
Complexity Theoretical Results for

Randomized Branching Programs

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Universität Dortmund

am Fachbereich Informatik

von

Martin Sauerhoff

Dortmund

1998

Tag der mündlichen Prüfung: 11. 1. 1999

Dekan: Prof. Dr. Heinrich Müller

Gutachter: Prof. Dr. Ingo Wegener, Prof. Dr. Martin Dietzfelbinger

Abstract

This work is settled in the area of complexity theory for restricted variants of branching pro-
grams. Today, branching programs can be considered one of the standard nonuniform models of
computation. One reason for their popularity is that they allow to describe computations in an
intuitively straightforward way and promise to be easier toanalyze than the traditional models.

In complexity theory, we are mainly interested in upper and lower bounds on the size of branch-
ing programs. Although proving superpolynomial lower bounds on the size of general branch-
ing programs still remains a challenging open problem, there has been considerable success
in the study of lower bound techniques for various restricted variants, most notably perhaps
read-once branching programs and OBDDs (ordered binary decision diagrams). Surprisingly,
OBDDs have also turned out to be extremely useful in practical applications as a data structure
for Boolean functions.

So far, research has concentrated on deterministic and, to some extent, also nondeterministic
types of branching programs. Given the practical and theoretical importance of the probabilistic
mode of computation, it seems natural to ask whether we can prove any interesting results for
probabilistic variants of branching programs, defined in analogy to the well-known probabilistic
Turing machines. At the time of the beginning of this work, very little was known about such
randomized variants of branching programs. Meanwhile, a considerable part of the “complexity
landscape” for randomized variants of branching programs with limited read access to the input
variables is charted. Here we describe how some pieces of this knowledge have been obtained.
Lower bound results for randomized OBDDs and randomized syntactic read-k-times branching
programs form the main part of this work.

Danksagung

An dieser Stelle möchte ich mich bei den Menschen bedanken,die durch ihre Hilfe wesentlich
zum Gelingen dieser Arbeit beigetragen haben.

Besonderer Dank gebührt meinem Betreuer, Prof. Dr. Ingo Wegener, dem ich einen großen Teil
meines Wissens über theoretische Informatik verdanke. Erhat mich in das spannende Gebiet
der Branchingprogramme eingeführt und diese Arbeit durchviele hilfreiche Diskussionen und
motivierende Gespräche begleitet. An nächster Stelle zunennen ist mein inoffizieller

”
Zweitbe-

treuer“ Prof. Dr. Martin Dietzfelbinger, dessen Tür immeroffen stand, wenn ich mit Fragen zu
ihm kam. Seine Hinweise, z. B. zur Mathematik der endlichen Körper, haben mit zum Gelingen
dieser Arbeit beigetragen. Außerdem haben mir die Gespräche mit Prof. Dr. Matthias Krause
sehr geholfen, dem ich wichtige Einsichten in die Zusammenhänge zwischen der Komplexität
von Branchingprogrammen und der Kommunikationskomplexität verdanke.

Bei allen Mitarbeiterinnen und Mitarbeitern am Lehrstuhl II möchte ich mich für die freundli-
che und motivierende Arbeitsatmosphäre bedanken, in der diese Arbeit entstehen konnte. Ein
spezieller Dank geht an Detlef Sieling für viele anregendeDiskussionen zum Thema dieser
Arbeit und an Martin Löbbing für seine Hilfe bei Software-und Hardware-Problemen.

Schließlich bedanke ich mich bei der Deutschen Forschungsgemeinschaft für die finanzielle
Unterstützung dieser Arbeit.

Acknowledgement

At this place, I would like to thank all the people who have made this work possible by their
support.

I owe a special debt of gratitude to my thesis advisor, Prof. Dr. Ingo Wegener. A large part
of my knowledge on theoretical computer science is due to him. He has introduced me to the
exciting field of branching programs and has guided me duringthis work by many helpful and
motivating discussions. Next, I am also grateful to my inofficial “second advisor” Prof. Dr.
Martin Dietzfelbinger who was always willing to discuss questions. His hints, e. g., concerning
the mathematics of finite fields, have had considerable impact on the success of this work.
Furthermore, also the discussions with Prof. Dr. Matthias Krause have been very helpful, to
whom I owe important insights into the relations between thecomplexity of branching programs
and communication complexity.

I would like to thank all colleagues at the Lehrstuhl II for the friendly and constructive atmo-
sphere in which I could work at this thesis. Special thanks goto Detlef Sieling for many inter-
esting discussions on the subjects of this work, and Martin Löbbing for his support concerning
software and hardware problems.

Finally, I gratefully acknowledge the financial support of this work by the German Research
Foundation (Deutsche Forschungsgemeinschaft).

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Models of Computation .. 4

1.2.1 Circuits and Nonuniform Turing Machines 4

1.2.2 General Branching Programs .. 6

1.3 Restricted Branching Programs 8

1.4 Branching Programs as a Data Structure 13

1.5 Previous Results on Nondeterministic and Randomized Branching Programs . . 17

1.6 Summary of Results in this Work 18

1.7 Notation . 20

2 Nondeterministic and Randomized Branching Programs 21

2.1 Nondeterministic Branching Programs 21

2.1.1 Nondeterministic Variants of General Branching Programs 21

2.1.2 Nondeterministic Variants of Restricted Branching Programs 25

2.2 Randomized Branching Programs 29

2.2.1 Randomized General Branching Programs 29

2.2.2 Randomized Restricted Branching Programs 38

3 Upper and Lower Bounds on the Size of Randomized OBDDs 43

3.1 Communication Complexity Theory 43

3.2 A List of Functions .45

3.3 Upper Bounds for Randomized OBDDs 49

3.3.1 The Fingerprinting Technique for Randomized OBDDs 50

3.3.2 Applications of Fingerprinting 50

vii

3.4 Lower Bounds for Randomized OBDDs andkOBDDs 57

3.4.1 The Reduction Technique . 57

3.4.2 Lower Bounds fork-Stable Functions 60

3.4.3 Lower Bounds for RandomizedkOBDDs 64

3.5 Summary . 65

4 On the Resource Randomness 69

4.1 A Normal Form for Randomized Branching Programs 70

4.2 Multiple Access to Probabilistic Variables 73

4.3 Summary . 78

5 Upper and Lower Bounds for Randomized Read-k-Times Branching Programs 79

5.1 The Technique of Generalized Rectangles 80

5.1.1 Branching Programs with Nonboolean Variables 80

5.1.2 Lower Bounds for Deterministic and NondeterministicRead-k-Times
Branching Programs . 81

5.1.3 The Randomized Case . 87

5.2 NP versus BPP for Read-Once Branching Programs 92

5.3 P versus ZPP for Read-Once Branching Programs 106

5.4 A Lower Bound for Randomized Read-k-Times BPs 109

5.4.1 Facts from the Paper of Borodin, Razborov, and Smolensky 109

5.4.2 Preparations for the Proof .. 111

5.4.3 The Proof of the Lower Bound Result 113

5.5 The Separation of the Read-k-Times Hierarchy by Thathachar 122

5.6 Summary . 129

6 Concluding Remarks 131

References 133

viii

Chapter 1

Introduction

We start with an introduction into the theoretical context of this work and try to motivate why
it is reasonable to do complexity theory for branching programs (Section 1.1). In Section 1.2,
we review some definitions and basic facts concerning the models of computation which are
relevant for the following, including general branching programs. Then we introduce some of
the restricted variants of branching programs which are standard in the literature (Section 1.3).
In Section 1.4, we take a short excursion to the field of practice and talk about the role which
branching programs play as a data structure for Boolean functions. Finally, we discuss pre-
viously known results on nondeterministic and randomized branching programs and give an
overview on what follows in the next chapters (Sections 1.5 and 1.6, resp.).

1.1 Motivation

Computational complexity theory deals with the complexityof computations done by humans
or human computers. Its central question can be put as follows: Given a discrete function, i. e., a
function of the typeN ! N, what is the amount of resources necessary and sufficient to compute
this function by a certain computational device? This question already suggests that there can
be many different “flavors” of complexity theory, dependingon the exact specification of the
type of resources and on the choice of the model of computation. The most important model of
computation is still the Turing machine (TM). In order to be able to justify that it really captures
the notion of “intuitive computability,” the Turing machine was designed to mimic the way a
mathematician successively computes the digits of the decimal representation of a real number
using “paper and pencil.” Usually, we are interested in the “time” (the number of elementary
computation steps) used for the computation of such a machine and the “space” (the maximal
number of storage locations used).

In practice, we want to solve combinatorial problems like “Does this graph have a3-coloring?”
or “What is the minimum area to layout this circuit?”. It is important that also these “problems”
(either described by a set of strings, or a string function ora relation over strings) fit into the
original framework of the theory. But the real key to the success and practical applicability of

1

complexity theory is that we can introduce just the right amount of “sloppyness” into the above
central question to make it amenable to formal analysis without making it completely pointless.

It is not possible in general and also not desirable for practical reasons to exactly describe,
e. g., the minimal time within which a given problem can be solved on a Turing machine as a
function of the input size. Such a function necessarily depends too much on the low level details
of the model of computation. In complexity theory, we only try to sort problems roughly into
large classes according to the resources required to solve them in the worst-case. The following
complexity classes belong to the most basic ones of classical complexity theory:� P (NP), the class of languages decidable in polynomial time by deterministic (nondeter-

ministic) Turing machines; and� L (NL), the class of languages decidable by deterministic (nondeterministic) Turing ma-
chines using at most logarithmic space (and extra read-onlyand write-only tapes for input
and output, resp.).

The interest in these classes is harder to motivate than the formalization of the notion of an
“intuitively computable function.” One cornerstone of classical complexity theory is the as-
sumption that the class of problems which are “intuitively efficiently solvable in a sequential
way” coincides with the class of problems solvable in polynomial time by a Turing machine,
i. e., with the class P. The importance of polynomials in thisrespect is due to their desirable clo-
sure properties and the fact that, in practice, algorithms with polynomial running time are most
often sufficiently fast, whereas algorithms with superpolynomial running time are not (compare
this with the choice of linear functions to model certain real-world phenomena in physics).

A problem is generally considered to be “efficiently solvable in parallel” if it is solvable within
polylogarithmic time and with polynomially many processors on a PRAM (parallel random ac-
cess machine). The well-known “parallel computation thesis” states that space for sequential
models of computation and time for parallel models are polynomially related (which can be
proven for known models, e. g., for PRAMs and Turing machines). Thus, complexity classes
defined with respect to sublinear space bounds on Turing machines, like L, are interesting be-
cause of their relation to the parallel world of computation.

Finally, the practical impact of the theory of NP-completeness is surely sufficient to motivate
our interest in nondeterministic models of computation andcomplexity classes like NL and NP.
It is important to note here that, in some cases, it is completely reasonable also from a practical
point of view to consider computational devices for which nodirect physical realization exists.
Even the classical deterministic Turing machine is an idealized device which cannot really be
built (since real computers always have non-zero error probability, for example). On the other
hand, recent experiments with quantum and DNA computing show that nondeterminism might
very well be implemented as a feature of a real computer in thefuture.

It is easy to see that L� NL � P � NP, but to prove that one of these inclusions is proper
belongs to the fundamental open problems of complexity theory. It is embarrassing that after
we have invented a lot of interesting complexity classes, westill do not know even for the basic
ones whether they are different at all. Although we are “sure” that it should be easier to verify
whether a given solution is correct than to compute one, all efforts to prove that L$ NL or

2

P $ NP failed so far. The fact that the latter question is open since almost 30 years reminds
us of the weakness of our methods to prove lower bounds for explicitly defined functions. (We
adopt the convention here that a function is calledexplicitly definedif it is computable by a
nondeterministic Turing machine in polynomial time.) Proving such bounds is probably the
greatest challenge of complexity theory at all.

Since the hope to solve such problems like “P versus NP” directly for the classical model of
Turing machines has dwindled away as the years passed, complexity theory has turned to new
models of computation which promise to be easier to handle, like branching programs. As we
will review in detail in the next section, the size of branching programs is closely related to the
size of circuits as well as to space complexity on the nonuniform variant of Turing machines.
Some standard complexity classes, e. g., the class L, can even be directly characterized in terms
of branching programs, which has done a great deal to establish branching programs as an
interesting nonuniform model of computation.

Because of these tight relations to the other models, it is animportant problem to prove super-
polynomial lower bounds on the size of branching programs for an explicitly defined function.
Up to now, also this problem is unsolved. But there are some good arguments why branching
programs are a promising model of computation for proving lower bounds:� Their combinatorial structure is especially simple.� Computations can be directly visualized graphically (which is a fact not to be underesti-

mated).� Since a computation of a branching program corresponds to a path in a graph, it is easy
to define reasonably restricted variants.

In order to gain a deeper understanding of the model of branching programs, several restricted
variants have been intensively investigated. Some of thesevariants will be discussed later in
this chapter. But it also makes sense to consider different modes of computation for branching
programs, like nondeterminism and randomization.

Randomized algorithms are known at least since the famous needle-experiments of Buffon in
the eighteenth century, but they have become fashionable for real-life applications only in the
last few years. The algorithms for testing primality by Solovay and Strassen and by Rabin
are usually considered to be the first really important randomized algorithms. The appropriate
model of computation, the probabilistic Turing machine, has been made popular by the thesis
of Gill [44]. We only list the probabilistic complexity classes which are standard today without
going into the details of their definition:� ZPP, the class of languages decidable in polynomialexpectedtime with zero error on a

probabilistic Turing machine (Las Vegas algorithms);� RP (BPP), the class of languages decidable with one-sided error (bounded error, resp.) in
polynomial time on a probabilistic Turing machine (Monte Carlo algorithms);� PP, the class of languages decidable with unbounded error (smaller than1=2) in polyno-
mial time on a probabilistic Turing machine.

3

The kind of knowledge we have on these classes is comparable to that for the deterministic
and nondeterministic classes: although some interesting inclusion relations and even closure
properties of these classes could be proven, we completely lack any separation results because of
our inability to prove appropriate lower bounds. (For a thorough introduction into this subject,
we refer to standard textbooks on complexity theory, e. g., [15].)

Randomized variants of branching programs are probably notpractically applicable as a data
structure for the representation of Boolean functions as other types, e. g., OBDDs (ordered bi-
nary decision diagrams) are. The interest in these variantsof branching programs is motivated
by theory. Because of the close relations between deterministic, nondeterministic, and proba-
bilistic models, it is desirable to understand also the probabilistic mode of computation in order
to complete the overall picture of the model under consideration. As we learn from the example
of the recently developed theory of probabilistically checkable proofs, the classical theory may
benefit in a hitherto unsuspected way from insights into the theory of probabilistic models. It is
not too bold to say that the main stream of modern complexity theory is “probabilistic,” and it
seems that there still is an enormous potential of development for probabilistic methods. Ana-
lyzing randomized branching programs, as the so far most interesting probabilistic nonuniform
model of computation, hopefully will again increase our knowledge on these methods a little
bit.

1.2 Models of Computation

In this work, we are mainly concerned withnonuniformmodels of computation. A nonuniform
model of computation describes a sequence of (Boolean) functions by a sequence of represen-
tations, one for each input length. Circuits are the most popular model of this type. In the
following subsection, we review some definitions and basic facts about the standard nonuni-
form models of computation. After this, we define the basic type of branching programs and
discuss the relation of branching programs to the other models.

1.2.1 Circuits and Nonuniform Turing Machines

Circuits cannot be simulated by conventional (uniform) Turing machines, since they can also
represent non-recursive functions. In order to be able to relate the results for nonuniform models
to the classical theory, the following definition of a nonuniform variant of Turing machines is
used.

Definition 1.1: A nonuniform Turing machine(also calledadvice-taking Turing machine) is a
Turing machine with an extra read-only tape (oracle tape). On inputx, this tape is automatically
loaded with the “oracle string”A(jxj), whereA : N ! f0; 1g� is an arbitrary function (called
“oracle function” in the following). The computation time of such a machine is defined as for
usual Turing machines. The space used for inputx is the sum of the space required on the
working tape(s) anddlog jA(jxj)je.

4

Definition 1.2: If X is a class of languages defined in terms of resource-bounded Turing ma-
chines, thenX=Poly is the class of languages defined by nonuniform Turing machines with the
same resource bounds and an oracle functionA : N ! f0; 1g� with jA(n)j = nO(1).
We identify a languageL � f0; 1g� with its corresponding sequence of Boolean functions(fLn)n2N, wherefLn (x) = 1 iff x 2 L \ f0; 1gn.

The classes P=Poly and L=Poly are the nonuniform analogs to the classes P and L for uni-
form Turing machines. Furthermore, it is a well-known fact that P=Poly can be equivalently
characterized as the class of sequences of functions computable by a sequence of circuits of
polynomial size. We discuss some further well-known relations between nonuniform Turing
machines and circuits.

Circuits are a parallel model of computation. As already said above, a parallel algorithm is
considered to be efficient if it runs in polylogarithmic timeand uses at most a polynomial
amount of hardware. This has led to the definition of the complexity classes NC (Nick’s class)
and AC (alternating class) for circuits.

Definition 1.3:

(1) NCk is the class of sequences of Boolean functions(fn)n2N computable by a sequence of
circuits over the basisf^;_;:g with fan-in 2, polynomial size and depthO(logk n), wherek � 1. NC := Sk�1 NCk.

(2) ACk is the class of sequences of Boolean functions(fn)n2N computable by a sequence
of circuits over the basisf^;_;:g with unbounded fan-in, polynomial size and depthO(logk n), wherek � 0. AC := Sk�0 ACk.

The following theorem summarizes our current knowledge on the relations of some of the above
classes.

Theorem 1.4: AC0 $ NC1 � L=Poly� AC1 � NC = AC � P=Poly.

The inclusions in this theorem follow directly from the definitions or by straightforward sim-
ulations. For the history and a proof of the result AC0 6= NC1, see the monograph [112] of
Wegener. Again, we do not know whether the remaining inclusions are proper. To prove a
lower bound which would separate one of these classes would amount to a major breakthrough
in complexity theory.

We finally remark that all the above nonuniform complexity classes defined via circuit com-
plexity can be replaced by uniform variants where we restrict ourselves to uniform circuits. It
is sufficient here to consider log-space uniform circuits. We call a sequence of circuits(Gn)n2N
log-space uniformif there is a deterministic, uniform Turing machine which computes an en-
coding ofGn on input ofn using spaceO(log n). (Note that there are different, more restrictive
as well as more permissive definitions of a uniform circuit, see [72], Ch. 2.) We believe that
separation results for the nonuniform classes defined abovecarry over to their uniform counter-
parts since many circuits considered so far for upper boundsare log-space uniform (and lower
bounds carry over trivially). Although even a proof of, e. g., NC1 $ NP would not have any
immediate consequences for the “P versus NP” question, we have good reasons to assume that
such a result would yield important new insights into the general nature of lower bound proofs.

5

1.2.2 General Branching Programs

Now we are ready to define the most fundamental model of computation for this work. The
original definition goes back to Lee [71] and Masek [73].

Definition 1.5: A branching program (BP)on the variable setfx1; : : : ; xng is a directed acyclic
graph with one source and sinks labeled by the constants 0 or 1, resp. Each non-sink node is
labeled by a variablexi and has exactly two outgoing edges labeled by 0 or 1, resp.

This graph represents a Boolean functionf : f0; 1gn ! f0; 1g in the following way. To com-
putef(a) for some inputa 2 f0; 1gn, start at the source node. For a non-sink node labeled byxi, check the value of this variable and follow the edge which islabeled by this value (this is
called a “test of variablexi”). Iterate this until a sink node is reached. The value off on inputa is the value of the reached sink. For a fixed inputa, the sequence of nodes visited in this way
is uniquely determined and is called thecomputation path fora.

Thesizeof a branching programG is the number of its nodes and is denoted byjGj. Thedepth
of a branching program is the maximum length (number of edges) of a path from the source to
one of the sinks.

The above model can be modified in a straightforward way in order to represent arbitrary func-
tions f : Mn ! N , whereM andN are finite sets andf is defined on variables with values
from M . In general, we will work with the Boolean model. Furthermore, we remark that it is
sufficient to have a single sink for each of the different values the function assumes (sinks with
the same value can be merged). We usually assume that a branching program has (at most) two
unique sinks with labels0 and1 in the following.

Usually, we consider sequences of branching programs representing sequences(fn)n2N of
Boolean functions, wherefn : f0; 1gn ! f0; 1g. In order to avoid an unnecessarily blown-up
notation, we will frequently talk of functions where we really mean “sequences of functions.”

It is easy to see that every Boolean functionf : f0; 1gn ! f0; 1g can be represented by a
branching program of depthn and size2n+1 + 1 (use the complete binary tree where the nodes
of each level are labeled by a different input variable to represent the DNF of the function).
For an arbitrary Boolean functionf , we define BP(f) as the minimal size of a branching pro-
gram representingf . Furthermore, let P-BP be the class of all sequences of Boolean functions
representable by a sequence of branching programs of polynomial size.

The depth of a branching program obviously measures the timeof computation required in the
worst-case. On the other hand, nodes of branching programs closely correspond to configura-
tions of other sequential models of computation. Cobham [35] and Pudlák anďZák [91] have
independently used this correspondence to prove that the size of branching programs is essen-
tially the logarithm of the space complexity on nonuniform Turing machines. Especially, we
have the following important result:

Theorem 1.6 (Cobham / Pudĺak and Žák): P-BP= L=Poly.

6

Furthermore, also the size of branching programs and the size of circuits are closely related.
Let C(f) be the size of an optimal circuit for the Boolean functionf . A formula is a circuit
whose gates have fan-out 1, and the size of a formula is the number of its literals. LetL(f)
denote the minimal size of a formula using arbitrary binary gates and negations. LetL�(f)
denote the minimal size of a formula using only gates fromf^;_;:g. It is well-known thatL�(f) � L(f)2 (this can be easily proven by recursively replacing gates ofthe EXOR-type by
an appropriate formula overf^;_;:g).
For these complexity measures we have:

Theorem 1.7 (Wegener / Sauerhoff, Wegener, and Werchner):

(1) (1=3) � C(f) � BP(f) � L�(f) + 2;

(2) BP(f) = O(L(f)�), where� := log4(3 +p5) < 1:194.

Part (2) of this theorem is a recent result with a mathematically quite involved proof [96],
whereas Part (1) has already been known for a long time (see [111], [112]) and can be proven
by straightforward simulations. For the proof of the secondinequality of (1), one applies ele-
mentary construction techniques for branching programs (see Section 1.4). The essence of the
proof of the first inequality is that branching programs can be seen as a special kind of multi-
plexer circuits. We take a closer look on this correspondence here, since it yields an important
alternative view on the semantics of branching programs.

Extending Definition 1.5, we can recursively assign a function to each of the nodes of a given
branching program; we say that such a function is computed (or represented) at its node. First,
we assign the constant functions0 and1 to the sinks. A non-sink nodev labeled byxi and with0- and1-successorsw0 andw1, resp., is assigned the functionfv := ite(xi; fw1 ; fw0); where ite(x; y; z) := xy _ (:x)z
andfw0 andfw1 are the functions computed at the successors. (This is the so-called “Shannon
decomposition formula.”) Using this definition, we can now easily construct a circuit for the
given branching program by recursively replacing each nodev by three gates computingfv
according to the above formula.

Having seen the above relations between the size of branching programs and the size of cir-
cuits (or formulas), it is natural to ask whether there are characterizations of familiar complex-
ity classes defined via circuit complexity in terms of branching programs. The most impor-
tant result of this kind is closely related to the history of results on width-restricted branching
programs. We do not report this history here (for references, see, e. g., [10] or the mono-
graph [112]). We first give a definition of the width of a branching program and the relevant
complexity classes.

Definition 1.8: For a nodev of a branching program, definel(v) as the number of edges on the
longest path from the source tov. For i � 0, let theith level ofG be the set of all nodesv withl(v) = i. Thewidthof a branching program is the maximum taken over the sizes of its levels.

Let P-WIDTH(k)-BP be the class of sequences of functions representable bybranching pro-
grams of polynomial size and widthk. Define P-BWBP:= Sk�1 P-WIDTH(k)-BP (“BW” =
bounded width).

7

Since Yao [116] had proven that width-2 branching programs representing the majority function
require superpolynomial size, it had been conjectured thateven arbitrary constant width is not
sufficient to compute it in polynomial size. This has been disproven by the following famous
result of Barrington [16], which supplies a direct and simple characterization of the familiar
class NC1 in terms of branching programs.

Theorem 1.9 (Barrington): P-BWBP= P-WIDTH(5)-BP= NC1.
Because of all the results which we have presented above, it is obvious why it is an important
(open) problem to prove superpolynomial lower bounds on thesize of branching programs for
an explicitly defined function. (Here, a sequence of functions(fn)n2N is calledexplicitly defined
if the language

Sn2N f�1n (1) is contained in NP.)

As already mentioned, the present record of success in the field of lower bounds for general
branching programs is poor. It is not hard to show that an arbitrary sequence of Boolean func-
tions (fn)n2N has branching programs of sizeO(2n=n), while on the other hand, for almost
all sequences of functions also the optimal branching programs have size
(2n=n) (see [29],
[71], [112]). In spite of this, the largest known lower boundfor an explicitly defined function
is still that of order
(n2= log2 n) which follows by the method of Nečiporuk from 1966 [79]
(the respective function is contained in P). There are only few other results for general branch-
ing programs. Pudlák [89] and Babai, Pudlák, Rödl, and Szemerédi [14] have proven weaker
bounds by a different method for certain symmetric functions. Babai, Nisan and Szegedy [13]
have applied results on multiparty communication protocols to prove a lower bound for an en-
coding of the so-called generalized inner product function, but also this bound is smaller than
that of Nečiporuk.

It is a natural development that theory has turned to the analysis of more restricted variants of
branching programs after the available tools had turned outto be insufficient to tackle the gen-
eral lower bound problem. In the next section, we introduce the restricted variants of branching
programs which are relevant for this work.

1.3 Restricted Branching Programs

The variants of branching programs which play a role in the following are all restricted with
respect to the number of read accesses to the input variables. The most popular model of this
kind (or, rather, a class of models) is the following one.

Definition 1.10: Let k 2 N. A read-k-times branching programis a branching program with
the restriction that on each path from the source to a sink each variable is allowed to appear at
mostk times as the label of a node.

Let P-BPk denote the class of sequences of Boolean functions representable by read-k-times
branching programs of polynomial size. We allow that the numberk may depend on the input
size of the represented functions. For a functionk : N ! N, we formally define

P-BPk := f(fn)n2N j 9 (Gn)n2N : Gn is a read-k(n)-times BP representingfn
andjGnj = Poly(n) g.

8

A read-k-times branching program has depth at mostkn, wheren is the number of variables.
The parameterk thus allows to control the available time of computation.

It has been noticed by Borodin, Razborov, and Smolensky [27]that another interesting, more
general variant of read-k-times branching programs is obtained by requiring the restriction on
the number of read accesses only to hold for allcomputation paths(instead ofall paths). These
branching programs are sometimes callednon-syntactic (or semantic) read-k-times branching
programs, whereas the above model is calledsyntactic read-k-times. In this work, we only
consider the syntactic variant and usually omit the prefix “syntactic” for readability purposes.

The first type of read-k-times branching programs which has been intensively investigated are
read-once branching programs, i. e., the casek = 1. In this case, the syntactic and the general
(non-syntactic) model coincide. Read-once branching programs (including OBDDs defined be-
low) are the variant of branching programs whose theory is most thoroughly understood. It has
also been the first variant for which exponential lower bounds on the size could be established.
Wegener [113] anďZák [117] independently have proven such bounds on the sizeof certain
functions testing the existence of cliques in graphs. Laterlower bound results include func-
tions which correspond to other combinatorial problems (e.g., testing whether a graph contains
a perfect matching or an undirected Hamiltonian circuit, [36], a problem involving projective
planes [40]), functions which test properties of matrices (e. g., the permutation matrix function,
[60], [68]), arithmetic functions (computing the middle-bit of multiplication, [88]), functions
representing codes ([61], [83]) and many more. Most of theseproofs are based on variants of
the “cut and paste” argument already applied in the first works of Wegener anďZák. The various
approaches have been unified and generalized by the technique of Simon and Szegedy [107].

Read-k-times branching programs fork > 1 are much more difficult to handle than read-
once branching programs. In contrast to read-once branching programs, read-k-times branching
programs withk > 1 may containinconsistent paths(also called null-chains). An inconsistent
path is a path which cannot be part of a computation path, since at least one variable would have
to be tested with different results on it.

Nevertheless, the last years have also brought some interesting results for (syntactic) read-k-
times branching programs wherek > 1. (Definitions of the nondeterministic and randomized
variants of branching programs mentioned here are presented in Chapter 2.) The first expo-
nential lower bounds on the size of read-k-times branching programs have been independently
proven by Okolnishnikova [83] fork � c log n= log log n, c < 1 arbitrarily chosen, and by
Borodin, Razborov, and Smolensky [27] even for nondeterministic read-k-times branching pro-
grams andk � c log n, for an appropriate constantc (wheren is the input size). Jukna [61]
has extended these results by showing an exponential gap between the size of nondeterministic
read-k-times BPs for the function of Okolnishnikova and its complement.

Already in the beginning of the research on read-once branching programs, Wegener has pre-
sented a function for which read-twice branching programs have polynomial size, whereas
every read-once branching program must have exponential size ([112], [113]). It remained
open whether, in general, the classes of sequences of functions representable in polynomial size
by read-k-times branching programs form a proper hierarchy with respect tok.

9

Okolnishnikova [84] has been the first to make some progress with answering this open ques-
tion. She has managed to prove an exponential gap between thesize of read-k-times and
read-k�-times branching programs, wherek� � k2 (which she later has improved tok� �ck ln k, c appropriately chosen, and also extended to the nondeterministic case [85]). Recently,
Thathachar [109] resolved the open question concerning the(syntactic) read-k-times hierar-
chy. He has even shown an exponential gap between the size of nondeterministic or random-
ized read-k-times branching programs and deterministic read-(k+1)-times branching programs
(which holds for allk � (1=p2� �)plog n, � > 0 an arbitrarily small constant).

Up to now, proving lower bounds for the non-syntactic model of read-k-times branching pro-
grams is an open problem. Non-syntactic read-k-times branching programs (with the restriction
imposed only on the computation paths) have originally beenconsidered to be the more natural
model since they directly correspond to a restricted variant of Turing machines, the so-called
read-k-times eraser Turing machines. Such a machine is allowed to access each location on the
input tape at mostk times (of course, this is only interesting when consideringsublinear space
bounds). For the casek = 1, the correspondence of these machines to branching programs is
analyzed in the thesis of Meinel [74] (also published in [68]). In general, logarithmic space
on nonuniform read-k-times eraser Turing machines corresponds to polynomial size for non-
syntactic read-k-times branching programs, analogously to the result of Cobham and Pudlák
andŽák presented in Section 1.2. But although the model seems to be natural, it is not clear to
which extent non-syntactic read-k-times branching programs can really be helpful to gain new
insights into lower bound techniques.

One can say that, intuitively, all restrictions of branching programs which are not defined in
terms of “simple” properties of the graph but in terms of the “computation” of the branching
program (like general, non-syntactic read-k-times branching programs) turn out to be hard to
understand. The models of the former type are generally all subsumed under the label “syntactic
models,” whereas the latter type is called “non-syntactic”or “semantic.” Of course, this is no
formal distinction. One possible criterion to compare the models on this level could be the
complexity of the problem to decide whether a given branching program fulfills the required
restriction, this problem is called the “consistency test”for the respective type of branching
programs by Sieling and Wegener [106]. It is easy to see that the consistency test for the
syntactic variant of read-k-times branching programs is in P, whereas it is coNP-complete for
non-syntactic read-k-times branching programs ifk � 2 (this follows by a simple application
of a well-known reduction from [39]).

There are some investigations on variants of branchings programs at the borderline between
syntactic and non-syntactic models. A(1;+k)-branching programis a read-once branching
program where for each computation path there may be a set of at mostk variables which do
not fulfill the restriction on the number of tests. Obviously, (1;+k)-branching programs allow
the existence of inconsistent paths. Sieling [102] first proven a hierarchy result for varyingk on
syntactic(1;+k)-branching programs (where the restriction must hold for all paths). Savický
and Žák have recently extended this result to the general, non-syntactic case [98]. Further
interesting ideas have been presented by Jukna and Razborov[56]. They have replaced eraser
Turing machines by so-called “corrupting Turing machines”which seem to be a physically more
appropriate model of the concept of restricted read access.New variants of branching programs

10

defined according to these machines are calledsemantic read-k-times branching programsand
semantic(1;+k)-branching programs. Jukna and Razborov have presented exponential lower
bounds for semantic read-once nondeterministic branchingprograms and semantic(1;+k)-
branching programs.

In the remainder of this section, we introduce some further restricted variants of branching
programs which have originally been motivated from practice. These models are even more
restricted than syntactic read-k-times branching programs. OBDDs (ordered binary decision
diagrams) introduced by Bryant [30] are a widely known modelwhich has turned out to be
extremely useful as a data structure for the representationof Boolean functions.

Definition 1.11: Let � be a permutation of the setf1; : : : ; ng. A �-OBDD on the variable setfx1; : : : ; xng is a read-once branching program with the following additional ordering restric-
tion: For each edge leading from a node labeled by some variablexi to a node labeled byxj
it must hold that�(i) < �(j). We call a graph anOBDD if it is a �-OBDD for some permu-
tation�. The permutation� is called thevariable orderingof the OBDD. We frequently will
describe a variable ordering simply by an ordered list of thevariables (e. g., “x1; : : : ; xn” for� = id).

Define P-OBDD as the class of sequences of functions representable in polynomial size by
OBDDs.

OBDDs are closely related to DFAs (deterministic finite automata); we do not discuss this in
detail here. It is well-known that DFAs can be reduced efficiently, i. e., given an arbitrary DFA,
we can compute a minimal DFA for the same language in polynomial time. This minimal
DFA is even uniquely determined. If we fix a variable orderingfor OBDDs, they share these
properties.

Theorem 1.12 (Bryant / Sieling and Wegener):The �-OBDD of minimal size for a given
functionf is uniquely determined (up to isomorphisms) and can be computed from an arbi-
trary �-OBDDG for f in timeO(jGj).
We adopt the usual convention to call the unique, minimal OBDD for a functionf the reduced
OBDD forf (according to the fixed ordering), and the respective operation is calledreduction.
The uniqueness of the minimal OBDD was already proven by Bryant [30], his algorithm for
reduction has later been improved by Sieling and Wegener [105]. Perhaps the most important
fact about OBDDs for theory is that the reduced OBDD also can be described in a simple way.

Before stating this result, we give the definition of two basic notions.

Definition 1.13: Let f : f0; 1gn ! f0; 1g be defined onx1; : : : ; xn. Thesubfunction (restric-
tion) f jxi=a of f , a 2 f0; 1g, is defined byf jxi=a(x1; : : : ; xn) := f(x1; : : : ; xi�1; a; xi+1; : : : ; xn):
We say thatf essentially dependson a variablexi if f jxi=0 � f jxi=1 6= 0.

11

Theorem 1.14 (Sieling and Wegener):LetG be a reduced�-OBDD for the functionf defined
onx1; : : : ; xn. For the ease of notation, assume that� is the orderingx1; : : : ; xn.

