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to the classical Nash equilibrium, can be sought using traditional game-theoretic methods.Our implementation of the RMM algorithm in three multi-agent domains supports ourclaim that coordination emerges as a result of rational decision-making of agents interactingwhen they have no pre-established protocols to guide them. We found that the RMM agentsare able to coordinate on the level comparable to that of the human-controlled agents, and,in some cases, better. Particularly encouraging is the ability of the RMM agents to e�ectivelyinteract not only with other RMM agents, but also with other agents and humans.Our investigations can be extended in numerous ways. First, in practical situations, theintentional stance can be only one of the guides to the expected behavior of other agents;the agents also have to be able to update models of each other through observation and planrecognition. The challenge is in integrating the normative, intentional modeling using other'srationality with techniques based on observation. Our work in this direction utilizes Bayesianlearning, for which RMM, given its probabilistic character, is naturally suited (see [31, 74] forrecent results). Second, we are exploring how the deeper reasoning in RMM, having been doneonce, can be summarized (compiled) into shallower, models of other agents or heuristic rulesof interactive behavior. This means that, even in cases where an agent cannot a�ord to useRMM in deciding what it should do in a time-constrained situation and resorts to a (possiblywrong) heuristic response, an agent can revisit previous decision situations when it has thetime and use RMM to determine what the rational response should have been. By storingthis as a rule of behavior that can be recalled when appropriate in the future (see related workon chunking [47]), RMM can provide the basis for the accrual of rational heuristics [58].Another important direction, and an application area, of RMM is studying rational com-municative behavior among agents involved in interactions. It turns out that our frameworkallows the agents to also compute the expected utilities of alternative communicative actionsthey could execute. The agent's maximizing the expected utility of such actions leads to ra-tional communicative behavior. We will report on our approach, implementation and resultsin this area in a forthcoming paper.AcknowledgmentsWe would like to gratefully acknowledge the helpful comments and encouragement wereceived from our colleagues in the distributed AI community, as well as from people out-side the distributed AI community who graciously provided us with further insights and/orsanity checks. In particular, we would like to thank Professor David Wehe from the Depart-ment of Nuclear Engineering at the University of Michigan, Professor Eddie Dekel from theDepartment of Economics at Northwestern University, Professor Cristina Bicchieri from theDepartment of Philosophy at Carnegie Mellon University, Professor Adam Brandenburer fromthe Harvard Business School, and Professor Hal Varian from the Department of Economicsat the University of California at Berkeley.We also acknowledge the help of our students, Jose Vidal from the University of Michi-gan's EECS department, and Tad Kellogg and Sanguk Noh from the University of Texas at28



number of ways. For lack of space, we brie
y list some of the most intuitive methods (see[27] and the more recent [58] for more details). First, the dynamic programming solution ofthe recursive model structure takes advantage of the property of overlapping subproblems (see[18], section 16.2), which avoids repeated redundant solutions of branches with the same formin the recursive model structure. The extent to which problems do overlap, is, of course, casedependent. However, in environments like the pursuit problem, described in Section 5, theoverlap in subproblems leads to reducing complexity down to a polynomial.A powerful idea for further reducing the complexity of agent coordination in large groups isto neglect the models of agents with which the interaction is weak. First, it can be shown thatmodels of some agents can be safely neglected, since they possibly cannot change the solutionfor the best alternative. Second, some models that potentially could in
uence the solution willdo so with only a very small probability. This family of simpli�cations and approximationsis clearly similar to strategies of coordinating humans; we usually worry about the people inour immediate vicinity and about the few persons we interact with most closely, and simplyneglect the others within, for example, the building, organization, or the society at large. Asit turns out, the payo� matrices lend themselves to an e�cient assessment of the strength ofinteraction between agents by analyzing variability of the payo� values. For details of theseand other simpli�cation methods, see [27, 58, 77], and related work in [60, 69].8 Summary and ConclusionsThe starting point for our explorations in this paper has been the presumption that coordina-tion should emerge as a result of rational decisions in multi-agent situations, where we de�nedrationality as maximization of expected utility. We argued that decision-theoretic rationalityis applicable to multi-agent interactions since the agents have to make choices under uncer-tainty: The abilities, sensing capabilities, beliefs, goals, preferences, and intentions of otheragents are not directly observable and usually are not known with certainty. Thus, we useddecision-theoretic rationality as a normative paradigm, describing how an agent should makedecisions in an uncertain multi-agent environment.Further, we used expected utility maximization as a descriptive paradigm, to model otherrational agents in a multi-agent environment. We have documented how our explorationnaturally brings us to concepts from game theory, but our concern with providing a decision-making apparatus to an individual agent, rather than providing an observer with analyticaltools, has led us away from the traditional concern with equilibrium solutions. Instead, weuse a newly proposed decision-theoretic approach to game theory, implemented using dynamicprogramming. Our agent-centered perspective, as well as our assumption that the knowledgeof the agent is �nitely nested, are the two main di�erences between our approach in RMMand the traditional game theoretic analysis. We argued that the solution concept presentedin this paper complements the game-theoretic solution: When the knowledge of an agentis nested down to a �nite level, a decision-theoretic approach implemented using dynamicprogramming is applicable. When the in�nitely nested common knowledge is available thebottom-up dynamic programming is not applicable, but a �xed-point solution, corresponding27



before, is Dennett's formulation of the intentional stance [19], and his idea of the ladder ofagenthood (see [54] for a succinct discussion), the �rst �ve levels of which we see as actuallyembodied in RMM. Somewhat related to RMM is the familiar minimax method for searchinggame trees [57]. However, game tree search assumes turn taking on the part of the playersduring the course of the game and it bottoms out when the game terminates or at some chosenlevel, while RMM addresses agent's choice without observing the other agents' moves and itbottoms out when there is no more knowledge.Shoham's agent-oriented programming (AOP) [71] takes more of a programming-languageperspective. Shoham de�nes manymental attitudes, for example belief, obligation, and choice,as well as many types of messages that the agents can exchange, and he has developed apreliminary version of an interpreter. However, while Shoham has proposed it as an extension,decision-theoretic rationality has not yet been included in AOP.The issue of nested knowledge has also been investigated in the area of distributed systems[22] (see also [21]). In [22] Fagin and colleagues present an extensive model-theoretic treatmentof nested knowledge which includes a no-information extension (like the no-information modelin RMM) to handle the situation where an agent runs out of knowledge at a �nite level ofnesting; however, no sub-intentional modeling is envisioned. Further, they do not elaborate onany decision mechanism that could use their representation (presumably relying on centrallydesigned protocols). Another related work on nested belief with an extensive formalism isone by Ballim and Wilkes [4]. While it concentrates on mechanisms for belief ascription andrevision, primarily in the context of communication, it does not address the issues of decisionmaking. Korf's work on multi-agent decision trees considers issues of nested beliefs, wherethe beliefs that agents have about how each evaluates game situations can vary [46]. Tambedescribes another interesting approach to coordinating agents during team activities in [75].The applications of game-theoretic techniques to the problem of interactions in multi-agent domains have also received attention in the Distributed AI literature, for example in[65, 66, 67]. This work uses the traditional game-theoretic concept of equilibrium to develop afamily of rules of interaction, or protocols, that would guarantee the properties of the systemas a whole that are desirable by the designer, like stability, fairness and global e�ciency. Otherwork by Koller [44] on games with imperfect information, Wellman'sWALRAS system [80, 79],and Sandholm work on coalitions [70] also follow the more traditional lines of equilibriumanalysis.7 ComplexityOne look at the branching nested representations proposed in this paper is enough to suggestthat complexity may become an issue. Indeed, if we were to characterize the size of a problemfor RMM to solve by the number of agents, n, it is easy to show that the complexity of buildingand solving the recursive models grows exponentially as O(jAjn �ml), where jAj is the numberof alternative actions considered, m is the branching factor of the recursive model structure,and l is the level of nesting of the model structure.Luckily, an exhaustive evaluation of the full-blown RMM hierarchy can be simpli�ed in a26



