (3.3) is satis�ed if: Xj2I Xk2Aj xjk + � � xì�ì=�i(4.8)for eah i 2 I and ` 2 Ai.Similar analysis shows that (3.4) is satis�ed if:Xj2I Xk2Bj xjk + � � xì�ì=�i(4.9)for eah i 2 I and ` 2 Bi.Finding the largest possible value of � for whih there are weights x satisfying (4.5){(4.6) and
14



(4.8){(4.9) redues to solving the following linear program for � and x:maximize �(4.10) subjet to:Xk2Ai;k>`[i;e℄xik � Xk2Bi;k�`[i;e℄xik � 0 for eah i 2 I and [i; e℄ 2 EiB(4.11) Xk2Bi;k>`[i;e℄xik � Xk2Ai;k�`[i;e℄xik � 0 for eah i 2 I and [i; e℄ 2 EiA(4.12) 0�Xj2I Xk2Aj xjk1A� xì�ì=�i + � � 0 for i 2 I and ` 2 Ai(4.13) 0�Xj2I Xk2Bj xjk1A� xì�ì=�i + � � 0 for i 2 I and ` 2 Bi(4.14) x; � � 0(4.15)The onstraints (4.11){(4.15) de�ne a one with the single extreme point given by x = 0 and� = 0. Thus, we have the following proposition:Proposition 4.1. If the linear program (4.10){(4.15) has unbounded objetive values, then eahsolution (x; �) with � > 0 provides weights x > 0 suh that G(x; t) is a pieewise-linear Lyapunovfuntion proving that the uid network is stable.In Setion 5, we transform the linear program (4.10){(4.15) into a parametri network owproblem and, by exploiting a dual formulation, derive suÆient onditions for stability of a two-station uid network. In Setion 6, we show that these onditions are equivalent to the onditionsof Theorem 2.1.5 A Network Flows FormulationThe linear program (4.10){(4.15) o�ers a omputationally attrative method for determining whetheror not a two-station uid network with spei�ed servie times is globally stable. A network withgiven arrival rates and servie times is globally stable if the linear program (4.10){(4.15) has un-bounded objetive values. Otherwise, as we show in Setion 7, it is not. The linear program doesnot, however, provide a theoretially attrative haraterization of the global stability region for atwo-station uid network.In order to obtain an expliit haraterization of the arrival rates and servie times under whiha two-station uid network is globally stable, we translate the linear program (4.10){(4.15) into anequivalent parametri network ow problem. The parametri network ow problem is equivalentto the linear program in the sense that the linear program has unbounded objetive values if andonly if there is a value of the parameter for whih the network ow problem has stritly positiveobjetive value.To transform (4.10){(4.15) into an equivalent network ow problem, we �rst observe that sine(4.11){(4.15) de�nes a one, there is a solution (x; �) to (4.11){(4.15) with � > 0 if and only if thereis a solution with � > 0 and Xi2I Xk2Ai xik + � = 1:(5.1) 15



Although we an arbitrarily sale the sum of the weights on lasses at one station, (we have hosenStation A) to 1, we annot simultaneously sale the sum of the weights on lasses at the otherstation to a �xed value. Thus, we let � denote the sum of the weights on the lasses served atStation B: Xi2I Xk2Bi xik + � = �:(5.2)We do not know a priori a value of � at whih � is maximized, but by treating it as a parameterrather than a variable, we an express the onstraints (4.13){(4.14) as lower bounds:�imik � xik for i 2 I and k 2 Ai(5.3) ��imik � xik for i 2 I and k 2 Bi:(5.4)Next, we add slak variables s = (sie) and write the onstraints (4.11){(4.12) as:Xk2Ai;k>`[i;e℄xik � Xk2Bi;k�`[i;e℄xik + sie = 0 for eah i 2 I and [i; e℄ 2 EiB(5.5) Xk2Bi;k>`[i;e℄xik � Xk2Ai;k�`[i;e℄xik + sie = 0 for eah i 2 I and [i; e℄ 2 EiA:(5.6)Adding (5.5) for an exursion [i; e℄ at Station B and (5.6) for exursion [i; e + 1℄ at Station Aand multiplying by �1, we obtain:� Xk2f [i;e+1℄xik + xì[i;e℄ � sie � sie+1 = 0:(5.7)Similarly, adding (5.6) for exursion [i; e℄ at Station A and (5.5) for exursion [i; e+1℄ at StationB, we obtain Xk2f [i;e+1℄xik � xì[i;e℄ + sie + sie+1 = 0:(5.8)Adopting the onvention that sini+1 = 0, we an write (5.5) for a last exursion [i; ni℄ 2 EiB as:� Xk2f [i;ni+1℄xik + xì[i;ni℄ � sini � sini+1 = 0and we an write (5.6) for a last exursion [i; ni℄ 2 EiA as:Xk2f [i;ni+1℄xik � xì[i;ni℄ + sini + sini+1 = 0:
16



Combining these transformations gives the following linear program:maximize �(5.9) subjet to:Xk2f [i;e+1℄xik � xì[i;e℄ + sie + sie+1 = 0 for i 2 I and [i; e℄ 2 EiA(5.10) � Xk2f [i;e+1℄xik + xì[i;e℄ � sie � sie+1 = 0 for i 2 I and [i; e℄ 2 EiB(5.11) Xi2I Xk2Ai xik + � = 1(5.12) �Xi2I Xk2Bi xik � � = ��(5.13) �imik � xik for i 2 I and k 2 Ai(5.14) ��imik � xik for i 2 I and k 2 Bi(5.15) x; s; � � 0:(5.16)There is a value of the parameter � suh that the linear program (5.9){(5.16) has optimum objetivevalue � > 0 if and only if the linear program (4.10){(4.15) has unbounded objetive values.The linear program (5.9){(5.16) is a network ow problem with right-hand-sides and lowerbounds that depend on the parameter �. The nodes of the network are:� A node for eah exursion [i; e℄ orresponding to the onstraints (5.10) and (5.11).� A node for eah Station A and B orresponding to the onstraints (5.12) and (5.13).� A node alled the root orresponding to the redundant onstraintXi2I 0� Xk2Bi\f [i;1℄xik � Xk2Ai\f [i;1℄xik1A+ Xi2I:`[i;1℄2Bi si1 � Xi2I:`[i;1℄2Ai si1 = � � 1obtained by adding (5.10){(5.13) and multiplying by �1.The edges of the network are:E.1. An edge from the node for Station A to the node for exursion [i; e℄ at Station A. This edgeorresponds to the variable xì[i;e℄ and has lower bound �imì[i;e℄.E.2. An edge from the node for exursion [i; e℄ at Station B to the node for Station B. This edgeorresponds to the variable xì[i;e℄ and has lower bound ��imì[i;e℄.E.3. An edge from the node for Station A to the node for exursion [i; e℄ at Station B for eah lass(i; k) in f [i; e + 1℄. These edges orrespond to the variables xik for the lasses in f [i; e + 1℄.The edge for lass (i; k) has lower bound �imik.E.4. An edge from the node for exursion [i; e℄ at Station A to the node for Station B for eah lass(i; k) in f [i; e + 1℄. These edges orrespond to the variables xik for the lasses in f [i; e + 1℄.The edge for lass (i; k) has lower bound ��imik.17
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A root B

s14 � 0[1; 3℄ s13 � 0 [1; 4℄
s12 � 0 [1; 2℄[1; 1℄

x15 � �1m15 x14 � �1m14

[2; 2℄
s11 � 0 s21 � 0 [2; 1℄s22 � 0
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x22 � �2m22 x12 � ��1m12 x13 � ��1m13x21 � ��2m211 ��� � 1

