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to the classical Nash equilibrium, can be sought using traditional game-theoretic methods.

Our implementation of the RMM algorithm in three multi-agent domains supports our
claim that coordination emerges as a result of rational decision-making of agents interacting
when they have no pre-established protocols to guide them. We found that the RMM agents
are able to coordinate on the level comparable to that of the human-controlled agents, and,
in some cases, better. Particularly encouraging is the ability of the RMM agents to effectively
interact not only with other RMM agents, but also with other agents and humans.

Our investigations can be extended in numerous ways. First, in practical situations, the
intentional stance can be only one of the guides to the expected behavior of other agents;
the agents also have to be able to update models of each other through observation and plan
recognition. The challenge is in integrating the normative, intentional modeling using other’s
rationality with techniques based on observation. Our work in this direction utilizes Bayesian
learning, for which RMM, given its probabilistic character, is naturally suited (see [31, 74] for
recent results). Second, we are exploring how the deeper reasoning in RMM, having been done
once, can be summarized (compiled) into shallower, models of other agents or heuristic rules
of interactive behavior. This means that, even in cases where an agent cannot afford to use
RMM in deciding what it should do in a time-constrained situation and resorts to a (possibly
wrong) heuristic response, an agent can revisit previous decision situations when it has the
time and use RMM to determine what the rational response should have been. By storing
this as a rule of behavior that can be recalled when appropriate in the future (see related work
on chunking [47]), RMM can provide the basis for the accrual of rational heuristics [58].

Another important direction, and an application area, of RMM is studying rational com-
municative behavior among agents involved in interactions. It turns out that our framework
allows the agents to also compute the expected utilities of alternative communicative actions
they could execute. The agent’s maximizing the expected utility of such actions leads to ra-
tional communicative behavior. We will report on our approach, implementation and results
in this area in a forthcoming paper.
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number of ways. For lack of space, we briefly list some of the most intuitive methods (see
[27] and the more recent [58] for more details). First, the dynamic programming solution of
the recursive model structure takes advantage of the property of overlapping subproblems (see
[18], section 16.2), which avoids repeated redundant solutions of branches with the same form
in the recursive model structure. The extent to which problems do overlap, is, of course, case
dependent. However, in environments like the pursuit problem, described in Section 5, the
overlap in subproblems leads to reducing complexity down to a polynomial.

A powertul idea for further reducing the complexity of agent coordination in large groups is
to neglect the models of agents with which the interaction is weak. First, it can be shown that
models of some agents can be safely neglected, since they possibly cannot change the solution
for the best alternative. Second, some models that potentially could influence the solution will
do so with only a very small probability. This family of simplifications and approximations
is clearly similar to strategies of coordinating humans; we usually worry about the people in
our immediate vicinity and about the few persons we interact with most closely, and simply
neglect the others within, for example, the building, organization, or the society at large. As
it turns out, the payoff matrices lend themselves to an efficient assessment of the strength of
interaction between agents by analyzing variability of the payoff values. For details of these
and other simplification methods, see [27, 58, 77|, and related work in [60, 69].

8 Summary and Conclusions

The starting point for our explorations in this paper has been the presumption that coordina-
tion should emerge as a result of rational decisions in multi-agent situations, where we defined
rationality as maximization of expected utility. We argued that decision-theoretic rationality
is applicable to multi-agent interactions since the agents have to make choices under uncer-
tainty: The abilities, sensing capabilities, beliefs, goals, preferences, and intentions of other
agents are not directly observable and usually are not known with certainty. Thus, we used
decision-theoretic rationality as a normative paradigm, describing how an agent should make
decisions in an uncertain multi-agent environment.

Further, we used expected utility maximization as a descriptive paradigm, to model other
rational agents in a multi-agent environment. We have documented how our exploration
naturally brings us to concepts from game theory, but our concern with providing a decision-
making apparatus to an individual agent, rather than providing an observer with analytical
tools, has led us away from the traditional concern with equilibrium solutions. Instead, we
use a newly proposed decision-theoretic approach to game theory, implemented using dynamic
programming. Our agent-centered perspective, as well as our assumption that the knowledge
of the agent is finitely nested, are the two main differences between our approach in RMM
and the traditional game theoretic analysis. We argued that the solution concept presented
in this paper complements the game-theoretic solution: When the knowledge of an agent
is nested down to a finite level, a decision-theoretic approach implemented using dynamic
programming is applicable. When the infinitely nested common knowledge is available the
bottom-up dynamic programming is not applicable, but a fixed-point solution, corresponding
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before, is Dennett’s formulation of the intentional stance [19], and his idea of the ladder of
agenthood (see [54] for a succinct discussion), the first five levels of which we see as actually
embodied in RMM. Somewhat related to RMM is the familiar minimax method for searching
game trees [57]. However, game tree search assumes turn taking on the part of the players
during the course of the game and it bottoms out when the game terminates or at some chosen
level, while RMM addresses agent’s choice without observing the other agents” moves and it
bottoms out when there is no more knowledge.

Shoham’s agent-oriented programming (AOP) [71] takes more of a programming-language
perspective. Shoham defines many mental attitudes, for example belief, obligation, and choice,
as well as many types of messages that the agents can exchange, and he has developed a
preliminary version of an interpreter. However, while Shoham has proposed it as an extension,
decision-theoretic rationality has not yet been included in AOP.

The issue of nested knowledge has also been investigated in the area of distributed systems
[22] (see also [21]). In [22] Fagin and colleagues present an extensive model-theoretic treatment
of nested knowledge which includes a no-information extension (like the no-information model
in RMM) to handle the situation where an agent runs out of knowledge at a finite level of
nesting; however, no sub-intentional modeling is envisioned. Further, they do not elaborate on
any decision mechanism that could use their representation (presumably relying on centrally
designed protocols). Another related work on nested belief with an extensive formalism is
one by Ballim and Wilkes [4]. While it concentrates on mechanisms for belief ascription and
revision, primarily in the context of communication, it does not address the issues of decision
making. Korf’s work on multi-agent decision trees considers issues of nested beliefs, where
the beliefs that agents have about how each evaluates game situations can vary [46]. Tambe
describes another interesting approach to coordinating agents during team activities in [75].

The applications of game-theoretic techniques to the problem of interactions in multi-
agent domains have also received attention in the Distributed Al literature, for example in
[65, 66, 67]. This work uses the traditional game-theoretic concept of equilibrium to develop a
family of rules of interaction, or protocols, that would guarantee the properties of the system
as a whole that are desirable by the designer, like stability, fairness and global efficiency. Other
work by Koller [44] on games with imperfect information, Wellman’s WALRAS system [80, 79],
and Sandholm work on coalitions [70] also follow the more traditional lines of equilibrium
analysis.

7 Complexity

One look at the branching nested representations proposed in this paper is enough to suggest
that complexity may become an issue. Indeed, if we were to characterize the size of a problem
for RMM to solve by the number of agents, n, it is easy to show that the complexity of building
and solving the recursive models grows exponentially as O(|A|" *m'), where |A] is the number
of alternative actions considered, m is the branching factor of the recursive model structure,
and [ is the level of nesting of the model structure.