In other related work in game theory, researchers have begun to investigate the assumptionsand limitations of the classical equilibrium concept [5, 26, 41, 64, 76]. As we mentioned, ourwork on RMM follows an alternative approach, proposed in [3, 7, 41, 62], and called a decision-theoretic approach to game theory. Unlike the outside observer's point of view in classicalequilibrium analysis, the decision-theoretic approach takes the perspective of the individualinteracting agent, with its current subjective state of belief, and coincides with the subjectiveinterpretation of probability theory used in much of AI (see [12, 55, 59] and the referencestherein). Its distinguishing feature seems best summarized by Myerson ([53], Section 3.6):The decision-analytic approach to player i's decision problem is to try to predictthe behavior of the players other than i �rst, and then to solve i's decision problemlast. In contrast, the usual game-theoretic approach is to analyze and solve thedecision problems of all players together, like a system of simultaneous equationsin several unknowns.Binmore [5] and Brandenburger [7] both point out that unjusti�ability of common knowl-edge leads directly to the situation in which one has to explicitly model the decision-makingof the agents involved given their state of knowledge, which is exactly our approach in RMM.This modeling is not needed if one wants to talk only of the possible equilibria. Further,Binmore points out that the common treatment in game theory of equilibria without any ref-erence to the equilibrating process that achieved the equilibrium23 accounts for the inability ofpredicting which particular equilibrium is the right one and will actually be realized, if therehappens to be more than one candidate.24The de�nition of the recursive model structure we presented is also closely related tointeractive belief systems considered in game theory [3, 37, 52]. Our structures are somewhatmore expressive, since they also include the sub-intentional and no-information models. Thus,they are able to express a richer spectrum of the agents' decision making situations, includingtheir payo� functions, abilities, and information they have about the world, but also thepossibility that other agents should be viewed not as intentional utility maximizers, but asmechanisms or simple objects.Apart from game theory we should mention related work in arti�cial intelligence. In hisphilosophical investigations into the nature of intentions Bratman [8] distinguishes betweenmere plans, say as behavioral alternatives, and mental states of agents when they \have aplan in mind" which is relevant for having an intention (see also [1]). Our approach of viewingintentions as the results of rational deliberations over alternatives for action, given an agent'sbeliefs and preferences, is clearly very similar. Closely related is also the concept of practicalrationality in [61]. Another strand of philosophical work that we follow, as we have mentionedbut turn out to be di�cult to formalize, so we treat the issue here as open.23Binmore compares it to trying to decide which of the roots of the quadratic equation is the \right" solutionwithout reference to the context in which the quadratic equation has arisen.24Binmore [6], as well as others in game theory [42, 43, 14, 15] and related �elds [72], suggest the evolutionaryapproach to the equilibrating process. The centerpiece of these techniques lies in methods of belief revision,which we also investigated using the RMM framework. Some of our results are presented in [31, 74].25



can be explained by the highly visual character of the task. Humans made their choices byeyeing the screen and choosing their actions based on how best to surround the prey. RMMagents, of course, did not have the advantage of visual input.5.3 Cooperative Assembly DomainWe simulated a cooperative assembly task, characteristic of many space and manufactur-ing applications, using the blocks world in which the agents were to assemble the blocksinto simple given con�gurations. In this domain, again, we tested the behavior of RMMagents when paired o� with other RMM and human agents. The point was to observe theagents properly dividing the tasks of picking up various blocks, and not wasting the e�ortin attempting to pick up the same blocks. We have not performed rigorous analysis of per-formance achieved by agents in this domain but the reader can �nd the typical runs onhttp://dali.uta.edu/Blocks.html.In summary, our experiments in the three domains above provide a promising con�rmationof the ability of the RMM algorithm to achieve coordination among agents in unstructuredenvironments with no pre-established coordination protocols. We found the behavior of RMMagents to be reasonable and intuitive, given that there was no possibility of communication.RMM agents were usually able to predict the behavior of the other agents, and to successfullycoordinate with them. Given the nature of the application domains we outlined earlier and thefrequent need for competence in interactions with humans, we �nd the experiments involvinga heterogeneous mix of RMM and human participants particularly promising.6 Related WorkSome of the most relevant works are ones that bear upon our Assumption 1 in Section 3.2,postulating �niteness of knowledge nesting in the recursive model structure.20 A well-knownparticular case of in�nitely nested knowledge is based on the notion of common knowledge[2]. A proposition, say p, is common knowledge if and only if everyone knows p, and everyoneknows that everyone knows p, and everyone knows that everyone knows that everyone knowsp, and so on ad in�nitum. However, in their well-known paper [34], Halpern and Mosesshow that, in situations in which agents use realistic communication channels which can losemessages or which have uncertain transmission times,21 common knowledge is not achievablein �nite time unless agents are willing to \jump to conclusions," and assume that they knowmore than they really do.2220Here, knowledge about the world is taken as something the agent is acquiring through sensing, as opposedto merely assuming.21To our best knowledge, all practically available means of communication have such imperfections.22Halpern and Moses consider the concepts of epsilon common knowledge and eventual common knowledge.However, in order for a fact to be epsilon or eventual common knowledge, other facts have to be commonknowledge within the, so called, view interpretation. See [34] for details. Also, it has been argued that commonknowledge can arise due to the agents' copresence, and, say, visual contact. These arguments are intuitive,24



model structures that are assumed to end on the �fth level with no-information models.

Figure 8: Predator-prey Coordination Game Simulated in MICEIn this domain we ran �ve sets of experiments, each consisting of �ve runs initialized bya randomly generated con�guration of predators and prey. The �ve sets of runs containeddi�erent numbers of RMM and human agents, and typical runs in each set can be viewed athttp://dali.uta.edu/Pursuit.html.Using the time-to-capture as the measure of quality of the coordination among predators,we found that the best results were obtained by the all-human team (average time-to-captureof about 16 time units), followed by the all RMM team (average time-to-capture about 22units), with the mixed RMM-human teams exhibiting the times of about 24 time steps (typicalstandard deviation for a set was 3.8). However, a statistical signi�cance test (ANOVA) showsthat the di�erences in the results obtained were not statistically signi�cant; the di�erence inperformance was not due to chance with probability less than 0.95.Thus, the RMM-controlled agents were fairly competent in coordinating, but did notperform as well as human subjects. We think that the high quality results obtained by humans23



RMM RMM-
HUMAN

RMM-
IND.

IND. HUMAN RMM-
RANDOM

RANDOM

Average total expected damage 

Strategies

0

200

400

600

800

1000

1200

Figure 7: Average total expected damage (over 100 runs).by the RMM team vs. the other non-human teams, t tests were performed. The results showthat the RMM team was better than any other team with the probability of 99% (0:01 levelof signi�cance).The above results show that RMM allows the automated agents to achieve high qualitycoordination in this unpredictable environment without relying on prede�ned protocols. Aswe argued, methods using traditional game-theoretic equilibria would not be su�cient tocoordinate agents in our domain. A particularly promising facet of our results is that theRecursive Modeling Method is a robust mechanism for modeling and coordination not onlyamong RMM agents, but also with the human-controlled agents.5.2 Coordination in the Pursuit ProblemThe pursuit problem is usually described as one during which four agents, called predators,have to coordinate their movements to pursue, surround, and capture the �fth agent, calledprey (see Figure 8). Our RMM implementation of the predators' decision-making uses theevaluation of expected utility of alternative positions of the agents, resulting from their alter-native moves, including the factors of how close the agents are to the prey, and how well theprey is surrounded and blocked o�, as discussed in [49]. The expected utilities of alternativemoves were then assembled into payo� matrices and used by the RMM agents in recursive22



RMM RMM-
HUMAN

RMM-
IND.

