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AbstractProgramming parallel computers remains a di�cult task. An ideal program-ming environment should enable the user to concentrate on the problem solvingactivity at a convenient level of abstraction, while managing the intricate low-leveldetails without sacri�cing performance.This thesis investigates a model of parallel programming based on the Bird-Meertens Formalism (BMF). This is a set of higher-order functions, many of whichare implicitly parallel. Programs are expressed in terms of functions borrowedfrom BMF. A parallel implementation is de�ned for each of these functions for aparticular topology, and the associated execution costs are derived. The topolo-gies which have been considered include the hypercube, 2-D torus, tree and thelinear array. An analyser estimates the costs associated with di�erent implement-ations of a given program and selects a cost-e�ective one for a given topology. Allthe analysis is performed at compile-time which has the advantage of reducingrun-time overheads. The cost model's accuracy in choosing a cost-e�ective im-plementation and predicting its performance has been studied for three exampleprograms.The main contribution of the thesis is the cost model which aims to predictrealistic performances and which considers several possible parallel implementa-tions for a given program before selecting a cost-e�ective one.i
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Chapter 1IntroductionDeveloping e�cient software for parallel computers is a di�cult task, even forthe specialist. This is so for reasons which are peculiar to the nature of parallelprograms.� Non-determinism - The order of events in a parallel program can vary atrun-time and is di�cult to predict. This makes it hard to debug parallelprograms and verify their correctness.� Resource Management - The e�cient management of all the computationaland communication resources is an onerous task. The computational loadhas to be optimally divided and the communications managed in a mannerwhich produces programs that are free from deadlock and non-termination.� Portability - The architectures of parallel machines tend to be di�erent.This means that for a given problem, di�erent algorithms might result ine�cient solutions on their respective machines, making parallel programsless portable.1.1 Approaches to Parallel ProgrammingThe approaches which make parallel programming more manageable can be di-vided into three main topics. 1



Chapter 1 | Introduction 21. Explicit Parallel Programming Languages - These languages include con-structs that allow the programmer to explicitly create processes that can beexecuted in parallel, and to manage the interactions between them. Lan-guages such as Ada, Modula and Concurrent Pascal, have parallel constructsintegrated into them and this makes them fairly architecture-independent.Other sequential languages that use library calls to handle the parallelismmay be architecture-dependent. However, the creation of portable message-passing libraries such as MPI [Mes94] and PVM [B+91] makes it possibleto write portable parallel programs using sequential languages like C.2. Parallelising Compilers for Sequential Languages - These compilers createparallel code from existing sequential programs. The advantages are the fol-lowing: programmers need not learn a new language; investment in existingsoftware is not lost; the method is architecture-independent; and e�cientcode can be generated for many regular problems. However, all the avail-able parallelism may not be detected because these compilers must adopta conservative approach in generating parallel code, in order to ensure itscorrectness. Compiler directives may solve this problem to some extent,but these directives may destroy the architecture-independence. Moreover,the code obtained by parallelising the sequential solution to a problem, maynot be the most e�cient way of solving the problem in parallel.3. Implicit Parallel Programming Languages - Programs in these languages areinherently parallel and there is no need for explicit parallel constructs. Suchlanguages tend to be applicative or functional [BW88] in nature, and arearchitecture-independent. An added advantage of functional languages isthat a correct program will produce the same result, irrespective of the orderof evaluation. It is possible to write programs at a high level of abstraction



Chapter 1 | Introduction 3using higher-order functions. Functional languages also possess other at-tractive features such as a �rm mathematical foundation, lazy evaluation,and amenability to transformation [Bac78, AE88, Hug90]. However, func-tional languages tend to be less e�cient than their imperative languagecounterparts.This thesis considers a data-parallel model of parallel computation based onApproach 3. The low-level decisions about managing parallelism are transferredfrom the programmer to the compiler, which results in easier program develop-ment and also enhances its portability. However, compilers for these languagesmay not always detect all the available parallelism nor select the most cost-e�ective parallel implementation. This thesis addresses the latter problem. Acost model is developed for a particular style of implicit parallel programming,based on the Bird-Meertens Formalism (BMF). The problem associated with thedetection of the available parallelism is removed by restricting the expression ofdata-parallelism to a �xed number of prede�ned constructs. The model is aimedat executing data-parallel programs on MIMD (Multiple Instructions MultipleData) machines to produce SPMD (Single Program Multiple Data) programs.1.2 MotivationsThe discussion in Section 1.1 highlights the need for a model of parallel compu-tation that ideally incorporates the following features:1. Architecture-independence2. Abstraction from the low-level details of parallel programming3. Ability to predict performance accurately4. Ease of learning and use



Chapter 1 | Introduction 4Several parallel programming models have been proposed and their merits anddisadvantages are discussed in Chapter 2. This thesis considers a Higher-orderParallel Programming (HOPP) model which possesses all of the features justdescribed. HOPP is based on the Bird-Meertens Formalism [Bir87a]. This form-alism was originally developed in a sequential context, with a view to providinga calculus for deriving e�cient programs from problem speci�cations, by using aseries of program transformation rules. The theory initially concentrated on listdata structures [Bir87b, Spi89], but other data structures such as multidimen-sional arrays have also been studied [Mil93]. HOPP focuses on the theory thatwas developed for list data structures. It comprises of a set of useful data-parallelfunctions whose de�nitions can be found in Chapter 4. The theory is based on afunctional paradigm and automatically inherits features 1 and 2 (For more details,see Section 3.4). Since the model can be embedded in any functional language,there is no learning curve associated with its use (feature 4). The thrust of thisthesis lies in the incorporation of feature 3 into the model. The behaviour of thefunctions in BMF is predetermined and this feature is exploited in building a costmodel that aims to accurately predict the costs of programs. The cost modelcurrently focuses on distributed-memory machines in which communication coststend to be signi�cant. The prediction of the costs associated with the possibleparallel implementations of a program would enable a compiler to generate acost-e�ective implementation for it. The Bird-Meertens Formalism appears to bean attractive candidate on which to base a model of parallel computation, if thecost model is able to predict realistic program performance.The observation of the suitability of BMF in parallel computation has beenmade by a number of other researchers, notably [Ski92, Gor95]. In [Col87], anapproach to parallel programming based on Skeletons is proposed. Skeletons areabstractions of well-known parallel computational forms for which the compiler



Chapter 1 | Introduction 5can generate and manage e�cient parallel implementations. It has been observed[Col88] that skeletons can be elegantly expressed as higher-order functions whichare often borrowed from BMF, for which, in turn, parallel implementations canbe realised. This idea has been exploited in [D+93].1.3 Outline of the ThesisChapter 2 discusses some of the issues involved in parallel skeletal program-ming and some of the techniques that have been studied. Other approaches,particularly to parallel functional programming, are surveyed.Chapter 3 provides an overview of the HOPP model. Some of the advant-ages and limitations of the HOPP model are discussed, and an outline of theparallelisation scheme is presented.Chapter 4 de�nes the functions borrowed from the Bird-Meertens Formalism.Other useful functions which are expressed in terms of these functions and whichare included in the HOPP model, are also de�ned. Three programs which areexpressed in terms of these functions are discussed. These programs are used totest the performance of the model and the results of their implementation arepresented in Chapter 7.The cost model is described in Chapter 5. The nature of the problem speci�c-ation and the compile-time cost analyses of programs are discussed, independentof the characteristics of the target architecture.In Chapter 6, parallel implementations for the functions de�ned in Chapter 4are considered. The algorithms for implementing them on four target topologies,namely, the hypercube, 2-D torus, tree and linear array, are de�ned and theirassociated costs are derived.The results of implementing the example programs (de�ned in Chapter 4)are presented in Chapter 7. The programs were implemented on a hypercube



Chapter 1 | Introduction 6topology, since it proved to be suitable for most of the BMF functions and alsofor the parallelisation scheme. For each program, the predicted cost of the chosenimplementation is compared with its actual cost of implementation on a networkof transputers.Chapter 8 highlights the main contributions of the thesis. Some conclusionsare drawn and directions for future research are explored.



Chapter 2Related WorkThe di�culties associated with parallel programming have motivated the develop-ment of models and techniques to make it a more manageable task. Parallel pro-gramming using skeleton functions is one such approach and this chapter focusesprimarily on the developments in this area, since it is of direct relevance to thisthesis. Techniques based on functional programming constitute a well-researchedtopic and since the skeleton functions can be elegantly expressed in a functionalstyle, there is a close relationship between the two approaches. The HOPP modelis based on the Bird-Meertens Formalism which is functional in nature. Thechapter, therefore, also provides a brief introduction to functional programmingand surveys some of the approaches to parallel functional programming.2.1 Parallel Skeletal ProgrammingA number of recent approaches have focussed on parallel programming using al-gorithmic skeletons. The concept of algorithmic skeletons was �rst presented in[Col87, Col89]. A skeleton is an abstraction of some well-known computationalform. The idea is to present the programmer with a selection of such skeletons,each of which captures the essence of some particular style of programming, andis parametrised by certain functions and data structures. The programmer se-lects the skeleton describing the problem to be solved. In order to implement the7



Chapter 2 | Related Work 8selected skeleton, the de�nitions for the functions and data structures on which itis parametrised must be provided. The programmer's responsibility ends at thispoint and the system then provides an e�cient parallel implementation for theskeleton on a chosen architecture. The implementation itself is transparent to theuser and can make use of optimisations based on the nature of the target archi-tecture characteristics, in an e�ort to derive e�cient parallel implementations. Itwas further noted [Col88] that skeletons could be expressed elegantly as higher-order functions (see Section 2.2) in functional languages, thereby establishing aone-to-one correspondence between the two.Four skeletons were presented in [Col87], together with analyses of their im-plementation on a 2-D mesh and the corresponding asymptotic performances.Examples of problems that �t into each category were also presented.� Recursive Divide and Conquer (RDC) - This is a skeleton that describes thewell-known technique of solving a problem by recursively dividing it intosmaller instances of the same problem. When an instance of the problem isnot divisible further, it is solved by some non-recursive method. The skel-eton requires that the degree of recursion (i.e. the number of sub-instancesgenerated) be speci�ed.� Task Queue - The technique is suitable for problems whose instances andsolutions may be represented by a shared data structure and whose solutionsare obtained by repeatedly executing some task. Tasks are maintained ina queue from which processors pick them up and process them. Any tasksthat are created as a result, are placed back on the queue. The procedureis repeated until the queue becomes empty.� Iterative Combination - This skeleton deals with problems that would be de-scribed by a set of objects, together with some rule or criterion for combining



Chapter 2 | Related Work 9pairs of objects. The algorithm performs a series of iterations and in eachiteration, pairs of objects are combined according to the rule. The iterationstops when either all the objects have been combined into one or when nomore combinations are possible.� Cluster - This is a general-purpose skeleton, obtained as a result of combin-ing the RDC and Iterative Combination skeletons.The four skeletons described were recently implemented in paraML [BN93], andthe details can be found in [Bai94]. A number of other approaches have beenmotivated by the work just described. Some of them are described in the followingparagraphs.The work of Darlington et al [D+93, DT93, DTG93] is an immediate follow-up of the ideas presented in [Col88]. A set of higher-order functions are used toexpress skeleton-based parallelism. Program transformation techniques are usedat di�erent levels of the development process. At the highest level it is used totransform an existing program speci�cation to one in terms of skeletons. Trans-formations to convert one skeleton form into another are used with a view toimproving portability and e�ciency. The set of skeletons available to a program-mer include:� PIPE - for exploiting pipeline parallelism� FARM - for exploiting data parallelism, where each processor is responsiblefor a part of the data� DC - for problems requiring the divide and conquer approach� RaMP - (Reduce and Map over Pairs) - for problems where interactionsbetween pairs of objects are calculated and the results are combined toproduce the �nal result for each object



Chapter 2 | Related Work 10� DMPA - (Dynamic Message Passing Architecture) - for exploiting parallel-ism in programs where the inter-process communications are not predeter-mined, but are determined at run-time, depending on the values of data.Performancemodels are used for each skeleton-machine pair, in order to enable theprediction of its performance on the corresponding machine. [DTG93] describes aprototype implementation on a transputer-based machine and presents the resultsof implementing a ray-tracing example. The performance of the parallel imple-mentation of the program is shown to be in accordance with that predicted bythe performance models.P 3L (Pisa Parallel Programming Language) [DM+92, BD+93, Pel93] is aparallel language that is aimed at exploiting parallelism in distributed-memoryMIMD machines. A set of constructs for expressing parallelism is embedded inthe imperative language C++. These constructs include:� farm - to exploit data parallelism� pipe - to exploit pipeline parallelism� map - to apply a given function to all the elements of a vector� geometric - to express general data parallelism in one and two-dimensionalarrays� reduce - reduces a vector by applying a binary associative operator to allits elements� tree - to process tree-structured computations� loop - to handle iterative computations



Chapter 2 | Related Work 11The language incorporates a sequential construct for expressing the sequentialportions of the code. A program is expressed as a composition of parallel con-structs, each of which may contain sequential blocks of code or other parallelconstructs. Data communications between constructs is speci�ed by using in(...)and out(...) parameter lists at the interfaces of the parallel constructs.P 3L is machine-independent in that it is compiled down to an abstract ma-chine P 3M , which in turn is implemented on top of a real machine. The mappingof the abstract machine to a real machine is achieved by the use of a set of lib-raries - the mapping library and the optimisations library, which use the detailsof the target architecture to determine e�cient implementations. The compilerchooses one of several possible implementations for each construct and the actualcode for these constructs is maintained in the process template library.SkelML [Bra94, Bra93] is a skeleton-based prototype compiler for ML. Paral-lelism in programs is implicitly expressed by the use of a small set of prede�nedskeletons. The skeletons are expressed as higher-order functions which are identi-�ed by the compiler. The user is also required to provide representative data setsfor the program since the compiler relies on execution pro�le information in orderto decide on the portions of the program that can be e�ciently executed in par-allel. The compiler performs certain optimising transformations and generatesOccam 2 code for the Meiko Computing Surface. Six skeletons are supported:map, �lter, fold, �ltermap, map�lter and foldmap, of which the last threeare combinations of the �rst three. A process pipeline which allows for com-positions of the six skeletons is also supported. A limitation is that the processpipeline is the only means of nesting skeletons and no other skeletons can benested within others. Although a limited number of skeletons are catered for, thedesign of the compiler allows for this set to be extended. The results of applyingthe compiler to three example programs are presented. The performance of all



Chapter 2 | Related Work 12the programs seems to indicate a satisfactory performance by the compiler.PUL (Parallel Utilities Library) [BCMT93] is a skeleton-based library thatprovides utilities which support common parallel programming paradigms suchas task farms, divide-and-conquer, spatial domain decomposition and mesh-basedproblems. Programs can be written in C or FORTRAN. PUL was developed ontop of CHIMP (Common High-level Interface to Message Passing), and the di�er-ent skeleton modules can be combined by the use of the explicit communicationprimitives in CHIMP.Parsec (Parallel System for E�cient Compilation) [FSWC92, FW93] is a par-allel programming environment based on skeletons. The skeletons supported areprocessor farms and divide and conquer, which are implemented on a logicaltree of processors, which in turn can be mapped onto the real machine. Eachskeleton is parametrised on information such as number of processors, topologyand granularity, and also has performance models associated with it. Performanceinformation is gathered during test runs and and an analysis of this information,together with the performance model provides the values for the parameters ofthe skeleton. A graphical interface allows the programmer to tune the applicationaccording to requirement.[DDD95] addresses the issue of performance prediction for skeletons. Theexecution time of a skeleton is described by a generic higher-order complexityfunction. The time complexity of a particular application is derived from thevalues of its parameters when the skeleton is instantiated. A measure of thescalability of the application is derived using isoe�ciency functions. The methodis illustrated on some examples from image processing and the experimental res-ults, both for the time complexity and scalability, are shown to closely match thetheoretical predictions.A number of techniques focus on the development of parallel programs using



Chapter 2 | Related Work 13the transformational approach. A skeleton-based parallel programming environ-ment is augmented with special transformation rules which are used in deriving ef-�cient parallel programs. An example of this approach has already been discussedin [D+93]. [Gee94] describes a framework for parallel program development usingskeletons and transformations. As in [D+93], the emphasis is on inter-skeletontransformations, in order to enhance portability. In an e�ort to demonstrate theexpressiveness of skeletons and the power of inter-skeleton transformations, theimplementations for four example problems on two di�erent architectures are de-rived using a formal method. A similar approach is emphasised in [BGP93], anda processor array is characterised in terms of skeletons.The Bird-Meertens Formalism (BMF) [Bir87a] is a calculus for deriving e�-cient programs from problem speci�cations. A theory in BMF describes the beha-viour of a datatype (e.g. a list), and provides a set of operators on that datatype[Bir89], together with some transformational rules relating the operators. (Fordetails on the set of BMF operators on lists, see Chapter 4). The theory was ori-ginally developed in the context of sequential programming, in order to provide aformal basis for step-by-step transformation of a, possibly, ine�cient speci�cationof a program into an e�cient one. Additionally, the BMF operators are implicitlyparallel, which can be exploited in developing a parallel programming model. Inparticular, the operators on the list datatype are described by higher-order func-tions and programs written in terms of these operators allow for a high level ofabstraction. This means that programs in BMF can be written independent ofthe architecture at which they are targeted, while the strong theoretical founda-tion of BMF enables the veri�cation of program correctness and also aids formalparallel program development. These attractive features of BMF have promptedresearchers to advocate it as a model of parallel computation [Ski92, Ski91]. Also,since the behaviour of the functions in BMF is predetermined, it is possible to



Chapter 2 | Related Work 14compute their costs of execution [SC93], in an e�ort to predict the performanceof the program.Many recent approaches to the derivation of e�cient parallel programs usethe semantics-preserving transformations in BMF to obtain e�cient parallel pro-grams from initial abstract speci�cations. An example of such an approach canbe found in [GL93], where the derivation of a parallel implementation for divide-and-conquer applications is described. An initial speci�cation in the form of amutually recursive functional de�nition, is subjected to formal re�nement usingthe correctness-preserving transformations in BMF. The �rst phase of the deriv-ation results in the construction of a parallel functional program scheme, fromwhich an imperative distributed SPMD program is derived. E�ciency �guresin the range of 0.6-0.9 are reported on example implementations on a 64-nodetransputer system. A similar technique is used in [Gor95], in which BMF is usedin the derivation of a parallel program for polynomial multiplication. Startingwith a mathematical speci�cation, an SPMD program is derived, together with aprocess topology for the program. This topology must, in turn, be mapped ontoa real machine. BMF expressions are used to make decisions regarding data par-titioning and interprocessor communications. [Roe94] discusses the derivation ofe�cient parallel programs for SIMD and MIMD machines using BMF. A processof upward re�nement is used, in which successive steps involve the incorporationof more machine-dependent implementation details into the program.2.2 Functional ProgrammingFunctional languages have their foundations in mathematical logic. Functionalprograms can be viewed as a set of rules that describe what to do as opposedto how to do it. Functional languages are based on Church's lambda-calculus[Chu41] and indeed these languages are sometimes referred to as lambda calculus



Chapter 2 | Related Work 15with syntactic sugar. Expressions in the lambda calculus can be evaluated inany order, (including in parallel), without a�ecting the �nal result. Also, in theevaluation of a lambda expression, side e�ects cannot occur. This means thatan expression can be replaced by its value at any point in the program and thisproperty is known as referential transparency. Functional languages that do notallow side e�ects are pure and those that do allow side e�ects are impure. ML[MHT89] is an impure functional language, while Hope [BDS80] is pure. Theproperty of referential transparency is lost in impure languages. More details offunctional languages and the lambda calculus may be found in [Mic89]. Functionallanguages can also be classi�ed as strict or lazy. In the case of strict languagessuch as FP [Bac78], the arguments of functions are evaluated before the function.In the case of lazy languages such as Haskell [H+92], the evaluation of functionarguments are delayed until their values are actually required.Although functional languages have their roots in the lambda calculus, theyincorporate a number of features that make them less rigid and more user-friendly.Functions are treated as �rst class objects and a program in a functional languagecomprises entirely of a set of functions, each of which has well-de�ned input para-meters and returns a result value. Functions can be written so that they can beapplied to a set of di�erent data types. This is made possible by polymorphic typechecking [Mil78]. Most functional languages have type inference facilities wherebythe type of an identi�er or function is deduced from the type information of otheridenti�ers and functions. Type inference is possible because these languages arestrongly-typed and provide for static type checking. A function can be partiallyapplied to only the �rst few of its arguments. The evaluation of this functionreturns a new function that is applied to the remainder of the arguments. Suchfunctions are said to be curried [Ull94], and the arguments to functions can there-fore be represented without the need for any brackets. Functions can be passed as



Chapter 2 | Related Work 16arguments to functions and can also return functions as results. Functions thatpossess either, or both, of these properties are called higher-order functions andprovide for a very high level of abstraction in expressing programs.2.3 Parallelism in Functional LanguagesFunctional programs contain implicit parallelism. This is because of their founda-tions in the lambda calculus, where expressions can be reduced in parallel withouta�ecting the outcome. The abstraction power in these languages can be usedto hide the low level details of parallelism from the programmer, therefore al-lowing for easier program development. A number of approaches for extractingparallelism from functional languages have been considered. Some of these ap-proaches focus on explicit methods, where the onus of identifying and exploitingparallelism is on the programmer. These approaches tend to incorporate someform of annotations in the program, and these annotations indicate the parts ofthe program that must be evaluated in parallel. Implicit approaches focus ontechniques that can identify potential parallelism and parallelise a program withlittle or no involvement from the programmer. The techniques surveyed in thefollowing sections include those based on dataow and graph reduction.2.3.1 Dataow TechniquesThis section gives a brief introduction to the concept of dataow computing.Since it is not of direct relevance to this thesis, it is merely meant to serve as apointer to further reading.In the dataow model of parallel computation, a program is represented bya directed graph [DK82], in which the nodes represent instructions and the arcsrepresent the paths of the data-tokens. A node executes the instruction (or �res),when data becomes available on all of its input arcs and places the result on



Chapter 2 | Related Work 17its output arc. Several nodes can �re simultaneously, o�ering scope for very�ne-grain parallelism. Features include, absence of side e�ects, implicit paral-lelism, and single assignment, whereby a variable can be assigned a value onlyonce, which makes the binding unchangeable. Languages based on the dataowconcept include, most notably, Id (Irvine dataow) and SISAL (Streams and It-eration in a Single-Assignment Language). Id [Eka91] is a functional languagewhich has been implemented on architectures such as the MIT Tagged-tokendataow architecture [AN87] and the MIT/Motorola Monsoon Dataow System[HCAA93]. SISAL [Ske91] is a functional language with imperative constructssuch as WHILE and FORALL loops, for solving scienti�c problems. Tech-niques for the automatic detection and exploitation of parallelism in SISAL pro-grams are discussed in [Sar89]. The technique uses execution pro�les of programsand information about the target architecture characteristics in deriving e�cientparallel implementations.2.3.2 Techniques Based on Parallel Graph ReductionOne of the more popular techniques for implementing functional languages is bya method known as graph reduction. A program in a functional language can betransformed into some form of the lambda calculus [Jon87]. In evaluating such aprogram, a lambda expression is represented as a directed graph in which operat-ors, constants and variables are represented as leaves. Lambda abstractions arerepresented by lambda nodes and function applications by binary apply nodes.The left child of an apply node represents the function to be applied to an argu-ment, which is represented by the right child. The graph reduction proceeds byrepeatedly overwriting the apply nodes by applying the function on its left branchto its argument on its right branch. Common subexpressions are, therefore, sharedby means of a pointer. This ensures that a subexpression is evaluated only once



Chapter 2 | Related Work 18and the value can be used by all the other expressions that have a pointer to it.If the body of a lambda abstraction contains free variables, then graph reductioncannot be performed e�ciently, since the value of the result will depend on thevalue of the free variables. Combinators are functions (or lambda abstractions)that contain no free variables. It was shown that by using a �xed set of combin-ators [Tur79], free variables can be abstracted from an expression. This idea wasgeneralised by the introduction of the concept of supercombinators [Hug82]. Asupercombinator is a lambda-abstraction that contains no free variables and anyother lambda-abstractions in its body are also supercombinators. Individual func-tions in the program can be replaced by supercombinators in order to facilitatee�cient graph reduction.A large number of techniques for exploiting parallelism in functional languagesare based on parallel graph reduction [Jon89]. The program graph is reduced inparallel. Tasks comprise of expressions that are ready for evaluation and arestored in a task pool, which may be either central or distributed. They aredistributed to processors, which evaluate them. In the evaluation of a task, a newtask could be created, and this creates a need for e�cient dynamic scheduling andload balancing techniques. A number of parallel graph reduction machines havebeen built and some of them are briey discussed. Several of these systems useprogrammer annotations to identify and exploit useful parallelism and cannot,therefore, be classi�ed as implicitly parallel systems.� ALICE and Flagship - The ALICE (Applicative Language Idealised Com-puting Engine) [DR81, HR86] architecture comprises of up to 40 transputersconnected by an interconnection network. The tasks are stored in a cent-ral pool and processors return any newly-created tasks to the pool. It wasone of the �rst parallel graph reduction machines to be built, but su�eredfrom limitations due to high communication latencies and small grain size



Chapter 2 | Related Work 19[Kea94]. In order to overcome some of these limitations, Flagship [Kea94]was built. The central task pool was replaced by a distributed programgraph, with each processor having its own local memory. In spite of e�ortsto preserve locality in distributing the program graph, the system did notperform well due to overheads caused by non-local accesses.� GRIP (Graph Reduction In Parallel) - GRIP [JCSH87] is a machine thatis specially designed for the parallel supercombinator reduction of Haskellprograms. It comprises of up to 20 Processor Element (PE) boards, witheach board comprising of 4 PE's and an Intelligent Memory Unit (IMU),where the program graph is stored. One PE acts as system manager, whilethe others perform graph reduction. Various strategies for creating (spark-ing) new tasks, such as programmer annotations and dynamic techniquesbased on current load information [JH92, HJJ94] have been investigated.Reports of speedup on a number of applications coded in Haskell can befound in [Jr93].� The < v;G >-machine [AJ89] - This is a parallel version of the G-machine[Joh84]. It performs the supercombinator reduction of lazy-ML programs.The supercombinators are translated into G-machine instructions. The par-allelism is explicitly requested by the programmer, using SPARK annota-tions. Speed-ups have been obtained on example programs, as compared totheir corresponding sequential implementations on the G-machine.� Other Systems - There are several other parallel graph reduction machinesthat have been built. These include ZAPP (Zero Assignment Parallel Pro-cessor) [BS81], MaRS (Machine �a R�eduction Symbolique) [C+89], HDG(Highly Distributed Graph) Machine [LKB91], etc. Some functional lan-guage implementations employ parallel graph reduction techniques. Two



Chapter 2 | Related Work 20such systems are Alfalfa and Buckwheat [Gol89, Gol88], which are par-allel implementations for the functional language ALFL on a DistributedMemory Intel iPSC hypercube, and a Shared Memory Encore Multimax,respectively. Concurrent Clean [NSvEP91] is another example of a lazyhigher-order language that uses parallel graph reduction based on annota-tions supplied by the programmer.2.3.3 Other ApproachesThere are several other approaches to data-parallel programming based on func-tional languages. A few of these are briey mentioned here, essentially to serveas pointers to further reading. [Jou91] describes a strategy for compiling func-tional languages onto SIMD architectures. The approach consists of the additionof some primitive data-parallel operators to an enriched form of the lambda cal-culus. The emphasis is on the construction of all data-parallel operations fromthis small set of primitive operators. Programs are compiled onto an abstractmachine called the Planar Abstract Machine (PAM), which is derived from anabstract machine called the Spineless Tagless G-machine [JS89]. NESL [Ble93]is a data-parallel strict functional language, which has an ML-like syntax andsupports polymorphism. It comprises of data-parallel constructs that can be nes-ted, producing nested parallelism. [PD93] propose a template-based approach toparallel programming. An implementation template is described as \a parametricprocess graph that implements a particular parallelism exploitation form onto agiven (regular) architecture." Each template has a performance model on a givenarchitecture, thereby enabling the prediction of its performance on that architec-ture. A slight variant of Backus' FP [Bac78] is chosen as the functional languageand the issues and strategies involved in the construction of a template-basedcompiler for FP are discussed.



