A Cost Analysis for a
Higher-order Parallel
Programming Model

Roopa Rangaswami

Doctor of Philosophy
University of Edinburgh
1996

(Graduation date:December 1996)



To my parents
Sulo and Ranga

and sister Kripa



Abstract

Programming parallel computers remains a difficult task. An ideal program-
ming environment should enable the user to concentrate on the problem solving
activity at a convenient level of abstraction, while managing the intricate low-level
details without sacrificing performance.

This thesis investigates a model of parallel programming based on the Bird-
Meertens Formalism (BMF). This is a set of higher-order functions, many of which
are implicitly parallel. Programs are expressed in terms of functions borrowed
from BMF. A parallel implementation is defined for each of these functions for a
particular topology, and the associated execution costs are derived. The topolo-
gies which have been considered include the hypercube, 2-D torus, tree and the
linear array. An analyser estimates the costs associated with different implement-
ations of a given program and selects a cost-effective one for a given topology. All
the analysis is performed at compile-time which has the advantage of reducing
run-time overheads. The cost model’s accuracy in choosing a cost-effective im-
plementation and predicting its performance has been studied for three example
programs.

The main contribution of the thesis is the cost model which aims to predict
realistic performances and which considers several possible parallel implementa-

tions for a given program before selecting a cost-effective one.



Acknowledgements

The following people have all helped make this thesis possible and are due many
thanks. My supervisor, Murray Cole, was always willing to read and criticise my
documents, and this thesis owes a great deal to the many discussions we have had.
A number of pertinent points were also raised in conversations with Kevin Mitchell
and Peter Thanisch. My parents have always been a source of inspiration - they
provided invaluable support during a crucial period. My parents-in-law shared a
big responsibility as I started to write up. My husband, Arvind, has supported
me in more ways than can be mentioned here. My thanks are also due to him for
proof-reading this document and suggesting many improvements.

Parallel machine facilities were provided by the Edinburgh Parallel Computing
Centre. This work was partially funded by the Overseas Research Studentship,

awarded by the British Council.

11



Declaration

I declare that this thesis was composed by myself and that the work described
in it is my own except where otherwise stated. A part of this work was published

in [Ran95].

Roopa Rangaswami

111



Table of Contents

List of Figures

Chapter 1 Introduction

1.1

Approaches to Parallel Programming . . . . . . .. ... ... ..

1.2 Motivations . . . . . . . . .,

1.3

OQOutline of the Thesis . . . . . . . . . . . . .. ... ... ...

Chapter 2 Related Work

2.1
2.2
2.3

2.4

Parallel Skeletal Programming . . . . . . .. ... ... .. ...

Functional Programming . . . . . . . .. .. .. ... ...
Parallelism in Functional Languages . . . . . . . .. ... ... ..
2.3.1 Dataflow Techniques . . . . . .. .. ... ... .. ....
2.3.2 Techniques Based on Parallel Graph Reduction . . . . ..
2.3.3  Other Approaches . . . . . . . .. ... ...

Conclusion and Thesis Objectives . . . . . . . . .. ... ... ..

Chapter 3 Overview of the HOPP Model

3.1
3.2
3.3
3.4
3.5

Introduction . . . . . . ..o
The Features of the Model . . . . . . ... ... ... ... ...
Language Assumptions for the Model . . . . . . . . . .. ... ..
The Advantages and Limitations of HOPP . . . . . .. ... ...

The Parallelisation Scheme . . . . . . . . . . . . .. .. ... ...

v

viii

14
16
16
17
20
21

23



3.5.1 The Analyser . . . . .. ... ... oo 31

3.5.2 The Search Tree . . . . . . .. ... ... ... ... 33
3.5.3 Profiling Information . . . . . .. ... 0oL 34
3.5.4 The Code Generator . . .. ... .. ... ... ...... 35

3.6 Summary ... ... 35
Chapter 4 The HOPP Model 37
4.1 The Basic Set of Functions . . . . . . .. .. .. ... ... ... 38
4.2 The Extended Set of Recognised Functions . . . . . ... .. ... 43
4.3 Example Programs . . . .. .. ... o 54
4.3.1 Matrix Multiplication . . . . . .. .. .. .. ... ... .. 54
4.3.2 Merge Sort . . ... 35
4.3.3 Solving Partial Differential Equations . . . . . . . . .. .. 36

4.4 Conclusion . . . . . . .. L Lo 59
Chapter 5 The Cost Model 60
5.1 The Problem Specification . . . . . . .. .. .. .. ... ... .. 60
5.1.1 The Program Tree (P) . . . . .. .. .. .. ... .. ... 61
5.1.2  The Parallel Machine Characteristics (M) . . .. .. ... 62
5.1.3 The Input List Characteristics (D, I, F;,S) . . . . . . .. 64
5.1.4  Specifications for Sequential Functions (C¢, Fys) . . . . . . 66

5.2 The Compile-time Analysis. . . . . ... .. .. .. ... ... .. 70
5.2.1 The Algorithm for the Analyser . . . . .. ... ... ... 7

5.3 An Example of Compile-time Analysis . . . .. .. .. ... ... 81

Chapter 6 Parallel Implementations and Costs for Recognised Functions 85
6.1 Data Communications on the Topologies . . . . .. ... ... .. 85

6.1.1 Nearest-neighbour Communication . . . ... ... .... 89



6.1.2 The Broadcast Operation . . .. .. .. ... ... .... 89
6.1.3 The Scatter Operation . . . . .. .. .. ... ... .... 92
6.1.4 Total-Exchange . . . . . ... .. ... .. .. ... 95

6.2 Algorithms and Costs for the Parallel Implementations of Recog-

nised Functions . . . .. ... oL oL 97
6.21 map . . ... 98
6.2.2 fold. . . . . . . 99
6.2.3 scan ...l e e 108
6.2.4 filter . . ... 118
6.2.5 initsand tails . . . . .. ..o oo 119
6.2.6 cross_product . . . ... 122
6.2.7 composition . . . . .. ..o 123
6.2.8 map2and zip .. .. ... Lo 124
6.2.9 The iterative functions . . . . . . .. ... 124
6.2.10 split . . . .o 125
6.2.11 The Combinator R¥ . . . . . .. .. .. . ... ...... 127
6.2.12 getmeigh. . . . . ... 129
6.2.13 len . . . . .o 137
6.2.14 select . . . . ..o 138
6.2.15 applyselect . . . . . ..o oo 139
6.2.16 copy . . . . 140
6.2.17 reverse . . . ... ..o 141
6.3 The 2-D Torus Topology . . . . . .. .. .. .. ... ... .... 143

Chapter 7 The Implementation Scheme and Example Programs 147
7.1 The Analyser . . . . . . ... 148
7.2 The Parallel Library . . . . . . . .. .. ... .. ... 149

Vi



7.2.1  Memory Allocation . . . . . . .. ... L. 150
7.2.2  In-line Expansion of Function Calls . . . . . ... ... .. 150
7.2.3 Distribution of Lists among Processors . . . .. ... ... 151

7.2.4 Parallel Implementations of Recognised Functions Involving
Communication . . . . . . .. .. ... Lo 154
7.3 Communication on the Hypercube . . . . . . .. .. ... .. ... 156
7.4 Example Programs . . . . ... .. Lo oo 158
7.4.1  Matrix Multiplication . . . . . .. ... 160
742 Merge Sort . ... Lo 165
7.4.3 Jacobi Iteration . . . . . . ... o000 168
7.5 Conclusions . . . . . . .. 173
Chapter 8 Conclusions and Directions for Future Research 175
8.1 Thesis Summary . . . . . . .. .. 175
8.2 Contributions of Thesis . . . . . .. . .. .. .. ... ... 178
8.3 Limitations . . . . . ... L 178
8.4 Avenues for Further Research . . . . .. ... ... ... ... .. 180
Bibliography 184

Vil



3.1

5.1
5.2
3.3

6.1

7.1
7.2
7.3
74
7.5
7.6

List of Figures

The Analysis and Implementation Scheme . . . . . ... ... .. 32
An Example of a Program Tree . . . . . .. ... ... ... .. 62
Program Tree for the Example . . . . . ... ... .. ... 82
Search Tree for the Example . . . . . . . . ... ... ... ... 83
Processor-numbering Schemes for the Four Topologies . . . . . . . 88
Scatter/Gather on a Hypercube . . . . . .. .. .. ... ... .. 158
Broadcast on a Hypercube . . . . . . .. ... 000 159
The Program Tree for Matrix Multiplication . . . . . . . ... .. 160
The Results for Matrix Multiplication . . . . . . .. ... .. ... 163
The Results for Merge Sort . . . . . .. .. ... ... . .... 167
The Results for Jacobi Iteration . . . . . .. ... ... ... ... 172

V1ii



Chapter 1

Introduction

Developing efficient software for parallel computers is a difficult task, even for
the specialist. This is so for reasons which are peculiar to the nature of parallel

progrars.

o Non-determinism - The order of events in a parallel program can vary at
run-time and is difficult to predict. This makes it hard to debug parallel

programs and verify their correctness.

o Resource Management - The efficient management of all the computational
and communication resources is an onerous task. The computational load
has to be optimally divided and the communications managed in a manner

which produces programs that are free from deadlock and non-termination.

e Portability - The architectures of parallel machines tend to be different.
This means that for a given problem, different algorithms might result in
efficient solutions on their respective machines, making parallel programs

less portable.

1.1 Approaches to Parallel Programming

The approaches which make parallel programming more manageable can be di-

vided into three main topics.



Chapter 1 — Introduction 2

1. Explicit Parallel Programming Languages - These languages include con-
structs that allow the programmer to explicitly create processes that can be
executed in parallel, and to manage the interactions between them. Lan-
guages such as Ada, Modula and Concurrent Pascal, have parallel constructs
integrated into them and this makes them fairly architecture-independent.
Other sequential languages that use library calls to handle the parallelism
may be architecture-dependent. However, the creation of portable message-
passing libraries such as MPI [Mes94] and PVM [B*91] makes it possible

to write portable parallel programs using sequential languages like C.

2. Parallelising Compilers for Sequential Languages - These compilers create
parallel code from existing sequential programs. The advantages are the fol-
lowing: programmers need not learn a new language; investment in existing
software is not lost; the method is architecture-independent; and efficient
code can be generated for many regular problems. However, all the avail-
able parallelism may not be detected because these compilers must adopt
a conservative approach in generating parallel code, in order to ensure its
correctness. Compiler directives may solve this problem to some extent,
but these directives may destroy the architecture-independence. Moreover,
the code obtained by parallelising the sequential solution to a problem, may

not be the most efficient way of solving the problem in parallel.

3. Implicit Parallel Programming Languages - Programs in these languages are
inherently parallel and there is no need for explicit parallel constructs. Such
languages tend to be applicative or functional [BW88] in nature, and are
architecture-independent. An added advantage of functional languages is
that a correct program will produce the same result, irrespective of the order

of evaluation. It is possible to write programs at a high level of abstraction



Chapter 1 — Introduction 3

using higher-order functions. Functional languages also possess other at-
tractive features such as a firm mathematical foundation, lazy evaluation,
and amenability to transformation [Bac78, AE88, Hug90]. However, func-
tional languages tend to be less efficient than their imperative language

counterparts.

This thesis considers a data-parallel model of parallel computation based on
Approach 3. The low-level decisions about managing parallelism are transferred
from the programmer to the compiler, which results in easier program develop-
ment and also enhances its portability. However, compilers for these languages
may not always detect all the available parallelism nor select the most cost-
effective parallel implementation. This thesis addresses the latter problem. A
cost model is developed for a particular style of implicit parallel programming,
based on the Bird-Meertens Formalism (BMF). The problem associated with the
detection of the available parallelism is removed by restricting the expression of
data-parallelism to a fixed number of predefined constructs. The model is aimed
at executing data-parallel programs on MIMD (Multiple Instructions Multiple

Data) machines to produce SPMD (Single Program Multiple Data) programs.

1.2 Motivations

The discussion in Section 1.1 highlights the need for a model of parallel compu-

tation that ideally incorporates the following features:
1. Architecture-independence
2. Abstraction from the low-level details of parallel programming
3. Ability to predict performance accurately

4. Ease of learning and use



Chapter 1 — Introduction 4

Several parallel programming models have been proposed and their merits and
disadvantages are discussed in Chapter 2. This thesis considers a Higher-order
Parallel Programming (HOPP) model which possesses all of the features just
described. HOPP is based on the Bird-Meertens Formalism [Bir87a]. This form-
alism was originally developed in a sequential context, with a view to providing
a calculus for deriving efficient programs from problem specifications, by using a
series of program transformation rules. The theory initially concentrated on list
data structures [Bir87b, Spi89], but other data structures such as multidimen-
sional arrays have also been studied [Mil93]. HOPP focuses on the theory that
was developed for list data structures. It comprises of a set of useful data-parallel
functions whose definitions can be found in Chapter 4. The theory is based on a
functional paradigm and automatically inherits features 1 and 2 (For more details,
see Section 3.4). Since the model can be embedded in any functional language,
there is no learning curve associated with its use (feature 4). The thrust of this
thesis lies in the incorporation of feature 3 into the model. The behaviour of the
functions in BMF is predetermined and this feature is exploited in building a cost
model that aims to accurately predict the costs of programs. The cost model
currently focuses on distributed-memory machines in which communication costs
tend to be significant. The prediction of the costs associated with the possible
parallel implementations of a program would enable a compiler to generate a
cost-effective implementation for it. The Bird-Meertens Formalism appears to be
an attractive candidate on which to base a model of parallel computation, if the
cost model is able to predict realistic program performance.

The observation of the suitability of BMF in parallel computation has been
made by a number of other researchers, notably [Ski92, Gor95]. In [Col87], an
approach to parallel programming based on Skeletons is proposed. Skeletons are

abstractions of well-known parallel computational forms for which the compiler



Chapter 1 — Introduction 5

can generate and manage efficient parallel implementations. It has been observed
[Col88] that skeletons can be elegantly expressed as higher-order functions which
are often borrowed from BMF, for which, in turn, parallel implementations can

be realised. This idea has been exploited in [D*93].

1.3 Outline of the Thesis

Chapter 2 discusses some of the issues involved in parallel skeletal program-
ming and some of the techniques that have been studied. Other approaches,
particularly to parallel functional programming, are surveyed.

Chapter 3 provides an overview of the HOPP model. Some of the advant-
ages and limitations of the HOPP model are discussed, and an outline of the
parallelisation scheme is presented.

Chapter 4 defines the functions borrowed from the Bird-Meertens Formalism.
Other useful functions which are expressed in terms of these functions and which
are included in the HOPP model, are also defined. Three programs which are
expressed in terms of these functions are discussed. These programs are used to
test the performance of the model and the results of their implementation are
presented in Chapter 7.

The cost model is described in Chapter 5. The nature of the problem specific-
ation and the compile-time cost analyses of programs are discussed, independent
of the characteristics of the target architecture.

In Chapter 6, parallel implementations for the functions defined in Chapter 4
are considered. The algorithms for implementing them on four target topologies,
namely, the hypercube, 2-D torus, tree and linear array, are defined and their
associated costs are derived.

The results of implementing the example programs (defined in Chapter 4)

are presented in Chapter 7. The programs were implemented on a hypercube



Chapter 1 — Introduction 6

topology, since it proved to be suitable for most of the BMF functions and also
for the parallelisation scheme. For each program, the predicted cost of the chosen
implementation is compared with its actual cost of implementation on a network
of transputers.

Chapter 8 highlights the main contributions of the thesis. Some conclusions

are drawn and directions for future research are explored.



Chapter 2

Related Work

The difficulties associated with parallel programming have motivated the develop-
ment of models and techniques to make it a more manageable task. Parallel pro-
gramming using skeleton functions is one such approach and this chapter focuses
primarily on the developments in this area, since it is of direct relevance to this
thesis. Techniques based on functional programming constitute a well-researched
topic and since the skeleton functions can be elegantly expressed in a functional
style, there is a close relationship between the two approaches. The HOPP model
is based on the Bird-Meertens Formalism which is functional in nature. The
chapter, therefore, also provides a brief introduction to functional programming

and surveys some of the approaches to parallel functional programming.

2.1 Parallel Skeletal Programming

A number of recent approaches have focussed on parallel programming using al-
gorithmic skeletons. The concept of algorithmic skeletons was first presented in
[Col87, Col89]. A skeleton is an abstraction of some well-known computational
form. The idea is to present the programmer with a selection of such skeletons,
each of which captures the essence of some particular style of programming, and
i1s parametrised by certain functions and data structures. The programmer se-

lects the skeleton describing the problem to be solved. In order to implement the

7



Chapter 2 — Related Work 8

selected skeleton, the definitions for the functions and data structures on which it
is parametrised must be provided. The programmer’s responsibility ends at this
point and the system then provides an efficient parallel implementation for the
skeleton on a chosen architecture. The implementation itself is transparent to the
user and can make use of optimisations based on the nature of the target archi-
tecture characteristics, in an effort to derive efficient parallel implementations. It
was further noted [Col88] that skeletons could be expressed elegantly as higher-
order functions (see Section 2.2) in functional languages, thereby establishing a
one-to-one correspondence between the two.

Four skeletons were presented in [Col87], together with analyses of their im-
plementation on a 2-D mesh and the corresponding asymptotic performances.

Examples of problems that fit into each category were also presented.

e Recursive Divide and Conquer (RDC) - This is a skeleton that describes the
well-known technique of solving a problem by recursively dividing it into
smaller instances of the same problem. When an instance of the problem is
not divisible further, it is solved by some non-recursive method. The skel-
eton requires that the degree of recursion (i.e. the number of sub-instances

generated) be specified.

e Task Queue - The technique is suitable for problems whose instances and
solutions may be represented by a shared data structure and whose solutions
are obtained by repeatedly executing some task. Tasks are maintained in
a queue from which processors pick them up and process them. Any tasks
that are created as a result, are placed back on the queue. The procedure

is repeated until the queue becomes empty.

o Iterative Combination - This skeleton deals with problems that would be de-

scribed by a set of objects, together with some rule or criterion for combining



Chapter 2 — Related Work 9

pairs of objects. The algorithm performs a series of iterations and in each
iteration, pairs of objects are combined according to the rule. The iteration
stops when either all the objects have been combined into one or when no

more combinations are possible.

o Cluster - This is a general-purpose skeleton, obtained as a result of combin-

ing the RDC and Iterative Combination skeletons.

The four skeletons described were recently implemented in paraML [BN93], and
the details can be found in [Bai94]. A number of other approaches have been
motivated by the work just described. Some of them are described in the following
paragraphs.

The work of Darlington et al [DT93, DT93, DTG93] is an immediate follow-
up of the ideas presented in [Col88]. A set of higher-order functions are used to
express skeleton-based parallelism. Program transformation techniques are used
at different levels of the development process. At the highest level it is used to
transform an existing program specification to one in terms of skeletons. Trans-
formations to convert one skeleton form into another are used with a view to
improving portability and efficiency. The set of skeletons available to a program-

mer include:
o PIPE - for exploiting pipeline parallelism

e FARM - for exploiting data parallelism, where each processor is responsible

for a part of the data

DC - for problems requiring the divide and conquer approach

RaMP - (Reduce and Map over Pairs) - for problems where interactions
between pairs of objects are calculated and the results are combined to

produce the final result for each object



Chapter 2 — Related Work 10

e DMPA - (Dynamic Message Passing Architecture) - for exploiting parallel-
ism in programs where the inter-process communications are not predeter-

mined, but are determined at run-time, depending on the values of data.

Performance models are used for each skeleton-machine pair, in order to enable the
prediction of its performance on the corresponding machine. [DTG93] describes a
prototype implementation on a transputer-based machine and presents the results
of implementing a ray-tracing example. The performance of the parallel imple-
mentation of the program is shown to be in accordance with that predicted by
the performance models.

P?L (Pisa Parallel Programming Language) [DM*92, BD*93, Pel93] is a
parallel language that is aimed at exploiting parallelism in distributed-memory
MIMD machines. A set of constructs for expressing parallelism is embedded in

the imperative language C++4. These constructs include:
e farm - to exploit data parallelism
e pipe - to exploit pipeline parallelism
e map - to apply a given function to all the elements of a vector

e geometric - to express general data parallelism in one and two-dimensional

arrays

e reduce - reduces a vector by applying a binary associative operator to all

its elements
e tree - to process tree-structured computations

e loop - to handle iterative computations



Chapter 2 — Related Work 11

The language incorporates a sequential construct for expressing the sequential
portions of the code. A program is expressed as a composition of parallel con-
structs, each of which may contain sequential blocks of code or other parallel
constructs. Data communications between constructs is specified by using in(...)
and out(...) parameter lists at the interfaces of the parallel constructs.

P3L is machine-independent in that it is compiled down to an abstract ma-
chine P?M, which in turn is implemented on top of a real machine. The mapping
of the abstract machine to a real machine is achieved by the use of a set of lib-
raries - the mapping library and the optimisations library, which use the details
of the target architecture to determine efficient implementations. The compiler
chooses one of several possible implementations for each construct and the actual
code for these constructs is maintained in the process template library.

SkelML [Bra94, Bra93] is a skeleton-based prototype compiler for ML. Paral-
lelism in programs is implicitly expressed by the use of a small set of predefined
skeletons. The skeletons are expressed as higher-order functions which are identi-
fied by the compiler. The user is also required to provide representative data sets
for the program since the compiler relies on execution profile information in order
to decide on the portions of the program that can be efficiently executed in par-
allel. The compiler performs certain optimising transformations and generates
Occam 2 code for the Meiko Computing Surface. Six skeletons are supported:
map, filter, fold, filtermap, mapfilter and foldmap, of which the last three
are combinations of the first three. A process pipeline which allows for com-
positions of the six skeletons is also supported. A limitation is that the process
pipeline is the only means of nesting skeletons and no other skeletons can be
nested within others. Although a limited number of skeletons are catered for, the
design of the compiler allows for this set to be extended. The results of applying

the compiler to three example programs are presented. The performance of all



Chapter 2 — Related Work 12

the programs seems to indicate a satisfactory performance by the compiler.

PUL (Parallel Utilities Library) [BCMT93] is a skeleton-based library that
provides utilities which support common parallel programming paradigms such
as task farms, divide-and-conquer, spatial domain decomposition and mesh-based
problems. Programs can be written in C or FORTRAN. PUL was developed on
top of CHIMP (Common High-level Interface to Message Passing), and the differ-
ent skeleton modules can be combined by the use of the explicit communication
primitives in CHIMP.

Parsec (Parallel System for Efficient Compilation) [FSWC92, FW93] is a par-
allel programming environment based on skeletons. The skeletons supported are
processor farms and divide and conquer, which are implemented on a logical
tree of processors, which in turn can be mapped onto the real machine. Each
skeleton is parametrised on information such as number of processors, topology
and granularity, and also has performance models associated with it. Performance
information is gathered during test runs and and an analysis of this information,
together with the performance model provides the values for the parameters of
the skeleton. A graphical interface allows the programmer to tune the application
according to requirement.

[DDD95] addresses the issue of performance prediction for skeletons. The
execution time of a skeleton is described by a generic higher-order complezity
function. The time complexity of a particular application is derived from the
values of its parameters when the skeleton is instantiated. A measure of the
scalability of the application is derived using isoefficiency functions. The method
is illustrated on some examples from image processing and the experimental res-
ults, both for the time complexity and scalability, are shown to closely match the
theoretical predictions.

A number of techniques focus on the development of parallel programs using



Chapter 2 — Related Work 13

the transformational approach. A skeleton-based parallel programming environ-
ment is augmented with special transformation rules which are used in deriving ef-
ficient parallel programs. An example of this approach has already been discussed
in [D*93]. [Gee94] describes a framework for parallel program development using
skeletons and transformations. As in [D793], the emphasis is on inter-skeleton
transformations, in order to enhance portability. In an effort to demonstrate the
expressiveness of skeletons and the power of inter-skeleton transformations, the
implementations for four example problems on two different architectures are de-
rived using a formal method. A similar approach is emphasised in [BGP93], and
a processor array is characterised in terms of skeletons.

The Bird-Meertens Formalism (BMF) [Bir87a] is a calculus for deriving effi-
cient programs from problem specifications. A theory in BMF describes the beha-
viour of a datatype (e.g. a list), and provides a set of operators on that datatype
[Bir89], together with some transformational rules relating the operators. (For
details on the set of BMF operators on lists, see Chapter 4). The theory was ori-
ginally developed in the context of sequential programming, in order to provide a
formal basis for step-by-step transformation of a, possibly, inefficient specification
of a program into an efficient one. Additionally, the BMF operators are implicitly
parallel, which can be exploited in developing a parallel programming model. In
particular, the operators on the list datatype are described by higher-order func-
tions and programs written in terms of these operators allow for a high level of
abstraction. This means that programs in BMF can be written independent of
the architecture at which they are targeted, while the strong theoretical founda-
tion of BMF enables the verification of program correctness and also aids formal
parallel program development. These attractive features of BMF have prompted
researchers to advocate it as a model of parallel computation [Ski92, Ski91]. Also,

since the behaviour of the functions in BMF is predetermined, it is possible to



Chapter 2 — Related Work 14

compute their costs of execution [SC93], in an effort to predict the performance
of the program.

Many recent approaches to the derivation of efficient parallel programs use
the semantics-preserving transformations in BMF to obtain efficient parallel pro-
grams from initial abstract specifications. An example of such an approach can
be found in [GLI3], where the derivation of a parallel implementation for divide-
and-conquer applications is described. An initial specification in the form of a
mutually recursive functional definition, is subjected to formal refinement using
the correctness-preserving transformations in BMF. The first phase of the deriv-
ation results in the construction of a parallel functional program scheme, from
which an imperative distributed SPMD program is derived. Efficiency figures
in the range of 0.6-0.9 are reported on example implementations on a 64-node
transputer system. A similar technique is used in [Gor95], in which BMF is used
in the derivation of a parallel program for polynomial multiplication. Starting
with a mathematical specification, an SPMD program is derived, together with a
process topology for the program. This topology must, in turn, be mapped onto
a real machine. BMF expressions are used to make decisions regarding data par-
titioning and interprocessor communications. [Roe94] discusses the derivation of
efficient parallel programs for SIMD and MIMD machines using BMF. A process
of upward refinement is used, in which successive steps involve the incorporation

of more machine-dependent implementation details into the program.

2.2 Functional Programming

Functional languages have their foundations in mathematical logic. Functional
programs can be viewed as a set of rules that describe what to do as opposed
to how to do it. Functional languages are based on Church’s lambda-calculus

[Chu4l] and indeed these languages are sometimes referred to as lambda calculus



Chapter 2 — Related Work 15

with syntactic sugar. Expressions in the lambda calculus can be evaluated in
any order, (including in parallel), without affecting the final result. Also, in the
evaluation of a lambda expression, side effects cannot occur. This means that
an expression can be replaced by its value at any point in the program and this
property is known as referential transparency. Functional languages that do not
allow side effects are pure and those that do allow side effects are impure. ML
[MHTS89] is an i¢mpure functional language, while Hope [BDS80] is pure. The
property of referential transparency is lost in impure languages. More details of
functional languages and the lambda calculus may be found in [Mic89]. Functional
languages can also be classified as strict or lazy. In the case of strict languages
such as FP [Bac78], the arguments of functions are evaluated before the function.
In the case of lazy languages such as Haskell [H*92], the evaluation of function
arguments are delayed until their values are actually required.

Although functional languages have their roots in the lambda calculus, they
incorporate a number of features that make them less rigid and more user-friendly.
Functions are treated as first class objects and a program in a functional language
comprises entirely of a set of functions, each of which has well-defined input para-
meters and returns a result value. Functions can be written so that they can be
applied to a set of different data types. This is made possible by polymorphic type
checking [Mil78]. Most functional languages have type inference facilities whereby
the type of an identifier or function is deduced from the type information of other
identifiers and functions. Type inference is possible because these languages are
strongly-typed and provide for static type checking. A function can be partially
applied to only the first few of its arguments. The evaluation of this function
returns a new function that is applied to the remainder of the arguments. Such
functions are said to be curried [Ull94], and the arguments to functions can there-

fore be represented without the need for any brackets. Functions can be passed as



Chapter 2 — Related Work 16

arguments to functions and can also return functions as results. Functions that
possess either, or both, of these properties are called higher-order functions and

provide for a very high level of abstraction in expressing programs.

2.3 Parallelism in Functional Languages

Functional programs contain implicit parallelism. This is because of their founda-
tions in the lambda calculus, where expressions can be reduced in parallel without
affecting the outcome. The abstraction power in these languages can be used
to hide the low level details of parallelism from the programmer, therefore al-
lowing for easier program development. A number of approaches for extracting
parallelism from functional languages have been considered. Some of these ap-
proaches focus on explicit methods, where the onus of identifying and exploiting
parallelism is on the programmer. These approaches tend to incorporate some
form of annotations in the program, and these annotations indicate the parts of
the program that must be evaluated in parallel. Implicit approaches focus on
techniques that can identify potential parallelism and parallelise a program with
little or no involvement from the programmer. The techniques surveyed in the

following sections include those based on dataflow and graph reduction.

2.3.1 Dataflow Techniques

This section gives a brief introduction to the concept of dataflow computing.
Since it is not of direct relevance to this thesis, it is merely meant to serve as a
pointer to further reading.

In the dataflow model of parallel computation, a program is represented by
a directed graph [DK82], in which the nodes represent instructions and the arcs
represent the paths of the data-tokens. A node executes the instruction (or fires),

when data becomes available on all of its input arcs and places the result on



Chapter 2 — Related Work 17

its output arc. Several nodes can fire simultaneously, offering scope for very
fine-grain parallelism. Features include, absence of side effects, implicit paral-
lelism, and single assignment, whereby a variable can be assigned a value only
once, which makes the binding unchangeable. Languages based on the dataflow
concept include, most notably, Id (Irvine dataflow) and SISAL (Streams and It-
eration in a Single-Assignment Language). Id [Eka91] is a functional language
which has been implemented on architectures such as the MIT Tagged-token
dataflow architecture [AN87] and the MIT/Motorola Monsoon Dataflow System
[HCAA93]. SISAL [Ske91] is a functional language with imperative constructs
such as WHILE and FORALL loops, for solving scientific problems. Tech-
niques for the automatic detection and exploitation of parallelism in SISAL pro-
grams are discussed in [Sar89]. The technique uses execution profiles of programs
and information about the target architecture characteristics in deriving efficient

parallel implementations.

2.3.2 Techniques Based on Parallel Graph Reduction

One of the more popular techniques for implementing functional languages is by
a method known as graph reduction. A program in a functional language can be
transformed into some form of the lambda calculus [Jon87]. In evaluating such a
program, a lambda expression is represented as a directed graph in which operat-
ors, constants and variables are represented as leaves. Lambda abstractions are
represented by lambda nodes and function applications by binary apply nodes.
The left child of an apply node represents the function to be applied to an argu-
ment, which is represented by the right child. The graph reduction proceeds by
repeatedly overwriting the apply nodes by applying the function on its left branch
to its argument on its right branch. Common subexpressions are, therefore, shared

by means of a pointer. This ensures that a subexpression is evaluated only once



Chapter 2 — Related Work 18

and the value can be used by all the other expressions that have a pointer to it.
If the body of a lambda abstraction contains free variables, then graph reduction
cannot be performed efficiently, since the value of the result will depend on the
value of the free variables. Combinators are functions (or lambda abstractions)
that contain no free variables. It was shown that by using a fixed set of combin-
ators [Tur79], free variables can be abstracted from an expression. This idea was
generalised by the introduction of the concept of supercombinators [Hug82]. A
supercombinator is a lambda-abstraction that contains no free variables and any
other lambda-abstractions in its body are also supercombinators. Individual func-
tions in the program can be replaced by supercombinators in order to facilitate
efficient graph reduction.

