
A Semantics for Static Type Inferencein a Nondeterministic LanguageMart��n AbadiSystems Research CenterDigital Equipment CorporationNovember 6, 1992AbstractPlotkin used the models of reduction in order to obtain a semanticcharacterization of static type inference in the pure �-calculus. Herewe apply these models to the study of a nondeterministic language,obtaining results analogous to Plotkin's.1 IntroductionThe models of reduction are a generalization of the usual syntactic �-modelsfor the pure �-calculus (see [Plo92] and the references therein). If a termM reduces to a term N then its interpretation in a model of reduction is\smaller than" or equal to the interpretation of N (and not necessarily equalas in �-models). Plotkin obtained a series of soundness and completeness re-sults for static type inference with respect to models of reduction. With typeinference in mind, it seems natural thatM and N be interpreted di�erently,since it may be possible to infer a type for N but not for M .The study of nondeterministic languages gives rise to an alternative mo-tivation for considering models of reduction. In nondeterministic languages,the reduction from M to N may involve a sequence of choices. Hence thetwo terms may not behave equivalently in all contexts, and then we mustinterpret them di�erently, with M being \less determined" than N . (Forexample, M may equal N +N 0, where N 0 is a third term and + representsnondeterministic choice.)This note extends the models of reduction to the interpretation of asimple nondeterministic �-calculus. The results obtained are soundness and1

completeness theorems for reduction and for static type inference. For con-creteness, we focus on a calculus with the � rule and with rules for nonde-terministic choice; but there should not be any di�culty in treating the �rule too.The next section reviews the language studied, with evaluation and typ-ing rules. Section 3 describes the models of reduction. The following twosections include the results. As much as possible, we assume familiarity withPlotkin's paper.2 The LanguageThe language is the usual untyped �-calculus extended with the choice oper-ation +, so a term can be: a variable x, an abstraction �x:M , an applicationMN , or a binary sum M + N . Sharma and de' Liguoro studied this lan-guage in their theses [Sha84, dL92], obtaining interesting results about itsoperational and denotational semantics.The basic reduction relation !!�+ is axiomatized by a set of rules thatcontains the expected rules from [Plo92], in particular the � rule:(�x:M)N !!�+ [N=x]MThe novelties are the rules for choice:M +N !!�+ M M +N !!�+ NM !!�+ M 0 N !!�+ N 0M +N !!�+ M 0 +N 0Some of the propositions below concern an extended reduction relation,!!�+c, obtained reproducing the rules of !!�+ with the subscript �+c in-stead of �+, and adding the rule:M !!�+c M +MThis relation turns out to have semantic properties somewhat simpler thanthose of !!�+.The type inference rules are Curry's:� ` x : � (if x : � is in �)�; x : � `M : �� ` �x:M : �! �2

� `M : �! � � ` N : �� `MN : �with one additional rule, introduced by Hennessy and Ashcroft in the studyof a nondeterministic typed �-calculus [HA80]:� `M : � � ` N : �� `M +N : �This rule says that if M and N both have the type � then so does theirsum. With the Curry-Howard isomorphism in mind, we may read this rule:if one can prove the proposition � with either of M and N , then one canprove � by �rst choosing one of them and then using it.A more sophisticated rule is possible, using union types:� `M : � � ` N : �� `M +N : � [�For simplicity, we do not consider union types; they seem to lead to signi�-cant complications.A similar rule appears in Boudol's work [Bou91]:� `M : � � ` N : �� `M jjN : � ^ �Here � and � are logical assertions (rather than types), � ^ � is their con-junction, and jj is a parallel-composition operator. As the rule suggests,parallel composition is rather di�erent from the traditional nondeterminis-tic composition.3 Models of ReductionA model of �-reduction is a triple:P = hP; �; [[]]ithat satis�es certain conditions; in particular P is a partial order.We de�ne the models of �+c-reduction by imposing the additional con-ditions that P be a lower semi-lattice and that:[[M +N]]� = [[M]]� ^ [[N]]� (1)3