For i = 2; 3 : : : ; n + 1, let Si be the set of subfunctions off of the typef jx1=a1;:::;xi�1=ai�1 ,
where(a1; : : : ; ai�1) 2 f0; 1gi�1, which essentially depend onxi. LetS1 = ffg. Obviously,Sn+1 � f0; 1g.
Then the functions represented at the nodes ofG labeled byxi are exactly those inSi, for i =1; : : : ; n, and the functions represented at the sinks are those inSn+1. (The function represented
at a node of a branching program has been defined in Section 1.2.) Especially, the number of
nodes ofG labeled byxi is exactlyjSij, andjGj = jS1j + � � �+ jSnj + jSn+1j.
As it turned out, OBDDs cannot only be reduced, but also most other important operations
required for practice can be carried out efficiently, as we will discuss in the next section. This
is the reason why they are interesting as a data structure forBoolean functions. For practical
purposes, it is desirable to know which functions can be represented in small size and which
not, and hence, complexity theoretical results for OBDDs also have immediate consequences
for practice. Lower bounds for OBDDs have been proven, e. g.,in [20], [21], [31], and [50]. It
is also possible to design a variant of the Turing machine model which allows to characterize
the class P-OBDD [99].

We cannot review the enormous amount of literature concerning all the various aspects of the
application of OBDDs here. Instead, we refer to the monograph of Minato [76] and to the
overview article of Bryant [32]. The monograph of Hachtel and Somenzi [47] covers some
aspects of the application of OBDDs for the verification of circuits.

It is a general rule of thumb that the easier it is to manipulate a data structure for Boolean func-
tions, the smaller is the class of sequences of functions representable in polynomial size. Since
many important functions, like multiplication, are not contained in the class P-OBDD, practi-
cians have intensively sought for new, generalized variants of OBDDs which promise an even
better trade-off between efficiency of algorithms and the size of the graphs. Two straightforward
generalizations are described in the following definition.

Definition 1.15:

(1) A kIBDD (“IBDD” = indexed binary decision diagram) is a branching program whose set
of nodes can be partitioned intok parts (calledlayers) L1; : : : ; Lk such that

(i) edges starting inLi end inLj with j � i, and

(ii) there are variable orderings�1; : : : ; �k such that for all edges withinLi the ordering
restriction for OBDDs from above holds with respect to�i.

(2) A kOBDD is akIBDD where�1 = � � � = �k.kIBDDs have been invented and intensively analyzed by Jain, Bitner, Abadir and Fussell [53].
Bollig, Sauerhoff, Sieling, and Wegener [21] have shown that the classes of sequences of func-
tions representable in polynomial size bykIBDDs (and alsokOBDDs) form a proper hierarchy
with respect tok.

12

1.4 Branching Programs as a Data Structure

We have already mentioned that certain variants of branching programs are used as a data struc-
ture for the representation of Boolean functions. VLSI design, especially the verification of
symbolic descriptions of hardware, is the main field of application for such data structures. We
discuss these practical issues here because it is also important to know how to handle and how
to construct branching programs for theoretical purposes.Furthermore, the existence or nonex-
istence of efficient algorithms for certain operations often yields interesting insights into the
nature of the considered variant of branching programs.

Although a randomly chosen Boolean function requires an exponentially large representation,
functions occurring in practice are usually strongly structured and have inherent symmetries.
These can be exploited by branching programs, often leadingto a succinct representation. The
interesting thing about OBDDs and similar variants of branching programs is that they can also
be manipulated efficiently.

In his pioneering paper on OBDDs, Bryant [30] presented a list of basic operations on rep-
resentations for Boolean functions for which efficient algorithms would be desirable. His list
has later been extended by Sieling and Wegener [106]. We onlymention the most important
operations here.

Evaluation:

Input: A representationG for a Boolean functionf : f0; 1gn ! f0; 1g, an assignmenta 2 f0; 1gn.
Output: f(a).
Satisfiability-Test:

Input: A representationG for a functionf .
Output: Yes, if there is an assignmenta 2 f0; 1gn such thatf(a) = 1; no, otherwise.

Replacement by constants:

Input: A representationG for f , a variablexi on whichf is defined, and a constantc 2 f0; 1g.
Output: A representationG0 for the functionf jxi=c which is obtained fromf by replacingxi

by c.
Boolean synthesis:

Input: RepresentationsG1, G2 for functions f1 and f2, resp., and a Boolean operation
 : f0; 1g2 ! f0; 1g.
Output: A representationG for f1
 f2.
Evaluation and replacement by constants are “low level” operations and need no further mo-
tivation. We intuitively feel that both should be easy to carry out for any reasonable kind of
representation. Replacement by constants is an operation which is needed very often in up-
per and lower bound arguments. We remark that there are in fact practically relevant types

13

of restricted branching programs for which the operation replacement by constants may cause
problems. For the so-calledordered functional decision diagrams(OFDDs), the best known
algorithm for the replacement of variables by constants hasrunning time�(jGj3), and already
logarithmically many applications of this operation may increase the size of the representation
exponentially (see [18] for details). Furthermore, for a variant of read-once branching pro-
grams described below, even the replacement of a single variable by a constant may lead to an
exponential blow-up of the size.

Testing satisfiability and the synthesis operation are the fundamental operations for verification.
The synthesis operation is required to construct a representation from a given circuit description
(by “simulating” the gates of the circuit). Efficient algorithms for synthesis and testing satisfi-
ability are sufficient to efficiently check the equivalence of two representations (by exploiting
the fact thatf � g iff f � g is not satisfiable). Of course, it can turn out to be more efficient to
design a special algorithm for the equivalence test.

The representations of Boolean functions traditionally used in switching theory, like minimal
polynomials or circuits, all have the feature that evaluation, replacement by constants and syn-
thesis are trivial, but the satisfiability test is NP-complete. This also holds for general branching
programs, because a CNF formula can be simulated by a branching program of at most the same
size (see Theorem 1.7 in Section 1.2). We explicitly describe the algorithms for the three other
operations here since they demonstrate important standardtechniques for the manipulation of
branching programs.

Theorem 1.16: LetG,G1, andG2 be branching programs.

(1) The evaluation ofG can be carried out in timeO(d), whered is the depth ofG.

(2) Replacement of a variable inG by a constant can be carried out in timeO(jGj), and it
holds thatjG0j � jGj for the resulting graphG0.

(3) Boolean synthesis ofG1 andG2 with an arbitrary binary operation can be carried out in
timeO(jG1j + jG2j). The resulting graph has sizeO(jG1j + jG2j).

Proof: Part (1): We only have to follow the computation path for the given assignment as
described in the definition of branching programs.

Part (2): For each nodev labeled byxi, we redirect all edges leading tov to thec-successor
of v. This can be done during a single depth-first search throughG.

Part (3): We may assume for simplicity that all branching programs handled here have exactly
one0- and one1-sink. For the unary operation: (NOT) we simply copy the input and swap the
values of the0- and1-sinks. For the operation̂ (AND), we “concatenate” copies ofG1 andG2
in the following way: Identify the1-sink ofG1 with the source ofG2, and merge the0-sink ofG1
with the0-sink ofG2. The operation_ (OR) is handled analogously. All remaining operations
are carried out using the above ideas by simulating an appropriate formula overf^;_;:g for
the operation. 2
For OBDDs, all operations of the problem list, especially also the satisfiability test, and many
more can be done in polynomial time. We only state the respective results and refer to Bryant’s
original paper [30] for a proof.

14

Theorem 1.17: LetG, G1, andG2 be OBDDs ordered with respect to a variable ordering�.

(1) The evaluation ofG can be carried out in timeO(d) = O(n), whered is the depth ofG andn is the number of variables.

(2) Satisfiability ofG can be checked in timeO(jGj).
(3) Replacement of a variable inG by a constant can be carried out in timeO(jGj), the result-

ing graphG0 is again ordered by� and it holds thatjG0j � jGj.
(4) Boolean synthesis ofG1 andG2 with an arbitrary binary operation can be carried out in

timeO(jG1jjG2j). The resulting graphG0 is again ordered by� and has sizeO(jG1jjG2j).
We note that all algorithms for the operations mentioned above work with the same, fixed vari-
able ordering. The crucial point for the representation of afunction by an OBDD is to find a
variable ordering leading to a “small” OBDD (if there is sucha variable ordering at all).

It is known that it is not possible to compute an optimal variable ordering efficiently if P6= NP.
More precisely, the problem we are faced with is the following. Given an arbitrary OBDDG
representingf , compute an ordering�opt such that the size of the reduced�opt-OBDD for f
is minimal among all choices of the variable ordering. This problem has first been proven to
be NP-complete by Bollig and Wegener [22]. Sieling has extended this by showing that even
no polynomial time approximation algorithm with constant worst-case performance ratio exists
under the assumption P6= NP ([103], [104]).

We remark that a large part of the literature on OBDDs is concerned with the question how the
above operations (and others) can be implemented efficiently and how they can be used for the
various applications. Of course, we do not go into these details here. We again refer to the
monograph of Minato [76] and suggest that the reader looks atone of the sophisticated OBDD
packages which already exist. Important basic implementation techniques are described in the
papers of Brace, Rudell, and Bryant [28] and Minato, Ishiura, and Yajima [77].

At the end of this section, we discuss whether also (syntactic) read-k-times branching programs
might be used as a data structure for the representation of Boolean functions.

If we consider arbitrary read-k-times branching programs as the class of representations,the
answer to the above question is negative. First, it has been known for quite a long time that the
satisfiability problem is NP-complete already for read-2-times branching programs (Fortune,
Hopcroft, and M. Schmidt [39]). For read-once branching programs, satisfiability can be tested
in polynomial time. But another problem with read-k-times branching programs even occurs
in the casek = 1. This is the fact that the Boolean synthesis of two input graphs of polyno-
mial size may lead to an exponentially large result. The sameholds for the “quantification”
operations, i. e., the task to compute representations for the functions “8xi : f(x1; : : : ; xn)” or
“9xi : f(x1; : : : ; xn)” from a representation forf . For verifying the equivalence of two read-
once branching programs, only a coRP-algorithm is known (Blum, Chandra, and Wegman [17]).
Finally, it also seems to be difficult to exploit the power of multiple reads if one has to construct
a read-k-times branching program from an arbitrary circuit.

Of course, heuristical solutions to the above problems may be found. So far, such an approach
has only been tried for the more restrictedkIBDDs instead of general read-k-times branching

15

programs. Jain, Bitner, Abadir, Abraham, and Fussell [53] have described heuristics for testing
satisfiability and for constructing a representation from agiven circuit. Boolean synthesis can
be carried out efficiently if the orderings of variables in the layers of thekIBDDs are fixed.

Sieling and Wegener [106] have concentrated on the questionwhether there is a way to work
with read-once branching programs as a data structure, in spite of the drawbacks mentioned
above. They have discovered that many operations, including Boolean synthesis and the equiv-
alence test, can be carried out efficiently on read-once branching programs if one works with
a fixedgraph ordering, which is the generalization of the variable ordering of an OBDD (a
similar approach has been considered independently by Gergov and Meinel [42]).

Definition 1.18: LetX = fx1; : : : ; xng. LetG0 be a read-once branching program with exactly
one (unlabeled) sink where on each path from the source to thesink all variables fromX appear.
Such a graph is called agraph ordering.

A read-once branching program with graph orderingG0 on the variable setX, G0-BP1 for
short, is a read-once branching program with the following additional ordering property. For
an arbitrary inputa 2 f0; 1gn, let L(a) be the list of labels at the nodes on the computation
path fora in the read-once branching program, and similarly letL0(a) be the list of labels on
the computation path fora in the graph orderingG0. We require thatL(a) is a subsequence
of L0(a).
It is easy to see that an arbitrary read-once branching programG is ordered with respect to
a suitably chosen graph orderingG0 (this can be constructed efficiently fromG by inserting
“dummy tests”). Sieling and Wegener [106] have proven that theG0-BP1 of minimal size for a
given functionf is uniquely determined and can be efficiently computed from an arbitraryG0-
BP1 forf . Furthermore, aG0-BP1 forf
 g, where
 is an arbitrary Boolean operation, can
be computed from twoG0-BP1sG1 andG2 for f andg, resp., in timeO(jG0jjG1jjG2j) (this is
also the size of the result graph). The running time of the synthesis operation can be improved
to O(jG1jjG2j) if one considers a variant of graph ordered read-once branching programs with
stronger structural properties (so-called “well-structured BDDs”, WBDDs), see [106] for de-
tails. Usually, one has to pay with an increase of the size of the graphs for this improved
running time.

Altogether, graph ordered read-once branching programs may indeed be used for practical pur-
poses. The operations satisfiability test and Boolean synthesis can be carried out in polynomial
time even for graph ordered read-k-times branching programs, which are read-k-times branch-
ing programs withk layers all ordered according to the same graph ordering (as astraightfor-
ward generalization similar to the generalization of OBDDsto kOBDDs). The main problem
for the application of these data structures is that it seemsto be even more difficult to find good
graph orderings than to find variable orderings for OBDDs. Furthermore, it is known that the
replacement of variables by constants may lead to an exponential blow-up of the size of the
read-once branching program if the graph ordering is fixed (Sieling and Wegener [106]). If
the running time is measured with respect to the size of the input and the output graph, one
can prove that the replacement operation is as difficult as the equivalence test for (arbitrary)
read-once branching programs [101], for which probably no polynomial time algorithm exists.

16

1.5 Previous Results on Nondeterministic and
Randomized Branching Programs

In the previous sections, we have mainly been concerned withdeterministic branching pro-
grams. In the following, we review complexity theoretical results on nondeterministic and
randomized branching programs which have been previously known or which have been estab-
lished independently from this work. The nondeterministicand randomized models of compu-
tation mentioned here will be defined and discussed in depth in the next chapter.

The first exponential lower bound for a nondeterministic variant of branching programs has
been established independently by Jukna [59] and by Krause,Meinel, and Waack [68]. They
have proven such a bound on the size of nondeterministic read-once branching programs for the
permutation matrix function.

An overview on the different modes of computation for read-once branching programs has been
given in the thesis of Meinel [74]. Meinel has analyzed the relations of complexity classes
defined in terms of variants of nondeterministic read-once branching programs among each
other and to well-known nonuniform complexity classes.

Later on, Borodin, Razborov, and Smolensky [27] have managed to prove an exponential lower
bound even for nondeterministic read-k-times branching programs (wherek may be larger
than1). We have already mentioned this result and the related results of Okolnishnikova ([83],
[84], [85]) in Section 1.3.

Recently, some further nondeterministic variants of branching programs have been studied by
Jukna and Razborov [56], Bollig and Wegener [23], and by Waack [110]. We will comment on
the models considered in these papers later on in Chapter 2.

Although nondeterministic branching programs have been known for quite a long time, the
probabilistic mode of computation has been introduced for branching programs only recently.
As we will show later on, randomized branching programs withbounded error probability can
be derandomized by the same technique as probabilistic circuits, and the analogs of the classes
BPP, RP, and ZPP defined in terms of the size of branching programs coincide with the analog
of P, i. e., the class of sequences of functions with branching programs of polynomial size.
Hence, at the first glance, the randomized model does not seemto be very exciting. Ablayev
and Karpinski [3] were the first to notice that the situation becomes much more interesting if we
consider restricted variants of branching programs. They have analyzed randomized OBDDs
and have presented an example of a function which can be computed by randomized OBDDs
of polynomial size with small one-sided error, but which hasexponential size for deterministic
OBDDs and even for deterministickOBDDs. Later on, they have extended the lower bound
also to nondeterministickOBDDs [5] (in this paper, a slightly modified version of the original
function is used). Furthermore, in their first paper [3] it isalso shown that a nonboolean variant
of the considered function has exponential size for deterministic read-once branching programs.

Exponential lower bounds for randomized OBDDs have been proven by Ablayev [2] for a func-
tion from a paper of Savický anďZák [97] and independently by the author for functions from
the literature on OBDDs [95]. An exponential lower bound on the size of randomized OBDDs

17

for integer multiplication is due to Ablayev and Karpinski [4]. These results hold for the Monte
Carlo model, i. e., bounded error (one-sided or two-sided),and are proven by tools from com-
munication complexity theory. Recently, Ablayev, Karpinski, and Mubarakzjanov [6] have
presented a function contained in the analog of the class PP for randomized OBDDs, but not in
BPP[NP[coNP. By applying a known result from communication complexity [38], Karpinski
and Mubarakzjanov [64] have shown that ZPP= P for OBDDs.

Agrawal and Thierauf [7] have considered the question whether randomized OBDDs can be
used as a data structure for Boolean functions, supporting the operations defined in Section 1.4.
They have observed that the known synthesis algorithm for OBDDs can be used also for ran-
domized OBDDs. Unfortunately, an iterated application of this algorithm will lead to a degra-
dation of the error guarantee. Sometimes, this can be compensated by a “probability amplifica-
tion” technique. A more severe problem is that the satisfiability test (more precisely, its promise
variant) is NP-complete for randomized OBDDs, as Agrawal and Thierauf have proven. Alto-
gether, these results show that it is unlikely that randomized OBDDs are applicable as a data
structure in the same way as deterministic OBDDs.

There had been no results on randomized read-k-times branching programs prior to this work.
We have already mentioned that Thathachar [109] recently improved the results presented here
in order to prove that the classes of sequences of function with read-k-times branching programs
of polynomial size form a proper hierarchy with respect tok.

1.6 Summary of Results in this Work

We give a short overview on what is done in this work.

In the next chapter, we introduce nondeterministic and randomized variants of branching pro-
grams. There are several possible approaches to enhance thecapabilities of a simple branching
program by adding nondeterminism and randomness. We discuss some of these approaches and
motivate the choice of the model used here.

One main part of the work deals with randomized OBDDs. We use results from communi-
cation complexity theory to derive lower bounds on randomized OBDDs (this technique has
independently also been applied by Ablayev [2], as already mentioned). It turns out that the
relations of the complexity classes belonging to the Monte Carlo error model, i. e., the analogs
of the classes BPP, RP, and NP defined in terms of the size of OBDDs, can be completely
characterized. These results are presented in Chapter 3.

In Chapter 4, we take a closer look at how the size of branchingprograms depends on the re-
source randomness. We show that an arbitrary randomized branching program can be turned
into a randomized branching program requiring only a numberof “random bits” which is log-
arithmic in the input size, while the size of the branching program only increases by a linear
factor. An analogous result holds for most of the restrictedvariants of branching programs,
especially for randomized OBDDs and randomized read-k-times branching programs. Further-
more, we discuss a nonstandard model of randomized branching programs where each random
bit may be used more than once without explicitly storing it.

18

The second main part of the work is about lower bounds for randomized read-k-times branch-
ing programs (Chapter 5). As might be suspected, it is more difficult to prove lower bounds
for this model than for randomized OBDDs. We describe an adaptation of the technique of
Borodin, Razborov, and Smolensky [27] to the randomized setting, together with the following
two applications. First, we show an exponential gap betweenthe sizes of randomized read-once
branching programs for different constant worst-case error probabilities, which is perhaps the
most surprising result of the chapter. Furthermore, we prove an exponential lower bound on the
size of randomized read-k-times branching programs fork larger than1.

Publications

B. Bollig, M. Löbbing, M. Sauerhoff, and I. Wegener (1995).Complexity theoretical aspects
of OFDDs. InProc. of IFIP WG 10.5 Workshop on Applications of the Reed-Muller Expansion
in Circuit Design, 198 – 205, Chiba, Japan. Also published in:Representation of Discrete
Functions, T. Sasao (Ed.), Kluwer Academic Publishers, 1996.

B. Bollig, M. Löbbing, M. Sauerhoff, and I. Wegener (1998).On the complexity of the hid-
den weighted bit function for various BDD models. Submittedto Theoretical Informatics and
Applications.

B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener (1998). Hierarchy theorems forkOBDDs
andkIBDDs. Theoretical Computer Science, 205(1):45–60.

R. Drechsler, M. Sauerhoff, and D. Sieling (1998). The complexity of the inclusion opera-
tion on OFDDs.IEEE Trans. on Computer Aided Design of Integrated Circuitsand Systems,
17(5):457–459.

M. Sauerhoff (1998). Lower bounds for randomized read-k-times branching programs. InProc.
of the 15th Ann. Symp. on Theoretical Aspects of Computer Science (STACS), LNCS 1373,
105 – 115. Springer-Verlag.

M. Sauerhoff (1998). On the size of randomized OBDDs and read-once branching programs
for k-stable functions. To appear inProc. of STACS ’99.

M. Sauerhoff and I. Wegener (1996). On the complexity of minimizing the OBDD size for
incompletely specified functions.IEEE Trans. on Computer Aided Design of Integrated Circuits
and Systems, 15(11):1435–1437.

M. Sauerhoff, I. Wegener, and R. Werchner (1996). Optimal ordered binary decision diagrams
for fanout-free circuits. InProc. of Synthesis and System Integration of Mixed Technologies
(SASIMI), 197–204, Fukuoka (Japan), 1996. Submitted toDiscrete Applied Mathematics.

M. Sauerhoff, I. Wegener, and R. Werchner (1998). Relating branching program size and for-
mula size over the full binary basis. To appear inProc. of STACS’99.

19

1.7 Notation

Before we start into the next chapter, we list some notational conventions used throughout this
work.

Our fundamental object of study is a Boolean function and a representation for such a func-
tion. It is usually important to state which variables are used by the representation. LetX = fx1; : : : ; xng be a set of variables. To be formally precise, we could define aBoolean
functionf depending on these variables as a mapping of assignmentsa 2 2X to Boolean val-
ues, where2X is the set of all functions of the typeX ! f0; 1g. A representation forf
defined on variables fromX can be evaluated if we supply an assignment to these variables.
In order to simplify notation, we usually identify assignments with Boolean vectors (assum-
ing that the order of variables is obvious or does not matter). By the expression “a functionf : f0; 1gn ! f0; 1g defined on variables from the setX = fx1; : : : ; xng” we then abbreviate
the fact thatf is a mapping of assignments as described above.

We will frequently talk about sequences of concrete Booleanfunctions, like “(XYZn)n2N.”
For the ease of notation, we use the name of the function (“XYZ”) without lower index as an
abbreviation for the whole sequence.

The binary Boolean operations “AND”, “OR”, and “NOT” are denoted by “̂ ”, “_”, and “:”
(or “ � ”), respectively.

The following definitions have already occurred in Section 1.3 and are included here for easier
reference.

Let f : f0; 1gn ! f0; 1g be defined on the variablesx1; : : : ; xn. Thesubfunction (restriction)f jxi=a of f , wherea 2 f0; 1g, is defined byf jxi=a(x1; : : : ; xn) := f(x1; : : : ; xi�1; a; xi+1; : : : ; xn):
We say thatf essentially dependson a variablexi if f jxi=0 � f jxi=1 6= 0.

Let a = (an�1; an�2; : : : ; a0) 2 f0; 1gn. By jaj2 we denote the value ofa, interpreted as the
binary representation of a nonnegative integer, i. e.,jaj2 := n�1Xi=0 a0 � 2i:
Let P = P (x1; : : : ; xn) be a predicate with free variablesx1; : : : ; xn, wherexi assumes val-
ues inVi, then the expression[P] denotes the functionf : V1 � � � � � Vn ! f0; 1g withf(x1; : : : ; xn) = 1 iff P (x1; : : : ; xn) is true.

By Poly we denote the class of functions which grow at most polynomially, i. e., Poly is the
class of all functionsf with jf(n)j = nO(1). The class Polylog contains all functionsf withjf(n)j = logO(1) n. We call a functionf exponentialif there is a constant" > 0 such thatjf(n)j =
(2n"), andsuperpolynomialif jf(n)j = n!(1). We remark that all logarithms in this
work are logarithms to the base2, if not explicitly stated differently.

The complexity measures and complexity classes consideredhere will be defined together with
their corresponding model of computation. We use the notation co-C for the class containing
the sequences of Boolean functions(fn)n2N with (:fn) 2 C.

20

Chapter 2

Nondeterministic and Randomized
Branching Programs

In analogy to the definitions for Turing machines, differentmodes of acceptance can be studied
for branching programs. Here we introduce both nondeterministic and randomized branching
programs (Section 2.1 and 2.2, resp.). We define complexity classes in terms of these models
and observe basic inclusion relations. As in Chapter 1 for deterministic branching programs,
we also discuss the relations to known complexity classes for circuits and Turing machines.

2.1 Nondeterministic Branching Programs

We start with an overview on some alternative approaches to introduce nondeterminism into
general branching programs in Section 2.1.1. Furthermore,it is also interesting to consider
different modes of acceptance for the various restricted types of branching programs. In Sec-
tion 2.1.2, we take a look at some of these models.

2.1.1 Nondeterministic Variants of General Branching Programs

Already the “ancestor” of today’s model of branching programs, the so-called switching net-
work or switching-and-rectifier network from the works of Shannon [100], has in fact been
a nondeterministic model. These networks have also been studied extensively in the Russian
literature on switching theory.

Definition 2.1: A switching-and-rectifier network on the variable setfx1; : : : ; xng is a directed
graphG = (V;E) (not necessary acyclic) with two distinguished verticess; t 2 V , calledstart
andend vertex, resp. Edges ofG may be either unlabeled or carry labels of the form “xi = 0”
or “xi = 1.” Unlabeled edges are also calledfreeedges.

Such a graph represents a Boolean functionf : f0; 1gn ! f0; 1g in the following way. For a
given inputa 2 f0; 1gn, call an edgee of G activated fora if its label is consistent witha, i. e.,

21

if e is unlabeled or it is labeled by “xi = c” if ai = c, c 2 f0; 1g. We definef(a) = 1 iff there
is a directeds-t-path of activated edges fora in G.

Thesizeof the switching-and-rectifier network is the number of its labeled edges. By SRN(f)
we denote the minimal size of a switching-and-rectifier network representing the functionf .

For historical reasons, there are often several names for one and the same model of branching
programs. Switching-and-rectifier networks are also knownunder the namecontact gating
schemes, whereas undirected switching-and-rectifier networks arealso calledcontact schemes
or simplyswitching networks.

In the literature on branching programs, several restricted versions of switching-and-rectifier
networks have been considered, which we do not introduce here. We only remark that the
power of switching-and-rectifier networks is not substantially reduced if we forbid the use of
free edges and the existence of cycles.

Theorem 2.2: A switching-and-rectifier networkG representing a functionf can be simulated
by an acyclic switching-and-rectifier networkG0 for f without free edges, where the size ofG0
is polynomial in the size ofG.

Proof: First observe that we can always ensure that the number ofall edges of a switching-
and-rectifier network is at most quadratic in the number of labeled edges (see, e. g., [27]).

The ideas necessary to make a switching-and-rectifier network acyclic can already be found in
an early paper of Pudlák [90]. We describe a complete algorithm here. First, we compute a
setB of edges ofG = (V;E) such that the removal of these edges rendersG acyclic without
changing the set of vertices reachable from the start vertexs (this can be done by a depth-first
search throughG). Let b := jBj. For the construction of the acyclic switching-and-rectifier
networkG0, we start with disjoint copiesG1; : : : ; Gb of the graph obtained fromG by removing
the edges inB. For i = 1; : : : ; b� 1 and each edge(u; v) 2 B, we insert an edge leading from
the copy ofu in Gi to the copy ofv in Gi+1. Furthermore, we introduce an unlabeled edge
leading from the copy of the end vertext of G in Gi to its copy inGi+1. The start vertexs0 ofG0 is the copy of the start vertexs of G in G1, and its end vertext0 is the copy oft in Gb. This
switching-and-rectifier networkG0 computes the same function asG, since for a computation
in the original network, it is sufficient to run through each edge inB at most once. Obviously,
the number of edges ofG0 is at most quadratically larger than that ofG.

In remains to describe how the free edges ofG0 can be eliminated. The initial step is to replace
each vertexv with an outgoing free edge to the end vertext0 of G0 by the vertext0 itself. After
that, we visit the vertices of the resulting graph in a reversed topological order and replace each
free edge leaving the actual vertex as follows. Lete = (u; v) be a free edge, wherev has
outgoing edgese1; : : : ; ek to verticesw1; : : : ; wk. Deletee, and fori = 1; : : : ; k insert a new
edge(u; wi) carrying the label ofei. The graph obtained by this process is a switching-and-
rectifier network forf containing only labeled edges and having a size at most quadratic in the
size of the networkG0. 2

22

In a paper of Borodin, Razborov, and Smolensky [27], the name“nondeterministic branching
programs” is used simply for acyclic switching-and-rectifier networks. We use the following,
more restrictive definition.

Definition 2.3: A nondeterministic branching program on the variable setfx1; : : : ; xng is a
directed, acyclic graph with the same structure as described in Definition 1.5 for (usual) branch-
ing programs, but which may additionally contain unlabelednodes with two unlabeled outgoing
edges. These nodes are callednondeterministic nodes(“_”-nodes, guessing nodes, existential
nodes).

The functionf : f0; 1gn ! f0; 1g represented by a nondeterministic branching program is
specified analogously to Definition 2.1. Let an inputa 2 f0; 1gn be given. We call an edge
activated fora if it leaves a nondeterministic node or if it leaves anxi-node and is labeled byai. We definef(a) = 1 iff there is a path consisting of activated edges from the source to the1-sink (such a path is calledaccepting path).

The sizeof a nondeterministic branching program is measured by the number of its nodes.
Let NBP(f) be the minimal size of a nondeterministic branching programfor f . By NP-BP
we denote the class of sequences of functions with nondeterministic branching programs of
polynomial size.

Nondeterministic branching programs by this definition canalso be seen as a special form of
acyclic switching-and-rectifier networks. The following proposition shows that our definition
is not too restrictive.

Proposition 2.4: For an arbitrary Boolean functionf , it holds thatSRN(f) � 2 �NBP(f) and
NBP(f) = SRN(f)O(1).
Proof: The first part of the statement follows immediately from the definitions. The factor2 in
the inequality is due to the fact that the size of nondeterministic branching programs is defined
with respect to the number of nodes and not to the number of edges as for switching-and-rectifier
networks.

In order to simulate a given switching-and-rectifier network by a nondeterministic branch-
ing program, we first make the network acyclic. It remains to “split” nodes with outgoing
edges on which different variables are tested. We consider anodev with outgoing edgese1; : : : ; ek; ek+1; : : : ; ek+l, whereej = (v; wj) is labeled by “xij = cj”, for j = 1; : : : ; k, andek+j = (v; wk+j), j = 1; : : : ; l, is unlabeled. We replacev by a tree of nondeterministic nodes
by which the nodesv01; : : : ; v0k andwk+1; : : : ; wk+l are reached. The nodev0j obtainswj as itscj-successor and the0-sink as its:cj-successor. 2
It turns out that the classes of functions representable by switching-and-rectifier networks, by
acyclic switching-and-rectifier networks, and by nondeterministic branching programs of poly-
nomial size are all identical to the class NL=Poly.

Theorem 2.5: NL=Poly= NP-BP.

23

The proof of this result is done essentially by the same simulations as in the proofs of Cobham
or Pudlák anďZák for the deterministic case.

We mention another approach to describe the nondeterministic branching programs of Defini-
tion 2.3. The definition of
-branching programs due to Meinel ([74], [75]) has the nice feature
that it summarizes all interesting modes of acceptance for branching programs.

Definition 2.6: Let
 be a set of binary Boolean operations. An
-branching program on
the variable setfx1; : : : ; xng is a directed, acyclic graph with the same structure as a usual
branching program, but which may additionally contain nodes labeled by a function! 2

instead of a variable and having two outgoing edges labeled by 0 and1, resp.

The semantics of an
-branching program is defined as follows. For each nodev of the graph,
we recursively define a functionfv represented at this node. For the sinks or some node labeled
by a variable, this is done as already described in Chapter 1 for usual branching programs. The
function represented at a nodev labeled by! 2
 is defined asfv = !(fw0; fw1), wherefw0
andfw1 are the functions at the0- and1-successor ofv, resp.

Meinel [75] has shown that for an arbitrary set of binary Boolean operations
, there is an
0 2 f;; f_g; f^g; f_;^g; f�gg such that each
-branching program can be simulated by an
0-branching program with an at most polynomial increase of the size and vice versa.

The usual deterministic branching programs are obtained bysetting
 = ;. The nondeterminis-
tic branching programs of Definition 2.3 aref_g-branching programs in the sense of this defini-
tion. The case
 = f^g corresponds to “co-nondeterministic” acceptance, and theclass of func-
tions withf^g-branching programs of polynomial size is the same as coNL=Poly= coNP-BP.
By the famous result of Immerman [52] and Szelepcsényi [108], it follows that these classes are
also identical to NL=Poly.

Theorem 2.7 (Immerman / Szelepcśenyi): NP-BP= coNP-BP.

The class of functions representable byf_;^g-branching programs of polynomial size co-
incides with the class P=Poly. This is due to the fact that every circuit of polynomialsize
can be simulated by anf_;^g-branching program of polynomial size and vice versa.f_;^g-
branching programs have also been considered in practice under the name “XBDDs” (see [55]),
but they have the obvious drawback that testing satisfiability is NP-complete.

Finally, setting
 = f�g leads toparity branching programs, whose semantics can also be
defined by specifying that the represented function is equalto 1 iff the number of accepting
paths is odd.

We do not review upper and lower bound results for nondeterministic branching programs,
details can be found in the survey article of Razborov [92]. Of course, no superpolynomial lower
bounds are known, and proving such bounds seems to be even harder than for the deterministic
case.

24

2.1.2 Nondeterministic Variants of Restricted Branching Programs

Definitions of nondeterministic read-k-times branching programs and nondeterministic OBDDs
are derived in a straightforward way from Definition 2.3 by requiring that the nodes labeled by
variables fulfill the usual restrictions as for deterministic branching programs. By NP-BPk and
NP-OBDD we denote the classes of functions representable inpolynomial size by the respective
models.

We have already reported lower bound results for nondeterministic read-k-times branching pro-
grams in Chapter 1. We add some further details here, starting with nondeterministic read-once
branching programs. Not surprisingly, this has been the nondeterministic model of branching
programs for which the first exponential lower bound could beestablished.

The function for which this bound has been obtained is the “permutation matrix function” de-
fined below. This simple function already reveals many important features of nondeterministic
read-once branching programs.

Definition 2.8: The function PERMn : f0; 1gn2 ! f0; 1g is defined on ann � n-matrixX =(xij)1�i;j�n of Boolean variables. Let PERMn(X) = 1 iff X is a permutation matrix, i. e., if
each row and each column contains exactly one entry equal to1.

Jukna [60] and Krause, Meinel, and Waack [68] have independently shown that nondeterminis-
tic read-once branching programs for PERM have exponentialsize. They also have shown that
PERM2 coNP-BP1. Hence, we have:

Theorem 2.9: P-BP1$ NP-BP1, andNP-BP16= coNP-BP1.

Borodin, Razborov, and Smolensky [27] have presented a similar result for the “clique-only
function” which tests whether a graph onn vertices consists of a clique of sizen=2 andn=2
isolated vertices.

One may also ask how the smallest class defined via the size of nondeterministic read-once
branching programs, namely NP-BP1\ coNP-BP1, is related to P-BP1. Only very recently,
this question has been answered by Jukna, Razborov, Savick´y, and Wegener [57]. They have
proven an exponential gap between these two classes. Especially, we have:

Theorem 2.10 (Juknaet al.): P-BP1$ NP-BP1\ coNP-BP1.

The function used in the paper of Juknaet al. to prove the above theorem is described in Chap-
ter 5, where we show that this function can even be computed byrandomized read-once branch-
ing programs with zero error.

Next, we discuss nondeterministic read-k-times branching programs wherek may be larger
than1. As mentioned in Chapter 1, the first exponential lower boundon the size of read-k-
times branching programs is due to Borodin, Razborov, and Smolensky [27]. They have proven
that there is a sequence of explicitly defined functions(fn)n2N such thatfn has exponential size

25

for nondeterministic (syntactic) read-k-times BPs ifk � c log n for an appropriate constantc.
By an easy modification of their proof, it can be concluded that also the complement offn has
exponential size for nondeterministic read-k-times BPs. In Chapter 5, we will complement this
by showing that this function is also hard for randomized read-k-times branching programs.

The latest milestone for the development of complexity theory for read-k-times BPs has been
the result of Thathachar [109]. As already mentioned, Thathachar has managed to prove an
exponential gap between the size of nondeterministic read-k-times branching programs and de-
terministic read-(k+1)-times branching programs. From his result, also the following relations
between the deterministic and nondeterministic classes for read-k-times branching programs
follow.