A large number of techniques for exploiting parallelism in functional languages
are based on parallel graph reduction [Jon89]. The program graph is reduced in
parallel. Tasks comprise of expressions that are ready for evaluation and are
stored in a task pool, which may be either central or distributed. They are
distributed to processors, which evaluate them. In the evaluation of a task, a new
task could be created, and this creates a need for efficient dynamic scheduling and
load balancing techniques. A number of parallel graph reduction machines have
been built and some of them are briefly discussed. Several of these systems use
programmer annotations to identify and exploit useful parallelism and cannot,

therefore, be classified as implicitly parallel systems.

e ALICE and Flagship - The ALICE (Applicative Language Idealised Com-
puting Engine) [DR81, HR86] architecture comprises of up to 40 transputers
connected by an interconnection network. The tasks are stored in a cent-
ral pool and processors return any newly-created tasks to the pool. It was
one of the first parallel graph reduction machines to be built, but suffered

from limitations due to high communication latencies and small grain size



Chapter 2 — Related Work 19

[Kea94]. In order to overcome some of these limitations, Flagship [Kea94]
was built. The central task pool was replaced by a distributed program
graph, with each processor having its own local memory. In spite of efforts
to preserve locality in distributing the program graph, the system did not

perform well due to overheads caused by non-local accesses.

e GRIP (Graph Reduction In Parallel) - GRIP [JCSHS87] is a machine that
is specially designed for the parallel supercombinator reduction of Haskell
programs. It comprises of up to 20 Processor Element (PE) boards, with
each board comprising of 4 PE’s and an Intelligent Memory Unit (IMU),
where the program graph is stored. One PE acts as system manager, while
the others perform graph reduction. Various strategies for creating (spark-
ing) new tasks, such as programmer annotations and dynamic techniques
based on current load information [JH92, HJJ94] have been investigated.
Reports of speedup on a number of applications coded in Haskell can be

found in [Jr93].

e The < v, G >-machine [AJ89] - This is a parallel version of the G-machine
[Joh84]. It performs the supercombinator reduction of lazy-ML programs.
The supercombinators are translated into G-machine instructions. The par-
allelism is explicitly requested by the programmer, using SPARK annota-
tions. Speed-ups have been obtained on example programs, as compared to

their corresponding sequential implementations on the G-machine.

o Other Systems - There are several other parallel graph reduction machines
that have been built. These include ZAPP (Zero Assignment Parallel Pro-
cessor) [BS81], MaRS (Machine a Réduction Symbolique) [CT89], HDG
(Highly Distributed Graph) Machine [LKB91], etc. Some functional lan-

guage implementations employ parallel graph reduction techniques. Two



Chapter 2 — Related Work 20

such systems are Alfalfa and Buckwheat [Gol89, Gol88], which are par-
allel implementations for the functional language ALFL on a Distributed
Memory Intel iPSC hypercube, and a Shared Memory Encore Multimax,
respectively. Concurrent Clean [NSvEP91] is another example of a lazy
higher-order language that uses parallel graph reduction based on annota-

tions supplied by the programmer.

2.3.3 Other Approaches

There are several other approaches to data-parallel programming based on func-
tional languages. A few of these are briefly mentioned here, essentially to serve
as pointers to further reading. [Jou91] describes a strategy for compiling func-
tional languages onto SIMD architectures. The approach consists of the addition
of some primitive data-parallel operators to an enriched form of the lambda cal-
culus. The emphasis is on the construction of all data-parallel operations from
this small set of primitive operators. Programs are compiled onto an abstract
machine called the Planar Abstract Machine (PAM), which is derived from an
abstract machine called the Spineless Tagless G-machine [JS89]. NESL [Ble93]
i1s a data-parallel strict functional language, which has an ML-like syntax and
supports polymorphism. It comprises of data-parallel constructs that can be nes-
ted, producing nested parallelism. [PD93] propose a template-based approach to
parallel programming. An implementation template is described as “a parametric
process graph that implements a particular parallelism exploitation form onto a
given (regular) architecture.” Each template has a performance model on a given
architecture, thereby enabling the prediction of its performance on that architec-
ture. A slight variant of Backus’ FP [Bac78] is chosen as the functional language
and the issues and strategies involved in the construction of a template-based

compiler for FP are discussed.



Chapter 2 — Related Work 21

2.4 Conclusion and Thesis Objectives

The discussion in the previous sections clearly indicates the suitability of the
functional approach in the development of models of parallel computation. Tech-
niques based on Dataflow and Graph Reduction appear to have concentrated on
the concept of designing specialised machines to make the corresponding models
of parallel computation effective. Also, all problems are handled in an identical
manner, as opposed to using specialised approaches for effective implementations
of different types of problems. However, the idea in this thesis is to provide a
model of parallel computation that could be applied effectively to a variety of
problems on different machines. To this end, the method based on algorithmic
skeletons seems to be more promising.

In particular, the Bird-Meertens Formalism contains a repertoire of data-
parallel, higher-order functions whose performance can be analysed at compile-
time. Although it has been pointed out that a model of parallel computation
based on BMF is an attractive proposition [Ski92], there has been little research
in the development of realistic cost (performance) models for such a model of
parallel computation. The most significant contribution in this area has been
described in [SC93]. However, the cost model described is at a higher level of
abstraction than is desired, in order to produce accurate performance estimates.
In particular, communication costs have not been modelled at a level of detail
required to reflect practical behaviour. Also, the model only handles parallelism
at the level of the outermost higher-order function. This thesis aims to address
these issues, with a view to developing a realistic cost model for a model of par-
allel computation based on the Bird-Meertens Formalism. The main objectives

of the thesis can be summarised as follows:



Chapter 2 — Related Work 22

o Investigate the feasibility of a model of parallel computation based on the

Bird-Meertens Formalism for distributed-memory MIMD machines.

e Provide an extended set of useful functions based on BMF, in an attempt

to make programming in terms of these functions natural.

o Analyse the behaviour of this set of functions on different target topologies.
For each target topology, derive cost-effective parallel implementations for

all the functions in the set, together with the corresponding cost estimates.

e Develop a cost model that would realistically predict the performance of a
program expressed in terms of this set of functions on different topologies.
The cost model would use the cost estimates of individual functions together
with characteristics of the target architecture and input data structures to
select a cost-effective parallel implementation for a given program on a given

architecture.

o Study the accuracy of the cost model by testing it on example programs.



Chapter 3
Overview of the HOPP Model

3.1 Introduction

This chapter presents an outline of the HOPP approach to parallel programming.
HOPP is based on an implicitly parallel language whose constructs are borrowed
from the Bird-Meertens Formalism (BMF) [Bir89] and FP [Bac78]. These con-
structs are essentially higher-order functions which perform useful operations on
lists. Most of these functions are inherently parallel and will henceforth be re-
ferred to as recognised functions. Since the behaviour of the recognised functions
is predetermined, a program which is expressed in terms of these functions can
be analysed at compile-time to realise a cost-effective parallel implementation.
However, such an analysis is only possible for regular problems which are ex-
pressed in terms of the recognised functions. The implications of regularity in this
context are discussed in Section 3.3. The programs are targeted at distributed-

memory machines in which the communication costs tend to be significant.

3.2 The Features of the Model

The HOPP model comprises of three parts - the program model, the machine

model and the cost model.

23



Chapter 3 — Overview of the HOPP Model 24

e The program model - A program in HOPP is a composition of nested in-
stantiations of recognised and user-defined functions. Composition in this
context refers to functional composition and works from right to left. Each

component is referred to as a phase of the program.

e The machine model - The programs are targeted at distributed-memory
MIMD machines which consist of a set of processors connected by an in-
terconnection network. The topologies of machines considered include the
hypercube, 2-D torus, linear array and tree. The data is distributed among

the processors of the machine.

o The cost model - For each recognised function, the cost model determines its
cost of parallel execution on a given topology. Effectively, the cost model
computes the costs of possible implementations of a given program on a
given machine topology. The theoretical cost model has been implemented

in the form of an analyser.

3.3 Language Assumptions for the Model

As already mentioned, the HOPP model is based on a functional paradigm. This
section describes the structure of a program in HOPP, along with the implications
for parallel implementations which will be considered. The meaning of regularity
in this context is also discussed.

The only data structure is the list, on which all the recognised functions
operate. Lists can be arbitrarily nested and of any type, including standard or
user-defined. The current prototype implementation of the analyser and parallel
code library only allow lists whose base elements are of standard type or pairs
of standard types, but this is only a limitation of the implementation. A further

assumption which is made by the analyser is that sublists are of equal length.



Chapter 3 — Overview of the HOPP Model 25

This is implicit in the assumptions of regularity, which will be discussed shortly.

At the top level, a program is a composition of functions. Each component
(phase) could correspond to a nested instantiation of recognised and user-defined
functions. A program could consist of one or more phases and this is the only
allowable structure for a program in HOPP. The following is an example of a
program in HOPP. plus and times correspond to user-defined functions, which
add and multiply two integers, respectively. The program comprises of three
phases, each with instances of recognised (represented in boldface) and user-

defined functions.

prog xs = (s_fold plus 0 o map (s_scan plus 0)

o r_cross_product times ys) xs;

If the topmost level of a phase corresponds to a user-defined function, then any
instances of recognised function(s) that it might have as its argument(s) is(are)
not considered for parallel implementation. If the topmost level of a phase com-
prises of a recognised function, then parallel implementations are considered for
its argument recognised function. This procedure is followed up to a maximum of
three levels or until a user-defined function is encountered. This implies that par-
allel implementations are considered for nested recognised functions up to three
levels and any recognised functions below it are treated as user-defined functions
and implemented sequentially. The reasons for considering parallel implementa-
tions for up to only three levels are purely pragmatic, and will be explained more
clearly in Section 3.5.

Counsider the following examples.

prog_-1 = map (s_fold plus 0) xss;
prog_2 = map S xss;

fun S xs = s_fold plus 0 xs;



Chapter 3 — Overview of the HOPP Model 26

prog_3 = map (s_fold plus 0 o map sqr) xss;
prog-4 = map T xss;
fun T xs = let val ys = map sqr xs in
s_fold plus 0 ys

end;

The recognised functions are depicted in boldface and ML notation is used. The
function plus simply adds two integers and the function sgr produces the square
of an integer.

All the four programs consist of a single phase with nested instantiations of
recognised and user-defined functions, in the restrictive format allowed by the
HOPP model. prog_1 and prog_2 are equivalent in a sequential setting. However,
s_fold is encapsulated within the user-defined function, S, in prog_2. The cur-
rent implementation of the HOPP model will only recognise map as a potential
function for parallel execution in prog_2, and s_fold within S will only have a
sequential implementation. However, in the case of prog_1, s_fold is at the top
level and will, therefore, be recognised as a candidate for parallel evaluation, in
addition to map. Again, prog_3 and prog_4 perform the same functions, but the
former has more identifiable parallel implementations than the latter. In prog_4,
a parallel implementation will be considered only for map, but none of the in-
stances of recognised functions within 7" would be treated as such. The limitation
arising from cases such as prog_2 can be easily rectified, by checking for instances
of recognised functions in the top level of user-defined functions. However, for
cases such as prog_4, where instances of recognised functions can be arbitrarily
nested within user-defined functions, the problem becomes harder to tackle.

User-defined functions are implemented in a chosen strict functional language,
following its syntactic rules. The HOPP model is independent of the base lan-

guage. However, user-defined functions are not allowed to perform input-output



Chapter 3 — Overview of the HOPP Model 27

operations. The data is input on a single processor which distributes it to other
processors as required, during the intermediate phases of the program. The out-
put is produced at the end of the last phase in the program and could be left
distributed across the processors. This is the only allowable form of data flow,
which could be violated by allowing sequential functions to perform input-output
operations.

The implications of regularity in this context restrict polymorphism. The
analyser needs type information at compile-time in order to compute the size of
the base elements in the input list at every stage in the program. An accur-
ate knowledge of this size is crucial to the computation of communication costs.
Consequently, definitions of sequential functions that allow for full or restricted
polymorphism are not permitted. The type-checker in the analyser would force
the specification of the required type information. The following examples illus-

trate the point.

ex_1 = map g xs;
fun g (x,y) = ((if (y > 0) then ~y else y), x);
ex_2 = map all_eq xs;

fun all_eq (x,y,2) = (x = y) andalso (y = z);

In ex_1, the user-defined function ¢ is polymorphic in z. Consequently, its size
cannot be deduced at compile-time and the analyser will not allow such a defin-
ition. The programmer will be forced to specify the type of z. In ez 2, the
user-defined function all_eq is a valid restricted polymorphic function. However,
since the types of z, y and z cannot be deduced at compile-time, such a definition
cannot be allowed. It may be noted that both of the above definitions will be
allowed if type information is explicitly specified.

A regular program in this context is related to what is termed as a shapely one



Chapter 3 — Overview of the HOPP Model 28

in [Jay95]. The analyser performs operations similar to shape analysis, whereby,
given the shape of the inputs, the shapes of all the intermediate values and that of
the result can be deduced. For a program that is not regular (shapely), these de-
ductions will not, in general, be possible, leading to poor performance prediction.
Shapely programs also have predictable communication structures. The latter is
imposed by the use of recognised functions which only allow the expression of
certain types of computation. This means that it would be difficult to express
many irregular problems using the set of recognised functions.

Regularity also implies that the performance of a program does not vary
drastically for different data sets. This is a limitation arising due to compile-
time analysis, but cannot be enforced by the analyser. Although it is possible to
write problems which are not regular in this sense, it cannot be guaranteed that
the behaviour predicted by the analyser will be obtained experimentally in such

cases. (Refer to Section 5.1.4 for an example).

3.4 The Advantages and Limitations of HOPP

The motivation behind choosing a language based on BMF as a model of parallel

computation lies in the advantages that it offers.

o The HOPP model is based on a functional paradigm. It therefore automat-

ically inherits all the advantages of functional programming as described in

Chapter 2.

e BMF incorporates functions that perform operations which are character-

istic of several common parallel programming paradigms.

o A program which is expressed in terms of the recognised functions is ana-
lysed statically to realise a cost-effective parallel implementation. This is

possible because the behaviour of the recognised functions is predetermined.



Chapter 3 — Overview of the HOPP Model 29

Since all the analysis is performed at compile time, it saves on overheads
at run time. However, the analyser would require information regarding

machine-specific parameters and shapes of input lists.

o The recognised functions are either already part of, or can be easily defined
in any existing functional language. HOPP does not impose any new pro-
gramming technique on the programmer. Simplicity of learning and use are

naturally inherited by the model.
There are, however, some limitations to the scheme.

o As discussed in Section 3.3, the analysis can be assumed to reflect experi-

mental behaviour only for reqular problems.

e For programs that do not contain any occurrences of recognised functions,
a parallel implementation cannot be realised. This forces the programmer

to remain within the fixed repertoire of available functions.

e The current implementation uses the list as the main data structure and this
poses problems relating to efficiency. A sequential implementation incurs
overheads due to list creation, destruction and garbage collection. Also,
list access is linear in the length of the list as opposed to the constant-time
access of the array. A parallel implementation using list data structures
suffers from an additional overhead which is incurred during the communic-
ation of lists between processors. In order to ensure that pointer references
are accurate after communication, the pointer addresses must be converted
to offsets at the sending end. The processor that receives the list must then
compute the real addresses from the offsets. This effectively increases com-

munication costs. However, this limitation is not a direct consideration of

the HOPP model.



Chapter 3 — Overview of the HOPP Model 30

3.5 The Parallelisation Scheme

A program in HOPP is expressed as a sequence of phases. Each phase may contain
recognised functions along with instances of user-defined functions. Each recog-
nised function has a predefined parallel implementation on a given target machine
topology, along with an associated implementation cost. A knowledge of the tar-
get machine topology is essential in order to select a cost-effective implementation
associated with that topology for the recognised function. Each implementation
attempts to make optimal use of the machine connectivity in an effort to reduce
the communication overhead. The performance of the recognised functions on the
hypercube, 2-D torus, binary tree and linear array topologies have been studied
and will be discussed in Chapter 6. User-defined functions only have a sequential
implementation and will henceforth be referred to as sequential functions.

In the current scheme, parallelism is only exploited within each phase. The
phases themselves are sequential and phase 7 does not commence until phase 1—1 is
completed. However, future work could consider pipelining as an option, in order
to evaluate the phases in parallel. A phase that does not contain any occurrences
of recognised functions is implemented sequentially. The parallelisation strategy
exploits parallelism in nested recognised functions up to the first three levels.
The number of levels exploited for parallelisation is limited to three for pragmatic
reasons. A phase that has its top three nested functions as recognised ones, will
have an input data structure that is at least a list of list of lists and eight possible
implementations will be considered for it (see Section 3.5.1). Exploiting more
levels for parallelism would further increase the number of implementations to be
considered. Parallel implementations are not considered for recognised functions
which are nested within sequential functions.

The HOPP model enables architecture-independent parallel programming.



Chapter 3 — Overview of the HOPP Model 31

Only one program is written, irrespective of the architecture at which it is tar-
geted. However, the decisions which influence the selection of a cost-effective
parallel implementation for the program, are dependent on the characteristics of
the target architecture. These decisions are now transparent to the programmer.
The model allows for portable programs to be written, and at the same time hopes
to achieve a realistic reflection of parallel program performance. The model is
therefore parametrised on the characteristics of the target architecture.

The Bird-Meertens Formalism includes a basic set of higher-order functions.
This set has been extended to incorporate a number of additional functions. The
definitions for all the recognised functions can be found in Chapter 4. It will be
shown that all of these functions can be expressed in terms of one or more of
the basic set of functions. They have been included as recognised functions in
their own right because they are found to be useful in many common problems.
The definition, in terms of existing functions, is rather contrived for some of the
functions in the extended set. It would therefore save time and effort for the
programmer if these functions are already available as recognised functions. It
would also make the program itself more readable. More importantly, the scheme
attempts to provide a more efficient implementation for programs expressed in
terms of these additional functions, in comparison to one based solely on the

functions in the basic set.

3.5.1 The Analyser

The outline of the parallelisation scheme is depicted in Figure 3.1. The application
program is input to the analyser which first constructs a program tree. Each
branch in the tree corresponds to a phase of the program. A cost analysis is then

carried out on the program.



Chapter 3 — Overview of the HOPP Model 32

PROGRAM

MACHINE PARAMETERS
ANALYSER <~ +

PROFILING INFORMATION

SEARCH TREE

{

LEAST-COST

PATH

CODE GENERATOR

CODE FOR TARGET PARALLEL MACHINE

Figure 3.1: The Analysis and Implementation Scheme

The cost of a program comprising of n phases is given by:

n n—1
Cost=> Cp+ > Ciini
=1 =0

where, C), is the cost of phase 1 and C;;1; represents any communication cost
that may be incurred in rearranging the output data of phase ¢ to suit the imple-
mentation of phase 1+ 1. The cost of a phase depends, among other things, on the
nature and the number of recognised functions in that phase and also the parallel
implementation selected for that phase, on a given p-processor network. In the
present scheme, a phase that has only one occurrence of a recognised function has
only one parallel implementation, namely, the parallel implementation for that
function on the particular network. For a phase containing two recognised func-
tions, one of which is the argument of the other, three parallel implementations

are possible.



Chapter 3 — Overview of the HOPP Model 33

e A parallel implementation for the outer function on p processors.
e A parallel implementation for the inner function on p processors.

e A parallel implementation for both functions.

The first two implementations are straightforward. The manner in which the
third implementation is handled would depend on the type of the underlying
processor network. For example, in the case of a d-dimensional hypercube, the
hypercube is divided into 2F (0 < k < d) smaller hypercubes, with each smaller

24k processors. The outer function is evaluated in parallel

hypercube containing
across 2% hypercubes, with the inner function being evaluated in parallel across
249k processors.

A similar argument can be extended to a phase containing three or more re-
cognised functions, leading to a total of seven possible parallel implementations -
three possibilities arising from implementing only one recognised function in par-
allel, three possibilities arising from implementing any two functions in parallel
and the case in which all the three functions are evaluated in parallel. However,
parallel implementations are only considered for up to three recognised functions
in a phase. Any recognised function(s) below the third recognised function are im-
plemented sequentially. A phase can therefore have at most eight possible imple-
mentations including a sequential one. It is important to consider the sequential

implementation as well, since it may prove to be the least-cost implementation in

some of the cases.

3.5.2 The Search Tree

The costs associated with all possible implementations for each of the phases are
estimated by the analyser and a search tree is constructed. The nodes at level 2

of the tree correspond to the costs associated with the different implementations



Chapter 3 — Overview of the HOPP Model 34

for that particular phase. These costs include both computation costs and com-
munication costs. The most efficient implementation for the whole program is
determined by the least-cost path in the search tree, for which code can then be
generated and executed on the parallel machine.

It is important to realise that the analyser does not account for costs arising
from low level operations such as memory accesses. This would make the analyser
very machine-specific. The selection of the least-cost implementation depends
only on cost comparisons and therefore the absolute costs are not crucial. List
processing costs are, however, accounted for by the model since this forms a
substantial overhead in functional languages. This includes the costs which are
incurred in constructing a new list or traversing a list. The analyser estimates
these costs based on the nature of the input list and the details are transparent
to the user.

It is clear that the size of the search tree will grow exponentially with the
number of phases in the program. In this thesis, only programs that comprise
of a few phases are discussed, and this keeps the search tractable. However, for
problems comprising of a large number of phases, some heuristics for pruning the
search tree would have to be considered. This issue is discussed in greater detail

in Chapter 5.

3.5.3 Profiling Information

In order to make realistic cost predictions and select an efficient implementation,
some estimates of the input data sizes and the costs of sequential functions are
required. This information could be obtained by incorporating profiling and type
checking capabilities in the analyser. The current implementation of the analyser
does not include these capabilities, and the user specifies this information.

In order to estimate communication costs, information such as start-up time,



Chapter 3 — Overview of the HOPP Model 35

denoted by Ky, the bandwidth of the communication channel, denoted by K7,
and the size of the data to be communicated is required. Ky and K are machine-
specific parameters. A linear model of communication is assumed. The size of the
data to be communicated, and therefore the communication cost, also depends on
the number of list elements and the size of each element. The size of the input list
could be obtained by using profiling information. The size of each base element
depends on its type and this could be deduced by a type-checker. This is made
possible because, as already discussed, polymorphic functions are not permitted.

These issues are discussed more elaborately in Chapter 5.

3.5.4 The Code Generator

The code generator, as shown in Figure 3.1 would generate code for the target
parallel machine with appropriate communication constructs inserted. However,
a fully-fledged code generator has not been implemented. To provide prelimin-
ary evidence of the performance of the HOPP model and to assist in program
development, some support is available in the form of a library of functions. This
library contains the code for the various recognised functions, and also code for
performing various types of communications on a particular parallel machine to-
pology. The code in this library is used by all the problems in the performance
study. The actual calls to the functions are at present generated by hand. The
use of the same code ensures that performance figures for the different examples

can be sensibly compared.

3.6 Summary

Many of the recognised functions are also used in the skeletons approach [Col89,
Col88, Col87, D*93, HH93]. As in the case of the skeletons, HOPP aims to

provide a platform for developing parallel programs where the programmer is not



Chapter 3 — Overview of the HOPP Model 36

explicitly responsible for parallelism. However, the idea is to be able to express
programs that may not entirely match existing skeletons. In that sense, HOPP
can be viewed as a more fine-grained approach to parallelising programs. Also,
the emphasis is on cost analysis of programs, in an effort to obtain cost-effective

parallel implementations.



Chapter 4

The HOPP Model

The Bird-Meertens Formalism includes a set of functions which have useful data-
parallel properties. These functions form the basis for the set of recognised func-
tions in the HOPP model. The extended set of recognised functions contains
additional functions which are commonly encountered. In this chapter, defini-
tions are given for the recognised functions in the basic set, and the additional
functions in the extended set. The choice between introducing additional func-
tions with new implementations or as compositions of existing functions, is guided
by formal as well as practical considerations. In theory, a function can be made

a recognised one, if the following attributes can be provided:
o A definition for the function in terms of one or more of the existing functions.

e A parallel implementation for the function on each of the processor inter-

connect topologies catered for by HOPP.
o A cost estimate for each parallel implementation of the function.

In practice, the decision to include a function as a recognised one is additionally
based on its usefulness. Also, if the cost associated with the parallel imple-
mentation of the newly-coined recognised function is much less than that of its

composing functions, then it is probably justified to include it as a recognised

37



Chapter 4 — The HOPP Model 38

function in its own right. In some cases the definition of the function in terms of
existing functions may be so contrived that it may be sensible to include it as a

recognised function in its own right.

4.1 The Basic Set of Functions

The recognised functions which have been borrowed from the Bird-Meertens
Formalism are defined below. The ML-style [MHT89, Tof89] notation is used
in all the definitions. Many of the functions are defined informally, but some
of the functions are clearer if formally defined. However, either notation has no

implications for the implementation, which is sequential.

1. map - applies some function f to each element of the argument list.

fun map f[] =[]

map f (x::xs) = (f x) :: map f xs

2. fold - combines the elements of a list using a binary operator.

fold & a [x1,29,..., 2] = (-..((a & x1) Baz)...) D a,

When a call is made to fold, the value of @ must be the identity of the f
operator. The HOPP model assumes that the argument function f, in the
fold definition is always associative. If this is not the case, two functions,
foldl and foldr, can be defined, corresponding to operators that are left-
associative and right-associative respectively. However, only if the argument
function f is associative, can fold be implemented in parallel. Different
parts of the list are reduced on different processors in parallel. The partial
results on the different processors are then combined to produce the final

result. If f is not associative, parallel evaluation will produce incorrect



Chapter 4 — The HOPP Model 39

results. The assumption of associativity could be removed by making two
versions of fold available. The onus would then be on the programmer to use
the correct version that does not make any assumptions about the binary
operator if it is not associative, in which case a sequential implementation

would be chosen by the analyser.

The HOPP model provides two versions of fold for quite another reason.

The following example illustrates the difference between the two versions.

(a) The first example defines a simple function that calculates the sum of

a list of integers.

fun sum xs = fold plus 0 xs

where, funplusxy=x+41y

If xs = [1,2, 3] then a step-by-step sequential execution of fold results

in the following:

i. fold plus 0 [1,2, 3]

ii. fold plus (plus 0 1) [2,3]
iii. fold plus (plus 1 2) [3]
iv. fold plus (plus 3 3) [ ]
v. 6

It should be noted here that the size of the emerging result remains

constant in every step of the fold operation.

(b) The second example defines a function that flattens a list.

fun flat xs = fold app [ ] xs

where, fun app xs ys = xs @Q ys

Let xs = [[1, 2], [3,4]].



Chapter 4 — The HOPP Model 40

i. fold app [ ] [[1,2],[3,4]]

i. fold app (app [ ][1,2]) [[3,4]

1. fold app (app [1,2] [3,4]) []

iv. [1,2,3,4]

—

— e
—_

1

In this case, it i1s clear that the size of the emerging result grows by an
amount equal to the size of each list element, after every step of the

fold operation.

The function s_fold (static) is introduced to express computations typified
by the example in 2a, and similarly the function g_fold (growing) expresses
computations of the type in example 2b. Syntactically, there is no need to
distinguish between the two types of computations. However, the execution
cost for a parallel implementation of fold also includes communication costs
and this would depend on the size of the data being communicated. Given
a list with n elements, each of size m, then computations in 2b result in a
list of size nm elements. At each step of the fold operation, the size of the
result grows by m. Example 2a results in a list of size m. It may be noted
that in the case of g _fold, the argument data structure is at least a list of

lists.

In a parallel implementation of fold, partial results are communicated to
neighbouring processors. The size of the data being communicated at each
step has a significant effect on the execution cost and is crucial in determin-
ing the choice of parallel implementation. By distinguishing between the two
versions of the fold function, the programmer is invited to provide further
cost information to the analyser which enables a more accurate prediction
of execution costs. If the version of the fold function is not indicated, then

the default assumption is s_fold.



Chapter 4 — The HOPP Model 41

3. scan - similar to fold, but the partial results after each application of the

binary operator are also retained in the resulting list.

scanfa [ ]| = [a]

scan f a (x:xs) = [a] @ scan f (fa x) xs

Again, f is assumed to be associative. Otherwise two functions, scanl and
scanr, must be defined. A scan can be implemented in parallel only if the
argument operator is associative. As in the case of fold, two versions of the

scan function are introduced - s_scan and g_scan.

4. filter - removes the elements that do not satisfy a property p, from its

argument list.

flier p [] = [
filter p (x::xs) = if (p x) then x :: filter p xs

else filter p xs

Only those elements that satisfy the property p are retained in the result

list. The result of filter is, possibly, a shrunken list.

5. inits - results in a list of lists, in which each sublist contains the initial

segments of its argument list.
inits [ ] = [[]]
inits [z, 22, ...,z = [[ ], [21], [21, 22], -« s [21, 22y -0 2]

6. tails - results in a list of lists, in which each sublist contains the final

segments of the list.

fails [] = [[]]

tails [x1, 29, . .., xn] = [[1, T2y - oy Tals [22y o s Tn]s ooy [T, [ ]



Chapter 4 — The HOPP Model 42

7. cross_product
Two functions are defined for performing the cross-product operation, based
on their order of evaluation. The basic operation is the same in both the
cases, but the evaluation determines the different ordering of elements in

the resulting list.

e r_cross_product - specifies that the cross-product is to be performed

in a row-major order.

r_cross_product f [aq,az,. . .,an] [b1,b2, - . .,by]
= [[(f a bl)v (f a 62)7' ) (f a bn)]v
[(f a2 bl)v(f a2 62)7' t (f a2 bn)]v

[(f am b1), (f am D2)ye oy (f @ by)]]

e c_cross_product - specifies that the cross-product is to be performed

in a column-major order.

c_cross_product f [ay,ag,. . .,am] [b1,b2, .. .,by]
= [[(f a bl)v (f a2 bl)v' ) (f Am bl)]v
[(f a 62)7(f a2 62)7' ) (f Am 62)]7

[(f a1 by), (faz ba)ye .., (f am by)]]

Both these functions apply a binary operator f to pairs of elements taken

from each of the two argument lists.

8. composition - the composition operation is represented by o.

(fog)x=1(gx)



Chapter 4 — The HOPP Model 43

4.2 The Extended Set of Recognised Functions

The functions in the set defined by BMF operate on the list type. In the context of
the HOPP model, it is sometimes difficult to express certain operations using just
these functions. The resulting expressions appear to be rather contrived. This is
probably due to two reasons. Firstly, the operations that need to be expressed
may not be ones that would typically be performed on list types, but rather on
arrays. Secondly, some of these operations may have been devised in the context
of parallel programming. The Bird-Meertens Formalism is based on lists and in
the context of sequential programming. These difficulties arise when the HOPP
model attempts to use the BMF functions to solve array-based problems in the
context of parallel programming.

