A Semantics for Static Type Inference
in a Nondeterministic Language

Martin Abadi
Systems Research Center
Digital Equipment Corporation

November 6, 1992

Abstract

Plotkin used the models of reduction in order to obtain a semantic
characterization of static type inference in the pure A-calculus. Here
we apply these models to the study of a nondeterministic language,
obtaining results analogous to Plotkin’s.

1 Introduction

The models of reduction are a generalization of the usual syntactic A-models
for the pure A-calculus (see [Plo92] and the references therein). If a term
M reduces to a term N then its interpretation in a model of reduction is
“smaller than” or equal to the interpretation of N (and not necessarily equal
as in A-models). Plotkin obtained a series of soundness and completeness re-
sults for static type inference with respect to models of reduction. With type
inference in mind, it seems natural that M and N be interpreted differently,
since it may be possible to infer a type for N but not for M.

The study of nondeterministic languages gives rise to an alternative mo-
tivation for considering models of reduction. In nondeterministic languages,
the reduction from M to N may involve a sequence of choices. Hence the
two terms may not behave equivalently in all contexts, and then we must
interpret them differently, with M being “less determined” than N. (For
example, M may equal N + N', where N’ is a third term and + represents
nondeterministic choice.)

This note extends the models of reduction to the interpretation of a
simple nondeterministic A-calculus. The results obtained are soundness and

completeness theorems for reduction and for static type inference. For con-
creteness, we focus on a calculus with the g rule and with rules for nonde-
terministic choice; but there should not be any difficulty in treating the 7
rule too.

The next section reviews the language studied, with evaluation and typ-
ing rules. Section 3 describes the models of reduction. The following two
sections include the results. As much as possible, we assume familiarity with
Plotkin’s paper.

2 The Language

The language is the usual untyped A-calculus extended with the choice oper-
ation +, so a term can be: a variable z, an abstraction Az.M, an application
MN, or a binary sum M + N. Sharma and de’ Liguoro studied this lan-
guage in their theses [Sha84, d1.92], obtaining interesting results about its
operational and denotational semantics.

The basic reduction relation —% g4 is axiomatized by a set of rules that
contains the expected rules from [Plo92], in particular the 5 rule:

(Az. M)N —»pq [N/z]M
The novelties are the rules for choice:
M4+ N =gy M M4+ N =gy N

M —7 B+ M N —7 B+ N’
M+ N =g M'+ N’
Some of the propositions below concern an extended reduction relation,

—% g+¢, Obtained reproducing the rules of —34 with the subscript S+c in-
stead of §4, and adding the rule:

M —sg4e M+ M

This relation turns out to have semantic properties somewhat simpler than
those of —»g4.
The type inference rules are Curry’s:
I'Fa:a (if 2 : s in I)

Nz:aFM:g3
FrExaM:a—p

FrEM:a—p EN:a
'EMN:p

with one additional rule, introduced by Hennessy and Ashcroft in the study
of a nondeterministic typed A-calculus [HA80]:

I'-M: o I'EN:«o
'EM4+N:«o

This rule says that if M and N both have the type « then so does their
sum. With the Curry-Howard isomorphism in mind, we may read this rule:
if one can prove the proposition « with either of M and N, then one can
prove « by first choosing one of them and then using it.

A more sophisticated rule is possible, using union types:

'-M: « 'EN:§
M+ N:aUQS

For simplicity, we do not consider union types; they seem to lead to signifi-
cant complications.
A similar rule appears in Boudol’s work [Bou91]:

'-M: « 'EN:§
I'EMI|IN:anp

Here v and 8 are logical assertions (rather than types), a A § is their con-
junction, and || is a parallel-composition operator. As the rule suggests,
parallel composition is rather different from the traditional nondeterminis-
tic composition.

3 Models of Reduction
A model of G-reduction is a triple:
P= <P7 . [[]]>

that satisfies certain conditions; in particular P is a partial order.
We define the models of S+c-reduction by imposing the additional con-
ditions that P be a lower semi-lattice and that:

[M + N1, = [M], AN, (1)

where the A on the right is the meet operation on P. The models of S4c-
reduction resemble de’ Liguoro’s syntactical models. There are two impor-
tant differences between them. First, de’ Liguoro’s definition is based on
that of the usual syntactic A-models (rather than on that of the models of
f-reduction). Second, it includes a semilinearity condition, that

(a+b)-c=(a-c)+(b-c)

Sharma gave an analogous condition in his study of conversion. This condi-
tion does not hold in the models constructed in the completeness proofs of
section 5.