Figure 4: This parametri network ow problem is equivalent to the linear program (5.9){(5.16) asapplied to the uid network in Figure 5. The soure A has supply 1. The sink B has demand �. If� > 1, the root has supply � � 1. If � � 1, the root has demand 1� �.
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Figure 5: A twelve lass uid network with two types of uidE.5. An edge from the node for Station A to the root for eah lass (i; k) in f [i; 1℄ served at StationA. These edges orrespond to the variables xik for the lasses in f [i; 1℄ served at Station A.The edge for lass (i; k) has lower bound �imik.E.6. An edge from the root to the node for Station B for eah lass (i; k) in f [i; 1℄ served at StationB. These edges orrespond to the variables xik for the lasses in f [i; 1℄ served at Station B.The edge for lass (i; k) has lower bound ��imik.E.7. An edge from the node for exursion [i; 1℄ at Station A to the root. This edge orresponds tothe variable si1 and has lower bound 0.E.8. An edge from the root to the node for exursion [i; 1℄ at Station B. This edge orresponds tothe variable si1 and has lower bound 0.E.9. An edge from the node for exursion [i; e℄ at Station A to the node for exursion [i; e � 1℄ atStation B. This edge orresponds to the variable sie and has lower bound 0.E.10. An edge from the node for exursion [i; e � 1℄ at Station A to the node for exursion [i; e℄ atStation B. This edge orresponds to the variable sie and has lower bound 0.E.11. An edge from the node for Station A to the node for Station B. This edge orresponds to thevariable �.The node for A has a supply of 1 and the node for B has a demand for �. The remaining supply(if � > 1) or demand (if � < 1) is at the root. The linear program (4.10){(4.15) has unboundedobjetive values if and only if there is a value of � > 0 suh that there is a feasible ow in thisnetwork with � > 0. Figure 4, illustrates this onstrution for the uid network in Figure 5.Rather than onsider separately the two ases � > 1 and � < 1, we model the supply or demandat the root by hanging the supply at the node for A and the demand at the node for B to maxf1; �gand adding two additional edges:� An edge from the node for A to the root with lower bound maxf0; � � 1g representing anysupply at the root. 19



� An edge from the root to the node for B with lower bound maxf0; 1 � �g representing anydemand at the root.The linear program (4.10){(4.15) has unbounded objetive values if and only if there is � > 0 suhthat there is a feasible ow with value maxf1; �g and � > 0. Figure 6, illustrates this onstrutionfor the uid network in Figure 5.Finally, for given � > 0, there is a ow of value maxf1; �g from A to B in this network (see,for example, Figure 6) with a stritly positive ow on the edge orresponding to � if and only ifthe minimum ow from the node for A to the node for B in this network without the edge for �(see, for example, Figure 7) is stritly less than maxf1; �g | the remaining ow an be assigned to�. Thus, we heneforth omit the edge for � from the network and onsider the resulting MinimumFlow Problem.To summarize, given a feasible solution (x; �) to the linear program (5.9){(5.16) for some � > 0,we an onstrut a feasible solution to the minimum ow problem with value maxf1; �g � � bysending maxf0; ��1g on the new edge from A to the root and maxf0; 1��g on the new edge fromthe root to B. Conversely, given a feasible ow x for the minimum ow problem for some � > 0with value maxf1; �g � �, (x; �) is a feasible solution to the linear program (5.9){(5.16).From Theorem 1.1, the value of a minimum ow equals the apaity of a maximum A;B-utand so, there are weights x satisfying (5.10){(5.16) if and only if, for some value of � > 0, eahA;B-ut in this network has apaity stritly less than maxf1; �g. Thus, we have proved thefollowing lemma.Lemma 5.1. A two-station uid network is globally stable if there is a value of � > 0 for whihthe apaity of a maximum A;B-ut is stritly less than maxf1; �g.Given an A;B-ut (L;R), we let LA denote the exursions in L that are served at Station Aand LB denote those served at Station B. Similarly, we let RA denote the exursions in R servedat Station A and RB denote those at Station B.We refer to an A;B-ut with the root in L as an L-ut. An A;B-ut with the root in R is anR-ut. Note that sine the upper bound on eah edge is in�nite, an A;B-ut (L;R) in this networkhas apaity �1 if some edge extends from a node in R to a node in L. That is to say, an A;B-ut(L;R) in this network has �nite apaity if and only if no edge extends from a node in R to a nodein L, i.e., if and only if (L;R) satis�es:Rule 1. If [i; e℄ 2 LB, then [i; e + 1℄ is in LA, otherwise the edge orresponding to the variablesie+1 (see E.9) extends from a node in R to a node in L,Rule 2. If [i; e℄ 2 RA, then exursion [i; e + 1℄ is in RB, otherwise the edge orresponding to thevariable sie+1 (see E.10) extends from a node in R to a node in L,Rule 3. If (L;R) is an R-ut, then [i; 1℄ 62 LB for eah type i, otherwise the edge orrespondingto the variable si1 (see E.8) extends from a node in R to a node in L, andRule 4. If (L;R) is an L-ut, then [i; 1℄ 62 RA for eah type i, otherwise the edge orresponding tothe variable si1 (see E.7) extends from a node in R to a node in L.Thus, we have the following lemma, whih allows us to speak in terms of separating sets ratherthan uts.Lemma 5.2. An L-ut (L;R) has �nite apaity if and only if LB [RA is an A-stritly separatingset. Similarly, an R-ut (L;R) has �nite apaity if and only if LB [RA is a B-stritly separatingset. 20
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Figure 6: For given � > 0, there is a feasible ow in the network of Figure 4 if and only if there isa feasible ow in this network with value maxf1; �g and � > 0.
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x24 � ��2m24

x16 � ��1m16

x25 � ��2m25x26 � �2m26
x22 � �2m22 x12 � ��1m12 x13 � ��1m13x21 � ��2m21maxf0; � � 1g maxf0; 1� �gv �v