Theorem 2.11 (Thathachar): For k � (1=p2��)plog n, � > 0 an arbitrarily small constant,
it holds thatP-BPk $ NP-BPk, andNP-BPk 6= coNP-BPk.

It is not known whether P-BPk 6= NP-BPk\ coNP-BPk for k � 2.

All proofs for lower bounds on the size of nondeterministic read-k-times branching programs
mentioned above (including the casek = 1) are based on a technique derived from commu-
nication complexity theory which we call “technique of generalized rectangles” in this work.
This technique will be described in detail in Chapter 5 (in connection with an extension to
randomized read-k-times BPs).

Now we turn to a much simpler model, namely nondeterministicOBDDs. We first describe ex-
amples for an exponential gap between the sizes of deterministic and nondeterministic OBDDs.

A class of functions studied in the literature on complexitytheory for OBDDs and read-once
branching programs are the so-called “pointer functions.”A function from this class outputs a
single bit of the input vector as the result, and the “address” (index) of this bit is also computed
from the input. We formally define two popular representatives of this class.

Definition 2.12:

(1) The function ISAn (“indirect storage access”) is defined onn = 2r + r variablesx0; : : : ; x2r�1 andy0; : : : ; yr�1. Let s := b2r=rc. Define

ISAn(x; y) := _0�i�s�1 _0�j�2r�1[j(yr�1; : : : ; y0)j2 = i] ^ [j(xir; : : : ; x(i+1)r�1)j2 = j] ^ xj;
where we writejaj2 for the value of a vectora = (an�1; an�2; : : : ; a0) interpreted as a binary
number, and[P] denotes the Boolean function which assumes the value1 iff the predicateP is true.

(2) The function HWBn (“hidden weighted bit”) is defined onx = (x1; : : : ; xn). Define
sum(x) :=Pni=1 xi and letx0 := 0. Then HWBn(x) := xsum(x).

The following lemma describes a general class of pointer functions which all can be represented
by nondeterministic OBDDs of polynomial size. The above functions can easily be seen to
belong to this class.

26

Lemma 2.13: Let fi : f0; 1gn ! f0; 1g, i = 1; : : : ; n, be functions withfi ^ fj = 0 if i 6= j.
Let f0 := (:f1) ^ � � � ^ (:fn). Assume that there is a fixed variable ordering� such that the
functionsf0; f1; : : : ; fn can each be represented by a�-OBDD of polynomial size. Finally, letf : f0; 1gn ! f0; 1g be defined byf(x) := _1�i�n fi(x) ^ xi; for x = (x1; : : : ; xn) 2 f0; 1gn.

Thenf as well as:f can be represented in polynomial size by nondeterministic�-OBDDs.

Proof: The claim forf follows by a straightforward simulation of the formula fromthe above
definition off . At the top of the nondeterministic OBDD, we nondeterministically choose an
index i 2 f1; : : : ; ng (e. g., by a tree on nondeterministic nodes). For eachi 2 f1; : : : ; ng we
can check by a�-OBDD of polynomial size whetherfi(x) ^ xi = 1.

Sincefi ^ fj = 0 for i 6= j, it holds that(:f)(x) = f0(x) _ _1�i�n fi(x) ^ (:xi);
and hence, also:f can be represented by a polynomial size nondeterministic�-OBDD. 2
It follows that HWB and ISA are contained in the classes NP-OBDD and coNP-OBDD. On the
other hand, it is well-known that both functions have exponential size for deterministic OBDDs
(see [31] and [29], resp.).

What can be said about the relation between the classes NP-OBDD and coNP-OBDD? It is
easy to see that the complement of the function PERMn can be computed by nondeterministic
OBDDs of polynomial size (by “guessing” two indices in the same row or column and checking
whether the respective entries are both equal to1). Together with the mentioned lower bound
of Jukna and Krause, Meinel, and Waack, we obtain an exponential gap between the size of
nondeterministic OBDDs for a function and its complement.

Summarizing the above results, we have:

Theorem 2.14:

P-OBDD$ NP-OBDD\ coNP-OBDD, andNP-OBDD 6= coNP-OBDD.

Lower bounds on the size of nondeterministic OBDDs for otherfunctions than PERM can be
proven by an adaptation of the fooling set technique from communication complexity theory
(more information on this will be given in Chapter 3 in the context of lower bounds for ran-
domized OBDDs). In fact, already the proof that the functioncomputing the middle-bit of
multiplication has exponential size for deterministic OBDDs by Bryant [31] is an application of
this technique. Hence, Bryant’s bound also holds for nondeterministic OBDDs. This fooling set
technique is also closely related to the well-known “cut andpaste” argument used in the proofs
of lower bounds on the size of read-once branching programs.

We conclude the section by discussing two further variants of nondeterministic branching pro-
grams which originally have been motivated from practice. The first model is obtained by
imposing strong structural restrictions on nondeterministic read-once branching programs.

27

Definition 2.15: A k-partitioned BDD with variable orderings�1; : : : ; �k is a nondeterministic
read-once branching program constructed from a tree of nondeterministic nodes at the top withk sinks which are identified with the sources of OBDDsG1; : : : ; Gk. The OBDDGi is ordered
according to�i, wherei = 1; : : : ; k.

A branching program is simply calledpartitioned BDD, if a k and�1; : : : ; �k exist such that it
is ak-partitioned BDD with variable orderings�1; : : : ; �k.
This model has been introduced by Jain, Bitner, Abraham, andFussell [54]. Its complexity
theory has been studied by Bollig and Wegener [23]. Obviously, k-partitioned BDDs allow a
control of the available “amount of nondeterminism” by the parameterk. Among other results,
Bollig and Wegener have proven that the classes of functionsrepresentable byk-partitioned
BDDs in polynomial size form a proper hierarchy with respectto k.

The last type of models introduced in this section uses the parity mode of acceptance already
introduced in form of thef�g-branching programs above. Gergov and Meinel have suggestedf�g-read-once branching programs as a data structure for Boolean functions [42] (the defi-
nition of this model is derived in the obvious way from Definition 2.6). Later on, they have
also considered OBDDs with�-nodes, which they have called MOD-2-OBDDs [43]. These
data structures have the drawback that only randomized algorithms are known for checking the
equivalence of two graphs.

Recently, Waack introduced the following generalized variant of MOD-2-OBDDs.

Definition 2.16: A parity OBDD on variablesfx1; : : : ; xng with variable ordering� (�-
POBDD) is a directed, acyclic graph with one source and sinks labeled by 0 or 1, respectively.
Non-sink nodes are labeled by a variable and may have arbitrarily many outgoing edges labeled
by 0 or 1. As in a usual OBDD, the sequence of tests of variables on eachpath from the source
to a sink has to be consistent with�.

Such a parity OBDD computes the output1 for an inputa 2 f0; 1gn iff the number of paths
from the source to the1-sink activated fora is odd.

The suitable measure for the size of a parity OBDD is the number of its edges.

Even for a fixed variable ordering, there can be many different POBDDs with the same number
of nodes representing the same function. Nevertheless, Waack has shown how a�-POBDD for
a functionf with the minimal number of nodes can be constructed in polynomial time from
an arbitrary�-POBDD forf . Furthermore, he has devised polynomial time algorithms for the
operations “synthesis” and “satisfiability test” (see Chapter 1) on POBDDs. Hence, also the
equivalence check can be done deterministically in polynomial time.

An exponential lower bound on the size of MOD-2-OBDDs (and hence, also POBDDs) for the
middle-bit of multiplication has been proven by Gergov [41]. For this, Gergov has used the
rank method of communication complexity theory and Ramsey theoretic arguments of Alon
and Maass [10] as tools.

28

2.2 Randomized Branching Programs

Analogously to the last section, we introduce randomized variants of general as well as re-
stricted branching programs (Section 2.2.1 and Section 2.2.2, resp.).

2.2.1 Randomized General Branching Programs

In order to define randomized branching programs in a “natural way,” it is a good idea to look at
existing probabilistic models of computation. The most important standard models using ran-
domness are probabilistic Turing machines (for the uniformworld of computation) and proba-
bilistic circuits (for the the nonuniform world). The latter model is defined here for the conve-
nience of the reader.

Definition 2.17: A probabilistic circuit is a circuit with “usual” variablesx1; : : : ; xn and some
distinguished “special” variablesz1; : : : ; zr (these are calledprobabilistic variablesin the fol-
lowing). We say that a circuitC (p; q)-computesa Boolean functionf : f0; 1gn ! f0; 1g if

(1) PrfC(a; b) = 1g � p, for all a 2 f�1(1); and

(2) PrfC(a; b) = 1g � q, for all a 2 f�1(0),
whereC(a; b) denotes the output ofC for assignmentsa = (a1; : : : ; an) andb = (b1; : : : ; br) to
the usual and probabilistic variables, resp., and the assignments for the probabilistic variables
are chosen at random according to the uniform distribution fromf0; 1gr (i. e., technically,b andC(a; b) are random variables).

Ablayev and Karpinski [3] have introduced randomized OBDDsdefined analogously to proba-
bilistic circuits. In the following, we define a randomized variant of general branching programs
in the same way.

Definition 2.18: Let a branching programG with the following special properties be given:

(1) G has three types of sinks, labeled by0, 1 or “?”;

(2) G is defined on two disjoint sets of variablesX = fx1; : : : ; xng andZ = fz1; : : : ; zrg;
(3) on each path from the source to a sink, each variable fromZ is tested at most once.

By an obvious extension of the usual semantics for deterministic branching programs (Defini-
tion 1.5),G represents a functiong : f0; 1gn � f0; 1gr ! f0; 1; ?g.
We call G a randomized branching program (with unbounded error)if for all assignmentsa = (a1; : : : ; an) 2 f0; 1gn to the variables inX it either holds that

Prfg(a; b) = 1g > 1=2 or Prfg(a; b) = 0g > 1=2;
whereb = (b1; : : : ; br) is an assignment to the variables inZ chosen randomly according to the
uniform distribution fromf0; 1gr. We say thatG as a randomized branching program represents
the functionf : f0; 1gn ! f0; 1g defined byf(a) := (1; if Prfg(a; b) = 1g > 1=2;0; if Prfg(a; b) = 0g > 1=2.

29

The variables fromZ will be calledprobabilistic variablesand nodes labeled by such variables
probabilistic nodes. The probability Prfg(a; b) 6= f(a)g is called theerror probability ofG on
input a with respect tof (or “error of G on a” for short). We consider the following special
types of randomized branching programs.G is called a randomized branching program forf
with� (two-sided) errorat most", where0 � " < 1=2, if for all a 2 f0; 1gn it holds that

Prfg(a; b) = f(a)g � 1� ";� one-sided errorat most", 0 � " < 1, if for all a 2 f0; 1gn it holds that

Prfg(a; b) = 0g = 1; if f(a) = 0;

Prfg(a; b) = 1g � 1� "; if f(a) = 1;� zero error and failure probability at most", 0 � " < 1, if for all a 2 f0; 1gn it holds that

Prfg(a; b) = 1g = 0 ^ Prfg(a; b) = ?g � "; if f(a) = 0;

Prfg(a; b) = 0g = 0 ^ Prfg(a; b) = ?g � "; if f(a) = 1;

In general, we are only interested in upper bounds on the worst-case error probability of a
randomized branching program, i. e., the maximum of the error probabilities over all inputs.
As a convention, we will assume that for the one-sided, two-sided or unbounded error model
a branching program does not contain “?”-sinks (sinks of this type are only important for the
randomized branching programs with zero error).

In the following, we present some arguments why it is reasonable to define randomized branch-
ing programs as done above. First notice that it does not makesense to consider a model
of randomized branching programs with a weaker assumption on the error probability than in
the case of “unbounded error,” since all Boolean functions can be computed by a randomized
branching program of constant size with an error probability of 1=2 for all inputs.

Why do we restrict the probabilistic variables to be read at most once? This is done in order to
ensure that randomized branching programs can be simulatedby probabilistic space-bounded
Turing machines. At the end of this subsection, we will show that analogous versions of the
theorem of Cobham, Pudlák andŽák from Chapter 1 hold for the type of randomized branching
programs defined above. For space-bounded Turing machines,it is known that the probabilistic
model where random bits may be accessed more than once (without explicitly storing them)
tends to be more powerful than the model where these bits may only be read once (Babai,
Nisan, Szegedy [13], Nisan [81]). This may already serve as an argument why we have to be
careful with the type of randomness we allow. We will come back to this issue in Chapter 4.

Alternatively to the above definition, we could also choose to define randomized branching
programs based on the nondeterministic branching programswith unlabeled nodes from the
last section. In the following, we discuss this alternativeapproach.

30

We consider a graphG which is syntactically a nondeterministic branching program (as in
Definition 2.3 from the last section). We define a new semantics of such a graph as follows. For
a pathp from the source to a sink, letu(p) be the number of unlabeled nodes onp. For a given
assignmenta 2 f0; 1gn to the variables ofG, letA(a) be the set of accepting paths fora in G.
Then we define theacceptance probability ofG for a by

accG(a) := Xp2A(a) 2�u(p):
The following lemma shows that this definition leads to a randomized model which is equivalent
to the model from Definition 2.18.

Lemma 2.19: Let G be a randomized branching program (in the sense of Definition2.18)
with r probabilistic variables which representsg : f0; 1gn � f0; 1gr ! f0; 1g according to the
deterministic semantics. LetG0 be a nondeterministic branching program with the same graph
structure asG, but with unlabeled nodes instead of nodes labeled by probabilistic variables.
Then it holds for alla 2 f0; 1gn that

accG0(a) = Prfg(a; b) = 1g;
whereb 2 f0; 1gr is chosen uniformly at random.

Proof: For the whole proof, leta 2 f0; 1gn be a fixed input. LetGa denote the randomized
branching program which is obtained fromG by replacing the usual (non-probabilistic) vari-
ables ofG according toa. Then it holds that2r � Prfg(a; b) = 1g is the number of accepting
assignments ofGa. We prove that this number is equal to2r � accG0(a).
We define a mapping' from the computation paths leading to the1-sink inG to the accepting
paths inG0. Because of the isomorphism betweenG andG0, each computation pathp leading to
the1-sink inG has an obvious corresponding pathp0 in G0 where for each nodev thec-successor
is chosen if and only this successor is also chosen onp. This pathp0 is uniquely defined. We let'(p) := p0.
It holds that this mapping' is one-to-one and onto. It is one-to-one because of the isomorphism
betweenG andG0, and it is onto because of the read-once property ofG with respect to the
probabilistic variables. Now letp0 2 A(a). It holds that there are exactly2r�u(p0) assignments
which are consistent with the computation pathp := '�1(p0). This is because all usual and some
probabilistic variables are already fixed by this path. Onlythe values ofr � u(p0) probabilistic
variables may be freely chosen. Hence,2r � accG0(a) = Xp02A(a) 2r�u(p0)
is exactly the number of satisfying assignments forGa as claimed. 2
In the following, we only consider randomized branching programs according to Definition 2.18.
We remark that the above lemma also shows that the order of probabilistic variables on the

31

computation paths does not matter, and hence, we could even require an OBDD-like ordering
restriction for the probabilistic variables without getting a different model. This also proves the
following simple fact about the number of probabilistic variables used in a randomized branch-
ing program:

Proposition 2.20: LetG be an arbitrary randomized branching program, and letrmax be the
maximal number of probabilistic variables tested on a path from the source to a sink inG. Then
there is a randomized branching programG0 which is isomorphic toG apart from the labels at
the probabilistic nodes and which uses at mostrmax probabilistic variables altogether.

This shows that it does not matter whether we measure the “amount of randomness” used by a
randomized branching program by determining the maximal number of probabilistic variables
on a path from the source to the sinks or by counting the probabilistic variables used altogether.
In the following, we stick to the latter measure for the amount of randomness.

A further consequence of Lemma 2.19 is that nondeterministic branching programs are a special
case of randomized branching programs, which seems to be desirable. More precisely:

Proposition 2.21: A nondeterministic branching programG can be transformed into a ran-
domized branching programG0 of the same size with one-sided error at most1� 1=2r and vice
versa, wherer is the number of probabilistic variables ofG0.
If we talk of nondeterministic branching programs in the following, we will assume that they
have the structure described in Definition 2.18. It will be convenient to define complexity classes
for randomized branching programs in analogy to the standard classes for Turing machines.

Definition 2.22: Let ZPP"-BP be the class of functions computable by randomized branching
programs of polynomial size with zero error and failure probability at most", 0 � " < 1. Let
RP"-BP, for0 � " < 1, and BPP"-BP, for0 � " < 1=2, be the classes of functions computable
by randomized branching programs of polynomial size with one-sided and two-sided error at
most", resp. Finally, let PP-BP be the class of functions computable by randomized branching
programs of polynomial size with unbounded error. Furthermore, we define

ZPP-BP:= ["2[0;1)ZPP"-BP; RP-BP:= ["2[0;1)RP"-BP; and

BPP-BP:= ["2[0; 12) BPP"-BP;
where" is a constant with respect to the input size.

We will sometimes allow that the error probability" depends on the input size of the represented
functions, i. e., we have a function" : N ! [0; 1) or " : N ! [0; 1=2) instead of a constant. As
an example, we give a precise definition covering also this case for the class RP-BP". For a
function" : N ! [0; 1), let

RP-BP" := f(fn)n2N j 9 (Gn)n2N : Gn is a rand. BP repr.fn with one-sided error
at most"(n) andjGnj = Poly(n) g.

32

It turns out that many standard facts concerning the classesZPP, RP, BPP, and PP for Turing
machines (defined with respect to polynomial time algorithms) carry over to the classes defined
above in terms of the size of randomized branching programs.Most of the following relations
follow directly from Definition 2.18, the remaining ones canbe obtained simply by “simulating”
the well-known proofs for Turing machines.

Proposition 2.23:

P-BP� ZPP-BP= coZPP-BP= RP-BP\ coRP-BP;
RP-BP� BPP-BP= coBPP-BP� PP-BP= coPP-BP;
RP-BP� NP-BP; NP-BP[coNP-BP� PP-BP:

We can also adapt the well-known technique of iterating probabilistic computations to decrease
the error probability of randomized branching programs.

Lemma 2.24 (Probability amplification):

(1) LetG be a randomized read-k-times BP representingf : f0; 1gn ! f0; 1g with one-sided
error at most" 2 [0; 1). Then a randomized read-(mk)-times BPG0 for f with one-sided
error at most"m and sizejG0j = O(mjGj) can be constructed.

(2) LetG be a randomized read-k-times BP representingf : f0; 1gn ! f0; 1g with two-sided
error at most" 2 [0; 12). Let0 � "0 � ". Then a randomized read-(mk)-times BPG0 for f
with two-sided error less than"0 can be constructed which has sizejG0j = O(m2jGj), withm = O �log (("0)�1) �12 � "��2�.

Proof: Part (1): We use copiesG1; : : : ; Gm of G with disjoint sets of probabilistic variables
and identify the1-sink of Gi and the source ofGi+1, for i = 1; : : : ; m � 1. The resulting
read-(mk)-times branching program obviously fulfills the claimed error bound.

Part (2): For the construction of the graphG0 we start with a “counting pyramid” of depthm
(m will be chosen below). This is a branching program consisting ofm+1 layers of nodes; theith layer,i 2 f0; : : : ; m� 1g, contains nodesvi;0; : : : ; vi;i, wherevi;j hasvi;j andvi;j+1 as its0-
and1-successors, resp. The nodesvi;j, for 0 � i � m� 1, are replaced by copies ofG, where
the copies on each level of the pyramid use the same set of probabilistic variables disjoint from
the probabilistic variables on the other levels. Finally, the nodesvm;j with 0 � j � bm=2c are
replaced by a0-sink and the nodesvm;j with bm=2c + 1 � j � m by a1-sink.

Obviously, we have obtained a read-(mk)-times branching programG0 of sizeO(m2jGj). Letg0 : f0; 1gn � f0; 1gmr ! f0; 1g be the function computed byG0 as a deterministic branching
program, wherer is the number of probabilistic variables inG. By Chernoff bounds, we can
bound the error probability ofG0 from above by

Prfg0(x; z) 6= f(x)g � 2 exp��(1=2� ")2m4"(1� ") � � 2 exp ��(1=2� ")2m� :
33

We choosem such that2 exp (�(1=2� ")2m) � "0, i. e.,m := �ln (2="0) (1=2� ")�2 + 1�: 2
We remark that a statement analogous to Part (1) of the above lemma holds for randomized
branching programs with zero error. We see that we have to payfor a smaller error probability
by an increase in the number of tests of variables. This does not matter for general branching
programs, but can be crucial for the restricted variants.

Randomized branching programs are closely related to probabilistic circuits. Hence, it is not
surprising that also the well-known derandomization technique of Ajtai and Ben-Or [9] for
probabilistic circuits is applicable to randomized branching programs. This technique yields
the following result.

Theorem 2.25: RP-BP= BPP-BP= P-BP.

Proof: Decrease the error probability of a given randomized branching program for ann-
variable function with two-sided error" < 1=2 to less than2�n by Lemma 2.24. As for prob-
abilistic circuits, the resulting randomized branching program can be made deterministic by an
appropriate choice of the probabilistic variables. 2
Hence, even randomized branching programs with two-sided error turn out not to offer any
advantage over the well-studied deterministic branching programs. At a first glance, this is
quite disappointing, but this situation will change when weturn to the more restricted models
in the next subsection. It is not known whether P-BP6= PP-BP.

We have not yet discussed the relation of the complexity classes defined above to the standard
classes for Turing machines. The remainder of the subsection is devoted to this issue. In order
to characterize classes defined via the space complexity of probabilistic Turing machines, it
turns out to be more convenient to first look at the variant of randomized branching programs
defined in the following.

Definition 2.26: A generalized branching program (GBP)is a branching program which may
contain cycles. Like a switching-and-rectifier network (Section 2.1), a generalized branching
program has a distinguishedstart nodeinstead of a source. Anondeterministic generalized BP
is a nondeterministic branching program in the sense of Section 2.1 (with unlabeled nondeter-
ministic nodes) which may contain cycles.

A randomized generalized branching programis a nondeterministic generalized BP where the
computations are interpreted as random walks on the graph. For a graphG and a given inputa 2 f0; 1gn, we assign probabilities to the edges(v; w) of G bypa(v; w) := 8><>:1; if v is labeled by a variable and(v; w) is activated fora;0; if v is labeled by a variable and(v; w) is not activated fora;1=2; if v is an unlabeled (probabilistic) node.

34

The graphG together with this assignment of probabilities can be seen as the state-transition
diagram of a homogenous Markov chain. Letp(a) denote the probability that the1-sink is
reached from the start node ofG after an arbitrary number of steps in this transition diagram.
We require that for alla 2 f0; 1gn it holds that either0 � p(a) < 1=2 or 1=2 < p(a) � 1.
The functionf : f0; 1gn ! f0; 1g represented byG is defined byf(a) := [p(a) > 1=2] fora 2 f0; 1gn.

By Theorem 2.2 from Section 2.1, we know that cycles in a generalized branching program can
always be removed in the deterministic and nondeterministic case. But the randomized case
remains interesting. In analogy to Definition 2.22, we definecomplexity classes ZPP-GBP,
RP-GBP, BPP-GBP, and PP-GBP in terms of generalized branching programs instead of usual
ones.

It turns out that randomized generalized branching programs of polynomial size can be sim-
ulated by logarithmically space-bounded probabilistic Turing machines and vice versa. The
classes ZPL, RL, BPL, and PL are defined as the classes of languages decidable by probabilis-
tic uniform Turing machines with logarithmic space bound using the respective error model
(see, e. g., [25] or [72], Ch. 2). Here we consider the nonuniform counterparts of these classes.

Theorem 2.27:

ZPP-GBP= ZPL=Poly; RP-GBP= RL=Poly;
BPP-GBP= BPL=Poly; PP-GBP= PL=Poly:

Proof: We adapt the proof of the Theorem of Pudlák andŽák (see Chapter 1) to the randomized
setting. We only consider the identity PP-GBP= PL=Poly, the rest can be proven analogously.

First, let a sequence of randomized generalized branching programs(Gn)n2N representing a
sequence of functions(fn)n2N with unbounded error be given. We construct a nonuniform
Turing machineM computingfn. The machineM uses an encoding ofGn as its oracle. It
evaluatesfn on a given inputa 2 f0; 1gn by executing a random walk on the state-transition
diagram described byGn as indicated in Definition 2.26 (the successor of a probabilistic node
is determined by a random coin toss of the probabilistic Turing machine). The oracle of this
machine has polynomial size, and the actual node on the traced path can be stored using spaceO(log jGnj).
Now let a probabilistic nonuniform Turing machineM computingfn with error probability
smaller than1=2 be given. SinceM uses an oracle of at most polynomial size and at most loga-
rithmic space, the total number of configurations ofM is polynomially bounded. We construct
a randomized generalized branching programGn for fn, where the nodes can be mapped one-
to-one and onto to the set of all possible configurations ofM . The start node ofGn corresponds
to the initial configuration ofM , 1-sinks correspond to accepting configurations and0-sinks to
rejecting configurations. The vertexv for a non-accepting, non-rejecting configurationC where
the head on the input tape points to theith symbol of the input is labeled byxi. If M works
deterministically for both possible values of theith input bit, the0- and1-edges ofv directly
lead to the nodes belonging to the respective successor configurations. If forxi = c, c 2 f0; 1g,

35

the successor configuration ofC is chosen at random betweenC 0 andC 00, direct thec-edge ofv to an intermediate, probabilistic node which has the nodes for C 0 andC 00 as its successors.
Because of our above remark, the graphGn constructed in this way has polynomial size. It is
easy to see that it representsfn with error smaller than1=2. 2
It is known that NL= RL = ZPL (for uniform Turing machines), this follows from NL= coNL
(by the theorem of Immerman and Szelepcsényi) and NL� RL by an early result of Gill [45].
The same proof also works for the nonuniform versions of these classes, thus we have

NP-BP= RP-GBP= ZPP-GBP:
It is open whether NL$ BPL$ PL (and hence, also whether NP-BP$ BPP-GBP$ PP-GBP).

Now we return to randomized branching programs without cycles. We already have seen that
the probabilistic complexity classes up to BPP-BP collapseto P-BP, and this class has already
been characterized by Turing machine complexity. It is interesting that also the class PP-BP
has a counterpart defined via Turing machine complexity, namely the class PLP=Poly of func-
tions computable in logarithmic space and polynomial time (in the worst-case) by probabilistic,
nonuniform Turing machines.

Theorem 2.28: PP-BP= PLP=Poly.

Proof: We apply the same simulations as in the proof of the last theorem. The inclusion
PP-BP� PLP=Poly follows immediately, because the Turing machine constructed in the above
proof already works in polynomial time.

For the proof of the opposite direction, we first construct a randomized generalized branching
program from the given Turing machine as described above. Because the Turing machine uses
at most polynomial time, we need to run through each cycle in the resulting state-transition
diagram at most a polynomial number of times for a given input. This allows us to make the
transition diagram acyclic by the technique already described for switching-and-rectifier net-
works (see the proof of Theorem 2.2). Thus, we obtain a usual randomized branching program
of polynomial size and without cycles. 2
It has been proven by Jung [62] that PLP= PL (for uniform Turing machines). Jung has shown
that a certain decision problem defined in terms of formulas over matrices is contained in PLP.
On the other hand, this problem is known to be PL-complete with respect to log-space reduc-
tions [26]. Intuitively, the reason behind this is that the computation of a probabilistic Turing
machine can be described by a Markov process, and the stationary distribution of this process
can be computed by solving a system of linear equations (or bymatrix inversion, resp.). The
PL-completeness result also holds for nonuniform Turing machines. Hence, Jung’s result also
carries over and we have PP-BP= PP-GBP. Generalized randomized branching programs are
no more powerful than usual ones if we consider the weakest restriction on the error probabili-
ties.

36

NC2

P-{ , }-BP

AC1

NC1

AC0

PP-BP = PP-GBPPL/Poly = PLP/Poly

BPL/Poly BPP-GBP

P/Poly

AC = NC

NP-BP = coNP-BP

L/Poly

NL/Poly = coNL/Poly

P-BP = ZPP-BP = RP-BP = BPP-BP

P-WIDTH(5)-BP = P-BWBP

Figure 2.1: Nonuniform complexity classes below P=Poly.

All the results on complexity classes for nondeterministicand randomized general branching
programs presented so far are summarized in Figure 2.1. The classes defined via branching
program complexity are linked to their counterpart defined via Turing machine complexity by
broken lines. A slash through an arrow indicates proper inclusion (AC0 $ NC1, AC0 $ AC1);
for all other inclusions, we do not know whether they are proper. By P-f^;_g-BP we denote
the class of functions representable byf^;_g-BPs of polynomial size.

37

2.2.2 Randomized Restricted Branching Programs

In this section, we deal with randomized variants of read-k-times branching programs and
OBDDs. Such variants are defined in the obvious way:

Definition 2.29: LetX := fx1; : : : ; xng andZ := fz1; : : : ; zrg,X \ Z = ;.
A randomized read-k-times branching program onX [Z is a randomized branching program
for which Z is the set of probabilistic variables and where on each path from the source to a
sink each usual (non-probabilistic) variable fromX appears at mostk times.

Let � be a permutation onf1; : : : ; ng. A randomized�-OBDD onX [Z is a randomized
branching program where on each path from the source to a sinkthe variables fromX appear
in the order prescribed by�.

Randomized OBDDs are special randomized read-once branching programs. Nondeterministic
read-k-times branching programs and nondeterministic OBDDs (which we have both consid-
ered already in Section 2.1) can also be derived as special cases of the above definitions.

Notice that for a randomized OBDD according to the above definition it is not required that
a variable ordering on all the variablesX [Z exists. We can only assume that there is a
variable ordering�0 onZ such that the probabilistic variables appear according to�0 on each
path, as explained in the last subsection. But then the orderof “types” of variables, where the
type indicates whether a variable is probabilistic or non-probabilistic, may still be different on
different paths.

Let us call a randomized OBDDs which fulfills the ordering restriction according to a variable
ordering on all its variablescompletely ordered. Such a graph has the same syntax as a usual,
deterministic OBDD, which is desirable if one wants to design algorithms for the operations
mentioned in Chapter 1 (as Agrawal and Thierauf [7] have done).

Is it a real restriction for randomized OBDDs to require thatthey are completely ordered?
Below, we give a partial answer by showing that the “loosely structured” randomized OBDD
of Definition 2.29 can be converted into completely ordered ones by paying with an increase of
the number of probabilistic variables.

Lemma 2.30: LetG be a randomized OBDD withr probabilistic variables andn usual vari-
ables. Then there is a completely ordered randomized OBDDG0 with (n + 1)r probabilistic
variables which is isomorphic toG apart from the labels at its probabilistic nodes and fulfills

PrzfG(x; z) = 1g = Prz0fG0(x; z0) = 1g; for all x 2 f0; 1gn,

whereG(x; z) andG0(x; z0) are the outputs ofG andG0, resp., on an assignmentx to the usual
variables and assignmentsz 2 f0; 1gr andz0 2 f0; 1g(n+1)r to the probabilistic variables of
the two randomized OBDDs.

Proof: Let x1; : : : ; xn be the usual variables ofG, w. l. o. g. they also appear in this order in the
OBDD, and letz1; : : : ; zr be the probabilistic variables ofG. We construct a randomized OBDD

38

G0 with the claimed properties. Our plan is to replacez1; : : : ; zr by (n+ 1)r new probabilistic
variableszij, where0 � i � n and1 � j � r. In G0 the variables will be ordered according toz01; : : : ; z0r ; x1; z11; : : : ; z1r ; x2; z21 ; : : : ; z2r ; : : : ; xn; zn1 ; : : : ; znr :
Initialize G0 as a copy ofG. For technical reasons, we add a dummy node at the top ofG0
labeled byx0 whose outgoing edges both lead to the original source ofG0. For i = 0; : : : ; n,
let Si be the set ofxi-nodes inG0. In the following algorithm, we will define additional setsV0; : : : ; Vn+1 of nodes inG0. We initializeVn+1 as the set of sinks ofG0. Now we relabel the
probabilistic variables inG0, executing the following step fork = n; n� 1; : : : ; 1; 0.

Stepk: Starting at the nodes fromSk, carry out a breadth-first search on the part ofG0 reachable
only via nodes which are not contained inVk+1. Replace all probabilistic variables at the nodes
found (excluding the nodes fromVk+1) by the probabilistic variableszk1 ; : : : ; zkr such that these
variables occur ordered on each path. LetVk be the set ofall nodes inG0 reachable from a node
in Sk, not regarding whether these nodes are contained inVk+1 or not (i. e.,Vk contains all nodes
lying on paths starting inSk and ending in one of the sinks).

Finally, remove the dummy node at the top ofG0. The graphG0 obtained in this way obviously
has the same structure asG, we only have changed the labels of the probabilistic nodes.

It is easy to see that, after carrying out the algorithm, the variables inG0 are indeed ordered as
claimed above. The following fact can easily be verified by induction:

Fact: After thekth step,0 � k � n, the subgraph ofG0 induced by the nodes inVk is ordered
according toxk; zk1 ; : : : ; zkr ; : : : ; xn; zn1 ; : : : ; znr , and the setVk contains all nodes ofG0 which
are labeled by variables from the given list.

Finally, we have to show that PrzfG(x; z) = 1g = Prz0fG0(x; z0) = 1g. Since both randomized
OBDDsG andG0 fulfill the read-once property with respect to their probabilistic variables and
have the same number of (different) probabilistic variables on each path from the source to the1-sink, this follows immediately from Lemma 2.19. 2
In Chapter 4, we will show that in the case ofboundederror, we can even obtain a completely
ordered OBDD with onlyO(log n) probabilistic variables, wheren is the number of usual
variables in the original OBDD. It remains open whether the (considerable) increase of the
number of probabilistic variables is unavoidable for nondeterministic OBDDs and randomized
OBDDs with unbounded error. In the following, we will alwayswork with the randomized
OBDDs of Definition 2.29. Hence, the lower bounds which we will prove hold for the “more
general” model. On the other hand, the constructions for theupper bounds will in fact always
be completely ordered randomized OBDDs.

Complexity classes for randomized OBDDs and randomized read-k-times BPs are defined anal-
ogously to the last section (Definition 2.22). ForC 2 fP;NP;ZPP;RP;BPP;PPg, let C-BPk
andC-OBDD denote the classes of sequences of functions with polynomial size read-k-times
branching programs or OBDDs, resp., of the “type” indicatedby C.

39

For read-k-times branching programs and OBDDs, it is not as easy as for general branching
programs to “simulate” known proofs for Turing machines, because programs may no longer
be “iterated” or “concatenated.” As a consequence, the listof “trivial relations” between the
above classes is shorter than for randomized general branching programs:

Proposition 2.31: For R 2 fBPk;OBDDg (and arbitraryk � 1), it holds that

P-R � ZPP-R = coZPP-R;
BPP-R = coBPP-R � PP-R = coPP-R;
RP-R � NP-R;NP-R [coNP-R � PP-R:

The only known technique to decrease the error probability of read-k-times branching programs
(Lemma 2.24 in the last subsection) requires an increase of the number of tests of variables.
Hence, it is even not obvious that RP is a subclass of BPP for read-k-times branching programs.
We prove this below.

Lemma 2.32: Let k � 1, and letG be a randomized read-k-times branching program which
represents the functionf : f0; 1gn ! f0; 1g with one-sided error at most" < 1. Let r � 1 be
arbitrarily chosen. Then there is a randomized read-k-times branching programG0 with size at
mostO(jGj + r) which representsf with two-sided error at most"=(1 + ") + 2�r.
Proof: We construct a randomized read-k-times BPG0 for f with two-sided error as follows.
Introduce new probabilistic variablesz1; : : : ; zr which are tested in a subprogramR� at the top
of G0, where� 2 fi � 2�r j 0 < i < 2rg. This program has two sinks labeled by� and1 � �
reached with the respective probabilities. Such a program can be constructed by reducing a
complete binary tree where the nodes on each level are labeled by a different variable fromz1; : : : ; zr and the sinks are labeled appropriately by� and1 � �. This can be done such that
at mostr probabilistic nodes are needed in the reduced graph. The�-sink of the programR�
is identified with the1-sink ofG, and the(1� �)-sink ofR� is identified with the source node
of G.

