
Type Checking Higher-Order Polymorphic Multi-MethodsFran�cois Bourdoncle Stephan MerzCentre de Math�ematiques Appliqu�ees, Institut f�ur Informatik,�Ecole des Mines de Paris Universit�at M�unchenFrancois.Bourdoncle@ensmp.fr merz@informatik.uni-muenchen.deAbstractWe present a new predicative and decidable type sys-tem, called ML�, suitable for languages that integratefunctional programming and parametric polymorphismin the tradition of ML [21, 28], and class-based object-oriented programming and higher-order multi-methodsin the tradition of CLOS [12]. Instead of using ex-tensible records as a foundation for object-oriented ex-tensions of functional languages, we propose to rein-terpret ML datatype declarations as abstract and con-crete class declarations, and to replace pattern match-ing on run-time values by dynamic dispatch on run-timetypes. ML� is based on universally quanti�ed polymor-phic constrained types. Constraints are conjunctionsof inequalities between monotypes built from type con-structors organized into extensible and partially orderedclasses. We give type checking rules for a small, ex-plicitly typed functional language �a la XML [20] withmulti-methods, show that the resulting system has de-cidable minimal types, and discuss subject reduction.Finally, we propose a new object-oriented programminglanguage based on the ML� type system.1 IntroductionDesigning object-oriented extensions of functional lan-guages is a challenging problem which has received muchattention lately. Apart from special object-oriented cal-culi [2], which adopt the view that objects are moreprimitive than functions, two major approaches havebeen studied. In the �rst approach, objects are exten-sible records with single-dispatch methods attached tothem. The major advantage of this approach is thatdata encapsulation and inheritance are modeled veryTo appear in the 24th ACMConf. on Principles of Prog.Languages

naturally. However, type systems for extensible recordsoften rely on intricate higher-order formalisms and/orrecursive types [11, 33].The second approach, which has received much lessattention both from language designers and type theor-ists, is to put the emphasis on methods, rather thanobjects, and resort to module systems to provide scop-ing and data encapsulation. In this approach, �rstproposed in CLOS [12], and also used in more recentlanguages such as Cecil [10], methods are overloadedfunctions dispatching on the type of all their input ar-guments simultaneously. Implementing binary opera-tions, such as an addition operator over a hierarchy ofnumeric classes, is a very natural and easy thing to do inthese languages. In contrast, such \multi-methods" arenotoriously hard to type and de�ne in the objects-as-records model [7]. Moreover, multi-methods de�ned bycases look very similar to functions de�ned by patternmatching, which makes them an obvious candidate forextending functional languages like ML. Despite theseadvantages, however, no satisfactory static type systemhas been proposed so far for functional languages withmulti-methods.In this paper, we present what we believe to bethe �rst practical and decidable type system, calledML�, suitable for languages that integrate functionalprogramming, parametric polymorphism, class-basedobject-oriented programming, and higher-order multi-methods. In order to motivate our choices, the examplesof this paper are written in an explicitly typed ML-likelanguage, namely, a higher-order functional languagewith implicit predicative polymorphism, but withouttype inference. Our key ideas are to introduce subtyp-ing via extensible hierarchies of type constructors, toreplace functions de�ned by pattern matching by meth-ods performing dynamic dispatch on the type of theirinput arguments, to clearly separate speci�cation andimplementation, and to use a module system to pro-vide separate compilation and encapsulation. As a con-sequence, we do not model implementation inheritance

Constructor class Point[] List[�]Type constructors bpol bcart cartblinking cartesianpoint�� @@ �� @@�� @@ snil slist sconsnillist cons�� @@�� @@
Data types cart[] = hhx: real ; y : real iibpol[] = hh r : real ; a: real ; f : int iibcart[] = hhx: real ; y : real ; f : int ii nil[�]; snil[�] = hh iicons[�] = hhh: � ; t: list[�] iiscons[�] = hhh: � ; t: slist[�] ; s: int iiFigure 1: The Point and List constructor classesin the type system itself, but provide this importantfeature using syntactic sugar.This extended abstract is organized as follows. Insection 2, we give an intuitive introduction to the sys-tem using simple examples, motivating our choices as wego along. Section 3 gives a more formal introduction tothe system as well as major results (completeness, de-cidability, and minimal typing). For the sake of simplic-ity, we restrict ourselves to single-module languages. Insection 4, we propose a new modular object-orientedprogramming language with multi-methods based onthe type system of section 3. We conclude in section 5with a discussion of related work. A complete exposi-tion of the system, including all proofs which had to beomitted due to space restrictions, can be found in [4].2 Overview2.1 Constructor classesOur guiding principle in the design of ML� has beento favor the generalization of well-understood concepts,rather than introducing new and ad-hoc ones. To startwith, instead of de�ning objects as extensible records,we take the view that objects are �xed tagged records,exactly as in ML. For instance, the bottom part of�g. 1 de�nes three records representing points in theplane with Cartesian coordinates, and blinking points inthe plane with polar and Cartesian coordinates. Theserecords are tagged with cart, bpol, and bcart respec-tively. The same �gure also de�nes records tagged withnil and cons, representing empty and non-empty lists,as well as records tagged with snil and scons, represent-ing empty and non-empty sized lists with constant-timeaccess to their size.We call cart, bpol, bcart, snil, nil, cons, and sconsdata type constructors. The only run-time entities in

ML� are functions, methods, and records tagged withdata type constructors. Note that the x �elds of cart[]and bcart[], for instance, are totally unrelated. In otherwords, we do not model implementation inheritance.One way to write multi-methods is to de�ne themfor every possible combination of tags. However, it isoften desirable to de�ne uniform behaviors over a groupof tags by a single de�nition. That is why we introducethe notion of type constructor as a means of naminggroups of tags and allowing for the de�nition of methodsuniformly over these groups. Technically, we introducesubtyping through user-de�ned extensible hierarchies oftype constructors like blinking, cartesian, point, slist, andlist. As opposed to ML, every data type constructor isa valid type constructor and denotes the group thatconsists of only that tag.In order to prevent arbitrary overloading, we groupsemantically related type constructors into extensibleand partially ordered constructor classes like Point andList. Monotypes are built from type constructors in theusual way. We identify zero-ary type constructors likepoint with the monotype point[]. The intuition is that atype like blinking denotes the set of all blinking points,irrespective of their representation as data types. Theordering between constructors re
ects the inclusion ofthe sets they denote. Similarly, the monotype cons[int]denotes the type of non-empty lists of integers, whereas8�: nil[�] is the type of the empty list. Consequently, ex-tensible classes like List generalize closed algebraic MLdatatypes likedatatype list[�] = nil j cons of (� ? list[�]);Monotypes are partially ordered by a structural sub-typing relation based on the variance of each class. Thevariance of a class is a tuple of elements of f�;	;
gthat speci�es the arity of the type constructors of theclass as well as the variance of each type parameter.For instance, class List is unary and covariant, since2