Figure 7: For given � > 0, there is a feasible ow in the network of Figure 6 with value maxf1; �gand � > 0 if and only if the minimum ow in this network has value v stritly less than maxf1; �g.
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We an express the apaity of a �nite apaity L-ut (L;R) in terms of the orrespondingA-stritly separating set LB [RA and the olletion V (LB [RA) of lasses it generates as follows:(L;R) = �m(VA(LB [RA)) + ��m(VB(LB [RA)) + maxf0; 1 � �g:To see this observe that every edge ontributing a positive amount to the apaity of an L-uteither starts at A or ends at B. The �rst term �m(VA(LB [ RA)) aptures the ontributions ofedges that start at A and the seond term ��m(VB(LB [RA)) aptures the ontributions of edgesthat end at B exept for the edge from the root to B, whih ontributes maxf0; 1� �g. The edgesstarting at A that ontribute to the apaity of the ut are:� The last lass of eah exursion [i; e℄ 2 RA. These are the edges orresponding to edges E.1that ross the ut.� The �rst lasses of eah exursion [i; e℄ 2 A suh that [i; e � 1℄ 2 RB. These are the edgesorresponding to edges E.3 that ross the ut.These are exatly the lasses of VA(LB [RA). The lasses of the virtual station served at A inludeall the lasses of RA and the �rst lasses of those exursions [i; e℄ 2 LA suh that [i; e � 1℄ 62 LB .If [i; e℄ 2 RA, then, by Rule 1, [i; e � 1℄ 2 RB and so all the lasses of the exursion ross the ut.If [i; e℄ 2 LA and [i; e � 1℄ 2 RB then all the �rst lasses of the exursion ross the ut, but notthe last lass. Analogous arguments verify that ��m(VB(LB [RA)) is exatly the ontribution ofedges that end at B rossing the ut exept for the edge from the root to B whose ontribution isaptured in the third term.Thus, assuming the servie times satisfy the nominal workload onditions, eah �nite apaityL-ut (L;R) imposes the ondition: �m(VA(LB [RA))1� �m(VB(LB [RA)) < �(5.17)on �. One exeption to (5.17) arises when RA is empty and LB onsists of all the exursions atStation B, i.e., when LB [ RA is the trivial separating set onsisting of all exursions at StationB. In this ase, VA(LB [RA) = ; and the ondition (L;R) < 1 redues to the nominal workloadondition at Station B.Similarly, we an express the apaity of a �nite apaity R-ut (L;R) in terms of the orre-sponding B-stritly separating set LB [RA and the olletion V (LB [ RA) of lasses it generatesas follows: (L;R) = �m(VA(LB [RA)) + ��m(VB(LB [RA)) + maxf0; � � 1g:Thus, eah �nite apaity R-ut (L;R) imposes the ondition:1� �m(VA(LB [RA))�m(VB(LB [RA)) > �(5.18)on �. One exeption to (5.18) arises when LB is empty and RA onsists of all the exursions atStation A, i.e., when LB [ RA is the trivial separating set onsisting of all exursions at StationA. In this ase, VB(LB [RA) = ; and the ondition (L;R) < 1 redues to the nominal workloadondition at Station A.Combining (5.17) and (5.18) with Lemma 5.2 proves the following theorem, whih providesexpliit onstraints on the servie times suÆient to ensure the global stability of a two-stationuid network. In Setion 6, we show that these \ut onditions" are equivalent to the virtualworkload onditions, whih we prove are also neessary to ensure global stability.23



Theorem 5.1. A two-station uid network with servie times m and arrival rates � = (�i)i2Isatisfying the nominal workload onditions is globally stable if (1.13) holds and for eah non-trivialA-stritly separating set S0 and non-trivial B-stritly separating set S,�m(VA(S0))1� �m(VB(S0)) < 1� �m(VA(S))�m(VB(S)) :(5.19)6 SuÆienyIn Setion 5, we showed that a two-station uid network satisfying the nominal workload onditionsis globally stable if the arrival rates and servie times satisfy the ut onditions. We show that thevirtual workload onditions are also suÆient to ensure global stability by showing that the arrivalrates and servie times satisfy the ut onditions if they satisfy the virtual workload onditions.Theorem 6.1. A two-station uid network satisfying the nominal workload onditions (1.13) isglobally stable if for eah vetor e = (ei)i2I of exursions and eah separating set S, we have�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) < 1:(6.1)Proof. Eah ut ondition (5.19) is de�ned by a pair of non-trivial separating sets: an A-stritlyseparating set S0 and a B-stritly separating set S. We show that the ut ondition indued by thepair (S0; S) is implied by a pair of virtual workload onditions.For eah type i 2 I, let ei be the largest index suh that:a. Every earlier exursion served at Station B is in S0 (and hene no earlier exursion served atStation A is in S0),b. Every earlier exursion served at Station A is in S (and hene no earlier exursion served atStation B is in S).Note that [i; ei℄ 62 S. To see this observe that if [i; ei℄ 2 S, then it must be in EiA and sine everyearlier exursion served at Station A is in S and every earlier exursion served at Station B is inS0, either S is trivial or ei + 1 satis�es (a) and (b). A similar argument shows that [i; ei℄ 62 S0.The vetor e = (ei)i2I of exursions and the separating set S0 indue the virtual workloadondition: �m(VA(S0) n F�A (e))1� �m(F<A (e)) + �m(VB(S0) n F�B (e))1� �m(F<B (e)) < 1:(6.2)Similarly, the vetor e and the separating set S indue the virtual workload ondition:�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) < 1:(6.3)We show that (6.2) and (6.3) imply the ut ondition for the pair (S0; S).From (6.2) we have that �m(VA(S0) n F�A (e))1� �m(F<B (e))� �m(VB(S0) n F�B (e)) < 1� �m(F<A (e))1� �m(F<B (e))24



and from (6.3) we have that1� �m(F<A (e))� �m(VA(S) n F�A (e))�m(VB(S) n F�B (e)) > 1� �m(F<A (e))1� �m(F<B (e)) :Thus, 1� �m(F<A (e))� �m(VA(S) n F�A (e))�m(VB(S) n F�B (e)) > �m(VA(S0) n F�A (e))1� �m(F<B (e))� �m(VB(S0) n F�B (e)) :(6.4)Now, sine [i; ei℄ 62 S for eah i 2 I,�m(VA(S) n F�A (e)) + �m(F<A (e)) � �m(VA(S)):Further, sine ei satis�es (b), �m(VB(S) n F�B (e)) = �m(VB(S)):Likewise, sine [i; ei℄ 62 S0 for eah i 2 I,�m(VB(S0) n F�B (e)) + �m(F<B (e)) � �m(VB(S0)):And, sine ei satis�es (a), �m(VA(S0) n F�A (e)) = �m(VA(S0)):Thus, (6.4) implies that 1� �m(VA(S))�m(VB(S)) > �m(VA(S0))1� �m(VB(S0)) ;whih is exatly the ut ondition for the pair S0 and S.7 NeessityIn this setion, we show that the virtual workload onditions (2.2) are neessary to ensure theglobal stability of a two-station uid network.We �rst generalize to virtual stations the argument used to show the neessity of the nominalworkload onditions to ensure global stability.Lemma 7.1. Let C be a set of lasses suh that�m(C) � 1:Eah non-idling uid solution (Q(�); T (�)) satisfyingX(i;k)2C _T (t) � 1(7.1)for eah regular point t is unstable. 25