IND. HUMAN RMM-
RANDOM

RANDOM

Average number 
of intercepted targets

Strategies

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Figure 6: Average number of intercepted targets (over 100 runs).consider the multiplication of the missile size and the hit probability, but did not model theother agent appropriately. The performance of the RMM team was not perfect, however, sincethe agents were equipped with limited and uncertain knowledge of each other.The performance of the heterogeneous teams again suggests the favorable quality of coordi-nation achieved by RMM agents. Comparing a heterogeneous team with a homogeneous team,the average number of intercepted targets for the RMM-Human team was 5:10 (� �X = 0:04),and for the all-human team 4:77; 4:98 (� �X = 0:03) for the RMM-Independent team vs. 4:89for the Independent team; 4:66 (� �X = 0:06) for the RMM-Random team is, and 3:77 for theall-Random team.In order to test whether the observed di�erences among the target selection strategies werenot due to chance, we used an analysis of variance with a 0:01 signi�cance level. Here, the all-human team and the RMM-Human team were left out, because of the relatively small numberof participating human subjects.19 In the experiment in which the number of interceptedtargets was measured (Figure 6), F (4;1) = 4:12, p < 0:01. Therefore, we can concludethat the di�erences among the �ve target selection strategies are not due to chance with theprobability 99%. This result holds also for the experiment in which the total expected damagewas measured. To test the signi�cance of the observed superiority of coordination achieved19In our preliminary experiment there were 4 pairs of all-human teams and RMM-Human teams.21



achieved by the RMM agents in a team, when paired with human agents, and when com-pared to other strategies. To evaluate the quality of the agents' performance, the resultswere expressed in terms of (1) the number of intercepted targets, i.e., targets the defenseunits attempted to intercept, and (2) the total expected damage to friendly forces after allsix interceptors were launched. The total expected damage is de�ned as a sum of the resid-ual warhead sizes of the attacking missiles. Thus, if a missile was targeted for interception,then it contributed (1 � P (H)) � Size to the total damage. If a missile was not targeted, itcontributed all of its warhead size to the expected damage.The target selection strategies are as follows:� Random: selection randomly generated.� Independent, no modeling: selection of arg maxjfP (Hij)� Tjg for agent i.� Human:17 selection by human.� RMM: selection by RMM.The random agents were included to provide the worst-case base line of the system perfor-mance in our experiments. We included the independent agents to show what coordinationcan be expected when agents maximize but do not model each other in making their choices.We experimented with the above policies to understand the agent interactions in two groups:heterogeneous teams of agents with the same policy and the mixed agent teams with di�erentpolicies.As shown in Figure 6 and Figure 7, we found that the all-RMM team outperformedthe human and independent teams. The average number of intercepted targets by the all-RMM team during 100 trials was 5:49 (� �X18= 0:05), compared to 4:89 (� �X = 0:08) for theindependent team and 4:77 (� �X = 0:06) for the all-human team. Further, the RMM-controlledcoordinated defense resulted in the total expected damage of 488:0 (� �X = 23:4), which wasmuch less than that of the independent team (732:0; � �X = 37:1) and that of the all-humanteam (772:0; � �X = 36:3).We found that the human performance was very similar to the performance of independentagents. The most obvious reason for this is that humans tend to depend on their intuitivestrategies for coordination, and, in this case, found it hard to engage in deeper, normative,decision-theoretic reasoning. Sometimes the ways human subjects choose a missile were dif-ferent and quite arbitrary. Some of them attempted to intercept the 3 left-most or right-mostmissiles, depending whether they were in charge of the left or the right defense battery. Thisled to di�culties when the missiles were clustered at the center area and to much duplicatede�ort. Others tended to choose missiles with the largest missile size. Still others tried to17We should remark that our human subjects were CSE and EE graduate students who were informed aboutthe criteria for target selection. We would expect that anti-air specialists, equipped with a modern defensedoctrine, could perform better than our subjects. However, the defense doctrine remains classi�ed and wasnot available to us at this point.18� �X denotes the standard error of the mean. 20



Figure 5: MICE Simulation of the Air Defense Domain.In all of the experiments we ran16, each of two defense units could launch three interceptors,and were faced with an attack by six incoming missiles. We put all of the experimental runsunder the following conditions. First, the initial positions of missiles were randomly generatedand it was assumed that each missile must occupy a distinct position. Second, the warheadsizes were 470; 410; 350; 370; 420; 450 for missiles A through F, respectively. Third, the otherbattery was assumed to be operational with probability 0:8, and to be incapacitated withprobability 0:2. Fourth, the performance assessments of agents with di�erent policies werecompared using the same threat situation. Further, each interceptor could intercept only onemissile and it was moving twice as fast as the incoming missile. Finally, although there wasno communication between agents, each agent could see which threat was shot at by the otheragent and use this information to make its next decision.Our experiments was aimed at determining the quality of modeling and coordination16For an on-line demonstration of the air defense domain refer to the Web page http://dali.uta.edu/Air.html.19



which, if any, protocol to follow. Examples include numerous human-machine coordinationtasks, such as many realistic space applications, in which robots need the ability to inter-act with both other robots and humans, as well as applications in defense-related domains,characterized by their inherently unpredictable dynamics. Other examples include telecom-munications networks, 
exible manufacturing systems, and �nancial markets.In our work, we have looked more closely at applying RMM to coordinate autonomousmanufacturing units [30], and applications to coordination and intelligent communication inhuman-computer interaction [28].Finally, we have implemented RMM in three examples of multi-agent domains. Our aimhas been to assess the reasonableness of the behavior resulting from our approach in a num-ber of circumstances, and to assess its robustness and performance in mixed environmentscomposed of RMM and human-controlled agents. Our experiments in mixed environmentsare intended to show the advantage of RMM as a mechanism for coordination that relies onmodeling the other agents' rationality, as opposed to relying on coordination protocols. Webrie
y describe our results below.We should note that all of the examples of coordination below were achieved without anycommunication among the RMM-based and the human-controlled agents that participated.The results of interactions with communication are reported in a separate paper.5.1 Coordination in the Air Defense DomainOur air defense domain consists of some number of anti-air units whose mission is to defend aspeci�ed territory from a number of attacking missiles (see Figure 5). The defense units haveto coordinate and decide which missiles to intercept, given the characteristics of the threat,and given what they can expect of the other defense units. The utility of the agents' actionsin this case expresses the desirability of minimizing the damage to the defended territory. Thethreat of an attacking missile was assessed based on the size of its warhead and its distancefrom the defended territory. Further, the defense units considered the hit probability, P (H),with which their interceptors would be e�ective against each of the hostile missiles. Theproduct of this probability and a missile threat was the measure of the expected utility ofattempting to intercept the missile.In this domain, it is easy to see the advantage of using decision-theoretic approach togame theory as implemented in RMM vs. the traditional game-theoretic solution concept ofequilibria. Apart from the need for common knowledge the agents have to share to justifyequilibria (we discuss this further in Section 6), the problem is that there may be manyequilibria and no clear way to choose the \right" one to guide the agent's behavior. Take anexample of two air defense units facing an attack by two missiles, A and B. In their choiceof which missile the agents should intercept there are already two equilibria: One in which�rst agent intercepts A and second agent intercepts B, and a another one in which �rst agentintercepts B and second agent intercepts A. With the number of equilibria equal, or sometimesgreater, than the number of alternative targets the agent would be left with no guidance as towhich solution should be acted upon, and which threat should actually be intercepted next.18