where the ^ on the right is the meet operation on P . The models of �+c-reduction resemble de' Liguoro's syntactical models. There are two impor-tant di�erences between them. First, de' Liguoro's de�nition is based onthat of the usual syntactic �-models (rather than on that of the models of�-reduction). Second, it includes a semilinearity condition, that(a+ b) � c = (a � c) + (b � c)Sharma gave an analogous condition in his study of conversion. This condi-tion does not hold in the models constructed in the completeness proofs ofsection 5.The models of �+-reduction have an even looser de�nition than themodels of �+c-reduction. They are quadruples:P = hP; �;^; [[]]iwhere P is just a partial order (not necessarily a semi-lattice), with a mono-tonic, binary operation ^, and with property (1) and the new property:a ^ b � a a ^ b � b (2)for all a; b 2 P . Obviously every model of �+c-reduction with its ^ operationis also a model of �+-reduction.In models of reduction, types are interpreted as upper-closed subsets.Here, in addition, we require that they be closed under ^. For modelsof �+c-reduction, this requirement implies that types are �lters (possiblyempty). The conditions on ! are unchanged.4 ReductionThis section contains soundness and completeness results for the evaluationrules. As could be expected, the models of �+-reduction correspond to therelation !!�+, and the models of �+c-reduction correspond to !!�+c.Proposition 1 (Soundness) IfM!!�+N then [[M]]� � [[N]]� in all modelsof �+-reduction. If M!!�+cN then [[M]]� � [[N]]� in all models of �+c-reduction.Proof The arguments proceed by induction on the proofs of the formalsystems for reduction. All cases are evident, except that of the � rule,4

treated in the original paper, and that of the + rules. Condition (2) and themonotonicity of ^ are semantic paraphrases of the rules for + included in!!�+; with condition (1), these properties su�ce to guarantee the soundnessof!!�+ in models of �+-reduction. The ruleM!!�+cM+M is validated bymodels of �+c-reduction because [[M +M]]� = [[M]]�^[[M]]� by condition (1)and [[M]]� ^ [[M]]� = [[M]]� whenever ^ is the meet operation in a semi-lattice. 2Proposition 2 (Completeness) If [[M]]� � [[N]]� in all models of �+-reduction then M!!�+N . If [[M]]� � [[N]]� in all models of �+c-reductionthen M!!�+cN .Proof The argument consists in constructing a particular model of re-duction, a term model, such that if [[M]]� � [[N]]� then it must be that Mreduces to N . Recall that [M] is the set of terms interreducible with M ,here with !!�+ or !!�+c as reduction relation; and [M] � [N] if M reducesto N .To extend Plotkin's argument to !!�+, we de�ne [M]^ [N] = [M +N],trivially satisfying condition (1). It remains to check:� ^ is well de�ned: IfM and N are interreducible with M 0 and N 0, thenM +N is interreducible with M 0 +N 0.� ^ is monotonic: IfM!!�+M 0 andN!!�+N 0 thenM+N!!�+M 0+N 0.� [M +N] � [M] and [M +N] � [N] follow from M +N!!�+M andM +N!!�+N .To extend Plotkin's argument to !!�+c, we have to check that T =f[M] jM a termg is a lower semi-lattice and that in fact [M+N] = [M]^[N]de�nes its meet operation. Any partial order with a monotone operation ^such that a ^ b � a, a ^ b � b, and c � c ^ c is a lower semi-lattice, withmeet ^. All the conditions but the last one, c � c ^ c, are checked in theargument for !!�+. The last condition is guaranteed by the special clausein the de�nition of !!�+c, since M!!�+cM +M yields [M] � [M]^ [M]. 25 Type InferenceNow we can give analogues of Plotkin's results for type inference. Fromthe point of view of type inference, models of �+-reduction and models of5

�+c-reduction turn out to be identical, so we present our soundness result interms of the larger class and our completeness results in terms of the smallerone. We write j=�+ and j=�+c for the corresponding semantic entailmentrelations.Proposition 3 (Soundness) If � `M : � then �j=�+M : �.Proof As usual the argument goes by induction on the type-assignmentproofs, with a new case for the added rule. This rule is justi�ed usingrequirement (1) and the closure of types under ^: if [[M]]�; [[N]]� 2 � then[[M +N]]� = [[M]]� ^ [[N]]� by requirement (1), and then [[M +N]]� 2 � bythe closure of types under ^. 2Proposition 4 (Completeness) If �j=�+cM : � then � `M : �.We give two proofs for this result. The �rst one requires a SubjectReduction result:Proposition 5 (Subject Reduction) If M!!�+cN and � ` M : � then� ` N : �.Proof The argument is by induction on reduction derivations. The onlynovelties concern the rules for +. For the cases of M + N!!�+cM andM +N!!�+cN , we assume that there is a proof of � `M +N : �; the laststep in the proof must be the typing rule for +, which has as hypotheses� ` M : � and � ` N : �, so these judgements must be provable too. Thecase of M!!�+cM +M is easy: if � ` M : � then � ` M +M : �, by thetyping rule for +. The remaining reduction rule for + is handled like theusual rule for application. 2The �rst proof of Proposition 4 is based on the model of �+c-reductionde�ned in Proposition 2.Proof 1 We construct a particular type interpretation for the model of�+c-reduction given in the proof of Proposition 2. The interpretation X�of the type expression � is the set of classes [M] such that B `M : �, whereB is a certain �xed extension of �, de�ned as in [Plo92]. (This is a goodde�nition by Subject Reduction.)We need to check that these interpretations of types are closed under ^:suppose that [M] 2 X� and [N] 2 X�, then B ` M : � and B ` N : �; thetype inference rule for + then yields B `M+N : �, and hence [M+N] 2 X�.6