Chapter 2 | Related Work 212.4 Conclusion and Thesis ObjectivesThe discussion in the previous sections clearly indicates the suitability of thefunctional approach in the development of models of parallel computation. Tech-niques based on Dataow and Graph Reduction appear to have concentrated onthe concept of designing specialised machines to make the corresponding modelsof parallel computation e�ective. Also, all problems are handled in an identicalmanner, as opposed to using specialised approaches for e�ective implementationsof di�erent types of problems. However, the idea in this thesis is to provide amodel of parallel computation that could be applied e�ectively to a variety ofproblems on di�erent machines. To this end, the method based on algorithmicskeletons seems to be more promising.In particular, the Bird-Meertens Formalism contains a repertoire of data-parallel, higher-order functions whose performance can be analysed at compile-time. Although it has been pointed out that a model of parallel computationbased on BMF is an attractive proposition [Ski92], there has been little researchin the development of realistic cost (performance) models for such a model ofparallel computation. The most signi�cant contribution in this area has beendescribed in [SC93]. However, the cost model described is at a higher level ofabstraction than is desired, in order to produce accurate performance estimates.In particular, communication costs have not been modelled at a level of detailrequired to reect practical behaviour. Also, the model only handles parallelismat the level of the outermost higher-order function. This thesis aims to addressthese issues, with a view to developing a realistic cost model for a model of par-allel computation based on the Bird-Meertens Formalism. The main objectivesof the thesis can be summarised as follows:



Chapter 2 | Related Work 22� Investigate the feasibility of a model of parallel computation based on theBird-Meertens Formalism for distributed-memory MIMD machines.� Provide an extended set of useful functions based on BMF, in an attemptto make programming in terms of these functions natural.� Analyse the behaviour of this set of functions on di�erent target topologies.For each target topology, derive cost-e�ective parallel implementations forall the functions in the set, together with the corresponding cost estimates.� Develop a cost model that would realistically predict the performance of aprogram expressed in terms of this set of functions on di�erent topologies.The cost model would use the cost estimates of individual functions togetherwith characteristics of the target architecture and input data structures toselect a cost-e�ective parallel implementation for a given program on a givenarchitecture.� Study the accuracy of the cost model by testing it on example programs.



Chapter 3Overview of the HOPP Model3.1 IntroductionThis chapter presents an outline of the HOPP approach to parallel programming.HOPP is based on an implicitly parallel language whose constructs are borrowedfrom the Bird-Meertens Formalism (BMF) [Bir89] and FP [Bac78]. These con-structs are essentially higher-order functions which perform useful operations onlists. Most of these functions are inherently parallel and will henceforth be re-ferred to as recognised functions. Since the behaviour of the recognised functionsis predetermined, a program which is expressed in terms of these functions canbe analysed at compile-time to realise a cost-e�ective parallel implementation.However, such an analysis is only possible for regular problems which are ex-pressed in terms of the recognised functions. The implications of regularity in thiscontext are discussed in Section 3.3. The programs are targeted at distributed-memory machines in which the communication costs tend to be signi�cant.3.2 The Features of the ModelThe HOPP model comprises of three parts - the program model, the machinemodel and the cost model. 23



Chapter 3 | Overview of the HOPP Model 24� The program model - A program in HOPP is a composition of nested in-stantiations of recognised and user-de�ned functions. Composition in thiscontext refers to functional composition and works from right to left. Eachcomponent is referred to as a phase of the program.� The machine model - The programs are targeted at distributed-memoryMIMD machines which consist of a set of processors connected by an in-terconnection network. The topologies of machines considered include thehypercube, 2-D torus, linear array and tree. The data is distributed amongthe processors of the machine.� The cost model - For each recognised function, the cost model determines itscost of parallel execution on a given topology. E�ectively, the cost modelcomputes the costs of possible implementations of a given program on agiven machine topology. The theoretical cost model has been implementedin the form of an analyser .3.3 Language Assumptions for the ModelAs already mentioned, the HOPP model is based on a functional paradigm. Thissection describes the structure of a program in HOPP, along with the implicationsfor parallel implementations which will be considered. The meaning of regularityin this context is also discussed.The only data structure is the list, on which all the recognised functionsoperate. Lists can be arbitrarily nested and of any type, including standard oruser-de�ned. The current prototype implementation of the analyser and parallelcode library only allow lists whose base elements are of standard type or pairsof standard types, but this is only a limitation of the implementation. A furtherassumption which is made by the analyser is that sublists are of equal length.



Chapter 3 | Overview of the HOPP Model 25This is implicit in the assumptions of regularity, which will be discussed shortly.At the top level, a program is a composition of functions. Each component(phase) could correspond to a nested instantiation of recognised and user-de�nedfunctions. A program could consist of one or more phases and this is the onlyallowable structure for a program in HOPP. The following is an example of aprogram in HOPP. plus and times correspond to user-de�ned functions, whichadd and multiply two integers, respectively. The program comprises of threephases, each with instances of recognised (represented in boldface) and user-de�ned functions.prog xs = (s fold plus 0 � map (s scan plus 0)� r cross product times ys) xs;If the topmost level of a phase corresponds to a user-de�ned function, then anyinstances of recognised function(s) that it might have as its argument(s) is(are)not considered for parallel implementation. If the topmost level of a phase com-prises of a recognised function, then parallel implementations are considered forits argument recognised function. This procedure is followed up to a maximum ofthree levels or until a user-de�ned function is encountered. This implies that par-allel implementations are considered for nested recognised functions up to threelevels and any recognised functions below it are treated as user-de�ned functionsand implemented sequentially. The reasons for considering parallel implementa-tions for up to only three levels are purely pragmatic, and will be explained moreclearly in Section 3.5.Consider the following examples.prog 1 = map (s fold plus 0) xss;prog 2 = map S xss;fun S xs = s fold plus 0 xs;



Chapter 3 | Overview of the HOPP Model 26prog 3 = map (s fold plus 0 � map sqr) xss;prog 4 = map T xss;fun T xs = let val ys = map sqr xs ins fold plus 0 ysend;The recognised functions are depicted in boldface and ML notation is used. Thefunction plus simply adds two integers and the function sqr produces the squareof an integer.All the four programs consist of a single phase with nested instantiations ofrecognised and user-de�ned functions, in the restrictive format allowed by theHOPP model. prog 1 and prog 2 are equivalent in a sequential setting. However,s fold is encapsulated within the user-de�ned function, S, in prog 2. The cur-rent implementation of the HOPP model will only recognise map as a potentialfunction for parallel execution in prog 2, and s fold within S will only have asequential implementation. However, in the case of prog 1, s fold is at the toplevel and will, therefore, be recognised as a candidate for parallel evaluation, inaddition to map. Again, prog 3 and prog 4 perform the same functions, but theformer has more identi�able parallel implementations than the latter. In prog 4,a parallel implementation will be considered only for map, but none of the in-stances of recognised functions within T would be treated as such. The limitationarising from cases such as prog 2 can be easily recti�ed, by checking for instancesof recognised functions in the top level of user-de�ned functions. However, forcases such as prog 4, where instances of recognised functions can be arbitrarilynested within user-de�ned functions, the problem becomes harder to tackle.User-de�ned functions are implemented in a chosen strict functional language,following its syntactic rules. The HOPP model is independent of the base lan-guage. However, user-de�ned functions are not allowed to perform input-output



Chapter 3 | Overview of the HOPP Model 27operations. The data is input on a single processor which distributes it to otherprocessors as required, during the intermediate phases of the program. The out-put is produced at the end of the last phase in the program and could be leftdistributed across the processors. This is the only allowable form of data ow,which could be violated by allowing sequential functions to perform input-outputoperations.The implications of regularity in this context restrict polymorphism. Theanalyser needs type information at compile-time in order to compute the size ofthe base elements in the input list at every stage in the program. An accur-ate knowledge of this size is crucial to the computation of communication costs.Consequently, de�nitions of sequential functions that allow for full or restrictedpolymorphism are not permitted. The type-checker in the analyser would forcethe speci�cation of the required type information. The following examples illus-trate the point.ex 1 = map g xs;fun g (x,y) = ((if (y > 0) then �y else y), x);ex 2 = map all eq xs;fun all eq (x,y,z) = (x = y) andalso (y = z);In ex 1, the user-de�ned function g is polymorphic in x. Consequently, its sizecannot be deduced at compile-time and the analyser will not allow such a de�n-ition. The programmer will be forced to specify the type of x. In ex 2, theuser-de�ned function all eq is a valid restricted polymorphic function. However,since the types of x, y and z cannot be deduced at compile-time, such a de�nitioncannot be allowed. It may be noted that both of the above de�nitions will beallowed if type information is explicitly speci�ed.A regular program in this context is related to what is termed as a shapely one



Chapter 3 | Overview of the HOPP Model 28in [Jay95]. The analyser performs operations similar to shape analysis, whereby,given the shape of the inputs, the shapes of all the intermediate values and that ofthe result can be deduced. For a program that is not regular (shapely), these de-ductions will not, in general, be possible, leading to poor performance prediction.Shapely programs also have predictable communication structures. The latter isimposed by the use of recognised functions which only allow the expression ofcertain types of computation. This means that it would be di�cult to expressmany irregular problems using the set of recognised functions.Regularity also implies that the performance of a program does not varydrastically for di�erent data sets. This is a limitation arising due to compile-time analysis, but cannot be enforced by the analyser. Although it is possible towrite problems which are not regular in this sense, it cannot be guaranteed thatthe behaviour predicted by the analyser will be obtained experimentally in suchcases. (Refer to Section 5.1.4 for an example).3.4 The Advantages and Limitations of HOPPThe motivation behind choosing a language based on BMF as a model of parallelcomputation lies in the advantages that it o�ers.� The HOPP model is based on a functional paradigm. It therefore automat-ically inherits all the advantages of functional programming as described inChapter 2.� BMF incorporates functions that perform operations which are character-istic of several common parallel programming paradigms.� A program which is expressed in terms of the recognised functions is ana-lysed statically to realise a cost-e�ective parallel implementation. This ispossible because the behaviour of the recognised functions is predetermined.



Chapter 3 | Overview of the HOPP Model 29Since all the analysis is performed at compile time, it saves on overheadsat run time. However, the analyser would require information regardingmachine-speci�c parameters and shapes of input lists.� The recognised functions are either already part of, or can be easily de�nedin any existing functional language. HOPP does not impose any new pro-gramming technique on the programmer. Simplicity of learning and use arenaturally inherited by the model.There are, however, some limitations to the scheme.� As discussed in Section 3.3, the analysis can be assumed to reect experi-mental behaviour only for regular problems.� For programs that do not contain any occurrences of recognised functions,a parallel implementation cannot be realised. This forces the programmerto remain within the �xed repertoire of available functions.� The current implementation uses the list as the main data structure and thisposes problems relating to e�ciency. A sequential implementation incursoverheads due to list creation, destruction and garbage collection. Also,list access is linear in the length of the list as opposed to the constant-timeaccess of the array. A parallel implementation using list data structuressu�ers from an additional overhead which is incurred during the communic-ation of lists between processors. In order to ensure that pointer referencesare accurate after communication, the pointer addresses must be convertedto o�sets at the sending end. The processor that receives the list must thencompute the real addresses from the o�sets. This e�ectively increases com-munication costs. However, this limitation is not a direct consideration ofthe HOPP model.



Chapter 3 | Overview of the HOPP Model 303.5 The Parallelisation SchemeA program in HOPP is expressed as a sequence of phases. Each phase may containrecognised functions along with instances of user-de�ned functions. Each recog-nised function has a prede�ned parallel implementation on a given target machinetopology, along with an associated implementation cost. A knowledge of the tar-get machine topology is essential in order to select a cost-e�ective implementationassociated with that topology for the recognised function. Each implementationattempts to make optimal use of the machine connectivity in an e�ort to reducethe communication overhead. The performance of the recognised functions on thehypercube, 2-D torus, binary tree and linear array topologies have been studiedand will be discussed in Chapter 6. User-de�ned functions only have a sequentialimplementation and will henceforth be referred to as sequential functions.In the current scheme, parallelism is only exploited within each phase. Thephases themselves are sequential and phase i does not commence until phase i�1 iscompleted. However, future work could consider pipelining as an option, in orderto evaluate the phases in parallel. A phase that does not contain any occurrencesof recognised functions is implemented sequentially. The parallelisation strategyexploits parallelism in nested recognised functions up to the �rst three levels.The number of levels exploited for parallelisation is limited to three for pragmaticreasons. A phase that has its top three nested functions as recognised ones, willhave an input data structure that is at least a list of list of lists and eight possibleimplementations will be considered for it (see Section 3.5.1). Exploiting morelevels for parallelism would further increase the number of implementations to beconsidered. Parallel implementations are not considered for recognised functionswhich are nested within sequential functions.The HOPP model enables architecture-independent parallel programming.



Chapter 3 | Overview of the HOPP Model 31Only one program is written, irrespective of the architecture at which it is tar-geted. However, the decisions which inuence the selection of a cost-e�ectiveparallel implementation for the program, are dependent on the characteristics ofthe target architecture. These decisions are now transparent to the programmer.The model allows for portable programs to be written, and at the same time hopesto achieve a realistic reection of parallel program performance. The model istherefore parametrised on the characteristics of the target architecture.The Bird-Meertens Formalism includes a basic set of higher-order functions.This set has been extended to incorporate a number of additional functions. Thede�nitions for all the recognised functions can be found in Chapter 4. It will beshown that all of these functions can be expressed in terms of one or more ofthe basic set of functions. They have been included as recognised functions intheir own right because they are found to be useful in many common problems.The de�nition, in terms of existing functions, is rather contrived for some of thefunctions in the extended set. It would therefore save time and e�ort for theprogrammer if these functions are already available as recognised functions. Itwould also make the program itself more readable. More importantly, the schemeattempts to provide a more e�cient implementation for programs expressed interms of these additional functions, in comparison to one based solely on thefunctions in the basic set.3.5.1 The AnalyserThe outline of the parallelisation scheme is depicted in Figure 3.1. The applicationprogram is input to the analyser which �rst constructs a program tree. Eachbranch in the tree corresponds to a phase of the program. A cost analysis is thencarried out on the program.
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Figure 3.1: The Analysis and Implementation SchemeThe cost of a program comprising of n phases is given by:Cost = nXi=1Cpi + n�1Xi=0 Ci;i+1where, Cpi is the cost of phase i and Ci;i+1 represents any communication costthat may be incurred in rearranging the output data of phase i to suit the imple-mentation of phase i+1. The cost of a phase depends, among other things, on thenature and the number of recognised functions in that phase and also the parallelimplementation selected for that phase, on a given p-processor network. In thepresent scheme, a phase that has only one occurrence of a recognised function hasonly one parallel implementation, namely, the parallel implementation for thatfunction on the particular network. For a phase containing two recognised func-tions, one of which is the argument of the other, three parallel implementationsare possible.



Chapter 3 | Overview of the HOPP Model 33� A parallel implementation for the outer function on p processors.� A parallel implementation for the inner function on p processors.� A parallel implementation for both functions.The �rst two implementations are straightforward. The manner in which thethird implementation is handled would depend on the type of the underlyingprocessor network. For example, in the case of a d-dimensional hypercube, thehypercube is divided into 2k (0 < k < d) smaller hypercubes, with each smallerhypercube containing 2d�k processors. The outer function is evaluated in parallelacross 2k hypercubes, with the inner function being evaluated in parallel across2d�k processors.A similar argument can be extended to a phase containing three or more re-cognised functions, leading to a total of seven possible parallel implementations -three possibilities arising from implementing only one recognised function in par-allel, three possibilities arising from implementing any two functions in paralleland the case in which all the three functions are evaluated in parallel. However,parallel implementations are only considered for up to three recognised functionsin a phase. Any recognised function(s) below the third recognised function are im-plemented sequentially. A phase can therefore have at most eight possible imple-mentations including a sequential one. It is important to consider the sequentialimplementation as well, since it may prove to be the least-cost implementation insome of the cases.3.5.2 The Search TreeThe costs associated with all possible implementations for each of the phases areestimated by the analyser and a search tree is constructed. The nodes at level iof the tree correspond to the costs associated with the di�erent implementations



Chapter 3 | Overview of the HOPP Model 34for that particular phase. These costs include both computation costs and com-munication costs. The most e�cient implementation for the whole program isdetermined by the least-cost path in the search tree, for which code can then begenerated and executed on the parallel machine.It is important to realise that the analyser does not account for costs arisingfrom low level operations such as memory accesses. This would make the analyservery machine-speci�c. The selection of the least-cost implementation dependsonly on cost comparisons and therefore the absolute costs are not crucial. Listprocessing costs are, however, accounted for by the model since this forms asubstantial overhead in functional languages. This includes the costs which areincurred in constructing a new list or traversing a list. The analyser estimatesthese costs based on the nature of the input list and the details are transparentto the user.It is clear that the size of the search tree will grow exponentially with thenumber of phases in the program. In this thesis, only programs that compriseof a few phases are discussed, and this keeps the search tractable. However, forproblems comprising of a large number of phases, some heuristics for pruning thesearch tree would have to be considered. This issue is discussed in greater detailin Chapter 5.3.5.3 Pro�ling InformationIn order to make realistic cost predictions and select an e�cient implementation,some estimates of the input data sizes and the costs of sequential functions arerequired. This information could be obtained by incorporating pro�ling and typechecking capabilities in the analyser. The current implementation of the analyserdoes not include these capabilities, and the user speci�es this information.In order to estimate communication costs, information such as start-up time,



Chapter 3 | Overview of the HOPP Model 35denoted by K0, the bandwidth of the communication channel, denoted by K1,and the size of the data to be communicated is required. K0 and K1 are machine-speci�c parameters. A linear model of communication is assumed. The size of thedata to be communicated, and therefore the communication cost, also depends onthe number of list elements and the size of each element. The size of the input listcould be obtained by using pro�ling information. The size of each base elementdepends on its type and this could be deduced by a type-checker. This is madepossible because, as already discussed, polymorphic functions are not permitted.These issues are discussed more elaborately in Chapter 5.3.5.4 The Code GeneratorThe code generator, as shown in Figure 3.1 would generate code for the targetparallel machine with appropriate communication constructs inserted. However,a fully-edged code generator has not been implemented. To provide prelimin-ary evidence of the performance of the HOPP model and to assist in programdevelopment, some support is available in the form of a library of functions. Thislibrary contains the code for the various recognised functions, and also code forperforming various types of communications on a particular parallel machine to-pology. The code in this library is used by all the problems in the performancestudy. The actual calls to the functions are at present generated by hand. Theuse of the same code ensures that performance �gures for the di�erent examplescan be sensibly compared.3.6 SummaryMany of the recognised functions are also used in the skeletons approach [Col89,Col88, Col87, D+93, HH93]. As in the case of the skeletons, HOPP aims toprovide a platform for developing parallel programs where the programmer is not



Chapter 3 | Overview of the HOPP Model 36explicitly responsible for parallelism. However, the idea is to be able to expressprograms that may not entirely match existing skeletons. In that sense, HOPPcan be viewed as a more �ne-grained approach to parallelising programs. Also,the emphasis is on cost analysis of programs, in an e�ort to obtain cost-e�ectiveparallel implementations.



Chapter 4The HOPP ModelThe Bird-Meertens Formalism includes a set of functions which have useful data-parallel properties. These functions form the basis for the set of recognised func-tions in the HOPP model. The extended set of recognised functions containsadditional functions which are commonly encountered. In this chapter, de�ni-tions are given for the recognised functions in the basic set, and the additionalfunctions in the extended set. The choice between introducing additional func-tions with new implementations or as compositions of existing functions, is guidedby formal as well as practical considerations. In theory, a function can be madea recognised one, if the following attributes can be provided:� A de�nition for the function in terms of one or more of the existing functions.� A parallel implementation for the function on each of the processor inter-connect topologies catered for by HOPP.� A cost estimate for each parallel implementation of the function.In practice, the decision to include a function as a recognised one is additionallybased on its usefulness. Also, if the cost associated with the parallel imple-mentation of the newly-coined recognised function is much less than that of itscomposing functions, then it is probably justi�ed to include it as a recognised37



Chapter 4 | The HOPP Model 38function in its own right. In some cases the de�nition of the function in terms ofexisting functions may be so contrived that it may be sensible to include it as arecognised function in its own right.4.1 The Basic Set of FunctionsThe recognised functions which have been borrowed from the Bird-MeertensFormalism are de�ned below. The ML-style [MHT89, Tof89] notation is usedin all the de�nitions. Many of the functions are de�ned informally, but someof the functions are clearer if formally de�ned. However, either notation has noimplications for the implementation, which is sequential.1. map - applies some function f to each element of the argument list.fun map f [ ] = [ ]map f (x::xs) = (f x) :: map f xs2. fold - combines the elements of a list using a binary operator.fold � a [x1; x2; : : : ; xn] = (: : :((a � x1) �x2) : : :)� xnWhen a call is made to fold, the value of a must be the identity of the foperator. The HOPP model assumes that the argument function f , in thefold de�nition is always associative. If this is not the case, two functions,foldl and foldr, can be de�ned, corresponding to operators that are left-associative and right-associative respectively. However, only if the argumentfunction f is associative, can fold be implemented in parallel. Di�erentparts of the list are reduced on di�erent processors in parallel. The partialresults on the di�erent processors are then combined to produce the �nalresult. If f is not associative, parallel evaluation will produce incorrect



Chapter 4 | The HOPP Model 39results. The assumption of associativity could be removed by making twoversions of fold available. The onus would then be on the programmer to usethe correct version that does not make any assumptions about the binaryoperator if it is not associative, in which case a sequential implementationwould be chosen by the analyser.The HOPP model provides two versions of fold for quite another reason.The following example illustrates the di�erence between the two versions.(a) The �rst example de�nes a simple function that calculates the sum ofa list of integers.fun sum xs = fold plus 0 xswhere, fun plus x y = x + yIf xs = [1; 2; 3] then a step-by-step sequential execution of fold resultsin the following:i. fold plus 0 [1; 2; 3]ii. fold plus (plus 0 1) [2; 3]iii. fold plus (plus 1 2) [3]iv. fold plus (plus 3 3) [ ]v. 6It should be noted here that the size of the emerging result remainsconstant in every step of the fold operation.(b) The second example de�nes a function that attens a list.fun at xs = fold app [ ] xswhere, fun app xs ys = xs @ ysLet xs = [[1; 2]; [3; 4]].



Chapter 4 | The HOPP Model 40i. fold app [ ] [[1; 2]; [3; 4]]ii. fold app (app [ ][1; 2]) [[3; 4]]iii. fold app (app [1; 2] [3; 4]) [ ]iv. [1; 2; 3; 4]In this case, it is clear that the size of the emerging result grows by anamount equal to the size of each list element, after every step of thefold operation.The function s fold (static) is introduced to express computations typi�edby the example in 2a, and similarly the function g fold (growing) expressescomputations of the type in example 2b. Syntactically, there is no need todistinguish between the two types of computations. However, the executioncost for a parallel implementation of fold also includes communication costsand this would depend on the size of the data being communicated. Givena list with n elements, each of size m, then computations in 2b result in alist of size nm elements. At each step of the fold operation, the size of theresult grows by m. Example 2a results in a list of size m. It may be notedthat in the case of g fold, the argument data structure is at least a list oflists.In a parallel implementation of fold, partial results are communicated toneighbouring processors. The size of the data being communicated at eachstep has a signi�cant e�ect on the execution cost and is crucial in determin-ing the choice of parallel implementation. By distinguishing between the twoversions of the fold function, the programmer is invited to provide furthercost information to the analyser which enables a more accurate predictionof execution costs. If the version of the fold function is not indicated, thenthe default assumption is s fold.