The four alternative models of R2's behavior can be combined into the overall intentionaldistribution over R2's actions as a probabilistic mixture of R2's intentions in each of thealternative models (Equation 6): pR1R2 = [pR1a21 ; pR1a22 ; pR1a22 ] = :8 � [0; 0; 1] + 0:09375 � [0; 1; 0] +0:00625 � [0; 0; 1] + 0:1� [1=3; 1=3; 1=3] = [0:0333; 0:1271; 0:8396]:The expected utilities of R1's alternative actions in its own decision-making situation (topmatrix in Figure 4) can now be computed (Equation 5) as:uR1a11 = 0:0333� 1 + 0:1271� 5 + 0:8396� 1 = 1:5084uR1a12 = 0:0333� 4 + 0:1271� 2 + 0:8396� 2 = 2:0666uR1a13 = 0:0333� 2 + 0:1271� 4 + 0:8396� 0 = 0:575Thus, the best choice for R1 is to pursue its option a12, that is, to move toward point P2and make an observation from there. It is the rational coordinated action given R1's stateof knowledge, since the computation included all of the information R1 has about agent R2'sexpected behavior. Intuitively, this means that R1 believes that R2 is so unlikely to go to P2that R1 believes it should go there itself.Let us note that the traditional tools of equilibrium analysis do not apply to this examplesince there is no common knowledge. However, the solution obtained above happens to coin-cide with one of two possible solutions that could be arrived at by traditional game-theoreticequilibrium analysis, if a number additional assumptions about what the agents know weremade in this case. Thus, if R1 were to assume that R2 knows about the point P2, and thatR2 knows that R1 knows, and so on, then R1's move toward P2 would a part of the equilib-rium in which R1 goes to P2 and R2 goes to P1. This shows that the solutions obtained inRMM analysis can coincide with game-theoretic solutions, but that it depends on fortuitousassumptions about agents' knowledge. It is also not di�cult to construct a �nite state ofR1's knowledge that would result in R1's rational action to be pursuing observation from P1and expecting R2 to observe from P2, which happens to be the other equilibrium point thatcould be derived if the agents were assumed to have common knowledge [3] about P2. Thecoincidence would, again, be a matter of making ad hoc assumptions about the agents' statesof knowledge.5 Application Domains and ExperimentsRMM �lls a unique niche among multi-agent reasoning techniques based on pre-establishedprotocols in many realistic domains for two main reasons. First, in many domains the envi-ronment is too variable and unpredictable for pre-established protocols to remain optimal incircumstances that could not be foreseen by the designers. Second, frequently, the group ofinteracting agents is not speci�ed before hand15, and one cannot rely on the agents' knowing15This means that the multi-agent system is open. 17



The modeling probability of the branch representing the class favoring the action a22 iscomputed as the proportion of all of the 3-vectors in Figure 3 that favor a22, among all of thelegal distributions over the three actions of R1, [x1; x2; x3], such that x1+x2+x3 = 1 and 0 �xi � 1, for i equal to 1 through 3. All of these legal 3-vectors form a triangular part of a planein the three dimensional space spanned by the axes x1, x2, and x3. The area of this trianglecan be computed [51] as p3 1R0 1�x1R0 dx2dx1 = p32 . The part of the area of the legal 3-vectors thatfavor the action a22, can be computed (again, see [51]) as p3[0:25R0 0:75R0 dx2dx1+ 1R0:25 1�x1R0 dx2dx1] =p3 � 1532, and the area that favors a23 can be computed as p3 1R0:75 1�x2R0 dx1dx2 = p332 .14 Thus,two equivalence classes among the 3-vectors that favor a22 and a23 have probabilities equal to1516 and 116, respectively, and these are the only classes that have a nonzero probability. Now,all of the sub-branches that favor each of the separate alternative actions can be lumped intoa sub-branch ending with a single representative probability 3-vector favoring this particularaction on level 3, or simply with the intentional distribution re
ecting the favored action ofagent R2 on level 2. The resulting recursive structure for our example is depicted in Figure 4.The recursive structure in Figure 4 can be solved with dynamic programming, which afterreaching the bottom of the structure, propagates the results upwards as follows. The inten-tional probability distribution in the leftmost leaf in Figure 4|representing R1's knowing thatR2 has no information about how to modelR1's intentions|is: p(R1;1);R2R1 = [p(R1;1);R2a11 ; p(R1;1);R2a13 ] =[0:5; 0:5]. Given R2's payo� matrix in this case, the expected utilities of its alternatives in thismodel are computed (Equation 9) as the probabilistic sum of the payo�s:u(R1;1);R2a21 = p(R1;1);R2a11 � 0 + p(R1;1);R2a13 � 0 = 0u(R1;1);R2a23 = p(R1;1);R2a11 � 2 + p(R1;1);R2a13 � 0 = 1Since the set of R2's alternatives that maximize its expected payo� in this model has onlyone element (Amax(R1;1)2 = fa23g) the probability distribution over the actions of agent R2 inthis model (Equations 10 and 11) is: p(R1;1)R2 = [p(R1;1)a21 ; p(R1;1)a23 ] = [0; 1]. Thus, R1 knows that ifR2 cannot see point P2 it will remain stationary.The probability distributions over R2's alternatives in the remaining three branches specifythat R2 will move toward P2 and make an observation from there (this is the case when R2can see P2 and its model of R1 indicates that pursuing P2 is better), with the probability of0:1 � (15=16) = 0:09375. With the probability 0:1 � (1=16) = 0:00625, R2 will remain stilleven though it knows about P2, since its model of R1 indicates that R1 is likely to pursueobservation from P2. The remaining no-information model has a probability of 0.1 and assignsequal probabilities to all of R2's alternative actions.14We found the method of logic sampling to be an e�ective approximate way to compute the values of theintegrals here. 16
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p = 0.1 * (15/16) p = 0.1 * (1/16)Figure 4: Transformed Recursive Model Structure for Example 1these equivalent distributions on the level �+ 1, or simply with the resulting probability dis-tribution computed in Equation 8 on level �. The information contained in these branches canthen propagated upwards directly. We provide examples of these calculations in the followingsection.4 Solving the Example InteractionIn this section, we solve the example decision-making problems presented in Section 2. Webegin by replacing the in�nite branching of the middle model of R2 in Figure 3 with a �nitenumber of equivalence classes. Note that some of the probability triples in the sub-branches inFigure 3, when used to calculate the expected utilities of R2's actions in the matrix above makeR2's action a22 the most preferable, while other triples may favor other actions. For example,if R2 models R1's expected behavior using the probability distribution [1; 0; 0] over the actionsa11, a12, and a13, then, given R2's payo� matrix, the expected utilities of R2's alternatives a21,a22, and a23, according to Equation 5 are 0, 5, and 2, respectively, and the action a22 is preferredfor R2. Another distribution, say, [0:9; 0:1; 0] also favors a22 and thus belongs to the sameequivalence class as [1; 0; 0]. The distribution [0:1; 0:9; 0], on the other hand, makes the actiona23 preferable for R2, and belongs to a di�erent equivalence class.15