Luckily, an exhaustive evaluation of the full-blown RMM hierarchy can be simplified in a
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In other related work in game theory, researchers have begun to investigate the assumptions
and limitations of the classical equilibrium concept [5, 26, 41, 64, 76]. As we mentioned, our
work on RMM follows an alternative approach, proposed in [3, 7, 41, 62], and called a decision-
theoretic approach to game theory. Unlike the outside observer’s point of view in classical
equilibrium analysis, the decision-theoretic approach takes the perspective of the individual
interacting agent, with its current subjective state of belief, and coincides with the subjective
interpretation of probability theory used in much of Al (see [12, 55, 59] and the references
therein). Its distinguishing feature seems best summarized by Myerson ([53], Section 3.6):

The decision-analytic approach to player 7’s decision problem is to try to predict
the behavior of the players other than ¢ first, and then to solve ¢’s decision problem
last. In contrast, the usual game-theoretic approach is to analyze and solve the
decision problems of all players together, like a system of simultaneous equations
in several unknowns.

Binmore [5] and Brandenburger [7] both point out that unjustifiability of common knowl-
edge leads directly to the situation in which one has to explicitly model the decision-making
of the agents involved given their state of knowledge, which is exactly our approach in RMM.
This modeling is not needed if one wants to talk only of the possible equilibria. Further,
Binmore points out that the common treatment in game theory of equilibria without any ref-
23 accounts for the inability of

predicting which particular equilibrium is the right one and will actually be realized, if there

erence to the equilibrating process that achieved the equilibrium

happens to be more than one candidate.?*

The definition of the recursive model structure we presented is also closely related to
interactive belief systems considered in game theory [3, 37, 52]. Our structures are somewhat
more expressive, since they also include the sub-intentional and no-information models. Thus,
they are able to express a richer spectrum of the agents’ decision making situations, including
their payoff functions, abilities, and information they have about the world, but also the
possibility that other agents should be viewed not as intentional utility maximizers, but as
mechanisms or simple objects.

Apart from game theory we should mention related work in artificial intelligence. In his
philosophical investigations into the nature of intentions Bratman [8] distinguishes between
mere plans, say as behavioral alternatives, and mental states of agents when they “have a
plan in mind” which is relevant for having an intention (see also [1]). Our approach of viewing
intentions as the results of rational deliberations over alternatives for action, given an agent’s
beliefs and preferences, is clearly very similar. Closely related is also the concept of practical
rationality in [61]. Another strand of philosophical work that we follow, as we have mentioned

but turn out to be difficult to formalize, so we treat the issue here as open.

Z3Binmore compares it to trying to decide which of the roots of the quadratic equation is the “right” solution
without reference to the context in which the quadratic equation has arisen.

Z4Binmore [6], as well as others in game theory [42, 43, 14, 15] and related fields [72], suggest the evolutionary
approach to the equilibrating process. The centerpiece of these techniques lies in methods of belief revision,
which we also investigated using the RMM framework. Some of our results are presented in [31, 74].
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can be explained by the highly visual character of the task. Humans made their choices by
eyeing the screen and choosing their actions based on how best to surround the prey. RMM
agents, of course, did not have the advantage of visual input.

5.3 Cooperative Assembly Domain

We simulated a cooperative assembly task, characteristic of many space and manufactur-
ing applications, using the blocks world in which the agents were to assemble the blocks
into simple given configurations. In this domain, again, we tested the behavior of RMM
agents when paired off with other RMM and human agents. The point was to observe the
agents properly dividing the tasks of picking up various blocks, and not wasting the effort
in attempting to pick up the same blocks. We have not performed rigorous analysis of per-
formance achieved by agents in this domain but the reader can find the typical runs on
http://dali.uta.edu/Blocks.html.

In summary, our experiments in the three domains above provide a promising confirmation
of the ability of the RMM algorithm to achieve coordination among agents in unstructured
environments with no pre-established coordination protocols. We found the behavior of RMM
agents to be reasonable and intuitive, given that there was no possibility of communication.
RMM agents were usually able to predict the behavior of the other agents, and to successfully
coordinate with them. Given the nature of the application domains we outlined earlier and the
frequent need for competence in interactions with humans, we find the experiments involving
a heterogeneous mix of RMM and human participants particularly promising.

6 Related Work

Some of the most relevant works are ones that bear upon our Assumption 1 in Section 3.2,
postulating finiteness of knowledge nesting in the recursive model structure.?? A well-known
particular case of infinitely nested knowledge is based on the notion of common knowledge
[2]. A proposition, say p, is common knowledge if and only if everyone knows p, and everyone
knows that everyone knows p, and everyone knows that everyone knows that everyone knows
p, and so on ad infinitum. However, in their well-known paper [34], Halpern and Moses
show that, in situations in which agents use realistic communication channels which can lose

21 common knowledge is not achievable

messages or which have uncertain transmission times,
in finite time unless agents are willing to “jump to conclusions,” and assume that they know

more than they really do.??

20Here, knowledge about the world is taken as something the agent is acquiring through sensing, as opposed
to merely assuming.

21To our best knowledge, all practically available means of communication have such imperfections.

22Halpern and Moses consider the concepts of epsilon common knowledge and eventual common knowledge.
However, in order for a fact to be epsilon or eventual common knowledge, other facts have to be common
knowledge within the, so called, view interpretation. See [34] for details. Also, it has been argued that common
knowledge can arise due to the agents’ copresence, and, say, visual contact. These arguments are intuitive,

24



model structures that are assumed to end on the fifth level with no-information models.

Figure 8: Predator-prey Coordination Game Simulated in MICE

In this domain we ran five sets of experiments, each consisting of five runs initialized by
a randomly generated configuration of predators and prey. The five sets of runs contained
different numbers of RMM and human agents, and typical runs in each set can be viewed at
http://dali.uta.edu/Pursuit.html.

Using the time-to-capture as the measure of quality of the coordination among predators,
we found that the best results were obtained by the all-human team (average time-to-capture
of about 16 time units), followed by the all RMM team (average time-to-capture about 22
units), with the mixed RMM-human teams exhibiting the times of about 24 time steps (typical
standard deviation for a set was 3.8). However, a statistical significance test (ANOVA) shows
that the differences in the results obtained were not statistically significant; the difference in
performance was not due to chance with probability less than 0.95.

Thus, the RMM-controlled agents were fairly competent in coordinating, but did not
perform as well as human subjects. We think that the high quality results obtained by humans
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Figure 7: Average total expected damage (over 100 runs).

by the RMM team vs. the other non-human teams, ¢ tests were performed. The results show
that the RMM team was better than any other team with the probability of 99% (0.01 level
of significance).

The above results show that RMM allows the automated agents to achieve high quality
coordination in this unpredictable environment without relying on predefined protocols. As
we argued, methods using traditional game-theoretic equilibria would not be sufficient to
coordinate agents in our domain. A particularly promising facet of our results is that the
Recursive Modeling Method is a robust mechanism for modeling and coordination not only
among RMM agents, but also with the human-controlled agents.

5.2 Coordination in the Pursuit Problem

The pursuit problem is usually described as one during which four agents, called predators,
have to coordinate their movements to pursue, surround, and capture the fifth agent, called
prey (see Figure 8). Our RMM implementation of the predators’ decision-making uses the
evaluation of expected utility of alternative positions of the agents, resulting from their alter-
native moves, including the factors of how close the agents are to the prey, and how well the
prey is surrounded and blocked off, as discussed in [49]. The expected utilities of alternative
moves were then assembled into payoff matrices and used by the RMM agents in recursive
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Figure 6: Average number of intercepted targets (over 100 runs).

consider the multiplication of the missile size and the hit probability, but did not model the
other agent appropriately. The performance of the RMM team was not pertect, however, since
the agents were equipped with limited and uncertain knowledge of each other.

The performance of the heterogeneous teams again suggests the favorable quality of coordi-
nation achieved by RMM agents. Comparing a heterogeneous team with a homogeneous team,
the average number of intercepted targets for the RMM-Human team was 5.10 (ox = 0.04),
and for the all-human team 4.77; 4.98 (o5 = 0.03) for the RMM-Independent team vs. 4.89
for the Independent team; 4.66 (o5 = 0.06) for the RMM-Random team is, and 3.77 for the
all-Random team.