The set of functions in BMF has been extended to incorporate some addi-
tional functions which provide off-the-shelf recognised functions that can be used
effectively for a larger class of problems. These additional functions can be ex-
pressed in terms of one or more of the existing recognised functions. This imposes
some restrictions on the kind of functions that can be made recognised functions.
More importantly, it is hoped that the property of amenability to transforma-
tions will also be retained by the recognised functions. The possibility of new
transformations on the extended set of functions can be investigated and more
efficient programs can be derived in the context of parallel programming and the
HOPP model. In most of these cases, the newly-coined function has a more cost-
effective parallel implementation when compared to the naive implementation
corresponding to its composing functions.

The extended set of recognised functions is now described. Each function is
first defined using informal ML-style notation, which is followed by its definition

in terms of the functions in the basic set of recognised functions. It is to be



Chapter 4 — The HOPP Model 44

emphasised that the latter definitions merely serve as illustrations, and there
may be other, possibly better ways of expressing the same.

The functions in the extended set are divided into two categories - those which
are intuitive and for which their inclusion can be motivated, and some which are
not so intuitive, but could be useful in writing programs.

The more important functions are as follows:

1. map2 - similar to map. This function is sometimes referred to as zipwith.

map2 f [ ][] =[]

map2 f (x::xs) (yuys) = (fxy) :: map2 f xs ys

This is just an extension of map to cater for two argument lists. The

argument lists must be of the same size.

2. zip - pairs up corresponding elements from two input lists, resulting in a

list of pairs.

zip [1[]=1]

zip (x::xs) (yuys) = (x,y) 1 zip X8 ys
zip can be defined in terms of map2.

ZIp XS yS = map?2 pairup xs ys
where,

pairup x y = (x,y)

3. The iterative functions - this is a set of functions that apply a function f
to a list, for a specified number of times. After each stage of the itera-
tion, f is applied to the result of the previous stage. The number of times

that f is applied could either be predetermined or conditional. It may be



Chapter 4 — The HOPP Model 45

necessary in some cases, to perform operations on the resulting list before
passing it on to the next stage of the iteration, or before the final result is
output. This operation may also involve the original list. The function g
in the following definitions allows for any transformation on the resulting
list. If no such transformation is necessary, then ¢ can be defined to be the
identity function. There are three iterative functions which are available as

recognised functions.

e iterate_up - an iterative function that applies a function f to a list
for a specified number of times. After each stage of the iteration, f is
applied to the result of the previous stage. A start index and a finish
index are specified, and it iterates until start is greater than finish.
At each iteration, the value of start is incremented by one, so that the

number of iterations is (finish - start + 1).

iterate_up finish start f g xs = if (start > finish) then (g xs)
else
iterate_up finish (start + 1) f g
(f finish start (g xs) )

o iterate_down - similar to iterate_up, but the iteration counter is a
down-counter. After each iteration, the value of the start index start is
decremented by one. The iteration stops when start is less than finish.

The number of iterations is (start - finish + 1).

iterate_down finish start f g xs = if (start < finish) then (g xs)
else
iterate_down finish (start - 1) f g

(f finish start (g xs))



Chapter 4 — The HOPP Model 46

e iterate_cond - provides for conditional iteration. The function f is
applied to the input list. The resulting list is tested to check whether
it satisfies some condition defined by the function cond. The iteration
is stopped if the condition is satisfied, otherwise f is applied to the
result. Sometimes it may be necessary to compare the resulting list
with the original list in order to check whether the condition is satisfied.
Therefore, the original list is a parameter to the function cond which

operates on two input lists.

iterate_cond cond f g xs = let val result = f xs
in if (cond result xs) then (g result xs)
else
iterate_cond cond f g (g result xs)

end

The three iterative functions are not themselves implemented in parallel,
although they belong to the set of recognised functions. This is because
iteration is inherently sequential - step ¢ uses the results of step (1 — 1).
The functions f and ¢ in the definitions of the iterative functions may
be implemented in parallel if they are composed of recognised functions.
However, if f and ¢ happen to be sequential functions, then the scheme
would only select a sequential implementation for the iterative functions.

The details of the parallel implementations are given in Chapter 6.

Iteration on a list can be expressed in terms of function composition,
which belongs to the set of functions in BMF. An illustration is given for
the case of 1iterate_up and the definitions for the other iterative functions

are similar.



Chapter 4 — The HOPP Model 47

iterate_up finish start f g xs = flo flo...o f1 (f, g, finish, start, xs)

n

where,
n = finish - start + 1
f1 (f, g, finish, start, xs) = let val result = f finish start (g xs)
in
(f, g, finish, start4+1, result)

end

This is a rather informal definition, but it demonstrates that the iterative
functions can be expressed in terms of an existing BMF function. The
function iterate_cond cannot be expressed in the same way as the other
two iterative functions since the exact number of iterations is not known.

However, a similar idea is applicable.

4. split - splits a given list into a specified number of sublists.

split 1 [xy, @a,. .., 2n] = [[21, 22, . -+, )]

split & [z, 22, ..., 2,] = [[51?1751?27---751?[%]]7---7[51?(k—1)[§]+17---751?n]]

The introduction of split as a recognised function was motivated by the need
to express divide-and-conquer in applications. The function split takes two
arguments, an integer 0 < k < n and a list. The result of applying the
function to the list is to split the list into k sublists. A list of size n is
rearranged to be a list of lists, with (k — 1) sublists of size [{] and the last

sublist being of length n — (k —1)[#].

split can be expressed in terms of the basic set of recognised functions. The

resulting composition of functions is quite complex.



Chapter 4 — The HOPP Model 48

split k xs = let val part = (len xs)/k
in
(fold append [ ] o map (filter (eq part)) o map tails o
filter (multiple part) o inits) xs
end
where,
append xs ys = xs @ ys
eqnxs = (lenxs) =n

multiple n xs = (len xs > 0) and (len xs) mod part = 0

The code for split in terms of the existing functions is quite contrived. The
cost of implementing it as a composition of functions would be much higher
than the cost of the version given in Chapter 6. Given that it is a useful
function which is applicable in a variety of problems, the incorporation of

split in the extended set of recognised functions can be justified.

. R¥- A composition of functions allows for an input list to be piped through
several phases of operation. In each phase, some operation (defined by the
function(s) in that phase) is performed on the list. The resulting list is
passed on to the next phase of the composition. This appears to be
the only form of control flow in programs that can be expressed using the

functions in BMF.

It is clear, however, that not all the recognised functions operate on a single
input list. Functions such as cross_product operate on two input lists. It
may be the case that two copies of the input list arriving from the previous
phase are its arguments. More generally, it may be necessary to perform
some operation on each of the copies before they serve as inputs to the re-

cognised function. The combinator R* caters for precisely these situations.



Chapter 4 — The HOPP Model 49

The definition is provided for R?, the case where a recognised function

operates on two input lists.

REF fifoooifnghxs=F fi fo... fr (gxs) (h xs)
where,

F is a recognised function with 2 input lists

f1, f2, ..., fn are parameters to F

g and h are functions that operate on lists

Depending on which of the input lists is to be passed unchanged to F, ¢ or
h or both would correspond to the identity function. In general, ¢ and h

could be any complex functions including other recognised functions.

In general, R¥ is defined for a recognised function operating on k input lists.
Obviously, a maximum value must be defined for k and this would depend

on the maximum number of input lists to a recognised function in the set.

It is difficult to provide a formal justification for including R* in the ex-
tended set. An intuitive justification is based on the nature of control flow
that may be required for some of the functions in BMF. Composition only
provides for one form of control flow in the program, in which a single list
is passed from one phase to the next. However, the nature of certain recog-

nised functions suggests the need for a second form of control flow which is

provided by R*.

6. get_neigh - obtains the left and right neighbours for every element in the
argument list. The result is a list of lists, with each sublist containing three
elements - the particular list element, and its left and right neighbours. An

informal definition for get_neigh is as follows.



Chapter 4 — The HOPP Model 50

get neigh l-0o 1-00 [21, 22, T3, ..., Tp_1, 2,] =

[[1'1, 1_007 1’2], [3?2, L1, 1’3], sy [l’n, Tn—1, I’—OO]]

In the definition, co indicates no neighbour in that particular direction,
implying an end element of the list. l-co and r-oco represent the left and
right neighbours for the first and last elements of the list respectively. The
first and last elements do not have neighbours, so the definition allows for
some boundary values to be specified. In order to define get_neigh in terms
of the existing set of functions, a function sequence which applies a set of
functions to its input list is first defined. sequence can be defined in terms

of map2.

sequence [f17f27' . 7fn] X8 = [(fl XS)? (f2 XS)?' .. 7(fn XS)]
sequence [f1, f2,. .., fx] xs = map2 g [f1, f2,---, fx] [x8, xs,..., k copies]

where, g f; xs = f; xs

Then, get_neigh can be defined in the following manner.

get neigh l-co 1-00 xs = (stage_3 o stage_2 o stage_1) xs
where ,
stage_1 xs = sequence[ (R? zip id (scan pick sec l-00)),
(reverse o R? id (zip o reverse)
((scan picksec 1-00) o reverse))] xs
picksecxy =y
id xs = xs
stage_2 xs = (R? id (zip o (fold append [ ])) (select 1)) xs

stage_3 xs = map left_right xs

left right ((x,y),(w,z)) = [x,y.,7]



Chapter 4 — The HOPP Model 51

Essentially, stage_1 performs one left shift and one right shift on the original
list. This is achieved by the use of the scan function and it obtains the left
and right neighbours for each element. The shifted lists are then zipped up
with the original list. stage_2 and stage_3 just produce the output in the

required format. The function select is defined below.

The code for get_neigh in terms of the basic set of functions is rather
contrived. This again, is due to the linear nature of operations on the list
structure. get_neigh is a function that requires an operation which is not

typical of list structures - going backwards rather than forwards.

The function get_neigh has been introduced in the list of recognised func-

tions both for expressiveness and efficient implementation.

The less intuitive functions are discussed next. These functions also serve to
illustrate that in some of the cases, there is no natural way of expressing them in

the BMF-style of programming.

1. len - returns the length of a list.

len[]=0

len (x::xs) = 1 4 len xs

len can be defined in terms of both map and fold.

len xs = fold plus 0 o map subst_1
where,

subst_.l x =1

plusxy=x+y



Chapter 4 — The HOPP Model 52

2. select - selects the jth element in a list.

select 7 [ | = error
select j xs = if (j <= 0) then error
else if (j > len xs) then error
else get j xs
where,
get 1 (xuxs) = x

get 7 (xuxs) = get (j — 1) xs

Assuming the absence of error conditions, select can be defined using a

fold in the following manner.

(ko) @y = if (j = k) then (k + 1,j, ;)
else (k+1,7, x)

select ¢ xs = third o foldl f (1,i,y) xs
where,

third (x,y,2) = z

select is defined in terms of foldl which is not associative. However, a suit-
able parallel implementation for select has been defined. This is possible

because the behaviour of select is predetermined.

3. apply_select - applies a function f to a specified set of elements in the
input list. The list of indices of the elements to which f is to be applied

must be sorted in ascending order.

applyselect f [1;, 0k, ... im] [X1, T2y s Tjy Thy ooy Ty v oy ] =

(w1, 22,0 (Fay), Fak), ..oy, (Fam), .o, a4



Chapter 4 — The HOPP Model 53

apply_select can be defined in terms of map.

apply_select £ [i;, iy, ..., in] xs = map (£1 [i,if,. .., in]) X3
where,
fm (ind:inds) [] = [ ]
f m (ind:inds) (x:xs) = if (m = ind) then
fx i f(m+1) inds xs
else

x i f (m+1) (ind::inds) xs

4. copy - distributes a particular element of the list to the other elements in

the list.

copy @ [w1, 2, ..., k0] = [(4,21), (xiy22), oy (24, 20)]

copy can be expressed in terms of select and map.

copy 1 xs = let val x = select i [z1,29,...,2,]
in
map (pairup x) [@1,22,...,Tn)
end
where,

pairup x y = (x,y)

The index of the element which is to be distributed is an argument to the
function copy. The result of copy is a list of pairs with the first of the pair

being the distributed element.

5. reverse - reverses a list, as the name suggests.

reverse (X1, &9, T3, .., Tp| = [Tp,y ..., T3, o, T1]



Chapter 4 — The HOPP Model 54

reverse can be expressed in terms of fold.

reverse xs = g_fold rev [ ] xs
where,

rev xs x = [x| @ xs

4.3 Example Programs

In this section, some well-known problems are expressed in the style advocated
by the HOPP model, using the functions from the extended set of recognised
functions. The same examples will be later used to test the accuracy of the
HOPP model, comparing the execution on a parallel machine with the prediction
made by the analyser. Details on the parallel implementations and the results

can be found in Chapter 7. The examples have been coded in ML.

4.3.1 Matrix Multiplication

The problem of multiplying two matrices A,,x, and B, xx, which results in the
matrix C,,xk, is considered here.
The problem can be expressed as a composition of two phases. The recognised

functions are depicted in bold face and an informal ML-style notation is used.

fun mat_mult times plus A B = map (map (s_fold plus 0)) o
r_cross_product (map2 times) A BT;

fun plus a b = a + b;

fun times a b = a * b;

BT represents the transpose of B

Each matrix is represented as a list of lists. Each sublist represents a row/column
of the matrix. Phase one - multiplies the corresponding pairs of elements from

pairs of sublists. Phase two - performs the addition to obtain the inner products.



Chapter 4 — The HOPP Model 55

The function s_fold is used because the size of the emerging result after each
stage of the fold operation is a constant, and is equal to the size of the base type
of the matrix. The transpose of the second matrix is performed sequentially in
this case, and therefore increases the costs of all the implementations by the same

amount.

4.3.2 Merge Sort

The merge sort example is considered next. A list of integers is to be sorted
in ascending order. The strategy adopted is to sub-divide the list into a list of
lists, with each sublist containing two elements. These two elements are sorted
and the sorted sublists are then merged, two at a time, to obtain a fully sorted
list. This is similar to the divide-and-conquer approach, except that divide is not
performed recursively. The list is transformed into a list of lists in a single step,
using the split function. Each sublist then represents the base case which can
be solved. For the sake of simplicity, the number of elements in the input list is
assumed to be a power of 2.

The problem can be expressed as a sequence of three phases.

fun sort n xs = g_fold (merge [ ]) o map msort o
split (n/2) xs;
where, 1 is the length of the list
fun msort [x,y] = if(x > y) then [y,x] else [x,y];
fun merge [ ][] = ]
merge xs [ | = xs
merge [] ys = ys
merge (x:xs) (yuys) = if (x <y) then
x 1 merge xs (yuiys)

else y :: merge (x::xs) ys;



Chapter 4 — The HOPP Model 56

Phase one performs the divide step, in which the list is split into sublists, each
of size two; Phase two sorts each sublist; and Phase three performs the merge
operation. The function g_fold is used since at each step of the fold operation,
the size of the resulting list is the sum of the sizes of the two lists that were
merged. It may be noted that phase two may be removed by splitting the list

into singleton sublists. It is retained in this example for illustrative purposes only.

4.3.3 Solving Partial Differential Equations

Elliptic partial differential equations are commonly encountered in equilibrium
or steady-state problems. One of the best-known elliptic equations is Poisson’s
equation, represented by Equation 4.1

0*u  0%*u

@—I_a—yz = f(x,y) (4.1)

where, f is the source term. The domain of integration of such a two-dimensional
elliptic equation is always an area S bounded by a closed curve C. Only a limited
number of special types of elliptic equations have been solved analytically. There
are several numerical approximation methods available for solving differential
equations, of which those employing finite-differences are more frequently used
because of their wider applicability. In these methods, the area of integration S
bounded by the closed curve C| is overlayed by a system of rectangular meshes.
The meshes are formed by two sets of equally spaced lines, each set parallel to
the X-axis and Y-axis respectively. An approximate solution is found at the n
points of intersection which are called mesh points. The approximation consists
of replacing each derivative of the partial differential equation at a mesh point,
P; ;, by a finite-difference approximation in terms of the values of w at P;; and
the neighbouring mesh points and boundary points. For each of the n mesh

points, an algebraic equation approximating the differential equation is written,



Chapter 4 — The HOPP Model 57

giving a set of n algebraic equations in n unknowns. Sets of linear algebraic
equations can be solved by direct or iterative methods. Direct methods are based
on Gaussian elimination with pivoting or triangular decomposition of the matrix
of coefficients. Descriptions and C programs for these methods can be found
in [P*88]. The method considered in this section is an iterative method due to
Jacobi.

The area S is assumed to be rectangular, with sides of length ph and gh, and
to have known values b on the perimeter of S. If S is sub-divided into a network

of squares of side h, then the mesh points are defined by:

r = ih, 1=0,1,...,p)

y = .]h7 (.j:0717"'7Q)' (4'2)

Approximating the equation by the five-point difference scheme [Smi65, Ame69]
yields:

Witj + Uigj + Ui + Uijpr — 4uij —h*fij = 0. (4.3)

u; ; 1s then given by:
1 2
tij = g (Uimag F Wigry + i+ Uiger = 10 fi). (4.4)

If the nth iterative value of u; ; is denoted by w7, then an iterative procedure for

solving Equation 4.4 is defined by:

('nl-l-l) _ bi,j; if (Z = Ovp)v (.] = 07Q)
&l i(un_m Fouyy g tul g Fuly - h*f; ;); otherwise

(4.5)

Successive iteration causes the approximate solution to converge to the exact
solution.

The program for implementing the Jacobi method is given below. The region S

is assumed to be a square, with p = ¢ = JMAX, where JMAX is some predefined

constant, h =1 and b, ; =0; (: =0,p; 7 =0,q).



Chapter 4 — The HOPP Model

fun gen_zeros 0 = [ |
| gen_zeros n = 0.0 :: gen_zeros (n-1);

val infl = gen_zeros JMAX;

val inf2 = gen_zeros JMAX;

fun getrest [|[][] =1]

| getrest []ts [] =[]

[]

| get rest es ts [ | =[]

| get rest [ ][] bs

| get rest es [| bs =[]
| get rest [ ] ts bs =[]
| get_rest (es::ess) (ti:ts) (bubs) =

(es @ [t,b]) :: get_rest ess ts bs;

fun rearrange [xs, ys, zs] =
let val res = get_neigh 0.0 0.0 xs
in get_rest res ys zs
end;
fun less_than (eps:real) (valueireal) = (value < eps);
fun maxi (x:real) y = if (x > y) then x else y;
fun diff (x:real) (y:real) = abs (x-y);
fun update f [u0,ul,u2,u3,ud] = 0.25 * (ud + u3 + u2 + ul) - £/4.0;

fun id x y = x;

fun test (eps:real) xs ys = ((less_than eps) o (s_fold maxi 0.0) o
(map (s_fold maxi 0.0)) o

(map2 (map2 diff) xs) ) ys;

38



Chapter 4 — The HOPP Model 59

fun jac fss uss = ((map2 (map2 update) fss) o
(map rearrange) o

(get_neigh infl inf2) ) uss;

fun pde (eps:real) fss uss =

iterate_cond (test eps) (jac fss) id uss;

The function, pde, is the main function that iteratively applies the function,
jac, to the input matrix uss. The source term is represented by fss. Both wuss and
fss are represented as lists of lists. The function jac obtains the neighbouring
values for each mesh point and updates its value according to Equation 4.5.
The function test checks whether convergence has been achieved. After each
iteration, the value of a mesh point is subtracted from the corresponding value at
the previous iteration. If the absolute value of the maximum of such differences
is smaller than some predefined constant, eps, then iteration is stopped and the

result is the required solution.

4.4 Conclusion

This chapter introduced the set of recognised functions and illustrated their use
with three example programs. The programs for matrix multiplication and merge
sort were more natural to express in the BMF-style, compared to the program
for jacobi iteration. In all the three cases the difficulty of natural expression was
caused by the use of the list data structure. The programs are best-suited to
array data structures, but the recognised functions only work on lists. A theory
of arrays [Mil93] with data-parallel operations defined on it would probably result

in a more natural data-parallel model of programming.



Chapter 5

The Cost Model

A style of programming is advocated which is based on the set of recognised
functions as presented in Chapter 4. An analytical cost model is employed to
predict the execution costs for these programs at compile-time. Based on these
costs, a cost-effective parallel implementation is selected. The analyser requires
some information about machine-dependent parameters, input data sizes and
sequential functions, which is discussed in more detail in the following section.
The scheme for obtaining a parallel implementation for a program is shown
in Figure 3.1. Chapter 3 gives an outline of the analysis scheme. This chapter

discusses the analyser in greater detail.

5.1 The Problem Specification

In principle, the analyser should abstract away from low-level details to the extent
possible. However, the costs computed by the analyser should reflect the practical

costs accurately. The input to the analyser is in the form of the following tuple:

program = (P, M, D, I, F;, S, Cy, F).

60



Chapter 5 — The Cost Model 61

Symbol Meaning
P Program Tree
M Parallel Machine Characteristics
D Input List Nesting
I, Input List Size
E; Input List Type
S Set of Relationships
Cy Cost of Sequential Function
E; Output Type of Sequential Function

The meaning of each symbol will be discussed in the following subsections.
Much of the information required could be obtained with minimum programmer
interference if profiling [ADMS87, Bus93, San93, Sar91] and type-checking capabil-
ities were built into the analyser. However, the current prototype implementation
of the analyser does not include these capabilities and the programmer is required
to supply the necessary information.

In all future discussions, it is assumed that:

‘H = the set of recognised functions,

F = the set of sequential functions.

5.1.1 The Program Tree (P)

P is the program tree representing the program. The program tree is indirectly
supplied by the programmer; the analyser constructs it from the specification of
the program code. Each node in P corresponds to either a recognised function or
a user-defined one. Each phase in the program is represented by a branch in the
tree. A function G, which is an argument of another function F', is represented
as a child node of that representing F, on the branch corresponding to that
phase. Since the program is typically a composition of phases, each phase is an
argument of the composition function. The branch corresponding to each phase
is therefore represented as a child of the composition node. The input lists are

not represented on the program tree. However, the number of input lists required



Chapter 5 — The Cost Model 62

map map?2
inits

fold O

/\

g f h

Figure 5.1: An Example of a Program Tree

by each phase is determined by the nature of the recognised functions present in
the phase. Henceforth, the terms branch and phase will be used interchangeably.

Therefore, the program,
map (fold g) o inits o map2 (f o h)

would have a program tree as shown in Figure 5.1.

5.1.2 The Parallel Machine Characteristics (M)

M is a 4-tuple which describes the characteristics of the parallel machine on which
the program is to be executed and has to be supplied by the programmer. The
parallel machine is assumed to have p identical processors, each with the same

amount of local memory.

M : string x Z§ x QF x QF

M = (topology, number-of-processors, Ko, K1).

Although the program itself is independent of the architecture on which it is
executed, the implementation that will be selected would depend on it. The
cost model has therefore been parameterised on the characteristics of the parallel

machine.



Chapter 5 — The Cost Model 63

e topology - The choice of parallel implementations for the recognised func-
tions is dependent on the interconnection topologies between the processors.
Cost models have been studied for some well-known interconnection topo-

logies, such as the hypercube, 2-D torus and tree.

e number-of-processors - This specifies the maximum number of processors

available on the parallel machine.

o Ky and K - In a message-passing system, data communication involves
two costs - the start-up cost to initiate the communication and the actual
cost of transferring the data. The start-up cost, Ky, is usually a significant
portion of the communication cost (and can dominate it, especially when
the data size is small), and cannot be ignored. The cost for the actual
communication of data will depend on the bandwidth of the communication
link, Ky, between the two processors. Ky is expressed in some time unit
(e.g. ms) and K is expressed in bytes/time unit (e.g. bytes/ms). Both of
these parameters are specific to a given architecture and can be obtained
from the machine manufacturer. A linear model is used to compute the
communication costs [SS89] between nearest neighbours. Therefore, the
cost of communicating n bytes of data between neighbours is given by the

following expression:

L, (5.1)

T. = K )
ot K,

It is assumed that only data is being communicated, and that each processor
possesses a copy of the source code. It is also assumed that processors
cannot communicate with more than one neighbour at a time. Therefore,
initiating communications with m different neighbours would incur a start-
up cost of mK, (as opposed to Ky). The algorithms and costs for data

communication routines are discussed in Chapter 6.



Chapter 5 — The Cost Model 64

5.1.3 The Input List Characteristics (D, [,, F}, S)

o D represents the level of nesting in each of the input lists.
D : string x Z

string 1s the variable that represents the list. For example, for a list called

matriz_A which is a list of lists, the D would be specified as (“matrix A", 2).

e [, is a D-tuple which represents the list sizes at levels, 0,1,...,(D —1).

I, : string — (ZF x ... x Z))

D—tuple

For example, for the list matriz_A which is a list of lists of size (32 x 64),
I, would be specified by (“matrix A”, (32,64)). I, could be estimated by
profiling. In the absence of a profiler in the prototype implementation, if
the input list size is not known at compile-time, I, is computed after the
specification for S is obtained. It is important to note that the size(s) of
the input list(s) is(are) required to be specified only at the beginning of the
first phase in the program. For subsequent phases, the analyser deduces
the size of the input list, based on the transformations applied to it by the
functions in the previous phase. However, for a recognised function with
two argument lists, if only one input list arrives from the previous phase,

then an estimate of the size of the other list will be required.

o [} is a function that computes the size of each element in level (D — 1) of

the input list(s).
F, : string x type — Q&

In other words, F} represents the size of the base element of each of the input

lists in the program, where string is the variable representing the input list.



Chapter 5 — The Cost Model 65

This is computed from the type of each input list, which could be deduced
by a type-checker. For example, for the list matriz_A which is a list of
lists of integers, F; would be specified by (“matrix_A”, int). The sizeof(int)
function then computes the required size. Programs in functional languages
can be written at high levels of abstraction, where a single program could
apply to a whole group of list types. The analyser will, however, force
the programmer to specify the type of the base element of each input list.
In that sense, some of the power of abstraction in functional languages is
lost. This information, however, is necessary for the analyser to predict
communication costs. In the absence of type information, the data size is

not known, making the true communication costs difficult to predict.

e Sisa (( 12) ) + D) -tuple, expressing the relationship between sizes in
different levels (i.e. 0,1,...,(D —1)) of the input list(s) and the number of

Processors.

S =(Ro,Ri1,...,Rp_1)

R, e[« <,~,>>], 0<i<D
where,
n<k=0<g<01
n<k=01<g<1
nxk= 1l
n>k=1<7<10

n>>k:>5210

The set of relationships in 5, represents a simple method for expressing
constraints on the size of the inputs. The choice of 10 as the factor for
expressing the estimates is based purely on pragmatic considerations. For

compile-time analysis, some knowledge of the shape of the input data is



Chapter 5 — The Cost Model 66

required to guide the selection of a parallel implementation. This might even
be different for the same program for different input list sizes. In the absence
of a profiler, the specifications in S provide some estimates for the analyser
regarding the relative sizes of the input list and the number of available
processors. In the presence of profiling information, the specification for S

would not be required.

Since the number of processors is known (from the specification in M), and
the specifications in S estimate size(s) of the input list(s) in relation to the

number of processors, I, can now be estimated for cost calculations.

5.1.4 Specifications for Sequential Functions (Cy, F})

o Costs of Sequential Functions.

C 1s the cost function for sequential functions in the program.

Cf:GCUGf
G.: F —QF
Gy F— (G- Qf)

G s represents the case where the cost of a sequential function is proportional
to the size(s) of the input argument(s) and G. represents the case where
the cost is a constant. The cost is expressed in some decided unit, e.g. ms.
The cost of a recognised function is a function of the cost of its argument
function(s) which could ultimately be a sequential function whose cost is
not predetermined. It is therefore necessary to determine the cost of the
sequential function(s) in the argument, in order to compute the cost of the
recognised function. The costs of sequential functions could be estimated
by profiling, in which case the specification for C'y would not be required of

the programmer.



Chapter 5 — The Cost Model 67

An assumption that is automatically made by the analyser is that the se-
quential functions take the same time to operate on different input data.
This assumption arises as a result of the regularity restriction that is im-
posed on problems which can be handled by the scheme (See Section 3.3).
For example, in map f zs, the cost of f is assumed to be the same for every
element of the list zs. This automatically means that sequential functions in
this scheme, should not arbitrarily alter the size of the input data. Consider

the following example.

funf0 =[]
funfi=1:1f(1)

This would produce a list whose size depends on the value of 7. However, in
map f zs, f no longer takes the same amount of time to operate on all the
elements of the list zs. The cost of f now depends on the actual value of
each list element. This violates the assumption of regularity in the context
of this scheme. In such cases, the specification of C'y would be difficult and
one based on the worst or average-case cost would produce predictions that
cannot always be guaranteed to reflect practical costs. Profiling would prob-
ably remove this restriction to the extent of allowing sequential functions
with costs that depend on the actual input data. However, problems would
still be required to have a predictable (regular) communication structure in

order to be expressible in terms of the recognised functions.

e Outputs from Sequential Functions
F, computes the size of the output which is produced by the sequential
functions in the program, from the specification of the type of the output

of a function. This could, again, be deduced by a type-checker.



Chapter 5 — The Cost Model 68

F, : Fx type — Q¢

Again, F; imposes some limitation on the full abstraction power of func-
tional languages. However, this information is also important to the ana-
lyser for predicting communication costs. In each phase of the program,
the input list is transformed by the functions in that phase. Although the
nature of the transformation of the input list(s) by a recognised function
is predetermined, the manner in which a sequential function would trans-
form its argument list(s) cannot be determined, if the program is written
at a high level of abstraction. A sequential function could transform a base
element of one type into a another type. This would result in a change in
the size of the input list for the subsequent phase and the analyser must
account for this change. The specification of F} is a means of providing the
analyser with the information necessary to account for such changes in the

size of the input list between subsequent phases.

Three types of transformation that can be applied on input lists by sequen-
tial functions are of interest to the cost analysis. Not all of them can be

accounted for by the analyser in its present form.

1. The output list could be transformed to just the extent that the size
of the base element is different from that in the input list. e.g. a list of
integers into a list of reals. In this case, the sequential function does
not alter the D or I, specifications and these can be used as such to
estimate the costs for the subsequent phase. The only change is in the
specification of F; and this is determined simply by the specification
of F, for the sequential function. If F}: specifies the output size for the
sequential function in the phase, then F; = F, for the list input to the

next phase.



Chapter 5 — The Cost Model 69

2. The sequential function may transform the list in a manner that alters
its D-value, e.g. a list of lists of integers could be transformed into a
list of integers. In that case, D = 2 for the input list to the sequential
function and D = 1 for the output list. An example of such a function
is update, as defined in the Jacobi Iteration example in Section 4.3.3.
For the subsequent phase, the analyser must account for the change in
the D-value of the input list, if it is to make realistic cost predictions.
Such transformations can be deduced by a compiler, but the analyser
does not incorporate such facilities at present, and is left for future

work.

3. The sequential function could transform the input list so as to alter
its I, specification, e.g. a list of lists of size (m X n) could be altered
to a list of lists of size (m X k). An example of such a function is the
rearrange function as defined in Section 4.3.3. It transforms an input
list of size (3 X n) into one of size (n x5). Such transformations cannot,
in general, be deduced at compile-time. In such cases, an inaccurate
size of the input list will be deduced for subsequent phases. This in
turn might lead to poor cost predictions and in the worst case may
lead to the selection of an inefficient parallel implementation for the
program. This is a disadvantage of the scheme, at present. Again, a

profiler could rectify the situation to some extent.

Sequential functions could cause transformations on input lists, so that some

combinations of 1, 2, 3 are produced. The arguments remain the same.