Chapter 4 | The HOPP Model 413. scan - similar to fold, but the partial results after each application of thebinary operator are also retained in the resulting list.scan f a [ ] = [a]scan f a (x::xs) = [a] @ scan f (f a x) xsAgain, f is assumed to be associative. Otherwise two functions, scanl andscanr , must be de�ned. A scan can be implemented in parallel only if theargument operator is associative. As in the case of fold, two versions of thescan function are introduced - s scan and g scan.4. �lter - removes the elements that do not satisfy a property p, from itsargument list.�lter p [ ] = [ ]�lter p (x::xs) = if (p x) then x :: �lter p xselse �lter p xsOnly those elements that satisfy the property p are retained in the resultlist. The result of �lter is, possibly, a shrunken list.5. inits - results in a list of lists, in which each sublist contains the initialsegments of its argument list.inits [ ] = [[ ]]inits [x1; x2; : : : ; xn] = [[ ]; [x1]; [x1; x2]; : : : ; [x1; x2; : : : ; xn]]6. tails - results in a list of lists, in which each sublist contains the �nalsegments of the list.tails [ ] = [[ ]]tails [x1; x2; : : : ; xn] = [[x1; x2; : : : ; xn]; [x2; : : : ; xn]; : : : ; [xn]; [ ]]



Chapter 4 | The HOPP Model 427. cross productTwo functions are de�ned for performing the cross-product operation, basedon their order of evaluation. The basic operation is the same in both thecases, but the evaluation determines the di�erent ordering of elements inthe resulting list.� r cross product - speci�es that the cross-product is to be performedin a row-major order.r cross product f [a1,a2,: : :,am] [b1,b2, : : :,bn]= [[(f a1 b1), (f a1 b2),: : :, (f a1 bn)],[(f a2 b1),(f a2 b2),: : :, (f a2 bn)],...[(f am b1), (f am b2),: : :, (f am bn)]]� c cross product - speci�es that the cross-product is to be performedin a column-major order.c cross product f [a1,a2,: : :,am] [b1,b2, : : :,bn]= [[(f a1 b1), (f a2 b1),: : :, (f am b1)],[(f a1 b2),(f a2 b2),: : :, (f am b2)],...[(f a1 bn), (f a2 bn),: : :, (f am bn)]]Both these functions apply a binary operator f to pairs of elements takenfrom each of the two argument lists.8. composition - the composition operation is represented by �.(f � g) x = f (g x)



Chapter 4 | The HOPP Model 434.2 The Extended Set of Recognised FunctionsThe functions in the set de�ned by BMF operate on the list type. In the context ofthe HOPP model, it is sometimes di�cult to express certain operations using justthese functions. The resulting expressions appear to be rather contrived. This isprobably due to two reasons. Firstly, the operations that need to be expressedmay not be ones that would typically be performed on list types, but rather onarrays. Secondly, some of these operations may have been devised in the contextof parallel programming. The Bird-Meertens Formalism is based on lists and inthe context of sequential programming. These di�culties arise when the HOPPmodel attempts to use the BMF functions to solve array-based problems in thecontext of parallel programming.The set of functions in BMF has been extended to incorporate some addi-tional functions which provide o�-the-shelf recognised functions that can be usede�ectively for a larger class of problems. These additional functions can be ex-pressed in terms of one or more of the existing recognised functions. This imposessome restrictions on the kind of functions that can be made recognised functions.More importantly, it is hoped that the property of amenability to transforma-tions will also be retained by the recognised functions. The possibility of newtransformations on the extended set of functions can be investigated and moree�cient programs can be derived in the context of parallel programming and theHOPP model. In most of these cases, the newly-coined function has a more cost-e�ective parallel implementation when compared to the naive implementationcorresponding to its composing functions.The extended set of recognised functions is now described. Each function is�rst de�ned using informal ML-style notation, which is followed by its de�nitionin terms of the functions in the basic set of recognised functions. It is to be



Chapter 4 | The HOPP Model 44emphasised that the latter de�nitions merely serve as illustrations, and theremay be other, possibly better ways of expressing the same.The functions in the extended set are divided into two categories - those whichare intuitive and for which their inclusion can be motivated, and some which arenot so intuitive, but could be useful in writing programs.The more important functions are as follows:1. map2 - similar to map. This function is sometimes referred to as zipwith.map2 f [ ] [ ] = [ ]map2 f (x::xs) (y::ys) = (f x y) :: map2 f xs ysThis is just an extension of map to cater for two argument lists. Theargument lists must be of the same size.2. zip - pairs up corresponding elements from two input lists, resulting in alist of pairs.zip [ ] [ ] = [ ]zip (x::xs) (y::ys) = (x,y) :: zip xs yszip can be de�ned in terms of map2.zip xs ys = map2 pairup xs yswhere,pairup x y = (x,y)3. The iterative functions - this is a set of functions that apply a function fto a list, for a speci�ed number of times. After each stage of the itera-tion, f is applied to the result of the previous stage. The number of timesthat f is applied could either be predetermined or conditional. It may be



Chapter 4 | The HOPP Model 45necessary in some cases, to perform operations on the resulting list beforepassing it on to the next stage of the iteration, or before the �nal result isoutput. This operation may also involve the original list. The function gin the following de�nitions allows for any transformation on the resultinglist. If no such transformation is necessary, then g can be de�ned to be theidentity function. There are three iterative functions which are available asrecognised functions.� iterate up - an iterative function that applies a function f to a listfor a speci�ed number of times. After each stage of the iteration, f isapplied to the result of the previous stage. A start index and a �nishindex are speci�ed, and it iterates until start is greater than �nish.At each iteration, the value of start is incremented by one, so that thenumber of iterations is (�nish - start + 1).iterate up �nish start f g xs = if (start > �nish) then (g xs)elseiterate up �nish (start + 1) f g(f �nish start (g xs) )� iterate down - similar to iterate up, but the iteration counter is adown-counter. After each iteration, the value of the start index start isdecremented by one. The iteration stops when start is less than �nish.The number of iterations is (start - �nish + 1).iterate down �nish start f g xs = if (start < �nish) then (g xs)elseiterate down �nish (start - 1) f g(f �nish start (g xs))



Chapter 4 | The HOPP Model 46� iterate cond - provides for conditional iteration. The function f isapplied to the input list. The resulting list is tested to check whetherit satis�es some condition de�ned by the function cond. The iterationis stopped if the condition is satis�ed, otherwise f is applied to theresult. Sometimes it may be necessary to compare the resulting listwith the original list in order to check whether the condition is satis�ed.Therefore, the original list is a parameter to the function cond whichoperates on two input lists.iterate cond cond f g xs = let val result = f xsin if (cond result xs) then (g result xs)elseiterate cond cond f g (g result xs)endThe three iterative functions are not themselves implemented in parallel,although they belong to the set of recognised functions. This is becauseiteration is inherently sequential - step i uses the results of step (i � 1).The functions f and g in the de�nitions of the iterative functions maybe implemented in parallel if they are composed of recognised functions.However, if f and g happen to be sequential functions, then the schemewould only select a sequential implementation for the iterative functions.The details of the parallel implementations are given in Chapter 6.Iteration on a list can be expressed in terms of function composition,which belongs to the set of functions in BMF. An illustration is given forthe case of iterate up and the de�nitions for the other iterative functionsare similar.



Chapter 4 | The HOPP Model 47iterate up �nish start f g xs � f1 � f1 � : : : � f1| {z }n (f, g, �nish, start, xs)where,n = �nish - start + 1f1 (f, g, �nish, start, xs) = let val result = f �nish start (g xs)in(f, g, �nish, start+1, result)endThis is a rather informal de�nition, but it demonstrates that the iterativefunctions can be expressed in terms of an existing BMF function. Thefunction iterate cond cannot be expressed in the same way as the othertwo iterative functions since the exact number of iterations is not known.However, a similar idea is applicable.4. split - splits a given list into a speci�ed number of sublists.split 1 [x1; x2; : : : ; xn] = [[x1; x2; : : : ; xn]]split k [x1; x2; : : : ; xn] = [[x1; x2; : : : ; xdnk e]; : : : ; [x(k�1)dnk e+1; : : : ; xn]]The introduction of split as a recognised function was motivated by the needto express divide-and-conquer in applications. The function split takes twoarguments, an integer 0 < k � n and a list. The result of applying thefunction to the list is to split the list into k sublists. A list of size n isrearranged to be a list of lists, with (k � 1) sublists of size dnk e and the lastsublist being of length n� (k � 1)dnk e.split can be expressed in terms of the basic set of recognised functions. Theresulting composition of functions is quite complex.



Chapter 4 | The HOPP Model 48split k xs = let val part = (len xs)/kin (fold append [ ] � map (�lter (eq part)) � map tails ��lter (multiple part) � inits) xsendwhere,append xs ys = xs @ yseq n xs = (len xs) = nmultiple n xs = (len xs > 0) and (len xs) mod part = 0The code for split in terms of the existing functions is quite contrived. Thecost of implementing it as a composition of functions would be much higherthan the cost of the version given in Chapter 6. Given that it is a usefulfunction which is applicable in a variety of problems, the incorporation ofsplit in the extended set of recognised functions can be justi�ed.5. Rk - A composition of functions allows for an input list to be piped throughseveral phases of operation. In each phase, some operation (de�ned by thefunction(s) in that phase) is performed on the list. The resulting list ispassed on to the next phase of the composition. This appears to bethe only form of control ow in programs that can be expressed using thefunctions in BMF.It is clear, however, that not all the recognised functions operate on a singleinput list. Functions such as cross product operate on two input lists. Itmay be the case that two copies of the input list arriving from the previousphase are its arguments. More generally, it may be necessary to performsome operation on each of the copies before they serve as inputs to the re-cognised function. The combinator Rk caters for precisely these situations.



Chapter 4 | The HOPP Model 49The de�nition is provided for R2, the case where a recognised functionoperates on two input lists.R2 F f1 f2 : : : fn g h xs = F f1 f2 : : : fk (g xs) (h xs)where,F is a recognised function with 2 input listsf1, f2, : : :, fn are parameters to Fg and h are functions that operate on listsDepending on which of the input lists is to be passed unchanged to F, g orh or both would correspond to the identity function. In general, g and hcould be any complex functions including other recognised functions.In general, Rk is de�ned for a recognised function operating on k input lists.Obviously, a maximum value must be de�ned for k and this would dependon the maximum number of input lists to a recognised function in the set.It is di�cult to provide a formal justi�cation for including Rk in the ex-tended set. An intuitive justi�cation is based on the nature of control owthat may be required for some of the functions in BMF.Composition onlyprovides for one form of control ow in the program, in which a single listis passed from one phase to the next. However, the nature of certain recog-nised functions suggests the need for a second form of control ow which isprovided by Rk.6. get neigh - obtains the left and right neighbours for every element in theargument list. The result is a list of lists, with each sublist containing threeelements - the particular list element, and its left and right neighbours. Aninformal de�nition for get neigh is as follows.



Chapter 4 | The HOPP Model 50get neigh l-1 r-1 [x1; x2; x3; : : : ; xn�1; xn] =[[x1, l-1; x2]; [x2; x1; x3]; : : : ; [xn; xn�1, r-1]]In the de�nition, 1 indicates no neighbour in that particular direction,implying an end element of the list. l-1 and r-1 represent the left andright neighbours for the �rst and last elements of the list respectively. The�rst and last elements do not have neighbours, so the de�nition allows forsome boundary values to be speci�ed. In order to de�ne get neigh in termsof the existing set of functions, a function sequence which applies a set offunctions to its input list is �rst de�ned. sequence can be de�ned in termsof map2.sequence [f1; f2; : : : ; fn] xs = [(f1 xs), (f2 xs),. . . ,(fn xs)]sequence [f1; f2; : : : ; fk] xs = map2 g [f1; f2; : : : ; fk] [xs, xs,. . . , k copies]where, g fi xs = fi xsThen, get neigh can be de�ned in the following manner.get neigh l-1 r-1 xs = (stage 3 � stage 2 � stage 1) xswhere ,stage 1 xs = sequence[ (R2 zip id (scan pick sec l-1)),(reverse � R2 id (zip � reverse)((scan pick sec r-1) � reverse))] xspick sec x y = yid xs = xsstage 2 xs = (R2 id (zip � (fold append [ ])) (select 1)) xsstage 3 xs = map left right xsleft right ((x,y),(w,z)) = [x,y,z]



Chapter 4 | The HOPP Model 51Essentially, stage 1 performs one left shift and one right shift on the originallist. This is achieved by the use of the scan function and it obtains the leftand right neighbours for each element. The shifted lists are then zipped upwith the original list. stage 2 and stage 3 just produce the output in therequired format. The function select is de�ned below.The code for get neigh in terms of the basic set of functions is rathercontrived. This again, is due to the linear nature of operations on the liststructure. get neigh is a function that requires an operation which is nottypical of list structures - going backwards rather than forwards.The function get neigh has been introduced in the list of recognised func-tions both for expressiveness and e�cient implementation.The less intuitive functions are discussed next. These functions also serve toillustrate that in some of the cases, there is no natural way of expressing them inthe BMF-style of programming.1. len - returns the length of a list.len [ ] = 0len (x::xs) = 1 + len xslen can be de�ned in terms of both map and fold.len xs = fold plus 0 � map subst 1where,subst 1 x = 1plus x y = x + y



Chapter 4 | The HOPP Model 522. select - selects the jth element in a list.select j [ ] = errorselect j xs = if (j <= 0) then errorelse if (j > len xs) then errorelse get j xswhere,get 1 (x::xs) = xget j (x::xs) = get (j � 1) xsAssuming the absence of error conditions, select can be de�ned using afold in the following manner.f (k; j,x) xj = if (j = k) then (k + 1; j; xj)else (k + 1; j, x)select i xs = third � foldl f (1,i,y) xswhere,third (x,y,z) = zselect is de�ned in terms of foldl which is not associative. However, a suit-able parallel implementation for select has been de�ned. This is possiblebecause the behaviour of select is predetermined.3. apply select - applies a function f to a speci�ed set of elements in theinput list. The list of indices of the elements to which f is to be appliedmust be sorted in ascending order.apply select f [ij; ik; : : : ; im] [x1; x2; : : : ; xj; xk; : : : ; xm; : : : ; xn] =[x1; x2; : : :, (f xj), (f xk), . . . , (f xm), : : : ; xn]



Chapter 4 | The HOPP Model 53apply select can be de�ned in terms of map.apply select f [ij; ik; : : : ; in] xs = map (f 1 [ij; ik; : : : ; in]) xswhere,f m (ind::inds) [ ] = [ ]f m (ind::inds) (x::xs) = if (m = ind) thenf x :: f (m+1) inds xselsex :: f (m+1) (ind::inds) xs4. copy - distributes a particular element of the list to the other elements inthe list.copy i [x1; x2; : : : ; xn] = [(xi; x1); (xi; x2); : : : ; (xi; xn)]copy can be expressed in terms of select and map.copy i xs = let val x = select i [x1; x2; : : : ; xn]inmap (pairup x) [x1; x2; : : : ; xn]endwhere,pairup x y = (x,y)The index of the element which is to be distributed is an argument to thefunction copy. The result of copy is a list of pairs with the �rst of the pairbeing the distributed element.5. reverse - reverses a list, as the name suggests.reverse [x1; x2; x3; : : : ; xn] = [xn; : : : ; x3; x2; x1]



Chapter 4 | The HOPP Model 54reverse can be expressed in terms of fold.reverse xs = g fold rev [ ] xswhere,rev xs x = [x] @ xs4.3 Example ProgramsIn this section, some well-known problems are expressed in the style advocatedby the HOPP model, using the functions from the extended set of recognisedfunctions. The same examples will be later used to test the accuracy of theHOPP model, comparing the execution on a parallel machine with the predictionmade by the analyser. Details on the parallel implementations and the resultscan be found in Chapter 7. The examples have been coded in ML.4.3.1 Matrix MultiplicationThe problem of multiplying two matrices Am�n and Bn�k, which results in thematrix Cm�k, is considered here.The problem can be expressed as a composition of two phases. The recognisedfunctions are depicted in bold face and an informal ML-style notation is used.fun mat mult times plus A B = map (map (s fold plus 0)) �r cross product (map2 times) A BT ;fun plus a b = a + b;fun times a b = a � b;BT represents the transpose of BEach matrix is represented as a list of lists. Each sublist represents a row/columnof the matrix. Phase one - multiplies the corresponding pairs of elements frompairs of sublists. Phase two - performs the addition to obtain the inner products.



Chapter 4 | The HOPP Model 55The function s fold is used because the size of the emerging result after eachstage of the fold operation is a constant, and is equal to the size of the base typeof the matrix. The transpose of the second matrix is performed sequentially inthis case, and therefore increases the costs of all the implementations by the sameamount.4.3.2 Merge SortThe merge sort example is considered next. A list of integers is to be sortedin ascending order. The strategy adopted is to sub-divide the list into a list oflists, with each sublist containing two elements. These two elements are sortedand the sorted sublists are then merged, two at a time, to obtain a fully sortedlist. This is similar to the divide-and-conquer approach, except that divide is notperformed recursively. The list is transformed into a list of lists in a single step,using the split function. Each sublist then represents the base case which canbe solved. For the sake of simplicity, the number of elements in the input list isassumed to be a power of 2.The problem can be expressed as a sequence of three phases.fun sort n xs = g fold (merge [ ]) � map msort �split (n/2) xs;where, n is the length of the listfun msort [x,y] = if(x � y) then [y,x] else [x,y];fun merge [ ] [ ] = [ ]merge xs [ ] = xsmerge [ ] ys = ysmerge (x::xs) (y::ys) = if (x � y) thenx :: merge xs (y::ys)else y :: merge (x::xs) ys;



Chapter 4 | The HOPP Model 56Phase one performs the divide step, in which the list is split into sublists, eachof size two; Phase two sorts each sublist; and Phase three performs the mergeoperation. The function g fold is used since at each step of the fold operation,the size of the resulting list is the sum of the sizes of the two lists that weremerged. It may be noted that phase two may be removed by splitting the listinto singleton sublists. It is retained in this example for illustrative purposes only.4.3.3 Solving Partial Di�erential EquationsElliptic partial di�erential equations are commonly encountered in equilibriumor steady-state problems. One of the best-known elliptic equations is Poisson'sequation, represented by Equation 4.1@2u@x2 + @2u@y2 = f(x; y) (4.1)where, f is the source term. The domain of integration of such a two-dimensionalelliptic equation is always an area S bounded by a closed curve C. Only a limitednumber of special types of elliptic equations have been solved analytically. Thereare several numerical approximation methods available for solving di�erentialequations, of which those employing �nite-di�erences are more frequently usedbecause of their wider applicability. In these methods, the area of integration Sbounded by the closed curve C, is overlayed by a system of rectangular meshes.The meshes are formed by two sets of equally spaced lines, each set parallel tothe X-axis and Y-axis respectively. An approximate solution is found at the npoints of intersection which are called mesh points. The approximation consistsof replacing each derivative of the partial di�erential equation at a mesh point,Pi;j, by a �nite-di�erence approximation in terms of the values of u at Pi;j andthe neighbouring mesh points and boundary points. For each of the n meshpoints, an algebraic equation approximating the di�erential equation is written,



Chapter 4 | The HOPP Model 57giving a set of n algebraic equations in n unknowns. Sets of linear algebraicequations can be solved by direct or iterative methods. Direct methods are basedon Gaussian elimination with pivoting or triangular decomposition of the matrixof coe�cients. Descriptions and C programs for these methods can be foundin [P+88]. The method considered in this section is an iterative method due toJacobi.The area S is assumed to be rectangular, with sides of length ph and qh, andto have known values b on the perimeter of S. If S is sub-divided into a networkof squares of side h, then the mesh points are de�ned by:x = ih; (i = 0; 1; : : : ; p)y = jh; (j = 0; 1; : : : ; q): (4.2)Approximating the equation by the �ve-point di�erence scheme [Smi65, Ame69]yields: ui�1;j + ui+1;j + ui;j�1 + ui;j+1 � 4ui;j � h2fi;j = 0: (4.3)ui;j is then given by:ui;j = 14(ui�1;j + ui+1;j + ui;j�1 + ui;j+1 � h2fi;j): (4.4)If the nth iterative value of ui;j is denoted by uni;j, then an iterative procedure forsolving Equation 4.4 is de�ned by:u(n+1)i;j = ( bi;j; if (i = 0; p); (j = 0; q)14(uni�1;j + uni+1;j + uni;j�1 + uni;j+1 � h2fi;j); otherwise (4.5)Successive iteration causes the approximate solution to converge to the exactsolution.The program for implementing the Jacobi method is given below. The region Sis assumed to be a square, with p = q = JMAX, where JMAX is some prede�nedconstant, h = 1 and bi;j = 0; (i = 0; p; j = 0; q).



Chapter 4 | The HOPP Model 58fun gen zeros 0 = [ ]j gen zeros n = 0.0 :: gen zeros (n-1);val inf1 = gen zeros JMAX;val inf2 = gen zeros JMAX;fun get rest [ ] [ ] [ ] = [ ]j get rest [ ] ts [ ] = [ ]j get rest [ ] [ ] bs = [ ]j get rest es ts [ ] = [ ]j get rest es [ ] bs = [ ]j get rest [ ] ts bs = [ ]j get rest (es::ess) (t::ts) (b::bs) =(es @ [t,b]) :: get rest ess ts bs;fun rearrange [xs, ys, zs] =let val res = get neigh 0.0 0.0 xsin get rest res ys zsend;fun less than (eps:real) (value:real) = (value < eps);fun maxi (x:real) y = if (x > y) then x else y;fun di� (x:real) (y:real) = abs (x-y);fun update f [u0,u1,u2,u3,u4] = 0.25 � (u4 + u3 + u2 + u1) - f/4.0;fun id x y = x;fun test (eps:real) xs ys = ((less than eps) � (s fold maxi 0.0) �(map (s fold maxi 0.0)) �(map2 (map2 di�) xs) ) ys;



Chapter 4 | The HOPP Model 59fun jac fss uss = ((map2 (map2 update) fss) �(map rearrange) �(get neigh inf1 inf2) ) uss;fun pde (eps:real) fss uss =iterate cond (test eps) (jac fss) id uss;The function, pde, is the main function that iteratively applies the function,jac, to the input matrix uss. The source term is represented by fss. Both uss andfss are represented as lists of lists. The function jac obtains the neighbouringvalues for each mesh point and updates its value according to Equation 4.5.The function test checks whether convergence has been achieved. After eachiteration, the value of a mesh point is subtracted from the corresponding value atthe previous iteration. If the absolute value of the maximum of such di�erencesis smaller than some prede�ned constant, eps, then iteration is stopped and theresult is the required solution.4.4 ConclusionThis chapter introduced the set of recognised functions and illustrated their usewith three example programs. The programs for matrix multiplication and mergesort were more natural to express in the BMF-style, compared to the programfor jacobi iteration. In all the three cases the di�culty of natural expression wascaused by the use of the list data structure. The programs are best-suited toarray data structures, but the recognised functions only work on lists. A theoryof arrays [Mil93] with data-parallel operations de�ned on it would probably resultin a more natural data-parallel model of programming.



Chapter 5The Cost ModelA style of programming is advocated which is based on the set of recognisedfunctions as presented in Chapter 4. An analytical cost model is employed topredict the execution costs for these programs at compile-time. Based on thesecosts, a cost-e�ective parallel implementation is selected. The analyser requiressome information about machine-dependent parameters, input data sizes andsequential functions, which is discussed in more detail in the following section.The scheme for obtaining a parallel implementation for a program is shownin Figure 3.1. Chapter 3 gives an outline of the analysis scheme. This chapterdiscusses the analyser in greater detail.5.1 The Problem Speci�cationIn principle, the analyser should abstract away from low-level details to the extentpossible. However, the costs computed by the analyser should reect the practicalcosts accurately. The input to the analyser is in the form of the following tuple:program = (P;M;D; Is; Ft; S; Cf ; Fs):60



Chapter 5 | The Cost Model 61Symbol MeaningP Program TreeM Parallel Machine CharacteristicsD Input List NestingIs Input List SizeFt Input List TypeS Set of RelationshipsCf Cost of Sequential FunctionFs Output Type of Sequential FunctionThe meaning of each symbol will be discussed in the following subsections.Much of the information required could be obtained with minimum programmerinterference if pro�ling [ADM87, Bus93, San93, Sar91] and type-checking capabil-ities were built into the analyser. However, the current prototype implementationof the analyser does not include these capabilities and the programmer is requiredto supply the necessary information.In all future discussions, it is assumed that:H = the set of recognised functions,F = the set of sequential functions.5.1.1 The Program Tree (P )P is the program tree representing the program. The program tree is indirectlysupplied by the programmer; the analyser constructs it from the speci�cation ofthe program code. Each node in P corresponds to either a recognised function ora user-de�ned one. Each phase in the program is represented by a branch in thetree. A function G, which is an argument of another function F , is representedas a child node of that representing F , on the branch corresponding to thatphase. Since the program is typically a composition of phases, each phase is anargument of the composition function. The branch corresponding to each phaseis therefore represented as a child of the composition node. The input lists arenot represented on the program tree. However, the number of input lists required
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map

inits

map2

fold

g f hFigure 5.1: An Example of a Program Treeby each phase is determined by the nature of the recognised functions present inthe phase. Henceforth, the terms branch and phase will be used interchangeably.Therefore, the program,map (fold g) � inits � map2 (f � h)would have a program tree as shown in Figure 5.1.5.1.2 The Parallel Machine Characteristics (M)M is a 4-tuple which describes the characteristics of the parallel machine on whichthe program is to be executed and has to be supplied by the programmer. Theparallel machine is assumed to have p identical processors, each with the sameamount of local memory.M : string � Z+0 �Q+0 �Q+0M = (topology, number-of-processors, K0;K1).Although the program itself is independent of the architecture on which it isexecuted, the implementation that will be selected would depend on it. Thecost model has therefore been parameterised on the characteristics of the parallelmachine.



Chapter 5 | The Cost Model 63� topology - The choice of parallel implementations for the recognised func-tions is dependent on the interconnection topologies between the processors.Cost models have been studied for some well-known interconnection topo-logies, such as the hypercube, 2-D torus and tree.� number-of-processors - This speci�es the maximum number of processorsavailable on the parallel machine.� K0 and K1 - In a message-passing system, data communication involvestwo costs - the start-up cost to initiate the communication and the actualcost of transferring the data. The start-up cost, K0, is usually a signi�cantportion of the communication cost (and can dominate it, especially whenthe data size is small), and cannot be ignored. The cost for the actualcommunication of data will depend on the bandwidth of the communicationlink, K1, between the two processors. K0 is expressed in some time unit(e.g. ms) and K1 is expressed in bytes/time unit (e.g. bytes/ms). Both ofthese parameters are speci�c to a given architecture and can be obtainedfrom the machine manufacturer. A linear model is used to compute thecommunication costs [SS89] between nearest neighbours. Therefore, thecost of communicating n bytes of data between neighbours is given by thefollowing expression: Tc = K0 + 1K1n: (5.1)It is assumed that only data is being communicated, and that each processorpossesses a copy of the source code. It is also assumed that processorscannot communicate with more than one neighbour at a time. Therefore,initiating communications with m di�erent neighbours would incur a start-up cost of mK0 (as opposed to K0). The algorithms and costs for datacommunication routines are discussed in Chapter 6.



Chapter 5 | The Cost Model 645.1.3 The Input List Characteristics (D; Is; Ft; S)� D represents the level of nesting in each of the input lists.D : string �Z+0string is the variable that represents the list. For example, for a list calledmatrix A which is a list of lists, theD would be speci�ed as (\matrix A", 2).� Is is a D-tuple which represents the list sizes at levels, 0; 1; : : : ; (D � 1).Is : string ! (Z+0 � : : :� Z+0| {z }D�tuple )For example, for the list matrix A which is a list of lists of size (32 � 64),Is would be speci�ed by (\matrix A", (32,64)). Is could be estimated bypro�ling. In the absence of a pro�ler in the prototype implementation, ifthe input list size is not known at compile-time, Is is computed after thespeci�cation for S is obtained. It is important to note that the size(s) ofthe input list(s) is(are) required to be speci�ed only at the beginning of the�rst phase in the program. For subsequent phases, the analyser deducesthe size of the input list, based on the transformations applied to it by thefunctions in the previous phase. However, for a recognised function withtwo argument lists, if only one input list arrives from the previous phase,then an estimate of the size of the other list will be required.� Ft is a function that computes the size of each element in level (D � 1) ofthe input list(s).Ft : string � type ! Q+0In other words, Ft represents the size of the base element of each of the inputlists in the program, where string is the variable representing the input list.



Chapter 5 | The Cost Model 65This is computed from the type of each input list, which could be deducedby a type-checker. For example, for the list matrix A which is a list oflists of integers, Ft would be speci�ed by (\matrix A", int). The sizeof(int)function then computes the required size. Programs in functional languagescan be written at high levels of abstraction, where a single program couldapply to a whole group of list types. The analyser will, however, forcethe programmer to specify the type of the base element of each input list.In that sense, some of the power of abstraction in functional languages islost. This information, however, is necessary for the analyser to predictcommunication costs. In the absence of type information, the data size isnot known, making the true communication costs di�cult to predict.� S is a ( D2 ! + D) -tuple, expressing the relationship between sizes indi�erent levels (i.e. 0; 1; : : : ; (D� 1)) of the input list(s) and the number ofprocessors.S = (R0; R1; : : : ; RD�1)Ri 2 [�; <;�; >;�], 0 � i < Dwhere,n� k ) 0 < nk < 0:1n < k ) 0:1 < nk < 1n � k ) nk � 1n > k ) 1 < nk < 10n� k ) nk � 10The set of relationships in S, represents a simple method for expressingconstraints on the size of the inputs. The choice of 10 as the factor forexpressing the estimates is based purely on pragmatic considerations. Forcompile-time analysis, some knowledge of the shape of the input data is



Chapter 5 | The Cost Model 66required to guide the selection of a parallel implementation. This might evenbe di�erent for the same program for di�erent input list sizes. In the absenceof a pro�ler, the speci�cations in S provide some estimates for the analyserregarding the relative sizes of the input list and the number of availableprocessors. In the presence of pro�ling information, the speci�cation for Swould not be required.Since the number of processors is known (from the speci�cation in M), andthe speci�cations in S estimate size(s) of the input list(s) in relation to thenumber of processors, Is can now be estimated for cost calculations.5.1.4 Speci�cations for Sequential Functions (Cf ; Fs)� Costs of Sequential Functions.Cf is the cost function for sequential functions in the program.Cf : Gc [ GfGc : F ! Q+0Gf : F ! (G! Q+0 )Gf represents the case where the cost of a sequential function is proportionalto the size(s) of the input argument(s) and Gc represents the case wherethe cost is a constant. The cost is expressed in some decided unit, e.g. ms.The cost of a recognised function is a function of the cost of its argumentfunction(s) which could ultimately be a sequential function whose cost isnot predetermined. It is therefore necessary to determine the cost of thesequential function(s) in the argument, in order to compute the cost of therecognised function. The costs of sequential functions could be estimatedby pro�ling, in which case the speci�cation for Cf would not be required ofthe programmer.