In order to test whether the observed differences among the target selection strategies were
not due to chance, we used an analysis of variance with a 0.01 significance level. Here, the all-
human team and the RMM-Human team were left out, because of the relatively small number
of participating human subjects.'® In the experiment in which the number of intercepted
targets was measured (Figure 6), F(4,00) = 4.12, p < 0.01. Therefore, we can conclude
that the differences among the five target selection strategies are not due to chance with the
probability 99%. This result holds also for the experiment in which the total expected damage
was measured. To test the significance of the observed superiority of coordination achieved

19Tn our preliminary experiment there were 4 pairs of all-human teams and RMM-Human teams.
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achieved by the RMM agents in a team, when paired with human agents, and when com-
pared to other strategies. To evaluate the quality of the agents’ performance, the results
were expressed in terms of (1) the number of intercepted targets, i.e., targets the defense
units attempted to intercept, and (2) the total expected damage to friendly forces after all
six interceptors were launched. The total expected damage is defined as a sum of the resid-
ual warhead sizes of the attacking missiles. Thus, if a missile was targeted for interception,
then it contributed (1 — P(H)) x Size to the total damage. If a missile was not targeted, it
contributed all of its warhead size to the expected damage.
The target selection strategies are as follows:

e Random: selection randomly generated.
e Independent, no modeling: selection of arg max;{ P(H;;) x T;} for agent ¢.

e Human:!'" selection by human.
e RMM: selection by RMM.

The random agents were included to provide the worst-case base line of the system perfor-
mance in our experiments. We included the independent agents to show what coordination
can be expected when agents maximize but do not model each other in making their choices.
We experimented with the above policies to understand the agent interactions in two groups:
heterogeneous teams of agents with the same policy and the mixed agent teams with different
policies.

As shown in Figure 6 and Figure 7, we found that the alllRMM team outperformed
the human and independent teams. The average number of intercepted targets by the all-
RMM team during 100 trials was 5.49 (o¢'®= 0.05), compared to 4.89 (o5 = 0.08) for the
independent team and 4.77 (o5 = 0.06) for the all-human team. Further, the RMM-controlled
coordinated defense resulted in the total expected damage of 488.0 (o0x = 23.4), which was
much less than that of the independent team (732.0,0% = 37.1) and that of the all-human
team (772.0,05 = 36.3).

We found that the human performance was very similar to the performance of independent
agents. The most obvious reason for this is that humans tend to depend on their intuitive
strategies for coordination, and, in this case, found it hard to engage in deeper, normative,
decision-theoretic reasoning. Sometimes the ways human subjects choose a missile were dif-
ferent and quite arbitrary. Some of them attempted to intercept the 3 left-most or right-most
missiles, depending whether they were in charge of the left or the right defense battery. This
led to difficulties when the missiles were clustered at the center area and to much duplicated
effort. Others tended to choose missiles with the largest missile size. Still others tried to

17"We should remark that our human subjects were CSE and EE graduate students who were informed about
the criteria for target selection. We would expect that anti-air specialists, equipped with a modern defense
doctrine, could perform better than our subjects. However, the defense doctrine remains classified and was
not available to us at this point.

185 ¢ denotes the standard error of the mean.
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Figure 5: MICE Simulation of the Air Defense Domain.

16 each of two defense units could launch three interceptors,

In all of the experiments we ran
and were faced with an attack by six incoming missiles. We put all of the experimental runs
under the following conditions. First, the initial positions of missiles were randomly generated
and it was assumed that each missile must occupy a distinct position. Second, the warhead
sizes were 470,410,350, 370,420,450 for missiles A through F, respectively. Third, the other
battery was assumed to be operational with probability 0.8, and to be incapacitated with
probability 0.2. Fourth, the performance assessments of agents with different policies were
compared using the same threat situation. Further, each interceptor could intercept only one
missile and it was moving twice as fast as the incoming missile. Finally, although there was
no communication between agents, each agent could see which threat was shot at by the other
agent and use this information to make its next decision.

Our experiments was aimed at determining the quality of modeling and coordination

15For an on-line demonstration of the air defense domain refer to the Web page http://dali.uta.edu/Air.html.
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which, if any, protocol to follow. Examples include numerous human-machine coordination
tasks, such as many realistic space applications, in which robots need the ability to inter-
act with both other robots and humans, as well as applications in defense-related domains,
characterized by their inherently unpredictable dynamics. Other examples include telecom-
munications networks, flexible manufacturing systems, and financial markets.

In our work, we have looked more closely at applying RMM to coordinate autonomous
manufacturing units [30], and applications to coordination and intelligent communication in
human-computer interaction [28].

Finally, we have implemented RMM in three examples of multi-agent domains. Our aim
has been to assess the reasonableness of the behavior resulting from our approach in a num-
ber of circumstances, and to assess its robustness and performance in mixed environments
composed of RMM and human-controlled agents. Our experiments in mixed environments
are intended to show the advantage of RMM as a mechanism for coordination that relies on
modeling the other agents’ rationality, as opposed to relying on coordination protocols. We
briefly describe our results below.

We should note that all of the examples of coordination below were achieved without any
communication among the RMM-based and the human-controlled agents that participated.
The results of interactions with communication are reported in a separate paper.

5.1 Coordination in the Air Defense Domain

Our air defense domain consists of some number of anti-air units whose mission is to defend a
specified territory from a number of attacking missiles (see Figure 5). The defense units have
to coordinate and decide which missiles to intercept, given the characteristics of the threat,
and given what they can expect of the other defense units. The utility of the agents’ actions
in this case expresses the desirability of minimizing the damage to the defended territory. The
threat of an attacking missile was assessed based on the size of its warhead and its distance
from the defended territory. Further, the defense units considered the hit probability, P(H),
with which their interceptors would be effective against each of the hostile missiles. The
product of this probability and a missile threat was the measure of the expected utility of
attempting to intercept the missile.

In this domain, it is easy to see the advantage of using decision-theoretic approach to
game theory as implemented in RMM vs. the traditional game-theoretic solution concept of
equilibria. Apart from the need for common knowledge the agents have to share to justify
equilibria (we discuss this further in Section 6), the problem is that there may be many
equilibria and no clear way to choose the “right” one to guide the agent’s behavior. Take an
example of two air defense units facing an attack by two missiles, A and B. In their choice
of which missile the agents should intercept there are already two equilibria: One in which
first agent intercepts A and second agent intercepts B, and a another one in which first agent
intercepts B and second agent intercepts A. With the number of equilibria equal, or sometimes
greater, than the number of alternative targets the agent would be left with no guidance as to
which solution should be acted upon, and which threat should actually be intercepted next.

18



The four alternative models of R3’s behavior can be combined into the overall intentional
distribution over Ry’s actions as a probabilistic mixture of Ry’s intentions in each of the
alternative models (Equation 6): pg; = [pi},pil,pil] = .8 x [0,0,1] + 0.09375 x [0,1,0] +
0.00625 x [0,0,1] + 0.1 x [1/3,1/3,1/3] = [0.0333, 0.1271, 0.8396].