The models of G+4-reduction have an even looser definition than the
models of f+4c-reduction. They are quadruples:

P:<P7'7/\7[H]>

where P is just a partial order (not necessarily a semi-lattice), with a mono-
tonic, binary operation A, and with property (1) and the new property:

anb<a aNb<b (2)

for all a,b € P. Obviously every model of f+4c-reduction with its A operation
is also a model of G+-reduction.

In models of reduction, types are interpreted as upper-closed subsets.
Here, in addition, we require that they be closed under A. For models
of f+c-reduction, this requirement implies that types are filters (possibly
empty). The conditions on — are unchanged.

4 Reduction

This section contains soundness and completeness results for the evaluation
rules. As could be expected, the models of §+-reduction correspond to the
relation —% 34, and the models of 34c-reduction correspond to —g4..

Proposition 1 (Soundness) If M—»54 N then [M], < [N], in all models
of B+-reduction. If M—»gN then [M], < [N], in all models of 3+c-

reduction.

Proof The arguments proceed by induction on the proofs of the formal
systems for reduction. All cases are evident, except that of the § rule,

treated in the original paper, and that of the + rules. Condition (2) and the
monotonicity of A are semantic paraphrases of the rules for + included in
—»34; with condition (1), these properties suffice to guarantee the soundness
of =54 in models of f+4-reduction. The rule M —» 54 .M+ M is validated by
models of 3+c-reduction because [M + M], = [M] A[M], by condition (1)
and [M], A [M], = [M], whenever A is the meet operation in a semi-
lattice. O

Proposition 2 (Completeness) If [M], < [N] in all models of 5+-
reduction then M—»py N. If [M], < [N], in all models of B+c-reduction
then M—»5..N.

Proof The argument consists in constructing a particular model of re-
duction, a term model, such that if [M], < [N], then it must be that M
reduces to N. Recall that [M] is the set of terms interreducible with M,
here with —» 34 or —»g4. as reduction relation; and [M] < [N]if M reduces
to V.

To extend Plotkin’s argument to —» g, we define [M]A[N] = [M + NJ,
trivially satisfying condition (1). It remains to check:

e Ais well defined: If M and N are interreducible with M’ and N’, then
M + N is interreducible with M’ + N'.

e Ais monotonic: If M—»54 M’ and N—»54 N’ then M+N—»5 M'+N".

e [M + N] < [M]and [M + N] < [N] follow from M + N—»3 M and
M + N—»p, N

To extend Plotkin’s argument to —»54., we have to check that 7' =
{IM]| M a term} is alower semi-lattice and that in fact [M 4+ N] = [M]A[N]
defines its meet operation. Any partial order with a monotone operation A
such that e Ab < a, a Ab < b, and ¢ < ¢ A ¢ is a lower semi-lattice, with
meet A. All the conditions but the last one, ¢ < ¢ A ¢, are checked in the
argument for —#4. The last condition is guaranteed by the special clause
in the definition of —» g4, since M—»gy4 .M + M yields [M] < [M]A[M]. O

5 Type Inference

Now we can give analogues of Plotkin’s results for type inference. From
the point of view of type inference, models of f+4-reduction and models of

b4c-reduction turn out to be identical, so we present our soundness result in
terms of the larger class and our completeness results in terms of the smaller
one. We write =g4 and g4 for the corresponding semantic entailment
relations.

Proposition 3 (Soundness) IfI' - M : « then '=gi M : o

Proof As usual the argument goes by induction on the type-assignment
proofs, with a new case for the added rule. This rule is justified using
requirement (1) and the closure of types under A: if [M] ,[N], € a then
[M+ N], = [M], A[N], by requirement (1), and then [M + N], € o by
the closure of types under A. O

Proposition 4 (Completeness) IfI'Egy .M :a then ' M : .

We give two proofs for this result. The first one requires a Subject
Reduction result:

Proposition 5 (Subject Reduction) If M—»gy N and I' = M : o then
'=N:o.