We compute the worst-case error probability ofG0 as a randomized branching program forf .
First, letx 2 f�1(0). Then it holds thatG0 computes the correct output0 with probability1��,
sinceG has one-sided error. Forx 2 f�1(1),G0 computes the correct output1 with probability
at least� + (1� �)(1� ").
The error ofG0 is minimized by choosing a� as close as possible to�opt := "=(1+ "). Since we
can construct a programR� for all � 2 fi�2�r j 0 < i < 2rg, we can ensure thatj���optj < 2�r.
The resulting randomized read-k-times branching programG0 for this value of� has error at
most"=(1 + ") + 2�r and sizeO(jGj + r). 2
Corollary 2.33: For arbitrary k � 1, it holds thatRP-BPk � BPP-BPk.

For randomized OBDDs, a restricted form of “probability amplification” is possible without
leaving the model, as we will prove now. (This fact has been discovered independently by
Agrawal and Thierauf [7] and the author.) The inclusion RP-OBDD � BPP-OBDD directly
follows from this fact.

40

Lemma 2.34 (Probability amplification for OBDDs):

(1) LetG be a randomized�-OBDD representingf : f0; 1gn ! f0; 1g with one-sided error
at most" 2 [0; 1). Then a randomized�-OBDDG0 for f can be constructed, which has
one-sided error at most"m and sizejG0j = O(jGjm).

(2) LetG be a randomized�-OBDD representingf : f0; 1gn ! f0; 1g with two-sided error
at most" 2 [0; 12), and let0 � "0 � ". Then a randomized�-OBDD G0 for f can be
constructed, which has two-sided error less than"0 and sizejG0j = O(jGjm), wherem =O �log(("0)�1) �12 � "��2�.

Proof: We use essentially the same ideas as in the proof of Lemma 2.24, but we apply the
efficient synthesis algorithm for OBDDs (see Chapter 1) to combine the graphs. We have to
ensure that the considered randomized OBDDs syntacticallyare usual OBDDs for which the
synthesis algorithm works. As a preprocessing step, we therefore apply Lemma 2.30. This
does not change the size of the given randomized OBDD and onlyincreases the number of
probabilistic variables. In the following, we assume that the given randomized OBDDG is
completely ordered.

Part (1): We use the synthesis algorithm for OBDDs with the operator “^” on m copies of
the graphG with disjoint sets of probabilistic variables. A common variable ordering for allm copies ofG is obtained by interleaving the different sets of probabilistic variables. The
resulting graphG0 is a randomized OBDD with the same variable ordering on the usual (non-
probabilistic) variables asG and sizeO(jGjm).
Part (2): We again use the synthesis algorithm, but in a generalized version for OBDDs with
several sinks labeled by values inf0; : : : ; mg. We apply the addition of integers as operation to
sum upm copies of the OBDDG, where each copy uses a different set of probabilistic variables
(as in Part (1)). The resulting graph is an OBDD with the same variable ordering on the usual
variables asG and with sink values inf0; : : : ; mg. Replacing the sinks with values greater or
equal tom=2 by the1-sink and all others by the0-sink we get an OBDD with the required
properties. 2
We see that, in contrast to the situation for Turing machinesand for general branching programs,
the number of “iterations”m has to be constant here in order to ensure that the resulting OBDD
still has polynomial size.

Although it is easy to prove for Turing machines that ZPP= RP\ coRP, the question whether
these classes are identical or not for randomized read-k-times BPs and for randomized OBDDs
is open up to now. Recently, Karpinski and Mubarakzjanov [64] have proven that ZPP-OBDD=
P-OBDD by using a similar result on one-way communication complexity byĎuriš, Hromkovič,
Rolim, and Schnitger [38]. Non-trivial results on the classes BPP-OBDD, RP-OBDD, and
NP-OBDD are presented in the next chapter.

41

42

Chapter 3

Upper and Lower Bounds on the Size of
Randomized OBDDs

In this chapter, we present results on the analogs of the complexity classes RP and BPP defined
in terms of the size of OBDDs. Since the proofs of the lower bounds rely on tools from com-
munication complexity theory, we will start with a short overview on the relevant notions from
this field. After this, we present a list of functions which are used as examples in the following
(Section 3.2). In Section 3.3 and 3.4, resp., we prove upper and lower bounds on the size of
randomized OBDDs. Finally, we summarize the current knowledge on complexity classes for
OBDDs.

3.1 Communication Complexity Theory

We only define the most important notions from communicationcomplexity theory needed later
on. For a thorough introduction into this field, we refer to the monographs of Hromkovič [51]
or Kushilevitz and Nisan [70].

The main subject of communication complexity theory is the analysis of the simple communi-
cation game introduced by Yao [115] which we describe in the following.

Let a functionf : f0; 1gn ! f0; 1g be given which is defined on the set of variablesV =fx1; : : : ; xng. Furthermore, let� = (VX; VY) be a partition ofV , i. e., V = VX [VY andVX \ VY = ;. LetX be the set of all assignments to variables fromVX , and letY be the set of
all assignments to variables fromVY . There are two players taking part in the communication
game, traditionally called Alice and Bob. Alice has an assignmentx 2 X, Bob an assignmenty 2 Y , and their goal is to determinef(x+ y) by sending messages to each other, wherex+ y
denotes the complete assignment to the variables inV obtained by assigning the variables inVX
according tox and the variables inVY according toy. Each player is assumed to have unlimited
(but deterministic) computational power to compute his messages.

A deterministic communication protocolis an algorithm specifying which player is the next
to communicate and determining the message which this player will send given his input and

43

the messages exchanged so far. Furthermore, after a finite number of communication rounds
(turns in the game), the algorithm has to stop, and the last player has to output either0 or 1
as the result of the protocol. Such a protocolcomputes the functionf with respect to� if for
each(x; y) 2 X � Y it outputs the correct valuef(x+ y). The(deterministic) communication
complexity off with respect to�, denoted byD(f;�), is the minimal number of bits exchanged
by a communication protocol which computesf . If the partition� is clear from the context, we
simply writeD(f) for the deterministic communication complexity off . (In communication
complexity theory, also avariable partition modelis considered, where the communication
complexity is defined as the minimum over the complexity for all choices of�. Here, we will
always work with fixed partitions.)

It is usually convenient to indicate the chosen partition ofthe variables by directly writing the
function f in the formf : X � Y ! f0; 1g, whereX andY are arbitrary finite sets which
contain the inputs for Alice and Bob, resp. Of course, inputsfrom the setsX andY are usually
coded by binary vectors.

In the following, we will cite a simple, but fundamental theorem which is the basis of the com-
binatorial analysis of communication protocols. This theorem and the notions introduced here
will play an important role for the techniques for proving lower bounds on the size of OBDDs
and read-k-times branching programs described later on. The central notion of communication
complexity theory is the (combinatorial) rectangle, whichwe define now.

Definition 3.1: Let V be a set of variables, and let� = (VX ; VY) be a partition ofV . Assum-
ing an appropriate one-to-one correspondence, we identifyassignments to these variables with
Boolean vectors of suitable length. A setR � f0; 1gjV j of assignments toV is called a(combi-
natorial) rectangle with respect to� if it can be written asR = A � B, whereA � f0; 1gjVX j
andB � f0; 1gjVY j are sets of assignments toVX andVY , resp.

Let f : f0; 1gn ! f0; 1g be an arbitrary function defined onV . Then a rectangleR with respect
to a partition ofV is calledf -monochromaticif R � f�1(0) orR � f�1(1).
Due to the fact that the players Alice and Bob only hold one part of the input each, the set
of all inputs for which the same, fixed sequence of bits is exchanged between the players is a
rectangle (see, e. g., [51] or [70] for a proof). This observation leads to the following theorem.

Theorem 3.2: Letf : f0; 1gn ! f0; 1g be defined on the variable setV , and let� = (VX ; VY)
be a partition ofV . Furthermore, let a deterministic communication protocolP which com-
putesf with respect to� be given. Letc be the number of bits exchanged byP . ThenP defines
a partition of the inputs off into at most2c f -monochromatic rectangles.

In communication complexity theory, many other variants ofthe basic communication game
outlined above are considered. For the following, randomized protocols will be especially im-
portant. Hence, we also introduce this model.

In a randomized communication protocol, the players Alice and Bob each have access to a
string of random bits, calledrA andrB here, additional to their inputsx 2 X andy 2 Y ,
resp. These strings of random bits have a fixed length and havebeen obtained as the result of

44

independent, unbiased coin tosses. The random bits have to be communicated explicitly if the
other player is to know them. This is called theprivate coinmodel of randomness, which has
to be distinguished from thepublic coinmodel where both players may read the same, public
string of random bits.

A randomized protocol may err when computing a given function f . Let P be a randomized
protocol, and letP (x; y; rA; rB) denote the output ofP for inputs(x; y) 2 X � Y and random
stringsrA andrB. For(x; y) 2 X � Y , define theerror (probability) ofP with respect tof by"P (x; y) := PrrA;rBfP (x; y; rA; rB) 6= f(x; y)g;
where the stringsrA, rB are chosen at random according to the uniform distribution.We also
say thatP computesf with error "P .

Usually, we are only interested in theworst-case error, i. e., the maximum of"P (x; y) taken
over all inputs(x; y) 2 X � Y . For randomized protocols, the number of communicated bits
may depend on the values of the random bits. Hence, it makes sense to define theworst-case
complexityof a randomized protocol as the maximum number of bits exchanged for any choice
of the inputs and the random strings.

As for randomized branching programs, different types of error can be considered. Here, we
only deal with bounded (two-sided) error. We useR"(f) to denote the minimum worst-case
complexity of a randomized protocol which computesf with worst-case error at most", 0 �" < 1=2.

Nondeterministic communication protocols are defined analogously to the randomized model.
In a nondeterministic communication protocol, both players have access to stringsrA andrB
of advice bitsadditional to their inputs. A nondeterministic protocolP (nondeterministically)
computes a given functionf , if it holds for each input(x; y) 2 X � Y thatf(x; y) = 1 if and
only if there is an assignment to the advice bits of Alice and Bob such that the protocolP yields
the output1.

Finally, we consider protocols which are restricted with respect to the number communication
rounds. A central role for the following plays the most restricted case,one-way communication
protocols. In a one-way communication protocol, Alice sends a single message to Bob who
has to output the result of the protocol, which may depend on his input and the message he has
obtained. In order to indicate that we consider protocols with a restricted number of rounds,
we append the maximal number of rounds as an exponent to the complexity measures defined
above, e. g.,Dk(f) denotes the minimum number of bits exchanged by a deterministic k-round
protocol forf .

3.2 A List of Functions

In this section, we present a collection of standard functions from the literature on OBDDs and
read-once branching programs which will appear in the next sections. We survey known lower
bounds for these functions and discuss the reasons why they are “difficult” for OBDDs on an
intuitive level.

45

For easier reference, we include the definitions of the functions HWB, ISA, and PERM which
have already been presented in Chapter 2.

Definition 3.3:

(1) The function HWBn (“hidden weighted bit”) is defined onx = (x1; : : : ; xn). Define
sum(x) :=Pni=1 xi and letx0 := 0. Then HWBn(x) := xsum(x).

(2) The function ISAn (“indirect storage access”) is defined onn = 2r + r variablesx0; : : : ; x2r�1 andy0; : : : ; yr�1. Let s := b2r=rc. Define

ISAn(x; y) := _0�i�s�1 _0�j�2r�1[j(yr�1; : : : ; y0)j2 = i] ^ [j(xir; : : : ; x(i+1)r�1)j2 = j] ^ xj :
(3) Let n = 2l. The function SEQn : f0; 1g2n+l ! f0; 1g (“shifted equality”) is defined on

vectors of variablesx = (x0; x1; : : : ; xn�1) 2 f0; 1gn, y = (y0; y1; : : : ; yn�1) 2 f0; 1gn
ands = (sl�1; sl�2; : : : ; s0) 2 f0; 1gl. For i 2 f0; : : : ; n� 1g define

SEQin(x; y) = 1 :, xj = y(i+j)modn for j = 0; : : : ; n� 1;
SEQn(x; y; s) := _0�i�n�1[jsj2 = i] ^ SEQin(x; y):

(4) The function SIPn : f0; 1g2n+l ! f0; 1g (“shifted inner product”) is defined on the same
input as SEQn by:

SIPin(x; y) := 1 :, n�1Xj=0 xjy(i+j)modn 6� 0 mod 2; for i = 0; : : : ; n� 1;

SIPn(x; y; s) := _0�i�n�1[jsj2 = i] ^ SIPin(x; y):
(5) LetN := �n2� and1 � s � n. Define the function cln;s : f0; 1gN ! f0; 1g (“s-clique”)

on the Boolean variablesX := (xij)1�i<j�n. Let G(X) be the undirected graph on the
nodes fromf1; : : : ; ng described byX, i. e., the edgefi; jg exists inG(X) iff xij = 1.
Let cln;s(X) = 1 iff the graphG(X) contains ans-clique. Define cl:= (cln;bn=2c)n2N.

(6) Define the function CLOn;s : f0; 1gN ! f0; 1g (“s-clique-only”) on the same set of vari-
ables as cln;s above. Let CLOn;s(X) = 1 iff the graphG(X) consists of ans-clique andn� s isolated vertices. Define CLO:= (CLOn;bn=2c)n2N.

(7) The function PERMn : f0; 1gn2 ! f0; 1g (“permutation matrix”) is defined on ann� n-
matrixX = (xij)1�i;j�n of Boolean variables. Let PERMn(X) = 1 iff X is a permutation
matrix, i. e., if each row and each column contains exactly one entry equal to1.

(8) The function1ROW-OR-1COLn : f0; 1gn2 ! f0; 1g is also defined on a Booleann � n-
matrixX. Let1ROW-OR-1COLn(X) = 1 :, (9 i 2 f1; : : : ; ng : xi;1 = � � � = xi;n = 1) _(9 j 2 f1; : : : ; ng : x1;j = � � � = xn;j = 1).

46

(9) The function EQ-ADJ-ROWn : f0; 1gn2 ! f0; 1g (“equal adjacent row”) is defined on a
Booleann� n-matrixX by

EQ-ADJ-ROWn(X) := _1�i�n�1 ^1�j�n(xi;j � xi+1;j):
(10) Define PMn;DETn : f0; 1gn2 ! f0; 1g on a Booleann� n-matrixX by

PMn(X) := "X�2Sn x1;�(1) � � � � � xn;�(n) 6= 0# ; and

DETn(X) := "X�2Sn(�1)�(�) � x1;�(1) � � � � � xn;�(n) 6= 0# ;
where the calculations within the brackets are done inR, Sn is the permutation group of
ordern, and�(�) the number of transpositions of a permutation�.

(11) Let n = q2 + q + 1, whereq = pm, p is a prime andm an arbitrary natural num-
ber. LetP = f1; : : : ; ng be the set of “points” of a projective plane of orderq and letL1; : : : ; Ln � P be the “lines.” Each such line contains exactlyq + 1 points, two lines in-
tersect in exactly one point and for each point there are exactly q+1 lines running through
this point. A setA � P is called ablocking setif A \ Li 6= ; for i = 1; : : : ; n.

DefineBn : f0; 1gn ! f0; 1g byBn(x1; : : : ; xn) := ^1�i�n _j2Li xj! ^ (:T nq+k+1)(x1; : : : ; xn);
wherek := (q + 1)=2 if q is prime, k := �pq� otherwise, andT ns (x1; : : : ; xn) is the
threshold function with output1 iff x1 + � � � + xn � s. It holds thatBn(x1; : : : ; xn) = 1
iff fi j xi = 1g is a blocking set of size at mostq + k.

(12) Letn = 2l, and definem := bn=lc. We are going to define a function on the variablesx0; : : : ; xn�1, where we imagine the firstl � m of these variables to be arranged as anl �m-matrix. Fori = 0; : : : ; l � 1 let xi := (xim; : : : ; x(i+1)m�1) be theith row of this
matrix.

First, define� : f0; 1gm ! f0; 1g as follows. Chop the input vectorf0; 1gm into k :=bpmc blocks of sizek each. � is defined as the disjunction of the conjunctions of all
variables in each of these blocks. Now define ADDRn : f0; 1gn ! f0; 1g by

ADDRn(x0; : : : ; xn�1) := xa; a := j(�(xl�1); : : : ; �(x0))j2:
All of the above functions have exponential size for deterministic OBDDs, some even for de-
terministic and nondeterministic read-once branching programs.

47

– The function HWB and an exponential lower bound on its OBDD size is due to Bryant [31].
– An indirect storage access function similar to ISA has firstbeen investigated by Paul [86].

The variant considered here and the function EQ-ADJ-ROW have been introduced by Breit-
bart, Hunt, and Rosenkrantz ([29], the latter function onlyappears in a preliminary, unpub-
lished version). They have proven exponential lower boundson the size of OBDDs for these
functions.

– Several functions similar to SEQ and SIP have been analyzedin the literature on branching
programs (early examples of functions similar to SEQ are, e.g., contained in the papers of
Alon and Maass [10] and of Krause [66]). The function SEQ considered here is from the
monograph of Kushilevitz and Nisan [70], where also a proof of an exponential lower bound
on the size of OBDDs can be found. The function SIP is based on an idea by M. Krause
(personal communication).

– An exponential lower bound on the size of nondeterministicread-once branching programs
for PERM is due to Jukna [60] and Krause, Meinel, and Waack [68].

– The function1ROW-OR-1COL has been introduced by B. Bollig, who has also proven an
exponential lower bound on the size of nondeterministic read-once branching programs for
its complement (personal communication). A similar function is considered by Bollig and
Wegener in [23].

– The clique and clique-only functions have been investigated by Wegener [113] and
Žák [117], resp., as mentioned earlier. An exponential lower bound for the nondetermin-
istic case is due to Borodin, Razborov, and Smolensky [27].

– The functions PM and DET have been shown to have exponentialsize for read-once branch-
ing programs by Dunne [36] and Krause [65], resp.

– The functionsB and ADDR are both from a paper of Jukna, Razborov, Savický, and We-
gener [57]. These functions are contained in NP-BP1\ coNP-BP1, but have exponential size
for read-once branching programs, as the authors of the paper have proven.

The above list of lower bound results for OBDDs or read-once branching programs is far from
being complete. Nevertheless, it already contains some of the most “typical” examples. Al-
though of course no simple “criteria” exist by which a given function could be classified to be
contained in P-OBDD or P-BP1 or not, the known results give usa fairly good intuition about
characteristic features of functions which have only largeOBDDs or even read-once branching
programs.

In the following, we group the known functions into some “intuitively defined” classes of typical
functions which tend to have large size for deterministic OBDDs or even deterministic read-
once branching programs. Also this list is not meant to be exhaustive.

– Multiplexer functions: For a function of this type, the set of variables can be partitioned into
a set of “control variables” and a set of “data variables.” The evaluation of a multiplexer
function can be decomposed into two stages: First, a subfunction is selected by the control
variables. Next, this subfunction is applied to the data variables in order to get the result.
To be more precise, we describe a generic multiplexer function, which probably covers al-
ready many concrete examples. This function is of the formf : f0; 1gm+n ! f0; 1g, withf(s1; : : : ; sm; x1; : : : ; xn) := fg(s1;:::;sm)(x1; : : : ; xn):

48

The functionsg : f0; 1gm ! f1; : : : ; kg andfi : f0; 1gn ! f0; 1g, 1 � i � k, may be
specified as parameters. Known examples of multiplexer functions have large OBDD size
because at least some of their subfunctionsfi (in the sense of the above definition) require
“very different” variable orderings in order to be representable in polynomial size.
The complement of the permutation matrix function can also be described in terms of a mul-
tiplexer function (the same holds for1ROW-OR-1COL and some further, similar functions).
Definefn : f0; 1g � f0; 1gn2 ! f0; 1g byfn(s;X) := (s ^ TESTn(X)) _ ((:s) ^ TESTn(X>)); where

TESTn(X) = 1 :, for at least one row ofX the number of ones in this
row is different from one;

then it holds that(:PERMn)(X) = (9 s 2 f0; 1g : fn(s;X)).
– Pointer functions: This type of functions has already been described in Section 2.1.2. Pointer

functions are a variant of multiplexer functions where all variables are used both as control
variables and as data variables. Again, the evaluation of such a function has two stages. In
the first stage, an index of a variable (the address) is computed from the input. In the second
stage, the value of the addressed bit is output as the result.
Pointer functions tend to be hard for OBDDs because the valueof one and the same variable
can be required for the computation of the address as well as the output bit. Because of the
fixed variable ordering and the read-once property of OBDDs,the values of many variables
have to be “stored” in the graph, which leads to exponential size. The functions ISA (indirect
storage access), HWB (hidden weighted bit), and ADDR are representatives for this type of
functions.

– Functions relying on bitstring comparisons: Some of the functions for which exponential
lower bounds on the size of OBDDs have been proven are difficult because they inherently
rely on the comparison of several different, large parts of the input. The functions SEQ and
EQ-ADJ-ROW are concrete examples which illustrate this.

For which of the above types of functions can randomization help to obtain OBDDs of polyno-
mial size? In general, randomized OBDDs do not seem to be better than deterministic ones for
multiplexer functions, since the main difficulty with thesefunctions are the different variable
orderings required for their subfunctions. Nevertheless,some counterexamples to this intuition
will be presented in the next section. The difficulty with pointer functions is that many bits
have to be stored which may be needed as the output bit. It turns out that in this case, random-
ization indeed cannot help, as we will see in Section 3.4 on lower bounds. The last type of
functions, functions relying on bitstring comparisons, will turn out to be especially amenable
for the randomized approach.

3.3 Upper Bounds for Randomized OBDDs

All known constructions of randomized OBDDs of polynomial size for functions which are
hard for the deterministic model are based on the same technique, which is described in the
following subsection. After this, we present some new examples for the application of this
technique.

49

3.3.1 The Fingerprinting Technique for Randomized OBDDs

The fingerprinting technique for the construction of randomized OBDDs is due to Ablayev and
Karpinski [3], who have applied it to design a randomized OBDD of polynomial size with small
one-sided error for a function similar to SEQ.

Fingerprinting is a general technique which has been used todesign efficient randomized algo-
rithms for several different comparison problems, most prominently perhaps the verification of
polynomial identities. More details on this and a history ofresults can be found in the mono-
graph of Motwani and Raghavan [78].

The variant of fingerprinting applied to the construction ofrandomized OBDDs is based on an
adaptation of a well-known randomized one-way communication protocol for the string equal-
ity function from communication complexity. We describe this result in more detail since it
illustrates the underlying general ideas.

The string equality function EQn : f0; 1gn � f0; 1gn ! f0; 1g is defined by EQn(x; y) = 1 iffx = y for x; y 2 f0; 1gn. The communication complexity of this function has been thoroughly
analyzed with respect to various models (see, e. g., [70]). It is well-known that EQn has linear
complexity for deterministic protocols. We describe a randomized communication protocol
with one-sided error for:EQn which is attributed to Rabin and Yao (the result is mentioned
already in Yao’s first paper on communication complexity [115], but apparently has never been
published). Both players, Alice and Bob, regard their inputvectorsx andy, resp., as binary
representations of integers fromf0; : : : ; 2n � 1g. Alice randomly chooses a primep from
the list of the firstn2 primes, computesjxj2 mod p, and sends the result andp to Bob. Bob
computesjyj2 mod p and compares this with the result of Alice. He outputs1 if the results are
equal, and0 otherwise. The protocol usesO(log n) bits of communication, since thekth prime
number is known to have size�(k log k). The protocol always works correct ifx = y. On the
other hand, one can prove that for the casex 6= y, the probability thatp is chosen such thatjxj2 � jyj2 mod p is at most1=n.

Essentially the same ideas as in this protocol can be used to construct randomized OBDDs
of polynomial size for some functions which are hard for deterministic OBDDs because they
require to solve several instances of EQn, where the bitstrings which have to be compared are
composed in different ways from the input variables.

3.3.2 Applications of Fingerprinting

Now we are going to apply the fingerprinting technique to someconcrete examples which will
be used in connection with appropriate lower bound results to separate some of the complexity
classes for OBDDs. It is characteristic for all these upper bound results that we always can even
ensure a one-sided worst-case error probability which tends to zero with the input size.

Theorem 3.4: It holds that

SEQ;PERM;EQ-ADJ-ROW2 coRP"-OBDD

for all " : N ! [0; 1) with "(n) =
(Poly(n)�1).
50

Proof: We use the fingerprinting technique to construct randomizedOBDDs for the three func-
tions.

Shifted equality: This is the function which has the closest relation to the equality function
from communication complexity theory. The following construction is an adaptation of the first
application of fingerprinting by Ablayev and Karpinski [3] for a similar function.

We choose the variable orderings0; : : : ; sl�1, x0; : : : ; xn�1, y0; : : : ; yn�1. The randomized
OBDD G for SEQn starts with a tree by whichjsj2 is computed. Forjsj2 = i, the source
of a sub-OBDDGi is reached, which probabilistically checks whether SEQin(x; y) = 1.

Now we describe the construction ofGi. Fork 2 N letPk be thekth prime number. The OBDDGi starts with a tree of nodes labeled by probabilistic variables by which a prime numberp is
chosen at random fromfP1; : : : ; PMg (M is fixed below). For each fixedp, the OBDD then
deterministically computesap := n�1Xj=0 xj � 2j mod p and bp := n�1Xj=0 yj � 2(j�i)modn mod p:
The1-sink of the graphGi is reached if and onlyap = bp. It is easy to see how a deterministic
OBDD can be constructed that does the above computation for afixed value ofp and hasO(pn)
nodes.

We analyze the error ofGi as a randomized OBDD for SEQin. If SEQin(x; y) = 1, thenap = bp
for all primesp and the error is zero. If SEQin(x; y) = 0, thenGi errs if ap = bp for the chosen
primep. This is the case if and only ifp divides�����n�1Xj=0 xj � 2j � n�1Xj=0 yj � 2(j�i)modn����� � 2n � 1:
Since there are at mostn primes dividing this number, the error probability is bounded from
above byn=M . We chooseM := d"(n)�1ne. Using the fact from number theory thatPk =�(k log k) (see, e. g., [94]), we obtain that the size of the randomized OBDD G is of orderO n M + MXk=1 nPk!! = O �"(n)�2n4 log n� :
Equal adjacent row: Here we probabilistically compare consecutive rows of theinput matrixX = (xij)1�i;j�n. Letxi = (xi;1; : : : ; xi;n) be theith row of the matrix. The randomized OBDD
for EQ-ADJ-ROWn uses the “row-wise” variable orderingx1;1; x1;2; : : : ; x1;n; x2;1; x2;2; : : : ; x2;n; : : : ; xn;1; : : : ; xn;n
and we again start by randomly chosing a prime numberp from fP1; : : : ; PMg.
We describe the deterministic subprogram for a fixed value ofp by a pseudocode program
which can easily be transformed into a deterministic OBDD ofpolynomial size. We use two

51

registersR1 andR2 which can hold numbers fromf0; : : : ; p � 1g, the temporary contents
of these registers can be represented in the OBDD byO(p2) nodes on the same level. The
subprogram for the primep does the following computations:R1 := jx1j2 mod p; r := 2;
for i := 2 to n doRr := jxij2 mod p; if r = 1 then r := 2 elser := 1 fi;

if R1 = R2 then output 1; stop;
od;
output 0.

The randomized OBDD using these modules for eachp computes the output1 for all p if
EQ-ADJ-ROWn(X) = 1. If EQ-ADJ-ROWn(X) = 0, the error probability is

Prp2fP1;:::;PMgf9 i 2 f2; : : : ; ng : jxij2 � jxi�1j2 mod pg= Prp2fP1;:::;PMgf9 i 2 f2; : : : ; ng : p dividesjjxij2 � jxi�1j2jg:
Since a rough estimate of the error probability will be sufficient, we (generously) assume that
the sets of the prime factors of all the differencesjjxij2 � jxi�1j2j are disjoint. Even then there
are less thann(n�1) primes which can divide one of the differences (sincejjxij2�jxi�1j2j < 2n
for i = 2; : : : ; n). Hence, the worst-case error is bounded from above byn2=M . By the same
arguments as above, it follows that the constructed randomized OBDD has polynomial size if
we chooseM := d"(n)�1n2e.
Permutation matrix function: At the first glance, this function seems to have nothing to dowith
string comparisons. The key to the applicability of the fingerprinting technique is the following
nonstandard representation of the function PERMn. Again, letxi be theith row ofX. Then it
holds that PERMn(X) = 1 if and only ifnXi=1 jxij2 = 2n � 1 ^ all xi contain exactly one entry equal to 1:
We apply the fingerprinting technique to check probabilistically whether the binary representa-
tion of the sum of the valuesjxij2 is equal to the string(1; : : : ; 1) 2 f0; 1gn.

Again, we choose the “row-wise” variable ordering for the randomized OBDD and start by
randomly choosing a prime numberp. For each fixedp, we compute the sum of alljxij2 modulop while checking simultaneously whether eachxi contains exactly one entry equal to1. It is
easy to see that this can be done by a deterministic OBDD of polynomial size. If a row with a
wrong number of entries equal to1 is detected, the0-sink is reached. Otherwise, a computation
path reaches the1-sink if the sum of alljxij2 modulop is is equal to(2n � 1) mod p, and it
reaches the0-sink for all other summation results.

If PERMn(X) = 1, the 1-sink is reached for allp. The randomized OBDD can err only if
PERMn(X) = 0 and the matrixX has exactly one entry equal to1 in each row. For such an

52

inputX, the error probability is

Prp2fP1;:::;PMg(nXi=1 jxij2 � 2n � 1 mod p) :
Since����� nXi=1 jxij2 � (2n � 1)����� � n � 2n�1;
it holds that there are fewer thann� 1 + dlog ne primes for which the sum of thejxij2 is equal
to 2n � 1 modulop. Hence, the error probability can be bounded from above by2n=M . It only
remains to chooseM := d"(n)�1 � 2ne. Analogously to the other constructions, it follows that
the whole randomized OBDD has polynomial size. 2
The above examples all exploit the fact that checking nonequality of bitstrings is easy for ran-
domized algorithms in a more or less straightforward way. Weconclude the list of upper bound
results by a more sophisticated construction for the clique-only function. We consider the gen-
eral version of the clique-only function where the size of the cliques is specified by an arbitrary
functions : N ! N with 1 � s(n) � n. Let CLOs := (CLOn;s(n))n2N.

Theorem 3.5: For all " : N ! [0; 1) with "(n) =
(Poly(n)�1), it holds that

CLOs 2 coRP"-OBDD :
We remark that Agrawal and Thierauf [7] independently have used some of the ideas in the
following proof to establish that the variant of CLOs which uses the full adjacency matrix as its
input has randomized OBDDs of polynomial size.

Proof: We consider a fixed input sizen and a fixed sizes = s(n) of the cliques for the whole
proof. We first describe a basic observation which shows how bitstring comparisons can help to
evaluate the clique-only function. Since this idea will notdirectly lead to a randomized OBDD
of polynomial size, we extend it by more technical details later on.

Consider an arbitrary inputX = (xij)1�i<j�n of CLOn;s. For the whole proof, it is a good idea
to visualize this input as the upper half of a Booleann� n-matrix. Fori = 1; : : : ; n, define the
vectorL(i) 2 f0; 1gn byL(i)j := 8><>:xji; if 1 � j � i� 1;1; if j = i;xij; if i + 1 � j � n.

The vectorL(i) describes which vertices are adjacent to theith vertex in the graphG(X) en-
coded byX (where each vertex is considered to be adjacent with itself). The key observation
needed to apply the fingerprinting technique to CLOn;s is the following.

53

Observation: The graphG(X) contains ans-clique andn � s isolated vertices if and only
if there are exactlys verticesi for which the vectorL(i) does not contain only a single1 at
positioni (and zeros at the other positions), and all theses vectors are equal.

Since each entryxij is used intwo adjacency lists, this observation alone does not lead even to
a read-once algorithm, though. Nevertheless, we claim thatit is sufficient to run once through
all the variables in order to check the above property of the adjacency lists of all vertices.

In the following, we first describe the essence of the our approach in an intuitive way. We are
going to run once through all the columns ofX. We will prove below that, ifX is a1-input for
CLOn;s, then exactlys� 1 of these columns are different from the zero vector. Furthermore, if
theith columnci and thejth columncj are both different from the zero vector andi < j, thenci
is a proper prefix ofcj . This prefix property can be checked by the fingerprinting method. Yet,
we also have to ensure that in the case thatX is a0-input the described property is not fulfilled.

We describe the essential “prefix property” more formally and prove that it holds exactly for the1-inputs of CLOn;s. For the following definitions, assume that the inputX contains at least one
entry different from zero. By “0”, we denote a zero vector of arbitrary length. For2 � j � n,
let cj 2 f0; 1gj�1 be thejth column ofX, i. e.,(cj)i := xij for i = 1; : : : ; j � 1. Letjmin := minfj j cj 6= 0g; and imin := minfi j xi;jmin 6= 0g:
Notice thatimin � jmin � 1. Define the vectorRT 2 f0; 1gn byRTj := 8><>:0 if 1 � j � imin � 1 or imin + 1 � j � jmin � 1;1 if j = imin;[cj 6= 0]; if jmin � j � n.

Furthermore, letjmax := maxfj j cj 6= 0g and define the vectorCT 2 f0; 1gn byCTi := 8><>:xi;jmax; if 1 � i � jmax � 1;1 if i = jmax;0 if jmax + 1 � i � n.

Lemma: It holds that the graphG(X) contains ans-clique on the verticesv1; : : : ; vs 2f1; : : : ; ng andn � s isolated vertices if and only ifG(X) is not empty and (1) and (2) are
fulfilled.

(1) fi j CTi = 1g = fi j RTi = 1g = fv1; : : : ; vsg.
(2) Letj < j 0 andcj 6= 0, cj0 6= 0. Thencj is a proper prefix ofcj0 .
Proof of the lemma: “Only if” : Let G(X) containfv1; : : : ; vsg =: C as a clique andn � s
isolated vertices outside ofC. W. l. o. g. assume thatv1 < � � � < vs. Obviously,G(X) is not
empty.

By our first observation described above, it follows thatci = 0 if i is an isolated vertex, andcvi
is a proper prefix ofcvj if i < j. It remains to verify that the vectorsRT andCT, resp., both
describe the cliqueC.

54

We do this forRT first. We claim that from the nodes inf1; : : : ; jmin � 1g, only imin belongs to
the given cliqueC. By the definition ofjmin, no nodej with 1 � j � jmin � 1 has an adjacent
nodei with i < j. This shows that there is at most one nodej with 1 � j � jmin � 1 belonging
to the cliqueC. Sinceximin;jmin = 1, it holds thatimin 2 C. A nodej with jmin � j � n
belongs toC if and only if cj 6= 0.

In order to verify thatCT also representsC, we first observe that no nodej with j > jmax can
belong toC. For the nodesi with 1 � i � jmax it holds thati 2 C if and only if xi;jmax = 1.

“If” : SinceG(X) is not empty by assumption,RT andCT are defined. We have to show thatC := fv1; : : : ; vsg is a clique inG(X) and all other vertices are isolated.

Let v 2 C. SinceCTi = 0 for i > jmax, it holds thatv � jmax. We have to show that an
arbitrary vertex is adjacent tov if and only if it belongs toC. First, consider a vertexi with1 � i � v � 1. Because of (1) and the definition ofCT, it holds thatxi;jmax = 1 if and only ifi 2 C. By (2) and the definition ofRT we obtain thati is adjacent tov if and only if i 2 C.
Now consider a vertexj with v + 1 � j � n. By (1), it holds thatxv;jmax = 1. From (2), it
follows thatxv;j = 1 if and only if j 2 C. Altogether, we have shown thatv is adjacent exactly
to the vertices inC.