The expected utilities of R;’s alternative actions in its own decision-making situation (top
matrix in Figure 4) can now be computed (Equation 5) as:

uff = 0.0333 x1+0.1271 x 54 0.8396 x 1 = 1.5084
1

uff = 0.0333 x4+ 0.1271 x 2 4 0.8396 X 2 = 2.0666
2

uff = 0.0333 x2+0.1271 x 44 0.8396 X 0 = 0.575
3

Thus, the best choice for Ry is to pursue its option a}, that is, to move toward point P2
and make an observation from there. It is the rational coordinated action given R;’s state
of knowledge, since the computation included all of the information Ry has about agent Ry’s
expected behavior. Intuitively, this means that Ry believes that R, is so unlikely to go to P2
that Ry believes it should go there itself.

Let us note that the traditional tools of equilibrium analysis do not apply to this example
since there is no common knowledge. However, the solution obtained above happens to coin-
cide with one of two possible solutions that could be arrived at by traditional game-theoretic
equilibrium analysis, if a number additional assumptions about what the agents know were
made in this case. Thus, if Ry were to assume that R, knows about the point P2, and that
Ry knows that Ry knows, and so on, then R;’s move toward P2 would a part of the equilib-
rium in which Ry goes to P2 and Ry goes to P1. This shows that the solutions obtained in
RMM analysis can coincide with game-theoretic solutions, but that it depends on fortuitous
assumptions about agents’ knowledge. It is also not difficult to construct a finite state of
Ry’s knowledge that would result in R;’s rational action to be pursuing observation from P1
and expecting Ry to observe from P2, which happens to be the other equilibrium point that
could be derived if the agents were assumed to have common knowledge [3] about P2. The
coincidence would, again, be a matter of making ad hoc assumptions about the agents’ states
of knowledge.

5 Application Domains and Experiments

RMM fills a unique niche among multi-agent reasoning techniques based on pre-established
protocols in many realistic domains for two main reasons. First, in many domains the envi-
ronment is too variable and unpredictable for pre-established protocols to remain optimal in
circumstances that could not be foreseen by the designers. Second, frequently, the group of
interacting agents is not specified before hand!®, and one cannot rely on the agents’ knowing

15This means that the multi-agent system is open.
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The modeling probability of the branch representing the class favoring the action a3 is

computed as the proportion of all of the 3-vectors in Figure 3 that favor aZ, among all of the
legal distributions over the three actions of Ry, [#1, %2, 23], such that a1 + 22+ 23 =1 and 0 <
x; <1, for 2 equal to 1 through 3. All of these legal 3-vectors form a triangular part of a plane

in the three dimensional space spanned by the axes xy, xo, and 3. The area of this triangle

1 1—1’1
can be computed [51] as /3 [ [ dryday = @ The part of the area of the legal 3-vectors that
0 0

0.250.75 11—z
favor the action a2, can be computed (again, see [51]) as /3] [ [ dxodey+ [ [ dagdzy] =
0 0 025 0

1 1—1’2
V3 x %, and the area that favors a2 can be computed as /3 [ [ dride, = g.l‘l Thus,
075 0

two equivalence classes among the 3-vectors that favor a3 and a3 have probabilities equal to
15

¢ and 11—6, respectively, and these are the only classes that have a nonzero probability. Now,
all of the sub-branches that favor each of the separate alternative actions can be lumped into
a sub-branch ending with a single representative probability 3-vector favoring this particular
action on level 3, or simply with the intentional distribution reflecting the favored action of
agent Ry on level 2. The resulting recursive structure for our example is depicted in Figure 4.

The recursive structure in Figure 4 can be solved with dynamic programming, which after
reaching the bottom of the structure, propagates the results upwards as follows. The inten-

tional probability distribution in the leftmost leaf in Figure 4—representing R;’s knowing that

R5 has no information about how to model R;’s intentions—is: pg?’l)’R? = [pi?l’l)’R27pi?1’l)’R2] =
1 3

[0.5,0.5]. Given Ry’s payoff matrix in this case, the expected utilities of its alternatives in this
model are computed (Equation 9) as the probabilistic sum of the payoffs:

R R R R R R
u((12171)7 2 — p((lllvl)y 2><0_|_p((11171)7 2><0:0
1 1 3

Ry 1),R Ry 1),R R;,1),R
I e R A E|

Since the set of Ry’s alternatives that maximize its expected payoff in this model has only
one element (Amax(QRl’l) = {a3}) the probability distribution over the actions of agent R, in
this model (Equations 10 and 11) is: pgl’l) = [pgl’l),pgl’l)] = [0,1]. Thus, R; knows that if
R cannot see point P2 it will remain stationary. 1 ’

The probability distributions over Ry’s alternatives in the remaining three branches specity
that Ry will move toward P2 and make an observation from there (this is the case when Ry
can see P2 and its model of Ry indicates that pursuing P2 is better), with the probability of
0.1 x (15/16) = 0.09375. With the probability 0.1 x (1/16) = 0.00625, Ry will remain still
even though it knows about P2, since its model of R; indicates that R; is likely to pursue
observation from P2. The remaining no-information model has a probability of 0.1 and assigns
equal probabilities to all of Ry’s alternative actions.

14We found the method of logic sampling to be an effective approximate way to compute the values of the
integrals here.
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Figure 4: Transformed Recursive Model Structure for Example 1

these equivalent distributions on the level ¢ + 1, or simply with the resulting probability dis-
tribution computed in Equation 8 on level ¢. The information contained in these branches can
then propagated upwards directly. We provide examples of these calculations in the following
section.

4 Solving the Example Interaction

In this section, we solve the example decision-making problems presented in Section 2. We
begin by replacing the infinite branching of the middle model of Ry in Figure 3 with a finite
number of equivalence classes. Note that some of the probability triples in the sub-branches in
Figure 3, when used to calculate the expected utilities of Ry’s actions in the matrix above make
Ry’s action a3 the most preferable, while other triples may favor other actions. For example,
if Ry, models Ry’s expected behavior using the probability distribution [1,0,0] over the actions
aj, ab, and ai, then, given Ry’s payoff matrix, the expected utilities of Ry’s alternatives a7,
a3, and a3, according to Equation 5 are 0, 5, and 2, respectively, and the action a2 is preferred
for Ry. Another distribution, say, [0.9,0.1,0] also favors a3 and thus belongs to the same
equivalence class as [1,0,0]. The distribution [0.1,0.9,0], on the other hand, makes the action
a? preferable for Ry, and belongs to a different equivalence class.

15



turn be expressed in terms of the models that R; thinks R; has of the other agents in the
environment, contained in RM](%]?i’a), and so on.

The intentional stance R; uses to model R; is formalized in Equation 8. It states that
agent R; is an expected utility maximizer and, therefore, its intention can be identified as a
course of action that has the highest expected utility, given R;’s beliefs about the world and
its preferences.

What the intentional stance does not specity is how R; will make its choice if it finds that
there are several alternatives that provide it with the maximum payoff. Using the principle
of indifference once more, R; assigns an equal, nonzero probability to R;’s option(s) with the
highest expected payoff, and zero to all of the rest.'? Formally, we can construct the set of
R;’s options that maximize its utility:

Amax;Ri’Q) = {a] | a] € A;Ri’a) A u(?i’a)’RJ = Maxk/(u(?i’a)’RJ)}. (10)
ay ay

Then, the probabilities are assigned according to the following:

1 . j R;,o
pg]f"’a) _ { P o] if a, E‘Amaxg ) )
k 0 otherwise.

Finally, if R;’s model terminates with a no-information model, two cases arise. The first
occurs when we have a no-information model No-Info? located on level ¢ + 1 describing the
limits of knowledge possessed by the agent modeled on level ¢. This model is a shorthand
for all legal distributions being possible and equally likely.'? As could be expected, it can be
shown (see the principle of interval constraints method in [55]) that it can be equivalently
represented by a uniform distribution over the other agents’ possible actions at this level,
yielding the probabilities pg]f"’a) = @7 specified in this model. The models in the leaves of
the right- and left-most branches in Figure 3 illustrate this case.