Chapter 5 | The Cost Model 67An assumption that is automatically made by the analyser is that the se-quential functions take the same time to operate on di�erent input data.This assumption arises as a result of the regularity restriction that is im-posed on problems which can be handled by the scheme (See Section 3.3).For example, inmap f xs, the cost of f is assumed to be the same for everyelement of the list xs. This automatically means that sequential functions inthis scheme, should not arbitrarily alter the size of the input data. Considerthe following example.fun f 0 = [ ]fun f i = i :: f (i-1)This would produce a list whose size depends on the value of i. However, inmap f xs, f no longer takes the same amount of time to operate on all theelements of the list xs. The cost of f now depends on the actual value ofeach list element. This violates the assumption of regularity in the contextof this scheme. In such cases, the speci�cation of Cf would be di�cult andone based on the worst or average-case cost would produce predictions thatcannot always be guaranteed to reect practical costs. Pro�ling would prob-ably remove this restriction to the extent of allowing sequential functionswith costs that depend on the actual input data. However, problems wouldstill be required to have a predictable (regular) communication structure inorder to be expressible in terms of the recognised functions.� Outputs from Sequential FunctionsFs computes the size of the output which is produced by the sequentialfunctions in the program, from the speci�cation of the type of the outputof a function. This could, again, be deduced by a type-checker.



Chapter 5 | The Cost Model 68Fs : F� type ! Q+0Again, Fs imposes some limitation on the full abstraction power of func-tional languages. However, this information is also important to the ana-lyser for predicting communication costs. In each phase of the program,the input list is transformed by the functions in that phase. Although thenature of the transformation of the input list(s) by a recognised functionis predetermined, the manner in which a sequential function would trans-form its argument list(s) cannot be determined, if the program is writtenat a high level of abstraction. A sequential function could transform a baseelement of one type into a another type. This would result in a change inthe size of the input list for the subsequent phase and the analyser mustaccount for this change. The speci�cation of Fs is a means of providing theanalyser with the information necessary to account for such changes in thesize of the input list between subsequent phases.Three types of transformation that can be applied on input lists by sequen-tial functions are of interest to the cost analysis. Not all of them can beaccounted for by the analyser in its present form.1. The output list could be transformed to just the extent that the sizeof the base element is di�erent from that in the input list. e.g. a list ofintegers into a list of reals. In this case, the sequential function doesnot alter the D or Is speci�cations and these can be used as such toestimate the costs for the subsequent phase. The only change is in thespeci�cation of Ft and this is determined simply by the speci�cationof Fs for the sequential function. If Fs0 speci�es the output size for thesequential function in the phase, then Ft = Fs0 for the list input to thenext phase.



Chapter 5 | The Cost Model 692. The sequential function may transform the list in a manner that altersits D-value, e.g. a list of lists of integers could be transformed into alist of integers. In that case, D = 2 for the input list to the sequentialfunction and D = 1 for the output list. An example of such a functionis update, as de�ned in the Jacobi Iteration example in Section 4.3.3.For the subsequent phase, the analyser must account for the change inthe D-value of the input list, if it is to make realistic cost predictions.Such transformations can be deduced by a compiler, but the analyserdoes not incorporate such facilities at present, and is left for futurework.3. The sequential function could transform the input list so as to alterits Is speci�cation, e.g. a list of lists of size (m � n) could be alteredto a list of lists of size (m� k). An example of such a function is therearrange function as de�ned in Section 4.3.3. It transforms an inputlist of size (3�n) into one of size (n�5). Such transformations cannot,in general, be deduced at compile-time. In such cases, an inaccuratesize of the input list will be deduced for subsequent phases. This inturn might lead to poor cost predictions and in the worst case maylead to the selection of an ine�cient parallel implementation for theprogram. This is a disadvantage of the scheme, at present. Again, apro�ler could rectify the situation to some extent.Sequential functions could cause transformations on input lists, so that somecombinations of 1, 2, 3 are produced. The arguments remain the same.



Chapter 5 | The Cost Model 705.2 The Compile-time AnalysisIn the HOPP model, an application program is a composition of phases. Thecomposition itself is performed sequentially, i.e. phase i does not commenceuntil phase (i�1) is completed. This need not be the case and future work couldconsider pipelining the phases. The results from phase (i� 1) can then be inputto phase i as they become available. In the absence of pipelining, the total costof the program comprising of k phases is given by:Cp = kXi=1Cpi + k�1Xi=0 Ci;i+1where, Cpi represents the cost of phase i, and Ci;i+1 represents the cost of phasetransition between phases i and i+ 1, respectively. The cost of a phase dependson the nature and cost of its composing functions. The cost of phase transitionrepresents the communication cost incurred in rearranging the output data of onephase to be suitable for the subsequent one. Costs for communication routinessuch as scatter, gather, total exchange and broadcast , on the di�erent processortopologies have been derived (see Chapter 6 for details). The rearrangement ofdata between consecutive phases would typically involve one or more of thesecommunication operations. The analyser uses the costs of these routines in com-puting the costs of phase transition. If no data movement is required betweentwo consecutive phases, then the cost of phase transition for those two phases iszero.The following points should be noted.1. Each recognised function operates on a list data structure.2. Every recognised function has an associated parallel implementation on eachtarget machine topology included in the model.



Chapter 5 | The Cost Model 713. The cost of implementing a recognised function, F, in parallel on p pro-cessors, on an input list of size n is represented by:C = F (n; p;Ca)where, Ca, is the cost of the argument function (if any). In general, ifthe recognised function, F, operates on k input lists of sizes n1; n2; : : : ; nkrespectively, then the cost is represented by:C = F ((n1; n2; : : : ; nk); p; Ca):The analyser performs a cost analysis for each branch in the program tree. Abranch in a program tree might comprise of instances of both recognised and se-quential functions. If a branch (phase) comprises entirely of sequential functions,then the analyser would be forced to select a sequential implementation for it.Let p be the number of processors and Cs be the cost of the sequential ar-gument function (if any). In the following sections, the representation of costexpressions assume that the recognised functions operate on a single input list.� The branch could contain only one occurrence of a recognised function, F,in which case only one parallel implementation is possible for a particulartopology. If the input list is assumed to be of size m, then the cost of thebranch is given by: C1 = F (m; p;Cs): (5.2)� The branch could contain a recognised function, F, that has another recog-nised function, G, as its argument. The input data structure would be a listof lists (D � 2). If the data structure is assumed to comprise ofm lists, eachof which contains n elements, then three di�erent parallel implementationsare considered.



Chapter 5 | The Cost Model 721. One in which the function F is implemented in parallel on p processors,and the function G sequentially. The cost in this case is given by:C12 = F (m; p;G(n; 1; Cs)): (5.3)2. One in which the function F is implemented sequentially, and the func-tion G in parallel on the p processors. The cost in this case is givenby: C22 = F (m; 1; G(n; p;Cs)): (5.4)3. The case where both the functions, F and G, are implemented in par-allel. The p-processor machine is divided into p1 parts, each of whichcomprises of p2 processors, where, p1�p2 � p. The function F is imple-mented in parallel on p1 processors, and the function G is implementedin parallel on p2 processors. Each of these parts retains the same lo-gical topology as the original machine. However, on certain topologies,logical neighbours may no longer be physical neighbours after such adivision. In such a case, it would take more than one hop to commu-nicate between logically neighbouring processors, thereby increasingthe communication cost. In order that these increased communicationcosts are accounted for, the cost function is parametrised on the max-imum number of hops to be traversed between logical neighbours, andis represented by l. The value of l would depend on the nature of thetopology. The cost in this case is given by:C32 = F (m; (p1; l1); G(n; (p2; l2); Cs)): (5.5)If l1 = l2 = 1, Equation 5.5 can be reduced to:C32 = F (m; p1; G(n; p2; Cs)): (5.6)



Chapter 5 | The Cost Model 73As an illustration of such an implementation, a p-processor hypercubeof dimension, d = log2 p, is divided into 2k (0 < k < d) smaller hyper-cubes (subcubes). Each subcube comprises of 2d�k processors. The mlists are scattered across the 2k subcubes, dm2k e per subcube. The dm2k eelements all go to a single processor in each of the subcubes, namely,to processors numbered by0; 2d�k; 2:2d�k; 3:2d�k; : : : ; (2k � 1):2d�k :This implies a parallel implementation for F on 2k processors, withdm2k e elements per processor. Then the function G can be evaluated inparallel on 2d�k processors, with d n2d�k e elements per processor. Sinceall the subcubes are connected, and each subcube retains the sameconnectivity as the original hypercube, l1 = l2 = 1. The cost in thiscase is given by: Ch2 = F (m; 2k; G(n; 2d�k; Cs)): (5.7)In all the three cases, the cost of an inner-level function is passed as aparameter to the outer-level function. At the innermost level this mightcorrespond to a sequential function for which no known parallel solutionexists. Information regarding the number of processors available and theinput data sizes, is passed down from the outer function to the inner func-tion. This information would depend on the implementation that is selected.The inner function then evaluates its own cost, based on the informationit receives. Information about the cost of the inner function is then passedback up to the outer function, which can then evaluate its cost. This argu-ment could be applied to any number of levels in a branch in the programtree.



Chapter 5 | The Cost Model 74� The branch could contain three or more occurrences of recognised functions.First, the case when the branch contains exactly three recognised functions,F, G and H, is considered. G is the argument of F, and H is the argumentof G. The input data structure is a list of list of lists (D � 3). Sevenpossibilities arise, corresponding to the implementations of each of the threefunctions in parallel, any two in parallel and all three in parallel. For the�rst six cases, arguments similar to the previous case can be applied andthe costs can be similarly derived. If the input data structure is assumedto comprise of m lists, each of which comprises of n lists, each of whichin turn contains k elements, then the cost of the branch corresponding toimplementing all three functions in parallel is given by:C3 = F (m; (p1; l1); G(n; (p2; l2);H(k; (p3; l3); Cs))) (5.8)where, p1 � p2 � p3 � p, and l1; l2; l3 are de�ned as before.Theoretically, the occurrence of more than three recognised functions on abranch could be considered. This would mean a data structure that is a listof lists of lists (D � 4). If such a case does arise, the HOPP model exploitspotential parallelism only up to the �rst three levels and the discussion inthe previous paragraph applies.It is clear that for every phase in the program, there may be several possibleparallel implementations, depending on the number of recognised functions in thatphase. Under the current scheme, the maximumnumber of implementations thatcan be considered for a phase is eight (including a sequential implementation).If all the possibilities are considered at every phase, the analysis results in theconstruction of a search tree. The weights on the nodes of the search tree at eachlevel represent the costs of the di�erent possible implementations for each phase.This cost includes computation as well as any communication costs that may be



Chapter 5 | The Cost Model 75incurred in the implementation of the recognised function(s) in that phase. Theweights on the edges of the search tree represent the costs of phase transition andcomprise only of communication costs. A traversal of each path in the tree yields acost of implementation for the whole program. Each such cost represents the costof implementing the program when some particular sequence of implementationsis chosen for the phases in the program. Each path in the search tree representsa unique and complete implementation for the entire program. The least-costpath in the search tree corresponds to the most cost-e�ective implementationfor the program. The analyser �rst performs a cost analysis on the programand constructs the search tree at compile-time. The search tree also containsinformation about the functions in each phase, the number of processors to beused for the implementation of each recognised function in the phase, the nature ofthe data distribution at the end of each phase, and so on. Using the informationon the branches in the path that is selected, code for the implementation canbe generated and a copy distributed to all the processors. This would containcode for the recognised and sequential functions in each branch as well as forperforming any communications required in the implementation of the program.It is clear that the size of the search tree grows exponentially with the numberof phases in the program. It is di�cult to provide a threshold value for thenumber of phases in the program, after which the search space could be termedas unacceptably large. However, even for the Jacobi Iteration example comprisingof seven phases (see Section 4.3.3), the search space was quite large and it wouldhave been helpful to reduce it. Heuristics to prune the exponential growth ofthe search tree have to be investigated. Rather than considering all possibleimplementations, those that are likely to result in high execution costs could beidenti�ed and discarded at the analysis stage itself.It is important to note that low-level costs such as memory access times are



Chapter 5 | The Cost Model 76not accounted for. This would make the model very machine-speci�c and is notdesirable. List processing costs, which include the costs incurred in constructingor traversing a list, are however, estimated by the analyser since these costscan prove to be signi�cant. The analyser estimates these costs based on thenature of the input list (obtained from Is and Ft) and the details are transparentto the programmer. During the analysis of the program, the analyser actuallyperforms list construction or traversal operations on a dummy list that is ofthe same type as the speci�ed input list and estimates the cost, which is thenused as the list processing cost. Since all the low-level costs associated witha practical implementation are not accounted for by the analyser, the actualcost of implementation is expected to be greater than that predicted. However,computing the absolute cost is not necessary, since the strategy is to select animplementation based on cost comparison. There are four di�erent costs involved.� The theoretically predicted cost of sequential execution for the program,represented by T stheor.� The theoretically predicted cost of the selected parallel implementation onp processors, represented by T ptheor.� The actual cost of sequential execution for the program when executed ona single processor on the parallel machine, represented by T sprac.� The actual cost of the selected implementation for the program when ex-ecuted on p processors on the parallel machine, represented by T pprac.If the model reects the practical performance, thenT ptheorT stheor � T ppracT sprac : (5.9)



Chapter 5 | The Cost Model 775.2.1 The Algorithm for the AnalyserAlgorithm ANALYSE presents a high-level description of the analyser. Thefunction GET SPEC obtains the problem speci�cation as discussed in Section 5.1.The function, CONSTRUCT PROGRAM TREE, constructs the program treefrom the speci�cation of the program code. If a branch in the program treecontains only one recognised function, then in the following algorithm the inputlist is represented by n1 and the cost of the recognised function is representedby R1. If the branch contains two recognised functions, then the input list isrepresented by (n1; n2) and the costs of recognised functions are represented byR1 and R2, respectively. For a branch containing three recognised functions, theinput list is represented by (n1; n2; n3) and the costs of the recognised functions arerepresented by R1; R2 and R3, respectively. Cs represents the cost of a sequentialargument function. Phasei of the program is assumed to be implemented on piprocessors; p0 = 1, implying that the data is initially resident on a single node ofthe parallel machine. Ni represents the number of recognised functions in a phase,0 � Ni � 3. The following rule is used in the derivation of cost expressions:If k = Ni + 1, then Rk(nk; p; Ca) � CksIt means that Rk is not a recognised function and its cost must, therefore, bereplaced by the cost of the sequential function at the kth level.The function ADD TO S TREE inserts a child node to a speci�ed node inthe search tree. In the implementation, the weight on the inserted branch isadded to the weight on the destination node. In other words, the inter-phasetransition cost is added to the cost of implementation of the subsequent phase.C iseq represents the cost of implementing phasei sequentially. C ipar x representsthe cost of implementing function Rx in phase i in parallel (1 � x � 3), C ipar xyrepresents the cost of implementing both the functions Rx and Ry in phase i in



Chapter 5 | The Cost Model 78parallel on pxi and pyi processors respectively (1 � x � 2; 2 � y � 3), (pxi pyi � pi)and C ipar 123 represents the cost of implementing functions R1; R2 and R3 in phasei in parallel on p1i , p2i and p3i processors respectively (p1i p2i p3i � p).The function REARR computes the cost for rearranging the output data ofone phase to suit the implementation of the subsequent phase. The informationabout the current data distribution is obtained from the current parent nodein the search tree. If the output list of size n1 from phase i � 1 is distributedacross pi�1 processors, and phase i requires the data list to be distributed acrosspi processors, (pi�1; pi � p), then REARR (n1; pi�1; pi) computes the requireddata rearrangement cost. Similarly, for the list (n1; n2) to be distributed suchthat the sublists are distributed across p1i processors and each sublist across p2iprocessors (p1i p2i � p), REARR ((n1; n2); pi�1; (p1i ; p2i )) computes the required datarearrangement cost.S tree represents the search tree, and S lev represents the current level in thesearch tree. Initially, S tree simply comprises of a root node which is at level zeroand has zero cost. The analysis of each branch in the program tree could insert upto eight child nodes (corresponding to the maximum number of implementationsconsidered by the analyser), to each node of the search tree at the current level.In the algorithm, the inter-phase transition cost is added to that of each suchimplementation in order to compute its total cost.The function ADD TO S TREE inserts a child node to a speci�ed node inthe search tree. In the implementation, the weight on the inserted branch isadded to the weight on the destination node. In other words, the inter-phasetransition cost is added to the cost of implementation of the subsequent phase.C iseq represents the cost of implementing phasei sequentially. C ipar x representsthe cost of implementing function Rx in phase i in parallel (1 � x � 3), C ipar xyrepresents the cost of implementing both the functions Rx and Ry in phase i in



Chapter 5 | The Cost Model 79parallel on pxi and pyi processors respectively (1 � x � 2; 2 � y � 3), (pxi pyi � pi)and C ipar 123 represents the cost of implementing functions R1; R2 and R3 in phasei in parallel on p1i , p2i and p3i processors respectively (p1i p2i p3i � p).The function REARR computes the cost for rearranging the output data ofone phase to suit the implementation of the subsequent one. The informationabout the current data distribution is obtained from the current parent node inthe search tree. If the output list of size n1 from phase i� 1 is distributed acrosspi�1 processors, and phase i requires the data list to be distributed across piprocessors, (pi�1; pi � p), then REARR (n1; pi�1; pi) computes the required datarearrangement cost. Similarly, for the list (n1; n2) to be distributed such that thesublists are distributed across p1i processors and each sublist across p2i processors(p1i p2i � p), REARR ((n1; n2); pi�1; (p1i ; p2i )) computes the required cost.S tree represents the search tree, and S lev represents the current level in thesearch tree. Initially, S tree simply comprises of a root node which is at level zeroand has zero cost. The analysis of each branch in the program tree could insert upto eight child nodes (corresponding to the maximum number of implementationsconsidered by the analyser), to each node of the search tree at the current level.In the algorithm, the inter-phase transition cost is added to that of each suchimplementation in order to compute its total cost.



Chapter 5 | The Cost Model 80Algorithm ANALYSEBEGINGET SPEC /* obtain problem speci�cation */CONSTRUCT PROGRAM TREE (P)S tree  � root; S lev  � 0 /* initialise search tree */FOR i  � 1 to number-of-branches in P DONi  � number of recognised functions in branchi /* � 3 */j  � 1FOR each nodej in level S lev of S tree DOCompute C iseq /* sequential implementation */ADD TO S TREE (S tree, S lev, j, C iseq)FOR x  � 1 to Ni DOFOR k  � 1 to Ni DOIF (k = x) THEN pk  � pi ELSE pk  � 1C ipar x  � REARR (nx; pi�1; pi) +R1(n1; p1; R2(n2; p2; R3(n3; p3; Cs)))ADD TO S TREE (S tree, S lev, j, C ipar x)FOR x  � 1 to Ni - 1 DOFOR y  � 2 to Ni DOIF (x 6= y) THENFOR k  � 1 to Ni DOIF (k = x) THEN pki  � pxiELSE IF (k = y) THEN pki  � pyi ELSE pki  � 1C ipar xy � REARR ((nx; ny); pi�1; (pxi ; pyi )) +R1(n1; (p1i ; l1); R2(n2; (p2i ; l2); R3(n3; (p3i ; l3); Cs)))ADD TO S TREE (S tree, S lev, j, C ipar xy)IF (Ni = 3) THENC ipar 123  � REARR ((n1; n2; n3); pi�1; (p1i ; p2i ; p3i )) +R1(n1; (p1i ; l1); R2(n2; (p2i ; l2), R3(n3; (p3i ; l3); Cs)))ADD TO S TREE (S tree, S lev, j, C ipar 123)S lev  � S lev + 1;END.



Chapter 5 | The Cost Model 81The algorithm in the actual implementation also checks that the number ofprocessors available is su�cient to implement more than one recognised functionin parallel, before further analysis is carried out. If there are insu�cient processorsfor any implementation, then the corresponding branches will not be added to thesearch tree. Also, if two recognised functions are to be implemented in parallel,then the most cost-e�ective partition of the processor network is �rst determinedand the costs corresponding to this partition are inserted in the search tree. Forthe sake of brevity, these and a few other low-level details of the analysis are notshown in the algorithm.5.3 An Example of Compile-time AnalysisTo provide a avour for the manner in which the analyser handles the inputspeci�cations, a simple example is considered.fun ex xs = (s fold mult � map (s fold plus)) xs;The recognised functions are represented in boldface. The functions mult andplus are de�ned to be functions that multiply and add two integers respectively.The program comprises of two phases. The �rst phase contains two recognisedfunctions, map and s fold, and the second phase contains one recognised func-tion, s fold. The analyser �rst requires the problem speci�cation, as discussedin Section 5.1. In this simple example, the input sizes are assumed to be knownat compile-time.The program tree, P , representing the program is depicted by Figure 5.2.The parallel machine is assumed to comprise of p processors connected as ahypercube. The dimension of the hypercube is represented by d. K0 and K1 rep-resent the communication start-up cost and communication channel bandwidthon the hypercube, respectively. The speci�cation for M for both the phases is:
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map

mult

plus

s_fold

s_foldFigure 5.2: Program Tree for the ExampleM � (p, \hypercube", K0, K1).Since the input data sizes are assumed to be known at the start of the programand the analyser deduces it for the second phase, S � ;, for both the phases.First, the speci�cations for phase one are considered.� Cf � Cost of plus, represented by Cp.� D � 2, since the input data structure is a list of lists, in which each sublistis a list of integers. (This could be deduced from the type of the functionplus).� Isa is speci�ed since it is assumed that the input data sizes are known atcompile-time. Let the size of the input list be represented by (m� n) - i.e.the list comprises of m sublists, each of which contains n integers.� Ft � (size of integer).� Fs � (size of integer), since the function plus adds two integers and outputsan integer.In this example, D, Ft and Fs could be deduced from the type of the functionplus, if the analyser incorporated a type-checker. Cf and Isa could be estimatedif the analyser incorporated a pro�ler.



Chapter 5 | The Cost Model 83The input size speci�cations are made available (either by the programmeror by pro�ling techniques) at the beginning of the �rst phase. The analysercomputes the data sizes for the subsequent phases from the nature of the recog-nised functions which are currently being analysed. In the example program, theinput to the �rst phase is a list of lists of size (m� n). The s fold in phase onereduces this to a list of size m, in which each element is an integer. The analyserdeduces the following attributes for phase two.� D � 1, since a list of lists of integers has been reduced to a list of integers.� Isa � m.
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Chapter 5 | The Cost Model 84A type-checker and a pro�ler (or the programmer) provide the followinginformation:� Cf � Cost of mult, represented by Cm.� Ft � (size of integer). This again, could be deduced from the type of thefunction mult.� Fs � (size of integer), also deducible from the type of the function mult.Both functions can be implemented in parallel only if the dimension, d, of thehypercube � 2. Figure 5.3a represents the search tree after phase one. (Sincecomposition works right to left, the rightmost branch on the program tree isexecuted �rst). Cs represents the cost of sequential implementation for the phase,Cmap represents the cost of implementingmap in parallel and s fold sequentially,Cfold represents the cost of implementing s fold in parallel andmap sequentiallyand Cboth represents the cost of implementing both map and s fold in parallel.Figure 5.3b represents the search tree after phase two. In phase two, theanalyser computes the costs for two possible implementations for s fold - thesequential and parallel implementation, respectively, and the corresponding costsare represented by Csif and Cpif , 1 � i � 4. For each branch in level two ofthe search tree, the costs of implementation include the costs incurred in re-distributing the data from phase one to phase two. For some branches, (e.g.Cp2f), no data re-distribution is required.



Chapter 6Parallel Implementations andCosts for Recognised FunctionsA program in the HOPP model is written independently of the architecture onwhich it is executed, the implication being that only one program is written.However, the nature of the parallel implementation which is selected does de-pend, among other parameters, on the characteristics of the target architectureas discussed in Section 5.1.2. The hypercube, 2-D torus, s-ary tree and lineararray have been studied as potential target topologies. The hypercube provedto be the most suitable topology for the set of recognised functions and the treeand the linear array proved to be ine�cient. In this chapter, implementationsfor the recognised functions on the previously mentioned topologies are discussedand their costs are derived.6.1 Data Communications on the TopologiesCommunication costs constitute a signi�cant part of the total cost of execution ofparallel programs on distributed memory machines. For the purposes of the im-plementation scheme, �ve types of communication patterns have been identi�ed.The communication algorithms for the hypercube topology are based on [SS89].Some of the mesh algorithms are based on [YM89]. However, the algorithms in85



Chapter 6 | Parallel Implementations and Costs 86[SS89] and [YM89] assume that processors can communicate with more than oneneighbour simultaneously. As mentioned in Section 5.1.2, the HOPP model doesnot assume such a capability. The algorithms and the derivation of the associatedcosts reect this assumption.The following patterns of communications recur in programs.1. Nearest Neighbour CommunicationThis type of communication involves sending a message (or a data packet) toa neighbouring processor. Two processors are considered to be neighboursif they are connected by a direct communication link.2. Broadcast OperationThis operation involves moving the same data packet from one processor toall the other processors in the network.3. Scatter OperationThis operation involves moving di�erent data packets (one to each pro-cessor), from one processor to all the other processors in the network.4. Gather OperationThis operation involves collecting the data packets distributed across theprocessors in the network, onto a single processor.5. Total Exchange OperationThis operation involves moving data packets from every processor in thenetwork to every other processor.As pointed out in [SS89], the gather operation is the dual of the scatter opera-tion, i.e. the algorithm for the gather operation can be obtained by reversing thedata paths in the scatter algorithm and vice-versa. Hence, the costs for both the



Chapter 6 | Parallel Implementations and Costs 87operations are identical. In the following discussion, only the scatter operation isconsidered.The total number of processors in each case is assumed to be p.� Hypercube - The number of processors in a binary hypercube of dimensiond is given by: p = 2d� Torus - The number of processors in a 2-dimensional torus, where,p1 represents the number of processors in each rowp2 represents the number of processors in each columnis given by: p = p1p2, p1 = 2k1 , p2 = 2k2 , p1 � p2.The number of processors in each dimension is made a power of two in orderto allow a direct comparison of the performance of the torus with that ofthe hypercube. The cost expressions would remain unchanged even withthis restriction removed.� Tree - The number of processors in a tree of arity s and depth d is givenby: p = sd+1�1s�1Figure 6.1 illustrates the processor-numbering schemes for examples of the fourtopologies.The algorithms for performing communications on the hypercube topologyare based on the corresponding ones in [SS89], are therefore not described here,with only the cost expressions being presented. The size of the data to be com-municated is assumed to be n bytes and all the data is assumed to be initiallyresident on processor0. This does not matter in the case of the hypercube; thealgorithms would remain unchanged irrespective of the processor from which thedata is broadcast, scattered or gathered. It must also be emphasised that the
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Chapter 6 | Parallel Implementations and Costs 89algorithms are not necessarily optimal, since the derivation of optimal commu-nication algorithms is not central to this thesis. However, this will not a�ectthe results of the thesis; a more cost-e�ective data distribution algorithm wouldprobably result in a lower cost of implementation and could be incorporated inthe scheme even at a later stage.In the ensuing discussion, it is assumed that n, the number of elements in theinput list, is divisible by the number of processors, p. If not, the cost computationswould have to consider the expression dnpe and this would make it di�cult tosimplify cost expressions. If n is not divisible by p, then without loss of generality,it can be replaced by n0, where n0 = (n + k), 0 < k < p and (n + k) mod p = 0.The costs are computed with the number of elements equal to n0. In all the costexpressions, it is assumed that the necessary substitution has already been made.6.1.1 Nearest-neighbour CommunicationThe cost expression for this operation is identical on all the topologies. Theoperation itself is very simple - processor A sends a data packet to a neighbouringprocessor B which receives it. Using the linear model of communication, the costfor communicating a data packet of size n bytes to a nearest neighbour is givenby: Cnn = K0 + 1K1n (6.1)6.1.2 The Broadcast Operation1. Hypercube - The cost of broadcasting a data packet of size n bytes on ahypercube of dimension d is given by:Chbroad = d(K0 + 1K1n): (6.2)2. Linear Array - The cost of communication on the linear array is more ex-pensive because of its poor connectivity. In order to exploit parallelism in