we intend cons[int] to be a subtype of list[real] (assum-ing int is a subtype of real). However, the binary classArrow, which contains the arrow type constructor, iscontravariant in its �rst argument, and covariant in itssecond argument, so that real ! int is a subtype ofint! real. All data types of a given class must conformto its variance. For instance, the record implementa-tion of cons[�] is valid because � being covariant bothin the h �eld and in the t �eld, it is covariant in therecord. However, this record could not have an extra�eld with type � ! �, in which � is non-variant. Thisvariance speci�cation allows us to reason about the typeconstructors of a given class irrespective of the actualcontents of the class, which is clearly a prerequisite forextensibility in the context of object-orientation.The partial ordering of type constructors is arbitraryand allows multiple inheritance of speci�cations (butnot of implementations). The only restriction is thatdata type constructors be minimal, which, as we shallsee in section 2.5, is essential for typing polymorphicmethods. The declaration of a datatype like scons im-plicitly declares a constructor function scons with type8�: �! slist[�]! int! scons[�]that builds a sized cons from an �, a sized list of �'s,and the size of the list, as well as three selector functionsscons :h : 8�: scons[�]! �scons :t : 8�: scons[�]! slist[�]scons :s : 8�: scons[�]! intwhich, in contrast with ML, are total over their domain.2.2 MethodsInstead of referring to the notion of a self object, asin the objects-as-records paradigm, we propose to de-�ne methods as overloaded functions dispatching on thetags of all their arguments simultaneously, in prettymuch the same way that ML functions perform patternmatching on the tags of their arguments.In the simple system presented in this paper, theonly patterns allowed are \ " (any), or a type construc-tor like slist, meaning that for the associated branchto be selected, the tag of the actual argument must bea subconstructor of slist. Strictly speaking, we do notpropose a generalization of pattern matching, since MLpatterns can be more complex than ours, but our systemcould be enhanced to allow all ML patterns. In section4, we show how both dynamic dispatch and patternmatching could be integrated in a real programminglanguage.For instance, method head of �g. 2 raises an excep-tion by default, and returns the h �eld of conses and

vcons : 8�: (�; list[�])! list[�];vcons (h: ; t:) = cons h t ;vcons (h: ; t: snil) = scons h t 1 ;vcons (h: ; t: scons) = scons h t (1 + (scons :s t));head : 8�: list[�]! �;head (x:) = raise Empty ;head (x: cons) = cons :h x ;head (x: scons) = scons :h x ;map : 8�List; �;
: (�List[�]; � !
)! �List[
];map (l: nil; f :) = nil ;map (l: snil; f :) = snil ;map (l: cons; f :) =cons (f (cons :h l)) (map (cons :t l ; f));map (l: scons; f :) =scons (f (scons :h l)) (map (scons :t l ; f)) (scons :s l);Figure 2: Operations on listssized conses. As opposed to ML, the order in which thealternatives of a method are de�ned is irrelevant, sincedynamic dispatch is based on a \best match" approach.This choice is of course essential to ensure that alterna-tives of a given method (assumed to be speci�ed by itstype in some interface) can be implemented in severalmodules. We show in section 3.3 that by imposing thatthe set of patterns of a method be a partition of thedomain of the method, it is possible to guarantee theabsence of \message not understood" or \match fail-ure" run-time errors (exhaustivity), and to ensure theexistence of a best match (non-ambiguity).Our methods are thus always total over their do-main. For instance, method freq of �g. 3 is total over itsdomain blinking, and, as opposed to head, this methoddoes not have a \catch-all" alternative to ensure ex-haustivity. Such a method could not have been writtenas it is in ML, where intermediate type constructors likeblinking cannot be de�ned.More interesting, method vcons of �g. 2 is a \virtualconstructor" dispatching on the type of its second ar-gument. This method by default builds a regular cons,except when its second argument is a sized list, in whichcase it builds a sized cons. Using this virtual construc-tor, a list built from a sized nil will only consist in sizedconses. For instance, the following expressionE1 = vcons (bpol 1 :0 0 :0 1 ;vcons (bcart 1 :0 2 :0 3 ; snil))builds a non-empty heterogeneous sized list of polar andCartesian blinking points. Note that it is not possible tobuild arbitrary heterogeneous lists in ML�, as opposedto type systems based on dynamics [1, 26]. Also, notethat our methods allow a form of overloading that is3

not possible in ML. For instance, it is possible to de�nea fully polymorphic function likeshift : 8�: �! �;shift (p:) = p;shift (p: cart) = cart ((cart :x p) + 1 :0) (cart :y p);which is essentially the identity, except for non-blinkingCartesian points. This function is well typed, becausecart being a minimal data type constructor in any ex-tension of class Point, the run-time tag cart ofcart ((cart :x p) + 1 :0) (cart :y p)is identical to the tag of p for any non-blinking Carte-sian point p. Methods like shift can thus be used toperform a weak form of typecase statement [1], andcan be used in particular to perform narrowing typecasts. The scheme we propose to de�ne methods isthus a mixture of what is traditionally called \para-metric polymorphism" in the functional programmingcommunity1, and \polymorphism", or \dynamic dis-patch", in the object-oriented community.2.3 Constrained typesThe system we have described so far, in which functionsand methods are explicitly typed, can be made to workonly if every expression has a minimal type. To under-stand the problem, assume given a function twice withtype 8�: (�! �)! (�! �)and a function trunc with type real ! int. The MLscheme for typing the application of a polymorphic func-tion like twice to an argument like trunc consists in ap-plying the most speci�c monomorphic instance of twiceto the type of the argument. However, two instances ofthe type of twice can be applied here, namely (int !int) ! (int ! int) and (real ! real) ! (real ! real),none of which is more speci�c than the other. We thuspropose to type the expression (twice trunc) as8�: (int � � ^ � � real): �! �The intuitive denotation of this polymorphic con-strained type is, as in ML, a type which is below allits ground instances, that is, all the ground substitu-tions of � ! � such that � satis�es the constraintint � � ^ � � real. In other words, an expression withthis type has both type int ! int and type real ! real,and can be used in any context where one of thesemonomorphic types is acceptable.1There are generally very few functions with type 8�: � ! � intraditional models of parametric polymorphism, where methods likeshift cannot be de�ned.

freq : blinking! int;freq (p: bpol) = bpol :f p;freq (p: bcart) = bcart :f p;move : 8�: � � point: �! �;move (p: cart) = cart (�1:2� (cart :x p))(�1:2� (cart :y p));move (p: bcart) = bcart (�1:2� (cart :x p))(�1:2� (cart :y p)) (freq p);move (p: bpol) = bpol (1:2� (bpol :r p))(� + (bpol :a p)) (freq p);Figure 3: Operations on pointsThis example shows that polymorphic constrainedtypes (types for short) allow the minimal typing of termapplication in the context of primitive subtyping. How-ever, many syntactically di�erent types can have thesame meaning. For instance, we certainly intend thetypes (8 ;: int) and 8�: (int � � ^ � � int): � to havethe same meaning, since they have the same uniqueground instance int. However, not only are we inter-ested in semantic equivalence between types, but we�nd it useful to de�ne a partial ordering between types,for instance to check that the type of a function in amodule conforms to its speci�cation in a recursive letor in some interface. This idea of subtyping polytypesis reminiscent of the subtyping rules of F�, and departsfrom the tradition in predicative type systems to relyon a non-deterministic instantiation rule for typing termapplication.In order to ensure that the ordering between typesis compatible with the ordering between monotypes, wethus say that a polytype �2 is a subtype of anotherpolytype �1 if every ground instance of �1 is above someground instance of �2 w.r.t. the ordering on monotypes.As usual, we say that two types are equivalent if theyare subtypes of one another. For instance, 8�: int ��: � is a subtype of 8 ;: real, because there exists an �satisfying int � � which is above real, namely � = real.As a matter of fact, the former type is equivalent toint, and the above de�nition of subtyping is compatiblewith the interpretation of the universal quanti�er of atype as a greatest lower bound operator.2.4 Type applicationThe general typing rule for term application is the fol-lowing. Suppose e1 has type �1 = 8#1 : �1: �1 ! �01,where #1 is a list of variables, �1 is a constraint, and �1and �01 are monotypes with free variables in #1, and thate2 has type �2 = 8#2 : �2: �2, with #1 and #2 disjoint.Then (e1 e2) has typeapp(�1; �2) = 8#1; #2 : �1 ^ �2 ^ �2 � �1: �014