turn be expressed in terms of the models that Ri thinks Rj has of the other agents in theenvironment, contained in RM (Ri;�)Rj , and so on.The intentional stance Ri uses to model Rj is formalized in Equation 8. It states thatagent Rj is an expected utility maximizer and, therefore, its intention can be identi�ed as acourse of action that has the highest expected utility, given Rj's beliefs about the world andits preferences.What the intentional stance does not specify is how Rj will make its choice if it �nds thatthere are several alternatives that provide it with the maximum payo�. Using the principleof indi�erence once more, Ri assigns an equal, nonzero probability to Rj's option(s) with thehighest expected payo�, and zero to all of the rest.12 Formally, we can construct the set ofRj's options that maximize its utility:Amax(Ri;�)j = fajk j ajk 2 A(Ri;�)j ^ u(Ri;�);Rjajk = Maxk0(u(Ri;�);Rjajk0 )g: (10)Then, the probabilities are assigned according to the following:p(Ri;�)ajk = 8<: 1jAmax(Ri;�)j j if ajk 2 Amax(Ri;�)j0 otherwise: (11)Finally, if Ri's model terminates with a no-information model, two cases arise. The �rstoccurs when we have a no-information model No-Info� located on level � + 1 describing thelimits of knowledge possessed by the agent modeled on level �. This model is a shorthandfor all legal distributions being possible and equally likely.13 As could be expected, it can beshown (see the principle of interval constraints method in [55]) that it can be equivalentlyrepresented by a uniform distribution over the other agents' possible actions at this level,yielding the probabilities p(Ri;�)ajk = 1jAjj speci�ed in this model. The models in the leaves ofthe right- and left-most branches in Figure 3 illustrate this case.The second, more complex case, occurs when a model No-Info� is located on level deeperthan �+1. In this case we note that Equation 8 and Equation 9 de�ne a �nite number of equiv-alence classes among the in�nite sub-branches represented by these no-information models.Namely, an intentional probability distribution used in Equation 9 to compute the intentionalprobabilities higher up the recursive model in Equation 8 is equivalent to another such dis-tribution, provided that it also favors the same alternatives chosen as optimal in Equation 8.It follows that the no-information model in this case can be equivalently represented by a�nite number (jAjj at most) of discrete branches, each representing such an equivalence class.The resulting discrete branches have a modeling probability, associated with the equivalenceclasses they represent, de�ned on the measurable space of possible intentional probability dis-tributions in the leaves of the sub-branches. These branches can be terminated with any of12As we mentioned, we use the expected utility maximization as a descriptive tool. See also [9, 10].13The principle of indi�erence is applied here to the probability itself. See, for example, the discussion in[16] Section 1.G. 14



We refer to pRia1k :::anp as intentional probabilities. uRia1k ���aim���anp is Ri's expected payo� residing inits payo� matrix, PRi.Ri can determine the intentional probabilities pRia1k :::anp by using its modeling knowledge ofother agents contained in the recursive model RMRi. As de�ned in the preceding section,Ri can have a number of alternative models M (Ri;�) of the other agents, and a modelingprobability, pRi� , associated with each of them. If we label the predicted probability of jointbehavior of the other agents resulting from a model M (Ri;�) as p(Ri;�)a1k :::anp , we can express theoverall intentional probability of the other agents' joint moves, pRia1k :::anp , as an average over allpossible models (this is known as Bayesian model averaging [38]):pRia1k :::anp =X� pRi� � p(Ri;�)a1k :::anp : (6)The joint probability, p(Ri;�)a1k :::anp , of the other agents' behaviors resulting from a modelM (Ri;�),can in turn be expressed as a product of the intentional probabilities for each of the agentsindividually, p(Ri;�)ajk , resulting from a model M (Ri;�)Rj :p(Ri;�)a1k :::anp = p(Ri;�)a1k � � � � � p(Ri;�)anp (7)If the model M (Ri;�)Rj is in the form of a sub-intentional model, then the probabilitiesp(Ri;�)ajk indicating the expected behavior of the entity can be derived by whatever techniques(statistical, model-based, qualitative physics, etc.) Ri has for predicting behavior of suchentities.If Ri has assumed an intentional stance toward Rj in its modelM (Ri;�)Rj , i.e., if it is modelingRj as a rational agent, then it has to model the decision-making situation that agent Rj faces,as speci�ed in Equations 3 and 4, by Rj 's payo� matrix P (Ri;�)Rj and its recursive modelRM (Ri;�)Rj . Ri can then identify the intentional probability p(Ri;�)ajk as the probability that thek-th alternative action is of the greatest utility to Rj in this model:p(Ri;�)ajk = Prob(u(Ri;�);Rjajk = Maxk0(u(Ri;�);Rjajk0 )): (8)u(Ri;�);Rjajk0 is the utility Ri estimates that Rj assigns to its alternative action ajk0 in this model,and it can be further computed as:u(Ri;�);Rjajk0 = X(a1o;:::;anr )2A�j p(Ri;�);Rja1o:::anr u(Ri;�);Rja1o���ajk0 ���anr (9)This equation is analogous to Equation 5 except it is based on Ri's model of Rj. Theu(Ri;�);Rja1o���ajk0 ���anr are Rj's payo�s in the payo� matrix P (Ri;�)Rj . The intentional probabilities p(Ri;�);Rja1o:::anrare what Ri thinks Rj assigns to other agents' actions. The probabilities p(Ri;�);Rja1o:::anr can in13



The de�nition of the recursive model structure and the intentional model are recursive, but,as we argue in more detail later, it is likely to be �nite due to practical di�culties in attainingin�nitely nested knowledge. In other words, in representing the content of its KB about itsown decision-making situation, the situations of the other agents, and of what the other agentsknow about others, the agent is likely to run out of knowledge at some level of nesting, inwhich case the recursion terminates with a level-1 no-information model. Of course somerecursive branches can also terminate with higher level no-information models representingthe possible limitations of other agents' knowledge, or with sub-intentional models that donot lead to further recursion. Thus, the no-information models are not intended as an ad hocmeans to terminate the recursive structure of models. Rather, in our knowledge-based view,the branches of the recursive structure terminate with a no-information model when, and onlywhen, the limits of the agents' knowledge, contained in its KB, are reached. In that way, allof the agent's knowledge relevant to the decision-making process is used to derive the rationalcoordinated choice of action.3.2 Solving RMM Using Dynamic ProgrammingThe recursive nature of RMM makes it possible to express the solution to the problem ofchoice that maximizes expected utility on a given level of modeling in terms of the solutionsto choices of the agents modeled on deeper levels. Thus, to solve the optimization problem onone level requires solutions to subproblems on the lower level. This means that the problemexhibits optimal substructure [18], and that a solution using dynamic programming can beformulated. The solution traverses the recursive model structure propagating the informationbottom-up. The result is an assignment of expected utilities to the agent's alternative actions,based on all of the information the agent has at hand about the decision-making situation.The rational agent can then choose an action with the highest expected utility.Clearly, the bottom-up dynamic programming solution requires that the recursive modelstructure be �nite and terminate. Thus, we make the following assumption:Assumption 1: The recursive model structure, de�ned in Equation 1, is �nite and ter-minates with sub-intentional or no-information models.We should remark that the assumption above complements an assumption that the agentspossess in�nitely nested knowledge, called common knowledge or mutual knowledge, fre-quently made in AI and in traditional game theory. These two assumptions lead to two solutionconcepts; one discussed here, which is decision-theoretic and implemented with dynamic pro-gramming, the other one based on the notion of equilibria. We discuss the justi�ability ofthese assumption further in Section 5.The expected utility of the m-th element, aim, of Ri's set of alternative actions is evaluatedas: uRiaim = X(a1k;:::;anp)2A�i pRia1k :::anpuRia1k���aim���anp (5)where pRia1k:::anp represents Ri's conjecture as to the joint actions of the other agents, i.e., it isan element of the probability distribution over the set of joint moves of the other agents A�i.12