Chapter 6 | Parallel Implementations and Costs 90the links, a data packet of size n bytes is split into r equal-sized packets andthe communication of these packets are overlapped on di�erent links. Theoverlap is possible only when p > 3, otherwise, the case is trivial and thedata reaches the last processor in the linear array in two steps. For (p > 3),the �rst data packet reaches the last processor in (p� 1) steps. Thereafter,since a send and a receive cannot be performed simultaneously in the as-sumed model, the last processor receives a data packet every alternate step.Since there are (r � 1) packets still to be received, a total of 2(r � 1) stepswill be required for the last processor to receive all the data. The otherprocessors would have received all the data by this time. Since the amountof data transferred in each step is nr , the cost of communication is given by:Cabroad = ((p� 1) + 2(r � 1))(K0 + 1K1 nr ): (6.3)The expression simpli�es to:Cabroad = (p + 2r � 3)(K0 + 1K1 nr ): (6.4)The optimal value of r is given by: r = dq (p�3)n2K0K1 e.3. 2-D Torus/Mesh - The data is �rst pipelined vertically and in the secondstage of the broadcast, each row of processors pipelines the data horizontallyin parallel. The wrap-around connections can be used to reduce the costof broadcast in a 2-D torus. Instead of pipelining the data down the �rstcolumn, processor0, in the �rst step sends the data to the last processorin the column, using the wrap-around link (See Figure 6.1). In the secondstep, both the processors pipeline the data in opposite directions until allthe processors in the �rst column receive the data. This reduces the lengthof the pipeline by half. A similar strategy is repeated along each of the rowsin parallel in the next step. The total cost is then obtained by adding the



Chapter 6 | Parallel Implementations and Costs 91costs for each of the three stages.Cm idealbroad = (K0 + 1K1n) + (p22 � 1)(K0 + 1K1n) + (K0 + 1K1n) +(p12 � 1)(K0 + 1K1n)The total cost of broadcast in a mesh is given by:Cm idealbroad = p1 + p22 (K0 + 1K1n): (6.5)There is a slight non-uniformity in the 2-D torus considered for implement-ation. The example programs are to be implemented on a transputer-basedmachine. The transputers are con�gured as a 2-D torus for the purposes ofimplementation. Each transputer has only four links and each processor in a2-D torus has at most four neighbours, so the logical neighbours on the toruscan be made physical neighbours on the transputer network. However, anextra link on one processor is required to communicate with the operatingsystem. This requirement causes a slight non-uniformity in the con�guredtorus architecture and, as a result, processor0 is physically connected to onlythree neighbours. This increases the cost of the broadcast operation sincethe data communication to one of processor0's neighbours (processorp1�1,in this case), cannot be performed in one step. This implies that the wrap-around connection cannot be used in the �rst row, to reduce the lengthof the pipeline by half. The cost expression is therefore modi�ed to thefollowing. Cmbroad = (p1 + p22 � 1)(K0 + 1K1n) (6.6)4. s-ary Tree - The broadcast operation in the case of the tree is straightfor-ward. The data to be broadcast is initially at the root of the tree. Theroot sends the data to one child at a time, starting from the left to theright. Each child node receives the data from its parent and communicates



Chapter 6 | Parallel Implementations and Costs 92it to its children, starting with the leftmost child. The communicationsperformed by the nodes in each level are overlapped, resulting in s suchcommunications. For a tree of depth d, the cost is given by:C tbroad = sd(K0 + 1K1n): (6.7)6.1.3 The Scatter OperationThe data is divided into p equal parts which are numbered 0,1,2,. . . , (p�1). Afterthe scatter operation, each processor has np bytes of the data. It is important thateach processor receives the correct portion of the data. In particular, processorishould receive the i-th part of the data. (For processor numbering patterns, seeFigure 6.1). This is because the algorithms for the parallel implementations ofthe recognised functions are based on a particular node numbering and assumethe correct placement of data. Since the arguments of none of the recognisedfunctions are assumed to be commutative, incorrect results may be obtained ifthe data is not scattered in the required order.1. Hypercube - The cost of scattering data on a hypercube of dimension d isgiven by: Chscatter = dK0 + 1K1 np (p� 1): (6.8)2. Linear Array - The data is just sent down the array and each processorretains the �rst np bytes of the data, sending the rest to its neighbour. Thereis no parallelism exploited, but it is unlikely to improve the performanceif communication is overlapped on the di�erent links. The communicationinvolves (p � 1) steps, and in each step, the amount of data reduces by npbytes. The total cost is therefore given by:Cascatter = p�1Xi=1(K0 + 1K1 (n� inp )):



Chapter 6 | Parallel Implementations and Costs 93The cost expression simpli�es to:Cascatter = (p� 1)(K0 + 1K1 n2 ): (6.9)3. 2-D Torus/Mesh - In the �rst step, the data is divided into two equal (ornearly equal) parts, with one half being sent from processor0 to the last pro-cessor in the �rst column, using the wrap-around link. Each processor hasn2 bytes of the data after the �rst step. Each retains the appropriate amountof data ( np1 bytes), and in the second step, both the processors pipeline thedata in opposite directions. At the end of step two, each processor in the�rst column has the data necessary ( np1 bytes) for its respective row. In thethird step, all the processors in the �rst column repeat a similar procedureby sending data along the rows in parallel. The amount of data transferredalong the links decreases with each transfer, by ( np1 ) bytes in step two, andby (np ) bytes in step three. At the end of step three, each processor has therequired portion of the data. Using the results for a linear array for thecommunications in steps two and three, the cost is given by:Cm idealscatter = (K0 + 1K1 n2 ) + (p22 � 1)(K0 + 1K1 n4 ) +(K0 + 1K1 n2p2 ) + (p12 � 1)(K0 + 1K1 n4p2 ):On simpli�cation, the cost is given by:Cm idealscatter = K0(p1 + p22 ) + 1K1 n4 ((p22 + 1) + 1p2 (p12 + 1)): (6.10)If the non-uniformity in the wrap-around connections is accounted for, thenin step three, the entire length of the pipeline must be considered. So, thecost expression modi�es to the following.Cmscatter = (K0 + 1K1 n2 ) + (p22 � 1)(K0 + 1K1 n4 ) +(p1 � 1)(K0 + 1K1 n2p2 )



Chapter 6 | Parallel Implementations and Costs 94The �nal cost expression for the non-uniform mesh simpli�es to:Cmscatter = K0(p1 + p22 � 1) + 1K1 (n4 (p22 + 1) + n2p2 (p1 � 1)): (6.11)4. Tree - A parent node communicates data to each of its s children in turn,starting with the leftmost child. Each child node retains the �rst np bytesof the data, being the data that is meant to reach that processor. The restof the data is divided into s parts and communicated to its children. Thisscheme ensures that the data reaches the correct processor, since the treesare numbered by pre-order traversal (refer to Figure 6.1).At level j in the tree, each processor has to communicate the data it receivedfrom its parent, to k processors below it, wherek = ssd�j � 1s� 1 : (6.12)Each processor must possess np bytes of the data after the scatter operation.So the amount of data still to be communicated at level j in the tree is k np .This data is divided into s parts and sent to each of the children. Each suchcommunication involves the transfer of ks np bytes of data. Since there ares such communications in each level and there are d levels in the tree, thetotal cost is given by:C tscatter = d�1Xj=0 s(K0 + 1K1 (ks np )): (6.13)Substituting for k from Equation 6.12 and simplifying the summation yields:C tscatter = sdK0 + 1K1 np ss� 1(p � 1� d): (6.14)



Chapter 6 | Parallel Implementations and Costs 956.1.4 Total-ExchangeIt is assumed that all the processors exchange equal amounts of data, i.e. np bytes.1. Hypercube - The cost of the total-exchange operation on a hypercube ofdimension d is given by:Chexchange = 2dK0 + 2 1K1 np (p� 1): (6.15)2. Linear Array - The total exchange operation on the linear array is veryexpensive due to its poor connectivity. The procedure involves dividing thelinear array into two sub-arrays. In the �rst step, the processors in the rightsub-array move their data to the left, and the processors in the left sub-array move their data to the right, in parallel. Hence, data from the twosub-arrays is gathered in the �rst processor of the right sub-array and thelast processor of the left sub-array, respectively. In the second step, thesetwo processors exchange the data. In the third step, the data is passed backin opposite directions along both the sub-arrays.The �rst step is just a gather operation involving half the number of pro-cessors in the original linear array and half the original data. The secondstep will therefore involve an exchange of n2 bytes of data. In the third step,each processor also appends its own data to the data it receives and sends iton to its neighbour. With each communication, the amount of data whichis transferred progressively increases by an amount equal to np bytes. Thetotal cost is obtained by adding the costs for the three steps. The numberof processors, p, is assumed to be even. The cost is given by:Caexchange = (p2 � 1)(K0 + 1K1 np ) + 2(K0 + 1K1 n2 ) +p2�1Xi=1 (K0 + 1K1 (n2 + inp )):



Chapter 6 | Parallel Implementations and Costs 96On simpli�cation, the cost expression is given by:Caexchange = p(K0 + 1K1 n2 ): (6.16)3. Mesh - The method adopted is based on the one described in [YM89]. Eachcolumn and row of the mesh forms a ring because of wrap-around. In the�rst step of the total exchange operation, all the nodes exchange data withtheir column neighbours, by moving the data round the vertical rings. Inthe second step, a similar procedure is repeated along the rings in the rows.The communication in the columns (rows) are performed in parallel. Sincenp bytes of data are involved in each transfer, the cost is given by:Cm idealexchange = (K0 + 1K1 np )(p2 � 1) + (K0 + 1K1 np1 )(p1 � 1): (6.17)which on simpli�cation yields:Cm idealexchange = K0(p1 + p2 � 2) + 1K1n(1� 1p): (6.18)However, for the case of the non-uniform mesh, the wrap-around connectionin the �rst row cannot be used. So, two traversals of the �rst row arerequired. Since the number of processors along the rows (p1), may be lessthan the number of processors along the columns (p2), it proves to be morecost-e�ective if the data is exchanged along the rows in the �rst step, andalong the columns, in the second step. The cost is given by:Cmexchange = (K0 + 1K1 np )(2p1 � 2) + (K0 + 1K1 np2 )(p2 � 1):On simpli�cation,Costmexchange = K0(2p1 + p2 � 3) + 1K1 np (p1 + p� 2):Equation 6.16 could be used in the �rst step to further reduce the cost.



Chapter 6 | Parallel Implementations and Costs 974. Tree - The method adopted involves gathering the results to the root pro-cessor and then broadcasting the results to all the processors. Since thecost of the gather operation is equal to the cost of the scatter operation,the cost is given by (refer to Equations 6.14, 6.7):C texchange = C tscatter + C tbroad (6.19)6.2 Algorithms and Costs for the Parallel Im-plementations of Recognised FunctionsAlthough the functions in the extended set can be expressed in terms of oneor more functions in the basic set, their parallel implementation will often bedi�erent from that of the constituent functions. This is because the de�nitionsfor these functions in terms of the basic set of functions is often quite contrivedand the corresponding implementations may not be cost-e�ective. In computingthe costs of the recognised functions, the following assumptions are made.1. Initial data distribution costs are ignored. These costs, which comprise ofthe costs for operations such as scatter or broadcast, are accounted for whenthe costs are computed for the entire problem.2. The number of processors in the parallel machine is represented by p.3. The input list is represented by xs, where j xs j= n4. The input list, xs, is assumed to be distributed across the p processorsin the parallel machine. The following assumption is applicable to all thealgorithms, unless otherwise stated.xs = xs0@xs1@ : : :@xsp�1xsi 2 processorij xsi j= np ; ; i = 0; : : : ; (p � 1)



Chapter 6 | Parallel Implementations and Costs 985. Tmcom represents the cost of communicatingm elements of the list to a neigh-bour. Tmcom = K0 + 1K1ms (6.20)where s is the size (in bytes) of each element of the list.6. The sequential argument function of a recognised function is represented byf and its cost by Cf .7. The analyser makes the following assumption for all the sequential functionsin the program.8xi 2 xs; i 2 0; 1; : : : ; (n� 2)Cost (f xi) � Cost (f xi+1),where, f is any sequential function in the program.This is an important assumption implying the regularity of the applicationthat is considered for cost analysis.For each of the recognised functions, the sequential cost is �rst computed. Thealgorithm for the parallel evaluation of the function on each of the four topologiesis then presented, along with their associated costs. For the purposes of present-ation, the same ordering of recognised functions is followed as in Chapter 4.6.2.1 mapThe sequential cost of map is given by:Csmap = nCf (6.21)The parallel implementation formap on all the topologies is straightforward. Allthe processors perform the map operation in parallel on their respective localdata. The result of the operation remains distributed across the network.



Chapter 6 | Parallel Implementations and Costs 99Result = ys = ys0@ys1@ : : :@ysn�1where, ysi 2 processorii = 0; 1; : : : ; (n� 1)The algorithm for the parallel implementation of map on all the four processortopologies is as follows.Algorithm PAR MAP (all topologies)BEGINFOR every processori DO in PARALLELmap f xsiEND.There is no communication involved in the implementation. The cost ex-pression for the parallel implementation of map on any p-processor topology isidentical and is given by: Cmap = npCf (6.22)6.2.2 foldIn a sequential implementation of fold, there are (n � 1) applications of theoperator f . (For the purposes of implementation and cost computations, f a x0is not considered, since the result is x0). The sequential cost of s fold is:Css fold = (n� 1)Cf (6.23)In the case of g fold, the input list is at least a list of lists, i.e. D � 2. If the listis assumed to comprise of n sublists, each of size m, then two cases need to beconsidered for the cost of the sequential function f.� The case where the cost of f is independent of the sizes of the input lists onwhich it operates. The cost function can then be represented by Cf , and



Chapter 6 | Parallel Implementations and Costs 100the cost expression for g fold is identical to that of s fold.Cscg fold = (n� 1)Cf (6.24)� The case where the cost of f depends on the sizes of the input lists on whichit operates. The cost function in this case is represented by a function g, asfollows: Cg = g(l1; l2)where l1 and l2 represent the lengths of the �rst and second argument lists,respectively. It may be noted that since each sublist is assumed to compriseof m elements, assumption 7 is still valid. Therefore, l1 = l2 = m. The costexpression is given by: Csfg fold = n�1Xi=1 g(im;m) (6.25)For all the topologies, after a parallel implementation of fold, the result is left onprocessor0 (or the root processor). The algorithms for the two versions of fold,viz. s fold and g fold, are the same. The costs are di�erent, because in the caseof g fold, the size of the data communicated increases at each step and must beaccounted for in the computation of Tcom.6.2.2.1 fold on the Linear ArrayThe algorithm is as described in PAR FOLD (linear array). The algorithm as-sumes that the number of processors is a power of 2, otherwise Step 2 of thealgorithm will need slight modi�cation. The cost expressions are unchanged.



Chapter 6 | Parallel Implementations and Costs 101Algorithm PAR FOLD (linear array)BEGIN1. FOR each processori DO in PARALLEL/* evaluate partial results */result  � fold f a xsi2. j  � 1WHILE j � log pcombine partial results between pairs ofprocessors which are j hops away/* combination from right to left */j  � 2 � jEND.� s fold Cas fold = Cf (np � 1)| {z }step 1 +(T 1com(1 + 2 + : : :+ 2log p�1) + Cf log p)| {z }step 2On simpli�cation, the cost of s fold is given by:Cas fold = Cf (np � 1 + log p) + T 1com(p � 1): (6.26)� g fold - After performing Step 1 of the algorithm, each processor is leftwith npm elements. In each iteration of Step 2, the number of elements tobe communicated increases.For the case where the cost of f is a function of its input list sizes:Cafg fold = np�1Xi=1 g(im;m)| {z }step 1 + logp�1Xi=0 (2iT 2i npmcom + g(2inpm; 2inpm))| {z }step 2 :Cafg fold = np�1Xi=1 g(im;m) + log p�1Xi=0 g(2inpm; 2inpm) +logp�1Xi=0 2iT 2i npmcom : (6.27)



Chapter 6 | Parallel Implementations and Costs 102For the case where the cost of f is independent of the input sizes, the costexpression simpli�es to the following:Cacg fold = Cf(np � 1)| {z }step 1 + log p�1Xi=0 2iT 2i npmcom + Cf log p| {z }step 2 :Grouping together the computation and communication terms, the cost is:Cacg fold = Cf (np � 1 + log p) + logp�1Xi=0 2iT 2i npmcom : (6.28)6.2.2.2 fold on the HypercubeThe fold operation on a hypercube of dimension d involves the following twosteps.1. (np � 1) local applications of the argument function on each processor, inparallel.2. d nearest neighbour communications of partial results to the root processor,and d applications of the argument function to partial results from pairs ofprocessors. (The root processor is the smallest-numbered processor in thecube or subcube implementing the fold).In the following algorithm, pno represents the processor number, and pjno repres-ents the number of the neighbouring processor in dimension j of the hypercube;0 � j < d, 0 � pno; pjno < p.



Chapter 6 | Parallel Implementations and Costs 103Algorithm PAR FOLD (Hypercube)BEGIN1. FOR every processori DO in PARALLELresult  � fold f a xsi/* combine partial results on all processors */2. FOR every processori DOFOR j  � 0 TO d� 1 DOIF pjno < pno THENsend result to processor pjnoEXITELSEreceive data from pjnoresult  � f result dataEND.� s fold - The cost of s fold is given by:Chs fold = Cf (np � 1)| {z }step 1 + d(T 1com + Cf )| {z }step 2which, on rearrangement gives:Chs fold = Cf(np + d � 1) + T 1comd: (6.29)� g fold - If the cost of the sequential argument, f , is a function of inputsizes, the cost is given by:Ch fg fold = np�1Xi=1 g(im;m)| {z }step 1 + d�1Xi=0 T 2i npmcom + d�1Xi=0 g(2inpm; 2inpm)| {z }step 2 :On rearrangement, the cost expression is given by:Ch fg fold = np�1Xi=1 g(im;m) + d�1Xi=0(T 2i npmcom + g(2inpm; 2inpm)): (6.30)



Chapter 6 | Parallel Implementations and Costs 104If the cost of the argument function is a constant given by Cf ,Ch cg fold = Cf (np + d� 1) + d�1Xi=0 T 2i npmcom : (6.31)6.2.2.3 fold on the 2-D Torus/MeshThe algorithm is based on an ideal torus where each processor has four physicalneighbours. It exploits the wrap-around links in order to reduce the computationcost by half. The right and left halves of each row are treated as linear arraysand an algorithm similar to PAR FOLD(linear array) is executed in each half.The partial results in each row are combined using the wrap-around link, so thatthe �rst column processors now hold the new set of partial results. A similarprocedure is repeated along the �rst column processors, to obtain the �nal resulton processor0.� s fold -Cm ideals fold = Cf (np � 1)| {z }step 1 +T 1com(p12 � 1) + Cf log p12| {z }step 2 +(T 1com + Cf)| {z }step 3+T 1com(p22 � 1) + Cf log p22| {z }step 4a +T 1com + Cf| {z }step 4bGrouping like terms together, the cost is given by:Cm ideals fold = Cf (np + 1 + log p12 + log p22 ) + T 1com(p1 + p22 ): (6.32)



Chapter 6 | Parallel Implementations and Costs 105Algorithm PAR FOLD (ideal-mesh)BEGIN1. FOR every processori DO in PARALLELresult  � fold f a xsi2. j  � 1WHILE j � log p12Right (Left) half processors DOcombine partial results between pairs ofprocessors j hops away/* from left (right) to right (left) */j  � 2 � j3. Last and �rst-column processors DOIF last-column processor THENsend result to �rst processor in rowELSEreceive data from last processor in rowresult  � f result data4. IF �rst-column processor THENa. j  � 1WHILE j � log p22Bottom (Top) half processors DOcombine partial results between pairs ofprocessors j hops away/* from top (bottom) to bottom (top) */j  � 2 � jb. IF last processor THENsend result to processor0processor0 DOreceive data from last processorresult  � f result dataEND.



Chapter 6 | Parallel Implementations and Costs 106� g fold -Cmf idealg fold = np�1Xi=1 g(im;m)| {z }step 1 + log p12 �1Xi=0 (2iT 2ifracnpmcom + g(2inpm; 2inpm))| {z }step 2 +T p12 npmcom + g(p12 npm; p12 npm)| {z }step 3 +p22 �1Xi=0 (2iT 2i np2mcom + g(2i np2m; 2i np2m))| {z }step 4a +T n2mcom + g(n2m; n2m)| {z }step 4b : (6.33)Cmc idealg fold = Cf (np + 1 + log p12 + log p22 ) + log p12 �1Xi=0 (2iT 2i npmcom ) + T p12 npmcom +log p22 �1Xi=0 (2iT 2i np2mcom ) + T n2mcom : (6.34)If the mesh does not have a wrap-around connection on all the rows, then allthe links will have to be traversed in the horizontal direction. However, in thevertical direction, the wrap-around link can still be used. Steps 2 and 3 of thealgorithm would require minor modi�cation. Then, it is easily shown that thecosts are modi�ed as follows:Cms fold = Cf (np + log p1 + log p22 ) + T 1com(p1 + p22 � 1): (6.35)Cm fg fold = np�1Xi=1 g(im;m) + log p1�1Xi=0 (2iT 2i npmcom + g(2inpm; 2inpm)) +log p22 �1Xi=0 (2iT 2i np2mcom + g(2i np2m; 2i np2m)) +T n2mcom + g(n2m; n2m): (6.36)



Chapter 6 | Parallel Implementations and Costs 107Cm cg fold = Cf (np + log p1 + log p22 ) + logp1�1Xi=0 2iT 2i npmcom +log p22 �1Xi=0 2iT 2i np2mcom + T n2mcom : (6.37)6.2.2.4 fold on the TreeAlgorithm PAR FOLD (s-ary tree)BEGIN1. FOR every processori DO in PARALLELresult  � fold f a xsi2. FOR every leaf processor DOsend result to parentFOR every non-leaf processor DOFOR i  � 1 to s DOreceive data from childiresult  � f result dataIF (not root processor) THENsend result to parentEND.For a tree of depth d, the partial results take d steps to reach the root processor.At each level, there are s communications and s applications of the function f inparallel.� s fold - The cost expression is given by:C ts fold = Cf(np � 1 + ds) + ds(T 1com): (6.38)� g fold - The cost expression is given by:C t fg fold = np�1Xi=1 g(im;m) + s d�1Xj=0 T sd�j�1s�1 npmcom +d�1Xj=0 s�1Xi=0 g(npm+ isd�j � 1s� 1 npm; sd�j � 1s� 1 npm) (6.39)



Chapter 6 | Parallel Implementations and Costs 108If the cost of f is independent of the size of its arguments, thenC t cg fold = Cf (np + ds� 1) + s d�1Xj=0 T sd�j�1s�1 npmcom : (6.40)The �rst term in Equation 6.39 is obtained from Step 1 of the algorithm. Atlevel j in the tree (the root is at level 0, the leaves are at level d�1), each processorwould have to send data that has been gathered from sd�j�1s�1 processors. At the endof Step 1, each processor has npm data items. Since there are s communicationsat each level, and there are d levels in the tree, the total communication cost isgiven by the second term in Equation 6.39. At each level in the tree, a processormakes s applications of the function f. Each processor makes the �rst applicationof f on its local data and the data gathered from the leftmost child. For thesecond application of f, the size of the �rst argument is the sum of the sizes ofthe arguments in the �rst call to f. The same reasoning is valid for all the sapplications of f at any level in the tree. For a non-leaf node at level j, each childnode would have gathered data from sd�j�1s�1 nodes. Since there are d levels in thetree, the total cost of the function applications is derived to be the third term inEquation 6.39.6.2.3 scanThe sequential implementation of scan has (n�1) applications of the operator f.The sequential cost of scan is, therefore, the same as the sequential cost of fold.As in the case of fold, g(l1; l2) represents the cost of the argument of g scan,when it is a function of the sizes of its input lists. Once again, l1 = l2 = m.Css scan = (n � 1)Cf (6.41)Csfg scan = nXi=1 g(im;m) (6.42)Cscg scan = (n� 1)Cf (6.43)



Chapter 6 | Parallel Implementations and Costs 109The algorithms for the parallel implementations of s scan and g scan areidentical, although the cost expressions are di�erent. The result of the parallelscan operation is distributed across the network as follows:Result = ys = ys0@ys1@ : : :@ysn�1where, ysi 2 processori.In the following algorithms, last is a function that returns the last element of alist.6.2.3.1 scan on the Linear ArrayThe partial results reach the last processor in the array in (p-1) steps. The totalcost is once again obtained by adding the costs for both the steps in order.� s scan Cas scan = Cf (np � 1)| {z }step 1 +((p� 1)(T 1com + Cf) + Cf (np � 2))| {z }step 2On simpli�cation, the total cost is given by:Cas scan = Cf (2np + p � 4) + T 1com(p � 1): (6.44)



Chapter 6 | Parallel Implementations and Costs 110Algorithm PAR SCAN (linear array)BEGIN 1. FOR every processori DO in PARALLELresult  � scan f a xsilast result  � last result2. processor0 DOsend last result to processor1FOR every processor except processor0 DOreceive data from left neighbourlast result  � f data last resultsend last result to right neighbourFOR j  � 1 TO (np � 1) DOresultj  � f data resultjresultnp  � last resultEND.� g scan Cafg scan = np�1Xi=1 g(m; im)| {z }step 1 + p�1Xi=1(T inpmcom + g(inpm; npm))| {z }step 2 +np�2Xi=1 g((p � 1)npm; im)| {z }step 2 (6.45)For the input-independent case, the cost of g scan is given by:Cacg scan = Cf (2np + p� 4) + p�1Xi=1 T inpmcom : (6.46)



Chapter 6 | Parallel Implementations and Costs 1116.2.3.2 scan on the HypercubeAlgorithm PAR SCAN (hypercube)BEGIN 1. FOR every processori DO in PARALLELresult  � scan f a xsilast result  � last result2. FOR all processors DOFOR j  � 0 to (d � 1) DOIF (bitj of processor number = 0) THENsend last result to neighbour in dimension jELSEreceive data from neighbour in dimension jlast result  � f data last resultstore data in data list3. FOR each subcubei of dimension > 0 DOcommunicate partial results from lower-numberedsubcubes to lower-numbered processors in subcubei4. FOR all processors DOpar result  � fold f a data list/* data list has the partial resultsfrom lower-numbered processors */FOR j  � 1 to (np � 1) DOresultj  � f par result resultjresultnp  � last resultEND.Note that step 3 in the algorithm would involve at most (d � 1) communica-tions. The cost expressions are derived in the following manner.