The second, more complex case, occurs when a model No-Info? is located on level deeper
than ¢+1. In this case we note that Equation 8 and Equation 9 define a finite number of equiv-
alence classes among the infinite sub-branches represented by these no-information models.
Namely, an intentional probability distribution used in Equation 9 to compute the intentional
probabilities higher up the recursive model in Equation 8 is equivalent to another such dis-
tribution, provided that it also favors the same alternatives chosen as optimal in Equation 8.
It follows that the no-information model in this case can be equivalently represented by a
finite number (|A;| at most) of discrete branches, each representing such an equivalence class.
The resulting discrete branches have a modeling probability, associated with the equivalence
classes they represent, defined on the measurable space of possible intentional probability dis-

tributions in the leaves of the sub-branches. These branches can be terminated with any of

12As we mentioned, we use the expected utility maximization as a descriptive tool. See also [9, 10].
13The principle of indifference is applied here to the probability itself. See, for example, the discussion in

[16] Section 1.G.
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We refer to pf{ . as intentional probabilities. uf{ i ... 18 R’s expected payoff residing in
kp k m p

its payoff matrix, Pg,.

R; can determine the intentional probabilities pfli...an by using its modeling knowledge of
other agents contained in the recursive model RMp,. As defined in the preceding section,
R; can have a number of alternative models M%) of the other agents, and a modeling
probability, p% associated with each of them. If we label the predicted probability of joint

R;, ) (Ri,o)

behavior of the other agents resulting from a model M as p.i' ., we can express the
1.ap

overall intentional probability of the other agents’ joint moves, pr‘.

ay ...a??

as an average over all

possible models (this is known as Bayesian model averaging [38]):

= 2Pl P (6)

( “oz)

The joint probability, p, 1 of the other agents’ behaviors resulting from a model M (%)
: P

Y

can in turn be expressed as a product of the intentional probabilities for each of the agents

individually, p((lj 2 , resulting from a model M(R“a)
P = ) sl (M)

If the model M(Iji’a) is in the form of a sub-intentional model, then the probabilities
(Rivo‘)

P indicating the expected behavior of the entity can be derived by whatever techniques

(s€atistical, model-based, qualitative physics, etc.) R; has for predicting behavior of such
entities.

If R; has assumed an intentional stance toward F; in its model Mjg]ji’a), i.e.,1f it is modeling
R; as a rational agent, then it has to model the decision-making situation that agent R; faces,

(Rivo‘)

and its recursive model
RM](%R“Q) R; can then identify the intentional probability p(J @) as the probability that the
k-th alternative action is of the greatest utility to [2; in this model:

as specified in Equations 3 and 4, by R;’s payofl matrix Pp

Pl = Prob(uly ™ = Maww(u) ™)), (8)
k k At
ui?i’a)’RJ is the utility R; estimates that R; assigns to its alternative action ai, in this model,
E!
and it can be further computed as:
R;,a),R Rj,a),R; (Rio),R
u((lj M = Z p((lé...a; Ju((ll...aﬂ) ...Jan (9)
E! o ! T

(al,...,.aP)EA_; k

This equation is analogous to Equation 5 except it is based on R;’s model of R;. The

(?i’a])’RJ , are I2;’s payofls in the payoff matrix P(R“a) The intentional probabilities p(1 “Z?{RJ
alal eal an
are what R; thinks R, assigns to other agents’ actions. The probabilities p(1 ’GL’RJ can in
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The definition of the recursive model structure and the intentional model are recursive, but,
as we argue in more detail later, it is likely to be finite due to practical difficulties in attaining
infinitely nested knowledge. In other words, in representing the content of its KB about its
own decision-making situation, the situations of the other agents, and of what the other agents
know about others, the agent is likely to run out of knowledge at some level of nesting, in
which case the recursion terminates with a level-1 no-information model. Of course some
recursive branches can also terminate with higher level no-information models representing
the possible limitations of other agents’ knowledge, or with sub-intentional models that do
not lead to further recursion. Thus, the no-information models are not intended as an ad hoc
means to terminate the recursive structure of models. Rather, in our knowledge-based view,
the branches of the recursive structure terminate with a no-information model when, and only
when, the limits of the agents’ knowledge, contained in its KB, are reached. In that way, all
of the agent’s knowledge relevant to the decision-making process is used to derive the rational
coordinated choice of action.

3.2 Solving RMM Using Dynamic Programming

The recursive nature of RMM makes it possible to express the solution to the problem of
choice that maximizes expected utility on a given level of modeling in terms of the solutions
to choices of the agents modeled on deeper levels. Thus, to solve the optimization problem on
one level requires solutions to subproblems on the lower level. This means that the problem
exhibits optimal substructure [18], and that a solution using dynamic programming can be
formulated. The solution traverses the recursive model structure propagating the information
bottom-up. The result is an assignment of expected utilities to the agent’s alternative actions,
based on all of the information the agent has at hand about the decision-making situation.
The rational agent can then choose an action with the highest expected utility.

Clearly, the bottom-up dynamic programming solution requires that the recursive model
structure be finite and terminate. Thus, we make the following assumption:

Assumption 1: The recursive model structure, defined in Equation 1, is finite and ter-
minates with sub-intentional or no-information models.

We should remark that the assumption above complements an assumption that the agents
possess infinitely nested knowledge, called common knowledge or mutual knowledge, fre-
quently made in Al and in traditional game theory. These two assumptions lead to two solution
concepts; one discussed here, which is decision-theoretic and implemented with dynamic pro-
gramming, the other one based on the notion of equilibria. We discuss the justifiability of
these assumption further in Section 5.

The expected utility of the m-th element, a! , of ;s set of alternative actions is evaluated

as:
R, __ R; R;
uain - Z pai...a Yol i ooan (5)
(ai,...,a;)EA_i

where pf{ . Tepresents R;’s conjecture as to the joint actions of the other agents, i.e., it is

an element of the probability distribution over the set of joint moves of the other agents A_;.
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]ntent%]ji’a) = RMS]%%"’Q), (4)

that is, it is the recursive model structure that agent R; ascribes to agent R;. This structure,
as defined in Equation 1, further consists of the payoff matrix that R; ascribes to R; in this

model, P](%?i’a), and the recursive model RM](%]?’Q) containing the information R; thinks R, has
about the other agents. For example, the two models in the left and the middle branches in
Figure 2 are intentional models.

The level-¢ no-information model, No—Infogj"’a)’(b, represents the limits of knowledge as-
sociated with the agent modeled on the ¢ level of nesting in the branch the no-information
model resides in. In other words, No—InfoggRi’a)’(ls located on a level [, represents R;’s belief that
the agent modeled on level ¢ has run out of knowledge at level [ of R;’s modeling structure.
According to this semantics, the superscript of the no-information model has to be between
1 (corresponding to the agent R; running out of information, as in Figure 2) and a value one
less than the level on which the no-information model is located in the recursive structure.
Thus, for a no-information model, No-Info?, located on level [, we have: 1 < ¢ < {— 1.

The no-information models assign uniform probabilities to all of the alternative distribu-
tions over the actions of the other agents and contain no information [55] beyond the currently
considered level of nesting, representing the limits of knowledge reached at a particular stage
of recursive modeling. The use of no-information models in our decision-making framework
reflects a situation in which a symbolic KB of the agent in question contains the agent’s beliefs
about the others’” beliefs nested to some level, but it does not contain any information nested
deeper, for example because the agent did not have a chance to acquire any more information.