Proof. Consider a non-idling uid solution (Q(�); T (�)) satisfying (1.5){(1.10) and (7.1). De�neW (Q(t)) = X(i;k)2CmikZik(t) = X(i;k)2Cmik kX̀=1Qì(t)(7.2)to be the total workload for the lasses of C. SineZik(t) = Zik(0) + �it� T ik(t)=mik;W (Q(t)) = W (Q(0)) + X(i;k)2C �imikt� X(i;k)2C T ik(t)� W (Q(0)) + (�m(C)� 1) t:Hene the workload for the lasses of C grows linearly with time and the uid solution diverges.The lasses of any set C satisfying (7.1) an be viewed as being served by a single \virtual"server, whih alloates its e�orts among them. We show that under the appropriate stati bu�erpriority poliy, a virtual station as de�ned in De�nition 2.4 satis�es (7.1), hene the moniker \virtualstation".We next show how expediting the �rst few lasses magni�es the inuene of virtual stations inthe remaining network. This onept was originally introdued under the rubri of push startingin Dai and Vande Vate (1996).Let e = (ei)i2I be a vetor of exursions, one for eah type. The vetor e partitions the lassesof the network into the lasses of F<(e) and the remainder of the lasses, whih we denote by R(e).Let ~mik = mik=�1� �m(F<A (e))� for (i; k) 2 RA(e);(7.3) ~mik = mik=�1� �m(F<B (e))� for (i; k) 2 RB(e):(7.4)Consider the indued uid model on the lasses of R(e):Qik(t) = Qik(0) + ~�ik�1T ik�1(t)� ~�ikT ik(t) � 0; t � 0; (i; k) 2 R(e);(7.5) T ik(0) = 0 and T ik(�) is nondereasing; (i; k) 2 R(e);(7.6) t� X(i;k)2RA(e) T ik(t) is nondereasing;(7.7) t� X(i;k)2RB(e) T ik(t) is nondereasing;(7.8) X(i;k)2RA(e) _T ik(t) = 1 whenever X(i;k)2RA(e)Qik(t) > 0 and t is a regular point;(7.9) X(i;k)2RB(e) _T ik(t) = 1 whenever X(i;k)2RB(e)Qik(t) > 0 and t is a regular point;(7.10)where, ~�ik = 1= ~mik for (i; k) 2 R(e). Note that for eah type i 2 I, `[i; ei℄ is the index of the �rstlass of type i in R(e). Thus, for eah type i 2 I, we let ~�ì[i;ei�1℄ = �i and T ì[i;ei�1℄(t) = t to modelthe arrivals to the indued uid network. 26



Lemma 7.2. If the uid model (7.5){(7.10) is unstable, then the uid model (1.5){(1.10) is un-stable.We leave the proof of this lemma to the appendix.Proof of Theorem 2.1. In light of Lemma 7.2, it is enough to show that if the virtual station V (S)orresponding to some stritly separating set S satis�es�m(V (S)) � 1;(7.11)then there is an unstable uid solution. Beause V (S) is a virtual station in the orrespondingqueueing network, there is a stati bu�er priority disipline under whih no two lasses in V (S) anbe served simultaneously; see Dai and Vande Vate (1996). Therefore, any uid limit (Q(�); T (�))as de�ned in Dai (1996) is a uid solution that satis�es (7.1). By Lemma 7.1, the uid network isnot globally stable. When (2.3) is satis�ed or (7.11) is stritly satis�ed, the same argument showsthat the WIP goes to in�nity.8 Unstable CylesAlthough the preeding proof of Theorem 2.1 is suint, it involves a rather iruitous argumentvia queueing networks and uid limits. We provide a more diret, but somewhat longer argumentestablishing the neessity of the virtual workload onditions to ensure stability of a two-station uidnetwork. When the arrival rates and servie times satisfy the nominal workload onditions, but donot satisfy the virtual workload onditions, we provide an expliit onstrution of a non-idling uidsolution (Q(�); T (�)) that is unstable. This argument is not only more diret, but also illustrateshow the work-in-proess in an unstable system swings from station to station as it grows to in�nity.Iterations like those presented here are indispensable when studying the stability of uid networkswith more than two stations. See, for example, Dai, Hasenbein and Vande Vate (1998).Suppose the arrival rates and servie times satisfy the nominal workload onditions, but do notsatisfy the virtual workload onditions. We hoose a stritly separating set S and a push start setF<(e) so that among all suh pairs,�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e))is maximum. Thus, we assume that�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) � 1(8.1)and for eah stritly separating set S0 and push start set F<(e0),�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) � �m(VA(S0) n F�A (e0))1� �m(F<A (e0)) + �m(VB(S0) n F�B (e0))1� �m(F<B (e0)) :(8.2)Note that sine ei � 1 for eah type i, the set F�(e) will inlude all the lasses of every �rstexursion. Thus we may, without loss of generality, restrit attention to stritly separating sets Sas we have above. 27



In order to onstrut an unstable uid solution, we must onsider in greater detail the stru-ture of the stritly separating set S. The notation required to desribe this dissetion of stritlyseparating sets in full generality is somewhat involved, but the ideas are relatively straightforward.We �rst partition S into monotype separating sets or separating sets onsisting of exursions for asingle type of uid. In partiular, we let Si = S \Ei, be the exursions of S for uid type i.We further partition the union of eah monotype separating set and its neighbors into intervalsor sets of onseutive exursions. We use [i; s; t) to denote the interval f[i; e℄ 2 Ei : s � e < tg and(i; s; t) to denote the interval f[i; e℄ 2 Ei : s < e < tg.A maximal interval with the property that all its exursions at one station are in Si and,onsequently, none of its exursions at the other station are in Si is alled a setion of Si. We referto a setion X of Si with XA � Si and X \ SiB = ; as an A-setion of Si. Similarly, we refer to asetion Y of Si with YB � Si and Y \ SiA = ; as a B-setion of Si. A typial A-setion is of theform [i; s; t) with s 2 EiB. The ending exursion t is either in EiA or t = ni + 1. Similarly a typialB-setion is of the form [i; s; t) with s 2 EiA, and t 2 EiB or t = ni + 1. In either ase, the endexursions s and t are not in the separating set S and s� 1 62 S.For example, onsider the stritly separating setS = f[1; 2℄; [1; 7℄; [2; 3℄; [2; 5℄; [2; 8℄g(8.3)in Figure 3. Following the de�nition of virtual station in De�nition 2.4,V (S) = f(1; 2); (1; 3); (1; 6); (1; 8); (1; 10); (1; 12); (1; 13);(2; 2); (2; 4); (2; 5); (2; 8); (2; 9); (2; 12); (2; 14)g:The intervals [1; 1; 4) = f[1; 1℄; [1; 2℄; [1; 3℄g and [2; 2; 7) = f[2; 2℄; [2; 3℄; [2; 4℄; [2; 5℄; [2; 6℄g of exur-sions are the A-setions of this separating set. The B-setions are [1; 6; 9) = f[1; 6℄; [1; 7℄; [1; 8℄g and[2; 7; 9) = f[2; 7℄; [2; 8℄g.The setions of Si partition Si [�(Si) into intervals. We partition the remaining exursions ofEi into trivial setions. In partiular, eah exursion of Ei n �Si [ �(Si)� forms a trivial setion ofSi. Eah exursion [i; e℄ 2 EiA n �Si [ �(Si)� forms a trivial B-setion of Si (beause f[i; e℄g\EiB =; � Si and f[i; e℄g \ SiA = ;). Likewise, eah exursion [i; e℄ 2 EiB n �Si [ �(Si)� forms a trivialA-setion of Si. For example, [1; 5; 6) = f[1; 5℄g is a trivial A-setion and [1; 4; 5) = f[1; 4℄g and[2; 1; 2) = f[2; 1℄g are the trivial B-setions of the separating set (8.3) in Figure 3.When we inlude the trivial setions, the setions of Si partition the exursions of Ei intointervals and, if we order these intervals in the natural way, they alternate between A-setions andB-setions.Our onstrution relies on oordinating the ativities of the servers aross lasses related to,but o�set from, the lasses of eah setion. In partiular, we assoiate with eah setion [i; s; t) theolletion of lasses C([i; s; t)) = f`[i; s℄g [e2(i;s;t) E[i; e℄ [ f [i; t℄alled a blok. Note that the blok C([i; s; t)) di�ers from the lasses of the setion [i; s; t) in thatwe omit the �rst lasses of the �rst exursion in [i; s; t) and we add the �rst lasses of the �rstexursion of the next setion. In the example of Figure 3, C([1; 1; 4)) = f(i; k) : 1 � k � 6g andC([2; 2; 7)) = f(2; k) : 3 � k � 12g.The following lemma should help motivate our de�nition of setions and bloks. Its proof ispostponed to the appendix. 28