Chapter 5 — The Cost Model 70

5.2 The Compile-time Analysis

In the HOPP model, an application program is a composition of phases. The
composition itself is performed sequentially, i.e. phase 7 does not commence
until phase (¢ — 1) is completed. This need not be the case and future work could
consider pipelining the phases. The results from phase (¢ — 1) can then be input
to phase ¢ as they become available. In the absence of pipelining, the total cost

of the program comprising of k& phases is given by:

k k—1
Cp=> Cp+ > Ciin
=1 =0

where, C),, represents the cost of phase 7, and C;;1; represents the cost of phase
transition between phases ¢ and 7 4+ 1, respectively. The cost of a phase depends
on the nature and cost of its composing functions. The cost of phase transition
represents the communication cost incurred in rearranging the output data of one
phase to be suitable for the subsequent one. Costs for communication routines
such as scatter, gather, total exchange and broadcast, on the different processor
topologies have been derived (see Chapter 6 for details). The rearrangement of
data between consecutive phases would typically involve one or more of these
communication operations. The analyser uses the costs of these routines in com-
puting the costs of phase transition. If no data movement is required between
two consecutive phases, then the cost of phase transition for those two phases is
zZero.

The following points should be noted.
1. Each recognised function operates on a list data structure.

2. Every recognised function has an associated parallel implementation on each

target machine topology included in the model.



Chapter 5 — The Cost Model 71

3. The cost of implementing a recognised function, F, in parallel on p pro-

cessors, on an input list of size n is represented by:
C=F(n,p,C,)

where, C,, is the cost of the argument function (if any). In general, if
the recognised function, F, operates on k input lists of sizes ny,ngy, ..., ng

respectively, then the cost is represented by:

C = F((ni,na,...,nk),p,Cq).

The analyser performs a cost analysis for each branch in the program tree. A
branch in a program tree might comprise of instances of both recognised and se-
quential functions. If a branch (phase) comprises entirely of sequential functions,
then the analyser would be forced to select a sequential implementation for it.

Let p be the number of processors and C; be the cost of the sequential ar-
gument function (if any). In the following sections, the representation of cost

expressions assume that the recognised functions operate on a single input list.

e The branch could contain only one occurrence of a recognised function, F,
in which case only one parallel implementation is possible for a particular
topology. If the input list is assumed to be of size m, then the cost of the
branch is given by:

Cy = F(m,p,Cs). (5.2)

e The branch could contain a recognised function, F, that has another recog-
nised function, G, as its argument. The input data structure would be a list
of lists (D > 2). If the data structure is assumed to comprise of m lists, each
of which contains n elements, then three different parallel implementations

are considered.



Chapter 5 — The Cost Model 72

1. One in which the function F is implemented in parallel on p processors,

and the function G sequentially. The cost in this case is given by:
Cy; = F(m,p,G(n,1,C,)). (5.3)

2. One in which the function F is implemented sequentially, and the func-
tion G in parallel on the p processors. The cost in this case is given
by:

C3 = F(m,1,G(n,p,C,)). (5.4)

3. The case where both the functions, F and G, are implemented in par-
allel. The p-processor machine is divided into p; parts, each of which
comprises of py processors, where, p; X p; < p. The function F is imple-
mented in parallel on p; processors, and the function G is implemented
in parallel on py processors. Each of these parts retains the same lo-
gical topology as the original machine. However, on certain topologies,
logical neighbours may no longer be physical neighbours after such a
division. In such a case, it would take more than one hop to commu-
nicate between logically neighbouring processors, thereby increasing
the communication cost. In order that these increased communication
costs are accounted for, the cost function is parametrised on the max-
imum number of hops to be traversed between logical neighbours, and
is represented by [. The value of [ would depend on the nature of the

topology. The cost in this case is given by:
C; = F(mv(plvll)vG(nv(p27l2)705))' (55)
If Iy =1, =1, Equation 5.5 can be reduced to:

C3 = F(m,pi,G(n, py, Cy)). (5.6)



Chapter 5 — The Cost Model 73

As an illustration of such an implementation, a p-processor hypercube
of dimension, d = log, p, is divided into 2 (0 < k < d) smaller hyper-
cubes (subcubes). Each subcube comprises of 297* processors. The m
lists are scattered across the 2% subcubes, [2t] per subcube. The [ ]

elements all go to a single processor in each of the subcubes, namely,

to processors numbered by
0,297% 2297k 3907k (2F —1).297F,

This implies a parallel implementation for F on 2¥ processors, with

[ 5% ] elements per processor. Then the function G can be evaluated in

parallel on 2¢-%

processors, with [ 75| elements per processor. Since
all the subcubes are connected, and each subcube retains the same

connectivity as the original hypercube, [; = [ = 1. The cost in this

case is given by:
Cy = F(m,2* G(n,2%, C,)). (5.7)

In all the three cases, the cost of an inner-level function is passed as a
parameter to the outer-level function. At the innermost level this might
correspond to a sequential function for which no known parallel solution
exists. Information regarding the number of processors available and the
input data sizes, is passed down from the outer function to the inner func-
tion. This information would depend on the implementation that is selected.
The inner function then evaluates its own cost, based on the information
it receives. Information about the cost of the inner function is then passed
back up to the outer function, which can then evaluate its cost. This argu-
ment could be applied to any number of levels in a branch in the program

tree.



Chapter 5 — The Cost Model 74

e The branch could contain three or more occurrences of recognised functions.
First, the case when the branch contains exactly three recognised functions,
F. G and H, is considered. G is the argument of F, and H is the argument
of G. The input data structure is a list of list of lists (D > 3). Seven
possibilities arise, corresponding to the implementations of each of the three
functions in parallel, any two in parallel and all three in parallel. For the
first six cases, arguments similar to the previous case can be applied and
the costs can be similarly derived. If the input data structure is assumed
to comprise of m lists, each of which comprises of n lists, each of which
in turn contains k elements, then the cost of the branch corresponding to

implementing all three functions in parallel is given by:

03 = F(mv (plv ll)v G(nv (p27 l2)7 H(kv (p37 l3)7 CS))) (58)
where, p; X py X p3 < p, and [y, (5,3 are defined as before.

Theoretically, the occurrence of more than three recognised functions on a
branch could be considered. This would mean a data structure that is a list
of lists of lists (D > 4). If such a case does arise, the HOPP model exploits
potential parallelism only up to the first three levels and the discussion in

the previous paragraph applies.

It is clear that for every phase in the program, there may be several possible
parallel implementations, depending on the number of recognised functions in that
phase. Under the current scheme, the maximum number of implementations that
can be considered for a phase is eight (including a sequential implementation).
If all the possibilities are considered at every phase, the analysis results in the
construction of a search tree. The weights on the nodes of the search tree at each
level represent the costs of the different possible implementations for each phase.

This cost includes computation as well as any communication costs that may be



Chapter 5 — The Cost Model 75

incurred in the implementation of the recognised function(s) in that phase. The
weights on the edges of the search tree represent the costs of phase transition and
comprise only of communication costs. A traversal of each path in the tree yields a
cost of implementation for the whole program. Each such cost represents the cost
of implementing the program when some particular sequence of implementations
is chosen for the phases in the program. Each path in the search tree represents
a unique and complete implementation for the entire program. The least-cost
path in the search tree corresponds to the most cost-effective implementation
for the program. The analyser first performs a cost analysis on the program
and constructs the search tree at compile-time. The search tree also contains
information about the functions in each phase, the number of processors to be
used for the implementation of each recognised function in the phase, the nature of
the data distribution at the end of each phase, and so on. Using the information
on the branches in the path that is selected, code for the implementation can
be generated and a copy distributed to all the processors. This would contain
code for the recognised and sequential functions in each branch as well as for
performing any communications required in the implementation of the program.

It is clear that the size of the search tree grows exponentially with the number
of phases in the program. It is difficult to provide a threshold value for the
number of phases in the program, after which the search space could be termed
as unacceptably large. However, even for the Jacobi Iteration example comprising
of seven phases (see Section 4.3.3), the search space was quite large and it would
have been helpful to reduce it. Heuristics to prune the exponential growth of
the search tree have to be investigated. Rather than considering all possible
implementations, those that are likely to result in high execution costs could be
identified and discarded at the analysis stage itself.

It is important to note that low-level costs such as memory access times are



Chapter 5 — The Cost Model 76

not accounted for. This would make the model very machine-specific and is not
desirable. List processing costs, which include the costs incurred in constructing
or traversing a list, are however, estimated by the analyser since these costs
can prove to be significant. The analyser estimates these costs based on the
nature of the input list (obtained from I, and F;) and the details are transparent
to the programmer. During the analysis of the program, the analyser actually
performs list construction or traversal operations on a dummy list that is of
the same type as the specified input list and estimates the cost, which is then
used as the list processing cost. Since all the low-level costs associated with
a practical implementation are not accounted for by the analyser, the actual
cost of implementation is expected to be greater than that predicted. However,
computing the absolute cost is not necessary, since the strategy is to select an

implementation based on cost comparison. There are four different costs involved.

o The theoretically predicted cost of sequential execution for the program,

5

represented by T .,

e The theoretically predicted cost of the selected parallel implementation on

P
p processors, represented by T}, ..

o The actual cost of sequential execution for the program when executed on

a single processor on the parallel machine, represented by T .

e The actual cost of the selected implementation for the program when ex-

ecuted on p processors on the parallel machine, represented by TP, .

If the model reflects the practical performance, then

1?2 Zg;ac
heor. o, Zprac, (5.9)
theor ;

prac




Chapter 5 — The Cost Model 77
5.2.1 The Algorithm for the Analyser

Algorithm ANALYSE presents a high-level description of the analyser. The
function GET_SPEC obtains the problem specification as discussed in Section 5.1.
The function, CONSTRUCT_PROGRAM_TREE, constructs the program tree
from the specification of the program code. If a branch in the program tree
contains only one recognised function, then in the following algorithm the input
list 1s represented by n; and the cost of the recognised function is represented
by R;. If the branch contains two recognised functions, then the input list is
represented by (nq,n2) and the costs of recognised functions are represented by
R, and R,, respectively. For a branch containing three recognised functions, the
input list is represented by (ny, nq, ns) and the costs of the recognised functions are
represented by Ry, Ry and R3, respectively. C; represents the cost of a sequential
argument function. Phase; of the program is assumed to be implemented on p;
processors; po = 1, implying that the data is initially resident on a single node of
the parallel machine. N; represents the number of recognised functions in a phase,

0 < N; < 3. The following rule is used in the derivation of cost expressions:
If k = N; + 1, then Ri(n,p,C,) = C¥

It means that Rj is not a recognised function and its cost must, therefore, be
replaced by the cost of the sequential function at the k* level.

The function ADD_TO_S_TREE inserts a child node to a specified node in
the search tree. In the implementation, the weight on the inserted branch is
added to the weight on the destination node. In other words, the inter-phase
transition cost is added to the cost of implementation of the subsequent phase.
Cgeq represents the cost of implementing phase; sequentially. C;ar_x represents

the cost of implementing function R, in phase i in parallel (1 < z < 3), C!

par_xy

represents the cost of implementing both the functions R, and R, in phase 7 in



Chapter 5 — The Cost Model 78

parallel on p? and p! processors respectively (1 < v < 2,2 <y <3), (pfp! < m)
and C]iar_123 represents the cost of implementing functions R;, Ry and R3 in phase
¢ in parallel on p}, p? and p} processors respectively (p;p?p? < p).

The function REARR computes the cost for rearranging the output data of
one phase to suit the implementation of the subsequent phase. The information
about the current data distribution is obtained from the current parent node
in the search tree. If the output list of size n; from phase ¢ — 1 is distributed
across p;_1 processors, and phase 7 requires the data list to be distributed across
pi processors, (pi—1,p; < p), then REARR (nq,pi—1,p;) computes the required
data rearrangement cost. Similarly, for the list (nq,n2) to be distributed such
that the sublists are distributed across p! processors and each sublist across p?
processors (p;p? < p), REARR ((n1,n2), pi_1, (p}, p?)) computes the required data
rearrangement cost.

S_tree represents the search tree, and S_lev represents the current level in the
search tree. Initially, S_tree simply comprises of a root node which is at level zero
and has zero cost. The analysis of each branch in the program tree could insert up
to eight child nodes (corresponding to the maximum number of implementations
considered by the analyser), to each node of the search tree at the current level.
In the algorithm, the inter-phase transition cost is added to that of each such
implementation in order to compute its total cost.

The function ADD_TO_S_TREE inserts a child node to a specified node in
the search tree. In the implementation, the weight on the inserted branch is
added to the weight on the destination node. In other words, the inter-phase
transition cost is added to the cost of implementation of the subsequent phase.
C'_ represents the cost of implementing phase; sequentially. C? represents

seq par_x

the cost of implementing function R, in phase i in parallel (1 < z < 3), C!

par_xy

represents the cost of implementing both the functions R, and R, in phase 7 in



Chapter 5 — The Cost Model 79

parallel on p? and p! processors respectively (1 < v < 2,2 <y <3), (pfp! < m)
and C]iar_123 represents the cost of implementing functions R;, Ry and R3 in phase
¢ in parallel on p}, p? and p} processors respectively (p;p?p? < p).

The function REARR computes the cost for rearranging the output data of
one phase to suit the implementation of the subsequent one. The information
about the current data distribution is obtained from the current parent node in
the search tree. If the output list of size n; from phase ¢+ — 1 is distributed across
pi_1 processors, and phase ¢ requires the data list to be distributed across p;
processors, (pi—1,p; < p), then REARR (nq, pi_1, p;) computes the required data
rearrangement cost. Similarly, for the list (nq,n2) to be distributed such that the
sublists are distributed across p! processors and each sublist across p? processors
(pip? < p), REARR ((n1,n2), pi—1, (p}, p?)) computes the required cost.

S_tree represents the search tree, and S_lev represents the current level in the
search tree. Initially, S_tree simply comprises of a root node which is at level zero
and has zero cost. The analysis of each branch in the program tree could insert up
to eight child nodes (corresponding to the maximum number of implementations
considered by the analyser), to each node of the search tree at the current level.
In the algorithm, the inter-phase transition cost is added to that of each such

implementation in order to compute its total cost.



Chapter 5 — The Cost Model 80

Algorithm ANALYSE

BEGIN
GET_SPEC /* obtain problem specification */
CONSTRUCT_PROGRAM_TREE (P)
S_tree «— root; S_lev +— 0 [* initialise search tree */

FOR 1 «— 1 to number-of-branches in P DO

N; +— number of recognised functions in branch, /* <3 */

Jg—1
FOR each node; in level S_lev of S_tree DO
Compute Cgeq /* sequential implementation */

ADD_TO_S_TREE (S_tree, S lev, 3, C._,)
FOR z «— 1 to N; DO
FOR k +— 1 to N; DO
IF (k = 2) THEN py <— p; ELSE p; +— 1
Clor o — REARR (ng,pi1.pi) +
Rl(n17p17RZ(n27p27R3(n37p3705)))
ADD_TO_S_TREE (S tree, Slev, j, C;,, )
FORz «—1to N;-1DO
FOR y «+— 2 to N; DO
IF (x # y) THEN
FOR k +— 1 to N; DO
IF (k = ) THEN p¥f «— p?
ELSE IF (k = y) THEN p¥ +— p! ELSE pf +— 1
C’ . wni— REARR ((n2,7n,), pic1, (5, p)) +

par_xy

Ry(ng, (p}, l1), Ra2(na, (p,z, l3), Rs(ns, (p?, 13),C5)))
ADD_TO_S_TREE (S_tree, S_lev, j, C]iar_xy)
IF (N, = 3) THEN
Cior 123 <— REARR ((n1,n2.n3), pi-1, (p}, p2.0})) +
Ri(n, (pl 1), Ra(ng, (97, 12), Rs(ns, (p?,13),Cs)))
ADD_TO_S_TREE (S_tree, S_lev, j, C;a,,_123)
S_lev «— Slev + 1;

END.




Chapter 5 — The Cost Model 81

The algorithm in the actual implementation also checks that the number of
processors available is sufficient to implement more than one recognised function
in parallel, before further analysis is carried out. If there are insufficient processors
for any implementation, then the corresponding branches will not be added to the
search tree. Also, if two recognised functions are to be implemented in parallel,
then the most cost-effective partition of the processor network is first determined
and the costs corresponding to this partition are inserted in the search tree. For
the sake of brevity, these and a few other low-level details of the analysis are not

shown in the algorithm.

5.3 An Example of Compile-time Analysis

To provide a flavour for the manner in which the analyser handles the input

specifications, a simple example is considered.
fun ex xs = (s_fold mult o map (s_fold plus)) xs;

The recognised functions are represented in boldface. The functions mult and
plus are defined to be functions that multiply and add two integers respectively.

The program comprises of two phases. The first phase contains two recognised
functions, map and s_fold, and the second phase contains one recognised func-
tion, s_fold. The analyser first requires the problem specification, as discussed
in Section 5.1. In this simple example, the input sizes are assumed to be known
at compile-time.

The program tree, P, representing the program is depicted by Figure 5.2.

The parallel machine is assumed to comprise of p processors connected as a
hypercube. The dimension of the hypercube is represented by d. Ky and K rep-
resent the communication start-up cost and communication channel bandwidth

on the hypercube, respectively. The specification for M for both the phases is:



Chapter 5 — The Cost Model 82

s_fold map
mult s_fold
plus

Figure 5.2: Program Tree for the Example

M = (p, “hypercube”, Ky, Ky).
Since the input data sizes are assumed to be known at the start of the program
and the analyser deduces it for the second phase, S = (3, for both the phases.

First, the specifications for phase one are considered.

Cy = Cost of plus, represented by C,,.

e D = 2, since the input data structure is a list of lists, in which each sublist

is a list of integers. (This could be deduced from the type of the function
plus).
o [, is specified since it is assumed that the input data sizes are known at

compile-time. Let the size of the input list be represented by (m X n) - i.e.

the list comprises of m sublists, each of which contains n integers.
o [, = (size of integer).

o [, = (size of integer), since the function plus adds two integers and outputs

an integer.

In this example, D, F; and F, could be deduced from the type of the function
plus, if the analyser incorporated a type-checker. Cy and I, could be estimated

if the analyser incorporated a profiler.



Chapter 5 — The Cost Model 83

The input size specifications are made available (either by the programmer
or by profiling techniques) at the beginning of the first phase. The analyser
computes the data sizes for the subsequent phases from the nature of the recog-
nised functions which are currently being analysed. In the example program, the
input to the first phase is a list of lists of size (m x n). The s_fold in phase one
reduces this to a list of size m, in which each element is an integer. The analyser

deduces the following attributes for phase two.
e D =1, since a list of lists of integers has been reduced to a list of integers.

o [, =m.

a)
C (]
both s
C
fold C map
b)
both Y s
/\ Cft)ld C map /\
C
C C
p f s4f plf Cs¢
Cp f Cst
2
C C
f s f
P 3 3

Figure 5.3: Search Tree for the Example



Chapter 5 — The Cost Model 84

A type-checker and a profiler (or the programmer) provide the following

information:
o (; = Cost of mult, represented by C,,.

o [, = (size of integer). This again, could be deduced from the type of the

function mult.
o [, = (size of integer), also deducible from the type of the function mult.

Both functions can be implemented in parallel only if the dimension, d, of the
hypercube > 2. Figure 5.3a represents the search tree after phase one. (Since
composition works right to left, the rightmost branch on the program tree is
executed first). C; represents the cost of sequential implementation for the phase,
C'nap represents the cost of implementing map in parallel and s_fold sequentially,
C'jo1q represents the cost of implementing s_fold in parallel and map sequentially
and Chpep, Tepresents the cost of implementing both map and s_fold in parallel.

Figure 5.3b represents the search tree after phase two. In phase two, the
analyser computes the costs for two possible implementations for s_fold - the
sequential and parallel implementation, respectively, and the corresponding costs
are represented by C,.; and Cp,5, 1 < ¢ < 4. For each branch in level two of
the search tree, the costs of implementation include the costs incurred in re-
distributing the data from phase one to phase two. For some branches, (e.g.

Cp, 1), no data re-distribution is required.



Chapter 6

Parallel Implementations and
Costs for Recognised Functions

A program in the HOPP model is written independently of the architecture on
which it is executed, the implication being that only one program is written.
However, the nature of the parallel implementation which is selected does de-
pend, among other parameters, on the characteristics of the target architecture
as discussed in Section 5.1.2. The hypercube, 2-D torus, s-ary tree and linear
array have been studied as potential target topologies. The hypercube proved
to be the most suitable topology for the set of recognised functions and the tree
and the linear array proved to be inefficient. In this chapter, implementations
for the recognised functions on the previously mentioned topologies are discussed

and their costs are derived.

6.1 Data Communications on the Topologies

Communication costs constitute a significant part of the total cost of execution of
parallel programs on distributed memory machines. For the purposes of the im-
plementation scheme, five types of communication patterns have been identified.
The communication algorithms for the hypercube topology are based on [SS89].

Some of the mesh algorithms are based on [YM89]. However, the algorithms in

85



Chapter 6 — Parallel Implementations and Costs 86

[SS89] and [YMS89] assume that processors can communicate with more than one
neighbour simultaneously. As mentioned in Section 5.1.2, the HOPP model does
not assume such a capability. The algorithms and the derivation of the associated
costs reflect this assumption.

The following patterns of communications recur in programs.

1. Nearest Neighbour Communication
This type of communication involves sending a message (or a data packet) to
a neighbouring processor. Two processors are considered to be neighbours

if they are connected by a direct communication link.

2. Broadcast Operation
This operation involves moving the same data packet from one processor to

all the other processors in the network.

3. Scatter Operation
This operation involves moving different data packets (one to each pro-

cessor), from one processor to all the other processors in the network.

4. Gather Operation
This operation involves collecting the data packets distributed across the

processors in the network, onto a single processor.

5. Total Exchange Operation
This operation involves moving data packets from every processor in the

network to every other processor.

As pointed out in [SS89], the gather operation is the dual of the scatter opera-
tion, i.e. the algorithm for the gather operation can be obtained by reversing the

data paths in the scatter algorithm and vice-versa. Hence, the costs for both the



Chapter 6 — Parallel Implementations and Costs 87

operations are identical. In the following discussion, only the scatter operation is
considered.

The total number of processors in each case is assumed to be p.

e Hypercube - The number of processors in a binary hypercube of dimension

d is given by: p = 2¢

e Torus - The number of processors in a 2-dimensional torus, where,

p1 represents the number of processors in each row

p2 represents the number of processors in each column

is given by: p = pi1ps, p1 = 2’“, Py = 2k2, p1 < pa.

The number of processors in each dimension is made a power of two in order
to allow a direct comparison of the performance of the torus with that of
the hypercube. The cost expressions would remain unchanged even with

this restriction removed.

o Tree - The number of processors in a tree of arity s and depth d is given

sl

by: p ==~

Figure 6.1 illustrates the processor-numbering schemes for examples of the four
topologies.

The algorithms for performing communications on the hypercube topology
are based on the corresponding ones in [SS89], are therefore not described here,
with only the cost expressions being presented. The size of the data to be com-
municated is assumed to be n bytes and all the data is assumed to be initially
resident on processorg. This does not matter in the case of the hypercube; the
algorithms would remain unchanged irrespective of the processor from which the

data is broadcast, scattered or gathered. It must also be emphasised that the



Chapter 6 — Parallel Implementations and Costs 88

&/

(o)
T
A
o
—
T
A
&
&

HYPERCUBE (p =8, d =3) 2-D TORUS (p =8, pl=2, p2=4)

00—~

LINEAR ARRAY (p=8)

@ @ BINARY TREE (p=7, d=2)
/\ /\ (EXAMPLE OF TREE s = 2)
(2 (9 ()

Figure 6.1: Processor-numbering Schemes for the Four Topologies



Chapter 6 — Parallel Implementations and Costs 89

algorithms are not necessarily optimal, since the derivation of optimal commu-
nication algorithms is not central to this thesis. However, this will not affect
the results of the thesis; a more cost-effective data distribution algorithm would
probably result in a lower cost of implementation and could be incorporated in
the scheme even at a later stage.

In the ensuing discussion, it is assumed that n, the number of elements in the
input list, is divisible by the number of processors, p. If not, the cost computations
would have to consider the expression [%1 and this would make it difficult to
simplify cost expressions. If n is not divisible by p, then without loss of generality,
it can be replaced by n’, where n’ = (n + k), 0 < k < p and (n + k) mod p = 0.
The costs are computed with the number of elements equal to n’. In all the cost

expressions, it is assumed that the necessary substitution has already been made.

6.1.1 Nearest-neighbour Communication

The cost expression for this operation is identical on all the topologies. The
operation itself is very simple - processor A sends a data packet to a neighbouring
processor B which receives it. Using the linear model of communication, the cost
for communicating a data packet of size n bytes to a nearest neighbour is given
by:

! n (6.1)

Cnn = K -
to Ky

6.1.2 The Broadcast Operation

1. Hypercube - The cost of broadcasting a data packet of size n bytes on a

hypercube of dimension d is given by:

1
Cgi“oad = d(_[(o —|— En) (62)

2. Linear Array - The cost of communication on the linear array is more ex-

pensive because of its poor connectivity. In order to exploit parallelism in



Chapter 6 — Parallel Implementations and Costs 90

the links, a data packet of size n bytes is split into r equal-sized packets and
the communication of these packets are overlapped on different links. The
overlap is possible only when p > 3, otherwise, the case is trivial and the
data reaches the last processor in the linear array in two steps. For (p > 3),
the first data packet reaches the last processor in (p — 1) steps. Thereafter,
since a send and a receive cannot be performed simultaneously in the as-
sumed model, the last processor receives a data packet every alternate step.
Since there are (r — 1) packets still to be received, a total of 2(r — 1) steps
will be required for the last processor to receive all the data. The other
processors would have received all the data by this time. Since the amount

of data transferred in each step is , the cost of communication is given by:

R 1n
Chroaa = ((p = 1) +2(r = 1))(Ko + 7). (6.3)
\1 7
The expression simplifies to:
a . 1 n
Cbroad = (p + 2r — 3)(‘1&0 + -[(1 ;) (64)
The optimal value of r is given by: r = | (2];;32?1

3. 2-D Torus/Mesh - The data is first pipelined vertically and in the second
stage of the broadcast, each row of processors pipelines the data horizontally
in parallel. The wrap-around connections can be used to reduce the cost
of broadcast in a 2-D torus. Instead of pipelining the data down the first
column, processory, in the first step sends the data to the last processor
in the column, using the wrap-around link (See Figure 6.1). In the second
step, both the processors pipeline the data in opposite directions until all
the processors in the first column receive the data. This reduces the length
of the pipeline by half. A similar strategy is repeated along each of the rows

in parallel in the next step. The total cost is then obtained by adding the



Chapter 6 — Parallel Implementations and Costs 91

costs for each of the three stages.

: - 1 P2 - 1 - 1
Cm_zdeal — K 2 1VK K
P = (Kot o)+ (2 = Do+ o)+ (Ko + on) +
b1 -
— — 1)( ]
(& = 1)(Fo+ 0
The total cost of broadcast in a mesh is given by:
. + . 1
Cpran™ = B2 (Ko + ). (6.5)

2 K,

There is a slight non-uniformity in the 2-D torus considered for implement-
ation. The example programs are to be implemented on a transputer-based
machine. The transputers are configured as a 2-D torus for the purposes of
implementation. Each transputer has only four links and each processor in a
2-D torus has at most four neighbours, so the logical neighbours on the torus
can be made physical neighbours on the transputer network. However, an
extra link on one processor is required to communicate with the operating
system. This requirement causes a slight non-uniformity in the configured
torus architecture and, as a result, processorg is physically connected to only
three neighbours. This increases the cost of the broadcast operation since
the data communication to one of processory’s neighbours (processory, _1,
in this case), cannot be performed in one step. This implies that the wrap-
around connection cannot be used in the first row, to reduce the length
of the pipeline by half. The cost expression is therefore modified to the

following.

1
T n) (6.6)

Cg?oad = (pl + p2_2 - 1)( (0 +

4. s-ary Tree - The broadcast operation in the case of the tree is straightfor-
ward. The data to be broadcast is initially at the root of the tree. The
root sends the data to one child at a time, starting from the left to the

right. Fach child node receives the data from its parent and communicates



Chapter 6 — Parallel Implementations and Costs 92

it to its children, starting with the leftmost child. The communications
performed by the nodes in each level are overlapped, resulting in s such

communications. For a tree of depth d, the cost is given by:

L o). (6.7)

Cgroad = Sd(_[(o + -[(1

6.1.3 The Scatter Operation

The data is divided into p equal parts which are numbered 0,1,2,..., (p—1). After
the scatter operation, each processor has % bytes of the data. It is important that
each processor receives the correct portion of the data. In particular, processor;
should receive the i-th part of the data. (For processor numbering patterns, see
Figure 6.1). This is because the algorithms for the parallel implementations of
the recognised functions are based on a particular node numbering and assume
the correct placement of data. Since the arguments of none of the recognised
functions are assumed to be commutative, incorrect results may be obtained if

the data is not scattered in the required order.

1. Hypercube - The cost of scattering data on a hypercube of dimension d is
given by:

L), (6.8)

h
Cscatter ]-
L p

— d.[(o —|—

2. Linear Array - The data is just sent down the array and each processor
retains the first o bytes of the data, sending the rest to its neighbour. There
is no parallelism exploited, but it is unlikely to improve the performance
if communication is overlapped on the different links. The communication
involves (p — 1) steps, and in each step, the amount of data reduces by %

bytes. The total cost is therefore given by:

p—1 1
Cgcatter = Z(‘R’O —I_ i (n - Z_))

i=1 491 p




Chapter 6 — Parallel Implementations and Costs 93

The cost expression simplifies to:

1 n

scatter

(6.9)

3. 2-D Torus/Mesh - In the first step, the data is divided into two equal (or
nearly equal) parts, with one half being sent from processorg to the last pro-
cessor in the first column, using the wrap-around link. Each processor has
2 bytes of the data after the first step. Each retains the appropriate amount
of data ( bytes), and in the second step, both the processors pipeline the
data in opposite directions. At the end of step two, each processor in the
first column has the data necessary ( bytes) for its respective row. In the
third step, all the processors in the first column repeat a similar procedure
by sending data along the rows in parallel. The amount of data transferred
along the links decreases with each transfer, by ( ) bytes in step two, and
by (%) bytes in step three. At the end of step three, each processor has the
required portion of the data. Using the results for a linear array for the

communications in steps two and three, the cost is given by:

1 n P2 1 n
Cm_zdeal — K = _1
scatter ( 10 -[(1 2) —I_ ( 2 )( ]' 4) —I_
1 n J 1 n
| 1
(XO—I_I 2p2)+(2 )( 0+IX14p2

On simplification, the cost is given by:

R + 1 n 1
cm _adeal — Iﬁo(pl pZ) ((pZ + 1) 4+ =

1
— 4+ 1)). 6.10
scatter 2 ]- 4 2 —I_ )) ( )

P2 ( 2
If the non-uniformity in the wrap-around connections is accounted for, then
in step three, the entire length of the pipeline must be considered. So, the
cost expression modifies to the following.

n

I 2
(1 — 1)(Ko +

m
Cscatter

(Ko

D2 -
)+ (2 - 1)k

oo,

_|_




Chapter 6 — Parallel Implementations and Costs 94

The final cost expression for the non-uniform mesh simplifies to:

C:clatter = ‘[(O(pl + p_2 - ]‘) +

> S T M (Y

_[(1 2 2p2

4. Tree - A parent node communicates data to each of its s children in turn,
starting with the leftmost child. Each child node retains the first o bytes
of the data, being the data that is meant to reach that processor. The rest
of the data is divided into s parts and communicated to its children. This
scheme ensures that the data reaches the correct processor, since the trees

are numbered by pre-order traversal (refer to Figure 6.1).