The sub-intentional model is a model which does not include the ascription of beliefs and
preferences, and does not use rationality to derive behavior.!” Besides the intentional stance,
Dennett [19] enumerates two sub-intentional stances: The design stance, which predicts behav-
ior using functionality (such as how the functions of a console controller board’s components
lead to its overall behavior [35]), and the physical stance, which predicts behavior using the
description of the state of what is being modeled along with knowledge of its dynamics (like in
the qualitative model of a bouncing ball [25], or finite state automata models in [11]). These
models can be useful for an agent that can incorporate techniques such as model-based reason-
ing or qualitative physics to make predictions about the behavior of sub-intentional'! entities,
resulting in a probability distribution over their alternative behaviors, as enumerated in the
agent’s payoff matrix. Further, any informative conjecture, i.e., a probability distribution over
others’ actions, can be treated as a sub-intentional model, if it has been arrived at without
ascribing rationality to the modeled entity. For example, a conjecture as to another’s actions
may be derived from plan recognition, from past actions (as in [39]), or from information re-
lated by a third agent, and it can be given a probabilistic weight according to the assessment
of its faithfulness within the RMM framework.

10According to Dennett [19], such a sub-intentional agent does not even satisfy the basic requirement of
agenthood. It is simply an entity, then, rather than an agent proper.
YThat is, not following the decision-theoretic principles of rationality.
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A is defined as a cross product: A = Ay x Ay x -+ x A,, where set A; = {a{,a%---}
represents the alternative actions of agent R;. The elements of A are the joint moves of the
n agents in question. We additionally define a joint mowve of the other agents as an element
of the following set: A_; = Ay X Ay X -+ x A;_1 X Ajy1 X -+ X A,. The joint move of the
other agents specifies the moves of all of the agents except R;. We further demand that the
sets of alternative actions of the agents be exhaustive, and that the alternatives be mutually
exclusive.

Finally, U is a payoff function that assigns a number (expected payoff to R;) to each of the
joint actions of all of the agents: U : A — R, where R is the set of real numbers. Intuitively,
a purposeful agent has reason to prefer some actions (that further its purposes in the current
situation) to others [78]. Our ability to represent agents’ preferences over actions as payoffs
follows from the axioms of utility theory, which postulate that ordinal preferences among
actions in the current situation can be represented as cardinal, numeric values (see [13, 20]
fo}g details). We represent R;’s payoff associated with a joint action (a},---,a’

U ne
al-al,-a]

We now define the recursive model structure of agent R;, RM Sg,, as the following pair:

K3 i3
yal co--all) as

RMSg, = (Pr,, RMg,), (1)

where Pg, is R;’s payoff matrix, and RMpg, is R;’s recursive model, which summarizes the
information R; has about the other n —1 agents in the environment. A recursive model RMp,
is defined as a probability distribution over the alternative models of the other agents. Thus,
if M) is taken to denote the a-th of R;’s alternative models of the other agents, i.e., all
agents except R;, then R;’s recursive model assigns to it a probability, pf. These probabilities
represent R;’s subjective belief that each of the alternative models is correct. We call pffi’s
modeling probabilities. They sum to unity: 3>™  pf = 1 (for the example in Figure 2 they
are the probabilities of the three branches.) To make our exposition more transparent we
have assumed above that the set of alternative models is finite, but one could generalize the
modeling probability to be defined over a measurable infinite space of alternative models.?
Each of the alternative models of the other agents is a list of models of each of the agents:

e R;,o R;,o R;,o R;,o
M) = (Mg M M M), (2)
The models Mjg]ji’a), that R; can have of R;, come in three possible forms:
]ntent%]ji’a) — the intentional model,
M](%]ji’a) =4 No— ]nfogj"’a)’(b — the level-¢ no-information model, (3)
Sub — ]nt%]ji’a) — the sub-intentional model.

The intentional model corresponds to R; modeling R; as a rational agent. It is defined as:

°In the next subsection we show how an infinite space of models can be transformed into an equivalent
finite set.
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No-Info! model in the middle branch in Figure 2 is simply a shorthand notation for the more
explicit representation depicted in Figure 3.

The no-information model No-Info! in the right branch in Figure 2 expresses the fact
that Ry has no other information based on which it could predict Ry’s behavior. Again, this
translates into all of the legal 2-vector distributions emanating from the model on the first
level being possible and equally likely. It can be shown (see the principle of interval constraints
discussed in [55]) that the set of all of these legal distributions can be equivalently represented
by a uniform distribution over Ry’s possible actions, a}, af and a2, themselves: [1/3,1/3,1/3].
This distribution precisely represents F;’s lack of knowledge in this case, since its information
content is zero.

The no-information model No-Info? in the left branch in Figure 2 is similar but more
complicated. It expresses the fact that R; knows that if Ry cannot see P2 then R, has no
information based on which it could predict R;’s behavior. This translates into all of the legal
2-vector distributions, now emanating from the model on the second level, being possible and
equally likely. It can be equivalently represented by a uniform distribution over R;’s possible
actions, a} and ai: [0.5,0.5], as depicted in Figure 3. The above interpretations keep an
intuitive convention that branching due to uncertainty emanates from the model of the agent
that is uncertain. The middle and right branches terminate with no-information models due
to lack of knowledge of agent R;, while the left branch terminates with No-Info* because we
assumed that R; knows that £, has no information.

3 General Form of the Recursive Modeling Method

In this section, we formalize the intuitions behind the recursive modeling that we developed
in the preceding section. The Recursive Modeling Method consists of the recursive model
structure that contains information the agent has in all of its nested levels, and the solution
method that uses dynamic programming to arrive at the rational choice of an agent’s action
in a multi-agent situation. The reader who wishes to skip the formalism for now can proceed
to Section 4 where we solve the example interaction.

3.1 Representation

We first formally define the payoff matrix, which is the basic building block of RMM’s modeling
structure. A payoff matrix represents the decision-making situation an agent finds itself
in when it must choose an action to take in its multi-agent environment. Following the
definition used in game theory [63], we define the payoff matrix, Pg,, of an agent R; as a triple
Pr, = (R, AU).

R is a set of agents in the environment, labeled R; through R, (n > 1). R includes all
decision-making agents impacting the welfare of the agent R;.

references.
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Figure 3: Semantics of the No-Information Models in Example 1.

Ry can see through the trees. In general, the no-information models can represent knowledge
limitations on any level; the limitations of R;’s own knowledge,” R;’s knowing the knowledge
limitations of other agents, and so on.

Figure 3 illustrates the semantics of the no-information models depicted in Figure 2. The
no-information model No-Info! in the middle branch means that R; has no information about
how it is modeled by R;. Therefore, all of the conjectures that R, may have about R;’s
behavior are possible and, according to the principle of indifference [16, 55], equally likely.
This can be represented as the branch on the first level of the recursive structure splitting into
infinite sub-branches, each of which terminates with a different, legal probability distribution
describing R,’s conjecture about R;’s behavior. Cumulative probability of all of the sub-

branches remains the same (0.1 in this example).® According to this interpretation, the

"Note that we assume the agent can introspect. This amounts to the agent’s being able to detect the lack
of statements in its knowledge base that describe beliefs nested deeper than the given level.
80ur representation here is related to the problem of “only knowing”, discussed in [33, 48] and related
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Figure 2: Recursive Model Structure depicting Ry’s Decision-Making Situation in Example 1.

the type® that cannot see through the trees, then R; knows that R, does not know anything
about R;. But in the event that R, is of the type that can see through the trees, then R,
itself has no knowledge in its knowledge base about how it might be modeled by R,.