Lemma 8.1. Let S be a stritly separating set and F<(e) a push-start set satisfying (8.1) and(8.2). Then for eah A-setion X = [i; s; t) of Si, where s 2 EiB and t 2 EiA,�m(CA(X) n F<A (e))1� �m(F<A (e)) � �m(CB(X) n F<B (e))1� �m(F<B (e)) :(8.4)Likewise, for eah B-setion Y = [i; s; t) of Si, where s 2 EiA and t 2 EiB,�m(CB(Y ) n F<B (e))1� �m(F<B (e)) � �m(CA(Y ) n F<A (e))1� �m(F<A (e)) :(8.5)The transformations (7.3) { (7.4) allow us to assume, without loss of generality, that F<(e) isempty. Impliit in this is the assumption that for eah type i 2 I, ei = 1 and the �rst exursiononsists only of the the lass (i; 1).Let IA be the set of types with �rst exursion [i; 1℄ 2 EiA and IB the types with �rst exursion[i; 1℄ 2 EiB . For i 2 IA, the setions of Si alternate between B-setions and A-setions beginningwith a B-setion. We denote these setions as:Y i1 ;Xi2; Y i3 ;Xi4; : : : ; Y i2bi�1;Xi2bi ;where bi is the total number of B-setions and Xi2bi is possibly empty. Similarly, for i 2 IB , thesetions of Si alternate between A-setions and B-setions beginning with an A-setion. We denotethese setions as: Xi1; Y i2 ;Xi3; Y i4 ; : : : ;Xi2bi�1; Y i2bi ;with Y i2bi possibly empty. The setions Y i1 and Xi1 are alled input setions.In the example of Figure 3, type 1 is in IB and type 2 is in IA. The setions for type 1 are:X11 = [1; 1; 4); Y 12 = [1; 4; 5);X13 = [1; 5; 6); Y 14 = [1; 6; 9):The setions for type 2 are: Y 21 = [2; 1; 2);X22 = [2; 2; 7); Y 23 = [2; 7; 9):Therefore, C(X11 ) = f(1; k) : k = 1; : : : ; 6g;C(Y 12 ) = f(1; 7); (1; 8)g;C(X13 ) = f(1; 9); (1; 10)g;C(Y 14 ) = f(1; 11); (1; 12); (1; 13); (1; 14)g;C(Y 21 ) = f(2; 1); (2; 2)g;C(X22 ) = f(2; k) : k = 3; : : : ; 12g;C(Y 23 ) = f(2; 13); (2; 14)g:The following lemma is a diret onsequene of our de�nitions.Lemma 8.2. The virtual station V (S) has the following deomposition.V (S) = [i2IA [bir=1 �CB(Y i2r�1) [ CA(Xi2r)� [i2IB [bir=1�CA(Xi2r�1) [ CB(Y i2r)�:29



Let us restate part of Theorem 2.1.Theorem 8.1. Assume that there is a stritly separating set S and push start set F<(e) suhthat (8.1) and (8.2) hold. One an onstrut an unstable non-idling uid solution (Q(�); T (�)).Furthermore, the unstable uid solution satis�es the stati bu�er priority onditions (1.11){(1.12).Proof. In light of Lemma 7.2, we may assume that the push start set F<(e) is empty. This wouldbe the ase, for example, if ei = 1 and f [i; 1℄ = ; for eah type i 2 I, whih is true of the induednetwork on R(e) obtained from the onstrution used in the proof of Lemma 7.2. Thus, we assumethat the arrival rates and servie times satisfy the nominal workload onditions, but violate thevirtual workload ondition for a stritly separating set S, i.e.,�m(V (S)) � 1:Under this transformation, (8.4) redues to�m(CA(X)) � �m(CB(X))(8.6)for eah A-setion X, and (8.5) redues to�m(CB(Y )) � �m(CA(Y ))(8.7)for eah B-setion Y .For the example in Figure 3, we have�1(m12 +m13 +m16 +m18 +m110 +m112 +m113) + �2(m22 +m24 +m25 +m28 +m29 +m212 +m214) � 1;and m12 +m13 +m16 � m11 +m14 +m15;m18 � m17;m19 � m110;m112 +m113 � m111 +m114;m22 � m21;m24 +m25 +m28 +m29 +m212 � m23 +m26 +m27 +m210 +m211;m214 � m213:We now onstrut a non-idling uid solution (Q(�); T (�)) suh thatX(i;k)2V (S) _T ik(t) � 1for eah regular point t. Let �ik = _T ik(t):We intentionally drop the variable t from �ik sine, in our onstrution, T ik(�) is pieewise linear andhene �ik is pieewise onstant. If the uid solution (Q(�); T (�)) is linear in an interval [a; b℄, it isenough to speify Q(a), T (a) and (�ik) to ompletely haraterize the uid solution throughout theinterval. In fat, for t 2 [a; b℄,T ik(t) = T ik(a) + �ik(t� a);(8.8) Qik(t) = Qik(a) + �ik�1�ik�1(t� a)� �ik�ik(t� a):(8.9) 30