At level 7 in the tree, each processor has to communicate the data it received

from its parent, to k processors below it, where

5979 1
E=s——7. 6.12
S (6.12)

Each processor must possess % bytes of the data after the scatter operation.
So the amount of data still to be communicated at level j in the tree is k%.
This data is divided into s parts and sent to each of the children. Each such
communication involves the transfer of %% bytes of data. Since there are
s such communications in each level and there are d levels in the tree, the

total cost is given by:

C;:catter = Z S(I(O —I_ T )) (613)

Gy

Substituting for k from Equation 6.12 and simplifying the summation yields:

Ct == Sd.[(o + 5

scatter K -
ips—1

(p—1—d). (6.14)



Chapter 6 — Parallel Implementations and Costs 95
6.1.4 Total-Exchange
It is assumed that all the processors exchange equal amounts of data, i.e. " bytes.

1. Hypercube - The cost of the total-exchange operation on a hypercube of

dimension d is given by:

1
ngchange = QdI(O + 2[; ﬁ(p - 1) (615)

i1 p

2. Linear Array - The total exchange operation on the linear array is very
expensive due to its poor connectivity. The procedure involves dividing the
linear array into two sub-arrays. In the first step, the processors in the right
sub-array move their data to the left, and the processors in the left sub-
array move their data to the right, in parallel. Hence, data from the two
sub-arrays is gathered in the first processor of the right sub-array and the
last processor of the left sub-array, respectively. In the second step, these
two processors exchange the data. In the third step, the data is passed back

in opposite directions along both the sub-arrays.

The first step is just a gather operation involving half the number of pro-
cessors in the original linear array and half the original data. The second
step will therefore involve an exchange of 7 bytes of data. In the third step,
each processor also appends its own data to the data it receives and sends it
on to its neighbour. With each communication, the amount of data which
is transferred progressively increases by an amount equal to % bytes. The
total cost is obtained by adding the costs for the three steps. The number

of processors, p, 1s assumed to be even. The cost 1s given by:

5 +

21

z 1 n n
K, —+i-)).

Z}(‘“Kl(z“p))

D . I n . n
a = — —]_ _[ - 2 _[ N —
exchange ( )( Lo + -[(1 p) + ( Lo + -[(1 2)




Chapter 6 — Parallel Implementations and Costs 96

On simplification, the cost expression is given by:

1
K,

- n
gxchange = p(AO + 5) (616)

3. Mesh - The method adopted is based on the one described in [YM89]. Each
column and row of the mesh forms a ring because of wrap-around. In the
first step of the total exchange operation, all the nodes exchange data with
their column neighbours, by moving the data round the vertical rings. In
the second step, a similar procedure is repeated along the rings in the rows.
The communication in the columns (rows) are performed in parallel. Since

% bytes of data are involved in each transfer, the cost is given by:

: 1 n 1 n
mdeal _ K _ -1 K — —1). 6.17
exchange ( Lo + -[(1 p)(p2 ) + ( Lo + -[(1 n )(pl ) ( )
which on simplification yields:
m_ideal - 1 1
Cexchange = .[Xo(pl ‘I’pZ - 2) + K n(]‘ - _)‘ (618)
481 p

However, for the case of the non-uniform mesh, the wrap-around connection
in the first row cannot be used. So, two traversals of the first row are
required. Since the number of processors along the rows (p;), may be less
than the number of processors along the columns (py), it proves to be more
cost-effective if the data is exchanged along the rows in the first step, and

along the columns, in the second step. The cost is given by:

1 n n
m = (K, —)(2p — 2 K — —1).
exchange ( Lo + -[(1 p)( P1 ) + ( Lo + -[(1 pz)(pz )
On simplification,
m . 1n
COStexchange = IXO(Qpl + P2 — 3) + _(pl + p— 2)

Ky p

Equation 6.16 could be used in the first step to further reduce the cost.



Chapter 6 — Parallel Implementations and Costs 97

4. Tree - The method adopted involves gathering the results to the root pro-
cessor and then broadcasting the results to all the processors. Since the
cost of the gather operation is equal to the cost of the scatter operation,

the cost is given by (refer to Equations 6.14, 6.7):

éxchange = C;:catter + Cgroad (619)

6.2 Algorithms and Costs for the Parallel Im-
plementations of Recognised Functions

Although the functions in the extended set can be expressed in terms of one
or more functions in the basic set, their parallel implementation will often be
different from that of the constituent functions. This is because the definitions
for these functions in terms of the basic set of functions is often quite contrived
and the corresponding implementations may not be cost-effective. In computing

the costs of the recognised functions, the following assumptions are made.

1. Initial data distribution costs are ignored. These costs, which comprise of
the costs for operations such as scatter or broadcast, are accounted for when

the costs are computed for the entire problem.
2. The number of processors in the parallel machine is represented by p.
3. The input list is represented by s, where | xs |=n

4. The input list, xs, 1s assumed to be distributed across the p processors
in the parallel machine. The following assumption is applicable to all the

algorithms, unless otherwise stated.

rs = x50Qrs1@Q ... Qus,_4
TS; € processor;

|zsi[=2 51=0,....(p—1)



Chapter 6 — Parallel Implementations and Costs 98

5. T  represents the cost of communicating m elements of the list to a neigh-

bour.

1
= _[(0 + ——ms (620)

com _[X |

where s is the size (in bytes) of each element of the list.

6. The sequential argument function of a recognised function is represented by

fand its cost by Cj.

7. The analyser makes the following assumption for all the sequential functions

in the program.

Va, € xs; i€0,1,...,(n—2)
Cost (f x;) = Cost (f xi41),

where, f is any sequential function in the program.

This is an important assumption implying the regularity of the application

that is considered for cost analysis.

For each of the recognised functions, the sequential cost is first computed. The
algorithm for the parallel evaluation of the function on each of the four topologies
is then presented, along with their associated costs. For the purposes of present-

ation, the same ordering of recognised functions is followed as in Chapter 4.

6.2.1 map

The sequential cost of map is given by:

Ce . =nC; (6.21)

map

The parallel implementation for map on all the topologies is straightforward. All
the processors perform the map operation in parallel on their respective local

data. The result of the operation remains distributed across the network.



Chapter 6 — Parallel Implementations and Costs 99

Result = ys = ysgQys; Q... Qys,,_4
where, ys; € processor;

i=0,1,...,(n—1)

The algorithm for the parallel implementation of map on all the four processor

topologies is as follows.

Algorithm PAR_MAP (all topologies)
BEGIN
FOR every processor; DO in PARALLEL

map [ xs;

END.

There is no communication involved in the implementation. The cost ex-
pression for the parallel implementation of map on any p-processor topology is
identical and is given by:

@mzﬁ@ (6.22)
p

6.2.2 fold

In a sequential implementation of fold, there are (n — 1) applications of the
operator f. (For the purposes of implementation and cost computations, f a o

is not considered, since the result is xg). The sequential cost of s_fold is:
ofola = (n—1)Cy (6.23)

In the case of g_fold, the input list is at least a list of lists, 1.e. D > 2. If the list
is assumed to comprise of n sublists, each of size m, then two cases need to be

considered for the cost of the sequential function f.

e The case where the cost of f is independent of the sizes of the input lists on

which it operates. The cost function can then be represented by Cy, and



Chapter 6 — Parallel Implementations and Costs 100

the cost expression for g_fold is identical to that of s_fold.
Cylpoa = (n —1)Cy (6.24)

e The case where the cost of f depends on the sizes of the input lists on which
it operates. The cost function in this case is represented by a function ¢, as

follows:
Cg = g(llv ZZ)

where [; and [; represent the lengths of the first and second argument lists,
respectively. It may be noted that since each sublist is assumed to comprise
of m elements, assumption 7 is still valid. Therefore, [; = [, = m. The cost
expression is given by:

n—1

C;ffold = Z g(ima m) (6-25)

=1

For all the topologies, after a parallel implementation of fold, the result is left on
processorg (or the root processor). The algorithms for the two versions of fold,
viz. s_fold and g_fold, are the same. The costs are different, because in the case
of g_fold, the size of the data communicated increases at each step and must be

accounted for in the computation of T,,,,.

6.2.2.1 fold on the Linear Array

The algorithm is as described in PAR_FOLD (linear array). The algorithm as-
sumes that the number of processors is a power of 2, otherwise Step 2 of the

algorithm will need slight modification. The cost expressions are unchanged.



Chapter 6 — Parallel Implementations and Costs 101

Algorithm PAR_FOLD (linear array)
BEGIN
1. FOR each processor; DO in PARALLEL

/* evaluate partial results */

result «— fold f a zs;
2.5+ 1
WHILE 5 <logp
combine partial results between pairs of
processors which are 7 hops away
/* combination from right to left */

j+— 2%
END.
e s_fold
O yoa = Crl =1 (Th (L 2+ -+ 2071 4 G logp)
— step_2
step_1

On simplification, the cost of s_fold is given by:
n
g_fold = Cf(; -1 + 1ng) + Tclom( - ]‘) (626)

o g fold - After performing Step 1 of the algorithm, each processor is left
with %m elements. In each iteration of Step 2, the number of elements to

be communicated increases.

For the case where the cost of f is a function of its input list sizes:

__1 logp—1

a ln
CYgffold = Z g Zm m —I' Z 2! Tcom + 9(2 —m, 2 )) .
=1 =0 p p
step_1 step_2
__1 log p—1
Colroa = Zgzmm + Z q(2 mTp m) +

logp 1 9in

Z 2 Toort . (6.27)



Chapter 6 — Parallel Implementations and Costs 102

For the case where the cost of f is independent of the input sizes, the cost
expression simplifies to the following:

logp—1

ac n i 200
Colrola = Cf(; —1)+ > 2Tk +Cylogp.
N =0
step_1 step_2

Grouping together the computation and communication terms, the cost is:
n logp—1 . 9t
Cylfora = Cf(; —1+1logp)+ > 2'Teom . (6.28)

=0

6.2.2.2 fold on the Hypercube

The fold operation on a hypercube of dimension d involves the following two

steps.

1. (% — 1) local applications of the argument function on each processor, in

parallel.

2. d nearest neighbour communications of partial results to the root processor,
and d applications of the argument function to partial results from pairs of
processors. (The root processor is the smallest-numbered processor in the

cube or subcube implementing the fold).

In the following algorithm, p,, represents the processor number, and p/_ repres-
ents the number of the neighbouring processor in dimension j of the hypercube;

0<j<d, 0<puo,pl, <p.



Chapter 6 — Parallel Implementations and Costs 103

Algorithm PAR_FOLD (Hypercube)
BEGIN
1. FOR every processor; DO in PARALLEL
result «— fold f a zs;

/* combine partial results on all processors * |
2. FOR every processor; DO
FOR 7 «— 0TO d—-1DO
IF p/, < pno THEN
send result to processor p/_
EXIT
ELSE
receive data from p?
result +— f result data
END.

o s_fold - The cost of s_fold is given by:

Cs fold_Cf(E_l)—l_d( com—I_Cf)

step_2
step_1

which, on rearrangement gives:

Cl g = Cf( +d—1)+ T d (6.29)

com

o g fold - If the cost of the sequential argument, f, is a function of input

sizes, the cost is given by:

__1 d—1 in d—1
C:__j{old - Z g Zm m —I' Z Tcom + Zg 2 m 2 m)
=1 =0 =0 p p
step_1 step_2

On rearrangement, the cost expression is given by:

» -1 2@'% n N
C,- fold = Z glim,m) + > (Teom + g(2' pm 2! pm)) (6.30)
=0



Chapter 6 — Parallel Implementations and Costs 104

If the cost of the argument function is a constant given by CYy,
d-1 2in

Ch _fold — Cf(% + d— 1) + Z Tcorgm- (631)

=0

6.2.2.3 fold on the 2-D Torus/Mesh

The algorithm is based on an ideal torus where each processor has four physical
neighbours. It exploits the wrap-around links in order to reduce the computation
cost by half. The right and left halves of each row are treated as linear arrays
and an algorithm similar to PAR_FOLD(linear array) is executed in each half.
The partial results in each row are combined using the wrap-around link, so that
the first column processors now hold the new set of partial results. A similar
procedure is repeated along the first column processors, to obtain the final result

On Processory.
o s_fold -

. n
Crpit = Cr(C =D+ Th(5 = 1)+ Clog T+ (T, + Cy)
p N—————

2
+%A——UHM% +%MM&
2 N— ———

step Aa step_4b

Grouping like terms together, the cost is given by:

m_idea P + P2
P = Cp(C+ 14log S log ) + T, (R ). (6.32)



Chapter 6 — Parallel Implementations and Costs 105

Algorithm PAR_FOLD (ideal-mesh)
BEGIN
1. FOR every processor; DO in PARALLEL
result «— fold f a zs;

2.5+ 1
WHILE ; <log &
Right (Left) half processors DO
combine partial results between pairs of
processors j hops away
[* from left (right) to right (left) */
J&— 2%
3. Last and first-column processors DO
IF last-column processor THEN
send result to first processor in row
ELSE
receive data from last processor in row
result +— f result data
4. TF first-column processor THEN
a. 7 ¢+—1
WHILE ; <log 2
Bottom (Top) half processors DO
combine partial results between pairs of
processors j hops away
[* from top (bottom) to bottom (top) */
J4&— 2%
b. IF last processor THEN
send result to processorg
processorg DO
receive data from last processor

result +— f result data
END.




Chapter 6 — Parallel Implementations and Costs 106

o g fold -

21 log p—l—l

m f_idea < . racnpm n i
Pttt = 3 glimam)+ Y (2T (2, 2 m)) +

step_1 step_2
Bng, pn pn
Tcgmp 5 My
+ g( 5 pm 5 pM) +
step_3
132_2_1 ol n n
(2 Tcom + g(QZ_mv Ql_m)) +
o b2 b2
step_4a
Tom + g(om, ~m). (6.33)
2 2
step_4b
log &L -1 PLn
;ijt_ol[((ifal = C ( + 1 + lo g il _|_ lo g — —|— Z 2 Tcorg ‘I’ Tco2mp +
log P2 _ gin "
S @ThE™) + T (6.34)
=0

If the mesh does not have a wrap-around connection on all the rows, then all
the links will have to be traversed in the horizontal direction. However, in the
vertical direction, the wrap-around link can still be used. Steps 2 and 3 of the
algorithm would require minor modification. Then, it is easily shown that the

costs are modified as follows:

Cllya = Cy(C+logpy +log D)+ T pr +15 = 1), (6.39)

__1 logp1 —1

m ziﬂm ln ln
Cy. fJ;ld = Zgzm m) + Z (2'Teo + g(2 Em,Q ;m))—l—

log p—2—1 .
. 2o . n . n
Z (2'Teom: 4+ g(2'—m,2'—m)) +
=0 P2 P2
Tim + g(=m, —m). (6.36)

2 72



Chapter 6 — Parallel Implementations and Costs

logp1 —1
C;i}cold = C ( + 10gp1 + 1Og 5 + Z 2! Tcom +
=0
log =+ P2 _
Z 2! T'cor}rgz2 + Tc2om
=0

6.2.2.4 fold on the Tree

Algorithm PAR_FOLD (s-ary tree)
BEGIN
1. FOR every processor; DO in PARALLEL
result «— fold f a zs;
2. FOR every leaf processor DO

send result to parent

FOR every non-leaf processor DO
FOR ¢ +— 1 to s DO
receive data from child;
result +— f result data
IF (not root processor) THEN
send result to parent

END.

107

(6.37)

For a tree of depth d, the partial results take d steps to reach the root processor.

At each level, there are s communications and s applications of the function fin

parallel.
o s_fold - The cost expression is given by:

com

C! fold = Cf(E —14ds)+ dS(T1 ).

o g fold - The cost expression is given by:

__1 d-jln

Clfus = S atimam) 4517
el gy ,Sd]—ln s —1n
ZZg(—m—l—z —m, —m)
arSoar S s—1 p s—1 p

(6.38)

(6.39)



Chapter 6 — Parallel Implementations and Costs 108

If the cost of f is independent of the size of its arguments, then

d—1 d-]ln

Ct_fold — Cf( ‘I‘ dS - ]_ ‘I‘ S Z Tcom pm‘ (640)

7=0

The first term in Equation 6.39 is obtained from Step 1 of the algorithm. At
level j in the tree (the root is at level 0, the leaves are at level d—1), each processor

would have to send data that has been gathered fro . At theend

of Step 1, each processor has %m data items. Since there are s communications
at each level, and there are d levels in the tree, the total communication cost is
given by the second term in Equation 6.39. At each level in the tree, a processor
makes s applications of the function f. Each processor makes the first application
of f on its local data and the data gathered from the leftmost child. For the
second application of f, the size of the first argument is the sum of the sizes of
the arguments in the first call to f. The same reasoning is valid for all the s

applications of f at any level in the tree. For a non-leaf node at level j, each child

node would have gathered data from sds__Jl_l nodes. Since there are d levels in the
tree, the total cost of the function applications is derived to be the third term in

Equation 6.39.

6.2.3 scan

The sequential implementation of scan has (n — 1) applications of the operator f.
The sequential cost of scan is, therefore, the same as the sequential cost of fold.
As in the case of fold, ¢(ly,l3) represents the cost of the argument of g_scan,

when it is a function of the sizes of its input lists. Once again, [y = [, = m.

C? scan ~ (n - ]‘)Cf (641)
Colean = Z (tm,m) (6.42)
C;cscan = (n - ]‘)Cf (643)



Chapter 6 — Parallel Implementations and Costs 109

The algorithms for the parallel implementations of s_scan and g_scan are
identical, although the cost expressions are different. The result of the parallel

scan operation is distributed across the network as follows:

Result = ys = yspQys;@ ... Qys,,_4

where, ys; € processor;.

In the following algorithms, last is a function that returns the last element of a

list.

6.2.3.1 scan on the Linear Array

The partial results reach the last processor in the array in (p-1) steps. The total

cost 1s once again obtained by adding the costs for both the steps in order.

® S_scan

CY soan = @(% — 1)+ ((p— (T +C) + @(% ~2))

step_1 step_2

On simplification, the total cost is given by:

C von = Cr(2= 4 p—4)+ TL . (p— 1). (6.44)
b



Chapter 6 — Parallel Implementations and Costs

BEGIN

END.

Algorithm PAR_SCAN (linear array)

1. FOR every processor; DO in PARALLEL

2. processory DO

FOR every processor except processorg DO

result «+— scan f a zs;

last_result «+— last result
send last_result to processor;

receive data from left neighbour
last_result «+— f data last_result
send last_result to right neighbour
FOR 7 +— 1TO (%—1) DO
result; «+— f data result;

result% +— last_result

e g _scan

%_1 p—1 .,
a . t—m n n
Cgfscan = Z g(m7 Zm) + Z(Tcopm + g(l—M, _m)) +
=1 i=1 p p
step_1 step_2
o2 .
> g(p —1)—m,im)
=1 p
step_2

For the input-independent case, the cost of g_scan is given by:

n pl 1 2m
C;fscan = Cf(QE +p— 4) + Z Teom -

=1

110

(6.45)

(6.46)



Chapter 6 — Parallel Implementations and Costs 111

6.2.3.2 scan on the Hypercube

Algorithm PAR_SCAN (hypercube)
BEGIN
1. FOR every processor; DO in PARALLEL

result «+— scan f a zs;

last_result «— last result
2. FOR all processors DO
FOR j «— 0to (d—1) DO
IF (bit; of processor_.number = 0) THEN
send last_result to neighbour in dimension j
ELSE
receive data from neighbour in dimension j
last_result «+— f data last_result
store data in data_list
3. FOR each subcube; of dimension > 0 DO
communicate partial results from lower-numbered
subcubes to lower-numbered processors in subcube;
4. FOR all processors DO
par_result «+— fold f a data_list
/* data_list has the partial results
from lower-numbered processors * |
FORj%lto(%—l) DO
result; «+— f par_result result;

result% +— last_result

END.

Note that step 3 in the algorithm would involve at most (d — 1) communica-

tions. The cost expressions are derived in the following manner.



Chapter 6 — Parallel Implementations and Costs 112

e s_scan - Adding the costs for each of the steps, in order,

Cl o = Cf(>=1)4+d(Cy+TL )+ T (d—1) +
J/_/
step_1

Cp(d—1) + cf(% —2).

step_2 step_3

step_4

Grouping like terms provides the following:
Cl s = C1(25 424 — 4) + T2, (2d - 1). (6.47)
p

e g_scan - Representing the cost function by g(ly, 1) gives:
» 1 d-1  in . n n
C:_fscan = Z g(m, Zm) + Z(Tcorg + g(QlEm, ngm)) +
=1

(d=1)Tom ™" + 3 gl(p - 1)%m,im). (6.48)

=1

The cost for the input-independent case is given by:

d—1 in (d—1)n

Cl i = Cf(2% 120 —4)+ S Tk 4 (d— )Tom 7" (6.49)

=0

6.2.3.3 scan on the 2-D Torus/Mesh

The algorithm is based on the one described in [AkI89)].
e s_scan - If the wrap-around links are not used, then the cost is given by:

C17 0 = @(% — 1)+ (TL. + Cpr — 1) +

N— ——
step_1

step_2

(Cf(p2 - ]‘) + Tclom(pz - 1) + Tclom(pl - 1)) + Cf(]_ + % — ]_) .

step_3 —_—
step_4

The final cost expression is given by:

C]‘;n_scan = Cf(Q% + P + P2 — 3) + Tclom(2p1 + P2 — 3) (650)



Chapter 6 — Parallel Implementations and Costs 113

Algorithm PAR_SCAN (mesh)
BEGIN
1. FOR every processor; DO in PARALLEL

result «— scan f a zs;

last_result +— last result
2. [* update along the rows in parallel */
FOR all processors DO
IF (not first-column processor) DO
receive data; from left neighbour
last_result «+— f data; last_result
forward last_result to right neighbour
3. FOR processors in last column DO
[* send partial results of each row to subsequent row */
IF (not first-row processor) DO
receive data, from neighbour in previous row
last_result «+— f data, last_result
forward last_result to neighbour in next row
IF (not first-row processor) DO
forward data, to left neighbour
FOR all other processors DO
IF (not first-row processor) DO
receive data, from right neighbour
forward data, to left neighbour
[* except first-column processors */
4. FOR all processors DO
data «— f data, data;
FORj%lto(%—l) DO
result; «+— f data result;
END.

o In step 3, instead of sending the partial results from the previous rows
all along the length of the row, the wrap-around could be used to com-

municate it to the neighbour in the first column. Then, both processors



Chapter 6 — Parallel Implementations and Costs 114

could communicate the partial results in opposite directions along the row,
thereby reducing the communication costs. Note that processors in the first
row do not have to communicate partial results to neighbours in that row.

So, even in the case of the non-uniform mesh, the cost can be improved to:

3

n
C;nscan = Cf(QE —I_pl ‘I’pZ - 4) + Tclom(2

e g scan - With wrap-around links and a cost function g(ly,[2):

1
p1— n

Z-1
) n
Cnigcan = Zg Zm m + Z coZ;n ‘|‘g l;m pm))—l—

p2—1
i12m .n n
Z (Tcopm o + g(lgmplv Empl)) +

=1

m 1( 2 — 1)
5 Tcﬂmp g + 9( mpy(p2 — 1), —m(pl - 1)+
p p
2
n .
>~ 9 m(p—1),im) (6.52)
=1

For the input-independent argument function the cost simplifies to:

P1— 1 'n

Cnizcan = Cf(2 —I_pl +p2_3 + Z Tcom +
=1
p2—1

T T+ B, (6.53)

6.2.3.4 scan on the s-ary Tree

The parallel implementation on an s-ary tree is a modification of the version
described in [Ble89], for binary trees. Assumption 4 requires modification for
this algorithm. The elements of the input list are initially at the leaves of the
tree. Any communication costs incurred in achieving this distribution will also

be accounted for when the cost for the entire problem is computed.

s = v5,Qzrs,Q . .. @:1:3%_1

where, xs; € leaf;; 1€0,1,...,(n—1)



Chapter 6 — Parallel Implementations and Costs 115

Leaves are numbered from left to right. A tree of arity s and a depth d has s¢

leaves. Therefore, | xs; |= 5.

Algorithm PAR_SCAN (s-ary tree)
BEGIN
1. FOR every leaf processor DO in PARALLEL

result «— scan f a zs;

last_result +— last result
send last_result to parent
2. FOR all non-leaf processors DO in PARALLEL
FOR j «— 0to (s—1) DO
receive data from child;
temp; «— data
result «— scan f a temp
IF (root processor) THEN
FOR j «— 0 to (s-1) DO
send result; to child;
ELSE
send (last result) to parent
3. FOR all processors, except root and leaves DO
receive data from parent
send data to childg
FOR j +— 1to(s—1) DO
temp; «— f data result;_,
send result; to child;
4. Leaf processors DO
receive data from parent
result; «— data
FOR j +— 1to (& —1) DO
result; «+— f data result;
5. Root processory DO
send (last result) to rightmost leaf
END.




Chapter 6 — Parallel Implementations and Costs 116

Step 5 in the algorithm is essential since the last element of the resulting
list will remain at the root. In an actual implementation, the last element can
be communicated along with temp,_; in step 3 of the algorithm. This will
not increase the communication cost very significantly. In the following cost
computations, Step 5 is assumed to be combined with Step 3, and the cost of
communicating the additional element is ignored, to simplify the cost expression.
After the scan operation the result is left distributed across the leaves of the tree.

Given a tree of depth d, the results take d steps to reach the root in step 2,
and a further d steps for the results to reach the leaves again in step 4, with each

step involving s communications.

® S_scan

Cliacan = Crlsg =V +d(sTh + Cy(s = 1)) +

—— ——

step_1 step_2
n
(d=1)(s =1)Cy + dsT,n) + Cs(5 = 1)
step_3 —_—
step_4
n
Closcan = Cr(275 + (5 = 1)(2d 4+ 1)) + T, 2ds. (6.54)

e g scan - Different data sizes will be communicated in parallel on different
branches of the tree during the down-sweep (i.e. steps 3 and 4). The
largest data size is communicated along the rightmost branch of the tree,
since the partial results from all the nodes to its left must reach the nodes
on this branch. Also, the size of the data communicated increases with each
level down the tree. The non-uniformity in data transfers results in a more

complicated cost expression.



Chapter 6 — Parallel Implementations and Costs 117

Itk =(s— 1)5‘1_15%771 then

o
-d d—1 in d—1s—1 n

C;{scan = LZ g(lm7 m) + Z STCSOT%_dm + Z Z g(‘]SlZ_dm7 SZS_dm) +

=1 =0 =0 j=1

step_1 step_2

s—1 jsd_l im -
ZTcom o + (S — ]_)

J=0 2

gl

glk, s Sm) + Tk, +

Il
=]

step_3

k+sidmsd_2 k+sidm(sd_2—|—sd_3) k—I—Sidm Zf__f st

S(Tcom + Tcom +...+ Tcom B ) +

step_3

B o S92 i Sid_l d-2
(S — 1)Tco—:nSd Zl:o ‘I’ Z g(k ‘I‘ j_dm Z S], Zm) .
=1 7=0

step_3

step_4
The first three terms constitute the cost for the up-sweep and are easily
deduced. The cost for the down-sweep is deduced as follows. At the root,
the identity element is communicated to the leftmost child, data of size
Sd_lsn—dm (which is the size of the first partial result) is communicated to
childy, ..., data of size (s — 1)5‘1_15”—dm is communicated to child,_;. The
cost of communicating the identity element can be assumed to be zero,
since it does not actually have to be communicated. These communications
account for the fourth term in the cost expression. At each level in the tree,
there are (s — 1) applications of f performed in parallel. However, since the
maximum data size is handled by the rightmost node at each level, the cost
for that level will be determined by the cost of this node. Since there are
(d — 1) non-leaf nodes (excluding root) on each branch in a tree of depth
d, the cost for the (s — 1) applications of f is given by the fifth term in
the expression. The terms that follow represent the communication costs.
They account for the cost of communicating the increasing data sizes to
the child nodes, from the rightmost node at each level, since largest sizes

are communicated from the rightmost node. The last expression accounts



Chapter 6 — Parallel Implementations and Costs 118

for the update performed at the leaves of the tree, after the down-sweep.
Once again, the cost is based on the rightmost leaf, since it would handle
the largest data size. In practice, the implementation cost could be reduced
if the parent at each level started by sending the partial results to the

rightmost child.

6.2.4 filter

From the definition of filter, it is clear that the size of the output list is data-
dependent. After this operation, the sizes of the sublists on different processors
may be different. The exact nature of the output distribution is not predictable.
However, since all the subsequent phases of the problem would assume balanced
load, it appears that a load balancing operation needs to be performed after a
phase containing the filter function. This would involve gathering the results
from all the processors and redistributing them (if necessary), so that the load
is balanced for the next phase. This may prove to be unnecessary if the filter
operation results in balanced load for some data set. On the other hand, there
may be extreme cases in which the output sublists on some processors are of the
same size as the corresponding input sublists, (i.e. all the elements retained),
but others in which the output sublists are empty. In the latter case, data re-
distribution is crucial to obtain good performance.

The sizes involved in gathering and redistributing the data are also unknown.
The analyser, therefore, adopts a pessimistic approach in computing the cost of
filter and assumes that the size of the output list is equal to the size of the input
list. If there are several phases following the one involving the filter function,
then the predicted costs may be much worse than the actual costs, and this in
turn is dependent on the nature of the data set.

However, since the pessimistic approach assumes the availability of the entire



Chapter 6 — Parallel Implementations and Costs 119

data set after the filter operation, it may, in the worst case, result in the selection
of a parallel implementation when a sequential one would have proved to be
more cost-effective. A pessimistic approach to cost computation may result in
an overly-optimistic approach to the selection of a parallel implementation. The
incorporation of a profiler would alleviate this problem.

The sequential cost of filter is given by:
C;ilter = Cfn (655)

The parallel implementation of filter on all the topologies is the same, except

that each uses its own gather algorithm.

Algorithm PAR_FILTER (all topologies)
BEGIN
1. FOR every processor; DO in PARALLEL
result «— filter f xs;

2. gather result from all processors

END.

The cost of the parallel implementation is given by:
Chuter = Cr + G (6.56)

where G 1s the cost of gathering n elements distributed across p processors on the
particular topology. The cost of redistributing the result of the filter operation
is not accounted for in its cost, but will be, by the subsequent phase. This will

be zero if the latter is sequential.

6.2.5 1nits and tails

For an input list of size n, the function inits produces (n + 1) sublists that

successively increase in size. The size of sublist; is one more than the size of



Chapter 6 — Parallel Implementations and Costs 120

sublist;_;. The total number of elements in all the sublists is given by:

total = 0+14+24+---4n

total = w

The computation of the function inits only involves list processing costs. In a
parallel implementation of inits, the communication cost would make a significant
contribution to the total cost. As discussed in Section 4.1, inits can be expressed
in terms of the function scan and can, therefore, be implemented in parallel by

using the parallel scan algorithm. However, this is not desirable for two reasons.

e Since inits produces sublists of increasing sizes, the load on the processors
would be imbalanced after the inits operation, even if there were the same
number of elements on all the processors initially. This would cause non-

uniform processor utilisation for subsequent phases of the problem.

e During the implementation of the scan algorithm, the partial results ex-
changed between processors would be of unequal sizes. The size of the data
communicated increases with the progress of the algorithm. This is un-
desirable, and it can be shown that it leads to higher communication costs

compared to the alternative suggested below.