Now letv 62 C. Because of (1) and the definition ofRT, vertexv has no adjacent verticesi with1 � i � v � 1. It remains to show thatv also has no adjacent verticesj with v + 1 � j � n.
If j 62 C, we havecj = 0 and hence especiallyxv;j = 0. If j 2 C andxv;j = 1, it follows by
(2) thatxv;jmax = 1, which is not possible sincev 62 C. Altogether, we have shown thatv is an
isolated vertex. 2
Now we first sketch a deterministic algorithm for CLOn;s based on the above lemma. Through-
out the algorithm, we useclast to store the contents of the last non-zero column found so far;jlast will hold the index of this column. Furthermore,RT will denote the temporary version of
the respective vector from the above lemma. InitializeRT by the zero vector.

For j = 2; : : : ; n, examine thejth columncj of X. If cj = 0, go to the next column. Ifcj 6= 0, then setRTj := 1. If j is the first non-zero column, definejmin := j and imin and
setRTimin := 1. If cj 6= 0 but j is not the first such column, then check whetherclast is a
proper prefix ofcj . If not, the algorithm terminates with output0. Otherwise, setclast := cj ,jlast := j and continue with the next column. Finally, when all columnshave been examined,
set(clast)jlast := 1. Thenclast contains the vectorCT from the above lemma. The algorithm
outputs1 if CT = RT and the number of non-zero entries in both vectors iss, and it outputs0
otherwise.

The correctness of this algorithm follows from the lemma which we have already proven. The
final step is to replace the comparisons of vectors in the above algorithm by probabilistic tests
according to the randomized communication protocol for thestring equality function.

On the next page, we describe the complete randomized algorithm as pseudocode.

55

Algorithm for CLOn;s:
Input: n, s; X = (xij)1�i<j�n
Important variables:imin: row of the first non-zero entry in the actual columnjlast: index of the last non-zero column found so farhlast: fingerprint of the last non-zero column found so farhRT: fingerprint of the actual version of the vectorRTh: fingerprint of the actual columnhupper: fingerprint of the entries1 : : : jlast of the actual column
count: actual number of potential clique vertices

1. Let Pi denote theith prime number. Choosep 2 fP1; : : : ; PMg uniformly at random, whereM := �"(n)�1n�.
2. hRT := 0; hlast := 0; jlast := 0; count:= 0;

for j := 2 to n dohupper := 0; t := 0; imin := 0;
if jlast 6= 0 then

for i := 1 to jlast dob := xij;hupper := (hupper + 2i � b) mod p;t := t _ b;
if t 6= 0 ^ imin = 0 then imin := i;
od;

fi;h := hupper;
for i := jlast + 1 to j � 1 dob := xij ;h := (h+ 2i � b) mod p;t := t _ b;

if t 6= 0 ^ imin = 0 then imin := i;
od;
if t = 0 (zero column)then continue with next value ofj
else(at least one entry equal to1)

if jlast = 0 (first non-zero column)then hRT := 2imin mod p;hRT := (hRT + 2j) mod p;
if jlast 6= 0 ^ hlast 6= hupper then output 0; stop;
count:= count+ 1;
if count> s then output 0; stop;hlast := h;jlast := j;

fi
od;hlast := (hlast + 2jlast) mod p;
output [hlast = hRT ^ count= s];

56

It would be extremely tedious to give a detailed descriptionof the construction of a randomized
OBDD from this algorithm. Instead, we rely on the known simulation of on-line eraser Turing
machines by OBDDs, see Sawada, Takenaga, and Yajima [99]. Itis easy to see that the algo-
rithm only uses spaceO(log n) and reads the variables once in the column-wise order. Hence, it
can be simulated by a randomized OBDD of polynomial size. Therequired bound on the error
follows from the correctness of the above deterministic version and the estimate of the error of
the randomized bitstring comparison. 2
We have now demonstrated the usefulness of randomization for OBDDs in several examples.
The constructions above should be sufficient to get some intuition about the types of functions
for which the fingerprinting technique usually works.

3.4 Lower Bounds for Randomized OBDDs andkOBDDs

In this section, we are concerned with the limits of the powerof randomization for OBDDs.
We first describe a general technique for proving lower bounds for several variants of OBDDs.
Then we apply this technique to some of the functions presented in the last section.

3.4.1 The Reduction Technique

Here we describe the technique underlying all the known proofs of lower bounds on determin-
istic, nondeterministic, and randomized OBDDs orkOBDDs in a unified way. We call this
general approach “reduction technique.”

To put it intuitively, the known proofs of lower bounds on thesize of OBDDs are all based on
the fact that a large amount of information has to be exchanged across a suitably chosen cut
in the graph in order to evaluate the given function. Resultsfrom communication complexity
theory are then explicitly or implicitly used to get lower bounds on the necessary amount of
information. A similar approach works forkOBDDs.

Babai, Nisan, and Szegedy [13] seem to be the first who have explicitly used communication
complexity theory to prove lower bounds for branching programs. Before them, Bryant [31] and
Krause [66] had already employed fooling set techniques to prove lower bounds for OBDDs andkOBDDs, resp. These techniques can also be seen as applications of results on communication
complexity, although this is not explicitly mentioned in the original papers.

Our goal is to clearly separate the communication complexity theoretical part of these proofs
from the conclusions on the size of the OBDD orkOBDD. We will directly handle the more
general case ofkOBDDs.

The following definition will be used to establish the connection between the size ofkOBDDs
and communication complexity with respect to a fixed partition.

57

Definition 3.6: Let f : f0; 1gn ! f0; 1g be an arbitrary function defined on the variable setX = fx1; : : : ; xng. Let a variable ordering onX be given by� : f1; : : : ; ng ! f1; : : : ; ng. Let1 � p � n � 1 andL := fx�(1); : : : ; x�(p)g, R := fx�(p+1); : : : ; x�(n)g. Define the functionf 0 : f0; 1gp � f0; 1gn�p ! f0; 1g on assignmentsx to L andy to R by f 0(x; y) := f(x + y),
wherex + y denotes the joint assignment toX obtained fromx andy. Then we callf 0 the
partitioned version off with respect to� andp and denote this function byf�;p.
Usually, we cannot directly analyze the communication complexity of the function represented
by akOBDD with respect to a suitable partition of the variables. It is therefore important to be
able to identify hard subproblems which can be analyzed by the available tools. As for Turing
machines, we use a reduction to show that the whole function is at least as hard as the considered
subproblem.

Several notions of reducibility defined analogously to the well-known notions for Turing ma-
chines have been introduced in communication complexity theory (for a thorough treatment,
see, e. g., Babai, Frankl, and Simon [12]). The most common type is therectangular reduction,
which is the analog of many-one reducibility for Turing machines.

Definition 3.7 (Rectangular reduction): Let Xf ; Yf andXg; Yg be finite sets. Letf : Xf �Yf ! f0; 1g andg : Xg � Yg ! f0; 1g be arbitrary functions. Then we call a pair('1; '2)
of functions'1 : Xf ! Xg and'2 : Yf ! Yg a rectangular reduction fromf to g (or simply
“reduction” for short) ifg('1(x); '2(y)) = f(x; y) for all (x; y) 2 Xf � Yf .
If such a pair of functions exists forf andg, we say thatf is reducible tog.

The key property of rectangular reductions which we will need is the following.

Proposition 3.8: Let f and g be as in Definition 3.7, and letf be reducible tog. LetPg be
a k-round communication protocol forg. Then there is ak-round communication protocolPf for f which uses the same amount of communication asPg. (This holds for deterministic,
nondeterministic, and randomized protocols as well.)

We remark that one could also try to use more general types of reductions instead of rectangular
ones, e. g., the reductions based onoracle protocolsdefined in [12] which are the analogs of
Turing reductions for communication protocols. But apart from special cases, such general
reductions do not allow to transfer upper bounds for protocols with a fixed number of rounds as
shown in the above proposition for rectangular reductions.

Now we are ready to formally describe the connection betweenthe size ofkOBDDs and com-
munication complexity.

58

Lemma 3.9 (Reduction technique):Let g : f0; 1gn ! f0; 1g be defined on the variable setX = fx1; : : : ; xng. Let� be a variable ordering onX. Assume that there is a functionf : U �V ! f0; 1g, whereU andV are finite sets, and a parameterp with 1 � p � n � 1 such thatf is reducible to the partitioned versiong�;p of g. LetG be a randomizedkOBDD ordered
according to� which representsg with two-sided error at most". Then it holds thatdlog jGje � R2k�1" (f)=(2k � 1);
whereR2k�1" (f) denotes the minimal number of bits exchanged by a randomized(2k�1)-round
communication protocol forf with two-sided error at most". Analogous assertions hold for
deterministic, nondeterministic, and randomizedkOBDDs with zero, one-sided or unbounded
error and the corresponding measures for(2k � 1)-round communication complexity.

Proof: Sincef is reducible tog�;p, it follows thatR2k�1" (g�;p) � R2k�1" (f) by the above propo-
sition. Hence, it is sufficient to show that(2k � 1)dlog jGje � R2k�1" (g�;p). To prove this in-
equality, we construct a randomized(2k � 1)-round protocol forg�;p from G. The basic ideas
of this construction are due to Jukna [58] and Krause [66].

First, we partition the randomizedkOBDD G into k sets of nodes (layers)Li such that: (i)
edges run only fromLi to Lj with j � i; and (ii) the subgraph containing all edges for which
at least the first node lies inLi is a randomized�-OBDD (possibly with several sources and
sinks). This partition usually will not be uniquely determined.

Furthermore, we split each layerLi into anupper partand alower partusing the variable or-
dering� and the given parameterp. LetL := fx�(1); : : : ; x�(p)g andR := fx�(p+1); : : : ; x�(n)g.
The lower part of theith layer consists of all paths in theith layer starting at a node which is
labeled by a variable fromR (such paths only contain nodes labeled by variables fromR or by
probabilistic variables). The upper part consists of the remaining nodes and edges of theith
layer (the nodes of this part are labeled by variables fromL or by probabilistic variables).

Finally, we identify sets of nodes (cuts) which separate different layers or the upper and the
lower part of the same layer. Fori = 1; : : : ; k, defineC2(i�1) as the set of source nodes of theith layer. LetC2k be the set of sinks ofG. For i = 1; : : : ; k, letC2i�1 be the set of nodes in the
lower part of theith level which are reached by edges from the upper part (letC2i�1 = C2i�2 if
the upper part is empty andC2i�1 = C2i if the lower part is empty).

Now we are ready to describe the protocolP for g�;p. Player Alice obtains an assignmentx
to the variables inL and player Bob an assignmenty to R as inputs. Both use the graphG as
an “oracle.” Letv0 2 C0 be the source ofG. Let i 2 f1; : : : ; kg. In the (2i � 1)-th round
of the protocolP , Alice follows a path in the upper part of theith layer starting atv2i�2 in
the following way. If she encounters a usual variable, she follows the successor determined
by her inputx. If she encounters a probabilistic variable, she locally chooses a value for this
variable at random and precedes to the corresponding successor. She sends the number of the
nodev2i�1 2 C2i�1 reached in this way to Bob. Then the2i-th round of communication starts.
In the same manner as Alice, Bob follows a path in the lower part of the ith layer determined
by y and some choices of probabilistic variables. Ifi � k � 1, he communicates the reached
nodev2i 2 C2i to Alice and round2i + 1 starts. Otherwise, Bob reaches a sink and outputs its
value as the result of the protocol.

59

Since each probabilistic variable appears at most once on each path inG, both players can
choose the values of the probabilistic variables independently. Because of the error guarantee
of G, it follows that the above protocolP computesg�;p with error at most". Furthermore, it
uses at most2k�1Xi=1 dlog jCije � (2k � 1)dlog jGje:
bits of communication. 2
The proofs of the lower bounds on the size of OBDDs andkOBDDs, resp., by Bryant [31] and
Krause [66] turn out to be in fact combinations of rectangular reductions with lower bounds
on the nondeterministic communication complexity by the fooling set method. Hence, their
bounds even hold for nondeterministic OBDDs andkOBDDs, although this is not mentioned in
the original papers.

3.4.2 Lower Bounds fork-Stable Functions

In Section 3.2, we have already discussed several types of functions which are known to be hard
for deterministic OBDDs. We have claimed that the functionsinformally introduced as “pointer
functions” are all hard even for randomized OBDDs.

In order to get a formally precise statement, we now apply thelower bound technique presented
in the last section to the class of so-called “k-stable” functions, which has been studied in
the literature of lower bounds for read-once branching programs for a long time. It turns out
that every known pointer function is itselfk-stable or at least contains ak-stable function as a
“subproblem.”

Definition 3.10: Let k 2 f1; : : : ; n � 1g. A function f : f0; 1gn ! f0; 1g defined on the
variable setX (jXj = n), is calledk-stableif the following holds. For an arbitrary setX1 � X,jX1j = k, and each variablex 2 X1 there is an assignmentb to the variables inXnX1 such that
eitherf(a + b) = a(x) for all assignmentsa to X1 or f(a + b) = :a(x) for all assignmentsa
toX1. (Again,a + b denotes the complete assignment toX which is obtained by assigning the
variables inX1 according toa and the variables inXnX1 according tob.)
This definition is originally due to Dunne [36]; the name “k-stable function” has been coined
by Jukna [59]. It is a well-known fact that ak-stable function has size2k � 1 for deterministic
read-once branching programs. Lower bounds of this type have been proven by several authors,
e. g., Dunne [36], Jukna [59], Krause [65] and Jukna, Razborov, Savický, and Wegener [57]. We
list the functions introduced in Section 3.2 for which it hasbeen proven that they arek-stable
for some parameterk.

– It holds that the clique-function cln;s isk-stable fork := minf�s2��1; (n�s+2)=2g. This can
be proven easily by using the ideas contained in the works of Jukna [59] and Wegener [113].
Jukna has proven a similar result for the directed version ofthe clique-function, with the
adjacency matrix as input. This function isk-stable fork := minf�s2�; n� sg � 1.

60

– Krause [65] has proven that PMn and DETn are both(n�1)-stable.
– Letn = q2 + q + 1, whereq = pm for some primep and an arbitrary positive integerm. Letk := (q + 1)=2 if q is a prime, andk := �pq� otherwise. Then the blocking set functionBn

is k-stable, as the proof of the lower bound on the size of deterministic read-once branching
programs forBn by Jukna, Razborov, Savický and Wegener in [57] shows.

– Letn = 2l, m := bn=lc, andk := bpmc as in the definition of the function ADDRn. Then
it holds that ADDRn is (k�1)-stable. (See Jukna [59] and Jukna, Razborov, Savický and
Wegener [57].)

Now we are going to prove a lower bound on the size of randomized OBDDs for allk-stable
functions, including the functions above.

Lemma 3.11: Let g : f0; 1gn ! f0; 1g be ak-stable function. LetG be a randomized OBDD
for g with arbitrary two-sided error" < 1=2. Then it holds thatjGj = 2
(k).
Proof: Our goal is to apply Lemma 3.9. For this, we are going to construct a rectangular reduc-
tion from the following function to a suitable partitioned version ofg. Let INDEXm : U �V !f0; 1g, whereU := f0; 1gm, V := f1; : : : ; mg, be defined by INDEXm(u; v) := uv foru = (u1; : : : ; um) 2 U and v 2 V . Kremer, Nisan, and Ron [69] have shown that each
randomized one-way protocol which computes INDEXm with two-sided error smaller than1=8
needs
(m) bits of communication. (We remark that Ablayev [1] has analyzed a related func-
tion for which he has also proven a linear lower bound for randomized one-way protocols.) In
order to be able to apply this result, we first assume that" < 1=8 for the error" of G.

Let an arbitrary variable ordering� on the variable setX of g be given. For the ease of notation,
we assume here that� maps each index to the corresponding variable, i. e.,� : f1; : : : ; ng ! X.
DefineL := f�(1); : : : ; �(k)g andR := f�(k + 1); : : : ; �(n)g.
We observe that, sincef is k-stable, the following holds. For each variablex 2 L, there
is an assignmentbx to R such that eitherf(a + bx) = a(x) for all assignmentsa to L orf(a + bx) = :a(x) for all assignmentsa to L. Let us first assume that always the former case
occurs. In the following, we define a rectangular reduction('1; '2) from INDEXk to g�;k.
The function'1 : U ! f0; 1gk is only a permutation of the bits of its input vector. For an
arbitrary inputu = (u1; : : : ; uk) 2 U = f0; 1gk, define the assignmenta to the variables inL
by a(x) := u��1(x) for x 2 L. Set'1(u) := a. The function'2 : V ! f0; 1gn�k is defined by'2(v) := b�(v), wherev 2 V = f1; : : : ; kg. For arbitrary(u; v) 2 U � V , we haveg�;k('1(u); '2(v)) = INDEXk(u; v);
hence,('1; '2) is a rectangular reduction from INDEXk to g�;k. By Lemma 3.9 and the known
lower bound on the randomized communication complexity forINDEXk, it follows thatdlog jGje � R1"(INDEXk) =
(k);
for all " < 1=8. To obtain the claimed lower bound for an arbitrary error probability" < 1=2, we apply the probability amplification technique for OBDDsdescribed in Sec-
tion 2.2.2 (Lemma 2.34).

61

We still have to handle the case that for some variablesx 2 L, it holds thatf(a+ bx) = :a(x)
for all assignmentsa to L. For this case, we slightly extend our reduction concept. Inaddition
to the transformation of the input by the pair of functions('1; '2), we allow to negate the result
for the “target problem,”g('1(u); '2(v)), depending on the inputv 2 V . More precisely, such
a reduction consists of'1, '2 and an additional function� : V � f0; 1g ! f0; 1g for which�(v; g('1(u); '2(v))) = f(u; v) for all (u; v) 2 U � V .

It is easy to see that analogous versions of Proposition 3.8 and Lemma 3.9 from the last section
hold for this extended type of reductions.

Here we choose�(v; c) = c for c 2 f0; 1g if f(a+ b�(v)) = a(�(v)) for all assignmentsa toL,
and�(v; c) = :c for c 2 f0; 1g if f(a+ b�(v)) = :a(�(v)) for all assignmentsa toL. It is easy
to see that for this choice of� and'1, '2 we have�(v; g('1(u); '2(v))) = INDEXk(u; v) for all (u; v) 2 U � V . 2
From this lemma, we immediately obtain that the examples ofk-stable functions already men-
tioned are all hard for randomized OBDDs with bounded error:

Theorem 3.12: cl;PM;DET; B;ADDR 62 BPP-OBDD.

There are some pointer functions, e. g., HWB and ISA, which cannot bek-stable for largek
in the sense of Definition 3.10, because they are contained inP-BP1 (for HWB and ISA, this
has been proven by Sieling and Wegener [106]). In this respect, they are easier than anyk-
stable function. Nevertheless, they share a common property with these functions which also
makes them hard for randomized OBDDs. This is the property that they can be seen to solve an
instance of the function INDEXk for somek as a subproblem. The following lemma formally
describes this property.

Lemma 3.13: Let g : f0; 1gn ! f0; 1g be defined on the variable setX. Letk with 1 � k �n � 1 be fixed. Assume that for each variable ordering� on X, there is a parameterl with1 � l � n � 1 such thatINDEXk is reducible to the partitioned versiong�;l of g. Finally, letG be a randomized OBDD representingg with two-sided error" < 1=2. Then it holds thatjGj = 2
(k).
The proof of this lemma is already contained in the proof of the lemma fork-stable functions.

Theorem 3.14: ISA;HWB 62 BPP-OBDD.

Proof: In order to apply Lemma 3.13, we show how the known proofs of the lower bounds on
the size of deterministic OBDDs yield rectangular reductions.

Indirect storage access: Let � be an arbitrary variable ordering on the input variablesx0; : : : ; x2r�1 andy0; : : : ; yr�1 of ISAn.

62

Remember that we have defineds = b2r=rc as the number of “blocks” ofx-variables. Consider
the maximal position in the list of variables ordered according to � where at mosts � 1 of
thex-variables and some variablesyi1 ; : : : ; yit have been tested. We claim that INDEXs�1 is
reducible to(ISAn)�;s+t�1. (This proves the claim, sinces = �(n= log n).)
Let L be the set containing the firsts � 1 of thex-variables according to� andR the set of
the remainingx-variables. By the pigeonhole principle, there is a groupxi0r; : : : ; x(i0+1)r�1 ofx-variables,0 � i0 � s � 1, with no variable inL. Choose an assignmentc to all y-variables
which evaluates toi0 when interpreted as a binary number. We replace they-variables according
to c and consider the restricted function(ISAn)jy=c.
We first construct a rectangular reduction('1; '2) from INDEXs�1 to ((ISAn)jy=c)�;s�1. LetU = f0; 1gs�1 andV = f1; : : : ; s � 1g. Analogously to the proof of Lemma 3.9 for thek-
stable functions, define'1 : U ! f0; 1gs�1 simply as a permutation of the input bits according
to the order of the variables fromL given by�. For the definition of'2 : V ! f0; 1gn�s+1,
choose assignmentsb1; : : : ; bs�1 to the variables inR such that(ISAn)jy=c(a+ bi) = ai for all
assignmentsa toL. Forv 2 V , define'2(v) := b�(v).
It is easy to verify that('1; '2) is indeed a rectangular reduction from INDEXs�1 to the func-
tion ((ISAn)jy=c)�;s�1. We obtain a rectangular reduction from INDEXs�1 to (ISAn)�;s+t�1 by
adding appropriate parts of the assignmentc to they-variables to the assignments computed by'1 and'2, resp.

Hidden weighted bit: HWBn is defined on the variablesx1; : : : ; xn. Let � be an arbitrary
ordering of these variables. For the ease of notation, letn be a multiple of10. Definep = 0:6n,L := fx�(1); : : : ; x�(p)g andR := fx�(p+1); : : : ; x�(n)g. Let k := 0:1n. We claim that INDEXk
is reducible to the partitioned version HWB�;pn of HWBn.

Again, we adapt the known proof for the deterministic case toconstruct a rectangular reduction.
Chooses 2 f0:1n; 0:5ng such that the setW := fs; : : : ; s + 0:4ng contains at least0:2n
indices fromf�(1); : : : ; �(p)g. Choosew1; : : : ; wk 2 W \ f�(1); : : : ; �(p)g.
LetU = f0; 1gk andV = f1; : : : ; kg. For eachu 2 U andv 2 V , we define assignmentsa(u)
toL andb(v) toR, resp., for the rectangular reduction. Definea(u)wj := uj for j 2 f1; : : : ; kg.
Fix the values of thea(u)i, i 62 fw1; : : : ; wkg, such thata(u) altogether contains exactlys ones.
This is possible for both choices ofs since0 � u1+ � � �+uk � 0:1n. For everyv 2 f1; : : : ; kg,
chooseb(v) such that it contains exactlywv � s ones. This is possible sincewv 2W .

We claim that we have constructed a rectangular reduction from INDEXk to HWB�;pn . Letu 2 U andv 2 V . Let c be the assignment tox1; : : : ; xn which is obtained by joining the
assignmentsa(u) andb(v). Then it holds that HWBn(c) = cwv , since the number of ones inc
is s + (wv � s) = wv. It holds thatcwv = a(u)wv = uv because of the definitions ofc anda(u)
and the fact thatwv 2 f�(1); : : : ; �(p)g. 2

63

3.4.3 Lower Bounds for RandomizedkOBDDs

Lower bounds on the size of deterministic (and implicitly also nondeterministic)kOBDDs
wherek may be larger than1 have already been proven by Krause [66], as mentioned at the
beginning of the section. His proofs can be seen as rectangular reductions from the string
equality function EQn to the target functions.

Bollig, Sauerhoff, Sieling, and Wegener [21] have (implicitly) used the reduction method to
prove that the classes of sequences of functions withkOBDDs of polynomial size form a proper
hierarchy with respect tok. They have exploited the fact that the so-called “pointer jumping
function” has linear complexity for randomized(k�1)-round communication protocols whereas
it has deterministick-round protocols of polylogarithmic length, wherek is not too large (this
has been shown by Nisan and Wigderson [82], who have improvedearlier results of̌Duriš, Galil,
and Schnitger [37] and of Halstenberg and Reischuk [49]). Although this is not mentioned in
the paper of Bollig, Sauerhoff, Sieling, and Wegener [21], their lower bound proof also holds
for randomizedkOBDDs.

In this subsection, we present two more examples demonstrating how the reduction technique
can be used to get lower bounds on the size of randomizedkOBDDs. We consider the functions1ROW-OR-1COL and SIP defined in Section 3.2.

Theorem 3.15: Let G be a randomizedkOBDD for 1ROW-OR-1COLn with arbitrary two-
sided error", 0 � " < 1=2. Then it holds thatjGj = 2
(n=k).
Proof: We will reduce the complement of the set disjointness function from communication
complexity theory to a partitioned version of1ROW-OR-1COLn. The set disjointness function
DISJn : f0; 1gn�f0; 1gn ! f0; 1g is defined on vectorsx; y 2 f0; 1gn, which are interpreted as
subsets off1; : : : ; ng, by DISJn(x; y) = 1 iff x\y = ;. It has been proven by Kalyanasundaram
and Schnitger [63] and Razborov [93] that DISJn has communication complexity
(n) for
randomized communication protocols with two-sided error (where the protocols may use an
arbitrary number of rounds).

Consider a given variable ordering� on then2 variables of1ROW-OR-1COLn. For p 2f1; : : : ; n � 1g, defineL := fx�(1); : : : ; x�(p)g andR := fx�(p+1); : : : ; x�(n)g. Choosep such
that jjLj � jRjj � 1. We claim that:DISJbn=2c is reducible to1ROW-OR-1COL�;pn .

It is easy to see that there are either at leastbn=2c rows or at leastbn=2c columns which do not
consist solely of variables belonging toL or R, resp. W. l. o. g. this holds for the rows. Then
there is a setI = fi1; : : : ; ibn=2cg � f1; : : : ; ng such that for each row with indexi 2 I there is
at least one variable belonging toL and at least one variable belonging toR.

Let inputsu; v 2 f0; 1gbn=2c for :DISJbn=2c be given. We define assignments to the variables inL and inR corresponding tou; v as follows. Set all variables in thebn=2c rows with indices not
in I to 0. Forj = 1; : : : ; bn=2c, set all theL-variables in theij-th row to1 if j 2 u, and set them
all to 0 if j 62 u. Do the same for theR-variables andv. We obtain that1ROW-OR-1COL�;pn
yields the result1 on these assignments toL andR if and only ifu \ v 6= ;. Hence,:DISJbn=2c
is reducible to1ROW-OR-1COL�;pn . By Lemma 3.9 and the known result on the randomized
communication complexity of DISJn, the claim follows. 2

64

We summarize what is known about the function1ROW-OR-1COL:

(1) 1ROW-OR-1COL 2 NP-OBDD� PP-OBDD, but1ROW-OR-1COL 62 BPP-kOBDD if k = O(n= log1+" n), " > 0;

(2) 1ROW-OR-1COL 2 RP-BP1� BPP-BP1, but1ROW-OR-1COL 62 coNP-BP1.

It only remains to supply the upper bounds claimed here: A nondeterministic OBDD for1ROW-OR-1COL guesses an index of a row or a column and checks deterministically whether
the row or column, resp., only contains ones. A randomized read-once branching program with
error at most1=2 is obtained by combining two OBDDs for the test of the rows andthe columns,
resp., by a single probabilistic node.

For the function SIP, we even get a lower bound on the size of randomizedkOBDDs in the case
of unbounded error if the number of probabilistic variablesis not too large. On the other hand,
it is easy to see that SIP2 P-BP1.

Theorem 3.16: LetG be a randomizedkOBDD which representsSIPn with unbounded error.
Let r be the number of probabilistic variables used inG. Then it holds thatjGj = 2
((n�r)=k).
Proof: This is done by a rectangular reduction from the inner product function IPm : f0; 1gm�f0; 1gm ! f0; 1g defined by IPm(x; y) := 1 iff

Pm�1i=0 xiyi 6� 0 mod 2. It has been shown by
Chor and Goldreich [34] that IPm has randomized communication complexity at leastm� 3�3 log(1=�) if the error is bounded by1=2� � for an arbitrarily small constant� > 0.

Let G be a randomizedkOBDD with r probabilistic variables representing SIPn with un-
bounded error. Let� be the variable ordering on the variables of SIPn used byG. Choose
the partition(L;R) of the variables and the parameterp as in the proof of Theorem 3.15. Call
variablesxr andys partnerswith respect to the function SIPin if r + i � s mod n. By the
pigeonhole principle, it can be shown that there is ani0 2 f0; : : : ; n� 1g such that for at leastbn=2c pairs of variables which are partners with respect to SIPi0n both variables lie in different
parts of the partition(L;R). It follows that IPbn=2c is reducible to the partitioned version SIPi0;pn
of SIPi0n .

SinceG has onlyr probabilistic variables, the error probability is boundedfrom above by1=2� 1=2r. By the result on the communication complexity of IPbn=2c, the claim follows. 2
3.5 Summary

At the end of this chapter, we summarize conclusions on the relations of the complexity classes
defined in terms of the size of randomized OBDDs which can be drawn from the upper and
lower bound results known so far.

In the following theorem, we list the most important facts. It turns out that the relations between
the classes for the Monte Carlo error model can be completelycharacterized.

65

Theorem 3.17:

(1) BPP-OBDD6� NP-OBDD[coNP-OBDD;

(2) RP-OBDD\ coRP-OBDD$ NP-OBDD\ coNP-OBDD6� BPP-OBDD;

(3) RP-OBDD$ NP-OBDD, RP-OBDD 6= coRP-OBDD;

(4) NP-OBDD[coNP-OBDD$ PP-OBDD, BPP-OBDD$ PP-OBDD;

(5) P-OBDD= ZPP-OBDD.

Proof: Part (1): We consider the function 2PERMn : f0; 1g2n2 ! f0; 1g, defined on two
Booleann� n-matricesX andY by

2PERMn(X; Y) := PERMn(X) ^ (:PERMn)(Y):
By Theorem 3.4, this function is contained in the class BPP-OBDD (we can compute the con-
junction of two randomized OBDDs with one-sided error for PERMn and:PERMn simply
by concatenating the graphs as described in Chapter 1). On the other hand, it follows by the
known lower bound on the size of nondeterministic read-oncebranching programs for PERM
by Jukna [60] and Krause, Meinel, and Waack [68] that 2PERM isneither contained in NP-BP1
nor in coNP-BP1, and thus, especially, 2PERM62 NP-OBDD[coNP-OBDD.

Part (2): This follows from the fact that, e. g.,

ISA 2 (NP-OBDD\ coNP-OBDD)nBPP-OBDD:
Part (3): The first part is a consequence of Part (2), the second part follows from the fact that

PERM2 coRP-OBDDnNP-BP1:
Part (4): The first part follows from the above result for 2PERM, the second part from the result
for ISA and the fact that NP-OBDD� PP-OBDD. An explicit construction of a randomized
OBDD for HWB with unbounded error has been given in [19]. (We remark that, recently,
Ablayev, Karpinski, and Mubarakzjanov [6] have observed that these relations also hold for
some further functions.)

Part (5): This has been shown by Karpinski and Mubarakzjanov [64]. 2
These results are illustrated in Figure 3.1, together with the simple observations concerning the
classes NP-OBDD and coNP-OBDD from Section 2.1. Again, solid arrows indicate inclusions,
and slashes through the lines proper inclusions. Broken arrows represent non-inclusion.

With respect to the relation of the complexity classes for OBDDs defined in Chapter 2, only few
open problems remain. The most important ones are probably the following.

Open Problems:

(1) Does it hold that ZPP-OBDD= RP-OBDD\ coRP-OBDD?

(2) Prove an exponential lower bound on the size of randomized OBDDs with unbounded error
for an explicitly defined function without using a restriction on the number of probabilistic
variables as in Theorem 3.16.

66

BPP-OBDD

NP-OBDD\ coNP-OBDD

NP-OBDD coNP-OBDD

NP-OBDD[coNP-OBDD

RP-OBDD

RP-OBDD\ coRP-OBDD

PP-OBDD

P-OBDD= ZPP-OBDD

Figure 3.1: The complexity landscape for OBDDs.

67

68

Chapter 4

On the Resource Randomness

In the preceding chapter, we have investigated the questionwhether or not randomization helps
to decrease the size of OBDDs for a given function from exponential to polynomial order of
growth in the input size compared to the deterministic case.Apart from this “all-or-nothing”
scenario, it is interesting to ask how the size changes if more or less probabilistic variables
are available. This quantitative question can be investigated for the randomized variants of the
different types of restricted branching programs.

In Section 4.1, we present some answers for the models with bounded (one-sided or two-sided)
worst-case error. For randomized OBDDs, randomized read-k-times branching programs and
randomized general branching programs (and even most othertypes) with bounded error, it
turns out that we cannot make use of more than logarithmically many probabilistic variables in
the input size. In the case of randomized OBDDs, we can prove that this bound is asymptotically
sharp: we present a function which has randomized OBDDs of polynomial size only if at least
logarithmically many probabilistic variables are available.

In Section 4.2, we look at the influence of the resource randomness on the size of branching
programs from another point of view. As we have already remarked in connection with the
definition of randomized branching programs, the number of allowed read accesses to a single
probabilistic variable seems to be an important parameter of the randomized model. Here we
will ask what happens if we drop the restriction that probabilistic variables may be accessed
only once. It turns out that this does not really change the models with bounded error. Yet, the
situation for the models with weak error guarantee is different. For nondeterministic branching
programs or randomized branching programs with unbounded error, the randomized model with
multiple read access to the probabilistic variables is morepowerful than the usual one under the
assumption that NL=Poly 6= NP=Poly and PLP=Poly 6= PP=Poly, resp. For randomized
OBDDs and randomized read-k-times branching programs, we can even prove (without addi-
tional assumptions) that the models with weak error guarantee already become more powerful
if the probabilistic variables may be read twice.

69

4.1 A Normal Form for Randomized Branching Programs

The examples of randomized OBDDs of polynomial size which wehave constructed in the
last chapter all have the same structure. They always start with a tree of probabilistic nodes
by which one of polynomial many deterministic “subprograms” is chosen at random. Also the
nondeterministic OBDDs in the proof of Lemma 2.13 in Section2.1 have this structure. Hence,
we see that a number of probabilistic variables logarithmicin the number of subprograms is
sufficient in these cases.

Does this paradigm for the construction of randomized branching programs cover all reasonable
applications of randomization? Or are there functions for which it is helpful to “intermingle”
usual nodes and probabilistic nodes? We prove here that the number of probabilistic variables
can always be reduced toO(log n) while the size only increases by a linear factor, wheren
is the number of usual (non-probabilistic) variables. Furthermore, we can always assume that
a randomized branching program can be partitioned into a tree of probabilistic nodes at the
top and a completely deterministic part at the bottom. This result holds for general branching
programs as well as for all restricted variants which we consider in this work.

We prove this by adapting the proof of the following closely related result from communication
complexity theory. Newman [80] has shown that a randomized communication protocol with
public coins for an arbitrary functionf : f0; 1gn�f0; 1gn ! f0; 1g can be turned into a protocol
with private coins such that the complexity increases at most by an additional term ofO(log n)
and at mostO(log n) coins are used by the new protocol. Additionally, one has to pay with a
slight increase of the error probability for this transformation.

In a similar way, we can show that a randomized branching programG with n usual variables
and an arbitrary number of probabilistic variables can be turned into a branching program with
onlyO(log n) probabilistic variables and sizeO(njGj) (with a slight increase of the error prob-
ability). This even holds if we do not require that the probabilistic variables are read at most
once on each path from the source to the sinks in the original branching program.