Note that �ik is the fration of its e�ort the server alloates to lass (i; k) and �ik�ik is the rate atwhih uid leaves the bu�er and hene the rate at whih it enters the next bu�er. Throughout ouronstrution we show that not only mustXi2I;k2Ai _T ik(t) = Xi2I;k2Ai �ik � 1and Xi2I;k2Bi _T ik(t) = Xi2I;k2Bi �ik � 1at eah time t, but also the two stations annot serve lasses in V (S) simultaneously. Thus, weshow that whenever �(VA(S)) > 0, �(VB(S)) = 0 and whenever �(VB(S)) > 0, �(VA(S)) = 0 fromwhih it immediately follows that X(i;k)2V (S) _T ik(t) � 1for eah regular point t. Again, for a set X of lasses, we let �(X) =P(i;k)2X �ik.We begin with uir units in the �rst bu�er of C(Xir) for eah A-setion Xir so that all the WIP isinitially at Station B. So, in the example of Figure 3, we begin with u11 units in bu�er (1; 1) (the�rst lass of the blok C(X11 )), u13 units in bu�er (1; 9) (the �rst lass of the blok C(X13 )) and u22units in bu�er (2; 3) (the �rst lass of the blok C(X22 )).Step 1. One at a time, for eah non-input A-setion Xir = [i; s; t) drain the ontents of `[i; s℄, the�rst bu�er of C(Xir), into the �rst bu�er of CA(Xir) and the �rst bu�er `[i; t℄ of C(Y ir+1) (or out ofthe system if Xir is the last setion for type i) both at Station A. This proess ontinues until the�rst bu�er of C(Xir) is empty. Figure 8 illustrates this step for the A-setions X13 and X22 in theexample of Figure 3.At the end of this step all the bu�ers at Station B in the bloks of non-input setions are empty.To see that this is onsistent with a non-idling dispath poliy, observe that the system de�ningthe ows is:�(CA(Xir)) = 1 Sine work is aumulating at Station A,�(CB(Xir)) = 1 Sine there is work aumulated at Station B,�ik�ik � �ik�1�ik�1 = 0 For eah lass (i; k) in C(Xir) exept the �rst two. The �rstlass's bu�er is draining, so the rate of ow out is faster thanthe rate of ow in. The seond lass's bu�er is aumulatinguid, so the rate of ow in is greater than the rate of ow out.This system has the unique solution: �ik = mikm(CA(Xir))for eah lass in C(Xir) exept the �rst one. This lass, `[s; i℄, has�ì[s;i℄ = mì[s;i℄m(CA(Xir)) + m(CA(Xir))�m(CB(Xir))m(CA(Xir))31
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Figure 8: This �gure depits the ows when Step 1 is applied to X13 , shown in part (a), and to X22 ,shown in part (b), in the example of Figure 3. Only the relevant lasses are shown. Arrows depitthe ows and an open box in front of a lass denotes a bu�er that may ontain a positive quantityof uid during the step. Plus signs inside a bu�er indiate that it is aumulating uid while minussigns indiate that it is draining. All other indiated bu�ers remain empty throughout the step.whih, by (8.6), is at least as great as mì[s;i℄m(CA(Xir)) :Thus, �ì[i;s℄�ì[s;i℄ � 1m(CA(Xir)) = �ì[s;i℄+1�ì[s;i℄+1and so uid is arriving at the seond bu�er of C(Xir) at least as fast as the server at Station Aproesses it. Thus, both stations are busy until the �rst bu�er in C(Xir) is emptied. The ontentsof the bu�er have moved to the �rst bu�er of the next exursion and the �rst bu�er of C(Y ir+1) |both at Station A.Both servers are fully busy during this entire step and so any uids arriving to the systemduring this period simply aumulate at their �rst bu�ers.Step 2. Next, for eah non-input A-setion Xir = [i; s; t) one at a time in any order, drain the�rst bu�er of CA(Xir) into the �rst bu�er of C(Y ir+1) (or out of the system if this is a last setion).When the �rst bu�er of CA(Xir) is emptied, we have aumulated in the �rst bu�er of C(Y ir+1)(if there is one) all the ow originally in the �rst bu�er of C(Xir). Figure 9 illustrates this step forthe A-setions X13 and X22 in the example of Figure 3.The system de�ning the ows for eah of these A-setions is:
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Pj2IB;j�i �(CA(Xj1)) = 1 Sine work is aumulating at Station A,Pj2IB;j�i �(CB(Xj1)) = 1 Sine there is work aumulated at Station B,�j1�j1 = �j For eah type j 2 IB with j < i,�jk�jk � �jk�1�jk�1 = 0 For eah lass (j; k) in C(Xj1) where j 2 IB, j < i andk > 1,�ik�ik � �ik�1�ik�1 = 0 For eah lass (i; k) in C(Xi1) exept the �rst two. The �rstlass's bu�er is draining, so the rate of ow out is faster thanthe rate of ow in. The seond lass's bu�er is aumulatinguid, so the rate of ow in is greater than the rate of owout.This system has the unique solution:�jk = �jkmjk for eah lass (j; k) 2 C(Xj1) where j 2 IB and j < i�ik = mik �1�Pj2IB;j<i �m(CA(Xj1))�m(CA(Xi1)) for eah lass (i; k) 2 C(Xi1) exept lass (i; 1)�i1 = mi1 �1�Pj2IB;j<i �m(CA(Xj1))�m(CA(Xi1)) + Xj2IB;j<i��m(CA(Xj1))� �m(CB(Xj1))� ;whih, by (8.6), is at least as great asmi1 �1�Pj2IB;j<i �m(CA(Xj1))�m(CA(Xi1)) :Thus, �i1�i1 � 1�Pj2IB;j<i �m(CA(Xj1))m(CA(Xi1)) = �i2�i2and so uid is arriving at lass (i; 2) at least as fast as the server at Station A proesses it. Thus,both stations are busy until bu�er (i; 1) is emptied. The ontents of the bu�er have moved to bu�er(i; 2) and the �rst bu�er of C(Y i2 ) | both at Station A.Both servers are fully busy during this entire step and so any uids arriving to Station A duringthis period simply aumulate at their �rst bu�ers.Step 4. One at a time, for eah type i 2 IB in order, empty bu�er (i; 2) while keeping emptyboth bu�er (i; 1) and the bu�ers of C(Xj1) for all earlier types j 2 IB , with j < i. Figure 10 (b)illustrates this step for type 1 in the example of Figure 3.The system de�ning the ows is:
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Pj2IB;j�i �(CA(Xj1)) = 1 Sine work is aumulating at Station A,�j1�j1 = �j For eah type j 2 IB with j � i,�jk�jk � �jk�1�jk�1 = 0 For eah lass (j; k) in C(Xj1) where j 2 IB , j < i andk > 1,�ik�ik � �ik�1�ik�1 = 0 For eah lass (i; k) in C(Xi1) exept the �rst two. The �rstlass's bu�er is empty and, to keep it that way, its outputrate must math the rate of exogenous arrivals. The seondlass's bu�er is draining, so the rate of ow out is greaterthan the rate of ow in.This system has the unique solution:�jk = �jkmjk for eah lass (j; k) 2 C(Xj1) where j 2 IB and j < i�ik = mik �1�Pj2IB;j<i �m(CA(Xj1))�m(CA(Xi1)) for eah lass (i; k) 2 C(Xi1) exept lass (i; 1)�i1 = �imi1:Note that sine the arrival rates and servie times satisfy the nominal workload onditions, �is between 0 and 1. Further, as in Step 2, the server at Station A is fully busy during this entirestep, but the server at Station B may not be. To see this observe that�(EB) = Xj2IB;j<i�m(CB(Xj1)) + �m(CB(Xi1))�mi1�)�1�Pj2IB;j<i �m(CA(Xj1))�m(CA(Xi1)) + �mi1:By (8.6), m(CB(Xi1))m(CA(Xii )) � 1and sine the arrival rates and servie times satisfy the nominal workload onditions,1�Pj2IB;j<i �m(CB(Xj1))m(CA(Xi1)) > �i:Thus, �(EB) < 1:Whenever the server at Station B has remaining apaity, he again drains the ontents ofsubsequent bu�ers (j; 1) with j 2 IB and j > i. Sine the server at Station A is busy, however,these uids aumulate in their seond bu�ers.Continue in this way until all bu�ers in C(Xi1), i 2 IB , are empty. Let �2 be the additional timeneeded to omplete Steps 3 and 4, then�2 = (�1 + �2) Xj2IB �m(CA(Xj1)) + Xj2IB uj1m(CA(Xj1))or �2 = �1Pj2IB �m(CA(Xj1)) +Pj2IB uj1m(CA(Xj1))1�Pj2IB �m(CA(Xj1)) :36