Chapter 6 | Parallel Implementations and Costs 112� s scan - Adding the costs for each of the steps, in order,Chs scan = Cf (np � 1)| {z }step 1 + d(Cf + T 1com)| {z }step 2 +T 1com(d� 1)| {z }step 3 +Cf (d� 1) + Cf(np � 2)| {z }step 4 :Grouping like terms provides the following:Chs scan = Cf(2np + 2d � 4) + T 1com(2d � 1): (6.47)� g scan - Representing the cost function by g(l1; l2) gives:Chfg scan = np�1Xi=1 g(m; im) + d�1Xi=0(T 2i npmcom + g(2inpm; 2inpm)) +(d � 1)T 2d�1 npmcom + np�2Xi=1 g((p � 1)npm; im): (6.48)The cost for the input-independent case is given by:Chcg scan = Cf (2np + 2d � 4) + d�1Xi=0 T 2i npmcom + (d� 1)T 2(d�1) npmcom : (6.49)6.2.3.3 scan on the 2-D Torus/MeshThe algorithm is based on the one described in [Akl89].� s scan - If the wrap-around links are not used, then the cost is given by:C1ms scan = Cf (np � 1)| {z }step 1 +(T 1com + Cf )(p1 � 1)| {z }step 2 +(Cf (p2 � 1) + T 1com(p2 � 1) + T 1com(p1 � 1))| {z }step 3 +Cf (1 + np � 1)| {z }step 4 :The �nal cost expression is given by:C1ms scan = Cf(2np + p1 + p2 � 3) + T 1com(2p1 + p2 � 3): (6.50)



Chapter 6 | Parallel Implementations and Costs 113Algorithm PAR SCAN (mesh)BEGIN1. FOR every processori DO in PARALLELresult  � scan f a xsilast result  � last result2. /* update along the rows in parallel */FOR all processors DOIF (not �rst-column processor) DOreceive data1 from left neighbourlast result  � f data1 last resultforward last result to right neighbour3. FOR processors in last column DO/* send partial results of each row to subsequent row */IF (not �rst-row processor) DOreceive data2 from neighbour in previous rowlast result  � f data2 last resultforward last result to neighbour in next rowIF (not �rst-row processor) DOforward data2 to left neighbourFOR all other processors DOIF (not �rst-row processor) DOreceive data2 from right neighbourforward data2 to left neighbour/* except �rst-column processors */4. FOR all processors DOdata  � f data2 data1FOR j  � 1 to (np � 1) DOresultj  � f data resultjEND.� In step 3, instead of sending the partial results from the previous rowsall along the length of the row, the wrap-around could be used to com-municate it to the neighbour in the �rst column. Then, both processors



Chapter 6 | Parallel Implementations and Costs 114could communicate the partial results in opposite directions along the row,thereby reducing the communication costs. Note that processors in the �rstrow do not have to communicate partial results to neighbours in that row.So, even in the case of the non-uniform mesh, the cost can be improved to:Cms scan = Cf(2np + p1 + p2 � 4) + T 1com(32p1 + p2 � 1): (6.51)� g scan - With wrap-around links and a cost function g(l1; l2):Cmfg scan = np�1Xi=1 g(im;m) + p1�1Xi=1 (T inpmcom + g(inpm; npm)) +p2�1Xi=1 (T inpmp1com + g(inpmp1; npmp1)) +p12 T npmp1(p2�1)com + g(npmp1(p2 � 1); npm(p1 � 1)) +np�1Xi=1 g(npm(p � 1); im) (6.52)For the input-independent argument function the cost simpli�es to:Cmcg scan = Cf (2np + p1 + p2 � 3) + p1�1Xi=1 T inpmcom +p2�1Xi=1 T inpmp1com + p12 T npmp1(p2�1)com : (6.53)6.2.3.4 scan on the s-ary TreeThe parallel implementation on an s-ary tree is a modi�cation of the versiondescribed in [Ble89], for binary trees. Assumption 4 requires modi�cation forthis algorithm. The elements of the input list are initially at the leaves of thetree. Any communication costs incurred in achieving this distribution will alsobe accounted for when the cost for the entire problem is computed.xs = xs0@xs1@ : : :@xs nsd�1where, xsi 2 leafi; i 2 0; 1; : : : ; (n� 1)



Chapter 6 | Parallel Implementations and Costs 115Leaves are numbered from left to right. A tree of arity s and a depth d has sdleaves. Therefore, j xsi j= nsd .Algorithm PAR SCAN (s-ary tree)BEGIN1. FOR every leaf processor DO in PARALLELresult  � scan f a xsilast result  � last resultsend last result to parent2. FOR all non-leaf processors DO in PARALLELFOR j  � 0 to (s� 1) DOreceive data from childjtempj  � dataresult  � scan f a tempIF (root processor) THENFOR j  � 0 to (s-1) DOsend resultj to childjELSEsend (last result) to parent3. FOR all processors, except root and leaves DOreceive data from parentsend data to child0FOR j  � 1 to (s� 1) DOtempj  � f data resultj�1send resultj to childj4. Leaf processors DOreceive data from parentresult0  � dataFOR j  � 1 to ( nsd � 1) DOresultj  � f data resultj5. Root processor0 DOsend (last result) to rightmost leafEND.



Chapter 6 | Parallel Implementations and Costs 116Step 5 in the algorithm is essential since the last element of the resultinglist will remain at the root. In an actual implementation, the last element canbe communicated along with temps�1 in step 3 of the algorithm. This willnot increase the communication cost very signi�cantly. In the following costcomputations, Step 5 is assumed to be combined with Step 3, and the cost ofcommunicating the additional element is ignored, to simplify the cost expression.After the scan operation the result is left distributed across the leaves of the tree.Given a tree of depth d, the results take d steps to reach the root in step 2,and a further d steps for the results to reach the leaves again in step 4, with eachstep involving s communications.� s scan C ts scan = Cf ( nsd � 1)| {z }step 1 + d(sT 1com + Cf (s� 1))| {z }step 2 +((d � 1)(s � 1)Cf + dsT 1com)| {z }step 3 +Cf ( nsd � 1)| {z }step 4C ts scan = Cf (2 nsd + (s� 1)(2d + 1)) + T 1com2ds: (6.54)� g scan - Di�erent data sizes will be communicated in parallel on di�erentbranches of the tree during the down-sweep (i.e. steps 3 and 4). Thelargest data size is communicated along the rightmost branch of the tree,since the partial results from all the nodes to its left must reach the nodeson this branch. Also, the size of the data communicated increases with eachlevel down the tree. The non-uniformity in data transfers results in a morecomplicated cost expression.



Chapter 6 | Parallel Implementations and Costs 117If k = (s� 1)sd�1 nsdm thenC tfg scan = nsd�1Xi=1 g(im;m)| {z }step 1 + d�1Xi=0 sT si nsdmcom + d�1Xi=0 s�1Xj=1 g(jsi nsdm; si nsdm)| {z }step 2 +s�1Xj=0T jsd�1 nsdmcom + (s� 1) d�2Xi=0 g(k; si nsdm) + T kcom| {z }step 3 +s(T k+ nsdmsd�2com + T k+ nsdm(sd�2+sd�3)com + : : :+ T k+ nsdmPd�2i=1 sicom )| {z }step 3 +(s� 1)T k+ nsdmPd�2i=0 sicom| {z }step 3 + nsd�1Xi=1 g(k + nsdm d�2Xj=0 sj ; im)| {z }step 4 :The �rst three terms constitute the cost for the up-sweep and are easilydeduced. The cost for the down-sweep is deduced as follows. At the root,the identity element is communicated to the leftmost child, data of sizesd�1 nsdm (which is the size of the �rst partial result) is communicated tochild1, : : :, data of size (s � 1)sd�1 nsdm is communicated to childs�1. Thecost of communicating the identity element can be assumed to be zero,since it does not actually have to be communicated. These communicationsaccount for the fourth term in the cost expression. At each level in the tree,there are (s� 1) applications of f performed in parallel. However, since themaximum data size is handled by the rightmost node at each level, the costfor that level will be determined by the cost of this node. Since there are(d � 1) non-leaf nodes (excluding root) on each branch in a tree of depthd, the cost for the (s � 1) applications of f is given by the �fth term inthe expression. The terms that follow represent the communication costs.They account for the cost of communicating the increasing data sizes tothe child nodes, from the rightmost node at each level, since largest sizesare communicated from the rightmost node. The last expression accounts



Chapter 6 | Parallel Implementations and Costs 118for the update performed at the leaves of the tree, after the down-sweep.Once again, the cost is based on the rightmost leaf, since it would handlethe largest data size. In practice, the implementation cost could be reducedif the parent at each level started by sending the partial results to therightmost child.6.2.4 �lterFrom the de�nition of �lter, it is clear that the size of the output list is data-dependent. After this operation, the sizes of the sublists on di�erent processorsmay be di�erent. The exact nature of the output distribution is not predictable.However, since all the subsequent phases of the problem would assume balancedload, it appears that a load balancing operation needs to be performed after aphase containing the �lter function. This would involve gathering the resultsfrom all the processors and redistributing them (if necessary), so that the loadis balanced for the next phase. This may prove to be unnecessary if the �lteroperation results in balanced load for some data set. On the other hand, theremay be extreme cases in which the output sublists on some processors are of thesame size as the corresponding input sublists, (i.e. all the elements retained),but others in which the output sublists are empty. In the latter case, data re-distribution is crucial to obtain good performance.The sizes involved in gathering and redistributing the data are also unknown.The analyser, therefore, adopts a pessimistic approach in computing the cost of�lter and assumes that the size of the output list is equal to the size of the inputlist. If there are several phases following the one involving the �lter function,then the predicted costs may be much worse than the actual costs, and this inturn is dependent on the nature of the data set.However, since the pessimistic approach assumes the availability of the entire



Chapter 6 | Parallel Implementations and Costs 119data set after the �lter operation, it may, in the worst case, result in the selectionof a parallel implementation when a sequential one would have proved to bemore cost-e�ective. A pessimistic approach to cost computation may result inan overly-optimistic approach to the selection of a parallel implementation. Theincorporation of a pro�ler would alleviate this problem.The sequential cost of �lter is given by:Csfilter = Cfn: (6.55)The parallel implementation of �lter on all the topologies is the same, exceptthat each uses its own gather algorithm.Algorithm PAR FILTER (all topologies)BEGIN 1. FOR every processori DO in PARALLELresult  � �lter f xsi2. gather result from all processorsEND.The cost of the parallel implementation is given by:Cpfilter = Cf np +G (6.56)where G is the cost of gathering n elements distributed across p processors on theparticular topology. The cost of redistributing the result of the �lter operationis not accounted for in its cost, but will be, by the subsequent phase. This willbe zero if the latter is sequential.6.2.5 inits and tailsFor an input list of size n, the function inits produces (n + 1) sublists thatsuccessively increase in size. The size of sublisti is one more than the size of



Chapter 6 | Parallel Implementations and Costs 120sublisti�1. The total number of elements in all the sublists is given by:total = 0 + 1 + 2 + � � �+ ntotal = n(n + 1)2 :The computation of the function inits only involves list processing costs. In aparallel implementation of inits, the communication cost would make a signi�cantcontribution to the total cost. As discussed in Section 4.1, inits can be expressedin terms of the function scan and can, therefore, be implemented in parallel byusing the parallel scan algorithm. However, this is not desirable for two reasons.� Since inits produces sublists of increasing sizes, the load on the processorswould be imbalanced after the inits operation, even if there were the samenumber of elements on all the processors initially. This would cause non-uniform processor utilisation for subsequent phases of the problem.� During the implementation of the scan algorithm, the partial results ex-changed between processors would be of unequal sizes. The size of the datacommunicated increases with the progress of the algorithm. This is un-desirable, and it can be shown that it leads to higher communication costscompared to the alternative suggested below.In order to obtain balanced load after the inits operation, ideally, the total num-ber of elements from all the sublists on each processor should be n(n+1)2p . Thisis achieved by allowing di�erent processors to have di�erent numbers of sublists.Some processors have a larger number of sublists of smaller sizes, while othershave a smaller number of sublists of larger sizes. Each processor calculates thenumber of sublists that will be resident on it after the inits operation. In thefollowing discussion, the nil list which is the �rst element of the result of inits isignored.



Chapter 6 | Parallel Implementations and Costs 121After the inits operation, the number of sublists on processori is representedby ni. In particular, on processor0 the number of sublists is n0, and the length ofsublisti is i. The condition which has to be satis�ed in order to obtain balancedload is as follows:Total number of elements in all sublists on processor0 = n(n+1)2p .) 1 + 2 + 3 + � � �+ n0 = n(n+1)2p) n0(n0+1)2 = n(n+1)2pSolving for n0 gives, n0 = �1 +r1 + 4n(n+1)p2 : (6.57)The last sublist on processor0 is of length n0 and consequently, the �rst subliston processor1 is of length n0 + 1. Again, the condition which has to be satis�edto obtain a balanced load results in the following deduction.Total number of elements in all sublists on processor1 = n(n+1)2p .) (n0 + 1) + (n0 + 2) + � � �+ (n0 + x) = n(n+1)2p) x = q(2n0+1)2+ 4n(n+1)p �(2n0+1)2This could be generalised to the following.For every processori, where i = 1; 2; : : : ; (p� 1)length of �rst sublist = ni�1 + 1length of last sublist = ni�1 + xwhere, x = q(2ni�1+1)2+ 4n(n+1)p �(2ni�1+1)2andlength of �rst sublist on processor0 = 1length of last sublist on processor0 = n0 (Equation 6.57)



Chapter 6 | Parallel Implementations and Costs 122Each processor �rst determines the number and sizes of the sublists that it shouldgenerate, which is done locally. This implies that each processor should possess acopy of the input list. If the input list is not already resident on all the processors,then it should be broadcast to them. If it is already scattered across the network,then a total exchange operation would have to be performed, so that each pro-cessor obtains a copy of the entire list. If Cbe represents the cost of Broadcast orTotal Exchange, the cost of inits is given by:Cpinits = Cbe (6.58)List processing costs involved in generating the sublists are not accounted for inthe cost expression since the analyser accounts for such costs for every output listthat is constructed. A similar strategy is applied to tails.6.2.6 cross productThe costs for both r cross product and c cross product are identical and theircosts are therefore discussed jointly. Since cross product has two argument lists,an additional assumption for cost calculations is required.The second input list is represented by yswhere, j ys j= m and ys 2 processor0The second list is assumed to be resident on a single processor, so the cost for aparallel implementation must account for the cost of distributing this list to theother processors. The sequential cost of cross product is given by:Cscross product = Cfnm (6.59)



Chapter 6 | Parallel Implementations and Costs 123Algorithm PAR CROSS PRODUCT (all topologies)BEGINBroadcast ys to all the processorsFOR every processori DO in PARALLELresult  � cross product f xsi ysEND.From the de�nitions of r cross product and c cross product, it is clearthat if the �rst input list is distributed across p processors in the network, thenthe second list would need to be broadcast to all the processors in order to evaluatethe cross product in parallel. The parallel implementations are identical on allthe topologies, except for the di�erent algorithms and the corresponding costsinvolved in the broadcast operation. The results are left distributed across thenetwork.The cost is given by: Cpcross product = B + Cf npm (6.60)where, B is the cost of broadcasting m elements to p processors, on the particulartopology.6.2.7 compositionIt is clear from the de�nition of composition that each phase uses the resultsof the previous phase. A possible way of implementing composition in parallelwould be to pipeline the intermediate results, so that the implementation of thenext phase could be overlapped with that of the current phase [Kel89]. However,in the current scheme, composition is implemented sequentially. Any potentialparallelism is exploited within each phase of the composition.



Chapter 6 | Parallel Implementations and Costs 124The cost of a composition involving k phases is, therefore, given by:Ccomposition = kXi=1Ci (6.61)where, Ci is the cost of phasei, together with any data rearrangement costs thatwould be incurred in its implementation.6.2.8 map2 and zipmap2 is just an extension of map to cater for two argument lists. If both theinput lists are already distributed across the network, then the cost of map2 isidentical to the cost of map. If not, then the additional cost of scattering thesecond list on the relevant processor network must be added to the cost of map.A similar strategy is followed for the parallel implementation of zip.6.2.9 The iterative functionsAs pointed out earlier, none of the iterative functions are themselves implementedin parallel. If the argument of an iterative function comprises of a compositionof recognised functions, then the composition could be implemented in parallelusing the analysis described in Section 5.2. The cost of an iterative function istaken to be the cost of a single application of its argument function f. An implicitassumption here is that the costs of all the iterations are equal. Since the strategyfor the selection of a parallel implementation relies only on cost comparisons, theabsolute cost of all the iterations is not required. Moreover, in many cases, e.g.iterate cond, it may not be possible to determine the number of iterations atcompile-time.At the end of each iteration, the results are left distributed. If the implement-ation of the next iteration requires the data to be distributed in the same wayas left by the previous phase, then no data rearrangement cost is incurred. Ifnot, the cost of data rearrangement is added to the cost of the iterative function.



Chapter 6 | Parallel Implementations and Costs 125In particular, in the case of a parallel implementation of iterate cond, the resultis left distributed across the processor network for the implementation of the nextiteration. The condition is only evaluated on a copy of the result. This couldsave on potential communications overheads.Again, there are limitations that arise as a result of assuming identical costfor every iteration. The model attempts to minimise potential discrepancies inthe estimated costs, e.g. initial distribution costs at the start of the �rst iterationare not added to the cost of the iterative function if these costs will not beincurred by subsequent iterations. The idea is that such a cost will be negligiblewhen averaged over a large number of iterations (assuming there are a fairlylarge number of iterations). On the other hand, if this initial distribution cost isadded, then it will substantially increase the estimated implementation cost andmay lead to the selection of a poor parallel implementation.6.2.10 splitThe introduction of split as a recognised function was motivated by the need toexpress divide-and-conquer type of applications. The function split takes twoarguments, an integer k > 0 and a list of size n. The result of applying thefunction to the list is to split the list into k sublists, with (k � 1) sublists ofsize dnk e and the last sublist of length n � (k � 1)dnk e. split only involves listrearrangement costs which are computed by the analyser, based on the nature ofthe input list. The cost is represented by:Cssplit = Sn;k: (6.62)For a parallel implementation of split with the list distributed across p processors,



Chapter 6 | Parallel Implementations and Costs 126each processor splits the part of the list resident on it into dkpe parts. If k is notdivisible by p, then the parallel implementation would result in the list being splitinto a slightly di�erent number of sublists as compared to a sequential implement-ation for the same list. If it is the case that this would not a�ect the outcomeof the �nal result itself, then this di�erence may be acceptable. An example isthe merge sort program described in Section 4.3.2. Since the combining functionmerge is associative, slight di�erences in the manner in which the list is splitwould not a�ect the result. However, there may be cases where this might pro-duce erroneous results. In such cases, the programmer is invited to use a variantof the function split, called seq split. Its de�nition is identical to that of split,but it would force the analyser (and in turn the code generator) to consider onlya sequential implementation for split.Algorithm PAR SPLIT (all topologies)BEGINFOR every processori DOresult  � split kp xsiEND.Adopting the terminology mentioned earlier, the cost of the parallel imple-mentation of split can be represented by:Cpsplit = Snp ; kp (6.63)If the value of k is unknown at compile-time, then the analyser assumes that it isequal to n. In other words, each sublist is assumed to be of size one. This again,is a pessimistic approach to cost computation, and could result in the selection ofa poor parallel implementation. Again, pro�ling techniques could help in dealingwith the problem.



Chapter 6 | Parallel Implementations and Costs 1276.2.11 The Combinator RkThe de�nition for R2, the case where a recognised function operates on two inputlists, is as follows (refer to Section 4.2):R2 F f1 f2 : : : fk g h xs = F f1 f2 : : : fk (g xs) (h xs)where, F is a recognised function with 2 input listsf1, f2, : : :, fk are parameters to Fg and h are functions that operate on lists.In general, g and h could be any complex functions including other recognisedfunctions. However, some situations may just require two copies of the same list,in which case both of these functions would be the identity function.The present set of recognised functions have, at most, two argument lists, sothe following discussion focuses on R2. The number of possibilities that arise inthe selection of a parallel implementation of Rk makes it a complex schedulingproblem in itself and will not be discussed here. In the case of R2, the discussedheuristic is used to prune the search-space, while attempting not to eliminate im-plementations that may eventually result in the least cost. This cannot, however,be guaranteed and in some cases the least-cost implementation may be elimin-ated, since the heuristic performs cost optimisation that is local to the phaseunder consideration. The heuristic computes the costs for the various possibleimplementations which are considered. The least-cost one is then selected.Csg represents the sequential cost of gCp0g represents the cost of the parallel implementation of g on p0 processorsMAX(x, y) = if (x > y) then x else yMIN(x, y) = if (x < y) then x else yCp0B is the cost of broadcasting the list to p0 processors in the topologyCp0GS is the cost of gathering/scattering the list from/to p0 processors in the topology.



Chapter 6 | Parallel Implementations and Costs 128HEURISTIC PAR R2BEGIN1. IF g and h are sequential functions THENGather list from p processorsa. Implement g and h on one processorC1  � CpGS + Csg + Cshb. Send copy of list to Processor1Implement g on Processor0Implement h on Processor1C2  � CpGS + MAX(Csg ; Csh) + C2BImplement F in parallel on p processorsCR1  � CpF + C1+ data-rearrangement-costsCR2  � CpF + C2+ data-rearrangement-costsCR  � MIN(CR1; CR2)2. IF g and h are recognised functions THENa. Compute CR1 and CR2 as in step 1CRp1  � MIN(CR1; CR2)b. /* assuming two copies of list available */Implement g in parallel on p processorsImplement h in parallel on p processorsC2  � Cpg + CphImplement F in parallel on p processorsCRp2  � CpF + C2CR  � MIN(CRp1; CRp2)3. IF g is sequential and h is recognised THENCR  � CpGS + Csg + Cph + CpGS + CpF4. OUTPUT CRENDThe implementation heuristic for R2 follows the usual rules. If g and h aresequential functions and the input list is distributed, then the list has to begathered before g and h can be evaluated. The two transformed lists can then beredistributed, depending on whether or not a parallel implementation is selected



Chapter 6 | Parallel Implementations and Costs 129for F. If g and/or h involve recognised functions, then a distributed implementa-tion could be selected for g and/or h, so that it results in the output data beingdistributed as required by F. This would save data rearrangement overheads. Inany case, the resulting distribution of the two lists must be such that it is suitablefor the implementation selected for F and any cost that is incurred in achievingthis distribution is represented by the term, data-rearrangement-costs, in theheuristic.6.2.12 get neighThe sequential implementation of get neigh only involves list rearrangement andso the only cost of implementation comprises of list processing costs. If this costis represented by Gn, then Csget neigh = Gn: (6.64)The algorithms for the parallel implementation of get neigh on the varioustopologies do not correspond to its de�nition in terms of the basic set of recognisedfunctions. It may be observed that only the �rst and the last elements of (the partof) the list resident on each processor have non-local neighbours. Each processoris, therefore, involved in a communication routine that obtains these values. Thenall the processors can execute a local get neigh operation in parallel to obtain the�nal result, which is distributed across the network. In the following algorithmsthe functions �rst and last return the �rst and last elements of a list, respectively.



Chapter 6 | Parallel Implementations and Costs 1306.2.12.1 get neigh on the Linear ArrayAlgorithm PAR GET NEIGH (Linear Array)BEGIN1. FOR every processor DOresult left  � �rst xsiresult right  � last xsi2. Odd-numbered processors DOsend result left to left neighbourreceive data left from left neighbour/* this is the left neighbour for �rst element */send result right to right neighbourreceive data right from right neighbour/* this is the right neighbour for last element */Even-numbered processors DOreceive data right from right neighboursend result right to right neighbourExcept processor0 DOreceive data left from left neighboursend result left to left neighbour3. FOR every processor DO/* perform get neigh locally */result  � get neigh data left data right xsiEND.The algorithm comprises of two communication steps, and in each of themone list element is exchanged between pairs of processors. The total cost is:Caget neigh = 4T 1com +Gnp : (6.65)6.2.12.2 get neigh on the HypercubeThe described algorithm implements get neigh in parallel on a hypercube ofdimension d with p processors. It comprises of three stages. The �rst stagecomprises of (d�1) communication steps in which lower-numbered processors for-



Chapter 6 | Parallel Implementations and Costs 131ward their �rst and last elements, i.e. the boundary values, to higher-numberedones. This happens in parallel in the two subcubes of dimension (d � 1). Thesecond stage is the exchange step in which the boundary values in the two sub-cubes are exchanged. The third stage again comprises of (d � 1) communicationsteps in which the higher-numbered processors communicate the boundary valuesto the lower-numbered ones. At the end of 2d steps, every processor will haveobtained the neighbouring values for all its local elements. All the processors canthen execute get neigh locally to produce the result. The following notation isused in the algorithm.p no is the processor-number in binary representation; 0 � p no < pneigh noi is the number of the neighbouring processor in dimension i,in binary representationis one(i; p no) returns TRUE if the last i bits of p no are 1, FALSE otherwiseT is a 2-element array on each processorIf the cost of the initialisation step is ignored, then the cost of the algorithmfor get neigh is given by:Chget neigh = T 2com(d � 1) + 2T 2com + T 2com(d� 1) +Gnp :On simpli�cation, the cost is given by:Chget neigh = T 2com2d+Gnp : (6.66)The described algorithm results in a better implementation when comparedto the one corresponding to gathering the list, executing get neigh on a singleprocessor and then redistributing the resulting list. The latter procedure wouldinvolve a gather operation, followed by an implementation of get neigh on asingle processor, followed by a scatter operation. The total cost in that case



Chapter 6 | Parallel Implementations and Costs 132would be given by:Costnget neigh = 2(dK0 + 1K1 np (p� 1)) +Gn: (6.67)Algorithm PAR GET NEIGH (hypercube)BEGIN1. FOR every processor DO/* initialisation step */IF p no is even THEN M = 0ELSE M  � largest i s.t., is one (i; p no) = TRUE;0 < i < dlet q0; q1; : : : ; qM be 2-element queuesinsert �rst xsi into q0insert last xsi into qM2. FOR i  � 0 TO (d� 2) DO/* stage 1 - forward communication */IF (is one (i; p no)) THENIF (p no < neigh noi) THENSend qi to neigh noiqi  � NILELSET  � data received from neigh noiIF (p no� neigh noi = 1) THEN/* neighbour for �rst element received */insert T [1] into ln listinsert T [0] into qi+1ELSE insert T [0] into qi�1, T [1] into qi+1/* CONTD ... */



Chapter 6 | Parallel Implementations and Costs 133Algorithm PAR GET NEIGH (hypercube)CONTD3. IF (is one (i(= d� 1); p no)) THEN/* Stage 2 - Exchange step */IF (p no < neigh noi) THENSend qi to neigh noiT  � data received from neigh noiELSET  � data received from neigh noiSend qi to neigh noiIF (i = 0) THEN /* 2-D hypercube */insert T [0] and T [1] into ln listELSEinsert T [0] into qi�1insert T [1] into ln list4. FOR i � (d� 2) DOWNTO 0 DO/* stage 3 - Backward Communications */IF (is one (i; p no)) THENIF (p no < neigh noi) THENT  � data received from neigh noiinsert T [0] into ln listIF (i > 0) THENinsert T [1] into qi�1ELSE insert T [1] into ln listELSESend qi to neigh noiqi  � NIL5. FOR every processor DOresult  � get neigh ln[0] ln[1] xsiEND.In Equation 6.66, T 2com = K0+2 1K1 (See Equation 6.20). Clearly, for any valueof n > 2, Equation 6.66 corresponds to a lower implementation cost as compared



Chapter 6 | Parallel Implementations and Costs 134to Equation 6.67. The algorithm does not result in an order of magnitude decreasein cost. However, the implementation corresponding to Equation 6.67 would alsosu�er frommuch higher list processing costs, since Gn > Gnp . The communicationcosts in that case would also be greater, since the size of the resulting list involvedin the scatter operation is of a larger size than the input list.6.2.12.3 get neigh on the 2-D Torus/MeshAlgorithm PAR GET NEIGH (2-D Torus/Mesh)BEGIN1. /* identical to PAR GET NEIGH (Linear Array) */2. /* identical to PAR GET NEIGH (Linear Array) */3. First Column Processors DOSend data left to south neighbourLast Column Processors DOSend data right to north neighbour4. FOR every processor DOresult  � get neigh data left data right xsiEND.The �rst two steps of the algorithm are identical to that of the linear array.In other words, each row of the torus is treated as a linear array, except for thewrap-around link. The processors in the �rst column treat the ones in the lastcolumn (and the same row) as their left neighbours and vice-versa. After thesecond step, each processor in the �rst column still requires the left neighbour forits �rst element and each processor in the last column requires the right neighbourfor its last element. In the third step, processors in the �rst column obtain thisvalue from their neighbour above and processors in the last column obtain it fromtheir neighbour below. Steps 1 and 2 in the algorithm are identical to the onesin PAR GET NEIGH (Linear Array). The communication cost in Step 3 can be