provided the constraint �1^�2^�2 � �1 is satis�able, asde�ned in section 3.1. The interpretation of this typingrule is that (e1 e2) has any ground monotype �01 suchthat �1 ! �01 is a ground instance of the type of e1and �1 is above some ground instance �2 of the type ofe2, which is what is intuitively required to apply thefunction. For instance, the type of (id 1:0), where id isthe identity with type 8�: �! �, has type 8�:
oat ��: �, which is equivalent to 8 ;:
oat. Similarly, the(static) type of expression E1 of section 2.2 is�1 = 8�; �;
 : (bpol � � ^ list[�] � list[�]^bcart � � ^ snil[
] � list[�]): list[�]which, thanks to the variance of List, is in fact formallyequivalent to8�: (bpol � � ^ bcart � �): list[�]which, in turn, is a subtype of �2 = 8 ;: list[blinking].An interesting question is whether or not �2 is a sub-type of �1. In a closed world, the only solution of theconstraint of �1 is � = blinking, which is below blinking,so we could be tempted to consider the two types equiv-alent. However, in an open world, it may be the casethat some module of the program extends class Pointand de�nes a strict subconstructor sblinking of blinkingabove both bpol and bcart. Such an extension, calledan admissible extension, is allowed provided it does notmodify the ordering between existing type constructors.In the context of the extended class, � = sblinking isthus a ground instance of �1 but is not above the onlyground instance blinking of �2. In section 3, we shallde�ne a complete and decidable axiomatization of sub-typing based on a notion of constraint implication thatis invariant w.r.t. admissible extensions of classes.In conclusion, the type of E1 is a strict subtype oflist[blinking], and can be read as the type of all listscontaining blinking points with polar and Cartesian co-ordinates, but nothing else, and in particular, no otherkind of blinking points. In other words, a type like8�: (bpol � �^bcart � �): � can be read as \the small-est � above bpol and bcart" and can be understood asthe set union of bpol and bcart.2.5 Polymorphic multi-methodsIn addition to ensuring minimal types, constrained poly-morphic types also allow for a very precise typing ofmethods. For instance, method move of �g. 3 has type8�: � � point: �! �meaning that move returns an object with the same tagas its argument of type point. The implementation of

neg zero pos
oat int perreal 2adic�� �� ��@@ @@ @@Figure 4: The numeric class Nummove conforms to this speci�cation since bpol, bcart,and cart are minimal data type constructors. More-over, we show in section 3 that the type of move is astrict subtype of 8 ;: point ! point, which shows thatmove can be used anywhere a function with the lat-ter type is expected. More interesting, as opposed tosingle-dispatch languages, method move is a �rst-classfunction which can be passed as a parameter to otherfunctions, such as the higher-order polymorphic multi-method map of �g. 2. The type of map states thatgiven a list with type �List[�], where �List is some typeconstructor in List, and a function with type � !
,map returns a list with type �List[
], which shows inparticular that map applied to an empty list returnsan empty list. Note that this precise type ensures thatthe recursive call of map in the fourth alternative of itsde�nition is a sized list and can thus be used to build asized cons. Similarly, it can be shown that the expres-sion E2 = map (E1; move) has type8�: (bpol � � ^ bcart � � ^ � � point): list[�]which shows that freq (head E2) is well-typed and hastype int. Methods like move can be speci�ed in someobject-oriented languages with a speci�cation likeabstract class point isvirtual method move(): like selfendHowever, the advantage of our approach is that itgeneralizes to multi-methods, and is also much moreexpressive. For instance, the subtraction method sub of�g. 5 has type 8�: int � �: (�; �) ! �. The hierarchyused in this example, shown in �g. 4, has positive, nega-tive, and zero integers, as well as
oating point numbersand periodic 2-adic numbers2. The type of sub ensuresthat per's and
oat's cannot be subtracted from one an-other (since the constraint int � �^ per � �^
oat � �has no solution over the class shown in �g. 4) and alsoensures that the static type of a subtraction is always asupertype of int. For instance, using the typing rule forapplication, we can show that the type of sub (+1;�2)is 8�: (int � � ^ pos � � ^ neg � �): �, which is equiv-alent to 8 ;: int. In other words, the type of sub ispolymorphic above int, and constant below int.2This numeric hierarchy is used in the hardware description lan-guage 2z, which motivated this work [40].5

It is interesting to compare our approach to similarsystems in the literature. The language presented byReppy and Riecke [35, 36] allows the de�nition of meth-ods returning objects with the type selfty of the re-ceiver, so that methods like move can be written. How-ever, the restriction that selfty cannot occur in nega-tive positions in the type of methods prevents methodslike sub to be given the precise type of our example.The language of Bruce et al. [6] uses a similar notion ofMyType without the restriction on negative positions.However, the interpretation of MyType in a methodtype like MyType ! MyType and the interpretation ofthe type variable � in the type 8�: int � �: (�; �)! �of the sub function are quite di�erent: MyType refers tothe dynamic type of the receiver (i.e., the �rst argumentof the multi-method), whereas � is the \minimum" typewhich is above both arguments of the method. This in-terpretation of MyType thus prevents reals to be sub-tracted from integers. One possible remedy, for single-inheritance languages, could be to replace the notionof selfty or MyType by the notion of alike, denot-ing the smallest supertype of all arguments with typealike, including the receiver.Type classes [19, 31, 41] and constructor classes [23]have also been advocated as a means to provide some ofthe functionality of methods in ML-like languages. Inessence, these systems allow the instantiation of over-loaded speci�cations which consist in type templateswith a single type variable, such as the instantiationof the template (�; �)! � for � = int and � = real. Inthe absence of any subtyping relation between int andreal, such simple speci�cations cannot express complextypes such as the type of the sub method and, in par-ticular, do not allow the typing of mixed operationslike sub(1:2; 3). Multi-parameter type classes, i.e., typetemplates with more than one variable, have thus beenproposed to lift this restriction. The idea is to use a tem-plate like (�; �)!
 and instantiate it with all possibleinteresting combinations of �, �, and
, for example(int; int; int); (int; real; real). However, multi-parametertype classes are not without problems: type-checkingis undecidable in general [15], it is possible to overloadfunctions with structurally di�erent signatures, and theoverloading resolution algorithm can be quite tricky andunintuitive, a mixture which has already proven verydangerous in C++. This is why we believe that thedispatching mechanism based on structural subtypingthat is used in ML� is closer in spirit to that of clas-sical object-oriented languages than the non-structuraloverloading scheme used in languages like Haskell andGofer. Nonetheless, it may be interesting to add typeclasses to ML� to allow for overloaded functions likeprint with type 8�: Print(�): � ! unit where Print isan inductively de�ned predicate on types.