Proof The argument is by induction on reduction derivations. The only
novelties concern the rules for +. For the cases of M + N—3 .M and
M 4+ N—»p54.N, we assume that there is a proof of I' = M + N : a; the last
step in the proof must be the typing rule for 4+, which has as hypotheses
PEM:aand I' - N : a, so these judgements must be provable too. The
case of M—»g M 4+ M is easy: if ' = M : « then I' = M 4+ M : «, by the
typing rule for +. The remaining reduction rule for + is handled like the
usual rule for application. O

The first proof of Proposition 4 is based on the model of g+c-reduction
defined in Proposition 2.
Proof 1 We construct a particular type interpretation for the model of
f+c-reduction given in the proof of Proposition 2. The interpretation X,
of the type expression « is the set of classes [M] such that B+ M : «, where
B is a certain fixed extension of I', defined as in [Plo92]. (This is a good
definition by Subject Reduction.)

We need to check that these interpretations of types are closed under A:
suppose that [M] € X, and [N] € X,, then B+ M :a and B+ N : a; the
type inference rule for + then yields B+ M+ N : a, and hence [M+N] € X,,.

The result follows from [M + N] = [M] A [N], an equality established in
Proposition 2. O

The second proof relies on a type-expression-model construction.
Proof 2 In a type-expression model, the semantics of a term is defined as
a set of type expressions. The sets of type expressions form a lattice, with N
for A. Therefore [M + NJ, can be defined as [M],N[N],, and condition (1)
is satisfied. (Intuitively, this reflects that the set of types for M + N is the
intersection of the sets of types for M and for N.)

The type expression « is interpreted as the set X, of sets of types a such
that o € a. The set of types is the set of all X,. It is obvious then that if a
and b are both elements of X, then so is a N b, and hence types are closed
under meets as required.

One of Plotkin’s lemmas states that [M]y = {a | I' = M : o} for all
M, with I'(z) = {a | 2 : @ € T'}. Now we can show that this lemma can
be extended with a trivial case for +. This case goes: [M + N]]f equals
[M]q 0 [N]g by definition, {¢ |I'F M : ¢} N{¢ | N : 4} by induction
hypothesis, and {a |I' = M + N : a} by the type rules.

The desired completeness result follows immediately. O

The type-expression model constructed in the second proof is also a
model of 5, and so the corresponding type interpretation is both simple and
an F-interpretation. The model also satisfies an additional law:

Da.(M+ N)], = [(Ae.M) + (Ae.N)], 3)

This condition makes some sense, as the terms Az.(M + N) and (Az.M) +
(Az.N) behave identically in every context and are equivalent for type infer-
ence too. Thus, we have soundness and completeness results for the models
of reduction that satisfy (3).

Note that the analogous condition for M (N + N’) and (M N) 4+ (M N')
is not sensible, since these two terms behave differently (at least for some
calling mechanisms; see [Sha84]). And the condition for (M + M’')N and
(MN) 4+ (M'N) would not work, since although these two terms behave
identically the latter can be easier to type. For example, if the environment
I' contains @ : (s = s) = e and y : (¢t = t) — «a for s and ¢ different type
variables and « any type expression, then I' - 2(Az.z) + y(Az.z) : « but
I't/ (z+y)(Az.2) : @. The type-expression model distinguishes (z+y)(Az.2)
and z(Az.2) + y(Az.z).

Acknowledgements

Gordon Plotkin provided much useful help. In particular he argued in favor
of the use of models of f+-reduction and suggested looking at condition (3)
and similar ones. Ugo de’ Liguoro gave me guidance in understanding pre-
vious work on nondeterministic A-calculi.

References

[Bou91] Gérard Boudol. Lambda-calculi for (strict) parallel functions. To

[dL92]

[HASO]

[Plo92]

[Shal4]

appear in Information and Computation, 1991.

Ugo de’ Liguoro. Nondeterministic untyped A-calculus: A study
about explicit non determinism in higher-order functional calculi.
PhD thesis, Universita di Roma “La Sapienza”, 1992.

M.C.B. Hennessy and E.A. Ashcroft. A mathematical semantics for
a nondeterministic typed A-calculus. Theoretical Computer Science,
11:227-245, 1980.

Gordon Plotkin. A semantics for static type inference. Informa-
tion and Computation, 1992. In this issue. A preliminary version
appeared in Theoretical Aspects of Computer Software, Springer-
Verlag LNCS 526.

Keshav Sharma. Syntactic aspects of the non-deterministic lambda
calculus. Technical Report CS-84-127, Washington State Univer-
sity, September 1984. Thesis.

See also the references in [Plo92] and [dL1.92].