Chapter 6 | Parallel Implementations and Costs 135reduced by nearly half, by overlapping the sends in the two halves of the columns.The cost of the algorithm is then given by:Cmget neigh = T 1com(p22 + 4) +Gnp : (6.68)6.2.12.4 get neigh on the TreeAlgorithm PAR GET NEIGH (s-ary Tree)BEGIN1. FOR every Processor DOCreate Queues qup and qd1 ; qd2; : : : ; qds2. Leaf Processors DOinsert �rst xsi and last xsi into qupNon-leaf Processors DOinsert �rst xsi into qup; last xsi into qd13. /* Up-sweep */Leaf Processors DOSend qup to parentNon-Leaf Processors DOFOR i  � 1 to s DOReceive q from childiIF (i = 1) THEN/* received right neigh for last elm */Insert q[1] into local neigh listqdi+1  � q[2]ELSEqdi�1  � q[1]IF (i+ 1) � s THENqdi+1  � q[2]ELSEqup  � q[2]/* CONTD ... */



Chapter 6 | Parallel Implementations and Costs 136Algorithm PAR GET NEIGH (s-ary Tree)CONTD4. /* Down-sweep */Root Processor DOSend qdi to childiNon-Leaf Processors DOReceive q from parent/* received left neighbour for �rst elm */Insert q[1] into local neigh listIF two elements received THEN/* processors in rightmost branch receive 1 value */qds  � q[2]Send qdi to childiLeaf Processors DOReceive q from parent/* left neigh for �rst elm is q[1] *//* right neigh for last elm is q[2] */local neigh  � q5. FOR all processors DOresult  � get neigh local neigh[1]local neigh[2] xsiEND.The algorithm comprises of two sweeps - an up-sweep in which processorssend the elements which are meant for processors in the sub-trees to their leftor right, to their respective parents; and a down-sweep in which the parentsforward the acquired data to their respective children. Queues, qup, to send datato parent and qd1; qd2; : : : ; qds to send data to childi (1 � i � s) respectively,are maintained by each processor. Obviously, the root processor does not need tomaintain qup and similarly, the leaf processors do not require queues qdi , but theseare not explicitly mentioned in the algorithm. Steps 3 and 4 of the algorithm each



Chapter 6 | Parallel Implementations and Costs 137involve s communications of two elements. For a tree of depth d, there are d suchcommunications in each of steps 3 and 4, respectively. The cost is given by:C tget neigh = T 2com2ds +Gnp : (6.69)6.2.13 lenThe sequential cost of len is straightforward.Cslen = Cf (n� 1) (6.70)where, Cf in this case is the cost of a '+' operation.The parallel implementation of len corresponds to those of its composingfunctions, viz. map and fold (refer to Section 4.2). In the following algorithm,PAR FOLD represents the parallel fold algorithm on the relevant processortopology.Algorithm PAR LEN (all topologies)BEGIN1. FOR every processori DO in PARALLELtemp  � map subst 1 xsi2. result  � PAR FOLD plus 0 tempEND.The cost of implementing len in parallel is given by:Cplen = Csubst 1(np � 1) + CplusPAR FOLD (6.71)where, CplusPAR FOLD is the cost of the parallel fold operation on the speci�c archi-tecture with the sequential function plus as its argument.It may prove to be expensive to implement len in parallel, since the argumentsof the map and fold functions are trivial operations. The communication cost



Chapter 6 | Parallel Implementations and Costs 138which is incurred in scattering the input list and in the implementation of fold,would probably make it more expensive to implement it in parallel than sequen-tially. However, if the elements of the input list are already scattered across thenetwork, and the len function is encountered, then it may prove to be more ex-pensive to gather the elements of the list for the purpose of merely computing itslength. In such cases, the parallel implementation will be chosen by the analyser.6.2.14 selectThe select function does not involve any computation. For a list data structurethe sequential cost of select is proportional to the length of the list that needs tobe traversed to locate the required element. In the worst case, this length wouldbe equal to the size of the list. Since the index of the element to be selectedmay not be known until run-time, the analyser adopts a pessimistic approach incomputing the cost of select. The sequential cost of select is, therefore:Csselect / n (6.72)The constant of proportionality is the cost of list processing that is estimated bythe analyser.select has been de�ned in terms of a fold operation (refer to Section 4.2).However, from the de�nition, it is clear that the argument of fold is not an as-sociative function. Hence, the usual parallel implementation for fold cannot beapplied. In a distributed implementation, the element to be selected would beresident on some processor. If the index of this element is unknown at compile-time, then this processor can only be identi�ed at run-time, depending on thesize of the input list and the index of the element. In the following algorithm, itis assumed that every processor holds the value of np and that p no represents the(unique) number of a processor.



Chapter 6 | Parallel Implementations and Costs 139Algorithm PAR SELECT (all topologies)/* selects the jth element of a distributed list */BEGIN1. FOR every processori DO in PARALLELIF (npp no � j < npp no+ np ) THEN/* this processor holds the required element*/select (j � npp no)END.The algorithm is very simple. It just accounts for the fact that the originalinput list is distributed across p processors and computes the o�set from the actualvalue of j, to obtain the index value within a processor. If the index falls withinthe range of the indices of the elements that a particular processor holds, then itselects the element corresponding to that index. The selected element is left onthe processor on which it was found. The cost of the parallel implementation issimilar to the sequential one, but since each processor only holds a part of theentire list, the cost is given by: Cpselect / np (6.73)6.2.15 apply selectThe cost of apply select depends on the number of elements of the list to whichthe argument function f is applied. If this number is assumed to be m, then thesequential cost is given by: Csapply select = mCfm � n (6.74)If the value of m is unknown, then it is assumed that m = n. In other words, theworst-case cost is assumed.



Chapter 6 | Parallel Implementations and Costs 140The parallel implementation for apply select on any topology is describedby the following algorithm.Algorithm PAR APPLY SELECT (all topologies)/* indices to be selected are ij; ik; : : : ; im */BEGIN1. FOR every processori DO in PARALLELFOR every index b DOIF (npp no � b < npp no+ np ) THEN/* elementb 2 processori */elementb � f elementbEND.The worst-case situation occurs if all the elements to which the function f isto be applied are resident on the same processor.Cpapply select = mCfm � np (6.75)6.2.16 copycopy is a communication construct. The cost of implementing copy sequentiallyfollows from its de�nition and is proportional to the length of the list. It comprisesof the list processing costs involved in selecting the appropriate element and thenconstructing a new list of pairs with the selected element and each of the otherlist elements. Since the index of the element to be copied may not be known untilrun-time, a worst-case situation is assumed, and the cost of copy is given by:Cscopy / 2n: (6.76)



Chapter 6 | Parallel Implementations and Costs 141Algorithm PAR COPY (all topologies)/* copies the jth list element to all other list elements */BEGIN1. Call PAR SELECT to select the jth element2. Processor on which the element was found DOBroadcast the element to all processors3. Every Processor DOPair up the received element with each list elementEND.The costs of steps 1 and 3 involve only list processing costs and are propor-tional to the length of the list that is resident on each processor, viz. np . Ifthis cost is represented by Clproc and the cost of broadcasting a single element ofthe list to all the processors is represented by B1, then the cost of the parallelimplementation of copy is given by:Cpcopy = Clproc +B1: (6.77)6.2.17 reverseThe sequential implementation of reverse only involves list processing costs in-curred in constructing the new (reversed) list. This cost is proportional to thelength of the list: Csreverse / n (6.78)The parallel implementation for reverse does not always follow its de�nition.If the entire list is resident on a single processor, then the usual sequential imple-mentation would apply. If the list is distributed across several processors, thenthe following algorithms are adopted on the di�erent topologies.



Chapter 6 | Parallel Implementations and Costs 1426.2.17.1 reverse on the Linear ArrayThere seems to be no e�cient way of reversing a list that is distributed across alinear array. The parallel implementation in this case just follows the de�nitionfor reverse in terms of g fold. So, the algorithm for reverse on the linear arrayis the same as that for fold, and the cost is given by the cost of g fold on thelinear array (Equation 6.27), with the sequential function being rev. (refer toSection 4.2). The resulting list would be left on processor0.6.2.17.2 reverse on the HypercubeAlgorithm PAR REVERSE (hypercube)BEGIN1. FOR every processor DOresult  � reverse xsi2. FOR i  � (d� 1) DOWNTO 0 DOexchange result with neighbour in dimension iEND.The algorithm results in the reversed list being distributed across the processornetwork in a manner identical to the original list. The cost of reversing the portionof the list on each processor is, again, proportional to the length of the list thatis resident on it. If this cost is represented by Cr, then the cost of the parallelimplementation of reverse is given by:Chreverse = Cr + 2T npcom (6.79)The described algorithm provides a more economical implementation as com-pared to just gathering the list, reversing it and then re-distributing the reversedlist. The number of communications required may not be very di�erent in the twocases, but the amount of data involved in each communication step is much less



Chapter 6 | Parallel Implementations and Costs 143in the recommended algorithm. Also, since the processors perform the reverseoperation in parallel on di�erent parts of the list, Cr would be less than Csreverse.6.2.17.3 reverse on the 2-D Torus/MeshAs in the case of the linear array, the algorithm for the parallel implementationof reverse on the 2-D torus follows its de�nition in terms of the basic set ofrecognised functions. The algorithm is the same as that for fold on the 2-D torusand the cost is given by Equation 6.33. The result is left on processor0 and anadditional scattering cost will be incurred if it needs to be redistributed for thesubsequent phase.6.2.17.4 reverse on the s-ary TreeIt appears to be di�cult to design an e�cient algorithm for reversing a list ofelements distributed across a tree. The algorithm, therefore, simply follows thede�nition of reverse in terms of the basic set of recognised functions. The costis given by Equation 6.39.6.3 The 2-D Torus TopologyThe cost expressions clearly indicate (not surprisingly!) that most of the recog-nised functions can be implemented most e�ciently on the hypercube topology,with the 2-D torus proving to be the next-best candidate. The tree and the lin-ear array prove to be ine�cient and are not studied further. Chapter 7 presentsthe results of implementing three example programs on the hypercube topology.Although this thesis does not provide a practical implementation on the torus, apossible strategy is discussed in this section.The hypercube is likely to have a much better performance than the 2-D torusin the context of the implementation strategy, since it is divisible into subcubes, in



Chapter 6 | Parallel Implementations and Costs 144which the communication latencies are identical to that of the original hypercube.Two problems could arise as a result of dividing the torus into smaller parts:� Logical neighbours in the smaller tori will not necessarily be physical neigh-bours. This would lead to an increase in communication costs, since a logicalneighbour may no longer be just one hop away.� Also, the numbering on the nodes in the smaller tori may not be as requiredfor the parallel implementation of the particular phase. A rearrangement ofthe data may be necessary in order to obtain correct data placement on pro-cessors in the smaller tori. Not only would this contribute to the inter-phasedata rearrangement costs, but it may also complicate the communicationalgorithms required.In view of the problems just discussed, an alternative parallel implementationstrategy could be considered for the 2-D torus. A hypercube embedding couldbe de�ned on the 2-D torus and the recognised functions could be implementedon this logical hypercube, using the corresponding hypercube algorithms. Oneexample of an embedding of a hypercube in a 2-D torus is described in [Bre83].In the following discussion, this logical hypercube is referred to as the embeddedhypercube. The following points should be noted.1. A hypercube of dimension d with p = 2d processors would be embeddedin a 2-D torus with p = p1p2 processors, where p1 = 2b d2 c and p2 = 2d d2 e.p1 represents the number of processors in each row and p2 represents thenumber of processors in each column.2. Logically neighbouring processors will not necessarily be physical neigh-bours in the embedded hypercube of dimension greater than four, since eachprocessor in a 2-D torus has only four nearest neighbours. Nearest-neighbourpreserving embeddings should be possible for hypercubes with d � 4.



Chapter 6 | Parallel Implementations and Costs 1453. The 2-dimensional hypercube is identical to the torus with four processors,including the numbering on the nodes. It could form the base case for analgorithm which would work by combining two (d� 1)-dimensional embed-ded hypercubes, to construct the d-dimensional one.Although the physical connectivity of the embedded hypercube is not as goodas that of the corresponding hypercube, it may still prove to be more cost-e�ectivethan the corresponding 2-D torus, especially for small values of d. New data distri-bution algorithms, such as scatter , must be devised for the embedded hypercubeand their costs computed. The costs of the recognised functions on the embed-ded hypercube must be computed, accounting for the additional hops required tocommunicate with logically neighbouring processors that are not physical neigh-bours.A hypercube embedding appears to overcome some of the problems associatedwith the torus. However, rigorous cost computations both for the algorithmsimplementing the recognised functions and the communication routines on theembedded hypercube are required before a �nal conclusion can be reached. Otherconstraints which would a�ect the choice are the following:� The number of processors in the network (p) - For small values of p, it maybe more cost-e�ective to use the embedded hypercube. However, for largervalues of p, the increase in the number of hops to communicate betweenlogical neighbours on the embedded hypercube may make it more cost-e�ective to use the torus itself.� The nature of the application program - If the phases of the applicationprogram comprise only of one recognised function each, or if the selectedparallel implementation implements only one recognised function in parallelin a phase, then no sub-division of the topology is required. In such cases,



Chapter 6 | Parallel Implementations and Costs 146the 2-D torus topology may prove to be more cost-e�ective than the hyper-cube embedded in it.A possible approach would involve computing two sets of costs - one for the 2-Dtorus itself and another for the hypercube embedded in it - and selecting the morecost-e�ective implementation for the particular problem.



Chapter 7The Implementation Scheme andExample ProgramsThe accuracy of the performance predictions made by analyser for a hypercubetopology is studied in this chapter. Three programs are expressed in terms of therecognised functions and input to the analyser. For each program, the analyserdetermines a cost-e�ective parallel implementation, with the corresponding codebeing generated and executed on a hypercube network. The computation timesare measured and compared with the predictions of the analyser. As mentionedin Section 3.5.4, a fully-edged parallel code generator has not been implemented.However, support is available in the form of a library of functions for developingand testing programs. This chapter describes the environment for program devel-opment and discusses the results of implementing the three example programs.The implementations are performed on the Meiko Computing Surface, whichis a transputer-based distributed-memory parallel machine. Each transputer hasfour communication links and represents a single node on the binary hypercube.It is ensured that logical neighbours on the hypercube are also physical neighbourson the transputer network, which is assumed to be the case in the analyser's costmodel. Therefore with only four physical links, it is not possible to simulate ahypercube of dimension greater than four. The communication harness, CSTools147



Chapter 7 | Implementation Scheme and Examples 148[Mei], does allow for more than four neighbours per processor, but some logicalneighbours will no longer be physically only a hop away. Worse still, it is notpossible to predict the number of hops involved in the routing of a message,and indeed this value may vary for di�erent executions of the program. Thisin turn would make it almost impossible to accurately predict the cost of suchcommunications. Consequently, all the experiments have been performed on ahypercube with a maximum of 16 processors.7.1 The AnalyserThe algorithm for the analyser, as given in Section 5.2.1, has been implemented asa C program. The input is an 8-tuple, as described in Section 5.1. The analyserin its current form lacks type-inference and pro�ling capabilities; therefore, thetypes of functions and data, and estimates of data sizes have been explicitlyprovided. The cost expressions for the recognised functions have been coded intothe analyser, which constructs the program tree for the application and computesthe costs for the di�erent possible implementations. The cost computation buildsa search tree from which the least-cost path is selected. The path comprises of aset of nodes, one for each phase in the program. Each node contains the necessaryinformation for its implementation: the number of processors for a particularphase, the nature of the current list distribution (as a result of the previousphase), the type of list distribution required, and which of the recognised functionsin the phase are to be implemented in parallel and on how many processors.A communication routine computes the costs associated with inter-phase datarearrangements. It also keeps track of the nature of the input list distribution atany point in the execution of the program. The information contained in the setof nodes returned by the analyser should enable the automatic generation of codefor a target parallel machine.



Chapter 7 | Implementation Scheme and Examples 1497.2 The Parallel LibraryIn the prototype implementation, the code for each call to a recognised functionis generated manually. Some support is available in the form of a library offunctions, which contains the code for the recognised functions on the hypercubetopology. This enables the performance �gures for the di�erent test examples tobe compared on a uniform basis. The code for the parallel implementation ofthe recognised functions is written in C, with CSTools [Mei] being used as thecommunication harness.The support available to develop and test programs on the Meiko ComputingSurface comprises of the following:� A de�nitions guide which contains the C prototypes for the recognised func-tions and the various communication routines, and the list data structureon which the recognised functions operate.� A library of routines containing the code for the implementation of therecognised functions on the hypercube.� A library of routines which implements the de�nitions for the communica-tion operations on the hypercube topology.� A library of utilities containing list manipulation functions such as the cre-ation and copying of lists.Several optimisations have been adopted in order to reduce the cost of theparallel implementations. These are not program-speci�c, which ensures uni-formity in performance comparisons. The analyser assumes that the followingoptimisations will be performed, which, in turn, is reected in the cost estimates.



Chapter 7 | Implementation Scheme and Examples 1507.2.1 Memory AllocationBy its very nature, the list structure is dynamic. An implementation based on liststherefore involves a number of list creation and destruction operations, making itimportant to handle memory allocation e�ciently. The implementation schemeallocates space for a list in a single operation, as opposed to allocating spaceindividually for each list element, resulting in a signi�cant reduction in memoryallocation overheads. Also, since these costs are not accounted for by the analyser,it helps to bridge any disparity between the predicted and practical results. Thecurrent implementation does not incorporate a garbage collector.This one-step memory allocation is possible because of the prede�ned beha-viour of the recognised functions. For every recognised function applied to a listof a particular size, it is possible to compute the size of the resulting list (withthe exception of the �lter function, in which case the worst-case size of outputlist, i.e. the size of input list, can be assumed).7.2.2 In-line Expansion of Function CallsFunction calls are expensive on the Computing Surface. Quite often, the costof calling the function may be much larger than executing it. The model doesnot account for this cost which could lead to a disparity between the predictedand actual values. This, in turn, could lead to the selection of a less e�cientimplementation as the optimal one.The problem could be resolved by designing the analyser such that it accountsfor the costs of function calls. However, this introduces a machine-speci�c detailin the analyser. The problem is overcome by adopting an in-line expansion ofthe called function. A language such as C++ would handle such expansionsautomatically. In its absence, these expansions are done manually.A potential problem with in-line expansion would arise in the case of recursive



Chapter 7 | Implementation Scheme and Examples 151functions. If a sequential function is recursively de�ned, then it has to be �rstconverted into an equivalent iterative one before expansion.7.2.3 Distribution of Lists among ProcessorsThis is an optimisation that is made with a view to reducing the communicationoverhead. It involves the case where a list whose D-value � 1 (i.e. a list oflists), is to be scattered across the processor network such that each sublist isdistributed across p processors. Such a situation would arise when, in a branchwith two nested recognised functions, the innermost one is to be implemented inparallel on p processors.Let Xss represent a list of lists as follows.Xss = [Xs1;Xs2; : : : ;Xsm]Xsi = [xi1; xi2; : : : ; xin]1 � i � m (7.1)The size of Xss is (m � n). For the sake of simplicity in cost computations, itis assumed that (n mod p = 0). The recognised function split can be used todivide the list, Xsi, in Equation 7.1, into p parts which results in the following:Xsi = [[xi1; xi2; : : : ; xinp ][xinp+1; : : : ; xi2np ]...[xi(n�1)np+1; : : : ; xin]]� [Y i1 ; Y i2 ; : : : ; Y ip ]1 � i � mIn order to scatter each Xsi across the p processors, the operation that needs tobe performed on Xss is: map scatter Xss.



Chapter 7 | Implementation Scheme and Examples 152If d represents the dimension of the hypercube, from Equation 6.8 it can bededuced that the cost of distributing each sublist of the list of lists Xss is givenby: C1 = m(dK0 + 1K1 np (p � 1)) (7.2)However, a more cost-e�ective distribution is possible and is discussed below.Consider the following de�nitions.re order p xss = g fold append [ ] � shu�e � map (split p) xsswhere,shu�e ([ ]::ys) = [ ]shu�e yss = (map head yss) :: shu�e (map tail yss)The functions head and tail obtain the head and tail of a list, respectively. Nowconsider the function re order, as applied to the list Xss de�ned in Equation 7.1.If the result of the �rst stage of the composition, viz. (map (split p) Xss),is represented by Y ss, thenY ss = [[Y 11 ; Y 12 ; : : : ; Y 1p ];[Y 21 ; Y 22 ; : : : ; Y 2p ];...[Y m1 ; Y m2 ; : : : ; Y mp ]]Y ji = [xj(i�1)np+1; xj(i�1)np+2; : : : ; xjinp ]1 � j � m1 � i � p (7.3)The size of Y ss is given by (m�p� np ). Next, the second stage of the compositionis applied to the result of the �rst stage. Let Zss = shu�e Y ss.



Chapter 7 | Implementation Scheme and Examples 153Zss = [[Y 11 ; Y 21 ; : : : ; Y m1 ];[Y 12 ; Y 22 ; : : : ; Y m2 ];...[Y 1p ; Y 2p ; : : : ; Y mp ]] (7.4)The function shu�e e�ectively produces the transpose of its input list. The sizeof Zss is given by (p�m� np ). Applying the �nal stage of the composition, viz.g fold append [ ], to atten the list, the result of re order is as follows:Rss = [Y 11 ; Y 21 ; : : : Y m1 ; : : : ; Y 1p ; Y 2p ; : : : ; Y mp ]: (7.5)The size of Rss is given by (mp � np ). Once the list Xss is transformed into aform as given by Rss in Equation 7.5, a scatter operation on Rss would place theelements on the correct processors. This method of distributing the list amountsto performing the following operation:scatter � (re order p) Xss.A scatter operation on a list of size (a� b) would involve the distribution ofa(b+1) list nodes. (For each sublist, there are b nodes representing each elementof the sublist and one node that represents the entire sublist. There are a suchsublists, hence the total number of nodes is a(b + 1)). Since the size of Rss is(mp� np ), the total number of list nodes to be scattered is (mp(np + 1)).Again, referring to Equation 6.8, the cost of the entire list distribution oper-ation is deduced to be:C2 = dK0 + 1K1 mp(np + 1)p (p � 1) + Cre order: (7.6)Cre order represents the cost of the function re order and essentially comprises oflist processing costs.



Chapter 7 | Implementation Scheme and Examples 154Consider the following equation (Equation 7.2 - Equation 7.6):C = dK0(m� 1) � 1K1 (p� 1)m� Cre order:C > 0 implies that: 1 + dK0K1m� 1m � K1m Cre order > p: (7.7)The cost of the re order function could be computed by the analyser from itsestimates of the list processing costs and the sizes of the input and output lists.If the left-hand-side of Equation 7.7 is greater than p, then the second optioncould be selected for distributing the input list across the p processors.In practice, the costs of list processing will probably be much less than thecommunication costs and the second option can be safely selected as the morecost-e�ective one. As an example, the cost of processing a single list element isapproximately 1100K0 on the Computing Surface (by experiment). In the currentimplementation of the analyser, the second method of list distribution is assumedby the analyser in computing data distribution costs.7.2.4 Parallel Implementations of Recognised FunctionsInvolving CommunicationThis optimisation is used in the implementation of those recognised functionsthat occur in situations satisfying the following conditions:1. The function is an argument of the recognised function map2. The function is being implemented in parallel on p processors3. The computation of the function in parallel on the p processors involvescommunication.Some possible examples of such functions are fold, scan and copy.



Chapter 7 | Implementation Scheme and Examples 155Let R be a recognised function that occurs in such a situation. Typically,the distributed implementation for R, represented by Rdis, can be de�ned in thefollowing manner.Rdis = U � C � Rseqwhere,Rseq is the function describing the sequential implementation for RC is a communication function that involves the communicationof partial results to neighbouring processorsU is a function that updates a processor's local partial result with theone that is received from a neighbourAccording to condition 1, Rmust be an argument ofmap. Consider the followingequation: map Rdis � map (U � C � Rseq): (7.8)Using the map-promotion rule, 7.8 can be expanded to:map Rdis � map U �map C �map Rseq: (7.9)The expression in Equation 7.9 has less communication overhead associatedwith it, in comparison to the one in Equation7.8. The implementation corres-ponding to Equation 7.8 involves the application of the sequential de�nition ofthe function, followed by the communication of the partial result for each ele-ment of the list in sequence. This implies that the communication start-up costis multiplied by the length of the list. Also, the entire bandwidth of the channelwill probably not be utilised, since only one list element is communicated at eachstep. In Equation 7.9, the sequential de�nition of the function is �rst appliedto all the elements of the list resident on the particular processor. The resultingpartial values are then communicated in one step. The communication start-up



Chapter 7 | Implementation Scheme and Examples 156cost is incurred only once and the bandwidth of the communication channel isused more e�ectively. Both of these factors lead to a signi�cant reduction inthe communication cost if the implementation corresponding to Equation 7.9 ischosen.7.3 Communication on the HypercubeThe algorithms for the di�erent types of communication on the hypercube to-pology, as described in [SS89], have been implemented on the Meiko Comput-ing Surface. In the communication of list data structures between processors,the one that sends the list must convert pointer addresses to relative ones andthe one that receives the list must compute the real addresses from the o�sets.These operations are necessary to obtain correct pointer references across pro-cessor boundaries. This e�ectively increases the communication overhead and isincurred in the form of list processing costs. The analyser accounts for these costsin the same way as it does for other list processing overheads, since the data tobe communicated at any step in the program is predetermined.Graphs depicting the predicted and experimental results for some of the com-munication routines (ones which are used in the examples) on the hypercubetopology are shown in Figures 7.1 and 7.2, respectively. The following pointsregarding the method used to obtain the graphs may be noted.� Each processor executes an initialisation routine in which it opens its com-munication links and identi�es its neighbours. Due to the lack of globalsynchronisation on a distributed-memory machine like the Computing Sur-face, it is unlikely that all the processors would operate in lock-step. Thismeans that all the processors may not complete their initialisation and starton their communication routines at the same time. This implies that data



Chapter 7 | Implementation Scheme and Examples 157transfers which are assumed to overlap, may not do so in a practical im-plementation. Consequently, the predicted communication costs may notalways be obtained experimentally. In order to minimise this discrepancy,the experimental costs of communication routines are averaged over a largenumber of runs.� The scatter operation is the dual of the gather operation. i.e. the gatheralgorithm is obtained by reversing the steps of the scatter algorithm. Thecosts of the two routines are, therefore, identical and have been plotted asa single graph. They are determined by performing a number of scatter -gather operations and halving the average cost. In the case of the broadcastoperation, the processor that receives the data last, performs a broadcastin the reverse direction, so that the original broadcaster is the last one toreceive it. This introduces a form of synchronisation and the cost of thebroadcast operation is half the cost, averaged over a number of runs.A study of the graphs reveals that the experimental curves follow closely withthe theoretical predictions. However, as the size of the data to be communicatedincreases, the experimental curves seem to diverge from the predicted ones. Apossible explanation for this feature may lie in the manner in which the Com-puting Surface handles communication. Beyond a particular size, the data mayhave to be divided into smaller-sized chunks and transferred in more than onestep. This would increase the communication cost, which is not predicted by themodel. Also, with increase in the number of processors, the match between thepredicted and observed behaviour appears to improve, more so in the broadcastroutine. A similar feature is to be expected in programs using these routines.
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5.00 10.007.4 Example ProgramsThe three programs chosen for implementation are Matrix Multiplication, MergeSort, and Jacobi Iteration, as discussed in Chapter 4. They are well-known prob-lems in parallel programming and illustrate the use of di�erent recognised func-tions in the HOPP model. The chosen programs are also intended to highlightdi�erent features of the analyser. The program for Matrix Multiplication is thestraightforward case where the costs of all sequential functions are independentof input size, and where the analyser is capable of making correct inferences
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5.00 10.00regarding problem size. The program for Merge Sort tests the performance ofthe analyser in the case where the cost of a sequential function (merge) is not aconstant, but proportional to the sizes of its input lists. The program for JacobiIteration considers the performance of the analyser in a situation where it is in-capable of making correct inferences regarding problem size. This, in turn, servesto demonstrate some of the limitations of the analyser in its current form.For each of the three example programs, parallel implementations are con-sidered and the corresponding costs as computed by the analyser are examined.
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Figure 7.3: The Program Tree for Matrix MultiplicationThe results of implementing the most e�cient choice of the analyser on the MeikoComputing Surface are presented. The calls to the recognised functions and thecommunication routines are generated by hand, and the C-code in the parallellibrary is used. The second-best choice is also implemented, to add con�dence inthe performance of the analyser. The parallel implementations are considered onhypercubes with 2,4,8 and 16 processors, respectively.The results of implementing the matrix multiplication and merge sort pro-grams which are discussed next, can also be found in [Ran95].7.4.1 Matrix MultiplicationThis section discusses the well-known problem of multiplying two matrices Am�nand Bn�k, resulting in the matrix Cm�k. The code for performing the multiplic-ation is discussed in Section 4.3.1. Each matrix is represented as list of lists.7.4.1.1 The AnalysisThe program tree constructed by the analyser is shown in Figure 7.3. The rootnode represents composition. In phase one, the analyser computes the costs fora sequential implementation and three parallel implementations, corresponding



Chapter 7 | Implementation Scheme and Examples 161to the two recognised functions in the phase, viz. r cross product and map2.On a p-processor hypercube, if r cross product is implemented on p11 processorsand map2 is implemented on p12 processors, (p11 � p, p12 � p and p11p12 = p), thenthe cost of phase one can be deduced as follows: (see Sections 6.2.6, 6.2.8)Cp1 = Ccom + dmp11 ed np12 ekCtimes:Ccom represents the costs incurred in distributing the initial input lists acrossthe p processors. Ctimes represents the cost of the sequential function times. Itshould be noted that the result of phase one is a list of lists of size (m� n� k).Phase two contains three recognised functions. The analysis results in the costsfor a sequential implementation and seven di�erent parallel ones. If the outermap is implemented on p21 processors, the inner map on p22 processors and thefold is implemented on p23 processors, respectively (p21 � p, p22 � p, p23 � p andp21p22p23 = p), then the cost of phase two can be deduced to be as follows: (alsorefer to Sections 6.2.1, 6.2.2.2)Cp2 = Rcom + dmp21 ed np22 eCplus(d kp23 e � 1) + d(Tcom + Cplus):Rcom represents the cost incurred in re-arranging the results of phase one to suitthe implementation of phase two, (d = log2 p23), Tcom is the cost of communicatingthe partial result of fold on one processor to a neighbouring one.Two sets of matrices, A132�32, B132�32 and A264�32, B232�16, are considered foranalysis. In both the cases, the following implementations are selected as thebest (i.e. least-cost) and second-best parallel implementations, respectively, forp = 2; 4; 8; 16.1. best - for the two phases, p11 = p, p12 = 1 and p21 = p, p22 = 1. This correspondsto parallel implementations for r cross product and the outermap in the�rst and second phases, respectively.