The scenario used here is relatively simple, but we invite the reader to develop his or her
own intuitions at this point by considering the problem facing our robot R;: What is the best
course of action, given the information R; has about the situation and about R,;7 Should
Ry move to P1 and hope that Ry will cooperate by observing from P27 Or should Ry go to
P2 itself, due to the importance of this observation and in the face of uncertainty as to Ry’s
behavior? How does the probability of Ry’s knowing about P2 influence R;’s choice? We
provide the answers in Section 4.

The no-information models that terminate the recursive nesting in our example are at the
leaves of the recursive model structure in Figure 2. These models represent the limits of the
agents’ knowledge: The model No-Info? represents the fact that, in the case when R, cannot
see P2, Ry knows that R, has no knowledge that would allow it to model Ry. Thus, the
uncertainty is associated with Ry, and the model’s superscript specifies that the state of no
information is associated with its ancestor on the second level of the structure in Figure 2.
The No-Info' model terminating the middle branch of the recursive structure represents Ry’s
own lack of knowledge (on the first level of the structure) of how it is being modeled by Ra, if

SOur use of this term coincides with the notion of agent’s type introduced by Harsanyi in [37].



both robots from both P1 and P2 minus Ry’s own cost: (244) - 1 = 5. The payoff to Ry
corresponding to Ry’s pursuing af and Ry’s pursuing ai is (240) - 1 = 1, since the informa-
tion gathered is worth 2 and redundant observations add no value. All of the payoffs can be
assembled in the payoff matrix depicted on top of the structure in Figure 2.

In order to arrive at the rational decision as to which of its three options to pursue, R; has
to predict what R, will do. If Ry were to take the observation from the point P2, i.e., its a3
option, it would be best for R; to observe from P1. But if Ry decided to stay put, Ry should
observe from the point P2, i.e., pursue its option ai. In general, Ry might be uncertain as to
which action Ry will take, in which case it should represent its conjecture as to Ry’s action as
a probability distribution over Ry’s possible alternative courses of action. If R; thinks that
Ry attempts to maximize its own expected utility, then Ry can adopt the intentional stance
toward Ry [19], treat R, as rational, and model Ry’s decision-making situation using payoff
matrices. Ry’s payoff matrix, if it knows about both observation points, arrived at analogously
to R;’s matrix above, has the form depicted in the middle branch in Figure 2.

That is not all, though, because R; realizes that robot Ry possibly does not know about
the observation point P2 due to the trees located between Ry and P2. Ry, therefore, has to
deal with another source of uncertainty: There is another alternative model of R,’s decision-
making situation. If Ry is unaware of P2, then it does not consider combinations of actions
involving aj or a3 and its payoff matrix is 2 x 2, as depicted in the left branch in Figure 2.
The third model, in the right branch in Figure 2, represents the possibility that neither of the
other two models of Ry’s rational decision-making are correct. In this example, we assumed
that Ry does not have any other information that it could use to model R;, and the third
model is a no-information model. We elaborate on it further below.

Ry can represent its uncertainty as to which of the models of R, is correct by assigning a
subjective belief to each. In this example, we assume that Ry, having knowledge about the
sensors available to Ry and assessing the density of the foliage between Ry and P2, assigns a
probability 0.1 to Rs’s being rational and seeing through the trees and a probability of 0.8 to
it being rational but not being able to see P2. The remaining no-information model, which
includes the possibility of Ry’s being irrational, is assigned the probability of 0.1 (in [31, 74]
we show how these models and their probabilities can be learned and updated based on the
other agent’s observed behavior).

Let us note that Ry’s best choice of action, in each of the intentional models that R; has,
also depends on what it, in turn, thinks that R; will do. Thus, Ry should, in each of these
models, represent what it knows about how R; models R;. If it were to model R; as rational
as well, the nesting of models would continue. R, might have some subjective probabilities
over Ry’s actions, based on a simplified model of R; or on past experiences with R;. This
would mean that the nesting terminates in what we call a sub-intentional model. If, on the
other hand, R, were to lack the information needed to build a model of R;’s preferences over
joint actions, then the nesting of models would terminate with other no-information models.

To keep this example simple and illustrative, let us make some arbitrary assumptions about
how R;’s state of knowledge terminates, as follows: in the case that Ry supposes that R; is of
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Figure 1: Example Scenario of Interacting Agents

itself. From the perspective of robot R;, whose point of view we take in analyzing this
situation, two possible vantage points P1 and P2 are worth considering. P2 has a higher
elevation and would allow twice as much information to be gathered as P1, and so, the robot
is willing to incur greater cost to go to P2. Based on domain-specific knowledge, in this
example Ry expects that gathering information at P2 is worth incurring a cost of 4 (or,
put another way, the information gathered from P2 has an expected value of 4), while the
observation from P1 is worth 2.

Ry thus has three possible courses of action: it can move to P1 and gather information
there (action a}); it can move to P2 and gather information there (a3); or it can do neither
and just sit still (a3). The expected cost (time or energy) to Ry of pursuing each of these
courses of action is proportional to the distance traveled, yielding a cost of 1 for i, 2 for
ay, and 0 for ai. We further assume in this example that each of the robots can make only
one observation, and that each of them benefits from all information gathered (no matter by
which robot), but incurs cost only based on its own actions.

Given that the above information resides in robot R;’s knowledge base, Ry can build a
payoff matrix that summarizes the information relevant to its decision-making situation. The
relevant alternative behaviors of Ry that matter are labeled aj through @3, and correspond to
Ry’s alternative plans of taking the observation from point P1, P2, and staying put, respec-
tively. Thus, the entry in the matrix corresponding to R;’s pursuing its option ai and Ry’s
pursuing a2 is the payoff for Ry computed as the total value of the information gathered by

>These courses of action could have been proposed as plausible by a symbolic planner, and each of them
may have to be further elaborated by the robot. While all possible detailed plans for these high-level courses
of action could be enumerated and represented in a payoff matrix, it is clearly desirable to include just a few
abstract actions or plans.



work (Section 6), and discuss the complexity issues (Section 7). We conclude by summarizing
RMM’s contributions and open research problems (Section 8).

2 An Example of Recursive Modeling

The main goal of our method is to represent and reason with the relevant information that
an agent has about the environment, itself, and other agents, in order to estimate expected
utilities for its alternative courses of action, and thus to make a rational decision in its multi-
agent situation. To choose an action that maximizes its individual utility, an agent should
predict the actions of others. The fact that an agent might believe that other agents could
be similarly considering the actions of others in choosing an action gives rise to the recursive
nesting of models.

For the purpose of decision-making, RMM compactly folds together all of the relevant
information an agent might have in its knowledge base, and summarizes the possible uncer-
tainties as a set of probability distributions. This representation can reflect uncertainty as to
the other agents’ intentions, abilities, preferences, and sensing capabilities. Furthermore, on
a deeper level of nesting, the agents may have information on how other agents are likely to
view them, how they themselves think they might be viewed, and so on.

To facilitate the analysis of the decision-making behavior of the agents involved, the rele-
vant information on each of the recursive levels of modeling is represented in RMM as a set of
payoff matrices. In decision theory and game theory, payoff matrices have been found to be
powerful and compact representations, fully summarizing the current contents of an agent’s
model of its external environment, the agent’s capabilities for action in this environment, the
relevant action alternatives of the other agents involved, and finally, the agent’s preferences
over the possible joint actions of the agents.