In order to obtain balanced load after the inits operation, ideally, the total num-

ber of elements from all the sublists on each processor should be n(gzl). This
is achieved by allowing different processors to have different numbers of sublists.
Some processors have a larger number of sublists of smaller sizes, while others
have a smaller number of sublists of larger sizes. Each processor calculates the
number of sublists that will be resident on it after the inits operation. In the

following discussion, the nil list which is the first element of the result of inits is

ignored.



Chapter 6 — Parallel Implementations and Costs 121

After the inits operation, the number of sublists on processor; is represented
by n;. In particular, on processory the number of sublists is ng, and the length of
sublist; 1s 2. The condition which has to be satisfied in order to obtain balanced

load is as follows:

Total number of elements in all sublists on processorg = n(zzl).
:>1_|_2_|_3_|_..._|_n0:ﬂ7217+11
ng(ng+1) _ n(n+l)
= 2 - 2p
Solving for ng gives,
4n(n+1)
—1 + 1 + —

2

The last sublist on processory is of length ng and consequently, the first sublist
on processor; is of length ng + 1. Again, the condition which has to be satisfied

to obtain a balanced load results in the following deduction.

n(n+1)

Total number of elements in all sublists on processor; = o

2p
\/(2n0+1)2+ﬂ’;—“l—(2n0+1)
= r = 3

This could be generalised to the following.

For every processor;, where 1 = 1,2,...,(p — 1)
length of first sublist = n,_; + 1
length of last sublist = n,_; + «

\/(2ni_1+1)2+%—(2m_1+1)
where, x = 5

and
length of first sublist on processory = 1

length of last sublist on processorg = ng (Equation 6.57)



Chapter 6 — Parallel Implementations and Costs 122

Each processor first determines the number and sizes of the sublists that it should
generate, which is done locally. This implies that each processor should possess a
copy of the input list. If the input list is not already resident on all the processors,
then it should be broadcast to them. If it is already scattered across the network,
then a total exchange operation would have to be performed, so that each pro-
cessor obtains a copy of the entire list. If Cy. represents the cost of Broadcast or

Total Exchange, the cost of inits is given by:

CP it = Che (6.58)

inits

List processing costs involved in generating the sublists are not accounted for in
the cost expression since the analyser accounts for such costs for every output list

that is constructed. A similar strategy is applied to tails.

6.2.6 cross_product

The costs for both r_cross_product and c_cross_product are identical and their
costs are therefore discussed jointly. Since cross_product has two argument lists,

an additional assumption for cost calculations is required.

The second input list is represented by ys

where, | ys |= m and ys € processorg

The second list is assumed to be resident on a single processor, so the cost for a
parallel implementation must account for the cost of distributing this list to the

other processors. The sequential cost of cross_product is given by:

s
Ccross_product

=Cimm (6.59)



Chapter 6 — Parallel Implementations and Costs 123

Algorithm PAR_CROSS_PRODUCT (all topologies)
BEGIN

Broadcast ys to all the processors

FOR every processor; DO in PARALLEL

result +— cross_product f xs; ys

END.

From the definitions of r_cross_product and c_cross_product, it is clear
that if the first input list is distributed across p processors in the network, then
the second list would need to be broadcast to all the processors in order to evaluate
the cross_product in parallel. The parallel implementations are identical on all
the topologies, except for the different algorithms and the corresponding costs
involved in the broadcast operation. The results are left distributed across the
network.

The cost is given by:

Cp

cross_product

=B+ Com (6.60)
p

where, B is the cost of broadcasting m elements to p processors, on the particular

topology.

6.2.7 composition

It is clear from the definition of composition that each phase uses the results
of the previous phase. A possible way of implementing composition in parallel
would be to pipeline the intermediate results, so that the implementation of the
next phase could be overlapped with that of the current phase [Kel89]. However,
in the current scheme, composition is implemented sequentially. Any potential

parallelism is exploited within each phase of the composition.



Chapter 6 — Parallel Implementations and Costs 124

The cost of a composition involving k phases is, therefore, given by:
k
Ccomposition — Z Cz (661)
=1

where, C; is the cost of phase;, together with any data rearrangement costs that

would be incurred in its implementation.

6.2.8 map2 and zip

map2 is just an extension of map to cater for two argument lists. If both the
input lists are already distributed across the network, then the cost of map2 is
identical to the cost of map. If not, then the additional cost of scattering the
second list on the relevant processor network must be added to the cost of map.

A similar strategy is followed for the parallel implementation of zip.

6.2.9 The iterative functions

As pointed out earlier, none of the iterative functions are themselves implemented
in parallel. If the argument of an iterative function comprises of a composition
of recognised functions, then the composition could be implemented in parallel
using the analysis described in Section 5.2. The cost of an iterative function is
taken to be the cost of a single application of its argument function f. An implicit
assumption here is that the costs of all the iterations are equal. Since the strategy
for the selection of a parallel implementation relies only on cost comparisons, the
absolute cost of all the iterations is not required. Moreover, in many cases, e.g.
iterate_cond, it may not be possible to determine the number of iterations at
compile-time.

At the end of each iteration, the results are left distributed. If the implement-
ation of the next iteration requires the data to be distributed in the same way
as left by the previous phase, then no data rearrangement cost is incurred. If

not, the cost of data rearrangement is added to the cost of the iterative function.



Chapter 6 — Parallel Implementations and Costs 125

In particular, in the case of a parallel implementation of iterate_cond, the result
is left distributed across the processor network for the implementation of the next
iteration. The condition is only evaluated on a copy of the result. This could
save on potential communications overheads.

Again, there are limitations that arise as a result of assuming identical cost
for every iteration. The model attempts to minimise potential discrepancies in
the estimated costs, e.g. initial distribution costs at the start of the first iteration
are not added to the cost of the iterative function if these costs will not be
incurred by subsequent iterations. The idea is that such a cost will be negligible
when averaged over a large number of iterations (assuming there are a fairly
large number of iterations). On the other hand, if this initial distribution cost is
added, then it will substantially increase the estimated implementation cost and

may lead to the selection of a poor parallel implementation.

6.2.10 split

The introduction of split as a recognised function was motivated by the need to
express divide-and-conquer type of applications. The function split takes two
arguments, an integer £ > 0 and a list of size n. The result of applying the
function to the list is to split the list into k sublists, with (k£ — 1) sublists of
size [7] and the last sublist of length n — (k —1)[7]. split only involves list
rearrangement costs which are computed by the analyser, based on the nature of

the input list. The cost is represented by:

C S k- (6.62)

s —
split — )

For a parallel implementation of split with the list distributed across p processors,



Chapter 6 — Parallel Implementations and Costs 126

each processor splits the part of the list resident on it into [%1 parts. If k£ is not
divisible by p, then the parallel implementation would result in the list being split
into a slightly different number of sublists as compared to a sequential implement-
ation for the same list. If it is the case that this would not affect the outcome
of the final result itself, then this difference may be acceptable. An example is
the merge sort program described in Section 4.3.2. Since the combining function
merge is associative, slight differences in the manner in which the list is split
would not affect the result. However, there may be cases where this might pro-
duce erroneous results. In such cases, the programmer is invited to use a variant
of the function split, called seq_split. Its definition is identical to that of split,

but it would force the analyser (and in turn the code generator) to consider only

a sequential implementation for split.

Algorithm PAR_SPLIT (all topologies)
BEGIN
FOR every processor; DO

result «— split % xs;
END.

Adopting the terminology mentioned earlier, the cost of the parallel imple-

mentation of split can be represented by:

P g

split

(6.63)

3
If the value of %k is unknown at compile-time, then the analyser assumes that it is
equal to n. In other words, each sublist is assumed to be of size one. This again,
is a pessimistic approach to cost computation, and could result in the selection of

a poor parallel implementation. Again, profiling techniques could help in dealing

with the problem.



Chapter 6 — Parallel Implementations and Costs 127

6.2.11 The Combinator R*

The definition for R?%, the case where a recognised function operates on two input

lists, is as follows (refer to Section 4.2):

REF fifoooifrghxs=F fi fo... fx (gxs)(hxs)

where, F is a recognised function with 2 input lists
f1, f2, ..., fr are parameters to F

g and h are functions that operate on lists.

In general, g and h could be any complex functions including other recognised
functions. However, some situations may just require two copies of the same list,
in which case both of these functions would be the identity function.

The present set of recognised functions have, at most, two argument lists, so
the following discussion focuses on R%. The number of possibilities that arise in
the selection of a parallel implementation of R¥ makes it a complex scheduling
problem in itself and will not be discussed here. In the case of R?, the discussed
heuristic is used to prune the search-space, while attempting not to eliminate im-
plementations that may eventually result in the least cost. This cannot, however,
be guaranteed and in some cases the least-cost implementation may be elimin-
ated, since the heuristic performs cost optimisation that is local to the phase
under consideration. The heuristic computes the costs for the various possible

implementations which are considered. The least-cost one is then selected.

C'; represents the sequential cost of ¢

Cgl represents the cost of the parallel implementation of g on p’ processors
MAX(x,y) =if (x > y) then x else y

MIN(z, y) = if (z < y) then z else y

Cg is the cost of broadcasting the list to p’ processors in the topology

Cg*ls is the cost of gathering/scattering the list from/to p’ processors in the topology.



Chapter 6 — Parallel Implementations and Costs 128

HEURISTIC PAR_R?
BEGIN
1. IF ¢ and h are sequential functions THEN
Gather list from p processors
a. Implement ¢ and h on one processor
Cy +— Cgs +C5+Cy
b. Send copy of list to Processory
Implement ¢ on Processorg
Implement h on Processor;
Cy «— Cts + MAX(C?,Cy) + C3
Implement F in parallel on p processors
Cpr +— C% + C,+ data-rearrangement-costs
Cpra <— CL 4 Cy+ data-rearrangement-costs
Cr <— MIN(Cpi1,Crs)
2. IF ¢ and h are recognised functions THEN
a. Compute Cry and Cpy as in step 1
Crp1 ¢— MIN(Cpi1,Crs)
b. [* assuming two copies of list available */
Implement ¢ in parallel on p processors
Implement A in parallel on p processors
Cy +— CP 4 Cy,
Implement F in parallel on p processors
Crp2 +— Cr + C3
Cr <— MIN(Cpp1,Crp2)
3. IF ¢ is sequential and h is recognised THEN
Cr +— Cls+C: 4+ C + Cés + CF
4. OUTPUT Cg
END

The implementation heuristic for R? follows the usual rules. If ¢ and h are
sequential functions and the input list is distributed, then the list has to be
gathered before g and h can be evaluated. The two transformed lists can then be

redistributed, depending on whether or not a parallel implementation is selected



Chapter 6 — Parallel Implementations and Costs 129

for F. If g and/or h involve recognised functions, then a distributed implementa-
tion could be selected for g and/or h, so that it results in the output data being
distributed as required by F. This would save data rearrangement overheads. In
any case, the resulting distribution of the two lists must be such that it is suitable
for the implementation selected for F and any cost that is incurred in achieving
this distribution is represented by the term, data-rearrangement-costs, in the

heuristic.

6.2.12 get_neigh

The sequential implementation of get_neigh only involves list rearrangement and
so the only cost of implementation comprises of list processing costs. If this cost
is represented by G,,, then

O

get_neigh =

G (6.64)

The algorithms for the parallel implementation of get_neigh on the various
topologies do not correspond to its definition in terms of the basic set of recognised
functions. It may be observed that only the first and the last elements of (the part
of ) the list resident on each processor have non-local neighbours. Each processor
is, therefore, involved in a communication routine that obtains these values. Then
all the processors can execute a local get_neigh operation in parallel to obtain the
final result, which is distributed across the network. In the following algorithms

the functions first and last return the first and last elements of a list, respectively.



Chapter 6 — Parallel Implementations and Costs 130

6.2.12.1 get_neigh on the Linear Array

Algorithm PAR_GET _NEIGH (Linear Array)
BEGIN
1. FOR every processor DO

result_left «— first xs;
result_right «— last xs;
2. Odd-numbered processors DO
send result_left to left neighbour
receive data_left from left neighbour
[* this is the left neighbour for first element */
send result_right to right neighbour
receive data_right from right neighbour
[* this is the right neighbour for last element */
Even-numbered processors DO
receive data_right from right neighbour
send result_right to right neighbour
Except processorg DO
receive data_left from left neighbour
send result_left to left neighbour
3. FOR every processor DO
/* perform get_neigh locally */
result «+— get_neigh data_left data_right s,
END.

The algorithm comprises of two communication steps, and in each of them

one list element is exchanged between pairs of processors. The total cost is:

o = 4T, + G=. (6.65)

get_neigh com

6.2.12.2 get_neigh on the Hypercube

The described algorithm implements get_neigh in parallel on a hypercube of
dimension d with p processors. It comprises of three stages. The first stage

comprises of (d—1) communication steps in which lower-numbered processors for-



Chapter 6 — Parallel Implementations and Costs 131

ward their first and last elements, i.e. the boundary values, to higher-numbered
ones. This happens in parallel in the two subcubes of dimension (d — 1). The
second stage is the exchange step in which the boundary values in the two sub-
cubes are exchanged. The third stage again comprises of (d — 1) communication
steps in which the higher-numbered processors communicate the boundary values
to the lower-numbered ones. At the end of 2d steps, every processor will have
obtained the neighbouring values for all its local elements. All the processors can
then execute get_neigh locally to produce the result. The following notation is

used in the algorithm.

p_no is the processor-number in binary representation; 0 < p_no < p
neigh _no; is the number of the neighbouring processor in dimension 1,
in binary representation
is_one(t, p_no) returns TRUE if the last ¢ bits of p_no are 1, FALSE otherwise

T is a 2-element array on each processor

If the cost of the initialisation step is ignored, then the cost of the algorithm

for get_neigh is given by:

Cg}]let_neigh = Tczom(d - ]‘) + 2T‘czom + Tczom(d - ]‘) + G%
On simplification, the cost is given by:
Cg}]let_neigh = Tczode + G% (666)

The described algorithm results in a better implementation when compared
to the one corresponding to gathering the list, executing get_neigh on a single
processor and then redistributing the resulting list. The latter procedure would
involve a gather operation, followed by an implementation of get neigh on a

single processor, followed by a scatter operation. The total cost in that case



Chapter 6 — Parallel Implementations and Costs

would be given by:

L 1) 1 G

Cost” 2(dKy + %

get_neigh —

132

(6.67)

Algorithm PAR_GET _NEIGH (hypercube)
BEGIN
1. FOR every processor DO

[* initialisation step */

IF pnois even THEN M =0

0<i<d
let qo, q1, ..., qym be 2-element queues
insert first xs; into ¢
insert last xs; into qur
2. FOR ¢ +— 0TO (d—2) DO
/* stage 1 - forward communication * |
IF (is-one (1,p-no)) THEN
IF (p-no < neigh-no;) THEN
Send ¢; to neigh_no;
qi +— NIL
ELSE
T +— data received from neitgh_no;

IF (p-no — neigh-no;, = 1) THEN

insert T'[1] into In list
insert T'[0] into ¢;41
ELSE insert T[0] into ¢;—1, T[1] into ¢i41
/* CONTD ... */

ELSE M <— largest i s.t., is_one (i, p-no) = TRUE;

/* neighbour for first element received */




Chapter 6 — Parallel Implementations and Costs 133

Algorithm PAR_GET _NEIGH (hypercube)
CONTD
3. IF (is_one (i(=d —1),p-no)) THEN
/* Stage 2 - Exchange step */
IF (p-no < neigh-no;) THEN
Send ¢; to neigh_no;

T +— data received from neigh _no;
ELSE
T +— data received from neigh _no;
Send ¢; to neigh_no;
IF (+ = 0) THEN /* 2-D hypercube */
insert T'[0] and T'[1] into In list
ELSE
insert T'[0] into ¢;—q
insert T'[1] into In list
4. FOR i «— (d —2) DOWNTO 0 DO
[* stage 3 - Backward Communications */
IF (is_one (i,p-no)) THEN
IF (p-no < neigh-no;) THEN
T +— data received from neitgh_no;
insert T'[0] into In list
IF (: > 0) THEN
insert T'[1] into ¢;_y
ELSE insert T[1] into In list
ELSE
Send ¢; to neigh_no;
qi <— NIL
5. FOR every processor DO
result «— get_neigh In[0] In[1] zs;
END.

In Equation 6.66, T2 = Kj —I—Q% (See Equation 6.20). Clearly, for any value

com

of n > 2, Equation 6.66 corresponds to a lower implementation cost as compared



Chapter 6 — Parallel Implementations and Costs 134

to Equation 6.67. The algorithm does not result in an order of magnitude decrease
in cost. However, the implementation corresponding to Equation 6.67 would also
suffer from much higher list processing costs, since G,, > G%. The communication
costs in that case would also be greater, since the size of the resulting list involved

in the scatter operation is of a larger size than the input list.

6.2.12.3 get_neigh on the 2-D Torus/Mesh

Algorithm PAR_GET _NEIGH (2-D Torus/Mesh)
BEGIN
1. /* identical to PAR_.GET_NEIGH (Linear Array) */
2. /* identical to PAR_.GET_NEIGH (Linear Array) */
3. First Column Processors DO
Send data_left to south neighbour

Last Column Processors DO
Send data_right to north neighbour
4. FOR every processor DO
result «+— get_neigh data_left data_right s,
END.

The first two steps of the algorithm are identical to that of the linear array.
In other words, each row of the torus is treated as a linear array, except for the
wrap-around link. The processors in the first column treat the ones in the last
column (and the same row) as their left neighbours and vice-versa. After the
second step, each processor in the first column still requires the left neighbour for
its first element and each processor in the last column requires the right neighbour
for its last element. In the third step, processors in the first column obtain this
value from their neighbour above and processors in the last column obtain it from
their neighbour below. Steps 1 and 2 in the algorithm are identical to the ones

in PAR_GET_NEIGH (Linear Array). The communication cost in Step 3 can be



Chapter 6 — Parallel Implementations and Costs 135

reduced by nearly half, by overlapping the sends in the two halves of the columns.

The cost of the algorithm is then given by:

Py eign = Toon(P2 4 4) + G, (6.68)

get_neigh com 9

6.2.12.4 get_neigh on the Tree

Algorithm PAR_GET _NEIGH (s-ary Tree)
BEGIN
1. FOR every Processor DO
Create Queues gy, and g4, , Qd,, - - - » d.
2. Leaf Processors DO
insert first xs; and last xs; into gy,
Non-leaf Processors DO
insert first xs; into q,p; last xs; into gq,
3. /* Up-sweep */
Leaf Processors DO
Send ¢, to parent
Non-Leaf Processors DO
FOR ¢ +— 1 to s DO
Receive ¢ from child,;
IF (+ =1) THEN
/* received right neigh for last elm */

Insert ¢[1] into local_neigh list
Qdip, Q[Q]
ELSE
Qdi—y Q[l]
IF (1 4+ 1) <s THEN
Qdip, Q[Q]
ELSE
Qup <— q[2]
/* CONTD ... */




Chapter 6 — Parallel Implementations and Costs

136

Algorithm PAR_GET _NEIGH (s-ary Tree)
CONTD
4. [* Down-sweep */
Root Processor DO
Send ¢4, to child;
Non-Leaf Processors DO
Receive ¢ from parent
/* received left neighbour for first elm */
Insert ¢[1] into local_neigh list
IF two elements received THEN

a, +— q[2]
Send ¢4, to child;
Leaf Processors DO
Receive ¢ from parent
/% left neigh for first elm is q[1] */
/™ right neigh for last elm is q[2] */
local_neigh «— ¢
5. FOR all processors DO
result +— get_neigh local_neigh[1]
local_neigh[2] zs;
END.

/* processors in rightmost branch receive 1 value */

The algorithm comprises of two sweeps - an up-sweep in which processors

send the elements which are meant for processors in the sub-trees to their left

or right, to their respective parents; and a down-sweep in which the parents

forward the acquired data to their respective children. Queues, ¢,,, to send data

to parent and ¢4, ,qd,,---,qa, to send data to child; (1 < ¢ < s) respectively,

are maintained by each processor. Obviously, the root processor does not need to

maintain g, and similarly, the leaf processors do not require queues gg;, but these

are not explicitly mentioned in the algorithm. Steps 3 and 4 of the algorithm each



Chapter 6 — Parallel Implementations and Costs 137

involve s communications of two elements. For a tree of depth d, there are d such

communications in each of steps 3 and 4, respectively. The cost is given by:

C! = T2,,2ds + G=. (6.69)

get_neigh com
6.2.13 len

The sequential cost of len is straightforward.
Cien = Cy(n —1) (6.70)

where, C; in this case is the cost of a '+’ operation.

The parallel implementation of len corresponds to those of its composing
functions, viz. map and fold (refer to Section 4.2). In the following algorithm,
PAR_FOLD represents the parallel fold algorithm on the relevant processor

topology.

Algorithm PAR_LEN (all topologies)
BEGIN
1. FOR every processor; DO in PARALLEL
temp «— map subst_1 xs;
2. result «+— PAR_FOLD plus 0 temp

END.

The cost of implementing len in parallel is given by:
P n plus
len = Csubst_l(; — 1)+ Char_rorp (6.71)

where, CJQZX%_FOLD is the cost of the parallel fold operation on the specific archi-
tecture with the sequential function plus as its argument.
It may prove to be expensive to implement len in parallel, since the arguments

of the map and fold functions are trivial operations. The communication cost



Chapter 6 — Parallel Implementations and Costs 138

which is incurred in scattering the input list and in the implementation of fold,
would probably make it more expensive to implement it in parallel than sequen-
tially. However, if the elements of the input list are already scattered across the
network, and the len function is encountered, then it may prove to be more ex-
pensive to gather the elements of the list for the purpose of merely computing its

length. In such cases, the parallel implementation will be chosen by the analyser.

6.2.14 select

The select function does not involve any computation. For a list data structure
the sequential cost of select is proportional to the length of the list that needs to
be traversed to locate the required element. In the worst case, this length would
be equal to the size of the list. Since the index of the element to be selected
may not be known until run-time, the analyser adopts a pessimistic approach in

computing the cost of select. The sequential cost of select is, therefore:
C;elect xn (672)

The constant of proportionality is the cost of list processing that is estimated by
the analyser.

select has been defined in terms of a fold operation (refer to Section 4.2).
However, from the definition, it is clear that the argument of fold is not an as-
sociative function. Hence, the usual parallel implementation for fold cannot be
applied. In a distributed implementation, the element to be selected would be
resident on some processor. If the index of this element is unknown at compile-
time, then this processor can only be identified at run-time, depending on the
size of the input list and the index of the element. In the following algorithm, it
is assumed that every processor holds the value of % and that p_no represents the

(unique) number of a processor.



Chapter 6 — Parallel Implementations and Costs 139

Algorithm PAR_SELECT (all topologies)
/* selects the ' element of a distributed list */
BEGIN
1. FOR every processor; DO in PARALLEL
IF (%p_no <Jj<Zp-no+ %) THEN

/* this processor holds the required element™/

select (j — 2p_no)

END.

The algorithm is very simple. It just accounts for the fact that the original
input list is distributed across p processors and computes the offset from the actual
value of j, to obtain the index value within a processor. If the index falls within
the range of the indices of the elements that a particular processor holds, then it
selects the element corresponding to that index. The selected element is left on
the processor on which it was found. The cost of the parallel implementation is
similar to the sequential one, but since each processor only holds a part of the

entire list, the cost is given by:

n

Cfeec xX = 6.73
et X (6.73)

6.2.15 apply_select

The cost of apply_select depends on the number of elements of the list to which
the argument function f is applied. If this number is assumed to be m, then the

sequential cost is given by:

s —
apply_select — me

m<n (6.74)

If the value of m is unknown, then it is assumed that m = n. In other words, the

worst-case cost 1s assumed.



Chapter 6 — Parallel Implementations and Costs 140

The parallel implementation for apply_select on any topology is described

by the following algorithm.

Algorithm PAR_APPLY _SELECT (all topologies)
[* indices to be selected are ij,ig, ... 0m =/
BEGIN
1. FOR every processor; DO in PARALLEL
FOR every index b DO
IF (%p_no <b< pno+ %) THEN

[* element, € processor; */

element, +— f element;

END.

The worst-case situation occurs if all the elements to which the function f is

to be applied are resident on the same processor.

P _
Capply_select — me

n
m < — 6.75
<5 (6.75)

6.2.16 copy

copy is a communication construct. The cost of implementing copy sequentially
follows from its definition and is proportional to the length of the list. It comprises
of the list processing costs involved in selecting the appropriate element and then
constructing a new list of pairs with the selected element and each of the other
list elements. Since the index of the element to be copied may not be known until

run-time, a worst-case situation is assumed, and the cost of copy is given by:

C? o 2n. (6.76)

copy



Chapter 6 — Parallel Implementations and Costs 141

Algorithm PAR_COPY (all topologies)
/* copies the j'* list element to all other list elements */
BEGIN
1. Call PAR_SELECT to select the j'* element

2. Processor on which the element was found DO

Broadcast the element to all processors
3. Every Processor DO
Pair up the received element with each list element

END.

The costs of steps 1 and 3 involve only list processing costs and are propor-
tional to the length of the list that is resident on each processor, viz. %. It
this cost is represented by Ciproec and the cost of broadcasting a single element of
the list to all the processors is represented by Bj, then the cost of the parallel

implementation of copy is given by:

CP = Clproe + Bi. (6.77)

copy

6.2.17 reverse

The sequential implementation of reverse only involves list processing costs in-
curred in constructing the new (reversed) list. This cost is proportional to the
length of the list:

c: xn (6.78)

reverse

The parallel implementation for reverse does not always follow its definition.
If the entire list is resident on a single processor, then the usual sequential imple-
mentation would apply. If the list is distributed across several processors, then

the following algorithms are adopted on the different topologies.



Chapter 6 — Parallel Implementations and Costs 142

6.2.17.1 reverse on the Linear Array

There seems to be no efficient way of reversing a list that is distributed across a
linear array. The parallel implementation in this case just follows the definition
for reverse in terms of g_fold. So, the algorithm for reverse on the linear array
is the same as that for fold, and the cost is given by the cost of g_fold on the
linear array (Equation 6.27), with the sequential function being rev. (refer to

Section 4.2). The resulting list would be left on processory.

6.2.17.2 reverse on the Hypercube

Algorithm PAR_REVERSE (hypercube)
BEGIN
1. FOR every processor DO

result «— reverse zs;
2. FOR ¢ +— (d—1) DOWNTO 0 DO
exchange result with neighbour in dimension :

END.

The algorithm results in the reversed list being distributed across the processor
network in a manner identical to the original list. The cost of reversing the portion
of the list on each processor is, again, proportional to the length of the list that
is resident on it. If this cost is represented by C,, then the cost of the parallel

implementation of reverse is given by:

Ch = Cy 4 2T (6.79)

reverse

The described algorithm provides a more economical implementation as com-
pared to just gathering the list, reversing it and then re-distributing the reversed
list. The number of communications required may not be very different in the two

cases, but the amount of data involved in each communication step is much less



Chapter 6 — Parallel Implementations and Costs 143

in the recommended algorithm. Also, since the processors perform the reverse

operation in parallel on different parts of the list, C, would be less than C?

reverse’

6.2.17.3 reverse on the 2-D Torus/Mesh

As in the case of the linear array, the algorithm for the parallel implementation
of reverse on the 2-D torus follows its definition in terms of the basic set of
recognised functions. The algorithm is the same as that for fold on the 2-D torus
and the cost is given by Equation 6.33. The result is left on processory and an
additional scattering cost will be incurred if it needs to be redistributed for the

subsequent phase.

6.2.17.4 reverse on the s-ary Tree

It appears to be difficult to design an efficient algorithm for reversing a list of
elements distributed across a tree. The algorithm, therefore, simply follows the
definition of reverse in terms of the basic set of recognised functions. The cost

is given by Equation 6.39.

6.3 The 2-D Torus Topology

The cost expressions clearly indicate (not surprisingly!) that most of the recog-
nised functions can be implemented most efficiently on the hypercube topology,
with the 2-D torus proving to be the next-best candidate. The tree and the lin-
ear array prove to be inefficient and are not studied further. Chapter 7 presents
the results of implementing three example programs on the hypercube topology.
Although this thesis does not provide a practical implementation on the torus, a
possible strategy is discussed in this section.

The hypercube is likely to have a much better performance than the 2-D torus

in the context of the implementation strategy, since it is divisible into subcubes, in



Chapter 6 — Parallel Implementations and Costs 144

which the communication latencies are identical to that of the original hypercube.

Two problems could arise as a result of dividing the torus into smaller parts:

e Logical neighbours in the smaller tori will not necessarily be physical neigh-
bours. This would lead to an increase in communication costs, since a logical

neighbour may no longer be just one hop away.

o Also, the numbering on the nodes in the smaller tori may not be as required
for the parallel implementation of the particular phase. A rearrangement of
the data may be necessary in order to obtain correct data placement on pro-
cessors in the smaller tori. Not only would this contribute to the inter-phase
data rearrangement costs, but it may also complicate the communication

algorithms required.

In view of the problems just discussed, an alternative parallel implementation
strategy could be considered for the 2-D torus. A hypercube embedding could
be defined on the 2-D torus and the recognised functions could be implemented
on this logical hypercube, using the corresponding hypercube algorithms. One
example of an embedding of a hypercube in a 2-D torus is described in [Bre83].
In the following discussion, this logical hypercube is referred to as the embedded

hypercube. The following points should be noted.

1. A hypercube of dimension d with p = 2¢ processors would be embedded
in a 2-D torus with p = pyp, processors, where p; = 2L5) and Py = 2%l
p1 represents the number of processors in each row and py represents the

number of processors in each column.

2. Logically neighbouring processors will not necessarily be physical neigh-
bours in the embedded hypercube of dimension greater than four, since each
processor in a 2-D torus has only four nearest neighbours. Nearest-neighbour

preserving embeddings should be possible for hypercubes with d < 4.



Chapter 6 — Parallel Implementations and Costs 145

3. The 2-dimensional hypercube is identical to the torus with four processors,
including the numbering on the nodes. It could form the base case for an
algorithm which would work by combining two (d — 1)-dimensional embed-

ded hypercubes, to construct the d-dimensional one.

Although the physical connectivity of the embedded hypercube is not as good
as that of the corresponding hypercube, it may still prove to be more cost-effective
than the corresponding 2-D torus, especially for small values of d. New data distri-
bution algorithms, such as scatter, must be devised for the embedded hypercube
and their costs computed. The costs of the recognised functions on the embed-
ded hypercube must be computed, accounting for the additional hops required to
communicate with logically neighbouring processors that are not physical neigh-
bours.