Theorem 4.1 (Normal Form for Randomized BPs):Let f : f0; 1gn ! f0; 1g be a function
defined on the variable setX, jXj = n. LetG be a randomized branching program without
read-once restriction on the probabilistic variables which representsf with two-sided error at
most", 0 � " < 1=2. LetG contain the variables fromX as usual variables and arbitrarily
many probabilistic variables. Then it holds for every� with 0 < � < 1=2 � " that there is a
randomized branching programG0 (with read-once restriction on the probabilistic variables)
which representsf with two-sided error at most"+ � and

(1) G0 contains at mostdlog n� 2 log � + 1e probabilistic variables;

(2) all probabilistic variables are tested in a tree at the top ofG0, and the sequence of tests of
these variables on each path from the source to a sink is consistent with some fixed variable
ordering;

(3) jG0j = O ((n=�2)jGj).
Proof: Our proof is based on a simplified version of Newman’s original proof from the mono-
graph of Kushilevitz and Nisan [70].

70

Let r be the number of probabilistic variables inG. For an assignmenta 2 f0; 1gn to the usual
variables and an assignmentb 2 f0; 1gr to the probabilistic variables ofG defineZ(a; b) := (1; if G(a; b) 6= f(a);0; if G(a; b) = f(a);
whereG(a; b) is the value computed byG according to the deterministic semantics of branching
programs on the assignment obtained by concatenatinga andb.
If b 2 f0; 1gr is chosen randomly according to the uniform distribution and a 2 f0; 1gn is a
fixed input,Z(a; b) is a random variable withE[Z(a; b)] = Xb2f0;1grZ(a; b) � 2�r � ";
according to the error bound ofG. LetGb be the deterministic branching program which is ob-
tained fromG by substitutingb 2 f0; 1gr for the probabilistic variables (obviouslyjGbj � jGj).
For t = 2l andb1; : : : ; bt 2 f0; 1gr defineGb1;:::;bt as the branching program that starts with
a tree on probabilistic variablesz1; : : : ; zl at the top by which one of the branching programsGb1 ; : : : ; Gbt at its leaves is selected. (More precisely, letGbi be selected ifj(zl; zl�1; : : : ; z1)j2 =i.)
We show by the probabilistic method that for an appropriately chosent = 2l there are vectorsb1; : : : ; bt 2 f0; 1gr such thatGb1;:::;bt computes the functionf with error at most" + � (as a
randomized branching program with probabilistic variables z1; : : : ; zl).
First, letl and thust = 2l be arbitrarily chosen. We consider vectorsb1; : : : ; bt which are chosen
independently according to the uniform distribution onf0; 1gr. Furthermore, leta 2 f0; 1gn be
an arbitrary input. We show that the probability that PrfGb1;:::;bt(a) 6= f(a)g is larger than the
error" by more than� is exponentially small. From the definitions it follows that

PrfGb1;:::;bt(a) 6= f(a)g = tXi=1 [Gbi(a) 6= f(a)] � Prfj(zl; : : : ; z1)j2 = ig = 1t tXi=1 Z(a; bi):
SinceE[Z(a; b)] � " (b uniformly chosen fromf0; 1gr), we obtain by the Chernoff bound

Pr

(1t tXi=1 Z(a; bi)� "! > �) � 2 exp�� �2t4"(1� ")� � 2 exp(��2t):
Now we fix l := dlog n� 2 log � + 1e. Then we havet = 2l � 2n=�2, and2 exp(��2t) � 2 exp(�2n) < 2�n:
Thus, the probability that for randomly chosen vectorsb1; : : : ; bt there isanya 2 f0; 1gn for
which the error ofGb1;:::;bt deviates by more than� from " is smaller than 1. Hence, there is a
choice ofb1; : : : ; bt, such that

PrfGb1;:::;bt(a) 6= f(a)g � "+ �
for all a 2 f0; 1gn. 2

71

We remark some important consequences which follow immediately from the proof of this
theorem.

First, it is easy to see that analogous versions of this theorem hold for all restricted variants of
branching programs where the operation “replacement of variables by constants” only decreases
the size of the graph, which is the case for read-k-times BPs and OBDDs. There is also a version
of this theorem for one-sided error and for zero error.

As a by-product, we have proven that randomized branching programs with bounded error
where the requirement that the probabilistic variables aretested at most once on each path is
not fulfilled can also be converted into the normal form, for which the read-once property is
fulfilled. It is interesting whether this still holds if we consider the models with only weak error
guarantees, i. e., nondeterministic branching programs orrandomized branching programs with
unbounded error. We will be concerned with this question in the next section.

Finally, we also have obtained that an arbitrary randomizedOBDDs can be converted into
a randomized OBDD which fulfills the ordering restriction according to an ordering on all
variables and uses only logarithmically many probabilistic variables, as announced in Chapter 2:

Corollary 4.2: LetG be a randomized OBDD representing ann-variable functionf with one-
sided or two-sided error (bounded by a constant). Then thereis a completely ordered OBDDG0 representingf with the same error guarantee, at mostO(log n) probabilistic variables, andjG0j = Poly(jGj).
The claim on the error probability of the completely orderedrandomized OBDD follows by
applying the probability amplification technique of Lemma 2.34.

In the remainder of this section, we show that the bound ofO(log n) on the number of prob-
abilistic variables achieved by Theorem 4.1 is essentiallytight for randomized OBDDs. We
prove that the shifted equality function introduced in the last chapter has randomized OBDDs
of polynomial size using at mostO(log n) probabilistic variables, but has superpolynomial size
if only o(log n) probabilistic variables are available.

Theorem 4.3:

(1) The complement ofSEQn is representable by randomized OBDDs of polynomial size which
have one-sided error1=4 and use at mostO(logN) probabilistic variables, whereN :=2n+ l, l = log n, is the input size ofSEQn.

(2) For every randomized OBDDG with r probabilistic variables which represents the com-
plement ofSEQn with two-sided error at most", where" is a constant smaller than1=2, it
holds thatjGj =
(2n=2r):
This bound is superpolynomial in the input sizeN of SEQn if r � logN�(1+") loglogN ,
where" > 0 is an arbitrarily small constant.

72

Proof: Part (1): This has already been shown in the last chapter (Theorem 3.4).

Part (2): For the proof of the lower bound, we use the technique introduced in the last chapter.
It is not hard to prove that the equality function from communication complexity theory is
reducible to a suitable restriction of SEQn (in the sense of the last chapter). It can be shown
that for every variable ordering�, there is ani 2 f0; : : : ; n � 1g and a partition parameterp
such that EQbn=2c is reducible to the partitioned version(SEQin)�;p of SEQin. (Essentially, this
follows from a simple application of the pigeonhole principle. See [70] for details.)

It remains to provide an appropriate lower bound on the randomized communication complexity
of EQbn=2c where the number of random bits is restricted. LetR1";r(f) denote the minimal
complexity of a randomized one-way protocol for an arbitrary functionf with at mostr random
bits. Canetti and Goldreich [33] have shown that for an arbitrary functionf it holds thatR1";r(f) � D1(f) � (1 + 2" � 2r)�1:
This follows from the fact that a deterministic protocol forf can be constructed by “simulating”
a given randomized protocol withr random bits for a sufficient number of assignments to the
random bits and then determining the output by majority vote. SinceD1(EQbn=2c) = bn=2c, we
get R1";r(EQbn=2c) � bn=2c � (1 + 2" � 2r)�1;
for all " < 1=2. Hence, the claimed lower bound follows by Lemma 3.9 from thelast chapter.2
4.2 Multiple Access to Probabilistic Variables

In this section, we are concerned with the seemingly “more powerful” type of randomized
branching programs where the probabilistic variables are not required to obey the read-once re-
striction. Let us call this type “unrestricted randomized branching programs” here. We prepend
the letter “U” to the names of the usual complexity classes toobtain names for the respective
classes for this new model. From Theorem 4.1 in the last section, we immediately get:

Corollary 4.4:

(1) UBPP-BP= BPP-BP, UBPP-OBDD= BPP-OBDD;

(2) UBPP-BPk = BPPk-BP.

For general branching programs and OBDDs (Part (1)), we evenhave UBPP"-BP = BPP"-BP
and UBPP"-OBDD = BPP"-OBDD, resp., for all constant" 2 [0; 1=2), since we can apply the
probability amplification techniques presented in the lastsection. For read-k-times branching
programs, Theorem 4.1 yields

UBPP"-BPk � BPP"+�-BPk;
73

for all � : N ! �0; 12 � "� with �(n)�1 = Poly(n). By choosing� := (1=2 � ")=2, we get
Part (2). It is not clear whether UBPP"-BPk = BPP"-BPk. Taking already a result of the next
chapter on an exponential gap between the size of read-once branching programs for different
worst-case errors into account, we conjecture that this is not the case.

The above statements only hold for the case of bounded error (one-sided or two-sided). In the
following, we show why it is reasonable to believe that the randomized models with weak error
guarantee, i. e., nondeterministic branching programs andrandomized branching programs with
unbounded error, behave completely different.

First, we consider randomized general branching programs.As we have seen in Section 2.1, the
class of functions with nondeterministic branching programs of polynomial size (in our usual
definitions) is identical to NL=Poly. Meinel [74] has already shown the following.

Theorem 4.5 (Meinel): UNP-BP= NP=Poly.

Proof: The proof is done by showing that UNP-BP is equal to the classCnd of functions with
nondeterministic circuits of polynomial size (a nondeterministic circuit for a functionf is a
probabilistic circuit withr probabilistic variables that(2�r; 0)-computes the functionf). By
the well-known simulations of circuits by nondeterministic Turing machines and vice versa it
follows that the classCnd is equal to NP=Poly.

The fact that UNP-BP� Cnd follows immediately from the simulation of branching programs
by circuits described in Chapter 1 (Theorem 1.7). It remainsto show thatCnd � UNP-BP. This
is more difficult than the opposite direction, since we do notknow how to simulate circuits by
branching programs such that the size does not blow up. But wecan apply the simple simulation
of formulas over the basisf^;_;:g by branching programs described in Section 1.2.

LetC be a nondeterministic circuit computing a functionf on variablesx1; : : : ; xn, with prob-
abilistic variablesz1; : : : ; zr. The simulation ofC is based on the following idea: We guess the
values at the outputs of all gates and afterwards check whether these guesses are consistent with
the given input and the structure ofC. W. l. o. g. we may assume that “_” and “^” are the only
types of binary gates inC. Let c be the number of these gates.

We construct a nondeterministic branching programG for f using unrestricted nondeterminism
as follows. Introduce additional probabilistic variablesg1; : : : ; gc, one for each binary gate.
Now consider theith binary gate, with type!i 2 f_;^g and inputsI1i andI2i , whereI1i andI2i
may be other gates or input variables ofC in negated or unnegated form. We describe this gate
by the formulagi � !i(I1i ; I2i) of depth1 (I1i andI2i are replaced by literals). Letgc be the gate
computing the functionf at its output. The branching programG simulates the formulagc ^ (g1 � !1(I11 ; I21)) ^ : : : ^ (gc � !c(I1c ; I2c)) =gc ^ �(g1 ^ !1(I11 ; I21)) _ (g1 ^ !1(I11 ; I21))� ^ : : : ^ �(gc ^ !c(I1c ; I2c)) _ (gc ^ !c(I1c ; I2c))�
on the variablesg1; : : : ; gc, x1; : : : ; xn, andz1; : : : ; zr as described in Chapter 1. This branching
programG has size at most6c + 3. 2

74

Repeating tests enables us to implicitly store nondeterministically guessed bits in the graph,
without explicitly using memory space. The above result shows that this may considerably
increase the power of the nondeterministic model. For randomized branching programs with
unbounded error, a similar phenomenon occurs. Remember that we have shown in Chapter 2
that PP-BP= PLP=Poly.

Theorem 4.6: UPP-BP= PP=Poly.

Proof: This follows essentially by the same idea as in the proof of Theorem 4.5 above. The
interesting part is to show that PP=Poly� UPP-BP.

For this, we start with a sequence of probabilistic circuits(Cn)n2N with unbounded error which
compute a sequence of functions(fn)n2N 2 PP=Poly. Again, we describeCn by a formula'
over the input variablesx1; : : : ; xn andz1; : : : ; zr of Cn (wherez1; : : : ; zr are the probabilistic
ones), and additional variablesg1; : : : ; gc, one for each gate of the typef^;_g. It holds that

Pra2f0;1gcf'jg1=a1;:::;gc=ac(x; z) = 1g = (2�c; if C(x; z) = 1; and0; if C(x; z) = 0;

wherea = (a1; : : : ; ac) is chosen uniformly at random fromf0; 1gc. Now we introduce another
setz01; : : : ; z0c+1 of probabilistic variables and replace' by the formula'0 := (z01 ^ :(z02z03 ^ : : : ^ z0c+1)) _ ':
For a random choice of the values for theg- and thez0-variables, it holds that

Pra2f0;1gc; b2f0;1gc+1f'0jgi=ai; z0j=bj(x; z) = C(x; z)g = 12 + 2�(c+1):
From this and the fact thatCn computesfn with an error probability smaller than1=2 with
respect to thez-variables, it follows that a randomized branching programfor fn simulating'0
has an error probability smaller than1=2 with respect to thez-, g-, andz0-variables. Such a
branching program needs only7c + 4 nodes according to the results of Chapter 1. 2
Hence, we have obtained that the unrestricted model is really more powerful in the case of non-
deterministic computation or computation with unbounded error if we assume that NL=Poly 6=
NP=Poly and PLP=Poly 6= PP=Poly, resp.

We add that the simulations used for proving that NP=Poly � UNP-BP and PP=Poly �
UPP-BP, resp., already work if the probabilistic variablesare allowed to be read twice. Hence,
it is sufficient to allowtwo read accesses to each probabilistic variable, this model isalready as
powerful as the most general model without any restriction on the probabilistic variables (for
the nondeterministic case, this has already been remarked by Meinel [74]).

Now we turn to the restricted types of branching programs. Here, we only consider randomized
OBDDs and randomized read-k-times branching programs. By using an idea of Meinel [74],
we first show that also in this case it is sufficient to allow that the probabilistic variables are read
at most twice.

75

Lemma 4.7: LetG be a randomized OBDD (read-k-times branching program) without read-
once restriction on the probabilistic variables which nondeterministically represents a func-
tion f (represents a functionf with unbounded error). Letr be the number of probabilistic
variables ofG and let each of these variables be read at mostm times inG. Then there is
a randomized branching programG0 of the same type asG which also nondeterministically
representsf (representsf with unbounded error) and hasmr randomized variables which are
read at most twice and which has sizejG0j � jGj + r(2m� 1).
Proof: Let z1; : : : ; zr be the probabilistic variables ofG. Introduce new probabilistic variableszji , where1 � i � r and1 � j � m. Let G0 be a copy ofG. Consider a nodev of G
labeled byzi. Let j be the maximal number of occurrences ofzi on paths reachingv in G. Then
replace the labelzi of the copy ofv in G0 by zj+1i . By doing this for all probabilistic nodes
in G0, we obtain a randomized branching program where each probabilistic variable is read at
most once. Now we have only to add a subprogram which checks whetherz1i = � � � = zmi for
all i = 1; : : : ; r. This can obviously be done with the claimed number of nodes.The whole
randomized branching programG00 has the same number of accepting paths for each input asG, hence, it represents the same function in the nondeterministic case as well as in the case
of unbounded error. Since the structure ofG0 is identical to the original branching program,
it is also clear that this construction works for most types of restricted branching programs,
including OBDDs and read-k-times branching programs. 2
For nondeterministic OBDDs and nondeterministic read-k-times branching programs, we can
even prove that the model with multiple read accesses to the probabilistic variables is more pow-
erful than our usual one (without additional assumptions onthe relation of complexity classes).
We again use the permutation matrix function as an example.

Theorem 4.8: PERM2 UNP-OBDD.

Proof: The function PERM can be computed by a deterministic read-twice branching program
of polynomial size by first checking the rows and then the columns of the input matrix. The
idea for the following construction is to use probabilisticvariables to “make a copy” of all usual
variables of PERM in order to be able to access them twice.

We construct a randomized OBDDG with multiple read access to the probabilistic variables
which uses the input variablesX = (xij)1�i;j�n of PERMn and probabilistic variablesZ =(zij)1�i;j�n. We choose the “row-wise” variable ordering forG (the “column-wise” ordering
works as well).

The OBDDG consists of two parts. In the first part, the OBDD runs throughthe rows ofX
and checks whether each variablexij has the same value as its corresponding, probabilistic
variablezij. Simultaneously, it checks whether each row ofX contains exactly one entry equal
to 1. Figure 4.1 shows the construction for a single row (missingedges lead to the0-sink). If
a nonequivalent pair of variablesxij andzij is found or if a row contains zero or at least two
ones, the0-sink is reached. Otherwise, the OBDD continues with the next row, until all rows
of X andZ have been checked. The second part of the OBDD simply verifieswhether each

76

z1,1 z1,1

x1,10 1

10

x1,2

1,2z 1,2z

x1,2

1,2z

0 1 0

10 0

x1,n

z1,n z1,n z1,n

x1,n

0 1

0 1

10
z1,3

0

0
z

x1,3

1,3

0 1 0

10 0

z1,3

x1,3

Figure 4.1: Sub-OBDD evaluating a single row in the randomized OBDD for PERMn.

77

column ofZ contains exactly one entry equal to1. The1-sink is reached if this is the case, and
the0-sink otherwise.

Let G(X;Z) be the output ofG for inputsX andZ. It holds thatG(X;Z) = 1 if and only if
PERMn(X) = 1 andZ = X. Hence,G nondeterministically computes PERMn. 2
Together with the fact that PERM62 NP-BP1, we have:

Corollary 4.9: NP-OBDD$ UNP-OBDD, andNP-BP1$ UNP-BP1.

For the case of read-k-times branching programs, an analogous statement can be shown us-
ing the result of Thathachar [109]. He has presented a sequence of functions(fn)n2N with(fn) 2 P-BP(k+1)nNP-BPk (see the next chapter for a discussion of this result and a defini-
tion of the function). Also for this function, a nondeterministic OBDD with at most two read
accesses to the probabilistic variables can be constructed. We do not describe this here, since
the construction is completely analogous to the above one for PERM.

The case of randomized restricted branching programs with unbounded error remains open so
far, since we do not know how superpolynomial lower bounds even for the most restricted
model, randomized OBDDs, can be proven.

4.3 Summary

The results presented in this chapter have revealed that themodels of randomized OBDDs,
randomized read-k-times BPs, and randomized general branching programs withbounded error
(one-sided or two-sided) are robust with respect to different restrictions and extensions of the
available type of randomness compared to the basic definition of Chapter 2. By this, we mean
that the programs of one type can be converted into a different type with an at most polynomial
increase of the size.

The results concerning the number of read accesses to the probabilistic variables already in-
dicate that the models with weak error guarantee, i. e., nondeterministic branching programs
and randomized branching programs with unbounded error (including the restricted variants,
OBDDs and read-k-times BPs) behave differently from the models with boundederror. It re-
mains open to analyze the dependence of the size of nondeterministic branching programs and
randomized branching programs with unbounded error on the number of probabilistic variables.

It is also open to provide an example where the size of randomized OBDDs (or even more gen-
eral types of branching programs) with unbounded error and multiple access to the probabilistic
variables is exponentially smaller than the size for the usual model with read-once restriction.

78

Chapter 5

Upper and Lower Bounds for Randomized
Read-k-Times Branching Programs

In this chapter, we prove complexity theoretical results for randomized read-k-times branching
programs. The main part of the chapter is devoted to the task of proving exponential lower
bounds for this class of models. All known lower bound results for nondeterministic and ran-
domized read-k-times branching programs are based on the same technique, which we call
“technique of generalized rectangles” here. This technique is described in Section 5.1.

In Section 5.2 and Section 5.3, we present results for read-once branching programs. We are
first concerned with the relation between the analogs of the classes NP and BPP for read-once
branching programs (Section 5.2). We apply the technique ofgeneralized rectangles to prove
that the classes NP-BP1 and BPP-BP1 are incomparable if the error allowed for the randomized
model is smaller than1=4. Furthermore, we obtain an exponential gap between the sizes of
randomized read-once branching programs for different constant worst-case error probabilities.
This result shows that there is no general probability amplification technique for read-once
branching programs analogous to that for randomized OBDDs or general branching programs
(see Chapter 2).

After this, we turn to the relation between the classes P-BP1and ZPP-BP1 (Section 5.3).
We prove a polynomial upper bound on the size of randomized read-once branching pro-
grams with zero error for thek-stable function ADDR from Section 3.2, which shows that
P-BP1$ ZPP-BP1. This is another fact which underlines the difference between read-once
branching programs and OBDDs, since it also known that P-OBDD = ZPP-OBDD (see Sec-
tion 3.5).

In the remaining sections, we will be concerned with the moregeneral case of read-k-times
branching programs wherek may be larger than1. By applying the technique of generalized
rectangles in its general form, we prove a lower bound on the size of randomized read-k-times
branching programs for a function of Borodin, Razborov, andSmolensky which is exponential
for all k < c log n, c an appropriate constant (Section 5.4). In Section 5.5, we complete the pre-
sentation of lower bounds for randomized read-k-times branching programs by reporting some

79

details of the recent results of Thathachar, who applied thetechnique of generalized rectangles
to solve the problem to separate the so-called read-k-times hierarchy.

5.1 The Technique of Generalized Rectangles

The technique of generalized rectangles has first been described by Borodin, Razborov, and
Smolensky [27] in a special version for the case of nondeterministic read-k-times branching
programs. Okolnishnikova’s lower bound technique [83] fordeterministic read-k-times branch-
ing programs is also closely related.

Before we present the technique, we first define a simple extension to the model of branching
programs in the next subsection. We will directly prove all statements concerning the lower
bound technique for so-calleds-way branching programs, which are branching programs withs-valued variables instead of Boolean ones. In Subsection 5.1.2, we then introduce the tech-
nique of generalized rectangles by describing how it works for the case of deterministic and
nondeterministic read-k-times branching programs. After this, we show how the ideascan be
applied to prove also lower bounds for randomized read-k-times branching programs (Subsec-
tion 5.1.3).

5.1.1 Branching Programs with Nonboolean Variables

As Borodin, Razborov, and Smolensky [27], we will describe the proof technique for the fol-
lowing extended type of branching programs (which also has been considered by Borodin and
Cook [24] and by Alon and Maass [10] before).

Definition 5.1: Let s � 2 be an integer. Ans-way branching programon the variable setfx1; : : : ; xng is a directed acyclic multigraph which has one source and twosinks, the latter
labeled by the constants0 and1. Each non-sink node is labeled by a variablexi and has exactlys outgoing edges labeled by the values from the setS := f0; : : : ; s � 1g; each value occurs
exactly once. The semantics of ans-way branching program is an obvious generalization of
the semantics of usual branching programs (which are 2-way branching programs in the new
terminology).

Restricted types ofs-way branching programs, like read-k-timess-way BPs, are defined in the
obvious way. We define arandomizeds-way branching programby extending Definition 2.18,
with the following technical restriction: a randomizeds-way branching program is syntactically
ans-way branching program, but the probabilistic variables may only have the values0 and1
as in a usual, randomized 2-way branching program. This simplifies the presentation, but is no
real restriction compared to the model where the probabilistic variables may have more values.
The rest of Definition 2.18 is adapted in a straightforward way to the case ofs-valued variables.

Many of the facts proven so far for randomized 2-way branching programs also hold for the gen-
eralized type. Here, we will only need the probability amplification technique from Lemma 2.24,
which is proven for the extended model in the same way as for the 2-way model.

80

5.1.2 Lower Bounds for Deterministic and Nondeterministic
Read-k-Times Branching Programs

In order to show how the technique of generalized rectanglesis related to known proof tech-
niques, we first restrict ourselves to the simple casek = 1 and Boolean variables, i. e., to usual
deterministic read-once branching programs. After this, we describe the extended approach for
deterministic and nondeterministic read-k-timess-way branching programs.

Let us consider the reduction technique for OBDDs from Chapter 3 as a starting point. The
basic idea of the reduction technique is to use an OBDD for a functionf to construct a one-way
communication protocol for a partitioned version off , where the partition of the variables for
the two players is defined by cutting the variable ordering ofthe OBDD, written down as a list,
into two parts. It is obvious that the original reduction technique cannot work for read-once
branching programs. Although each variable is still read atmost once on each path like in an
OBDD, the variables may now appear in different orderings ondifferent paths. Hence, there is
no partition of the variables which works for the whole graph, and we no longer have a simple
relation to communication complexity.

The idea to overcome this problem is to work with a separate partition of the variables for each
path and afterwards “bundle” paths together which use the same partition. This approach leads
to a simple decomposition formula for the function represented by the read-once branching
program which can again be used to prove lower bounds on the size.

In the following, we describe this technique in more detail.For the presentation, we use ideas
of Okolnishnikova [83]. It turns out to be easier to decompose a given read-once branching
program if it has the following special structure.

Definition 5.2: A read-once branching program on the variablesx1; : : : ; xn is calledregular if
for each nodev the same set of variables is tested on all paths from the source tov. Furthermore,
it is required that on each path from the source to the sinks all n variables are tested.

It is easy to see that an arbitrary read-once branching programG can be converted into a regular
read-once branching programG0 with sizejG0j � 2njGj by inserting dummy tests.

We introduce the following additional notation.

Definition 5.3: LetG be an arbitrary branching program on the variable setX = fx1; : : : ; xng.
Let v, w be nodes ofG.

(1) DefineX(v; w) � X as the set of all variables tested on paths fromv to w, including the
variable atv and excluding the variable atw.

(2) For an arbitrary assignmenta 2 f0; 1gn to the variables ofG, definefv;w(a) = 1 iff there
is a path fromv tow which is consistent with the assignmenta (i. e., for each nodeu on the
path labeled by a variablexi, the path runs through theai-edge starting atu).

Notice that a functionfv;w only depends on variables fromX(v; w), more precisely, it does not
essentially depend on variables fromXnX(v; w).

81

10

X1 = X(v0; v1)L1
L0
L2v1v2

v0
X2 = X(v1; v2)

Figure 5.1: Paths belonging to the functionfv0;v1 ^ fv1;v2 .
Using the above definition, we can now describe the structureof a regular read-once branching
program in a simple way. LetG be a regular read-once branching program on the variable setX = fx1; : : : ; xng, and letf : f0; 1gn ! f0; 1g be the function represented byG. First, we
again choose a cut inG similar to the reduction technique. Define the cut as the set of all nodes
reached afterp tests, wherep 2 f1; : : : ; n� 1g is a parameter fixed in advance. Let us call this
set of nodesL1. Furthermore, defineL0 andL2 as the “trivial” cuts containing only the source
and the sinks ofG, resp.

Let us consider an arbitrary sequence of nodes(v0; v1; v2) 2 L0 � L1 � L2. SinceG is regular,
it holds that the same set of variables is tested on all paths from v0 to v1, namelyX(v0; v1). It
also holds that on each path fromv1 to v2 exactly the variables inX(v1; v2) = XnX(v0; v1)
are tested. Hence, we again have a partition of the variablesas in an OBDD. The important
difference is that, in the case of read-once branching programs, the partition may depend on the
chosen “intermediate” nodev1 2 L1. By our definition, it holds that a computation path for a
given complete assignmenta to all variables ofG runs to the nodesv0, v1, andv2 if and only iffv0;v1(a) = 1 andfv1;v2(a) = 1. The functionfv0;v1 ^ fv1;v2 hence represents the computation
paths running through the given sequence(v0; v1; v2) of nodes; these paths are symbolized by
the shaded area in Figure 5.1.

In order to obtain a characterization of the functionf represented byG, we observe thatf is
the disjunction of the functionsfv0;v1 ^ fv1;v2 belonging to sequences(v0; v1; v2) wherev2 is the1-sink ofG. Let (vi0; vi1; vi2) 2 L0 � L1 � L2, wherei = 1; : : : ; t, denote all different sequences
of nodes where the last node is the1-sink. Then it holds thatf = M1�i�t fvi0;vi1 ^ fvi1;vi2 : (5.1)

We have an EXOR-sum here since no computation path can run through more than one of the
sequences of nodes. Furthermore, it holds thatt � jL1j � jGj:

82

In order to derive a lower bound onjGj, we are thus interested in a lower bound on the number
of implicantsfvi0;vi1^fvi1;vi2 of f in a decomposition according to Equation (5.1). More generally,
we consider functionsf1 ^ f2, wheref1 depends on the variables from a setX1 with jX1j = p,f2 depends on the remaining variablesX2 := XnX1, and for which it holds thatf1 ^ f2 � f
(i. e.,(f1 ^ f2)(x) = 1 impliesf(x) = 1).

Using the terminology from communication complexity theory introduced in Chapter 3, we
have just shown that the given read-once branching programG defines a partition of the set of1-inputs off into combinatorial rectangles with respect to different partitions of the variables.
By definingRi := (fvi0;vi1 ^ fvi1;vi2)�1(1), for i = 1; : : : ; t, we can rewrite Equation (5.1) asf�1(1) = [1�i�tRi;
where it holds thatRi \ Rj = ; if i 6= j. The setsRi � f0; 1gn are obviously combinatorial
rectangles according to Definition 3.1.

We emphasize again that the partitions of the variables may vary from rectangle to rectangle.
This is the fundamental difference to the situation for communication protocols with a fixed
partition (see Theorem 3.2) and to the reduction technique for OBDDs. If we apply the above
considerations to an OBDDG instead of a read-once branching program, the partitions ofthe
variables will in fact be the same for all rectangles. In thiscase, the above results turn out to be
simply a “low level” formulation of the reduction technique.

Now we turn to the more general case of deterministic read-k-timess-way branching programs.
The new idea for the general case is to consider more than one cut through the graph. This
can also be seen as a generalization of the reduction technique forkOBDDs from Chapter 3.
As a consequence, we have to work with a generalized type of combinatorial rectangles (hence
the name of the proof technique). The following definition isdue to Borodin, Razborov, and
Smolensky [27] (the name “(k; p)-rectangle” has been introduced by Jukna [61]).

Here and in the following, we work with variables which can take values from the setS =f0; : : : ; s� 1g instead of Boolean ones.

Definition 5.4 ((k; p)-Rectangle): LetX be a set of variables,n := jXj. Let k be an integer
and1 � p � n. Let setsX1; : : : ; Xkp � X be given with

(1) X1 [� � � [Xkp = X andjXij � dn=pe, for i = 1; : : : ; kp;
(2) each variable fromX appears in at mostk of the setsXi.
Let R � Sn be given, and letfR : Sn ! f0; 1g be the characteristic function ofR (i. e.,fR(x) = 1 iff x 2 R). If there are functionsfi : Sn ! f0; 1g, i = 1; : : : ; kp, wherefi does
not essentially depend on variables fromXnXi, such thatfR = f1 ^ � � � ^ fkp, then we callR
a (k; p)-rectangle inSn with respect to the setsX1; : : : ; Xkp (or simply a “rectangle” when the
parameters are clear from the context).

Let f : Sn ! f0; 1g be an arbitrary function. A(k; p)-rectangleR is calledf -monochromatic
if R � f�1(0) orR � f�1(1).

83

For the following, it will sometimes be convenient to switchbetween the representation of(k; p)-rectangles as sets and as characteristic functions. We will use the same name for the set
as well as for its characteristic function.

The numberk in the above definition will correspond to the maximal numberof read accesses to
the variables in the considered branching programs, whereas the parameterp controls the num-
ber of parts in which the branching program will be decomposed. By lettingk = 1 andp = 2,
one obtains a simple combinatorial rectangle with respect to abalancedpartition (X1; X2) of
the variable setX, i. e., a partition withjjX1j � jX2jj � 1. We will use the name2-dimensional
rectangleto designate this special case of Definition 5.4 (since also(k; p)-rectangles are “com-
binatorial” and hence the traditional name is ambiguous).

In the following, we describe the structure of read-k-times branching programs similar to the
decomposition formula for read-once branching programs which we have seen above.

Theorem 5.5 (Technique of Generalized Rectangles for Det. Read-k-Times BPs):
Let G be a deterministic read-k-timess-way BP for a functionf : Sn ! f0; 1g defined on
the variable setX, n := jXj. Let p 2 f1; : : : ; ng. ThenG defines a partition ofSn into
at most(sjGj)kp f -monochromatic(k; p)-rectangles (where the setsX1; : : : ; Xkp according to
Definition 5.4 may be different for each rectangle).

This theorem can be directly used to prove lower bounds on thesize of deterministic read-k-
times branching programs if the number off -monochromatic(k; p)-rectangles in a partition of
the input set can be bounded from below. We do not prove such bounds here, but we will need
the theorem later on in the context of randomized read-k-times branching programs.

Proof: Borodin, Razborov, and Smolensky [27] have proven a similarresult for switching-
and-rectifier networks (i. e., the nondeterministic case).In the following, we adapt their proof
(Theorem 1 in [27]) to the deterministic setting and to usualbranching programs.

Let X := fx1; : : : ; xng be the set of all variables inG. As above, letX(v; w) denote the set
of variables on paths between two nodesv andw (including the variable atv and excluding
the variable atw). Consider an arbitrary pathP in G from the source to one of the sinks. It is
easy to see that there arel uniquely determined edgese = (wi; w0i), i = 1; : : : ; l onP with the
following properties:

(1) For eachi, 1 � i � l + 1, jX(w0i�1; wi)j < n=p;
(2) for eachi, 1 � i � l, jX(w0i�1; w0i)j � n=p;
wherew00 denotes the source ofG andwl+1 the sink reached viaP . A sequencee1; : : : ; el of
edges of this kind is called atrace (ofP) in [27].

We are going to map the pathP to a(k; p)-rectangle using the trace ofP . For i = 1; : : : ; l we
define the setsXi := X(w0i�1; wi) [fvar(wi)g;
where var(v) denotes the variable tested at an arbitrary nodev in G. Furthermore, letXl+1 :=X(w0l; wl+1).

84

Claim: It holds that

(1) each variable fromX is contained it at mostk of the setsXi, i = 1; : : : ; l + 1;

(2) jXij � dn=pe for i = 1; : : : ; l + 1;

(3) l = kp andXl+1 = ;, or l � kp� 1 andXl+1 6= ;.
Proof of the claim: As in [27]. Part (1) follows from the fact thatG is a read-k-times BP.
Part (2) follows directly from Property (1) of the trace.
We prove Part (3) in detail. Since each of then variables occurs at mostk times onP , it holds
that lXi=1 jX(w0i�1; w0i)j+ jX(w0l; wl+1)j � kn:
On the other hand, by Property (2) of the trace,lXi=1 jX(w0i�1; w0i)j+ jX(w0l; wl+1)j � l � np + jX(w0l; wl+1)j;
and hence,l � kp� pn � jX(w0l; wl+1)j:
This only holds with equality ifjX(w0l; wl+1)j = 0, i. e.,Xl+1 = ;. 2
For nodesv, w in G, let fv;w(a) = 1 if and only if there is path fromv to w in G which is
consistent witha 2 Sn. For i = 1; : : : ; l, define the functionri on the variable setXi byri := fw0i�1;wi ^ [var(wi) = si];
wheresi 2 S is the label at edge(wi; w0i). If l � kp � 1, let rl+1 := fw0l;wl+1 , and letXj := ;
andrj := 1 for j = l + 2; : : : ; kp. Using the above results, we obtain thatr := r1 ^ � � � ^ rkp
is the characteristic function of a(k; p)-rectangle with respect to the setsX1; : : : ; Xkp. (The
restrictionX1 [� � � [Xkp = X from the definition can easily be met by inserting “missing
variables” into one of theXi.)
We have thus assigned a(k; p)-rectangle to each path from the source to a sink inG. Addi-
tionally, it holds that these rectangles form a partition ofSn, since an input fromSn defines a
unique path inG and thus cannot belong to more than one rectangle. (Here we need the fact
thatG is deterministic.)