Given a particular multi-agent situation, a payoff matrix can be constructed from the
information residing in the KB by various means. For example influence diagrams, widely
used in the uncertainty in Al community, can be compiled into unique payoff matrices by
summarizing the dependence of the utility of agent’s actions on the environment and on
others’ actions. Other methods include equipping probabilistic or classical planners with
multiattribute utility evaluation modules, as in the work reported in [32, 36], and in our early
system called Rational Reasoning System (RRS) [29], which combined hierarchical planning
with a utility evaluation to generate the payoff matrices in a nuclear power plant environment.
A similar method of generating payoff matrices is used in the air-defense domain we report
on in Section 5. Because, as we mentioned, RMM is independent of methods used to generate
payoff matrices in a specific domain, we do not consider these issues in much depth in this
paper.

To put our description of RMM in concrete terms, we consider a particular decision-
making situation encountered by an autonomous outdoor robotic vehicle, called Ry (Figure 1),
attempting to coordinate its actions with another robotic vehicle, R;. We assume that the
vehicles’ task is to gather as much information about their environment as possible, for example
by moving to vantage points that command a wide view, while minimizing the cost of motion



other agents influencing its environment to assess the outcomes and the utilities of its own
actions. We say that an agent is coordinating with other agents precisely when it considers
the anticipated actions of others as it chooses its own action.

An agent that is trying to determine what the other agents are likely to do may model them
as rational as well, thereby using expected utility maximization as a descriptive paradigm.®
This, in turn, leads to the possibility that they are similarly modeling other agents in choosing
their actions. In fact, depending on the available information, this nested modeling could
continue on to how an agent is modeling other agents that are modeling how others are
modeling, and so on.

Thus, to rationally choose its action in a multi-agent situation, an agent should represent
the, possibly nested, information it has about the other agent(s), and utilize it to solve its
own decision-making problem. This line of thought, that combines decision-theoretic expected
utility maximization with reasoning about other agent(s) that may reason about others, leads
to a variant of game theory that has been called a decision-theoretic approach to game theory
[3, 7,41, 62]; we will compare it to traditional game theory further in Section 6. We would also
like to remark that there are several ways in which the agent can avoid explicit representation
and reasoning with all of its knowledge each time it needs to make a decision. Some of
these methods of bounding the agent’s rationality compile the available information into,
say, condition-action rules, while some neglect information that cannot change, or is unlikely
to change, the solution to the decision-making problem at hand. We outline some of these
approaches in Section 7.

To help the reader put our work in perspective, we should stress that the representations
we postulate here are only used for the purpose of decision-making in multi-agent situations;
we do not postulate a general knowledge-representation and reasoning formalism. Thus, the
representations we discuss are invoked only when there is a need for making a decision about
which course of action to pursue, and our methods use many of the other components consti-
tuting a full-fledged autonomous agent. These usually include a suitably designed knowledge
base containing a declarative representation of information about the environment and the
other agents*, sensing and learning routines that update the KB, planning routines that pro-
pose alternative courses of action, and so on. This paper does not address any of the difficult
challenges posed by learning, sensing and planning; we concentrate solely on the issue of
decision-making, understood as choosing among alternative courses of action enumerated, for
example, by a symbolic planning system, using the information available in the knowledge
base.

In the next section, we introduce an example of recursive modeling, while Section 3 formally
presents the Recursive Modeling Method’s (RMM) representation of nested knowledge and
its solution concept. Section 4 illustrates the solution method through an example. We then
report on a number of coordination experiments (Section 5), contrast RMM to other relevant

3The use of expected utility maximization to predict and explain human decision making is widely used in
economics. See the overview in [10].

40ur implementation use a KB configured as an ontology of classes/frames and their instantiations extended
to contain uncertain information [45].



1 Introduction

In systems involving multiple agents, system builders have traditionally analyzed the task
domain of interest and, based on their analyses, imposed upon the agents certain rules (laws,
protocols) that constrain the agents into interacting and communicating according to patterns
that the designer deems desirable. Thus, research into coordination techniques has often led to
prescriptions for task-sharing protocols, such as the Contract Net [73], for rules of interaction
such as social laws [71], for negotiation conventions [67], and so on. The emphasis in this prior
work has been to provide the agents with ready-to-use knowledge that guides their interactions,
so that their coordination achieves certain properties desirable from the designer’s point of
view, such as conflict avoidance, stability, fairness, or load balancing.

The fundamental problem we address in this paper, on the other hand, is how agents
should make decisions about interactions in cases where they have no common pre-established

! Our argument is that an agent should rationally

protocols or conventions to guide them.
apply whatever it does know about the environment and about the capabilities, desires, and
beliefs of other agents to choose (inter)actions that it expects will maximally achieve its own
goals. While this kind of agent description adheres to the knowledge-level view (articulated
by Newell [56]) that is a cornerstone of artificial intelligence, operationalizing it is a complex
design process. Our work, as discussed in this paper, contributes to formalizing a rigorous,
computational realization of an agent that can rationally (inter)act and coordinate in a multi-
agent setting, based on knowledge it has about itselt and others, without relying on protocols
or conventions.

In our work, we use the normative decision-theoretic paradigm of rational decision-making
under uncertainty, according to which an agent should make decisions so as to maximize its
expected utility [17, 20, 23, 32, 40, 68]. Decision theory is applicable to agents interacting
with other agents because of uncertainty: The abilities, sensing capabilities, beliefs, goals,
preferences, and intentions of other agents clearly are not directly observable and usually are
not known with certainty. In decision theory, expected utility maximization is a theorem
that follows from the axioms of probability and utility theories [24, 53]. In other words, if an
agent’s beliefs about the uncertain environment conform to the axioms of probability theory,
and its preferences obey the axioms of utility theory (see, for example, [68] page 474), then
the agent should choose its actions so as to maximize its expected utility.?.

The expected utilities of alternative courses of action are generally assessed based on
their expected results. Intuitively, an agent is attempting to quantity how much better off
it would be in a state resulting from it having performed a given action. In a multi-agent
setting, however, an agent usually cannot anticipate future states of the world unless it can
hypothesize the actions of other agents. Therefore, it may be beneficial for the agent to model

'We would like to stress that our approach does not forbid that agents interact based on protocols. However,
to the extent that protocols specify the agent’s action the agent does not need to deliberate about what to do
and our approach is not applicable. If the protocol is not applicable or leaves a number of alternatives open
then the agent needs to choose, and should do so in a rational manner.

2Some authors have expressed reservations as to the justifiability of these axioms. See the discussions in
[50] and the excellent overview of descriptive aspects of decision theory in [10].
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Abstract

We adopt the decision-theoretic principle of expected utility maximization as a
paradigm for designing autonomous rational agents, and present a framework that uses
this paradigm to determine the choice of coordinated action. We endow an agent with
a specialized representation that captures the agent’s knowledge about the environment
and about the other agents, including its knowledge about their states of knowledge,
which can include what they know about the other agents, and so on. This reciprocity
leads to a recursive nesting of models. Our framework puts forth a representation for
the recursive models and, under the assumption that the nesting of models is finite,
uses dynamic programming to solve this representation for the agent’s rational choice
of action. Using a decision-theoretic approach, our work addresses concerns of agent
decision-making about coordinated action in unpredictable situations, without imposing
upon agents pre-designed prescriptions, or protocols, about standard rules of interaction.
We implemented our method in a number of domains and we show results of coordi-
nation among our automated agents, among human-controlled agents, and among our
agents coordinating with human-controlled agents.

OThis research was supported, in part, by the Department of Energy under contract DG-FG-86NE37969,
by the National Science Foundation under grant IRI-9015423, by the PYT award TRI-9158473, by ONR, grant
N00014-95-1-0775, and by the National Science Foundation CAREER, award TRI-9702132.