toFloat : real!
oat;toPer : 2adic! per;subInt : (int; int)! int;subFloat : (
oat;
oat)!
oat;subPer : (per; per)! per;sub : 8�: int � �: (�; �) ! �;sub (x1 :
oat; x2 : real) = subFloat (x1; toFloat x2);sub (x1 : per; x2 : 2adic) = subPer (x1; toPer x2);sub (x1 : int; x2 : int) = subInt (x1; x2);sub (x1 : int; x2 :
oat) = subFloat (toFloat x1; x2);sub (x1 : int; x2 : per) = subPer (toPer x1; x2);Figure 5: Subtraction3 Type systemWe now formally de�ne our type system. A constructorclass C is given by a name, a �nite and non-empty setTC of type constructors tC , a subset DC � TC of datatype constructors dC , a partial order vC on TC suchthat data type constructors are minimal with respectto vC , and a tuple of elements of the set f�;	;
gcalled the variance of the class. The arity of a class isthe length of its variance.A type structure is a �nite set T of constructor classeswith distinct names and pairwise disjoint sets of typeconstructors. We assume that every type structure con-tains a (;�)-variant class Arrow with at least onedata type constructor !. In order to model object-orientation, we must provide for the extension of typestructures. Adding new classes is never a problem (as-suming that there are no name clashes), because typeconstructors of di�erent classes are completely unre-lated to each other. When new type constructors areadded to existing classes, one has to preserve the order-ing on existing type constructors as well as the minimal-ity of data type constructors. We thus formally de�neT � to be an admissible extension of T if for every classC in T , there exists a class C� in T � with the samename and variance such that TC� is a superset of TC ,the intersection of TC and DC� is equal to DC , and forall type constructors t1; t2 2 TC , we have t1 vC� t2if and only if t1 vC t2. The overall requirement thatdata type constructors are minimal in any class impliesthat T � cannot de�ne a subconstructor of any data typeconstructor de�ned in T .We assume given countable and pairwise disjoint setsof type variables v, v0, etc., and, for each class C, C-constructor variables vC , v0C , etc. The set of monotypes� over T is the least set containing type variables suchthat when �C is a list of monotypes whose length agreeswith the arity of C, and �C is a C-constructor, i.e., aC-type constructor tC in TC or a C-constructor variable6

vC , then �C [�C] is a monotype. A variable-free mono-type is said to be T -ground (or just ground, for short).As usual, we write �1 ! �2 instead of ! [�1; �2].The ordering � on ground monotypes is the leastrelation such that tC vC t0C and �C �C �0C implytC [�C] � t0C [�0C], where the relation �C on lists ofground monotypes is de�ned as the componentwise or-dering induced by the variance of C. For instance,�1; �2 �Arrow �01; �02 if and only if �01 � �1 and �2 � �02.We use # to denote a list of type or constructor vari-ables, and #C to denote a list of distinct type variableswhose length agrees with the arity of C.3.1 ConstraintsA constraint � is a conjunction of inequalities �C v �0Cbetween C-constructors and inequalities � � �0 betweenmonotypes. A variable-free constraint is said to beground. We treat constraints as sets of conjuncts, andwe write � f�0g to denote that �0 is a subset of �. Wedenote by � = �0 the constraint � � �0 ^ �0 � �, and bytrue the empty constraint.Intuitively, we intend a constraint to be satis�ableif it has a solution on ground monotypes. However, forthe subtyping relation between polytypes discussed insection 2.3, we also need a notion of satis�ability of aconstraint w.r.t. some other. To this end, we de�ne theimplication of constraint �2 by constraint �1 for all #as the judgment 8#: �1 j= �2 axiomatized by the rulesof �g. 6 together with the transitivity rule8#: �1 j= �2 8#: �2 j= �3 [Trans]8#: �1 j= �3In rule VElim , we write � ' �0 to denote either� � �0 or �0 � �. A #-substitution � maps type vari-ables to monotypes and C-constructor variables to C-constructors, and is the identity over variables in #. Wedenote by �[�] the application of � to �.Rule VIntro introduces new variables on the right-hand side by abstracting away certain subterms of theleft-hand side. For example, an instance of this rule is8 ;: bpol � blinking ^ bcart � blinkingj= bpol � � ^ bcart � �which reads \bpol � blinking and bcart � blinking im-plies the existence of some � such that bpol � � andbcart � �." In other words, the free variables of �1 and�2 that are not in # are existentially quanti�ed.Rules MIntro, MElim , and VElim re
ect the factthat the ordering on monotypes is purely structural,that is, comparable types must have the same \shape".Therefore, every solution for a variable v in constraintv ' �C [�C] is of the form �0C [�0C].

[Approx] 8#: � f�0g j= �0[CRef] 8#: � j= � ^ �C v �C[CTrans] 8#: � f�C v �0C v �00Cg j= � ^ �C v �00C[CGnd] 8#: � j= � ^ tC v t0C (if tC vC t0C)[CMin] 8#: � f�C v dCg j= � ^ dC v �C[MRef] 8#: � j= � ^ � � �[MTrans] 8#: � f� � �0 � �00g j= � ^ � � �00[MIntro] 8#: � f�C �C �0C ^ �C v �0Cgj= � ^ �C [�C] � �0C [�0C][MElim] 8#: � f�C [�C] � �0C [�0C]gj= � ^ �C v �0C ^�C �C �0C[VIntro] 8#: �[�] j= � (if � is a #-substitution)[VElim] 8#: � fv ' �C [�C]gj= � ^ v = vC [#C] (vC ; #C fresh)Figure 6: Constraint implicationWe say that a constraint � is well-formed if and onlyif the judgment 8;: true j= � is derivable. The followingtheorems show that implication is decidable, and thatthe axiomatization of �g. 6 is both sound and completew.r.t. the extensibility of constructor classes. In par-ticular, it follows that well-formedness and satis�abilitycoincide.Theorem 1 If �1 is a well-formed constraint, and �2is an arbitrary constraint, then it is decidable whether8#: �1 j= �2 holds. In particular, well-formedness ofconstraints is decidable.Theorem 2 Let # be a list of variables, and �1 and �2be two well-formed constraints. Then 8#: �1 j= �2 isderivable if and only if for every admissible extensionT � of T and every T �-ground substitution �1 such that�1[�1] is satis�ed in T �, there exists a T �-ground sub-stitution �2 that agrees with �1 on the variables of #such that �2[�2] is a ground constraint satis�ed in T �.The algorithm to determine the well-formedness of aconstraint � described in [4] �rst checks that � is well-kinded and then determines a representation of its so-lutions in the form of a most general substitution con-strained by a set of independent base constraints ontype variables and C-constructors for each class C.A constraint � is well-kinded if the set of equationsbuilt from � by replacing C-constructors by the unin-terpreted function symbol C and inequality symbols byequalities is uni�able. Similar notions have been intro-duced in the literature [17, 29, 30].Given a well-kinded constraint �, the �rst step ofthe decision procedure for well-formedness consists in7