At the end of this step, the bu�ers of eah blok C(Xir) are empty and only the �rst bu�er of eahblok C(Y ir ) has any aumulated uid. Thus, all the WIP is at Station A.Let � = �1 + �2 = Pi2IAPbir=1 ui2rm(CA(Xi2r)) +Pi2IBPbir=1 ui2r�1m(CA(Xi2r�1))1�Pj2IB �m(CA(Xj1)) :(8.11)For eah i 2 IA, the �rst bu�er in the blok C(Y i1 ), (i; 1), has aumulated �i� uid, i.e., Qi1(�) =�i� . For eah i 2 IB , the �rst bu�er in the blok C(Y i2 ) has aumulated �i� + ui1 uid. For eahremaining B-setion, the �rst bu�er of C(Y ir ) has aumulated the uir�1 uids that were initiallyin the �rst bu�er of C(Xir�1).It is easy to hek that the uid solution (Q(�); T (�)) onstruted in (8.8){(8.9) satis�es (1.5){(1.10) for t 2 [0; � ℄. Furthermore, none of the lasses in bloks of B-setions has ever been workedon. That is, �(C(Yr)) = 0 for eah B-setion Yr. Therefore, (Q(�); T (�)) satis�es (7.1) for t in [0; � ℄and, by Lemma 7.1, there is more work at the virtual station V (S) at time � than at time 0.We next repeat Steps 1{4 interhanging the roles of Station A and Station B. The uid networkompletes the four steps at time t1 in a state very similar to its initial state: there are ~uir units inthe �rst bu�er of C(Xir) for eah A-setion Xir and all the other bu�ers are empty. Further, theresulting uid solution (Q(�); T (�)) satis�es (1.5){(1.10) and (7.1) for all times t 2 [0; t1℄To omplete the argument, we would like to onlude that repeating these eight steps over andover produes a uid solution (Q(�); T (�)) that satis�es (1.5){(1.10) and (7.1) for all times t � 0.We ould then invoke Lemma 7.1 to argue that the workload for the lasses of V (S) grows linearlywith time and the uid solution diverges. To reah this onlusion, however, we must �rst showthatP1n=1 tn !1, where tn is the time required to omplete the nth iteration of these eight steps.Otherwise, P1n=1 tn ! t� for some �nite t� and repeating these eight steps only produes a uidsolution for times t 2 [0; t�℄.To this end, let u be an arbitrary non-negative vetor of initial uid levels for the �rst bu�ers inthe bloks of the A-setions Xir. From Equation (8.11) it is lear that the time required to ompletethe eight steps is a positive linear ombination of the initial bu�er levels u, i.e.,t1(u) =X iruir;where eah oeÆient ir > 0. Similarly, the initial total workload at the virtual station V (S) (asde�ned in (7.2) with C = V (S)) is a positive linear ombination of the initial bu�er levels u, i.e.,W (u) =X airuir;where eah oeÆient air > 0.Thus, the shortest time t�1 to omplete the eight steps given an initial workload W (u) � 1 anbe found by solving the simple linear program:t�1 = minX iruirs.t. X airuir � 1uir � 0Sine all the data are positive, t�1 = minfir=airg > 0. Thus, if we begin with initial uid levelsu with W (u) � 1, we know from Lemma 7.1 that the workload at the virtual station V (S) will notderease and so eah iteration will require at least time t�1. Hene, P1n=1 tn ! 1 and repeatingthe eight steps over and over produes a uid solution with bu�er levels that yle to in�nity.37



9 Conluding RemarksThis paper not only provides an expliit haraterization of the global stability region of two-stationmultilass uid networks, it also o�ers intuitive explanations of how the onstraints de�ning theglobal stability region arise. Namely, the two phenomena of virtual stations and push starts explainall the global stability onditions of two-station uid networks.Under ertain assumptions on the interarrival and servie time distributions as spei�ed inDai (1995), a queueing network is stable or positive Harris reurrent if the orresponding uidnetwork is stable. Thus, the workload onditions are suÆient to ensure the global stability of two-station multilass queueing networks with deterministi routing. In Dai and Vande Vate (1996),we show that under some weaker distributional assumptions, the virtual station onditions are alsoneessary to ensure the global stability of the queueing network. The push start onditions, on theother hand, are not generally neessary for global stability of the queueing network.Weak stability, also alled rate stability, is a less restritive form of stability in queueing networks(see for example El-Taha and Stidham 1994). Chen(1995) and Dai and Vande Vate (1996) show thatweak stability of the uid model implies weak stability of the queueing network. A uid network issaid to be weakly stable under non-idling dispath poliies, or simply globally weakly stable, if anyuid solution (Q(�); T (�)) with initial WIP zero will never have any WIP. The following theorem isa weak stability version of Theorem 2.1. Its proof is parallel to the development in this paper.Theorem 9.1. A two-station uid network is globally weakly stable if and only if�A � 1; �B � 1;and for eah vetor e = (ei)i2I of exursions and eah stritly separating set S, we have�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) � 1:(9.1)This paper haraterizes the global stability region for uid models of two-station queueingnetworks with deterministi routing. Hasenbein (1998) extended these results to the uid modelsof ertain two-station queueing networks with probabilisti routing.Theorem 2.1 demonstrates that the global stability region of a two-station uid network ismonotone, i.e., reduing servie times or arrival rates maintains global stability.Corollary 9.1. The global stability region of a two-station uid network is monotone.This is not the ase for uid networks with more than two stations. Humes (1994) and Dai,Hasenbein and Vande Vate (1998) showed that the global stability region is not monotone. Du-mas (1997) showed that the stability region of a priority network is not monotone. These examplesindiate a daunting hallenge inherent in managing omplex re-entrant manufaturing systems likewafer fabriation plants: inreasing the proessing rate for a lass an redue the apaity of thesystem!The fat that the global stability region of a uid network with more than two stations anbe non-monotone suggests that determining the global stability region for these networks will beonsiderably more diÆult. For example, the problem of determining the oeÆients of a pieewiselinear Lyapunov funtion for a uid network with more than two stations does not generally redueto a linear program. Nevertheless, the example studied in Dai, Hasenbein and Vande Vate (1998) isone of an important family of n-station uid networks for whih this problem is linear and, in fat,38