A hypercube embedding appears to overcome some of the problems associated
with the torus. However, rigorous cost computations both for the algorithms
implementing the recognised functions and the communication routines on the
embedded hypercube are required before a final conclusion can be reached. Other

constraints which would affect the choice are the following:

e The number of processors in the network (p) - For small values of p, it may
be more cost-effective to use the embedded hypercube. However, for larger
values of p, the increase in the number of hops to communicate between
logical neighbours on the embedded hypercube may make it more cost-

effective to use the torus itself.

o The nature of the application program - If the phases of the application
program comprise only of one recognised function each, or if the selected
parallel implementation implements only one recognised function in parallel

in a phase, then no sub-division of the topology is required. In such cases,



Chapter 6 — Parallel Implementations and Costs 146

the 2-D torus topology may prove to be more cost-effective than the hyper-

cube embedded in it.

A possible approach would involve computing two sets of costs - one for the 2-D
torus itself and another for the hypercube embedded in it - and selecting the more

cost-effective implementation for the particular problem.



Chapter 7

The Implementation Scheme and
Example Programs

The accuracy of the performance predictions made by analyser for a hypercube
topology is studied in this chapter. Three programs are expressed in terms of the
recognised functions and input to the analyser. For each program, the analyser
determines a cost-effective parallel implementation, with the corresponding code
being generated and executed on a hypercube network. The computation times
are measured and compared with the predictions of the analyser. As mentioned
in Section 3.5.4, a fully-fledged parallel code generator has not been implemented.
However, support is available in the form of a library of functions for developing
and testing programs. This chapter describes the environment for program devel-
opment and discusses the results of implementing the three example programs.
The implementations are performed on the Meiko Computing Surface, which
is a transputer-based distributed-memory parallel machine. Each transputer has
four communication links and represents a single node on the binary hypercube.
It is ensured that logical neighbours on the hypercube are also physical neighbours
on the transputer network, which is assumed to be the case in the analyser’s cost
model. Therefore with only four physical links, it is not possible to simulate a

hypercube of dimension greater than four. The communication harness, CSTools

147



Chapter 7 — Implementation Scheme and Examples 148

[Mei], does allow for more than four neighbours per processor, but some logical
neighbours will no longer be physically only a hop away. Worse still, it is not
possible to predict the number of hops involved in the routing of a message,
and indeed this value may vary for different executions of the program. This
in turn would make it almost impossible to accurately predict the cost of such
communications. Consequently, all the experiments have been performed on a

hypercube with a maximum of 16 processors.

7.1 The Analyser

The algorithm for the analyser, as given in Section 5.2.1, has been implemented as
a C program. The input is an 8-tuple, as described in Section 5.1. The analyser
in its current form lacks type-inference and profiling capabilities; therefore, the
types of functions and data, and estimates of data sizes have been explicitly
provided. The cost expressions for the recognised functions have been coded into
the analyser, which constructs the program tree for the application and computes
the costs for the different possible implementations. The cost computation builds
a search tree from which the least-cost path is selected. The path comprises of a
set of nodes, one for each phase in the program. Each node contains the necessary
information for its implementation: the number of processors for a particular
phase, the nature of the current list distribution (as a result of the previous
phase), the type of list distribution required, and which of the recognised functions
in the phase are to be implemented in parallel and on how many processors.
A communication routine computes the costs associated with inter-phase data
rearrangements. It also keeps track of the nature of the input list distribution at
any point in the execution of the program. The information contained in the set
of nodes returned by the analyser should enable the automatic generation of code

for a target parallel machine.



Chapter 7 — Implementation Scheme and Examples 149

7.2 The Parallel Library

In the prototype implementation, the code for each call to a recognised function
is generated manually. Some support is available in the form of a library of
functions, which contains the code for the recognised functions on the hypercube
topology. This enables the performance figures for the different test examples to
be compared on a uniform basis. The code for the parallel implementation of
the recognised functions is written in C, with CSTools [Mei] being used as the
communication harness.

The support available to develop and test programs on the Meiko Computing

Surface comprises of the following:

A definitions guide which contains the Cprototypes for the recognised func-
tions and the various communication routines, and the list data structure

on which the recognised functions operate.

A library of routines containing the code for the implementation of the

recognised functions on the hypercube.

A library of routines which implements the definitions for the communica-

tion operations on the hypercube topology.

A library of utilities containing list manipulation functions such as the cre-

ation and copying of lists.

Several optimisations have been adopted in order to reduce the cost of the
parallel implementations. These are not program-specific, which ensures uni-
formity in performance comparisons. The analyser assumes that the following

optimisations will be performed, which, in turn, is reflected in the cost estimates.



Chapter 7 — Implementation Scheme and Examples 150
7.2.1 Memory Allocation

By its very nature, the list structure is dynamic. An implementation based on lists
therefore involves a number of list creation and destruction operations, making it
important to handle memory allocation efficiently. The implementation scheme
allocates space for a list in a single operation, as opposed to allocating space
individually for each list element, resulting in a significant reduction in memory
allocation overheads. Also, since these costs are not accounted for by the analyser,
it helps to bridge any disparity between the predicted and practical results. The
current implementation does not incorporate a garbage collector.

This one-step memory allocation is possible because of the predefined beha-
viour of the recognised functions. For every recognised function applied to a list
of a particular size, it is possible to compute the size of the resulting list (with
the exception of the filter function, in which case the worst-case size of output

list, i.e. the size of input list, can be assumed).

7.2.2 In-line Expansion of Function Calls

Function calls are expensive on the Computing Surface. Quite often, the cost
of calling the function may be much larger than executing it. The model does
not account for this cost which could lead to a disparity between the predicted
and actual values. This, in turn, could lead to the selection of a less efficient
implementation as the optimal one.

The problem could be resolved by designing the analyser such that it accounts
for the costs of function calls. However, this introduces a machine-specific detail
in the analyser. The problem is overcome by adopting an in-line expansion of
the called function. A language such as C++ would handle such expansions
automatically. In its absence, these expansions are done manually.

A potential problem with in-line expansion would arise in the case of recursive



Chapter 7 — Implementation Scheme and Examples 151

functions. If a sequential function is recursively defined, then it has to be first

converted into an equivalent iterative one before expansion.

7.2.3 Distribution of Lists among Processors

This is an optimisation that is made with a view to reducing the communication
overhead. It involves the case where a list whose D-value > 1 (i.e. a list of
lists), is to be scattered across the processor network such that each sublist is
distributed across p processors. Such a situation would arise when, in a branch
with two nested recognised functions, the innermost one is to be implemented in
parallel on p processors.

Let Xss represent a list of lists as follows.

Xss = [Xs1,Xs9,...,Xs,]
Xs; = [t ab,... 2]
1<i<m (7.1)

The size of Xss is (m x n). For the sake of simplicity in cost computations, it
is assumed that (n mod p = 0). The recognised function split can be used to

divide the list, X's;, in Equation 7.1, into p parts which results in the following:

Xs;, = [[:1;’1,:1;’2,,:1;’%]
[w%-l—l?"'vx;%]
[xin—l)%-l—l? )

= VY.,
1<:<m

In order to scatter each Xs; across the p processors, the operation that needs to

be performed on Xss is: map scatter X ss.



Chapter 7 — Implementation Scheme and Examples 152

If d represents the dimension of the hypercube, from Equation 6.8 it can be
deduced that the cost of distributing each sublist of the list of lists X'ss is given

by:

1 n

—(r—1)) (7.2)

= m(dK
Cl m( o + ]{1 »

However, a more cost-effective distribution is possible and is discussed below.

Counsider the following definitions.

re_order p xss = g fold append [ ] o shuffle o map (split p) xss
where,

shuffe ([ Jzys) =[]

shuffle yss = (map head yss) :: shuffle (map tail yss)

The functions head and tail obtain the head and tail of a list, respectively. Now
consider the function re_order, as applied to the list Xss defined in Equation 7.1.
If the result of the first stage of the composition, viz. (map (split p) Xss),

is represented by Y ss, then

Yss = [[1/—1171/—217 < '71/;31]7
DEWD XU

I:}/—lm71/—2m7 A 7Ym]]

p
Yz’j = [x{i—l)%-l-l?x{i—l)%-l-?""’x?%]
1<j<m
1<i<p (7.3)

The size of Yss is given by (m X p X %) Next, the second stage of the composition

is applied to the result of the first stage. Let Zss = shuffle Vss.



Chapter 7 — Implementation Scheme and Examples 153

Zss = [[Yll,le, LY,
[1/—2171/—227 c 71/—2mj|7
1 2 m
ARG (7.4)

The function shuffle effectively produces the transpose of its input list. The size
of Zss is given by (p X m X %) Applying the final stage of the composition, viz.

g fold append [ ], to flatten the list, the result of re_order is as follows:

Rss = [V V2™, YL Y2 L Y, (7.5)

sy Lp sy Iy

The size of Rss is given by (mp X %) Once the list Xss is transformed into a
form as given by Rss in Equation 7.5, a scatter operation on Rss would place the
elements on the correct processors. This method of distributing the list amounts

to performing the following operation:
scatter o (re_order p) Xss.

A scatter operation on a list of size (a X b) would involve the distribution of
a(b+1) list nodes. (For each sublist, there are b nodes representing each element
of the sublist and one node that represents the entire sublist. There are a such
sublists, hence the total number of nodes is a(b+ 1)). Since the size of Rss is
(mp X %), the total number of list nodes to be scattered is (mp(% +1)).

Again, referring to Equation 6.8, the cost of the entire list distribution oper-
ation is deduced to be:

1 mp(5+1)

Cy =dKo+ —
Ky p

(p - 1) + Cre_order- (76)

Cre_order Tepresents the cost of the function re_order and essentially comprises of

list processing costs.



Chapter 7 — Implementation Scheme and Examples 154

Consider the following equation (Equation 7.2 - Equation 7.6):

1

C = d.[(o(m — ].) — I%
1

(p - 1)m - Cre_order-

C > 0 implies that:

_ 1 I,’
m - icre_order > p. (77)
m

1+ dK K,

The cost of the re_order function could be computed by the analyser from its
estimates of the list processing costs and the sizes of the input and output lists.
If the left-hand-side of Equation 7.7 is greater than p, then the second option
could be selected for distributing the input list across the p processors.

In practice, the costs of list processing will probably be much less than the
communication costs and the second option can be safely selected as the more
cost-effective one. As an example, the cost of processing a single list element is
approximately ﬁKo on the Computing Surface (by experiment). In the current
implementation of the analyser, the second method of list distribution is assumed

by the analyser in computing data distribution costs.

7.2.4 Parallel Implementations of Recognised Functions
Involving Communication

This optimisation is used in the implementation of those recognised functions

that occur in situations satisfying the following conditions:
1. The function is an argument of the recognised function map
2. The function is being implemented in parallel on p processors

3. The computation of the function in parallel on the p processors involves

communication.

Some possible examples of such functions are fold, scan and copy.



Chapter 7 — Implementation Scheme and Examples 155

Let R be a recognised function that occurs in such a situation. Typically,
the distributed implementation for R, represented by Rg4;s, can be defined in the

following manner.

Rais =U 0C 0 Ry
where,
Rseq 15 the function describing the sequential implementation for R
C is a communication function that involves the communication
of partial results to neighbouring processors
U is a function that updates a processor’s local partial result with the

one that is received from a neighbour

According to condition 1, R must be an argument of map. Consider the following
equation:

map Ryis = map (U 0 C 0 Ryey)- (7.8)

Using the map-promotion rule, 7.8 can be expanded to:
map Rais = map U omap C o map Re. (7.9)

The expression in Equation 7.9 has less communication overhead associated
with it, in comparison to the one in Equation7.8. The implementation corres-
ponding to Equation 7.8 involves the application of the sequential definition of
the function, followed by the communication of the partial result for each ele-
ment of the list in sequence. This implies that the communication start-up cost
is multiplied by the length of the list. Also, the entire bandwidth of the channel
will probably not be utilised, since only one list element is communicated at each
step. In Equation 7.9, the sequential definition of the function is first applied
to all the elements of the list resident on the particular processor. The resulting

partial values are then communicated in one step. The communication start-up



Chapter 7 — Implementation Scheme and Examples 156

cost is incurred only once and the bandwidth of the communication channel is
used more effectively. Both of these factors lead to a significant reduction in
the communication cost if the implementation corresponding to Equation 7.9 is

chosen.

7.3 Communication on the Hypercube

The algorithms for the different types of communication on the hypercube to-
pology, as described in [SS89], have been implemented on the Meiko Comput-
ing Surface. In the communication of list data structures between processors,
the one that sends the list must convert pointer addresses to relative ones and
the one that receives the list must compute the real addresses from the offsets.
These operations are necessary to obtain correct pointer references across pro-
cessor boundaries. This effectively increases the communication overhead and is
incurred in the form of list processing costs. The analyser accounts for these costs
in the same way as it does for other list processing overheads, since the data to
be communicated at any step in the program is predetermined.

Graphs depicting the predicted and experimental results for some of the com-
munication routines (ones which are used in the examples) on the hypercube
topology are shown in Figures 7.1 and 7.2, respectively. The following points

regarding the method used to obtain the graphs may be noted.

e Each processor executes an initialisation routine in which it opens its com-
munication links and identifies its neighbours. Due to the lack of global
synchronisation on a distributed-memory machine like the Computing Sur-
face, it 1s unlikely that all the processors would operate in lock-step. This
means that all the processors may not complete their initialisation and start

on their communication routines at the same time. This implies that data



Chapter 7 — Implementation Scheme and Examples 157

transfers which are assumed to overlap, may not do so in a practical im-
plementation. Consequently, the predicted communication costs may not
always be obtained experimentally. In order to minimise this discrepancy,
the experimental costs of communication routines are averaged over a large

number of runs.

e The scatter operation is the dual of the gather operation. i.e. the gather
algorithm is obtained by reversing the steps of the scatter algorithm. The
costs of the two routines are, therefore, identical and have been plotted as
a single graph. They are determined by performing a number of scatter-
gather operations and halving the average cost. In the case of the broadcast
operation, the processor that receives the data last, performs a broadcast
in the reverse direction, so that the original broadcaster is the last one to
receive it. This introduces a form of synchronisation and the cost of the

broadcast operation is half the cost, averaged over a number of runs.

A study of the graphs reveals that the experimental curves follow closely with
the theoretical predictions. However, as the size of the data to be communicated
increases, the experimental curves seem to diverge from the predicted ones. A
possible explanation for this feature may lie in the manner in which the Com-
puting Surface handles communication. Beyond a particular size, the data may
have to be divided into smaller-sized chunks and transferred in more than one
step. This would increase the communication cost, which is not predicted by the
model. Also, with increase in the number of processors, the match between the
predicted and observed behaviour appears to improve, more so in the broadcast

routine. A similar feature is to be expected in programs using these routines.



Chapter 7 — Implementation Scheme and Examples

p=2

Timeinms

14.00

12.00

10.00

8.00 5

6.00

4.00

5.00

Timeinms

16.00

10.00

14.00

12.00

10.00

8.00

6.00

v/

4.00

m"V
"4

2.00

5.00

7.4 Example Programs

10.00

Sizein Bytes x 103

Estimated

Sizein Bytesx 103

Timeinms

14.00

12.00

10.00

8.00

6.00

4.00

2.00

Timeinms

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

Figure 7.1: Scatter/Gather on a Hypercube

p=4

g
g
7
g
g
g
g
g
g
7
g
g
g
g
7
.
g
g

4
7

5.00 10.00
p=16
]
a:"
4
jul
B/
v

5.00

10.00

138

Estimated

Sizein Bytes x 103

Estimated

Sizein Bytesx 103

The three programs chosen for implementation are Matriz Multiplication, Merge

Sort, and Jacobi Iteration, as discussed in Chapter 4. They are well-known prob-

lems in parallel programming and illustrate the use of different recognised func-

tions in the HOPP model. The chosen programs are also intended to highlight

different features of the analyser. The program for Matrix Multiplication is the

straightforward case where the costs of all sequential functions are independent

of input size, and where the analyser is capable of making correct inferences



Chapter 7 — Implementation Scheme and Examples

Timeinms
22.00
20.00
18.00
16.00
14.00
12.00
10.00

8.00
6.00
4.00
2.00

0.00

Timeinms

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

Figure 7.2: Broadcast on a Hypercube

p=2

cﬁ'
yd
5.00 10.00
p=8
o
ﬂ" /
g

5.00

10.00

Sizein Bytesx 103

Sizein Bytesx 103

Timeinms

30.00

25.00

20.00

15.00

10.00

Timeinms

50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00

p=4

5.00

p=16

10.00

T

5.00

10.00

159

Sizein Bytesx 103

Sizein Bytesx 103

regarding problem size. The program for Merge Sort tests the performance of

the analyser in the case where the cost of a sequential function (merge) is not a

constant, but proportional to the sizes of its input lists. The program for Jacobi

Iteration considers the performance of the analyser in a situation where it is in-

capable of making correct inferences regarding problem size. This, in turn, serves

to demonstrate some of the limitations of the analyser in its current form.

For each of the three example programs, parallel implementations are con-

sidered and the corresponding costs as computed by the analyser are examined.



Chapter 7 — Implementation Scheme and Examples 160

map r_cross_product
map map2

s_fold times
plus

Figure 7.3: The Program Tree for Matrix Multiplication

The results of implementing the most efficient choice of the analyser on the Meiko
Computing Surface are presented. The calls to the recognised functions and the
communication routines are generated by hand, and the C-code in the parallel
library is used. The second-best choice is also implemented, to add confidence in
the performance of the analyser. The parallel implementations are considered on
hypercubes with 2,4.8 and 16 processors, respectively.

The results of implementing the matrix multiplication and merge sort pro-

grams which are discussed next, can also be found in [Ran95].

7.4.1 Matrix Multiplication

This section discusses the well-known problem of multiplying two matrices A,,x,
and B, xk, resulting in the matrix C,,xx. The code for performing the multiplic-

ation is discussed in Section 4.3.1. Each matrix is represented as list of lists.

7.4.1.1 The Analysis

The program tree constructed by the analyser is shown in Figure 7.3. The root
node represents composition. In phase one, the analyser computes the costs for

a sequential implementation and three parallel implementations, corresponding



Chapter 7 — Implementation Scheme and Examples 161

to the two recognised functions in the phase, viz. r_cross_product and map?2.
On a p-processor hypercube, if r_cross_product is implemented on p] processors
and map2 is implemented on pj processors, (pi < p, py < p and pip; = p), then

the cost of phase one can be deduced as follows: (see Sections 6.2.6, 6.2.8)

n

Cpl — CYcom + [ —Ikctimes-

m
i
Ceom represents the costs incurred in distributing the initial input lists across
the p processors. Cimes represents the cost of the sequential function times. It
should be noted that the result of phase one is a list of lists of size (m x n X k).
Phase two contains three recognised functions. The analysis results in the costs
for a sequential implementation and seven different parallel ones. If the outer
map is implemented on p? processors, the inner map on p3 processors and the
fold is implemented on p3 processors, respectively (p} < p, p5 < p, p3 < p and
2 2 2

pipsps = p), then the cost of phase two can be deduced to be as follows: (also

refer to Sections 6.2.1, 6.2.2.2)

Cro = Reom + [2][ 2

G) _1+chom+Cus-
p% p% —I ) ( pl)

k
1Cons([ 5

5
R om represents the cost incurred in re-arranging the results of phase one to suit
the implementation of phase two, (d = log, p3), Teom is the cost of communicating
the partial result of fold on one processor to a neighbouring one.

Two sets of matrices, A3y, s, Biyyss and Az, sy, Bayyys, are considered for
analysis. In both the cases, the following implementations are selected as the
best (i.e. least-cost) and second-best parallel implementations, respectively, for

p=2,4,8,16.

1. best - for the two phases, p} = p, p} =1 and p} = p, p5 = 1. This corresponds
to parallel implementations for r_cross_product and the outer map in the

first and second phases, respectively.



Chapter 7 — Implementation Scheme and Examples 162

2. second-best - for p = 2, it is clear that only one function in a phase can be
implemented in parallel. For the second-best implementation, map2 and
fold are implemented in parallel in the first and second phases, respectively.
For p = 4,.8,16, the following implementation was selected as the second-
best. In phase one, p} = 2, pi = 1%. In phase two, p? = 2, p2 = 1 and p3 =

£, This corresponds to a parallel implementation for r_cross_product on

3

2
1
1 processors and map2 on p) processors in the first phase. In the second

3

phase, the outer map and the fold are implemented in parallel on p? and

p3 processors, respectively. The inner map is implemented sequentially.
7.4.1.2 The Results

The theoretically predicted values are plotted along with the experimental ones
in Figure 7.4, for the two chosen implementations. In each of the graphs, the
trend predicted by the analyser is also obtained experimentally. The experimental
costs are greater than the predicted ones. This is because the analyser does not
account for low-level costs which are incurred by a practical implementation.
For both sets of matrices, the number of processors that is predicted to be the
optimum, is confirmed experimentally. The experimental curves tend to have
much steeper gradients compared to the predicted ones, especially in the case of
smaller numbers of processors. This feature is less easy to explain. A probable
explanation may lie in the observed behaviour of the communication routines
(refer to Figure 7.1, Figure 7.2), where the match between predicted and observed
behaviour improves with an increase in the number of processors.

It may be noted that the theoretical and experimental curves in implement-
ation 1 are much closer than the corresponding ones in implementation 2. The
sequential code that is executed in both the cases is identical. However, imple-

mentation 2 involves more communication than implementation 1, both for initial



Chapter 7 — Implementation Scheme and Examples

Timeinms

(32x32) X (32x32)

600.00 Theoretical - Best

?; Sfheorefical - Next Best

G mmmmmmmmmm e m e
550.00 —*

Practical - Best

" XI5ra(:tical - Next Best
500.00 —+

450.00 4
400.00
350.00
300.00

25000 }—

\ \
L 0\
20000 — ¥} >

AN ~ N 1o l o
K"Eﬁ- ------ ool SUPRRRPEELE .4
150.00

Timeinms

650.00

600.00

550.00

500.00

450.00

400.00

350.00

300.00

No. of Processors

(64x32) X (32x16)

Theoretical Best
?\ heorefical Next Best
\ Practica Best ~

250.00

200.00

150.00

s, ~
. o-_ .l ___
[ P mmmmmmm T - ag

100.00

No. of Processors

Figure 7.4: The Results for Matrix Multiplication

163



Chapter 7 — Implementation Scheme and Examples 164

data distribution and for the parallel implementation of s_fold in phase two. Im-
plementation 1 involves a scatter and a broadcast operation on matrices A and B,
respectively, at the beginning of phase one. There is no communication in phase
two. Phase one of implementation 2 involves a scatter followed by a broadcast
operation on matrices A and B, respectively, to place them on p} processors for
the parallel implementation of r_cross_product. Two further scatter operations
are required to distribute each of these on p} processors, for the parallel imple-
mentation of map2. More communication is required in phase two for processors
to communicate the partial results of s_fold, since it is implemented in parallel.
There seems to be a greater discrepancy between the predicted and experimental
results when an implementation involves more communication. This is in a large
part due to the lack of global synchronisation between processors.

The costs for communication routines assumed overlapping data paths which
may not always happen in practice. This effect gets more pronounced with in-
crease in communication, with the processors getting more staggered and leading
to a greater discrepancy between predicted and observed behaviour. Care was
taken in the cases of the communication routines such as scatter and broadcast,
to minimise these discrepancies by averaging the costs over several executions
and forcing some synchronisation by performing the dual of the corresponding
routine and considering only half the total cost. However, in the implementation
of a program, the corresponding routine is executed only once and this leads to
a staggered operation of processors which are otherwise assumed to operate in
lock-step. The discrepancy observed in the performance of the individual com-

munication routines is also probably a contributing factor.



Chapter 7 — Implementation Scheme and Examples 165
7.4.2 Merge Sort

The code for the program is discussed in Section 4.3.2. For the sake of simplicity,
the number of elements in the input list is assumed to be a power of 2 and is

represented by n.

7.4.2.1 The Analysis

Each of the three phases have only one recognised function. Hence, only two
implementations are possible for each phase - a parallel implementation and a
sequential one. The cost of the function msort is a constant, but the cost of
the function merge is proportional to the sizes of the two lists which are being
merged. In this case, as discussed in Section 5.1.4, the scheme allows the user to
specify a cost function for the sequential function, merge. The analyser uses this
function to estimate implementation costs.

The analyser first constructs the program tree. For phase one, the cost of
split is given by 5%7%, (refer to Section 6.2.10). The cost for the sequential
implementation is obtained by setting p to 1. At the end of phase one, each

processor contains a list of lists of size (2”—p X 2). Phase two only involves a map

and its cost 1s given by zn—pCms, where C,,, represents the cost of the function
msort. In phase three, after each merge operation, the size of the resulting list is
the sum of the sizes of the two lists being merged. As the fold progresses, the

size of the intermediate result increases. After each processor executes the fold

locally, the number of elements on each processor is %. In the first step of the

combination of partial results, two lists each of size o are merged to produce a

list of size 2?”. The second step involves the merging of two lists each of size 2]7”

to produce a list of size 4?”, and so on. Let the cost of merging two lists of sizes

m and n be represented by f(m,n). Using the formula for the cost of g_fold in



Chapter 7 — Implementation Scheme and Examples 166

Section 6.2.2.2, the cost of phase three is as follows :

oy

r , d-1 2in ;non
> f(20,2) + 3 (Teoh + f(2'—,2')).

In order that the analyser accounts for the increasing size of the emerging result
while computing communications costs, the user is required to specify the fold
operation using g_fold.

Two lists of sizes 512 and 1024 elements are considered for analysis. In both
the cases, the following implementations are selected as the best (i.e. least-cost)

and second-best implementations respectively, for p = 2,4, 8, 16.

1. best - implement each recognised function in parallel on p processors for all

the phases.

2. second-best - in phase one implement the function split sequentially. Then
scatter the result to implement the two recognised functions in the next two

phases in parallel on p processors.
7.4.2.2 The Results

The results for merge sort are plotted in Figure 7.5. Once again the trend pre-
dicted by the analyser is obtained experimentally.

For the input list of size 512, the optimal number of processors is predicted to
be 8 for both implementations and this is confirmed experimentally. For the list
of size 1024, the analyser predicted a more cost-effective implementation with 16
processors, which is again confirmed experimentally.

In the case of merge sort, fewer communications are involved in the initial dis-
tribution of data, as compared to both implementations of matrix multiplication.
The initial data distribution comprises of a single scatter routine, either at the
beginning of phase one or phase two, depending on whether the best or second-best

implementations are considered. This probably causes a smaller stagger in the



Chapter 7 — Implementation Scheme and Examples

(512)
Timeinms
Theoretical Best
650.00 T Sheoretica Next Bed ™
600.00 — PracicaBes T
000 | Fractica NexBest ™~
500.00 ‘,
450.00 ||
400.00 \|
350.00 \‘
300.00 —
25000 o |

200.00

i

|
\

150.00 ¥
B
100.00 oy P e
K R
50.00 g g )
0.00 No. of Processors
5 10 15
(1024)

Timein msx 103

2.00

Theoretical Best

1.80

laI:heoretical Next Best
Practica Best ~

1.60

1.40

1.20

1.00

L]
|
|
|
I
f
I
!
I
|
1
|
|

0.80

0'60 \ é\

o |

' \
L ¥
0.20 R

0.00

-0

5 10

Figure 7.5: The Results for Merge Sort

15

No. of Processors

167



Chapter 7 — Implementation Scheme and Examples 168

processors. Also, the parallel implementation of g _fold in the last phase forces
some form of synchronisation between the processors, since the partial results are
communicated to processorg, which computes the time of execution for the pro-
gram. Both of these factors seem to produce a closer match between the predicted
and experimental results in the case of merge sort. However, the gradients of the
curves in a practical implementation are still steeper than those of the predicted
curves and the same explanation as given in the case of matrix multiplication

applies.

7.4.3 Jacobi Iteration

The code for the program has been discussed in Section 4.3.3. As explained in
Section 5.1.4, the analyser in its current form is incapable of inferring that the
function rearrange, which is the argument of map in phase two of the function
jac, produces an output list whose size is different from the size of its input
list. Consequently, the costs computed by the analyser for phase three will be
inaccurate. Also, the function update in phase three changes the D-value of its
argument list. This again, cannot be determined by the analyser. The change in
D-value will not influence the cost of the function that tests for convergence. This
is because the function test assumes that the output of the function that operates
on the input list at each iteration, is of the same size as its input list. This
assumption is justified because the analyser assumes that the cost of iteration; is
the same as the cost of iteration;_;. The inability of the analyser to detect the
change in the D-value of the output of update will only influence the cost of the
subsequent iteration. However, in the case of iterative functions, since the cost
of a single iteration is considered for the purposes of determining a cost-effective
parallel implementation, this will not lead to inaccuracies in cost predictions for

this particular program.



Chapter 7 — Implementation Scheme and Examples 169

7.4.3.1 The Analysis

The input matrix is represented by a list of lists of size (m x n). The analyser first
constructs the program tree. The first and second phases have only one recognised
function each, while phase three has two recognised functions. Consequently,
there is only one possible parallel implementation for the first and second phases.
For phase three, there are three possible parallel implementations. The costs for
the first and second phases are straightforward, being the costs of get_neigh and
map, respectively. Again, the cost of the function rearrange in phase two, is a
function of the size of its input list and the analyser determines its cost from the
specification of a cost function for rearrange. Consider the costs for phase one and
phase two, represented by C),; and Cq, respectively. Referring to Equations 6.66

and 6.22, the costs are given by:

Cpl = CYcom + Tczode + G%

com

Cpn = R +[%1cmw (7.10)

where, Cypp, 18 the communication cost incurred in scattering the input list across
p processors, T2 represents the cost of communicating two sublists each of size

com

n to a neighbouring processor, d = log, p, Cicarr represents the cost function

1

com 18 the communication cost

specifying the cost of the function rearrange, and R,
incurred in rearranging the output list of phase one, to suit the implementation
of phase two. Tt should be noted that R! = 0, if both phase one and phase two
are implemented in parallel on p processors, since each of the phases has only one
recognised function. The result of phase one is a list of size (m x 3 x n). The
function rearrange in phase two, transforms an input list of size (3 X n) into a list
of size (n x 5). So, the output of phase two is a list of size (m x n x 5). However,

the analyser cannot deduce this change in the size of the output list and instead

assumes it to still be (m x 3 x n), since the recognised function in phase two is



Chapter 7 — Implementation Scheme and Examples 170

map, which is not assumed to change the size of its input list. Hence, the cost
computed by the analyser for phase three will be inaccurate. If the outer map2 is
implemented on p; processors and the inner map2 on py processors, (pips = p),

the cost of phase three is as follows: (refer to Section 6.2.8)

Cp3 = Rzom + [ﬁ—l [E—I Cupdate (711)
P P2

where, R?  again represents the cost incurred in rearranging the output of phase
two to suit the implementation of phase three. However, the analyser will compute
a different cost (since the list size it deduces is different), and probably select an
implementation that is not the most cost-effective one.

The function test (see Section 4.3.3) comprises of four phases, and its cost is
the sum of the costs of these phases. The first three phases in the function test
could be implemented in parallel, since each of them has instances of recognised
functions. The cost of test has to be added to the costs Cp, Cpz and Cp3 to obtain
the total cost of iterate_cond.

As mentioned in Section 6.2.9, the cost of only one iteration is considered for

the purposes of determining a cost-effective parallel implementation. In an actual

implementation, this is the average cost of an iteration.
7.4.3.2 The Results

Two lists of sizes (32 x 32) and (64 x 64), respectively, are considered for analysis.

In each case, four costs are considered:

e The costs of the best and second-best implementations, as predicted by the

analyser, which will not be accurate.

e The correct costs for the best and second-best implementations. These are
computed manually, in order to determine the percentage error in the costs

computed by the analyser.