(N1) �; (�0 ^ �C [�C] � �0C [�0C]) �!�; (�0 ^ �C v �0C ^�C �C �0C)(N2) �; �0 fv ' �C [�C]g �!(� ^ v = vC [#C]); �0[vC [#C]=v]Figure 7: Normalization of well-kinded constraintsrewriting (true; �) by the two rules of �g. 7, where vCand #C are assumed to be fresh. The well-kindedness of� ensures that this process eventually terminates, andthat the result (�=; ��) is such that �= represents a\most general substitution", whereas �� is a conjunc-tion of a constraint on type variables and constraints �Cbetween C-constructors for each class C. The last stepfor deciding well-formedness consists in checking thateach constraint �C is satis�able over the current typestructure, which is trivially decidable by �nite enumer-ation. For instance, the solutions of the constraint(� � � !
) ^ (
 � real)are of the form � = �1 ! �2[] and
 =
1[] where� � �1 and �2 v
1 ^
1 v real, which is satis�able, forinstance, taking �2 = int and
1 = real.The procedure for deciding 8#: �1 j= �2 consists inapplying the decision procedure for well-formedness tocompute the most general substitution �=1 of �1 and thebase constraints ��1 as above. For the sake of simplicity,we assume that �1 and �2 do not share variables exceptfor the ones in #. It can be shown that the free variablesof ��1 , together with the partial ordering induced by ��1 ,de�ne the \most general" admissible extension of thecurrent type structure satisfying �1. Deciding the im-plication then amounts to deciding the well-formednessof �2 w.r.t. this extended type structure, thus consider-ing the variables of �1 as constants.It is easy to see that rewriting may cause an exponen-tial increase in the size of the constraints. Since satis�a-bility of a set of base constraints is NP-complete [27, 34],our decision procedure for well-formedness is thus atworst doubly exponential, but [38] shows that the prob-lem is in fact in DEXPTIME. Finally, it follows from[37] that deciding well-formedness is PSPACE-hard. Afortiori, deciding implication is PSPACE-hard.However, when type-checking real-life programs, webelieve that the rewriting step will not cause a blowupin the number of variables, and the only costly part ofthe decision procedure will be to test the satis�abilityof base constraints, which is NP-complete. Figure 8gives a �xpoint-based algorithm C-SAT, inspired by anincomplete algorithm by Fuh and Mishra [17], to decidethe satis�ability of a base constraint �C . The initialcall C-SAT(�C ; �C) must be performed with a valuationfunction �C mapping every C-constructor �C to the set

procedure C-SAT(�C ; �C) islet �0C = T i� 0 �iC(�C ; �C) inif 9 vC : j�0C(vC)j = 0 then fail;if 8 vC : j�0C(vC)j = 1 then succeed;for each vC such that j�0C(vC)j > 1 dofor each tC in �0C(vC) doC-SAT(�C ; �0C [vC 7! ftCg])end C-SATFigure 8: Satis�ability of base constraintsTC . The functional �C is de�ned as follows�C(�C ; �C)(tC) = f tCg�C(�C ; �C)(vC) = T �C f�CvvCg "C �C(�C)\ T �C fvCv�Cg #C �C(�C)where "C S (resp. #C S) denotes the upper (resp. lower)ideal generated by the subset S of TC w.r.t. the partialorder (TC ;vC). Our experience with a �rst implemen-tation of this algorithm has been very encouraging.3.2 Types and domainsTyping judgments in our system are always expressedw.r.t. a constraint context � = (#: �), which is used tostore type information for symbols de�ned in the con-text of the current declaration, and intuitively assertsthe existence of variables # satisfying �. We say that atype �1 = 8#1 : �1: �1 is well-formed w.r.t. � if # and#1 are disjoint and the free variables of �1 and �1 areeither in # or in #1, and if � implies �1 for all #. Thelatter condition ensures that �1 is well-formed for ev-ery solution of the \global" constraint �. As a concreteexample, consider the functionfun f� j trueg (x: �)) let y = sub(x; 1) in (not x)expressed in the language de�ned in section 3.3. If, inthe de�nition of well-formed types, we simply requiredthat � ^ �1 be well-formed, instead of requiring that �imply �1 for all #, then y would have type8� : (int � � ^ � � � ^ pos � �): �w.r.t. constraint context (�: true), and (not x) wouldhave type 8;: � � bool: bool, so that the function wouldappear to be well-typed, with type 8�: � � bool: � !bool, but every application of that function would failat run-time.For the sake of simplicity, we assume that the boundvariables of types can be freely �-converted to namesthat do not occur in the constraint context. In the lightof theorem 2 and of the discussion of section 2.3, we8

say that �2 = 8#2 : �2: �2 is a subtype of �1 w.r.t. �(assuming #1 and #2 disjoint), written � ` �2 � �1, ifand only if 8#; #1: � ^ �1 j= �2 ^ �2 � �1This de�nition of subtyping can be seen as a gener-alization of the instance relation between well-typingsof Mitchell [29, 30]. We show in [4] that this rule is alsosound w.r.t. the three variants 8-orig, 8-top, and 8-Funof the subtyping rule of F� considered in [9].It follows immediately from theorem 1 that subtyp-ing is decidable. As an example, let us prove that thetype 8�: � � point: �! �of method move is a strict subtype of 8 ;: point! pointw.r.t. the empty context. We have to prove8;: true j= � � point ^ �! � � point! pointwhich follows by rule VIntro from8;: true j= point � point ^point! point � point! pointOn the other hand, 8 ;: point ! point is not a sub-type of 8�: � � point: � ! �, so the latter type isa strict subtype of the former one. For otherwise, wewould have to show8�: � � point j= point! point � �! �which, by rule MElim , amounts to proving8�: � � point j= � = pointwhich is obviously not derivable.One distinguishing feature of our system is that thetype application operator app is monotonic in both ar-guments w.r.t. the subtyping relation, which shows thatevery functional type �1 = 8#1 : �1: �1 ! �01 can beidenti�ed with a monotonic type transformer, as op-posed to F� where type application is de�ned in termsof syntactic substitution. Note that the downside ofthis property is that type application in ML� is ap-proximated [4].We formally de�ne the domain dom(�1) of the func-tional type �1 as �1 = 9#1 : �1: �1. Intuitively, domainsdenote downward closed sets of types. It can be shownthat dom is contravariant w.r.t. the subtyping relation.We say that a domain �2 = 9#2 : �2: �2 is a subdomainof �1 w.r.t. � (assuming #1 and #2 disjoint), written� ` �2 � �1, if and only if8#; #2: � ^ �2 j= �1 ^ �2 � �1

and we say that a type �2 = 8#2 : �2: �2 belongs to �1w.r.t. �, written � ` �2 2 �1, if8#: � j= �1 ^ �2 ^ �2 � �1It can be shown that app(�1; �2) is well-formed w.r.t.� if and only if �2 belongs to dom(�1) w.r.t. �. More-over, the subtyping and membership relations are tran-sitive in the following sense� ` �1 � �2 � ` �2 2 �3� ` �1 2 �3 � ` �1 2 �2 � ` �2 � �3� ` �1 2 �3so that every subtype of a type in dom(�1) also belongsto dom(�1), which agrees with the substitutivity prin-ciple of object-oriented languages and justi�es the viewof domains as downward closed sets of types.Finally, we show in [4] that types form a preorder,and that two compatible types (i.e., types with a com-mon upper bound) 8#1 : �1: �1 and 8#2 : �2: �2 have thefollowing least upper bound8v; #1; #2 : (�1 ^ �2 ^ �1 � v ^ �2 � v): vwhere v is a fresh type variable, and #1 and #2 are as-sumed to be disjoint. Dually, two compatibles domains�1 and �2 always have a greatest lower bound �1 ^ �2.3.3 Type checkingFig. 9 gives type checking rules for an explicitly typedfunctional language �a la XML [20] with higher-ordermulti-methods. Programs consist in a single expressiontype checked w.r.t. a �xed type structure T that weassume to be de�ned with some concrete syntax. Awell-formed typing context is a pair (�; �) where � is awell-formed constraint context, and � is a list of bind-ings of the form x: � for expression variables, where each� is well-formed w.r.t. �. We assume that � binds con-structor and selector functions to their type, as de�nedat the end of section 2.1. The domain � = 9#: �: � of afunction fun f# j�g (x: �)) eis given explicitly but, as opposed to methods, the re-turn type of functions is inferred from their bodies byrule Fun. A method m is an expression of the form3meth f# j�g (x: �): �0) [�1) e1; : : : ;�n) en]where each pattern �i is a special kind of domain of theform4 9#: (�1; : : : ; �n), where # is a list of type variables3We used some syntactic sugar, explained in section 4, for theexamples of section 2.4We assume that tuples are implicitly de�ned data types, withappropriate constructor and selector functions.9