Intent(Ri;�)Rj = RMS(Ri;�)Rj ; (4)that is, it is the recursive model structure that agent Ri ascribes to agent Rj. This structure,as de�ned in Equation 1, further consists of the payo� matrix that Ri ascribes to Rj in thismodel, P (Ri;�)Rj , and the recursive model RM (Ri;�)Rj containing the information Ri thinks Rj hasabout the other agents. For example, the two models in the left and the middle branches inFigure 2 are intentional models.The level-� no-information model, No-Info(Ri;�);�Rj , represents the limits of knowledge as-sociated with the agent modeled on the � level of nesting in the branch the no-informationmodel resides in. In other words, No-Info(Ri;�);�Rj located on a level l, represents Ri's belief thatthe agent modeled on level � has run out of knowledge at level l of Ri's modeling structure.According to this semantics, the superscript of the no-information model has to be between1 (corresponding to the agent Ri running out of information, as in Figure 2) and a value oneless than the level on which the no-information model is located in the recursive structure.Thus, for a no-information model, No-Info�, located on level l, we have: 1 � � � l� 1.The no-information models assign uniform probabilities to all of the alternative distribu-tions over the actions of the other agents and contain no information [55] beyond the currentlyconsidered level of nesting, representing the limits of knowledge reached at a particular stageof recursive modeling. The use of no-information models in our decision-making frameworkre
ects a situation in which a symbolic KB of the agent in question contains the agent's beliefsabout the others' beliefs nested to some level, but it does not contain any information nesteddeeper, for example because the agent did not have a chance to acquire any more information.The sub-intentional model is a model which does not include the ascription of beliefs andpreferences, and does not use rationality to derive behavior.10 Besides the intentional stance,Dennett [19] enumerates two sub-intentional stances: The design stance, which predicts behav-ior using functionality (such as how the functions of a console controller board's componentslead to its overall behavior [35]), and the physical stance, which predicts behavior using thedescription of the state of what is being modeled along with knowledge of its dynamics (like inthe qualitative model of a bouncing ball [25], or �nite state automata models in [11]). Thesemodels can be useful for an agent that can incorporate techniques such as model-based reason-ing or qualitative physics to make predictions about the behavior of sub-intentional11 entities,resulting in a probability distribution over their alternative behaviors, as enumerated in theagent's payo� matrix. Further, any informative conjecture, i.e., a probability distribution overothers' actions, can be treated as a sub-intentional model, if it has been arrived at withoutascribing rationality to the modeled entity. For example, a conjecture as to another's actionsmay be derived from plan recognition, from past actions (as in [39]), or from information re-lated by a third agent, and it can be given a probabilistic weight according to the assessmentof its faithfulness within the RMM framework.10According to Dennett [19], such a sub-intentional agent does not even satisfy the basic requirement ofagenthood. It is simply an entity, then, rather than an agent proper.11That is, not following the decision-theoretic principles of rationality.11



A is de�ned as a cross product: A = A1 � A2 � � � � � An, where set Aj = faj1; aj2 � � �grepresents the alternative actions of agent Rj. The elements of A are the joint moves of then agents in question. We additionally de�ne a joint move of the other agents as an elementof the following set: A�i = A1 � A2 � � � � � Ai�1 � Ai+1 � � � � � An. The joint move of theother agents speci�es the moves of all of the agents except Ri. We further demand that thesets of alternative actions of the agents be exhaustive, and that the alternatives be mutuallyexclusive.Finally, U is a payo� function that assigns a number (expected payo� to Ri) to each of thejoint actions of all of the agents: U : A �! R, where R is the set of real numbers. Intuitively,a purposeful agent has reason to prefer some actions (that further its purposes in the currentsituation) to others [78]. Our ability to represent agents' preferences over actions as payo�sfollows from the axioms of utility theory, which postulate that ordinal preferences amongactions in the current situation can be represented as cardinal, numeric values (see [13, 20]for details). We represent Ri's payo� associated with a joint action (a1k; � � � ; aim; � � � ; anl ) asuRia1k ���aim���anl .We now de�ne the recursive model structure of agent Ri, RMSRi , as the following pair:RMSRi = (PRi; RMRi); (1)where PRi is Ri's payo� matrix, and RMRi is Ri's recursive model, which summarizes theinformation Ri has about the other n�1 agents in the environment. A recursive model RMRiis de�ned as a probability distribution over the alternative models of the other agents. Thus,if M (Ri;�) is taken to denote the �-th of Ri's alternative models of the other agents, i.e., allagents except Ri, then Ri's recursive model assigns to it a probability, pRi� . These probabilitiesrepresent Ri's subjective belief that each of the alternative models is correct. We call pRi� 'smodeling probabilities. They sum to unity: Pm�=1 pRi� = 1 (for the example in Figure 2 theyare the probabilities of the three branches.) To make our exposition more transparent wehave assumed above that the set of alternative models is �nite, but one could generalize themodeling probability to be de�ned over a measurable in�nite space of alternative models.9Each of the alternative models of the other agents is a list of models of each of the agents:M (Ri;�) = (M (Ri;�)R1 ; :::;M (Ri;�)Ri�1 ;M (Ri;�)Ri+1 ; ::;M (Ri;�)Rn ): (2)The models M (Ri;�)Rj , that Ri can have of Rj , come in three possible forms:M (Ri;�)Rj = 8>><>>: Intent(Ri;�)Rj { the intentional model,No � Info(Ri;�);�Rj { the level-� no-information model,Sub� Int(Ri;�)Rj { the sub-intentional model. (3)The intentional model corresponds to Ri modeling Rj as a rational agent. It is de�ned as:9In the next subsection we show how an in�nite space of models can be transformed into an equivalent�nite set. 10