The result follows from [M + N] = [M] ^ [N], an equality established inProposition 2. 2The second proof relies on a type-expression-model construction.Proof 2 In a type-expression model, the semantics of a term is de�ned asa set of type expressions. The sets of type expressions form a lattice, with \for ^. Therefore [[M +N]]� can be de�ned as [[M]]�\ [[N]]�, and condition (1)is satis�ed. (Intuitively, this re
ects that the set of types for M +N is theintersection of the sets of types for M and for N .)The type expression � is interpreted as the set X� of sets of types a suchthat � 2 a. The set of types is the set of all X�. It is obvious then that if aand b are both elements of X� then so is a \ b, and hence types are closedunder meets as required.One of Plotkin's lemmas states that [[M]]�̂ = f� j � ` M : �g for allM , with �̂(x) = f� j x : � 2 �g. Now we can show that this lemma canbe extended with a trivial case for +. This case goes: [[M +N]]�̂ equals[[M]]�̂ \ [[N]]�̂ by de�nition, f� j � ` M : �g \ f j � ` N : g by inductionhypothesis, and f� j � `M +N : �g by the type rules.The desired completeness result follows immediately. 2The type-expression model constructed in the second proof is also amodel of �, and so the corresponding type interpretation is both simple andan F-interpretation. The model also satis�es an additional law:[[�x:(M +N)]]� = [[(�x:M) + (�x:N)]]� (3)This condition makes some sense, as the terms �x:(M +N) and (�x:M) +(�x:N) behave identically in every context and are equivalent for type infer-ence too. Thus, we have soundness and completeness results for the modelsof reduction that satisfy (3).Note that the analogous condition for M(N +N 0) and (MN) + (MN 0)is not sensible, since these two terms behave di�erently (at least for somecalling mechanisms; see [Sha84]). And the condition for (M +M 0)N and(MN) + (M 0N) would not work, since although these two terms behaveidentically the latter can be easier to type. For example, if the environment� contains x : (s ! s) ! � and y : (t ! t) ! � for s and t di�erent typevariables and � any type expression, then � ` x(�z:z) + y(�z:z) : � but� 6` (x+y)(�z:z) : �. The type-expression model distinguishes (x+y)(�z:z)and x(�z:z) + y(�z:z). 7

AcknowledgementsGordon Plotkin provided much useful help. In particular he argued in favorof the use of models of �+-reduction and suggested looking at condition (3)and similar ones. Ugo de' Liguoro gave me guidance in understanding pre-vious work on nondeterministic �-calculi.References[Bou91] G�erard Boudol. Lambda-calculi for (strict) parallel functions. Toappear in Information and Computation, 1991.[dL92] Ugo de' Liguoro. Nondeterministic untyped �-calculus: A studyabout explicit non determinism in higher-order functional calculi.PhD thesis, Universit�a di Roma \La Sapienza", 1992.[HA80] M.C.B. Hennessy and E.A. Ashcroft. A mathematical semantics fora nondeterministic typed �-calculus. Theoretical Computer Science,11:227{245, 1980.[Plo92] Gordon Plotkin. A semantics for static type inference. Informa-tion and Computation, 1992. In this issue. A preliminary versionappeared in Theoretical Aspects of Computer Software, Springer-Verlag LNCS 526.[Sha84] Keshav Sharma. Syntactic aspects of the non-deterministic lambdacalculus. Technical Report CS-84-127, Washington State Univer-sity, September 1984. Thesis.See also the references in [Plo92] and [dL92].
8