�;� fx: �g ` x: � [Var]�; � ` e: � � ` � � � 0 [Sub]�; � ` e: � 0 �;� ` e1 : �1 �;�[x1 : �1] ` e0 : �0 [Let]�; � ` (let x1 = e1 in e0): �0�;�[x1 : �1; : : : ; xn : �n] ` ei : �i (0 � i � n) [Letrec]�; � ` (letrec x1 : �1 = e1; : : : ;xn : �n = en in e0): �0�;� ` e: � �;� ` e0 : � 0 � ` � 0 2 dom(fun(�)) [App]�; � ` (e e0): app(fun(�); � 0)�[v; #: � ^ v � �]; �[x: 8 ;: v] ` e: (8#0 : �0: �0) (v fresh) [Fun]�; � ` (fun f# j�g (x: �)) e): (8v; #; #0 : � ^ �0 ^ v � �: v ! �0)� = 9#: �: � �i = 9#i: �i �1; : : : ; �n is a partition of � w.r.t. ��[v; #; #i : � ^ v � � ^ v � �i]; �[x: 8 ;: v] ` ei : (8 ;: �0) (1 � i � n; v fresh) [Meth]�; � ` (meth f# j�g (x: �): �0) [�1) e1; : : : ;�n) en]): (8#: �: � ! �0)Figure 9: Typing ruleswith at most one occurrence in (�1; : : : ; �n), and each�i is either a single variable or tC [#C] for some typeconstructor tC and variables #C .We think of a method as a set of functions, one foreach pattern �i, whose type is a subtype of the methodtype, restricted to the domain �i. In contrast to MLpatterns, which may be complex, the present de�nitionof ML� patterns allows for dynamic dispatch accordingto the outermost type constructor only. Rule Meth de-�nes the type of method m as 8#: �: � ! �0, providedthat two conditions are met.First, the set of patterns must be a partition of themethod's domain 9#: �: �, to ensure the absence of\method not understood" errors at run-time, as wellas the existence of a most speci�c pattern for everytype in the domain of the method. Technically, wesay that a set of patterns �1; : : : ; �n is a partition of� = 9#: �: (�1; : : : ; �k) if (1) every pattern is compati-ble with � w.r.t. �, and (2) for all data type construc-tors dC1 ; : : : ; dCk in the current type structure such that�[�] and� = 9#C1 ; : : : ; #Ck : (dC1 [#C1]; : : : ; dCk [#Ck])are compatible, the set f�i j 9i 2 [1; n]: � � �ig hasa minimum element. In the presence of a module sys-tem, this decidable condition must be checked at linktime, when all the data type constructors, and there-fore, all the entities that can possibly exist at run-time,are known. The closure �[�] of � w.r.t. � = (#0 : �0) isde�ned by 9#0; #: �0 ^ �: (�1; : : : ; �k)Second, the body ei of each alternative must havetype 8 ;: �0 in the context where x is assumed to have

both monotype � enforced by the domain of m andmonotype �i enforced by pattern �i.The remaining rules are straightforward. Rule Sub isa subsumption rule reminiscent of F�. Rule App usesthe app and dom operators de�ned earlier, as well asthe upper-closure operator fun de�ned byfun(8#: �: �) = 8v; v0; #: (� ^ � � v ! v0): v ! v0Assuming that e and e0 have minimal types, the co-variance of fun and app, the contravariance of dom ,and the transitivity of the subtyping and the member-ship relations ensure that (e e0) has a minimal type.This is the main argument in the proof of the followingtheorem, which expresses that ML� has minimal types(but not minimal typings, since we are not concernedabout type inference in this paper).Theorem 3 Let (�; �) be a well-formed typing context.It is decidable whether an expression e is well-typed inthe context (�; �). If e is well-typed, it has a minimaltype and this minimal type can be e�ectively determined.Having minimal types is an important property oftype systems. However, soundness is even more im-portant. For lack of space, we omit the de�nition ofan operational semantics for ML�, and the proof ofsoundness. A strict operational semantics, as well asa subject-reduction theorem, can be found in the tech-nical report [4]. This operational semantics tags everyrun-time object with its minimal, closed type � , anddynamic dispatch is performed by selecting the small-est pattern � such that � belongs to �[�] ^ �.10

interface List is// Covariant class of all list constructorsclass List<covariant T>;// Lists (declares list)abstract list in List<T> is// No �eldwith// Constructorsvcons(h: T): cons<T>;cons(h: T): #cons<T>;scons(h: T): #scons<T>;// Methodshead(): T;tail(): list<T>;size(): int;reverse(): alike;concat(l: alike): alike;map(f: T -> U): L<U>where alike = L<T> endend;// Empty list (declares nil and #nil)concrete nil < list in List<T> is// No new �eld or methodend;// Cons lists (declares cons and #cons)concrete cons < list in List<T> is// Head and tail �eldsh: T;t: list<T>end;// Sized lists (declares slist)abstract slist < list in List<T> is// No new �eld or methodend;// Empty sized lists (declares snil and #snil)concrete snil < nil, slist in List<T> is// No new �eld or methodend;// Sized cons lists (declares scons and #scons)concrete scons < cons, slist in List<T> is// Size �elds: intendend List;

module List isopen List;// Constructorslist::vcons(h: _) = self.cons(h);slist::vcons(h: _) = self.scons(h);list::cons(h: _) =#cons fh=h, t=selfg;list::scons(h: _) =#scons fh=h, t=self, s=1+self.size()g;// Head of a listnil::head() = raise Empty;cons::head() = self.h;// Tail of a listnil::tail() = raise Empty;cons::tail() = self.t;// Size of a listnil::size() = 0;cons::size() = 1+self.t.size();scons::size() = self.s;// Reverse method and local auxiliary method revnil::reverse() = self;#cons::reverse() =rev(self.t, #nil.cons(self.h)g);#scons::reverse() =rev(self.t, #snil.scons(self.h)g);rev(l: list<T>, r: L<T>): L<T>where L <: cons end;rev(l: nil, r: _) = r;rev(l: cons fh, tg, r: #cons) =rev(t, r.cons(h));rev(l: cons fh, tg, r: #scons) =rev(t, r.scons(h));// Concatenationnil::concat(l: _) = l;#cons::concat(l: _) =self.t.concat(l).cons(self.h);#scons::concat(l: _) =self.t.concat(l).scons(self.h);// Map method#nil::map(f: _) = #nil;#snil::map(f: _) = #snil;#cons::map(f: _) =self.t.map(f).cons(f(self.h));#scons::map(f: _) =self.t.map(f).scons(f(self.h))end List;Figure 10: The List package11