Chapter 7 — Implementation Scheme and Examples 171

In each case, the following implementations are selected as the best and second-

best implementations, respectively.

1. best - implement get_neigh, map and the outer map2 in parallel on p
processors for the three phases. Implement the first three phases of the
function test in parallel, implementing the outer map2 in phase one, and
the map and s_fold in phases two and three, respectively, in parallel on
p processors. The function less_than is implemented sequentially. Note
that the result of s_fold in phase three of test would leave its result on
processorg and the function less_than can then be implemented sequentially

OIl Processory.

2. second-best - implement get_neigh, map and the outer map2 in parallel on
p processors for the three phases. Then gather the results and implement the
function test on a single processor (processorg). As noted in Section 6.2.9,
only a copy of the result is gathered back to processory for evaluating the
function test. Each processor still possesses its copy of the result to serve

as the data for a possible next iteration.

It is to be noted here, that in both implementations the result of the function
test is left on processorg. Processory must broadcast this result to all the other
processors, so that they can determine whether the iteration is to be terminated.
This broadcast is performed after every step of the iteration and the analyser
includes its cost in the computation of the cost for the program. The cost of an

iteration is, therefore, given by (refer to Equations 7.10, 7.11):
Cjac — Upl + Cp2 + CYpS + Ctest + Cbroad (712)

where, Ci.q 1s the cost of the function test, and would depend on whether a
sequential or parallel implementation is selected for it. Cy,oqq is the cost of broad-

casting the result of the function test to all the processors in the network.



Chapter 7 — Implementation Scheme and Examples 172

(32 x 32) Matrix

Timeinms
Best - Analyser Estimates
180.00 B~ Conredt Edimates T
Best - Exparimenta T
160.00 "Second-best - Analyser Estimaies
‘Second-best - Correct Estimates
140.00 Becond-best - Experimental -
120.00
100.00
80.00
60.00
40.00
20.00
No. of Processors
10
(64 x 64) Matrix
Timeinms
Best - Analyser
900,00 ¥ Bt Correct T
| Next Best - Analyser
800.00 — NextBest “Corret” ~ ~ ~ ~
\ Best- Experimentd
700.00 —% —_— =
L Next Besi - Experimental
600.00 ——\
I
500.00 %+ =S
1 - s
| = - —
400.00 “\:l)
)
300.00 —} Vg
Y
k \gl i
N N = e
200.00 \9\\
e ~N
d.. - -
100.00 g ==
No. of Processors
5 10 15

Figure 7.6: The Results for Jacobi Iteration



Chapter 7 — Implementation Scheme and Examples 173

The three sets of costs for the best and second-best implementations are plot-
ted in Figure 7.6. Again, the predicted trend is also obtained experimentally.
In the case of the (32 x 32) matrix, for the best implementation a speed-up is
obtained with 16 processors, but for the second-best implementation, the optimal
number of processors is predicted to be 8, and this is also obtained experimentally.
The analyser under-estimates the costs slightly, but still (in this case), the most
cost-effective implementation is the one that is selected. (This has been verified
by computing the costs manually). The similar feature of the gradient of the ex-
perimental curves being steeper than that of the predicted ones is also observed
in this example. The distance between the predicted and experimental curves
in the second-best implementation is larger than that between the corresponding
curves in the best implementation. This again, is probably because the second-
best implementation involves a gather operation before the function test can be
implemented and this involves more communication than in the case of the best
implementation. The distance between the corresponding curves in this example
is much larger than that in the Merge Sort example. This again is probably due
to the fact that the Jacobe Iteration example involves more communication than

the Merge Sort example.

7.5 Conclusions

The performance of three programs expressed in terms of the recognised functions
has been studied on a hypercube topology. The analyser computed the most
cost-effective implementation for each of the programs. These, along with the
second-best parallel implementations have been executed on the hypercube, and
the predictions made by the analyser have been confirmed experimentally. The
three programs are regular in the context of the HOPP model, and it is, therefore,

possible to express them in terms of the existing constructs. It may not be



Chapter 7 — Implementation Scheme and Examples 174

possible to effectively parallelise irregular problems such as quicksort that depend
on the actual input data values, by using this scheme. This is a limitation of the
scheme and arises due to the use of compile-time techniques to predict program

performance, as well as the restrictive nature of the recognised functions.



Chapter 8

Conclusions and Directions for
Future Research

8.1 Thesis Summary

A model of parallel computation (HOPP) based on the functional style and the
Bird-Meertens Formalism has been investigated in this thesis. In particular, the
thesis has focussed on developing a realistic cost model for HOPP. The model
has been targeted at distributed-memory MIMD machines in which the costs of
interprocessor communications tend to be significant. Consequently, sufficient
effort has been directed at minimising these costs. The motivations for choosing
BMF as the basis for the model of parallel computation lie in the advantages it

offers and includes the following:

o It provides a high level of abstraction, therefore relieving the programmer

of handling the low-level details involved in parallel programming.

e Only one program is written irrespective of the target architecture, which

enhances the portability of the program.

e The model comprises of a fixed repertoire of constructs, most of which are
implicitly parallel. Any potential parallelism in the program can only be

expressed through these constructs. It should be possible to predict the cost

175



Chapter 8 — Conclusions and Directions for Future Research 176

of execution of such a program on a given architecture. Also, once such an
estimate has been obtained for a given architecture, it can be re-used for

different programs expressed in terms of these constructs.

e The set of implicitly parallel constructs are either already defined, or are
easily definable in most functional languages, thereby removing the need

for learning any new programming technique in order to use the model.

The implicitly parallel constructs are higher-order functions which are based
on the functions in BMF. The basic set of higher-order functions in BMF has
been extended by incorporating some additional useful functions. These addi-
tional functions are not new, but are well-known functions for which definitions
in terms of the functions in BMF have been provided, along with cost-effective
parallel implementations on four target topologies. This extended set of implicitly
parallel functions is referred to as the set of recognised functions. A program is
expressed in terms of these constructs, typically as a composition of instances of
recognised functions. For each recognised function, a parallel implementation is
defined on a given target parallel machine topology, and the cost corresponding
to that parallel implementation is derived. Associated with each target topology
is a cost model which describes the possible methods for implementing a given
program in parallel, together with the corresponding cost estimates. A cost ana-
lysis is performed on the program, using the analytical cost model that has been
developed for the chosen target architecture. The analyser considers the costs
associated with the various possible implementations and selects the one that
results in the least cost. Parallel code can then be generated for the selected
implementation, which, in turn, can be executed on the parallel machine.

The performance of the recognised functions has been studied on four target

architectures, viz. hypercube, 2-D torus, tree and linear array. The performance



Chapter 8 — Conclusions and Directions for Future Research 177

of a majority of these functions was found to be most efficient on the hypercube
and hence an analyser has been implemented for this topology. Three example
programs were analysed and the chosen parallel implementations were executed
on a transputer-based machine configured as a hypercube. In all the cases, the
predictions of the analyser have been confirmed by the actual implementations.
The 2-D torus follows the hypercube as the one on which the functions can be
efficiently implemented. However, due to the poor connectivity of the torus,
several possible parallel implementations for a program would probably be ineffi-
cient. A hypercube embedding in the torus was proposed as a possible approach
in overcoming this inefficiency. A possibility then would be to compute two sets

of costs associated with implementing a program on the torus:

o With the torus configured as a hypercube - this would use the defined
hypercube embedding and analyse the cost of the program with respect to

the embedded hypercube topology.

o With the torus retained as such - this would analyse the cost of the program

by considering the possible implementations on the torus itself.

The least-cost implementation could then be chosen.

The tree and the linear array proved to be quite inefficient and were not
investigated further. It is possible to develop cost models for other target to-
pologies, thereby extending the range of architectures catered for by the HOPP
model. For each such architecture, a parallel implementation must be provided
for all the recognised functions, together with the corresponding costs. The cost
model must describe the techniques for handling the implementation of nested
recognised functions and must provide cost estimates for any data distribution

functions which may be involved in the implementation of programs.



Chapter 8 — Conclusions and Directions for Future Research 178

8.2 Contributions of Thesis

The main contributions of this thesis can be summarised as follows.

o The development of the HOPP model which provides an extended set of
predefined implicitly parallel constructs called recognised functions, in an

effort to make the task of writing a wider class of programs more feasible.

o Cost-effective parallel implementations have been devised for the functions
in this extended set on four different interconnect topologies. The cost

associated with each such implementation has also been derived.

o A hierarchical cost model has been developed for these topologies. The cost
model for the hypercube topology has been implemented in the form of an
analysis program. The analyser considers the costs of the parallel imple-
mentations for the recognised functions and their arguments, in the selection
of a cost-effective parallel implementation for the program. It also considers
the costs associated with a number of possible parallel implementations for

the program before selecting a cost-effective one.

o The performance of the model has been illustrated by implementing three
example programs. The predictions of the analyser have been confirmed by

the experimental results, in almost all the cases.

8.3 Limitations

There are some limitations to the analyser in its current form. Most of these
can be overcome by the incorporation of some additional features in the analyser.
However, there are some limitations to the model arising from the nature of the
chosen constructs and cost analysis, and these cannot be wished away. They

constitute the trade-offs involved in obtaining a simple parallel programming



Chapter 8 — Conclusions and Directions for Future Research 179

model that provides a high level of abstraction. These limitations are discussed

below.

e The main limitation is that only regular problems can be effectively paral-
lelised using this approach. In this context, a regular problem is one whose
performance does not depend on the nature of the input data and one which
also has a predictable communication structure. For problems which are not
regular in this sense, the analyser cannot be guaranteed to make perform-
ance predictions that will reflect practical behaviour. This limitation arises
partly due to the use of compile-time techniques to predict performance and

also due to the nature of the constructs available for expressing parallelism.

o The fixed repertoire of constructs for expressing programs does limit the
programmer. Although this set comprises of functions which should allow
the expression of a number of types of data-parallel operations, situations
could arise when this becomes difficult. For example, it may be difficult to

express a program based on an array data structure with array operations.

e The analyser in its current form requires more assistance from the program-
mer than is actually necessary, e.g. it requires estimates of the sizes of input
data structures and the costs of sequential functions. These demands on
the programmer could be removed by extending the analyser so that it in-
corporates profiling capabilities. The analyser also lacks type inference and
requires the programmer to explicitly supply the base types of input lists
and also the input and output types of sequential functions. This could also

be automated.

e The analyser cannot detect certain types of transformations of the input

lists by sequential functions (See Section 5.1). Consequently, the estimates



Chapter 8 — Conclusions and Directions for Future Research 180

of the sizes of the corresponding output lists would be inaccurate. This
in turn would result in inaccuracies in the cost estimates for subsequent
phases of the program. The analyser could be extended so that some of
these transformations are detected. Again, this would involve incorporating
type inference in the analyser. However, due to the compile-time techniques
which are used, a transformation of an input list resulting in an output list

of different size, cannot be detected by the analyser.

8.4 Avenues for Further Research

The research reported in this thesis opens several avenues for further investigation.

e An immediate possibility would be the construction of a compiler to auto-
matically generate parallel code for the implementation selected by the ana-
lyser. Such a compiler would be targeted at a parallel machine like the Meiko
Computing Surface or the Cray-T3D. The design of the compiler could be
such that it generates code in a high-level language such as C) with the code
for the appropriate communication constructs being generated. Standard
communication harnesses such as MPI could be used. This would have a
double advantage in that the issues involved in generating efficient machine
code would be transferred to standard C' compilers and the portability of
the program would also be enhanced. The onus of generating efficient C
code is, however, still on the compiler. Another option is to design the
compiler such that it generates code in some intermediate form, which in
turn could be executed on the parallel machine. Some method of inserting

the communication constructs would have to be devised.

o The cost model was studied on four different target topologies, of which

only two were found to be cost-effective. The model could be extended to



Chapter 8 — Conclusions and Directions for Future Research 181

cater for other interconnect topologies, such as, fat-trees [Lei85].

o The hypercube embedding in the 2-D torus can be implemented. An ana-
lyser to predict execution costs and select cost-effective implementations on

the torus can then be realised.

o The scheme only considers parallel implementations for recognised functions
that do not occur within sequential functions. Any occurrences of recognised
functions within sequential functions are implemented sequentially. A pos-
sible extension would be to consider the exploitation of potential parallelism
for recognised functions nested within sequential functions. This would pos-
sibly involve the formulation of rules that describe when such exploitation
of parallelism is allowed, so that semantic inconsistencies are not introduced

into the program.

e The cost model is hierarchical but it considers parallel implementations for
nested recognised functions only up to the first three levels. This could
be extended to handle more levels, if the situation arises. Alternatively,
the number of recognised functions implemented in parallel could still be
three, but instead of simply choosing the first three recognised functions for
analysis, parallel implementations involving recognised functions in other

levels could be analysed.

e The search tree constructed by the analyser is exhaustive in the sense that it
considers all the possible parallel implementations described by the model,
for every phase in the program, before selecting the least-cost implementa-
tion. This causes an exponential increase in the size of the search tree with
increase in the number of phases in the program. However, this is probably

not required since many of the implementations would perform too poorly



Chapter 8 — Conclusions and Directions for Future Research 182

to merit consideration. Heuristics could be designed to eliminate such poor
implementations at the analysis stage itself, in order to reduce the search
space. This would probably involve a combination of local minimisation

and inter-phase elimination techniques.

e The limitations of the analyser discussed in Section 8.3 could be overcome

by extending the analyser to incorporate the required capabilities.

e The analyser cannot handle problems where the performance of sequential
functions depends on the actual value of the input data. In other words, the
cases where the cost of a sequential function varies for different data values,
cannot be handled. This arises due to the limitation of regularity that is
imposed on the nature of the problem that can be analysed. However,
the introduction of profiling techniques in the analyser could be used to
overcome the problem to some extent. Profiling could be used to obtain
estimates of the values of each data set. This could, in turn, be used by
the analyser to predict execution costs and select a cost-effective parallel
implementation for that data set. The implementation of a phase containing
a sequential function whose cost is a function of the input value, would
probably involve placing different numbers of data items on processors, in
order to achieve load balance. The analyser could be extended to handle

such cases, thereby making it less restrictive.

e Program transformations can be employed to generate efficient parallel im-
plementations for programs. Programs written in the functional style nat-
urally lend themselves to transformations. The cost model could be used
to predict the costs of different versions of the program, obtained by using
semantics-preserving transformations. The parallel implementation corres-

ponding to the least-cost version could then be selected for execution.



Chapter 8 — Conclusions and Directions for Future Research 183

o More example programs from different scientific disciplines could be tested
on the scheme. This could assist in identifying more useful functions which

could be incorporated in the set of recognised functions.

e The model is currently based on distributed-memory machines. It would

be interesting to develop a cost model for shared-memory machines.



[ADMS7]

[AESS]

[AJ89]

[AKISO]

[Ame69]

[ANST]

[B+91]

Bibliography

Andrew W. Appel, Bruce F. Duba, and David B. MacQueen. Profiling
in the presence of optimization and garbage collection. Technical Re-

port CS-TR-197-88, Princeton University, Dept. Computer Science,
Princeton, NJ, USA, November 1987.

Arvind and Kattamuri Ekhanadham. Future scientific programming

on parallel machines. J. Par. and Dist. Computing, 5:460-493, 1988.

Leonart Augustsson and Thomas Johnsson. Parallel graph reduction
with the < v,g >-machine. In Conference on Functional Program-

ming Languages and Computer Architecture, pages 203-213, 1989.

Selim G Akl. The Design and Analysis of Parallel Algorithms.
Prentice-Hall, 1989.

William Ames. Numerical Methods for Partial Differential Equations.

Thomas Nelson and Sons Ltd., 1969.

Arvind and Rishiyur S Nikhil. Executing a program on the MIT
tagged-token dataflow architecture. In Parallel Architectures and
Languages FEurope, volume LNCS 259, pages 1-29, Eidhoven, The

Netherlands, 1987. Springer-Verlag.

Beguelin et al. A User’s Guide to PVM Parallel Virtual Machine.

Oak Ridge National Laboratory, USA, July 1991.
184



[Bac78]

[Bai%4]

[BCMT93]

[BD*93]

[BDSS0]

[BGP93]

[Bir8T7a]

185

John Backus. Can programming be liberated from the von Neumann
stye : a functional style and its algebra of programs. Comm. ACM,
21(8):613-41, August 1978.

Peter Bailey. Algorithmic skeletons in paraML. Research Report:
TRACS-funded Visit to EPCC, July 1994. Edinburgh Parallel Com-

puting Centre.

Alasdair R A Bruce, Simon R Chapple, Neil B MacDonald, and Ar-
thur S Trew. CHIMP and PUL: Support for portable parallel com-
puting. Technical Report EPCC-TR93-07, Edinburgh Parallel Com-

puting Centre, March 1993.

Bruno Bacci, Marco Danelutto, et al. P3L: A structured high-level
parallel language and its support. Technical Report HPL-PSC-93-55,

Pisa Science Centre, Hewlett-Packard Laboratories, Pisa, Italy, May
1993.

Rod M Burstall, John Darlington, and Don Sanella. Hope: An ex-
perimental applicative language. Technical Report CSR-62-80, De-

partment of Computer Science, University of Edinburgh, 1980.

Eerke A Boiten, A Max Geerling, and Helmut A Partsch. Transform-
ational derivation of (parallel) programs using skeletons. Technical
Report 93-20, Computing Science Institute, Katholieke Universiteit

Nijmegen, September 1993.

Richard Bird. A calculus of functions for program derivation. Tech-
nical Report Technical Monograph PRG-64, Oxford University Com-

puting Laboratory, United Kingdom, December 1987.



186

[Bir87h] Richard Bird. An introduction to the theory of lists. Logic of Pro-

grammaing and Calculi of Discrete Design, F36:5-42, 1987.

[Bir89] Richard Bird. Algebraic identities for program calculation. The Com-
puter Journal, 32(2):122-126, 1989.

[Bleg9] Guy Blelloch. Scans as primitive parallel operations. IEEE Transac-

tions on Computers, 11:1526-1538, November 1989.

[Ble93] Guy Blelloch. NESL: A nested data-parallel language. Technical Re-
port CMU-CS-93-129, School of Computer Science, Carnegie Mellon

University, April 1993. Updated 1994-version available.

[BN93] Peter Bailey and Malcolm Newey. Implementing ML on distrib-
uted memory multicomputers. ACM SIGPLAN Notices, 28(1):59-63,
1993.

[Bra93| Tore A Bratvold. A skeleton-based parallelising compiler for ML.
In Proceedings of the 4th International Workshop on Implementation

of Functional Languages, pages 23-24, Nijmegen, The Netherlands,

September 1993.

[Bra9d4] Tore A Bratvold. Skeleton-based Parallelisation of Functional Pro-

grams. PhD thesis, Herriot-Watt University, 1994.

[Bre83| Gordon Brebmer. Parallel Computation on Sparse Networks of Pro-

cessors. PhD thesis, University of Edinburgh, 1983. CST-25-83.

[BS81] F W Burton and M R Sleep. Executing functional programs on a vir-
tual tree of processors. In ACM Conference on Functional Program-
ming Languages and Computer Architecture, pages 187-194. ACM,
1981.



[Bus93|

[BWSS]

[C+89]

[Chu4l]

[Col87]

[Col88]

[Col89]

[D+93]

187

David Busvine. Detecting Parallel Structures in Functional Programs.
PhD thesis, Dept of Computing and Electrical Engineering, Heriot-

Watt University, October 1993.

Richard Bird and Phil Wadler. Introduction to Functional Program-

ming. Prentice Hall, 1988.

A Contessa et al. MaRS: A combinator graph reduction multipro-
cessor. In E Odijk, J-C Syre, and M Rem, editors, PARLE’89, num-
ber 365, Vol. 1 in LNCS, pages 176-192. Springer-Verlag, 1989.

Alonzo Church. The Calculi of A-conversion. Princeton University

Press, 1941.

Murray Cole. Algorithmic Skeletons : Structured Management of

Parallel Computations. PhD thesis, University of Edinburgh, 1987.

Murray Cole. Higher-order functions for parallel evaluation. In Pro-
ceedings of the 1988 Glasgow Workshop on Functional Programming,
pages 8-20, August 1988.

Murray Cole. Algorithmic Skeletons : Structured Management of Par-
allel Computations. Research Monographs in Parallel and Distributed
Computing. Pitman/MIT Press, 1989.

John Darlington et al. Parallel programming using skeleton functions.
In PARLE ’93 Parallel Architectures and Languages Europe, 5th In-
ternational PARLE Conference, Munich, Germany, pages 146-160,
June 1993.



[DDD95]

[DKs2]

[DM*92]

[DR81]

[DT93]

[DTGO3]

[Eka91]

188

H Deldarie, J R Davy, and P M Dew. The performance of parallel al-
gorithmic skeletons. Research Report Series 95.6, School of Computer
Studies, University of Leeds, March 1995.

Alan L Davis and Robert M Keller. Data flow program graphs. IEEE

Computer, pages 26—41, February 1982.

Marco Danelutto, Roberto Di Meglio, et al. A methodology for the
development and the support of massively parallel programs. Future

Generation Computer Systems, 8:205-220, August 1992.

John Darlington and M J Reeve. ALICE - a multi-processor reduc-
tion machine for the parallel evaluation of applicative languages. In
Proc. ACM Conference on Functional Programming Languages and

Computer Architecture, pages 65-75, 1981.

John Darlington and Hing Wing To. Building parallel applications
without programming. Presented at the Second Workshop on Ab-
stract Machine Models for Highly Parallel Computers, Leeds, April

1993.

John Darlington, Hing Wing To, and M Ghanem. Structured paral-
lel programming. In Working Conference on Massively Parallel Pro-
gramming Models: Suitability, Realisation and Performance, Berlin,

Germany, 1993.

Kattamuri Ekanadham. A perspective on Id. Parallel Functional

Languages and Compilers, 1991.



189

[FSWC92] David Feldcamp, H V Sreekantaswamy, Alan Wagner, and S Chan-

[FW93]

[Gee94]

[GLO3]

[Gol88]

[Gol89]

[Gor95]

son. Towards a skeleton-based parallel programming environment.

Transputer Research and Applications, 5:104-115, 1992.

David Feldcamp and Alan Wagner. Parsec - a software development
for performance oriented parallel programming. Transputer Research

and Applications, 6:247-262, 1993.

A Max Geerling. Program transformations and skeletons: formal
derivation of parallel programs. Technical Report CSI-R9411, Com-
puting Science Institute, Katholieke Universiteit Nijmegen, October

1994.

Sergeil Gorlatch and Christian Lengauer. Parallelisation of divide-
and-conquer in the Bird-Meertens formalism. Technical Report MIP-
9315, Department of Mathematics and Informatics, University of Pas-

sau, December 1993.

Benjamin Goldberg. Multiprocessor execution of functional pro-
grams. International Journal of Parallel Programming, 17(5):425-
473, 1988.

Benjamin Goldberg. Multiprocessor Execution of Functional Pro-

grams. PhD thesis, Yale University, 1989.

Sergeil Gorlatch. From transformations to methodology in parallel
program development: A case study. Technical Report MIP-9508,
Department of Mathematics and Informatics, University of Passau,

May 1995.



[H+92]

[HCAAO3]

[HHO3]

[HJJ94]

[HRS6]

[Hug82]

[Hug90]

190

Paul Hudak et al. Report on the programming language Haskell, a
non-strict, purely functional language, version 1.2. ACM SIGPLAN
Notices, 27(5), May 1992.

James Hicks, Derek Chiou, Boon Seong Ang, and Arvind. Perform-
ance studies of Id on the monsoon dataflow system. Journal of Par-

allel and Distributed Computing, 18:273-300, 1993.

H.Stolze and H.Kuchen. Parallel functional programming using al-
gorithmic skeletons. In Parallel Computing : Trends and Applica-
tions, Proceedings of the International Conference ParCo93, Gren-

oble, France, pages 651654, September 1993.

Kevin Hammond, Jim S Mattson Jr, and Simon L Peyton Jones.

Automatic spark strategies and granularity for a parallel functional

language reducer. In CONPAR, September 1994.

Peter Harrison and M J Reeve. The parallel graph reduction machine
ALICE. In Joseph H Fasel and Robert M Keller, editors, Workshop
on Graph Reduction, volume LNCS 279, pages 181-202, Santa Fe,

New Mexico, USA, 1986. Springer-Verlag.

John Hughes. Graph reduction with supercombinators. Technical
Report Technical Monograph PRG-28, Oxford University Computing

Laboratory, United Kingdom, 1982.

John Hughes. Why functional programming matters. In David
Turner, editor, Research Topics in Functional Programming, pages

17-42. Addison-Wesley, 1990.



[Jay95]

[JCSHS?T]

[JH92]

[Joh84]

[Jon87]

[Jon89]

[Jou91]

191

C.Barry Jay. Shape analysis for parallel computing. In John Darling-
ton, editor, Proceedings of the Fourth International Parallel Comput-
ing Workshop: Imperial College London, 25-26, pages 287-298. Im-
perial College/Fujitsu Parallel Computing Research Centre, Septem-
ber 1995.

Simon L Peyton Jones, Chris Clack, Jon Salkild, and Mark Hardie.
GRIP - a high performance architecture for parallel graph reduction.
In Functional Programming Languages and Computer Architecture,

pages 98-112, Berlin, September 1987. Springer-Verlag.

Simon L Peyton Jones and Kevin Hammond. Profiling schedul-
ing strategies on the GRIP parallel reducer. In 4th International
Workshop on the Parallel Implementation of Functional Languages,
Aachen Germany, September 1992. Aachener Informatik-Berichte Nr
92-19.

Thomas Johnsson. Efficient compilation of lazy evaluation. In
SIGPLAN 84 Symposium on Compiler Construction, pages 5869,
Montreal, Canada, 1984.

Simon L Peyton Jones. The Implementation of Functional Program-

ming Languages. Prentice Hall, 1987.

Simon L Peyton Jones. Parallel implementations of functional pro-

gramming languages. The Computer Journal, 32(2):175-186, 1989.

Guido K Jouret. Compiling functional languages for SIMD archi-
tectures. In 3rd. IEEE Symposium on Parallel and Distributed Lan-

guages, December 1991.



[Jr93]

[7989]

[Kead4]

[Kel89]

[Lei85)]

[LKB91]

[Mei]

[Mes94]

[MHTS9]

192

Jim S Mattson Jr. Performance of parallel schedulers for distrib-
uted graph reduction. In Niymegen Workshop on the Implementation

Functional Languages, 1993.

Simon L Peyton Jones and Jon Salkild. The spineless tagless G-
machine. In Functional Programming Languages and Computer Ar-

chitecture, pages 184-201. ACM, September 1989.

John A Keane. An overview of the Flagship system. Journal of

Functional Programming, 4(1), January 1994.

Paul Kelly. Functional Programming for Loosely-coupled Multipro-
cessors. Research Monographs in Parallel and Distributed Comput-

ing. Pitman/MIT Press, 1989.

Charles E Leiscerson. Fat-trees: Universal networks for hardware-

efficient supercomputing. IEEE Transactions on Computers, C-

34(10), October 1985.

Hugh Lester, David R Kingdon, and Geoffrey L. Burn. The HDG-
machine: A highly distributed graph reducer for a transputer net-
work. The Computer Journal, 34(4):290-301, 1991.

Meiko. Computing Surface - CSTools Documentation Guide.

Message Passing Interface Forum. MPI:A Message-Passing Interface

Standard, January 1994.

Robin Milner, Robert Harper, and Mads Tofte. The definition of
standard ML. Technical Report ECS-LFCS-89-81, LFCS, Depart-

ment of Computer Science, University of Edinburgh, 1989.



[Mic89]

[Mil7§]

[Mil93]

[NSvEP91]

[P+88]

[PD93]

[Pel93]

[Ran95]

[Roe94]

193

Greg Michaelson.  An Introduction to Functional Programming

through Lambda Calculus. Addison-Wesley, 1989.

Robin Milner. A theory of type polymorphism in programming.

Journal of Computer and System Sciences, 17:348-375, 1978.

Richard Miller. A constructive theory of multidimensional arrays.
Programming Research Group, University of Oxford, February 1993.
MSc to DPhil transfer.

E G J M H Nocker, J E W Smetsers, M C J D van Ekelen, and
M J Plasmeijer. Concurrent Clean. In E H L Aarts, J van Leeuwen,
and M Rem, editors, PARLE 91, number 506, Vol. 2 in LNCS, pages
202-219. Springer-Verlag, 1991.

William Press et al. Numerical Recipes in C - The Art of Scientific

Computing. Cambridge University Press, 1988.

Susanna Pelagatti and Marco Danelutto. Structuring parallelism in
a functional framework. Technical Report TR-29/93, Dipartimento

di informatica, Universita di Pisa, 1993.

Susanna Pelagatti. A Methodology for the Development and the Sup-
port of Massively Parallel Programs. PhD thesis, Universita di Pisa-
Genova-Udine, Italy, 1993. TD 11/93.

Roopa Rangaswami. HOPP - a higher-order parallel programming
model. In Marc Moonen, editor, Algorithms and Parallel VLSI Ar-

chitectures. Elsevier, 1995.

Paul Roe. Derivation of efficient data parallel programs. In 17th

Australasian Computer Science Conference, pages 621-628, 1994.



[San93]

[Sar89]

[Sar91]

[SC93]

[Ske91]

[Ski91]

[Ski92]

[Smi65]

[Spi89]

194

Patrick M. Sansom. Time profiling a lazy functional compiler. In
Glasgow Workshop on Functional Programming, pages XXIII-1 —
XXIII-6, 1993.

Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Ez-
ecution on Multiprocessors. Research Monographs in Parallel and

Distributed Computing. Pitman/MIT Press, 1989.

Vivek Sarkar. PTRAN - The IBM Parallel Translation System. In
[Szy91], 1991.

David B Skillicorn and Wentong Cai. A cost calculus for parallel
functional programming. Technical report, Department of Comput-

ing and Information Sciences, Queens University, Kingston, Canada,

March 1993.

Stephen K Skedzielewski. SISAL. Parallel Functional Languages and

Compilers, 1991.

David B Skillicorn. Models for practical parallel computation. In-
ternational Journal of Parallel Programming, 2(20):133-158, April

1991.

David B Skillicorn. The Bird-Meertens formalism as a parallel model.
NATO ARW, Software for Parallel Computation, June 1992.

Gordon Smith. Numerical Solution of Partial Differential Equations.

Oxford University Press, 1965.

Mike Spivey. A categorical approach to theory of lists. Mathematics
of Program Construction, LNCS 375:399-408, June 1989.



SS89]

[Szy91]

[Tof89]

[Tur79]

[U1194]

[YMS9]

195

Youcef Saad and Martin Schultz. Data communications in hypercube.

Journal of Parallel and Distributed Computing, 6:115-135, 1989.

Boleslaw K Szymanski, editor. Parallel Functional Languages and

Compilers. Frontier Series. ACM Press, New York, 1991.

Mads Tofte. Four lectures in standard ML. Technical Report ECS-
LFCS-89-73, LFCS, Department of Computer Science, University of

Edinburgh, March 1989.

David A Turner. A new implementation technique for applicative

languages. Software - Practice and Ezperience, 9:31-49, 1979.

Jeffrey D Ullman. Elements of ML Programming. Prentice Hall, 1994.

Y.Saad and M.H.Schultz. Data communications in parallel architec-

tures. Parallel Computing, 11:131-150, 1989.