does redue to a parametri network ow problem. Thus, the pieewise linear Lyapunov funtion ofthis paper does lead to suÆient onditions for global stability for this family of n-station networks.The four steps of Setion 8 prove that the stati bu�er priority poliies are the \worst" dispathpoliies for two-station uid networks.Corollary 9.2. A two-station uid network is globally stable if and only if it is stable under everystati bu�er priority poliy.This is not the ase for n-station uid networks. Dai, Hasenbein and Vande Vate (1998)demonstrated arrival rates and servie times for whih their three-station uid network is notglobally stable even though it is stable under all stati bu�er priority disiplines.AknowledgementsThis researh was initiated when J. G. Dai was visiting the Institute of Mathematis and ItsAppliations at the University of Minnesota in the winter quarter of 1994. Partial �nanial sup-port from the Institute is aknowledged. This researh is supported in part by National SieneFoundation grants DDM-9215233, DMI-94-57336, US-Israel Binational Siene Foundation grant94-00196, Airfore OÆe of Sienti� Researh grant F49620-95-1-0121 and a grant from HarrisSemiondutor.A AppendixProof of Lemma 7.2. Assume that the uid model (7.5){(7.10) is unstable. Then there is a uidsolution ( ~Qik(�), ~T ik(�))(i;k)2R(e) satisfying (7.5){(7.10) that is unstable. That is, there is a sequeneftng with tn !1 suh that ~Q(tn) 6= 0 for eah n. For (i; k) 2 RA(e), let Qik(t) = ~Qik(t) andT ik(t) = �1� �m(F<A (e))� ~T ik(t):For (i; k) 2 RB(e), let Qik(t) = ~Qik(t) andT ik(t) = �1� �m(F<B (e))� ~T ik(t):For (i; k) 2 F<(e), let Qik(t) = 0 and T ik(t) = �imikt. We show that(Q(�); T (�)) = (Qik(�); T ik(�))i2I;k=1;::: ;iis a uid solution to (1.5){(1.10).First, it is easy to hek that (1.5) and (1.6) hold for (Q(�); T (�)). Seond, notie thatt� Xi2I;k2Ai T ik(t) = t� X(i;k)2F<A (e) �imikt� X(i;k)2RA(e) T ik(t)= �1� �m(F<A (e))� t� �1� �m(F<A (e))� X(i;k)2RA(e) ~T ik(t)= �1� �m(F<A (e))��t� X(i;k)2RA(e) ~T ik(t)�;
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whih is nondereasing and hene (1.7) holds. Similarly, we see thatt� Xi2I;k2Bi T ik(t)is non-dereasing.Assume that t is a regular point of (Q(�); T (�)). WhenXi2I;k2AiQik(t) > 0;we have X(i;k)2RA(e) ~Qik(t) > 0:Hene X(i;k)2RA(e) _~T ik(t) = 1;or X(i;k)2RA(e) _T ik(t) = 1� X(i;k)2F<A (e) �imik:The last equation is equivalent to Xi2I;k2Ai _T ik(t) = 1:Hene we have proved (1.9). Similarly, we an show that (1.8) and (1.10) hold. Therefore,(Q(�); T (�)) is a uid solution to (1.5){(1.10). It is obvious that (Q(�); T (�)) is unstable.Proof of Lemma 8.1. Consider an A-setion X = [i; s; t) of Si with s > ei. Let S �X = (S nX) [(X n S) be the symmetri di�erene of S and X. Beause s� 1 62 S and t 62 S, S �X is a stritlyseparating set. Thus, by (8.2), �m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) ! � �m(VA(S �X) n F�A (e))1� �m(F<A (e)) + �m(VB(S �X) n F�B (e))1� �m(F<B (e)) ! =�m(CA(X))1� �m(F<A (e)) � �m(CB(X))1� �m(F<B (e)) � 0:From whih (8.4) follows immediately. The proof for B-setions Y = [i; s; t) of Si, where s > ei issimilar.The argument for setions [i; s; t), where s � ei, is more involved. Rather than hange theseparating set S, we hange the push start set F<(e). Consider an A-setion X = [i; s; t) of Si,where s � ei, and let e0 = (e0j)j2I , where e0i = t and for eah j 6= i, e0j = ej .By (8.2),�m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) � �m(VA(S) n F�A (e0))1� �m(F<A (e0)) + �m(VB(S) n F�B (e0))1� �m(F<B (e0))40



and so,�m(VA(S) n F�A (e))1� �m(F<A (e)) � �m(VA(S) n F�A (e0))1� �m(F<A (e0)) � �m(VB(S) n F�B (e0))1� �m(F<B (e0)) � �m(VB(S) n F�B (e))1� �m(F<B (e)) :(A.1)Now, sine �m(VA(S) n F�A (e0)) = �m(VA(S) n F�A (e))� �m(CA(X) n F�A (e))and �m(F<A (e0)) = �m(F<A (e)) + �m(CA(X) n F<A (e));�m(VA(S) n F�A (e))1� �m(F<A (e)) � �m(VA(S) n F�A (e0))1� �m(F<A (e0))� �m(CA(X) n F�A (e))�1� �m(F<A (e))� �m(VA(S) n F�A (e))��1� �m(F<A (e0))� �1� �m(F<A (e))� :Similarly, sine �m(VB(S) n F�B (e0)) = �m(VB(S) n F�B (e))and �m(F<B (e0)) = �m(F<B (e)) + �m(CB(X) n F<B (e));�m(VB(S) n F�B (e0))1� �m(F<B (e0)) � �m(VB(S) n F�B (e))1� �m(F<B (e))= �m(CB(X) n F<B (e))�m(VB(S) n F�B (e))�1� �m(F<B (e0))� �1� �m(F<B (e))� :Thus, by (A.1) �m(CA(X) n F�A (e))�1� �m(F<A (e))� �m(VA(S) n F�A (e))��1� �m(F<A (e0))� �1� �m(F<A (e))�(A.2) � �m(CB(X) n F<B (e))�m(VB(S) n F�B (e))�1� �m(F<B (e0))� �1� �m(F<B (e))� :Sine, �m(VA(S) n F�A (e))1� �m(F<A (e)) + �m(VB(S) n F�B (e))1� �m(F<B (e)) � 1;1� �m(F<A (e))� �m(VA(S) n F�A (e))1� �m(F<A (e)) � �m(VB(S) n F�B (e))1� �m(F<B (e))41
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