4 Towards a real programming languageWe now sketch a new class-based object-oriented lan-guage with multi-methods, and show how its syntax canbe desugared into ML�. Instead of formally de�ning thelanguage, we exemplify its constructs at the hand of theList package of �g. 10. Note that the type hierarchy ofthis package, shown in �g. 11, is more re�ned than theone of �g. 1.First of all, we show how to add implementation in-heritance. For the sake of simplicity, as for most clas-sical object-oriented languages, we do not separate theimplementation inheritance hierarchy from the subtyp-ing hierarchy, but doing so would be easy. A declarationlike abstract list declares a type constructor listin constructor class List. This type constructor corre-sponds to an abstract parameterized class in OO par-lance. A declaration like concrete cons declares botha type constructor cons below list in class List and adata type constructor #cons below cons in class List.As always, cons can have subconstructors, but #consis minimal, and has its own constructor and selectorfunctions. The declaration of cons imposes that ev-ery data type constructor below cons, including #cons,has two �elds h of type T and t of type list<T>. Thesyntax #cons fh=1, t=#nilg can be used to build a#cons data object, and access, e.g., to the h �eld of acons object is performed via a method named List::himplicitly de�ned as followsList::h(self: cons<T>): T;List::h(self: #cons) = #cons.h(self);List::h(self: #scons) = #scons.h(self);using the selector functions of each data type belowcons. Note the use of constructor classes to provide ascope for �eld and method names. Also, note that theabove notation for de�ning methods by cases, which al-lows a method to be implemented in di�erent modules,is syntactic sugar for the following ML� methodmeth f� j trueg (self: cons[�]): �)[9�: #cons[�]) #cons:h self ;9
: #scons[
]) #scons:h self]If l is a list with a type in the domain of methodList::h, the dot notation l.h translates into the func-tion call List::h(l). Such a disambiguation, based onthe class of the �rst argument, is always possible pro-vided that l does not have the empty type 8�: �.Class methods like map specify a regular methodList::map with two parameters: an implicit self pa-rameter with type alike, and a parameter f with typeT -> U. The fact that map is de�ned in the scope of thede�nition of list automatically enforces the constraint

listnil slist cons#nil snil scons #cons#snil #scons�� @@�� AA �� AA �� @@�� @@Figure 11: Type hierarchy of the List packagealike <: list<T>. The type of map is thus8T; U; LList; alike : alike � list[T] ^ alike = LList[T]:(alike ; T ! U)! LList[U]As explained in section 2.5, alike does not neces-sarily denote the minimum type of the self parameter,in contrast to what selfty does in Object ML [35, 36].For example, method concat has type8T; alike : alike � list[T]: (alike ; alike)! alikewhich shows, in particular, that the concatenation oftwo empty lists is an empty list, a property not ex-pressible in any language we are aware of. The dotnotation l.map(f) can be used as for �elds to performthe function call List::map(l, f).A class method like head is implemented by de�ningmethod List::head by cases, and the syntaxcons::head() = self.hin the de�nition of head is syntactic sugar forList::head(self: cons) = self.hthat makes the self parameter explicit. The latter styleof de�nition o�ers the possibility to perform patternmatching on the self parameter as inList::head(self: cons fhg) = hwhere cons fhg is syntactic sugar for cons fh=hg.Note the use of the local method rev to implementreverse. This method accepts any list<T> as �rst ar-gument, any L<T>, where L is a type constructor belowcons, as second argument, and returns a L<T>. De�ningmethods independently from the type hierarchy allowsthis kind of methods to be de�ned as required with-out the need to introduce a new subtype to hold themethod. Also, note how the fairly imprecise type of thevirtual constructor vcons prevents its use in methodslike map with very precise types. Finally, remark thatan interface de�nes a name space for the entities that itdeclares. For instance, the quali�ed name of class Listis List.List, and the fully quali�ed name of methodmap is List.List::map. The meaning of a programwith several modules and interfaces consists in a globalletrec containing all the declarations and implementa-tions contained in these modules and interfaces.12

5 Related work and conclusionOur interest in this paper has been to enhance the stan-dard Hindley-Milner type system [21, 28] for an explic-itly typed version of ML so that it can be used forhigher-order object-oriented languages with polymor-phic multi-methods. We believe that ML� is a practicaland natural extension of the Hindley-Milner type sys-tem, and that constraint implication is a unifying con-cept for such extensions. In particular, it should not betoo di�cult to add type classes [31, 41] to our frameworkby re�ning the notion of constraint implication. Weconjecture that type inference for ML� programs with-out methods could be easily adapted from techniquesdeveloped in the literature [3, 16, 17, 18, 22, 30, 32].We believe that inferring the type of methods will bemuch more challenging.The model developed in this paper is very similarto that of the programming language Cecil [10], in par-ticular by its distinction between concrete and abstractclasses, the distinction between subtyping and imple-mentation inheritance, the use of method speci�cations,and the use of modules to provide encapsulation. How-ever, the type system proposed by Chambers and Leav-ens is only �rst-order and monomorphic, and the spec-i�cation of methods by means of sets of monomorphicsignatures is less expressive and more ad-hoc than ours.Nonetheless, many of the techniques developed in [10]could be adapted to our system, in particular tech-niques for true separate compilation of multi-methodsand compilation of dynamic dispatch.Castagna et al. [8] have de�ned an extension of F�that allows function overloading in a higher-order set-ting with explicit polymorphism and primitive subtyp-ing. Their model is quite powerful but technically rathertricky, as all impredicative models. Moreover, methodslack speci�cations, which can be a problem for modu-larity and scalability.ML� also has strong links with all systems derivedfrom the Hindley-Milner type system, in particular, sys-tems of overloaded functions built around the notions oftype and constructor classes [23, 24, 41]. These systemsare incomparable to ML� in terms of expressive power(non-structural overloading vs. true methods) but we�nd ML� much closer in spirit to class-based object-oriented languages, and also easier to extend.Duggan [13, 14], and then Odersky, Wadler, andWehr [31] have proposed the use of kinded types, whichare polymorphic constrained types with constraints onavailable instances of the operations used by functionbodies. This approach can be made to work under the\open world" assumption [13, 31], but types are ratherhard to read, since they mention program functions, andlead to method speci�cations which are dependent on

the program's text, which may be a problem for modu-larity and scalability. On the other hand, type inferenceis made easier by such an approach.Kaes [25] has tackled the decidability of type infer-ence in the context of overloading, subtyping, and recur-sive types, using polymorphic constrained types whichare more expressive than ours, and with a precise typ-ing of arithmetic operators. Moreover, his notion of\structural similarity" is fairly close to our notion ofconstructor class. However, his paper does not addressthe problem of de�ning methods and performing dy-namic dispatch.Mitchell [29, 30], Fuh and Mishra [17, 18], Aiken andWimmers [3], and Eifrig, Smith, and Trifonov [16], havealso addressed the problem of type inference in the pres-ence of primitive subtyping. Our notion of constraintimplication can be seen as a generalization of the in-stance notion for well-typings. Smith et al. [16] proposea record-based object-oriented language with polymor-phic methods which are less expressive than ours, andthe use of recursive types leads to a complex and po-tentially undecidable subtyping relation with an incom-plete, but decidable, axiomatization [39].The model proposed by Reppy and Riecke [35, 36]is record-based and single dispatch, and is powerfulenough to type a method like move , but not to typea multi-method like sub. Moreover, their model lacksparameterized classes. In contrast with our hypothesisthat data type constructors be minimal, the techniqueused by Reppy and Riecke to implement methods likemove that return a new object with exactly the typeselfty of the receiver is to pass the constructor new ofthe receiver as an argument.Mitchell and Jategaonkar [22] propose to extend MLpattern matching with
exible records and primitivesubtyping, in order to allow some form of object-orien-ted programming. Their system only has built-in oper-ations with constrained types like that of method sub.However, they informally show how to accommodate auser-de�ned class hierarchy of points with methods likemove : 8 t � point: t ! t with a unique implementationde�ned in the root class.Finally, we want to mention that a type checker forML� has been implemented in Objective Caml. Thisprototype type checks approximately 400 lines per sec-ond on a low-cost workstation. A system derived fromML� will be used in a forthcoming version of the hard-ware description language 2z developed in collaborationwith G�erard Berry and Jean Vuillemin [40].References[1] M. Abadi, L. Cardelli, B. Pierce, G. Plotkin. Dynamic Typ-ing in a Statically-Typed Language. ACM Transactions on13