No-Info1 model in the middle branch in Figure 2 is simply a shorthand notation for the moreexplicit representation depicted in Figure 3.The no-information model No-Info1 in the right branch in Figure 2 expresses the factthat R1 has no other information based on which it could predict R2's behavior. Again, thistranslates into all of the legal 2-vector distributions emanating from the model on the �rstlevel being possible and equally likely. It can be shown (see the principle of interval constraintsdiscussed in [55]) that the set of all of these legal distributions can be equivalently representedby a uniform distribution over R2's possible actions, a21, a21 and a23, themselves: [1=3; 1=3; 1=3].This distribution precisely represents R1's lack of knowledge in this case, since its informationcontent is zero.The no-information model No-Info2 in the left branch in Figure 2 is similar but morecomplicated. It expresses the fact that R1 knows that if R2 cannot see P2 then R2 has noinformation based on which it could predict R1's behavior. This translates into all of the legal2-vector distributions, now emanating from the model on the second level, being possible andequally likely. It can be equivalently represented by a uniform distribution over R1's possibleactions, a11 and a13: [0:5; 0:5], as depicted in Figure 3. The above interpretations keep anintuitive convention that branching due to uncertainty emanates from the model of the agentthat is uncertain. The middle and right branches terminate with no-information models dueto lack of knowledge of agent R1, while the left branch terminates with No-Info2 because weassumed that R1 knows that R2 has no information.3 General Form of the Recursive Modeling MethodIn this section, we formalize the intuitions behind the recursive modeling that we developedin the preceding section. The Recursive Modeling Method consists of the recursive modelstructure that contains information the agent has in all of its nested levels, and the solutionmethod that uses dynamic programming to arrive at the rational choice of an agent's actionin a multi-agent situation. The reader who wishes to skip the formalism for now can proceedto Section 4 where we solve the example interaction.3.1 RepresentationWe �rst formally de�ne the payo� matrix, which is the basic building block of RMM's modelingstructure. A payo� matrix represents the decision-making situation an agent �nds itselfin when it must choose an action to take in its multi-agent environment. Following thede�nition used in game theory [63], we de�ne the payo� matrix, PRi , of an agent Ri as a triplePRi = (R;A;U).R is a set of agents in the environment, labeled R1 through Rn (n � 1). R includes alldecision-making agents impacting the welfare of the agent Ri.references. 9
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Figure 3: Semantics of the No-Information Models in Example 1.R2 can see through the trees. In general, the no-information models can represent knowledgelimitations on any level; the limitations of R1's own knowledge,7 R1's knowing the knowledgelimitations of other agents, and so on.Figure 3 illustrates the semantics of the no-information models depicted in Figure 2. Theno-information model No-Info1 in the middle branch means that R1 has no information abouthow it is modeled by R2. Therefore, all of the conjectures that R2 may have about R1'sbehavior are possible and, according to the principle of indi�erence [16, 55], equally likely.This can be represented as the branch on the �rst level of the recursive structure splitting intoin�nite sub-branches, each of which terminates with a di�erent, legal probability distributiondescribing R2's conjecture about R1's behavior. Cumulative probability of all of the sub-branches remains the same (0.1 in this example).8 According to this interpretation, the7Note that we assume the agent can introspect. This amounts to the agent's being able to detect the lackof statements in its knowledge base that describe beliefs nested deeper than the given level.8Our representation here is related to the problem of \only knowing", discussed in [33, 48] and related8
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    Figure 2: Recursive Model Structure depicting R1's Decision-Making Situation in Example 1.the type6 that cannot see through the trees, then R1 knows that R2 does not know anythingabout R1. But in the event that R2 is of the type that can see through the trees, then R1itself has no knowledge in its knowledge base about how it might be modeled by R2.The scenario used here is relatively simple, but we invite the reader to develop his or herown intuitions at this point by considering the problem facing our robot R1: What is the bestcourse of action, given the information R1 has about the situation and about R2? ShouldR1 move to P1 and hope that R2 will cooperate by observing from P2? Or should R1 go toP2 itself, due to the importance of this observation and in the face of uncertainty as to R2'sbehavior? How does the probability of R2's knowing about P2 in
uence R1's choice? Weprovide the answers in Section 4.The no-information models that terminate the recursive nesting in our example are at theleaves of the recursive model structure in Figure 2. These models represent the limits of theagents' knowledge: The model No-Info2 represents the fact that, in the case when R2 cannotsee P2, R1 knows that R2 has no knowledge that would allow it to model R1. Thus, theuncertainty is associated with R2, and the model's superscript speci�es that the state of noinformation is associated with its ancestor on the second level of the structure in Figure 2.The No-Info1 model terminating the middle branch of the recursive structure represents R1'sown lack of knowledge (on the �rst level of the structure) of how it is being modeled by R2, if6Our use of this term coincides with the notion of agent's type introduced by Harsanyi in [37].7



both robots from both P1 and P2 minus R1's own cost: (2+4) - 1 = 5. The payo� to R1corresponding to R1's pursuing a11 and R2's pursuing a21 is (2+0) - 1 = 1, since the informa-tion gathered is worth 2 and redundant observations add no value. All of the payo�s can beassembled in the payo� matrix depicted on top of the structure in Figure 2.In order to arrive at the rational decision as to which of its three options to pursue, R1 hasto predict what R2 will do. If R2 were to take the observation from the point P2, i.e., its a22option, it would be best for R1 to observe from P1. But if R2 decided to stay put, R1 shouldobserve from the point P2, i.e., pursue its option a12. In general, R1 might be uncertain as towhich action R2 will take, in which case it should represent its conjecture as to R2's action asa probability distribution over R2's possible alternative courses of action. If R1 thinks thatR2 attempts to maximize its own expected utility, then R1 can adopt the intentional stancetoward R2 [19], treat R2 as rational, and model R2's decision-making situation using payo�matrices. R2's payo� matrix, if it knows about both observation points, arrived at analogouslyto R1's matrix above, has the form depicted in the middle branch in Figure 2.That is not all, though, because R1 realizes that robot R2 possibly does not know aboutthe observation point P2 due to the trees located between R2 and P2. R1, therefore, has todeal with another source of uncertainty: There is another alternative model of R2's decision-making situation. If R2 is unaware of P2, then it does not consider combinations of actionsinvolving a12 or a22 and its payo� matrix is 2 � 2, as depicted in the left branch in Figure 2.The third model, in the right branch in Figure 2, represents the possibility that neither of theother two models of R2's rational decision-making are correct. In this example, we assumedthat R1 does not have any other information that it could use to model R2, and the thirdmodel is a no-information model. We elaborate on it further below.R1 can represent its uncertainty as to which of the models of R2 is correct by assigning asubjective belief to each. In this example, we assume that R1, having knowledge about thesensors available to R2 and assessing the density of the foliage between R2 and P2, assigns aprobability 0.1 to R2's being rational and seeing through the trees and a probability of 0.8 toit being rational but not being able to see P2. The remaining no-information model, whichincludes the possibility of R2's being irrational, is assigned the probability of 0.1 (in [31, 74]we show how these models and their probabilities can be learned and updated based on theother agent's observed behavior).Let us note that R2's best choice of action, in each of the intentional models that R1 has,also depends on what it, in turn, thinks that R1 will do. Thus, R1 should, in each of thesemodels, represent what it knows about how R2 models R1. If it were to model R1 as rationalas well, the nesting of models would continue. R2 might have some subjective probabilitiesover R1's actions, based on a simpli�ed model of R1 or on past experiences with R1. Thiswould mean that the nesting terminates in what we call a sub-intentional model. If, on theother hand, R2 were to lack the information needed to build a model of R1's preferences overjoint actions, then the nesting of models would terminate with other no-information models.To keep this example simple and illustrative, let us make some arbitrary assumptions abouthow R1's state of knowledge terminates, as follows: in the case that R1 supposes that R2 is of6
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     Figure 1: Example Scenario of Interacting Agentsitself. From the perspective of robot R1, whose point of view we take in analyzing thissituation, two possible vantage points P1 and P2 are worth considering. P2 has a higherelevation and would allow twice as much information to be gathered as P1, and so, the robotis willing to incur greater cost to go to P2. Based on domain-speci�c knowledge, in thisexample R1 expects that gathering information at P2 is worth incurring a cost of 4 (or,put another way, the information gathered from P2 has an expected value of 4), while theobservation from P1 is worth 2.R1 thus has three possible courses of action: it can move to P1 and gather informationthere (action a11); it can move to P2 and gather information there (a12); or it can do neitherand just sit still (a13).5 The expected cost (time or energy) to R1 of pursuing each of thesecourses of action is proportional to the distance traveled, yielding a cost of 1 for a11, 2 fora12, and 0 for a13. We further assume in this example that each of the robots can make onlyone observation, and that each of them bene�ts from all information gathered (no matter bywhich robot), but incurs cost only based on its own actions.Given that the above information resides in robot R1's knowledge base, R1 can build apayo� matrix that summarizes the information relevant to its decision-making situation. Therelevant alternative behaviors of R2 that matter are labeled a21 through a23, and correspond toR2's alternative plans of taking the observation from point P1, P2, and staying put, respec-tively. Thus, the entry in the matrix corresponding to R1's pursuing its option a11 and R2'spursuing a22 is the payo� for R1 computed as the total value of the information gathered by5These courses of action could have been proposed as plausible by a symbolic planner, and each of themmay have to be further elaborated by the robot. While all possible detailed plans for these high-level coursesof action could be enumerated and represented in a payo� matrix, it is clearly desirable to include just a fewabstract actions or plans. 5