To prove the claim on the number of rectangles, we first observe that different traces lead to
different rectangles. The number of traces is bounded from above by(sjGj)kp. This is because
the number of edges ofG can be bounded bysjGj from above, each trace has up tokp edges as
proven in Part (3) of the above claim, and no trace is part of another trace (i. e., the set of traces
is prefix-free). Hence, the claimed upper bound on the numberof rectangles follows. 2

85

We remark that the requirement that “X1[� � �[Xkp = X” in the definition of(k; p)-rectangles
is not really essential; it only ensures that the usual combinatorial (2-dimensional) rectangles
are a special case of Definition 5.4. Each rectangle with respect to setsX1; : : : ; Xkp fulfilling
the “weaker” definition without this property is also a rectangle with respect to modified sets
where the “missing” variables are included somewhere and which thus fulfills the “stronger”
definition from above. (The weaker definition is in fact that used by Borodin, Razborov, and
Smolensky in [27].)

The nondeterministic case can be handled essentially alongthe same lines. For the sake of com-
pleteness, we state the result of Borodin, Razborov, and Smolensky [27] in a version adapted
to nondeterministic branching programs according to the definition of Chapter 2 (instead of the
switching-and-rectifier networks considered by Borodin, Razborov, and Smolensky).

Theorem 5.6 (Technique of Generalized Rectangles for Nondet. Read-k-Times BPs):
Let G be a nondeterministic read-k-timess-way BP which nondeterministically represents a
functionf : Sn ! f0; 1g defined on the variable setX, n := jXj. Let p 2 f1; : : : ; ng. Then
there aret � (sjGj)kp (k; p)-rectanglesR1; : : : ; Rt � f�1(1) such thatf�1(1) = [1�i�tRi:
This is proven analogously to Theorem 5.5. The only difference is that each input may now
be contained in more than one rectangle, because a single input can activate several paths from
the source to the1-sink in a nondeterministic branching program. As a consequence, we only
obtain acoverof the 1-inputs and not a partition as in the deterministic case. (For a detailed
proof, see [27].)

At the end of this subsection, we present some known applications of the technique of general-
ized rectangles. First, we introduce the following two new functions:

Definition 5.7:

(1) Letn = 2d, d � 0. The function SYLn : Zn3 � Zn3 ! f0; 1g (“Sylvester inner product”) is
defined by

SYLn(x; y) = 1 :, x>Ay � 0 mod 3;
whereA = (ai;j)1�i;j�2d is the Sylvester matrix of dimension2d � 2d, i. e.,ai+1;j+1 := (�1)<bin(i);bin(j)>;
for 0 � i; j � 2d � 1, where bin(i) is the binary representation ofi and< � ; �> the inner
product inZd2.

(2) Letn = 2s�1, s � 1, and let1 � r � (n�1)=2. LetCn;r � f0; 1gn be the primitive BCH
(Bose-Chaudhuri-Hocquenghem) code of lengthn overF2 with designed distance2r + 1
(see, e. g., [87] for details on the construction of such a code). Forx = (x1; : : : ; xn) 2f0; 1gn define

BCHn;r(x) = 1 :, x 2 Cn;r:
Let BCHr := (BCHn;r(n))n2N wherer : N ! N with 1 � r(n) � (n� 1)=2.

86

For these functions and the two clique functions introducedin Chapter 3, the following results
have been obtained.

Theorem 5.8:

(1) cl;CLO 62 NP-BP1, butCLO 2 coNP-BP1.
(Borodin, Razborov, and Smolensky [27])

(2) For k � c log n, c < 1 some appropriately fixed constant, it holds thatSYL 62 NP-BPk.
(Borodin, Razborov, and Smolensky [27])

(3) For r =p(n� 1)=(2(k + 1)kek+1) andk � (1=2� ") log n= loglogn, " > 0 an arbitrary
small constant, it holds thatBCHr 62 NP-BPk. On the other hand,BCHr 2 coNP-BP1for
arbitrary r 2 f1; : : : ; (n� 1)=2g.
(Okolnishnikova [83] and Jukna [61])

The lower bounds implicitly contained in these statements are in fact even exponentially large
in the input size.

All the lower bounds from this theorem have been proven by thetechnique of generalized
rectangles. The functions BCHr and SYL have been the first ones for which exponential lower
bounds on the size of deterministic and nondeterministic read-k-times branching programs,
resp., could be proven (as mentioned earlier, these resultshave been obtained independently by
Okolnishnikova and Borodin, Razborov, and Smolensky, resp.). Jukna has extended the lower
bound for BCHr to the nondeterministic case, and he also has observed that the complement is
computable by nondeterministic read-once branching programs of polynomial size.

The proof of the lower bound for the characteristic functions of the BCH codes also works for
other codes where for fixed input sizen the number of code words as well as the Hamming
distance between different code words is large. Another known family of codes for which this
applies are the Reed-Muller codes (see also the paper of Jukna and Razborov [56] for further
lower bound results using these codes).

5.1.3 The Randomized Case

In this subsection, we show how the ideas presented in the last subsection can be used to prove
lower bounds on the size of randomized read-k-times branching programs with bounded error.

In communication complexity theory, it is often helpful to regard a randomized communication
protocol as a collection of deterministic protocols together with a probability distribution on
these protocols. We borrow this idea to describe a first, tentative approach for proving lower
bounds on randomized read-k-times branching programs which is extended afterwards.

We assume that we are given a randomized read-k-timess-way branching programG repre-
senting a functionf : Sn ! f0; 1g with two-sided error at most" which has the following
simplified structure. The branching program starts with a complete tree onr = O(log n) prob-
abilistic variablesz1; : : : ; zr by which one of the (disjoint) subgraphsG1; : : : ; G2r is selected.
All these subgraphs are deterministic read-k-timess-way branching programs.

87

We argue why an arbitrary randomized read-k-timess-way branching program can be converted
into this simplified form with only a moderate increase of therequired resources. In Chapter 4,
it has been described how an arbitrary randomized read-k-times (2-way) branching programH with n usual variables can be turned into a randomized read-k-times branching programH 0
of sizeO(njHj) with r = O(log n) probabilistic variables which are all tested in a tree at the
top. This also holds for thes-way case ifs is a constant (as can be seen by a straightforward
extension of the proof of Theorem 4.1). Compared toH, also the error probability of the new
programH 0 is increased by a constant� > 0 which can be chosen arbitrarily small. The bottom
part ofH 0 is completely deterministic, but the subgraphs reached by the tree on the probabilistic
variables may share nodes. In a last step, we therefore ensure by copying shared nodes that these
subgraphs are disjoint. This leads to a randomized read-k-timess-way branching programH 00
with the required structure and size at most2r � jH 0j = Poly(n) � jHj.
Now we work with the simplified graph calledG. Letg : Sn�f0; 1gr ! f0; 1g be the function
represented byG according to the deterministic semantics, and letg1; : : : ; g2r : Sn ! f0; 1g be
the functions represented by the subgraphsG1; : : : ; G2r . It holds that

Prfg(x; z) 6= f(x)g = 12r 2rXi=1 [gi(x) 6= f(x)] � ";
for arbitrary assignmentsx to the usual variables andz 2 f0; 1gr chosen uniformly at random.
Since the subgraphsGi are deterministic, we can apply Theorem 5.5 to them. This yields a
separate partition of the input setSn into gi-monochromatic(k; p)-rectangles for each of the
subgraphs. Altogether, we have obtained a set of at mostm � 2r � (sjGj)kp (k; p)-rectangles
such that for the characteristic functionsr1; : : : ; rm of these rectangles it holds that mXi=1 2�r � ri � f 1� ";
wherek'k1 := maxfj'(x)j j x 2 Sng for an arbitrary function' : Sn ! f0; 1g.
Hence, we have a concise description of the function represented by the randomized read-k-
times branching program in terms of a small number of(k; p)-rectangles which can be seen as
the analog of the descriptions for the deterministic and nondeterministic case. Unfortunately,
the collection of rectangles in representations of the above type is rather loosely structured, and
it seems to be very difficult to prove lower bounds on their number.

In order to be able to exploit that each of the subgraphsGi yields a partition of the input set, we
restrict ourselves only to a single such subgraph. We choosean indexi0 such that the number of
inputs which are computed correctly byGi0 is large. By a simple counting argument (originally
due to Yao [116]) one can prove that there is aGi0 which computes the correct output at least on
a (1� ")-fraction of the inputs. We work with a probability distribution on the inputs instead of
the original probability distribution on the assignments of probabilistic variables from this point
on. The functiongi0 represented byGi0 can be regarded as an approximation of the functionf ,
where the error of the approximation (with respect to the distribution on the inputs) is bounded
by ".

88

We make these considerations more precise by formally defining the type of approximation
which we are interested in.

Definition 5.9: LetX be a set of variables,n := jXj. Let k be an integer andp 2 f1; : : : ; ng.
A function ' : Sn ! f0; 1g is called astep function with parametersk and p, if there is a
partition ofSn into (k; p)-rectanglesR1; : : : ; Rm (where the respective setsX1; : : : ; Xkp � X
from Definition 5.4 may be different for allRi) and constantsc1; : : : ; cm 2 f0; 1g such that'(x) = ci for all x 2 Ri, i = 1; : : : ; m. For a step function' we call the least numberm such
that there are rectangles as described abovethe number of rectangles used by'.

Let f : Sn ! f0; 1g be defined on the variable setX and let' be a step function as described
above. Let� : Sn ! [0; 1] be an arbitrary probability distribution onSn. Define" := mXi=1 � (fx 2 Ri j f(x) 6= cig) :
Then we say that' approximatesf with total error" with respect to�.

Above, we have already collected the ideas to prove the following key lemma on the relation
between randomized read-k-times branching programs and step functions.

Lemma 5.10: Let f : Sn ! f0; 1g be defined on the variable setX, jXj = n. Let � be an
arbitrary probability distribution onSn, and letp 2 f1; : : : ; ng. Then for any randomized
read-k-timess-way BPG representingf with two-sided error at most" there is a step function
defined onX with parametersk and p which approximatesf with total error at most" with
respect to� and which uses at most(sjGj)kp rectangles.

Proof: Different from the informal considerations above, we do notconvert the given branching
program into a “normal form” in order to avoid the overhead onthe resources resulting from
this. It is sufficient here to choose an assignmentz0 to the probabilistic variables ofG such that
the deterministic read-k-timess-way BPG0 obtained by replacing the variables according toz0
correctly computes a large fraction of the inputs (this trick has been used for the first time by
Yao in [116], as mentioned above).

Let r be the number of probabilistic variables ofG, and letg : Sn � f0; 1gr ! f0; 1g be the
function represented byG according to the deterministic semantics. We know thatXz2f0;1gr 2�r � [g(x; z) 6= f(x)] � "
for all x 2 Sn due to the error bound ofG. Hence, alsoXx2Sn �(x) Xz2f0;1gr 2�r � [g(x; z) 6= f(x)] � ":
By changing the order of summation, we getXz2f0;1gr 2�r Xx2Sn �(x) � [g(x; z) 6= f(x)] � ":

89

It follows that there is at least one assignmentz0 2 f0; 1gr to the probabilistic variables withXx2Sn �(x) � [g(x; z0) 6= f(x)] = Pr�fg(x; z0) 6= f(x)g � "; (5.2)

where the index� indicates that the assignmentsx to the usual variables are chosen randomly
according to the distribution�. For the following, letG0 be the deterministic read-k-timess-way
BP obtained by replacing the probabilistic variables ofG according toz0. Let f 0 : Sn ! f0; 1g
be the function computed byG0 (according to the deterministic semantics).

It only remains to apply Theorem 5.5 toG0. We obtain a partition ofSn into f 0-monochromatic(k; p)-rectanglesR1; : : : ; Rt, wheret � (sjG0j)kp. This shows thatf 0 is in fact a step function
which uses at mostt rectangles. By (5.2), we know thatf 0 approximatesf with total error at
most" with respect to�. 2
In order to prove large lower bounds on the size of randomizedread-k-times BPs, we have to
choose functions which are “hard” to approximate by step functions. In the hypothesis of the
following theorem, we describe one important type of such functions.

Theorem 5.11: Let f : Sn ! f0; 1g be defined on the variable setX, jXj = n. Let� be an
arbitrary probability distribution onSn andp 2 f1; : : : ; ng. Assume thatf has the following
“rectangle balance property”: There are a constant� > 0 and a real-valued function� such
that for every(k; p)-rectangleR in Sn (with respect to setsX1; : : : ; Xkp � X according to
Definition 3.1 which may depend onR) it holds that�(R \ f�1(0)) � � � �(R \ f�1(1))� �(n): (RB)

Then for any randomized read-k-timess-way BPG for f with two-sided error at most" it holds
that jGj � 1s �� � �(f�1(1))�max(�; 1) � "�(n) �1=(kp) :
In the applications of this theorem,�(n) will be exponentially small inn. We will demonstrate
later on that this theorem can be indeed used to prove exponential lower bounds on the size of
randomized read-k-times branching programs.

Proof: By Lemma 5.10, there is a step function'which approximatesf with total error at most" with respect to� and which uses at most(sjGj)kp rectangles. Choose an arbitrary partition
of Sn into (k; p)-rectangles such that' is constant within each rectangle. Forc 2 f0; 1g letRc1; : : : ; Rcrc be the(k; p)-rectangles for which' computes the resultc. In the following, we
derive a lower bound onr1. It holds that�(f�1(1)) = r0Xi=1 �(R0i \ f�1(1)) + r1Xi=1 �(R1i \ f�1(1)); (5.3)

90

since theR0i , R1i are a partition ofSn. Since' approximatesf with total error at most" with
respect to�, we have" � r0Xi=1 �(R0i \ f�1(1)) + r1Xi=1 �(R1i \ f�1(0)) (5.4)

Summing up Inequality (RB) for all rectanglesR1i , i = 1; : : : ; r1, yieldsr1 � �(n) � � � r1Xi=1 �(R1i \ f�1(1))� r1Xi=1 �(R1i \ f�1(0)):
Taking Equation (5.3) into account, the last line can be written asr1 � �(n) � � � �(f�1(1))� � r0Xi=1 �(R0i \ f�1(1)) + r1Xi=1 �(R1i \ f�1(0))!= � � �(f�1(1))� (�e1 + e0) ; (5.5)

where we have definede1 := r0Xi=1 �(R0i \ f�1(1)); e0 := r1Xi=1 �(R1i \ f�1(0)):
We still have to take into account Equation (5.4), which saysthat" � e1 + e0. The right hand
side of the above Inequality (5.5) is minimized by maximizing�e1 + e0
under the constrainte1 + e0 � ". It follows thatr1 � �(n) � � � �(f�1(1))�max(�; 1) � ":
The claimed lower bound onjGj follow from this by Lemma 5.10. 2
The above “rectangle balance property” says that each rectangleR which is not “very small”
already contains a certain amount of0-inputs of the considered function. Especially, this means
that there are no “large” rectangles containing only1-inputs. If we also can prove that the
considered function has many1-inputs, we know that many rectangles are needed to cover
these inputs with small error.

We finally discuss a special class of functions fulfilling therectangle balance property. Consider
a functionf which has the property that for some constant� > 0 and�(n) exponentially small
in n it holds for each(k; p)-rectangleR thatj�(R \ f�1(0))� � � �(R \ f�1(1))j � �(n):

91

Obviously, we can ensure by a modification of� that the measures of0- and1-inputs in each
rectangle are even nearly equal (i. e.,� = 1). Functions with this property belong to the “hard-
est” functions for randomized read-k-times branching programs. This can be compared with the
situation for the inner product function considered in communication complexity theory (see,
e. g., [51], [70]) which is known to be one of the hardest functions for randomized communica-
tion protocols.

Altogether, we have collected the tools to prove lower bounds on the size of deterministic,
nondeterministic, and randomized read-k-timess-way branching programs with bounded error.
It remains to show that the technique of generalized rectangles really yields interesting results
for the latter mode of computation, which we will do in the following.

5.2 NP versus BPP for Read-Once Branching Programs

In this section, we show that the analogs of the classes NP andBPP for read-once branching pro-
grams are incomparable if the error allowed for the randomized read-once branching programs
is smaller than1=4.

One part of this result has been already proven in Chapter 3. There we have constructed ran-
domized OBDDs with one-sided error of polynomial size for the complement of the permu-
tation matrix function, whereas it is known that the function itself has exponential size for
nondeterministic read-once branching programs. Furthermore, the function 2PERM defined in
the proof of Theorem 3.17 (for two Booleann � n-matricesX andY , let 2PERMn(X; Y) :=
PERMn(X) ^ (:PERMn)(Y)) is contained in BPP-OBDDn(NP-BP1[coNP-BP1). Hence,
we have:

Theorem 5.12:

(1) RP-BP16= coRP-BP1;

(2) BPP-BP16� NP-BP1[coNP-BP1.

It is much harder to show that nondeterminism can be more powerful than randomness for read-
once branching programs, since we have to consider a function which is “easy” enough to be
computable by nondeterministic read-once branching programs, but for which nevertheless a
large lower bound on the size of randomized read-once branching programs can be proven. We
claim that the following function has these properties. (Inorder to avoid a confusion with other
subscripts, we omit the subscript indicating the input sizefor the functions considered in this
section.)

Definition 5.13: Define the function ModSum: f0; 1gn2 ! f0; 1g on then � n-matrix X =(xij)1�i;j�n of Boolean variables by ModSum(X) := RowTest(X) ^ RowTest(X>), where
RowTest: f0; 1gn2 ! f0; 1g is defined by

RowTest(X) := " nXi=1 [xi;1 + � � � + xi;n � 0 mod 3] � 0 mod 2# :
92

The main result of this section is the following one.

Theorem 5.14:

(1) ModSum2 coRP1=2-BP1and

ModSum2 BPP1=3+�-BP1for all � : N ! (0; 1=6) with �(n)�1 = 2Poly(n);
(2) ModSum62 BPP"-BP1for all constant" < 1=4.

In order to prove Part (2), we are going to apply the techniqueof generalized rectangles in
its variant described by Theorem 5.11. Before we start with the proof, we introduce some
definitions and technical tools. First, we prove a simple combinatorial lemma which states
that each balanced partition of the variable set of ModSum “splits” either many rows or many
columns of the input matrix.

Lemma 5.15: Let (X1; X2) be an arbitrary balanced partition of the variable setX. Then it
holds that there is a setI � f1; : : : ; ng with jIj � n=4 such that2 � jfxi;1; : : : ; xi;ng \X1j � n� 2; for all i 2 I; or2 � jfx1;i; : : : ; xn;ig \X1j � n� 2; for all i 2 I.

Proof: Definesi := jfj j j 2 f1; : : : ; ng ^ xij 2 X1gj, 1 � i � n, andL := fi j si < 2g,H := fi j si > n� 2g. Since the given partition is balanced, it holds that�n2=2� � nXi=1 si � �n2=2�:
The unionL [H contains exactly the indices of rows of the matrixX which do not fulfill the
first assertion in the claim above. We show that if the first assertion (for the rows) is not fulfilled,
then the second (for the columns) holds.

Assume in the following that the first assertion does not hold, i. e., jL [Hj � (3=4)n+ 1. We
have jHj � dn2=2en� 1 � n2=2 + 1n� 1 � n=2 + 1;
for n large enough. If we swap the roles ofX1 andX2, we also obtainjLj � n=2 + 1. Taking
the assumption into account, it follows thatjLj � n=4 andjHj � n=4. Hence, there is a setI � f1; : : : ; ng with jIj � n=2 such that for eachi 2 I the columni of X containsn=4
variables fromX1 andn=4 variables fromX2. Therefore, the second assertion of the claim is
fulfilled for this setI. 2
We will see that if many rows are split by a given balanced partition of the input matrix of
ModSum, then the “communication problem” which is described in the following occurs as a
subproblem if we want to evaluate ModSum.

93

Definition 5.16: Let V := f0; 1g2. Let ' : V ! Z3 be defined by'(x; y) := x + y, wherex; y 2 f0; 1g (thus we have'�1(0) = f(0; 0)g, '�1(1) = f(0; 1); (1; 0)g and'�1(2) =f(1; 1)g).
For arbitraryc0 2 f0; 1g andc1; : : : ; cn 2 Z3 define RowTestCc0;c1;:::;cn : V n � V n ! f0; 1g by

RowTestCc0;c1;:::;cn(x; y) := " nXi=1 ['(xi) + '(yi) + ci � 0 mod 3] � c0 mod 2# ;
wherex; y 2 V n.

The main work for the proof of Theorem 5.14 is to show that the above communication problem
is “hard” for randomized communication protocols. For this, we use the method of proving an
upper bound on the discrepancy of the function RowTestC.

Definition 5.17 (Discrepancy): Let finite setsX andY and a functionf : X � Y ! f0; 1g
be given. Then we define thediscrepancy off with respect to a 2-dimensional rectangleR,R = A� B andA � X, B � Y , by

Disc(f; R) := 1jXjjY j � ��jf�1(1) \ Rj � jf�1(0) \ Rj�� :
By Disc(f) we denote the maximum of Disc(f; R) taken over all choices of 2-dimensional
rectanglesR in X � Y .

We only state the following key lemma and defer its proof to the end of the section.

Lemma 5.18: For arbitrary c0 2 f0; 1g andc1; : : : ; cn 2 Z3, it holds that

Disc(RowTestCc0;c1;:::;cn) � �p14=4�n :
For an introduction to lower bound proofs based on the discrepancy in communication complex-
ity theory, we refer to the monograph of Kushilevitz and Nisan [70]. The more general notion
of discrepancy from combinatorics is discussed in the monograph of Alon and Spencer [11].

Finally, we also have to calculate the number of1-inputs of the function ModSum. We again
anticipate the respective result proven later on.

Lemma 5.19: jModSum�1(1)j � 2�n2 = (1=4) � (1 + o(1)).
Now we are ready to start with the proof of the main result.

Proof of Theorem 5.14: Part (1): We can easily construct a randomized read-once branching
program with one-sided error at most1=2 for :ModSum as follows. We use two polynomial
size OBDDs whose variables are ordered “row-wise” and “column-wise,” resp., to compute:RowTest(X) and:RowTest(X>). These two graphs are connected by a single node labeled
by a probabilistic variable which chooses whether:RowTest(X) or :RowTest(X>) is cor-
rectly evaluated.

94

To obtain a randomized read-once branching program with two-sided error at most1=3 + �(n),
for �(n) 2 (0; 1=6) with �(n)�1 = 2Poly(n), apply Lemma 2.32.

Part (2): We are going to apply the technique described in the last section. We only consider
2-dimensional rectangles and 2-way branching programs here and choose the distribution� in
Theorem 5.11 as the uniform distribution onf0; 1gn2 .
We claim that ModSum fulfills the “rectangle balance property” of Theorem 5.11. For the proof
of this fact, let an arbitrary 2-dimensional rectangleR = A � B with respect to an arbitrary
balanced partition(X1; X2) of the input variablesX = (xij)1�i;j�n of ModSum be given, whereA andB are sets of assignments toX1 andX2, resp. We show that2�n2 � jR \ModSum�1(0)j � 2�n2 � jR \ModSum�1(1)j � �(n); (5.6)

where the “error-term”�(n) is defined such that�(n) is exponentially small inn later on.

The function ModSum is a conjunction of a “row-wise” and a “column-wise” test of the ma-
trix X. Our plan is to prove that for any choice of the partition(X1; X2), at least one of
these tests is “difficult.” Expressed in another way, we willshow that one of the implicants:RowTest(X) or :RowTest(X>) of :ModSum(X) belongs to the class of “hardest” func-
tions mentioned at the end of Section 5.1, for which the numbers of 0- and1-inputs in every
rectangle are nearly equal.

We first apply Lemma 5.15. W. l. o. g., let the first assertion ofthe lemma hold, i. e., “many”
rows of the matrixX are split by the given partition(X1; X2). In this case, we expect the
evaluation of RowTest(X) to be difficult. We fix setsX 01 � X1 andX 02 � X2 such that there
arem := n=4 rows i for which exactly two variablesxij are inX 01 and two inX 02, and we havejX 01j = jX 02j = 2m.

As the next step, we prove for an arbitrary assignmenta to all variables which are not inX 01[X 02
that 2�jX 01j�jX 02j � jRa \ModSum�1a (0)j � 2�jX 01j�jX 02j � jRa \ModSum�1a (1)j � �(n):
(For an arbitrary functionf and a (partial) assignmenta, we writefa for the subfunction off
obtained by substituting variables by constants accordingto a. Ra is the restriction ofR bya if we regardR as the characteristic function of the rectangle.) The claimed Inequality (5.6)
follows from the above inequality by the law of total probability: Let 2Xn(X 01[X 02) denote the set
of all assignments to variables fromXn(X 01 [X 02). Forc 2 f0; 1g it holds thatXa22Xn(X01[X02) 2�jX 01j�jX 02j � jRa \ModSum�1a (c)j � 2�jXn(X 01[X 02)j= 2�jXj � Xa22Xn(X01[X02)jRa \ModSum�1a (c)j= 2�jXj � jR \ModSum�1(c)j;

95

For the rest of the proof leta be a fixed assignment to the variables not inX 01 [X 02. It holds
thatRa = A0 � B 0, whereA0 andB 0 are sets of assignments toX 01 andX 02, resp. Let us call
the remaining free variablesx1i;1, x1i;2 andx2i;1, x2i;2, wherei 2 f1; : : : ; mg and the variables with
upper indexj are from the setXj, j = 1; 2. Then the function RowTesta can be written as

RowTesta(Xa) = " mXi=1 [x1i;1 + x1i;2 + x2i;1 + x2i;2 + ci � 0 mod 3] � c0 mod 2# ;
with appropriate constantsc0 2 f0; 1g and c1; : : : ; cm 2 Z3 depending only ona. By the
definitions it follows that

ModSuma(Xa) = 1) RowTestCc0;c1;:::;cm(x(Xa); y(Xa)) = 1; (5.7)

wherex(Xa) := ((x11;1; x11;2); : : : ; (x1m;1; x1m;2)) andy(Xa) := ((x21;1; x21;2); : : : ; (x2m;1; x2m;2)):
Now we can apply Lemma 5.18. Since Disc(RowTestCc0;c1;:::;cm) � (p14=4)m, we have2�4m � ��jRa \ RowTestC�1c0;c1;:::;cm(0)j � jRa \ RowTestC�1c0;c1;:::;cm(1)j�� � (p14=4)m;
hence,2�4m � jRa \ RowTestC�1c0;c1;:::;cm(0)j �2�4m � jRa \ RowTestC�1c0;c1;:::;cm(1)j � (p14=4)m:
Using (5.7), we get2�4m � jRa \ModSum�1a (0)j � 2�4m � jRa \ModSum�1a (1)j � �(n);
where�(n) := (p14=4)n=4. As already discussed, the rectangle balance property of ModSum
(Inequality (5.6)) follows from this by the law of total probability.

It only remains to apply Theorem 5.11. LetG be an arbitrary randomized read-once branching
program for ModSum with two-sided error at most", " < 1=4. Let � := 1 and �(n) :=(p14=4)n=4. By Lemma 5.19, we havejModSum�1(1)j�2�n2 = (1=4)�(1+o(1)). Theorem 5.11
yieldsjGj � 12 �� � (1=4)(1 + o(1))�max(�; 1) � "�(n) �1=2= 12 �(1=4)(1 + o(1))� "(p14=4)n=4 �1=2 =
(2cn);
wherec := (1=8) log(4=p14) > 0:012. 2

96

As an immediate consequence of this result, we obtain:

Theorem 5.20:

(1) NP-BP16� BPP"-BP1for all constant" < 1=4;

(2) RP"-BP1$ RP1=2-BP1� NP-BP1for all constant" < 1=3;

(3) BPP"-BP1$ BPP1=3+�-BP1for all constant" < 1=4 and� : N ! (0; 1=6) with �(n)�1 = 2Poly(n).
Part (2) and Part (3) of this theorem show that, contrary to the situation for OBDDs and general
branching programs, there is no probability amplification technique for randomized read-once
branching programs which allows to decrease the error probability below an arbitrary small
constant without an exponential blow-up of the size of the branching program. This observation
also holds if we consider a fixed graph ordering (see Section 1.4) for the read-once branching
programs.

The above result can be seen as an enforced version of the known result that the Boolean synthe-
sis of two read-once branching programs with different graph orderings may lead to an exponen-
tially large result. Consider the polynomially large randomized read-once branching programG which represents:ModSum with one-sided worst-case error1=2 described in the proof of
Theorem 5.14. A graph orderingG0 for this read-once branching program starts with a single
probabilistic variablez by which either a row-wise or column-wise ordered list of theusual
variables is chosen. LetG1 andG2 be copies ofG where the probabilistic variablez is replaced
by new variablesz1 andz2, resp. Fori = 1; 2, the graphGi is ordered with respect toGi0, which
is the graph ordering obtained fromG0 by replacingz by zi. Theorem 5.14 shows that there is
no common graph ordering on the usual variables of ModSum andthe probabilistic variablesz1
andz2 which contains theGi0 as suborderings and which would allow to efficiently computethe
AND-synthesis of the two graph ordered read-once branchingprogramsG1 andG2. The result
of the AND-synthesis of these graphs has exponential size for arbitrary graph orderings. We
see that even for read-once branching programs with “very similar” graph orderings there may
be no common extension of the orderings which would allow an efficient Boolean synthesis.

We conjecture that by choosing a probability distribution different from the uniform distribution,
the lower bound for ModSum could be improved to match the upper bound from Theorem 5.14.

Conjecture: ModSum62 BPP"-BP1for all " < 1=3.

Note that a worst-case error of exactly1=3 cannot be achieved because of the restriction to
Boolean valued probabilistic variables. A promising choice for the probability distribution is�(X) := (1=w; if RowTest(X) = 1 _ RowTest(X>) = 1;0; if RowTest(X) = RowTest(X>) = 0;

wherew := jfX j RowTest(X) = 1_RowTest(X>) = 1gj. By the proof of Lemma 5.19 below
it is easy to see that�(ModSum�1(1)) = (1=3) � (1 + o(1)). What remains to do is to check
whether ModSum also has the rectangle balance property withrespect to the new distribution�.

97

We still have to prove Lemma 5.18 and Lemma 5.19 already used in the proof of Theorem 5.14.
We start with the easier proof of Lemma 5.19. We prepare the proof by stating some simple
technical facts in advance. First, we define for arbitrary natural numbersn andc 2 Z3:S(n; c) := nXk=0 �nk�[k � c mod 3]:
By standard techniques for the manipulation of binomial coefficients, it can be shown thatS(n; c) 2 fb2n=3c; d2n=3eg (see [46], Exercise 5.75). Especially, it holds thatS(n; c) = (1=3) �2n � (1 + o(1)).
Fact 5.21: LetX1; : : : ; Xn be Boolean valued random variables withPrfXi = 1g = (1=2) �(1 + o(1)), i = 1; 2; : : : ; n. Letc 2 Z3. Then

(1) PrfX1 + � � � +Xn � c mod 3g = (1=3) � (1 + o(1));
(2) PrfXi = 1 j X1 + � � �+Xn � c mod 3g = (1=2) � (1 + o(1)) for arbitrary i 2 f1; : : : ; ng.
Proof: The number of solutions of the equationx1+ � � �+xn � c mod 3, (x1; : : : ; xn) 2 Zn3, is
equal toS(n; c). By the above remark,S(n; c)�2�n = (1=3)�(1+o(1)). Hence, Part (1) follows.
Part (2) also follows by this approximation and the definition of conditional probabilities. 2
Proof of Lemma 5.19: We consider the following system of linear equations inZ3, where the
variablesxi;j are restricted to Boolean values.x1;1 + x1;2 + � � � + x1;n � r1x2;1 + x2;2 + � � � + x2;n � r2

...xn;1 + xn;2 + � � � + xn;n � rn x1;1 + x2;1 + � � � + xn;1 � c1x1;2 + x2;2 + � � � + xn;2 � c2
...x1;n + x2;n + � � �+ xn;n � cn (5.8)

LetX = (xij)1�i;j�n. It holds that ModSum(X) = 1 if and only if system (5.8) is fulfilled and
additionallynXi=1 [ri � 0 mod 3] � 0 mod 2 ^ nXi=1 [ci � 0 mod 3] � 0 mod 2: (5.9)

In the following, we first calculate the number of (Boolean) solutions of system (5.8) for fixedri andci. The second step is to count the number ofri andci fulfilling (5.9).

98

DefineA as the following(2n� 1)� n2-matrix (where empty spaces indicate zero-entries)

A := 2666666666666664
1 1 1 11 1 1 1

...1 1 1 11 1 : : : 1 1 1 : : : 1
... 1 1 : : : 1

3777777777777775 :
Let xi := (xi;1; : : : ; xi;n); i = 1; : : : ; n;x := (x1; : : : ; xn)> andb := (c1; : : : ; cn; r2; : : : ; rn)>:
By application of elementary transformations, we can rewrite system (5.8) in the formA � x � b mod 3 ^ (5.10)r1 + � � � + rn � c1 + � � � + cn mod 3: (5.11)

We count the number of solutions inZn22 of the reduced system (5.10).

Claim: Prx2Zn22 fA � x � bg = 3�2n+1 � (1 + o(1)).
Here and in the following, the expression “Prx2AfE(x)g” denotes the probability of the eventE(x) depending on the outcome of the random variablex which assumes values uniformly
distributed in the setA.

Proof of the claim: Let (A1); : : : ; (An) denote the firstn equations of system (5.10) and(B2); : : : ; (Bn) the last(n� 1) ones. DefineU1 := fx 2 Zn22 j x fulfills eqns.(A1); : : : ; (An)g;Uk := fx 2 Zn22 j x fulfills eqns.(A1); : : : ; (An) and(B2); : : : ; (Bk)g; k = 2; : : : ; n:
By these definitions, Prx2Zn22 fA � x � bg = jUnj � 2�n2 . We prove by induction that fork =1; : : : ; n the following holds:

(1) Prx2Zn22 fxi;j = 1jx 2 Ukg = (1=2) � (1 + o(1)) for arbitraryi; j 2 f1; : : : ; ng;
(2) jUkj = 3�n�k+1 � 2n2 � (1 + o(1)).

99

If we have proven this, we obtain the desired size forUn and the proof of the overall claim is
completed.

We start by computingjU1j. Observe that the sets of variables involved in each of the first
equations(A1); : : : ; (An) are pairwise disjoint. Hence, the number ofx 2 Zn22 fulfilling(A1); : : : ; (An) can be obtained by considering the equations separately andmultiplying the
results. By Fact 5.21(1), we obtainjU1j = ((1=3) � 2n � (1 + o(1)))n = 3�n � 2n2 � (1 + o(1)):
Using Fact 5.21(2) we obtain Claim (1) fork = 1.

Now letk > 1 and assume that Claim (1) and (2) are proven fork � 1. By definition, we haveUk = Uk�1 \ fx 2 Zn22 j x fulfills (Bk)g:
We first observe in which other equations the variables of equation (Bk) are used: The vari-
ablesxk;1; : : : ; xk;n do not occur in(B2); : : : ; (Bk�1), but each variablexk;i has one additional
occurrence in equation(Ai).
Now we prove Claim (1). It holds that

Prx2Zn22 fxi;j = 1 j x 2 Ukg = Prx2Uk�1fxi;j = 1 j x fulfills (Bk)g= Prx2Uk�1fxi;j = 1 j xk;1 + � � �+ xk;n � rk mod 3g
If i 6= k, the last expression is(1=2) � (1 + o(1)) directly by the induction hypothesis. Ifi = k,
Claim (1) follows by the induction hypothesis and Fact 5.21(2).