Programming Languages and Systems, 13(2) (1991) 237{268[2] M. Abadi, L. Cardelli. A Theory of Primitive Objects:Second-Order Systems. Proc. of the European Symposiumon Programming, Springer-Verlag (1994) 1{25[3] A. Aiken, E. Wimmers. Type Inclusion Constraints andType Inference. Proceedings FPCA'93 (1993) 31{41[4] F. Bourdoncle, S. Merz. On the integration of func-tional programming, class-based object-oriented program-ming, and multi-methods. Technical Report 26, Centre desMath�ematiques Appliqu�ees, �Ecole des Mines de Paris (1996)http://www.ensmp.fr/~bourdonc/[5] F. Bourdoncle, S. Merz. Primitive subtyping ^ implicit-polymorphism j= object-orientation. Third InternationalWorkshop on Foundations of Object-Oriented Languages(1996) http://www4.informatik.tu-muenchen.de/~merz/[6] K. B. Bruce, A. Schuett, R. van Gent. PolyTOIL: a type-safepolymorphic object-oriented language (extended abstract).Proc. of ECOOP'95, LNCS 952 (1995) 27{51[7] K. B. Bruce, L. Cardelli, G. Castagna, The Hopkins ObjectGroup, G. T. Leavens, B. C. Pierce. On binary methods.Technical report LIENS-95-14 (1995)[8] G. Castagna, G. Ghelli, G. Longo. A calculus for overloadedfunctions with subtyping. Information and Computation,117(2) (1995) 115{135[9] G. Castagna, B. C. Pierce. Corrigendum: Decidable Bound-ed Quanti�cation. Proc. of the 22nd Symp. on Principles ofProgramming Languages (1995) 408{408[10] C. Chambers, G. Leavens. Typechecking and Modules forMulti-Methods. Technical Report UW-CS TR 95-08-05,University of Washington (1995)[11] P. L. Curien, G. Ghelli. Coherence of subsumption, min-imum typing and the type checking of F�. MathematicalStructures in Computer Science 2(1) (1992)[12] L. G. DeMichiel, R. P. Gabriel. Common lisp object systemoverview. ECOOP'87, LNCS 276 (1987) 151{170[13] D. Duggan, J. Ophel. Kinded Parametric Overloading.Technical Report CS-94-35, University of Waterloo (1994)[14] D. Duggan. Polymorphic Methods With Self Types for ML-like Languages. Technical Report CS-95-03, University ofWaterloo (1995)[15] D. Duggan, J. Ophel. Multi-Parameter Parametric Over-loading. Technical report, University of Waterloo (1995)(submitted to publication)[16] J. Eifrig, S. Smith, V. Trifonov. Sound Polymorphic TypeInference for Objects. Proc. of OOPSLA'95 (1995) 169{184[17] Y.-C. Fuh, P. Mishra. Type inference with Subtypes. 2ndEuropean Symp. on Programming, LNCS 300 (1988) 94{114[18] Y.-C. Fuh, P. Mishra. Polymorphic Subtype Inference: Clos-ing the Theory-Practice Gap. TAPSOFT'89, LNCS 352(1988) 167{183[19] K. Hammond, editor. Report on the Programming Lan-guage Haskell, version 1.3 (1995)[20] R. Harper, J. Mitchell. On the Type Structure of StandardML. TOPLAS 15(2) (1993) 211{252

[21] R. Hindley. The principal type-scheme of an object in com-binatory logic. Trans. Amer. Math. Soc., 146 (1969) 29{60[22] L. Jategaonkar, J. C. Mitchell. Type Inference with ex-tended pattern matching and subtypes. Fundamenta Infor-maticae. 19 (1, 2) (1993) 127{166[23] M. P. Jones. A system of constructor classes: overloadingand implicit higher-order polymorphism. FPCA'93 (1993)[24] S. Kaes. Parametric Polymorphism. Proc. of 2nd EuropeanSymp. on Programming, LNCS 300 (1988)[25] S. Kaes. Type inference in the presence of overloading, sub-typing and recursive types. Proc. of Conf. on Lisp and Func-tional Programming (1992) 193{204[26] X. Leroy, M. Mauny. Dynamics in ML. Journal of FunctionalProgramming, 3(4) (1993) 109{122[27] P. Lincoln, J. C. Mitchell, Algorithmic Aspects of Type In-ference with Subtypes. Proc. of the 19th ACM Symp. onPrinciples of Programming Languages (1991) 293{304.[28] R. Milner. A theory of type polymorphism in programming.Journal of Computer and System Sciences, vol. 17 (1978)348{375[29] J. C. Mitchell. Coercion and Type Inference (Summary).Proc. of the 11th ACM Symp. on Principles of ProgrammingLanguages (1984) 175{185[30] J. C. Mitchell. Type inference with simple subtypes. Journalof Functional Programming, 1(3) (1991) 245{285[31] M. Odersky, P. Wadler, M. Wehr. A second look at over-loading. Proc. of the 7th Conf. on Functional Programmingand Computer Architecture (1995) 135{146[32] J. Palsberg. E�cient inference of object types. Proc. IEEESymp. Logic in Computer Science (1994) 186{195[33] B. C. Pierce, D. N. Turner. Simple type-theoretic foun-dations for object-oriented programming. Journal of Func-tional Programming 4 (2) (1994) 207{247[34] V. Pratt, J. Tiuryn. Satis�ability of Inequalities in a Poset.Technical Report 95-15(215), Institute of Informatics, War-saw University (1995)[35] J. Reppy, J. Riecke. Simple objects for Standard ML. Proc.of the 1996 SIGPLAN Conference on Programming Lan-guages Design and Implementation (1996) 171{180[36] J. Reppy, J. Riecke. Classes in Object ML via Mod-ules. Presented at the Third International Workshopon Foundations of Object-Oriented Languages (1996)http://www.cs.williams.edu/~kim/FOOL/[37] J. Tiuryn. Subtype Inequalities. Proceedings of the SeventhSymposium on Logic in Computer Science (1992) 308{315[38] J. Tiuryn, M. Wand, Type Reconstruction with RecursiveTypes and Atomic Subtyping. 18th Colloquium on Trees inAlgebra and Programming (1993)[39] V. Trifonov, S. Smith. Subtyping Constrained Types. ThirdInternational Static Analysis Symposium. Lecture Notes inComputer Science 1145 (1996) 349{365[40] J. Vuillemin. On circuits and numbers. IEEE Trans. onComputers, 43:8 (1994) 868{879[41] P. Wadler, S. Blott. How to make ad-hoc polymorphismless ad-hoc. Proc. of the 16th ACM Symp. on Principles ofProgramming Languages (1989) 60{7614