work (Section 6), and discuss the complexity issues (Section 7). We conclude by summarizingRMM's contributions and open research problems (Section 8).2 An Example of Recursive ModelingThe main goal of our method is to represent and reason with the relevant information thatan agent has about the environment, itself, and other agents, in order to estimate expectedutilities for its alternative courses of action, and thus to make a rational decision in its multi-agent situation. To choose an action that maximizes its individual utility, an agent shouldpredict the actions of others. The fact that an agent might believe that other agents couldbe similarly considering the actions of others in choosing an action gives rise to the recursivenesting of models.For the purpose of decision-making, RMM compactly folds together all of the relevantinformation an agent might have in its knowledge base, and summarizes the possible uncer-tainties as a set of probability distributions. This representation can re
ect uncertainty as tothe other agents' intentions, abilities, preferences, and sensing capabilities. Furthermore, ona deeper level of nesting, the agents may have information on how other agents are likely toview them, how they themselves think they might be viewed, and so on.To facilitate the analysis of the decision-making behavior of the agents involved, the rele-vant information on each of the recursive levels of modeling is represented in RMM as a set ofpayo� matrices. In decision theory and game theory, payo� matrices have been found to bepowerful and compact representations, fully summarizing the current contents of an agent'smodel of its external environment, the agent's capabilities for action in this environment, therelevant action alternatives of the other agents involved, and �nally, the agent's preferencesover the possible joint actions of the agents.Given a particular multi-agent situation, a payo� matrix can be constructed from theinformation residing in the KB by various means. For example in
uence diagrams, widelyused in the uncertainty in AI community, can be compiled into unique payo� matrices bysummarizing the dependence of the utility of agent's actions on the environment and onothers' actions. Other methods include equipping probabilistic or classical planners withmultiattribute utility evaluation modules, as in the work reported in [32, 36], and in our earlysystem called Rational Reasoning System (RRS) [29], which combined hierarchical planningwith a utility evaluation to generate the payo� matrices in a nuclear power plant environment.A similar method of generating payo� matrices is used in the air-defense domain we reporton in Section 5. Because, as we mentioned, RMM is independent of methods used to generatepayo� matrices in a speci�c domain, we do not consider these issues in much depth in thispaper.To put our description of RMM in concrete terms, we consider a particular decision-making situation encountered by an autonomous outdoor robotic vehicle, calledR1 (Figure 1),attempting to coordinate its actions with another robotic vehicle, R2. We assume that thevehicles' task is to gather as much information about their environment as possible, for exampleby moving to vantage points that command a wide view, while minimizing the cost of motion4



other agents in
uencing its environment to assess the outcomes and the utilities of its ownactions. We say that an agent is coordinating with other agents precisely when it considersthe anticipated actions of others as it chooses its own action.An agent that is trying to determine what the other agents are likely to do may model themas rational as well, thereby using expected utility maximization as a descriptive paradigm.3This, in turn, leads to the possibility that they are similarly modeling other agents in choosingtheir actions. In fact, depending on the available information, this nested modeling couldcontinue on to how an agent is modeling other agents that are modeling how others aremodeling, and so on.Thus, to rationally choose its action in a multi-agent situation, an agent should representthe, possibly nested, information it has about the other agent(s), and utilize it to solve itsown decision-making problem. This line of thought, that combines decision-theoretic expectedutility maximization with reasoning about other agent(s) that may reason about others, leadsto a variant of game theory that has been called a decision-theoretic approach to game theory[3, 7, 41, 62]; we will compare it to traditional game theory further in Section 6. We would alsolike to remark that there are several ways in which the agent can avoid explicit representationand reasoning with all of its knowledge each time it needs to make a decision. Some ofthese methods of bounding the agent's rationality compile the available information into,say, condition-action rules, while some neglect information that cannot change, or is unlikelyto change, the solution to the decision-making problem at hand. We outline some of theseapproaches in Section 7.To help the reader put our work in perspective, we should stress that the representationswe postulate here are only used for the purpose of decision-making in multi-agent situations;we do not postulate a general knowledge-representation and reasoning formalism. Thus, therepresentations we discuss are invoked only when there is a need for making a decision aboutwhich course of action to pursue, and our methods use many of the other components consti-tuting a full-
edged autonomous agent. These usually include a suitably designed knowledgebase containing a declarative representation of information about the environment and theother agents4, sensing and learning routines that update the KB, planning routines that pro-pose alternative courses of action, and so on. This paper does not address any of the di�cultchallenges posed by learning, sensing and planning; we concentrate solely on the issue ofdecision-making, understood as choosing among alternative courses of action enumerated, forexample, by a symbolic planning system, using the information available in the knowledgebase.In the next section, we introduce an example of recursive modeling, while Section 3 formallypresents the Recursive Modeling Method's (RMM) representation of nested knowledge andits solution concept. Section 4 illustrates the solution method through an example. We thenreport on a number of coordination experiments (Section 5), contrast RMM to other relevant3The use of expected utility maximization to predict and explain human decision making is widely used ineconomics. See the overview in [10].4Our implementation use a KB con�gured as an ontology of classes/frames and their instantiations extendedto contain uncertain information [45]. 3



1 IntroductionIn systems involving multiple agents, system builders have traditionally analyzed the taskdomain of interest and, based on their analyses, imposed upon the agents certain rules (laws,protocols) that constrain the agents into interacting and communicating according to patternsthat the designer deems desirable. Thus, research into coordination techniques has often led toprescriptions for task-sharing protocols, such as the Contract Net [73], for rules of interactionsuch as social laws [71], for negotiation conventions [67], and so on. The emphasis in this priorwork has been to provide the agents with ready-to-use knowledge that guides their interactions,so that their coordination achieves certain properties desirable from the designer's point ofview, such as con
ict avoidance, stability, fairness, or load balancing.The fundamental problem we address in this paper, on the other hand, is how agentsshould make decisions about interactions in cases where they have no common pre{establishedprotocols or conventions to guide them.1 Our argument is that an agent should rationallyapply whatever it does know about the environment and about the capabilities, desires, andbeliefs of other agents to choose (inter)actions that it expects will maximally achieve its owngoals. While this kind of agent description adheres to the knowledge-level view (articulatedby Newell [56]) that is a cornerstone of arti�cial intelligence, operationalizing it is a complexdesign process. Our work, as discussed in this paper, contributes to formalizing a rigorous,computational realization of an agent that can rationally (inter)act and coordinate in a multi-agent setting, based on knowledge it has about itself and others, without relying on protocolsor conventions.In our work, we use the normative decision-theoretic paradigm of rational decision-makingunder uncertainty, according to which an agent should make decisions so as to maximize itsexpected utility [17, 20, 23, 32, 40, 68]. Decision theory is applicable to agents interactingwith other agents because of uncertainty: The abilities, sensing capabilities, beliefs, goals,preferences, and intentions of other agents clearly are not directly observable and usually arenot known with certainty. In decision theory, expected utility maximization is a theoremthat follows from the axioms of probability and utility theories [24, 53]. In other words, if anagent's beliefs about the uncertain environment conform to the axioms of probability theory,and its preferences obey the axioms of utility theory (see, for example, [68] page 474), thenthe agent should choose its actions so as to maximize its expected utility.2.The expected utilities of alternative courses of action are generally assessed based ontheir expected results. Intuitively, an agent is attempting to quantify how much better o�it would be in a state resulting from it having performed a given action. In a multi-agentsetting, however, an agent usually cannot anticipate future states of the world unless it canhypothesize the actions of other agents. Therefore, it may be bene�cial for the agent to model1Wewould like to stress that our approach does not forbid that agents interact based on protocols. However,to the extent that protocols specify the agent's action the agent does not need to deliberate about what to doand our approach is not applicable. If the protocol is not applicable or leaves a number of alternatives openthen the agent needs to choose, and should do so in a rational manner.2Some authors have expressed reservations as to the justi�ability of these axioms. See the discussions in[50] and the excellent overview of descriptive aspects of decision theory in [10].2
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