Chapter 7 | Implementation Scheme and Examples 1622. second-best - for p = 2, it is clear that only one function in a phase can beimplemented in parallel. For the second-best implementation, map2 andfold are implemented in parallel in the �rst and second phases, respectively.For p = 4; 8; 16, the following implementation was selected as the second-best. In phase one, p11 = 2, p12 = pp11 . In phase two, p21 = 2, p22 = 1 and p23 =pp21 . This corresponds to a parallel implementation for r cross product onp11 processors and map2 on p12 processors in the �rst phase. In the secondphase, the outer map and the fold are implemented in parallel on p21 andp23 processors, respectively. The inner map is implemented sequentially.7.4.1.2 The ResultsThe theoretically predicted values are plotted along with the experimental onesin Figure 7.4, for the two chosen implementations. In each of the graphs, thetrend predicted by the analyser is also obtained experimentally. The experimentalcosts are greater than the predicted ones. This is because the analyser does notaccount for low-level costs which are incurred by a practical implementation.For both sets of matrices, the number of processors that is predicted to be theoptimum, is con�rmed experimentally. The experimental curves tend to havemuch steeper gradients compared to the predicted ones, especially in the case ofsmaller numbers of processors. This feature is less easy to explain. A probableexplanation may lie in the observed behaviour of the communication routines(refer to Figure 7.1, Figure 7.2), where the match between predicted and observedbehaviour improves with an increase in the number of processors.It may be noted that the theoretical and experimental curves in implement-ation 1 are much closer than the corresponding ones in implementation 2. Thesequential code that is executed in both the cases is identical. However, imple-mentation 2 involves more communication than implementation 1, both for initial
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Chapter 7 | Implementation Scheme and Examples 164data distribution and for the parallel implementation of s fold in phase two. Im-plementation 1 involves a scatter and a broadcast operation on matrices A and B,respectively, at the beginning of phase one. There is no communication in phasetwo. Phase one of implementation 2 involves a scatter followed by a broadcastoperation on matrices A and B, respectively, to place them on p11 processors forthe parallel implementation of r cross product. Two further scatter operationsare required to distribute each of these on p12 processors, for the parallel imple-mentation of map2. More communication is required in phase two for processorsto communicate the partial results of s fold, since it is implemented in parallel.There seems to be a greater discrepancy between the predicted and experimentalresults when an implementation involves more communication. This is in a largepart due to the lack of global synchronisation between processors.The costs for communication routines assumed overlapping data paths whichmay not always happen in practice. This e�ect gets more pronounced with in-crease in communication, with the processors getting more staggered and leadingto a greater discrepancy between predicted and observed behaviour. Care wastaken in the cases of the communication routines such as scatter and broadcast,to minimise these discrepancies by averaging the costs over several executionsand forcing some synchronisation by performing the dual of the correspondingroutine and considering only half the total cost. However, in the implementationof a program, the corresponding routine is executed only once and this leads toa staggered operation of processors which are otherwise assumed to operate inlock-step. The discrepancy observed in the performance of the individual com-munication routines is also probably a contributing factor.



Chapter 7 | Implementation Scheme and Examples 1657.4.2 Merge SortThe code for the program is discussed in Section 4.3.2. For the sake of simplicity,the number of elements in the input list is assumed to be a power of 2 and isrepresented by n.7.4.2.1 The AnalysisEach of the three phases have only one recognised function. Hence, only twoimplementations are possible for each phase - a parallel implementation and asequential one. The cost of the function msort is a constant, but the cost ofthe function merge is proportional to the sizes of the two lists which are beingmerged. In this case, as discussed in Section 5.1.4, the scheme allows the user tospecify a cost function for the sequential function, merge. The analyser uses thisfunction to estimate implementation costs.The analyser �rst constructs the program tree. For phase one, the cost ofsplit is given by Snp ; n2p , (refer to Section 6.2.10). The cost for the sequentialimplementation is obtained by setting p to 1. At the end of phase one, eachprocessor contains a list of lists of size ( n2p � 2). Phase two only involves a mapand its cost is given by n2pCms, where Cms represents the cost of the functionmsort. In phase three, after each merge operation, the size of the resulting list isthe sum of the sizes of the two lists being merged. As the fold progresses, thesize of the intermediate result increases. After each processor executes the foldlocally, the number of elements on each processor is np . In the �rst step of thecombination of partial results, two lists each of size np are merged to produce alist of size 2np . The second step involves the merging of two lists each of size 2npto produce a list of size 4np , and so on. Let the cost of merging two lists of sizesm and n be represented by f(m;n). Using the formula for the cost of g fold in



Chapter 7 | Implementation Scheme and Examples 166Section 6.2.2.2, the cost of phase three is as follows :n2p�1Xi=1 f(2i; 2) + d�1Xi=0(T 2i npcom + f(2inp ; 2inp )):In order that the analyser accounts for the increasing size of the emerging resultwhile computing communications costs, the user is required to specify the foldoperation using g fold.Two lists of sizes 512 and 1024 elements are considered for analysis. In boththe cases, the following implementations are selected as the best (i.e. least-cost)and second-best implementations respectively, for p = 2; 4; 8; 16.1. best - implement each recognised function in parallel on p processors for allthe phases.2. second-best - in phase one implement the function split sequentially. Thenscatter the result to implement the two recognised functions in the next twophases in parallel on p processors.7.4.2.2 The ResultsThe results for merge sort are plotted in Figure 7.5. Once again the trend pre-dicted by the analyser is obtained experimentally.For the input list of size 512, the optimal number of processors is predicted tobe 8 for both implementations and this is con�rmed experimentally. For the listof size 1024, the analyser predicted a more cost-e�ective implementation with 16processors, which is again con�rmed experimentally.In the case of merge sort, fewer communications are involved in the initial dis-tribution of data, as compared to both implementations of matrix multiplication.The initial data distribution comprises of a single scatter routine, either at thebeginning of phase one or phase two, depending on whether the best or second-bestimplementations are considered. This probably causes a smaller stagger in the
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Chapter 7 | Implementation Scheme and Examples 168processors. Also, the parallel implementation of g fold in the last phase forcessome form of synchronisation between the processors, since the partial results arecommunicated to processor0, which computes the time of execution for the pro-gram. Both of these factors seem to produce a closer match between the predictedand experimental results in the case of merge sort. However, the gradients of thecurves in a practical implementation are still steeper than those of the predictedcurves and the same explanation as given in the case of matrix multiplicationapplies.7.4.3 Jacobi IterationThe code for the program has been discussed in Section 4.3.3. As explained inSection 5.1.4, the analyser in its current form is incapable of inferring that thefunction rearrange, which is the argument of map in phase two of the functionjac, produces an output list whose size is di�erent from the size of its inputlist. Consequently, the costs computed by the analyser for phase three will beinaccurate. Also, the function update in phase three changes the D-value of itsargument list. This again, cannot be determined by the analyser. The change inD-value will not inuence the cost of the function that tests for convergence. Thisis because the function test assumes that the output of the function that operateson the input list at each iteration, is of the same size as its input list. Thisassumption is justi�ed because the analyser assumes that the cost of iterationi isthe same as the cost of iterationi�1. The inability of the analyser to detect thechange in the D-value of the output of update will only inuence the cost of thesubsequent iteration. However, in the case of iterative functions, since the costof a single iteration is considered for the purposes of determining a cost-e�ectiveparallel implementation, this will not lead to inaccuracies in cost predictions forthis particular program.



Chapter 7 | Implementation Scheme and Examples 1697.4.3.1 The AnalysisThe input matrix is represented by a list of lists of size (m�n). The analyser �rstconstructs the program tree. The �rst and second phases have only one recognisedfunction each, while phase three has two recognised functions. Consequently,there is only one possible parallel implementation for the �rst and second phases.For phase three, there are three possible parallel implementations. The costs forthe �rst and second phases are straightforward, being the costs of get neigh andmap, respectively. Again, the cost of the function rearrange in phase two, is afunction of the size of its input list and the analyser determines its cost from thespeci�cation of a cost function for rearrange. Consider the costs for phase one andphase two, represented by Cp1 and Cp2, respectively. Referring to Equations 6.66and 6.22, the costs are given by:Cp1 = Ccom + T 2com2d+GmpCp2 = R1com + dmp eCrearr (7.10)where, Ccom is the communication cost incurred in scattering the input list acrossp processors, T 2com represents the cost of communicating two sublists each of sizen to a neighbouring processor, d = log2 p, Crearr represents the cost functionspecifying the cost of the function rearrange, and R1com is the communication costincurred in rearranging the output list of phase one, to suit the implementationof phase two. It should be noted that R1com = 0, if both phase one and phase twoare implemented in parallel on p processors, since each of the phases has only onerecognised function. The result of phase one is a list of size (m � 3 � n). Thefunction rearrange in phase two, transforms an input list of size (3�n) into a listof size (n� 5). So, the output of phase two is a list of size (m�n� 5). However,the analyser cannot deduce this change in the size of the output list and insteadassumes it to still be (m � 3 � n), since the recognised function in phase two is



Chapter 7 | Implementation Scheme and Examples 170map, which is not assumed to change the size of its input list. Hence, the costcomputed by the analyser for phase three will be inaccurate. If the outermap2 isimplemented on p1 processors and the inner map2 on p2 processors, (p1p2 = p),the cost of phase three is as follows: (refer to Section 6.2.8)Cp3 = R2com + dmp1 ed np2 eCupdate (7.11)where, R2com again represents the cost incurred in rearranging the output of phasetwo to suit the implementation of phase three. However, the analyser will computea di�erent cost (since the list size it deduces is di�erent), and probably select animplementation that is not the most cost-e�ective one.The function test (see Section 4.3.3) comprises of four phases, and its cost isthe sum of the costs of these phases. The �rst three phases in the function testcould be implemented in parallel, since each of them has instances of recognisedfunctions. The cost of test has to be added to the costs Cp1; Cp2 and Cp3 to obtainthe total cost of iterate cond.As mentioned in Section 6.2.9, the cost of only one iteration is considered forthe purposes of determining a cost-e�ective parallel implementation. In an actualimplementation, this is the average cost of an iteration.7.4.3.2 The ResultsTwo lists of sizes (32�32) and (64�64), respectively, are considered for analysis.In each case, four costs are considered:� The costs of the best and second-best implementations, as predicted by theanalyser, which will not be accurate.� The correct costs for the best and second-best implementations. These arecomputed manually, in order to determine the percentage error in the costscomputed by the analyser.



Chapter 7 | Implementation Scheme and Examples 171In each case, the following implementations are selected as the best and second-best implementations, respectively.1. best - implement get neigh, map and the outer map2 in parallel on pprocessors for the three phases. Implement the �rst three phases of thefunction test in parallel, implementing the outer map2 in phase one, andthe map and s fold in phases two and three, respectively, in parallel onp processors. The function less than is implemented sequentially. Notethat the result of s fold in phase three of test would leave its result onprocessor0 and the function less than can then be implemented sequentiallyon processor0.2. second-best - implementget neigh,map and the outermap2 in parallel onp processors for the three phases. Then gather the results and implement thefunction test on a single processor (processor0). As noted in Section 6.2.9,only a copy of the result is gathered back to processor0 for evaluating thefunction test. Each processor still possesses its copy of the result to serveas the data for a possible next iteration.It is to be noted here, that in both implementations the result of the functiontest is left on processor0. Processor0 must broadcast this result to all the otherprocessors, so that they can determine whether the iteration is to be terminated.This broadcast is performed after every step of the iteration and the analyserincludes its cost in the computation of the cost for the program. The cost of aniteration is, therefore, given by (refer to Equations 7.10, 7.11):Cjac = Cp1 + Cp2 + Cp3 + Ctest + Cbroad (7.12)where, Ctest is the cost of the function test , and would depend on whether asequential or parallel implementation is selected for it. Cbroad is the cost of broad-casting the result of the function test to all the processors in the network.
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Chapter 7 | Implementation Scheme and Examples 173The three sets of costs for the best and second-best implementations are plot-ted in Figure 7.6. Again, the predicted trend is also obtained experimentally.In the case of the (32 � 32) matrix, for the best implementation a speed-up isobtained with 16 processors, but for the second-best implementation, the optimalnumber of processors is predicted to be 8, and this is also obtained experimentally.The analyser under-estimates the costs slightly, but still (in this case), the mostcost-e�ective implementation is the one that is selected. (This has been veri�edby computing the costs manually). The similar feature of the gradient of the ex-perimental curves being steeper than that of the predicted ones is also observedin this example. The distance between the predicted and experimental curvesin the second-best implementation is larger than that between the correspondingcurves in the best implementation. This again, is probably because the second-best implementation involves a gather operation before the function test can beimplemented and this involves more communication than in the case of the bestimplementation. The distance between the corresponding curves in this exampleis much larger than that in the Merge Sort example. This again is probably dueto the fact that the Jacobi Iteration example involves more communication thanthe Merge Sort example.7.5 ConclusionsThe performance of three programs expressed in terms of the recognised functionshas been studied on a hypercube topology. The analyser computed the mostcost-e�ective implementation for each of the programs. These, along with thesecond-best parallel implementations have been executed on the hypercube, andthe predictions made by the analyser have been con�rmed experimentally. Thethree programs are regular in the context of the HOPP model, and it is, therefore,possible to express them in terms of the existing constructs. It may not be



Chapter 7 | Implementation Scheme and Examples 174possible to e�ectively parallelise irregular problems such as quicksort that dependon the actual input data values, by using this scheme. This is a limitation of thescheme and arises due to the use of compile-time techniques to predict programperformance, as well as the restrictive nature of the recognised functions.



Chapter 8Conclusions and Directions forFuture Research8.1 Thesis SummaryA model of parallel computation (HOPP) based on the functional style and theBird-Meertens Formalism has been investigated in this thesis. In particular, thethesis has focussed on developing a realistic cost model for HOPP. The modelhas been targeted at distributed-memory MIMD machines in which the costs ofinterprocessor communications tend to be signi�cant. Consequently, su�ciente�ort has been directed at minimising these costs. The motivations for choosingBMF as the basis for the model of parallel computation lie in the advantages ito�ers and includes the following:� It provides a high level of abstraction, therefore relieving the programmerof handling the low-level details involved in parallel programming.� Only one program is written irrespective of the target architecture, whichenhances the portability of the program.� The model comprises of a �xed repertoire of constructs, most of which areimplicitly parallel. Any potential parallelism in the program can only beexpressed through these constructs. It should be possible to predict the cost175



Chapter 8 | Conclusions and Directions for Future Research 176of execution of such a program on a given architecture. Also, once such anestimate has been obtained for a given architecture, it can be re-used fordi�erent programs expressed in terms of these constructs.� The set of implicitly parallel constructs are either already de�ned, or areeasily de�nable in most functional languages, thereby removing the needfor learning any new programming technique in order to use the model.The implicitly parallel constructs are higher-order functions which are basedon the functions in BMF. The basic set of higher-order functions in BMF hasbeen extended by incorporating some additional useful functions. These addi-tional functions are not new, but are well-known functions for which de�nitionsin terms of the functions in BMF have been provided, along with cost-e�ectiveparallel implementations on four target topologies. This extended set of implicitlyparallel functions is referred to as the set of recognised functions. A program isexpressed in terms of these constructs, typically as a composition of instances ofrecognised functions. For each recognised function, a parallel implementation isde�ned on a given target parallel machine topology, and the cost correspondingto that parallel implementation is derived. Associated with each target topologyis a cost model which describes the possible methods for implementing a givenprogram in parallel, together with the corresponding cost estimates. A cost ana-lysis is performed on the program, using the analytical cost model that has beendeveloped for the chosen target architecture. The analyser considers the costsassociated with the various possible implementations and selects the one thatresults in the least cost. Parallel code can then be generated for the selectedimplementation, which, in turn, can be executed on the parallel machine.The performance of the recognised functions has been studied on four targetarchitectures, viz. hypercube, 2-D torus, tree and linear array. The performance



Chapter 8 | Conclusions and Directions for Future Research 177of a majority of these functions was found to be most e�cient on the hypercubeand hence an analyser has been implemented for this topology. Three exampleprograms were analysed and the chosen parallel implementations were executedon a transputer-based machine con�gured as a hypercube. In all the cases, thepredictions of the analyser have been con�rmed by the actual implementations.The 2-D torus follows the hypercube as the one on which the functions can bee�ciently implemented. However, due to the poor connectivity of the torus,several possible parallel implementations for a program would probably be ine�-cient. A hypercube embedding in the torus was proposed as a possible approachin overcoming this ine�ciency. A possibility then would be to compute two setsof costs associated with implementing a program on the torus:� With the torus con�gured as a hypercube - this would use the de�nedhypercube embedding and analyse the cost of the program with respect tothe embedded hypercube topology.� With the torus retained as such - this would analyse the cost of the programby considering the possible implementations on the torus itself.The least-cost implementation could then be chosen.The tree and the linear array proved to be quite ine�cient and were notinvestigated further. It is possible to develop cost models for other target to-pologies, thereby extending the range of architectures catered for by the HOPPmodel. For each such architecture, a parallel implementation must be providedfor all the recognised functions, together with the corresponding costs. The costmodel must describe the techniques for handling the implementation of nestedrecognised functions and must provide cost estimates for any data distributionfunctions which may be involved in the implementation of programs.



Chapter 8 | Conclusions and Directions for Future Research 1788.2 Contributions of ThesisThe main contributions of this thesis can be summarised as follows.� The development of the HOPP model which provides an extended set ofprede�ned implicitly parallel constructs called recognised functions, in ane�ort to make the task of writing a wider class of programs more feasible.� Cost-e�ective parallel implementations have been devised for the functionsin this extended set on four di�erent interconnect topologies. The costassociated with each such implementation has also been derived.� A hierarchical cost model has been developed for these topologies. The costmodel for the hypercube topology has been implemented in the form of ananalysis program. The analyser considers the costs of the parallel imple-mentations for the recognised functions and their arguments, in the selectionof a cost-e�ective parallel implementation for the program. It also considersthe costs associated with a number of possible parallel implementations forthe program before selecting a cost-e�ective one.� The performance of the model has been illustrated by implementing threeexample programs. The predictions of the analyser have been con�rmed bythe experimental results, in almost all the cases.8.3 LimitationsThere are some limitations to the analyser in its current form. Most of thesecan be overcome by the incorporation of some additional features in the analyser.However, there are some limitations to the model arising from the nature of thechosen constructs and cost analysis, and these cannot be wished away. Theyconstitute the trade-o�s involved in obtaining a simple parallel programming



Chapter 8 | Conclusions and Directions for Future Research 179model that provides a high level of abstraction. These limitations are discussedbelow.� The main limitation is that only regular problems can be e�ectively paral-lelised using this approach. In this context, a regular problem is one whoseperformance does not depend on the nature of the input data and one whichalso has a predictable communication structure. For problems which are notregular in this sense, the analyser cannot be guaranteed to make perform-ance predictions that will reect practical behaviour. This limitation arisespartly due to the use of compile-time techniques to predict performance andalso due to the nature of the constructs available for expressing parallelism.� The �xed repertoire of constructs for expressing programs does limit theprogrammer. Although this set comprises of functions which should allowthe expression of a number of types of data-parallel operations, situationscould arise when this becomes di�cult. For example, it may be di�cult toexpress a program based on an array data structure with array operations.� The analyser in its current form requires more assistance from the program-mer than is actually necessary, e.g. it requires estimates of the sizes of inputdata structures and the costs of sequential functions. These demands onthe programmer could be removed by extending the analyser so that it in-corporates pro�ling capabilities. The analyser also lacks type inference andrequires the programmer to explicitly supply the base types of input listsand also the input and output types of sequential functions. This could alsobe automated.� The analyser cannot detect certain types of transformations of the inputlists by sequential functions (See Section 5.1). Consequently, the estimates



Chapter 8 | Conclusions and Directions for Future Research 180of the sizes of the corresponding output lists would be inaccurate. Thisin turn would result in inaccuracies in the cost estimates for subsequentphases of the program. The analyser could be extended so that some ofthese transformations are detected. Again, this would involve incorporatingtype inference in the analyser. However, due to the compile-time techniqueswhich are used, a transformation of an input list resulting in an output listof di�erent size, cannot be detected by the analyser.8.4 Avenues for Further ResearchThe research reported in this thesis opens several avenues for further investigation.� An immediate possibility would be the construction of a compiler to auto-matically generate parallel code for the implementation selected by the ana-lyser. Such a compiler would be targeted at a parallel machine like the MeikoComputing Surface or the Cray-T3D. The design of the compiler could besuch that it generates code in a high-level language such as C, with the codefor the appropriate communication constructs being generated. Standardcommunication harnesses such as MPI could be used. This would have adouble advantage in that the issues involved in generating e�cient machinecode would be transferred to standard C compilers and the portability ofthe program would also be enhanced. The onus of generating e�cient Ccode is, however, still on the compiler. Another option is to design thecompiler such that it generates code in some intermediate form, which inturn could be executed on the parallel machine. Some method of insertingthe communication constructs would have to be devised.� The cost model was studied on four di�erent target topologies, of whichonly two were found to be cost-e�ective. The model could be extended to



Chapter 8 | Conclusions and Directions for Future Research 181cater for other interconnect topologies, such as, fat-trees [Lei85].� The hypercube embedding in the 2-D torus can be implemented. An ana-lyser to predict execution costs and select cost-e�ective implementations onthe torus can then be realised.� The scheme only considers parallel implementations for recognised functionsthat do not occur within sequential functions. Any occurrences of recognisedfunctions within sequential functions are implemented sequentially. A pos-sible extension would be to consider the exploitation of potential parallelismfor recognised functions nested within sequential functions. This would pos-sibly involve the formulation of rules that describe when such exploitationof parallelism is allowed, so that semantic inconsistencies are not introducedinto the program.� The cost model is hierarchical but it considers parallel implementations fornested recognised functions only up to the �rst three levels. This couldbe extended to handle more levels, if the situation arises. Alternatively,the number of recognised functions implemented in parallel could still bethree, but instead of simply choosing the �rst three recognised functions foranalysis, parallel implementations involving recognised functions in otherlevels could be analysed.� The search tree constructed by the analyser is exhaustive in the sense that itconsiders all the possible parallel implementations described by the model,for every phase in the program, before selecting the least-cost implementa-tion. This causes an exponential increase in the size of the search tree withincrease in the number of phases in the program. However, this is probablynot required since many of the implementations would perform too poorly



Chapter 8 | Conclusions and Directions for Future Research 182to merit consideration. Heuristics could be designed to eliminate such poorimplementations at the analysis stage itself, in order to reduce the searchspace. This would probably involve a combination of local minimisationand inter-phase elimination techniques.� The limitations of the analyser discussed in Section 8.3 could be overcomeby extending the analyser to incorporate the required capabilities.� The analyser cannot handle problems where the performance of sequentialfunctions depends on the actual value of the input data. In other words, thecases where the cost of a sequential function varies for di�erent data values,cannot be handled. This arises due to the limitation of regularity that isimposed on the nature of the problem that can be analysed. However,the introduction of pro�ling techniques in the analyser could be used toovercome the problem to some extent. Pro�ling could be used to obtainestimates of the values of each data set. This could, in turn, be used bythe analyser to predict execution costs and select a cost-e�ective parallelimplementation for that data set. The implementation of a phase containinga sequential function whose cost is a function of the input value, wouldprobably involve placing di�erent numbers of data items on processors, inorder to achieve load balance. The analyser could be extended to handlesuch cases, thereby making it less restrictive.� Program transformations can be employed to generate e�cient parallel im-plementations for programs. Programs written in the functional style nat-urally lend themselves to transformations. The cost model could be usedto predict the costs of di�erent versions of the program, obtained by usingsemantics-preserving transformations. The parallel implementation corres-ponding to the least-cost version could then be selected for execution.



Chapter 8 | Conclusions and Directions for Future Research 183� More example programs from di�erent scienti�c disciplines could be testedon the scheme. This could assist in identifying more useful functions whichcould be incorporated in the set of recognised functions.� The model is currently based on distributed-memory machines. It wouldbe interesting to develop a cost model for shared-memory machines.
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