It remains to consider Claim (2). We verify thatjUkj = (1=3) � (1 + o(1)) � jUk�1j;
or, equivalently,

Prx2Zn22 fx fulfills (Bk) j x 2 Uk�1g = 13 � (1 + o(1)):
Since Prx2Uk�1fxk;i = 1g = (1=2) � (1+ o(1)) by assumption, we can conclude by Fact 5.21(1)
that

Prx2Zn22 fx fulfills (Bk) j x 2 Uk�1g = Prx2Uk�1fxk;1 + � � � + xk;n � rk mod 3g= 13 � (1 + o(1));
which proves Claim (2). 2
Now we know the number of solutions of the reduced system (5.10) for fixed row- and column-
sumsri andci. It remains to calculate the number of differentri andci fulfilling (5.9) which
lead to1-inputs of ModSum. Forc 2 Z3, defineNc := jf(x1; : : : ; xn) 2 Zn3 j x1 + � � � + xn � c mod 3 ^ nXi=1 [xi � 0 mod 3] � 0 mod 2gj:

100

Claim: For arbitrary c 2 Z3, it holds thatNc = (1=6) � (3n + 1) � (1 + o(1)).
Proof of the claim: Let k 2 f0; : : : ; ng andi 2 f0; : : : ; n � kg. A vector(x1; : : : ; xn) 2 Zn3
wherek entries are equal to0 andi entries are equal to1 (and, hence,n�k� i are equal to�1)
belongs to the set in the definition ofNc if and only ifk � 0 mod 2 andi�(n�k�i) � c mod 3.
Altogether, there are

�nk��n�ki � vectors with the given number of0’s and1’s. By summing up
over all possible choices fork andi, we get:Nc = nXk=0 n�kXi=0 �nk��n� ki �[k � 0 mod 2 ^ i� (n� k � i) � c mod 3]= nXk=0 �nk�[k � 0 mod 2] n�kXi=0 �n� ki �[i� (n� k � i) � c mod 3]:
We first simplify the expression in the innermost sum (takinginto account that2 � �1 mod 3):i� (n� k � i) � c mod 3 , i � �(n� k + c) mod 3:
Then the above sum can be rewritten asNc = nXk=0 �nk�[k � 0 mod 2] � S(n� k;�(n� k + c))= nXk=0 �nk�[k � 0 mod 2] ��13 � 2n�k + "n�k� ;
where"n�k 2 (�1; 1). Here we have used thatS(m; d) 2 fb2m=3c; d2m; 3eg.
The desired result is obtained by the following calculations:Nc = 13 � nXk=0 �nk�[k � 0 mod 2] � 2n�k + nXk=0 �nk�[k � 0 mod 2]"n�k= 16 � nXk=0 �nk�(1 + (�1)k) � 2n�k + nXk=0 �nk�[k � 0 mod 2]"n�k= 16 � (3n + 1) + O(2n�1) = 16 � (3n + 1) � (1 + o(1)): 2
At this point, we can put all results together. To count the number ofri andci, we still have
to take into account Equation (5.11). For eachc 2 Z3, there are exactlyN2c choices forr1; : : : ; rn 2 Z3 andc1; : : : ; cn 2 Z3 such thatr1 + � � � + rn � c1 + � � � + cn � c mod 3

101

and Condition (5.9) is fulfilled. Altogether, we have3 �N2c = 112 � (32n + 2 � 3n + 1) � (1 + o(1))
choices for theri andci. For each of these choices, we obtain3�2n+1 � 2n2 � (1 + o(1)) 1-inputs
by our first claim. Thus, the total number of1-inputs is112 � �32n + 2 � 3n + 1� �3�2n+1 � 2n2� � (1 + o(1)) = 14 � 2n2 � (1 + o(1)): 2
We finally supply the missing proof of Lemma 5.18 which statesthat the function RowTestC
has small discrepancy.

Proof of Lemma 5.18: The technique used here is the same as in the various known proofs that
the inner product function inZ2 has linear randomized communication complexity (if the error
is bounded by1=2 � 2�cn, c some appropriate constant). A proof explicitly based on an upper
bound on the discrepancy can be found in the monograph of Kushilevitz and Nisan [70]. Similar
approaches have been described by Chor and Goldreich [34], Halstenberg and Reischuk [48]
and by Krause [67].

Define the4n � 4n-matrixM , M = (m(x; y))x;y2Vn, bym(x; y) := (1; if RowTestCc0;c1;:::;cn(x; y) = 1;�1; otherwise.

LetR = S � T , with S; T � V n, be an arbitrary 2-dimensional rectangle. We show that

Disc(RowTestCc0;c1;:::;cn ; R) = 1jV 2nj ������ X(x;y)2Rm(x; y)������ = 142n � j1>S �M � 1T j � (p14=4)n
where1S and1T are the characteristic vectors ofS andT , respectively.

To establish this upper bound, we show thatkMk2, the spectral norm ofM , is small compared
to 42n. The first step in the proof is to calculate the entries offM = (em(x; y))x;y2Vn , defined byfM := M>M . It holds thatkMk2 = p�max, where�max is the largest eigenvalue offM (see,
e. g., [114]). Note that all eigenvalues offM are real and non-negative. The second step will be
to derive an upper bound on�max.
First step:Letm(x) be the column ofM with indexx 2 V n. It holds thatem(x; y) = m(x)>m(y) = Xz2V nm(x; z)m(y; z):

102

We evaluate this sum by counting the number of1’s and(�1)’s, i. e., we computeN1(x; y) := jfz 2 V n j m(x; z)m(y; z) = 1gj; andN�1(x; y) := jfz 2 V n j m(x; z)m(y; z) = �1gj:
It is sufficient to determineN1(x; y), sinceN�1(x; y) = 4n �N1(x; y). It holds thatm(x; z)m(y; z) = 1 , nXi=1 ['(xi) + '(zi) + ci � 0 mod 3] �nXi=1 ['(yi) + '(zi) + ci � 0 mod 3] mod 2, nXi=1 (['(xi) + '(zi) + ci � 0 mod 3]�['(yi) + '(zi) + ci � 0 mod 3]) � 0 mod 2
Forx; y 2 V n, i 2 f1; : : : ; ng andz0 2 V defineSi(z0) := (['(xi) + '(z0) + ci � 0 mod 3]� ['(yi) + '(z0) + ci � 0 mod 3]) mod 2:
We have to compute the number of vectorsz 2 V n withS1(z1) + � � � + Sn(zn) � 0 mod 2:
Let D := fi j '(xi) 6= '(yi)g andd := jDj. For i 62 D, it holds thatSi(z0) = 0 for arbitraryz0 2 V , which leads tojV j = 4 possible choices forz0. Hence, for allzi with i 62 D we have4n�d choices altogether.

Now we consider the casei 2 D, i. e., we have'(xi) 6= '(yi). It holds thatSi(z0) = 0 if and
only if('(xi) + '(z0) + ci) mod 3 2 f1; 2g ^ ('(yi) + '(z0) + ci) mod 3 2 f1; 2g:
We count the number ofz0 satisfying this condition:('(xi) + ci) mod 3 ('(yi) + ci) mod 3 possible'(z0) number ofz0 2 V

0 1 f1; 2g \ f0; 1g = f1g 2
0 2 f1; 2g \ f0; 2g = f2g 1
1 0 f0; 1g \ f1; 2g = f1g 2
1 2 f0; 1g \ f0; 2g = f0g 1
2 0 f0; 2g \ f1; 2g = f2g 1
2 1 f0; 2g \ f0; 1g = f0g 1

Let P := fi j f('(xi) + ci) mod 3; ('(yi) + ci) mod 3g = f0; 1gg � D andp := jP j. From
the table above we see thatjS�1i (0)j = (2; if i 2 P and1; if i 2 DnP ,

103

we also havejS�1i (1)j = (2; if i 2 P and3; if i 2 DnP .

Now we compute the number of choices for thezi, i 2 D, under the assumption that exactlyk of the Si(zi) for i 2 P and exactlyl of the Si(zi) for i 2 DnP are equal to1. By our
considerations above, there are�pk� � 2k � 2p�k � �d� pl � � 3l � 1d�p�l
possible values for allzi with i 2 D. We sum up these expressions for all choices ofk 2f0; : : : ; pg andl 2 f0; : : : ; d� pg wherek + l � 0 mod 2, thus we havepXk=0 d�pXl=0 �pk��d� pl � � 2p � 3l � [k + l � 0 mod 2]
possibilities. Evaluating this sum by application of the binomial theorem yields12 � 4d + (�1)d � 2d�1 � [p = 0]:
Putting the results together, we obtainN1(x; y) = 4n�d �12 � 4d + (�1)d � 2d�1 � [p = 0]� ;N�1(x; y) = 4n�d �12 � 4d � (�1)d � 2d�1 � [p = 0]� :
Sincem(x)>m(y) = N1(x; y)�N�1(x; y), we getem(x; y) = m(x)>m(y) = 4n�d � (�1)d � 2d � [p = 0];
whered := jfi j '(xi) 6= '(yi)gj andp := jfi j f('(xi) + ci) mod 3; ('(yi) + ci) mod 3g = f0; 1ggj:
Second step:We are now going to derive an upper bound on the value of the largest eigenvalue�max of fM . To estimate this value, we use the following simple fact from linear algebra.

Let k � k denote a vector norm onC n as well as a matrix norm which is compatible with this
vector norm, i. e., it holds thatkAxk � kAk � kxk for an arbitrary complex-valuedn�n-matrixA andx 2 C n . LetA be an arbitrary complex-valuedn� n-matrix,� an eigenvalue ofA andx
(x 6= 0) an eigenvector belonging to�. Then it holds thatkAkkxk � kAxk = k�xk = j�jkxk,

104

hence,j�j � kAk (wherej � j is the absolute value inC). For our purpose, it turns out to be
useful to choose the norm defined bykAk1 := max(nXj=1 jaij j ��� i = 1; : : : ; n) ;
whereA = (aij)1�i;j�n is a complex-valuedn � n-matrix. This norm is compatible with the
vector normkxk1 := maxfjxij j 1 � i � ng, wherex 2 C n . (Obviously, summing column-
wise instead of row-wise works as well.)

Forx; y 2 V n defined(x; y) := jfi j '(xi) 6= '(yi)gj andp(x; y) := jfi j f('(xi)+ ci) mod 3;('(yi) + ci) mod 3g = f0; 1ggj. We compute the sum of the absolute values of the entries in
an arbitrary rowx 2 V n of fM :Xy2V n jem(x; y)j = Xy2V n 4n � 2�d(x;y) � [p(x; y) = 0] � Xy2V n 4n � 2�d(x;y)
To get rid of the functiond, for fixedk 2 f0; : : : ; ng, we count the number ofy 2 V n for whichd(x; y) = k. For eachi there are at most three valuesyi for which'(xi) 6= '(yi), and at most
two valuesyi for which '(xi) = '(yi). Hence, the number ofy 2 V n with d(x; y) = k is at
most �nk� � 3k � 2n�k:
With this estimate, we getXy2V n 4n � 2�d(x;y) � nXk=0 �nk� � 3k � 2n�k � 4n � 2�k = 14n
It follows thatj�maxj � kfMk1 � 14n and thuskMk2 = p�max � p14n.

Finally, we use these results to estimate the discrepancy ofRowTestC with respect to the rect-
angleR = S � T . It holds that

Disc(RowTestCc0;c1;:::;cn; R) � 4�2n � j1>S �M � 1T j� 4�2n � k1Sk2 � kM � 1Tk2� 4�2n � k1Sk2 � kMk2 � k1Tk2� 4�2n �pjSjjT j � p14n� 4�2n � p42n � p14n = �p14=4�n :
In the second line, we have applied Cauchy-Schwartz’s inequality, and in the last line we have
used the trivial upper boundsjSj; jT j � 4n. 2

105

5.3 P versus ZPP for Read-Once Branching Programs

The question whether Las Vegas (error-free) algorithms canbe derandomized in an efficient
way is obviously of high practical relevance in the context of Turing machines and polynomial
time computability, where it is widely believed to have a negative answer, i. e., P$ ZPP. Here
we are concerned with the same question for read-once branching programs.

If we consider logarithmic space bounds instead of the usualpolynomial time bounds, we have
to be very careful with our usual intuition with respect to such questions. As explained in
Chapter 2, it is known that Las Vegas algorithms and nondeterministic algorithms are equivalent
in the context of logarithmically space-bounded computations (more precisely, NL= ZPL); an
analogous result for polynomial time computability would be quite surprising. Nevertheless,
under the usual assumption L$ NL we also have that L$ ZPL.

Furthermore, it is known that the deterministic communication complexity is always at most
the square of the complexity of randomized protocols with zero error (Aho, Ullman, and Yan-
nakakis [8]). For one-way communication, the deterministic complexity can even be at most
twice as large as in the randomized, zero error case, as has been shown recently by̌Duriš,
Hromkovič, Rolim, and Schnitger [38]. Karpinski and Mubarakzjanov [64] have observed how
this result can be used to show that P-OBDD= ZPP-OBDD, as already remarked earlier.

Of course, we would also like to know how the analogs of the classes P and ZPP are related
for the less restricted types of branching programs. The result of this section is an exponential
gap between the size of deterministic read-once branching programs and randomized read-once
branching programs with zero error. Especially, it holds that P-BP1$ ZPP-BP1.

We will prove that the function ADDRn from the paper of Jukna, Razborov, Savický, and
Wegener [57] (see Section 3.2) can be computed by a randomized read-once branching program
with zero error of polynomial size, i. e., by an efficient read-once Las Vegas algorithm. On the
other hand, as explained in Chapter 3, this function isk-stable fork = �((n= log n)1=2). Hence,
it is neither contained in the class P-BP1 nor in BPP-OBDD (see Section 3.4). This result also
shows that the generic lower bound on the size of randomized OBDDs for k-stable functions
from Section 3.4 cannot be extended to randomized read-oncebranching programs.

For notational convenience, we consider the function ADDRn only for input sizes where we
can do without floors or ceilings.

Theorem 5.22: Letn = 2l and l = 2~l. Definem := n=l = 2l�~l. The functionADDRn can be
represented by a randomized read-once branching program ofpolynomial size which has zero
error and failure probability at most1=2.

Proof: Remember that we have grouped the input variables of ADDRn into rows xi :=(xim; : : : ; x(i+1)m�1), i = 0; : : : ; l � 1, of anl �m-matrix. Furthermore,

ADDRn(x0; : : : ; xn�1) := xa; a := j(�(xl�1); : : : ; �(x0))j2:
We call the bits�(x0); : : : ; �(xl�1) “address bits” and the bitxa “output bit.” The algorithm
implemented by the randomized read-once branching programfor ADDRn will consist of two

106

phases. In the first phase, we read some rows of the input matrix and compute the respective
address bits. After that, only a small setA of possible output bits will be left. The second phase
consists of evaluating all remaining address bits and “storing” the values of all variables inA in
the branching program. Finally, we have determined the complete address. With probability at
least1=2, the addressed bit will belong to the stored values.

By v = (vl�1; : : : ; v0) 2 f0; 1; �gl we describe the address bits computed so far in the algorithm,
let vi = � if the ith bit is not yet known. The lowerl � ~l bits of v determine thecolumnwhere
the output bit is found, we call these bits the “column address bits.” Accordingly, the upper~l
bits,vl�~l; : : : ; vl�1, determine therow of the output bit and are called “row address bits.”

For an arbitrary vectorv letC(v) � f0; : : : ; m� 1g be the set of columns which are addressed
by vectorsv0 which are obtained fromv by assigning constant values to the�-bits. Likewise,
letR(v) � f0; : : : ; l � 1g the set of rows addressed in this way. DefineA(v) := fim + j j i 2 R(v); j 2 C(v)g
as the set of indices of addressed output bits. Now we describe our randomized algorithm for
the computation of ADDRn.

Algorithm:

(0) Initialize v: For i = 0; : : : ; l � 1, let vi := �.
(1) Choosez 2 f0; 1g uniformly at random.

(2) Casez = 0:

Phase 1:For i 2 fl � ~l; : : : ; l � 1g (the indices of the row address bits) read the rowxi of
the input matrix and computevi := �(xi). Let r := j(vl�1; : : : ; vl�~l)j2 2 f0; : : : ; l � 1g,
i. e.,r is the row within which the output bit lies, and we have thatR(v) = frg. If r � l�~l,
we have “lost” and output “?”.

Now assume thatr 2 f0; : : : ; l � ~l � 1g. For i 2 f0; : : : ; l � ~l � 1gnfrg read the rowxi
and computevi = �(xi). After this we have also determined all bits of the column address
except one. Hence,jC(v)j = 2 and thus alsojA(v)j = 2.

Phase 2:As the final step, we evaluate the last missing address bitvr = �(xr). While
we computevr, we store the values of the two variablesxj with j 2 A(v) (these vari-
ables lie within rowr). Afterwards, we know the complete address of the output bit,a = j(vl�1; : : : ; v0)j2. Since we have stored both possible output bits, we can output the
correct value.

(3) Casez = 1:

Phase 1:For i 2 f0; : : : ; l � ~l � 1g (the indices of the column address bits) read the rowxi of the input matrix and computevi := �(xi). After this, we haveC(v) = fcg, wherec = j(vl�~l�1; : : : ; v0)j2, and hence,A(v) = fim + c j l � ~l � i � l � 1g. Notice thatjA(v)j = ~l = log log n.

107

Phase 2:Now read all remaining rowsxi with i 2 fl � ~l; : : : ; l � 1g, but again store all
values of variablesxj with j 2 A(v) (i. e., the variables in columnc). Finally, we know the
complete addressa = j(vl�1; : : : ; v0)j2 of the output bit. If it holds thatba=mc � l� ~l� 1,
i. e., the row where the output bit is found has already been read in Phase 1, output “?”.
Otherwise, we can output the stored value ofxa.

Let us analyze the error made by the above algorithm. Letr be the index of the row within which
the addressed output bit for a given inputx lies, i. e.,r = ba=mc, a = j(�(xl�1); : : : ; �(x0))j2.
The algorithm outputs “?” only in the following two cases.

– If z = 0 and Part (2) is executed, then “?” is output only ifr 2 fl � ~l; : : : ; l � 1g.
– If z = 1 and Part (3) is executed, then “?” is output only ifr 2 f0; : : : ; l � ~l � 1g.
We make sure that the algorithm works correct if none of the above cases occurs. In the first
phases of Part (2) and Part (3), we do not read the rowr of the output bit if the above cases do
not occur. In Phase 2 of both parts, the algorithm reads the rows left over, but simultaneously
stores all variables with index inA(v), hence, none of the possibly addressed output bits is
“forgotten.”

For each rowr the probability that it is read at the beginning of Part (2) or(3) is 1=2. Hence,
“?” is only output with probability1=2, and if the computation yields a value fromf0; 1g, it is
guaranteed to be correct.

It remains to code the above algorithm into a randomized read-once branching program. This
can be done by the standard construction techniques for branching programs. We have ensured
already in the description of the algorithm that each variable is only read once. For the evalua-
tion of the bitsvi we use polynomial size branching programs for� as submodules. We can at
any time store the parts of the vectorv computed so far since the whole vector only has lengthl.
The second phases can be represented in polynomial size since alwaysjA(v)j � log log n and
hence, we need only to enlarge the width of the branching program by a logarithmic factor in
order to store all the needed values. 2
By a modified algorithm based on the same ideas as above, it is possible to decrease the failure
probability even to1=3.

We have thus obtained an exponential gap between “Las Vegas”and deterministic algorithms
for the read-once branching program model. Together with the result of Jukna, Razborov,
Savický, and Wegener that ADDRn is representable in polynomial size by nondeterministic
and co-nondeterministic read-once branching programs, weobtain:

Corollary 5.23: P-BP1$ ZPP-BP1\NP-BP1\ coNP-BP1.

108

5.4 A Lower Bound for Randomized Read-k-Times BPs

In this section, we will apply the technique of generalized rectangles from Section 5.1 in its
general form in order to prove an exponential lower bound on the size of randomized read-k-
times branching programs.

We consider the function “Sylvester inner product” introduced already in Section 5.1. We repeat
its definition here for easier reference. Define SYLn : Zn3 � Zn3 ! f0; 1g onn = 2d variables
by

SYLn(x; y) = 1 :, x>Ay � 0 mod 3;
whereA = (ai;j)1�i;j�2d is the Sylvester matrix of dimension2d � 2d, i. e.,ai+1;j+1 := (�1)<bin(i);bin(j)>;
for 0 � i; j � 2d � 1, where bin(i) is the binary representation ofi and< � ; � > the inner
product inZd2. For the whole section, letX := fx1; : : : ; xng andY := fy1; : : : ; yng be the sets
of variables on which SYLn is defined. As in Section 5.2, we omit the subscripts indicating the
input size of a function for better readability of the following.

Borodin, Razborov, and Smolensky [27] have proven that thisfunction has no polynomial size
nondeterministic read-k-times BP fork � c log n for appropriatec. We show that this function
also has no polynomial size randomized read-k-times BPs with two-sided error.

First, we state some facts from the paper of Borodin, Razborov, and Smolensky which we will
also use here.

5.4.1 Facts from the Paper of Borodin, Razborov, and Smolensky

As a first step in their proof, Borodin, Razborov, and Smolensky consider a restriction of(k; p)-
rectangles and the function itself which reduces the original rectangles to simple 2-dimensional
rectangles. We describe this step in the lemma below.

Lemma 5.24: Let k be an integer andp 2 f1; : : : ; ng. Let S = f0; : : : ; s � 1g (as in Sec-
tion 5.1). LetXi � X, Yi � Y , i = 1; : : : ; kp, and letr be the characteristic function of a(k; p)-rectangle inSn with respect to the setsXi [Yi (especially, let the setsXi [Yi fulfill the
requirements of Definition 3.1).

Then there are setsX0 � X and Y0 � Y such that for each assignmenta to X0 [Y0 the
restriction ra of r (which is obtained by replacing the variables inX0 [Y0 according toa)
is the characteristic function of a 2-dimensional rectangle in Sn with respect to the partition(XnX0; Y nY0), wherej(XnX0)� (Y nY0)j � n2 (1� 2k=p) =4k.
For the sake of completeness, we give the proof of this lemma by Borodin, Razborov, and
Smolensky (proof of Theorem 4 in [27]).

109

Proof: We consider a random coloring� : f1; : : : ; kpg ! f0; 1g, where the colors of different
indices fromf1; : : : ; kpg are determined by independent, unbiased coin tosses. DefineX0 := [1�i�kp�(i)=0 Xi; and Y0 := [1�i�kp�(i)=1 Yi:
Let a (k; p)-rectangle with respect toXi [Yi, i = 1; : : : ; kp, be given by its characteristic
functionr : Sn ! f0; 1g. Let r = r1 ^ � � � ^ rkp, whereri depends only on the variables fromXi [Yi. For eachi = 1; : : : ; kp, it holds that eitherXi � X0 or Yi � Y0. Hence, the functionri either depends only on the variables fromXi [Y0, or it only depends on the variables fromX0 [Yi. For an arbitrary assignmenta toX0 [Y0, we can thus writera in the formra = r1a ^ r2a;
wherer1a andr2a only depend on the variables fromXnX0 andY nY0, resp. It remains to show
that there is a choice of� such thatj(XnX0)� (Y nY0)j � n2 (1� 2k=p) =4k.
Call a pair(x; y) 2 X � Y of variablesindependentif it holds for all i = 1; : : : ; kp that
either x 62 Xi or y 62 Yi. The number of pairs(x; y) which are not independent can be
bounded bykp � (1=4)d2n=pe2 (since for a single indexi 2 f1; : : : ; kpg, their number is at
most ((1=2)jXi [Yij)2). Hence, by using the estimated2n=pe � p2(2n=p) and taking into
account that there aren2 pairs of variables altogether, we get the lower bound(1� 2k=p) � n2
on the number of independent pairs.

For arbitrary variablesx 2 X andy 2 Y , it holds that Pr�fx 62 X0g � 2�k and Pr�fy 62 Y0g �2�k, where the probabilities are taken over random choices of�, since each variable occurs in
at mostk of the setsXi [Yi. Now let(x; y) be an independent pair. Then it holds that

Pr�fx 62 X0 ^ y 62 Y0g � 4�k;
since the events “x 62 X0” and “y 62 Y0” are independent. It follows thatE�fx 62 X0 ^ y 62 Y0g � n2 (1� 2k=p) =4k:
Hence, there is a choice of� such thatj(XnX0)� (Y nY0)j � n2 (1� 2k=p) =4k. 2
The key property of the function SYL which Borodin, Razborov, and Smolensky have used is
that not only full Sylvester matrices, but also their submatrices have large rank (this is the math-
ematically most involved part of their proof). More precisely, they have proven the following
fact.

Lemma 5.25: For an arbitrary matrixA let �s(A) be the minimal rank of a submatrix ofA
with at leasts entries. LetS be the Sylvester matrix of dimensionn = 2d. Then�s(S) � s2n(ln(2n)� (1=2) � ln s) :

110

For the lower bound on the nondeterministic read-k-times BP size of SYL, Borodin, Razborov,
and Smolensky have shown that “many”(k; p)-rectangles are needed to cover all 1-inputs. Fol-
lowing the technique from Section 5.1, we prove the strongerfact that in each rectangle which is
not “very small” the number of1-inputs for SYL amounts to approximately one third of all in-
puts. Hence, SYL fulfills the “rectangle balanced property”of Theorem 5.11 and even belongs
to the class of “hardest” functions discussed at the end of Section 5.1.

5.4.2 Preparations for the Proof

In the following, we state the most important building blocks of our proof in form of two
lemmas. One important step is to see that an arbitrary subfunction of SYL can be written as the
transformation of an appropriate bilinear form. This is described in the following lemma.

Lemma 5.26: Let a be an assignment to the variables fromX0 [Y0, whereX0 � X andY0 � Y . Definet := jXnX0j, u := jY nY0j. LetR be an arbitrary 2-dimensional rectangle inZt3�Zu3, i. e.,R = T � U with T � Zt3 andU � Zu3.
Then there is a one-to-one function' : Zt3�Zu3 ! Zt+13 �Zu+13 and a bilinear formF : Zt+13 �Zu+13 ! Z3defined byF (x; y) := x>By, wherex 2 Zt+13 , y 2 Zu+13 andB is a(t+1)�(u+1)-
matrix overZ3, such that the following holds:

(1) SYLa(x; y) = (1; if F ('(x; y)) � 0 mod 3,0; if F ('(x; y)) 2 Z3nf0g;
(2) jR \ SYL�1a (1)j = j'(R) \ F�1(0)j, andjR \ SYL�1a (0)j = j'(R) \ F�1(Z3nf0g)j;
(3) rank(B) � �t�u(A) (whereA is the Sylvester matrix of dimensionn � n and�t�u(A) as

defined in Lemma 5.25).

In these expressions,SYLa denotes the restriction ofSYL resulting from the substitution of
variables according toa.

Proof: As in the definition of SYL, letA be the Sylvester matrix of dimensionn�n. LetA0 be
thet�u-submatrix ofAwhich is obtained by deleting the rows and columns ofA corresponding
to X0 andY0, resp. There existv 2 Zt3, w 2 Zu3 and 2 Z3 such that SYLa(x; y) = 1 if and
only ifx>A0y + x>v + w>y + � 0 mod 3;
wherex 2 Zt3 andy 2 Zu3. We can writex>A0y + x>v + w>y + = x0>By0
wherex0 2 Zt+13 andy0 2 Zu+13 are defined byx0i := (1; if i = 1;xi�1; if i 2 f2; : : : ; t+ 1g; and y0i := (1; if i = 1;yi�1; if i 2 f2; : : : ; u+ 1g;

111

and the matrixB = (bij)1�i�t+1;1�j�u+1 is defined byB := 0BB@ w>v A0 1CCA :
Obviously, rank(B) � rank(A0). Define the bilinear formF : Zt+13 �Zu+13 ! Z3 byF (x; y) :=x>By for x 2 Zt+13 , y 2 Zu+13 , and' : Zt3�Zu3 ! Zt+13 � Zu+13 by '(x; y) := (x0; y0), x0 andy0 as above. Then', F andB have the claimed properties (1) to (3). (Property (2) follows from
the fact that' is one-to-one.) 2
The second building block is a generalization of a lemma attributed to Lindsey (see, e. g., [34]).
This lemma plays the same role in the overall proof as the upper bound on the discrepancy of
RowTestC in the proof of Section 5.2.

In its familiar form, Lindsey’s lemma states that in every submatrix of a Hadamard matrix
which is not too small the number of1’s and(�1)’s is nearly balanced. (A Hadamard matrix
is an orthogonal matrix with entries equal to�1 or 1. A special type of Hadamard matrices are
Sylvester matrices, defined by the inner product inZn2 as seen above.)

For our generalization of the lemma, we consider a matrix defined by a bilinear form with values
in Z3. Consider the3t � 3u-matrix M = (m(x; y))x2Zt3; y2Zu3, defined bym(x; y) := x>Ay,
wherex 2 Zt3, y 2 Zu3, andA is a t � u-matrix with “large” rank overZ3. We show that in
every submatrix of aM which is not too small the number of entries0, 1, and�1 is nearly
balanced, i. e., amounts to approximately one third of all entries.

This is done by the following indirect approach. For each pair fi; jg, i; j 2 Z3, i 6= j, we define
a separate3t � 3u matrixMij byMij(x; y) := 8><>:1; if x>Ay � i mod 3;�1; if x>Ay � j mod 3;0; otherwise;

wherex 2 Zt3 andy 2 Zu3. We show that the sum of1’s and(�1)’s in submatrices of theseMij
is small if the matrixA has large rank.

Lemma 5.27: LetA be an arbitraryt�u-matrix overZ3. Define the matricesMij as described
above. Furthermore, let an arbitrary rectangle be given by the setsS � Zt3, T � Zu3. Letdij(S; T) denote the sum of1’s and(�1)’s ofMij in this rectangle, i. e.,dij(S; T) :=Xx2SXy2T Mij(x; y):
Then it holds that

(1) jd1;�1(S; T)j � (2=p3) � 3t+u � 3�rank(A)=2;
(2) jd1;0(S; T)j � 3t+u � 3�rank(A)=2;
(3) jd�1;0(S; T)j � 3t+u � 3�rank(A)=2.
The lengthy and technical proof of this lemma can be found at the end of the section.

112

5.4.3 The Proof of the Lower Bound Result

We now state and prove the main result of this section.

Theorem 5.28: LetG be a randomized 3-way read-k-times BP forSYLn with two-sided error
at most", where" is a constant with0 � " < 1=3. ThenjGj = exp�
� nk3 � 4k�� :
Proof: We apply Theorem 5.11 in its general form for 3-way read-k-times branching programs
and(k; p)-rectangles withp := 4k. Furthermore, we choose� as the uniform distribution onZ2n3 .

LetR be an arbitrary(k; p)-rectangle inZ2n3 . As in the proof of Theorem 5.14, the main work
will be to prove a statement on the distribution of the0-inputs and1-inputs for SYL inR. We
claim that�(R \ SYL�1(0)) � � � �(R \ SYL�1(1))� �(n); (5.12)

where� := 2 and�(n) is defined later on. The proof of this fact consists of three parts.

Part 1: LetR be a(k; p)-rectangle with respect to setsXi[Yi,Xi � X, Yi � Y , i = 1; : : : ; kp,
fulfilling the requirements of Definition 3.1. We first apply Lemma 5.24. LetX0 � X, Y0 � Y
be as described in the lemma. Leta be an arbitrary assignment toX0 andY0, andt := jXnX0j,u := jY nY0j.
In the following, we only consider the 2-dimensional rectangle Ra, i. e., the restriction ofR
resulting from the substitution ofa, and the subfunction SYLa. The rectangleRa has the prop-
erty that it consists of two factors depending onx- or y-variables only. We also know thatj(XnX0)� (Y nY0)j = t � u � n2=(2 � 4k) =: s.
Part 2: While the considered rectangle has become simpler by the restriction, the function SYLa
is too complicated to be used itself. This problem is solved by Lemma 5.26. From this lemma,
we obtain a one-to-one function' and a bilinear formF onZt+13 �Zu+13 such that

SYLa(x; y) = 1 , F ('(x; y)) � 0 mod 3:
The 2-dimensional rectangleRa is transformed into the 2-dimensional rectangle'(Ra) inZt+13 �Zu+13 . Moreover, we know that for the matrixB of F it holds that rank(B) � �s(A) by
Statement (3) of Lemma 5.26 (s as defined above). By Lemma 5.25, we get a lower bound on
the rank ofB. It remains to show that for eachc 2 Z3 the number of inputs in a rectangle inZt+13 �Zu+13 for whichF (x; y) = c is approximately one third of the size of this rectangle.

Part 3: At this point we apply our generalized form of Lindsey’s lemma. LetR0 be an arbitrary
rectangleZt+13 �Zu+13 . In Lemma 5.27, substitute the matrixB for A, R0 for the rectangle andt+ 1, u+ 1 for t andu, resp. Then it follows that��jR0 \ F�1(1)j � jR0 \ F�1(�1)j�� � (2=p3) � 3t+u+2 � 3�rank(B)=2 =: b;��jR0 \ F�1(1)j � jR0 \ F�1(0)j�� � 3t+u+2 � 3�rank(B)=2 � b; and��jR0 \ F�1(�1)j � jR0 \ F�1(0)j�� � 3t+u+2 � 3�rank(B)=2 � b:

113

We conclude thatjR0 \ F�1(Z3nf0g)j � 2 � jR0 \ F�1(0)j � 2b: (5.13)

To see this, letx := jR0 \ F�1(0)j, y := jR0 \ F�1(1)j, z := jR0 \ F�1(�1)j. Theny + z is
minimized under the constraintsjy � zj � b, jy � xj � b andjz � xj � b if y = z = x � b.
Hence,y + z � 2x� 2b.
In the above Inequality (5.13) substituteR0 = '(Ra), apply Statement (2) from Lemma 5.26
and apply the uniform distribution� on the assignments to(XnX0)� (Y nY0) on both sides to
obtain�(Ra \ SYL�1a (0)) � 2 � �(Ra \ SYL�1a (1))� 2b � 3�t�u:
This inequality holds for all assignmentsa to X0 andY0, and hence, by the law of total prob-
ability, it carries over toR and SYL. We have thus shown that the rectangle balance property,
Inequality (5.12), holds if we define� := 2 and�(n) := 2b � 3�t�u = 12p3 � 3� rank(B)=2:
Now we are ready to apply Theorem 5.11. As mentioned above, itholds that rank(B) � �s(A),
wheres = n2=(2 � 4k). By Lemma 5.25, we have�s(A) =
� nk � 4k� :
Furthermore, it is easy to verify that�(SYL�1(1)) = 1=3� o(1). Hence, for" < 1=3 we obtain
by Theorem 5.11:jGj � 13 � 2 � �13 � o(1)� "��(n) !1=(4k2) = exp�
� nk3 � 4k�� : 2
We conclude the section by deriving an exponential lower bound for the 2-way case from the
above result. We consider the function which is obtained from SYL by encoding the values
fromZ3 by Boolean values.

Definecn : f00; 01; 10; 11gn ! Zn3[f?g as the incompletely specified function which decodes
each pair of bits of the input vector as a value inZ3[f?g. More precisely, letc1 map00, 01,10, and11 to 0, 1, and�1 in Z3 and to? = “undefined,” resp. Forn � 2, let xi := (x0i ; x1i),i = 1; : : : ; n, and definecn(x1; : : : ; xn) := (c1(x1); : : : ; c1(xn));
if xi 2 f00; 01; 10g for all i, andcn(x1; : : : ; xn) := ?, if xi = 11 for at least for onei 2f1; : : : ; ng.

114

Define the functiongSYL : f0; 1g4n ! f0; 1g on x = ((x01; x11); : : : ; (x0n; x1n)) and y =((y01; y11); : : : ; (y0n; y1n)) bygSYL(x; y) := (SYL(c(x); c(y)); if c(x); c(y) 2 Zn3;0; otherwise.

Theorem 5.29: LetG be a randomized read-k-times 2-way BP forgSYL with two-sided error
at most", where" is a constant with0 � " < 1=2. Then there is a constantc such thatjGj = exp�
� nk3 � ck�� :
Proof: We show how the given randomized read-k-times 2-way BPG for gSYL can be turned
into a 3-way BPG0 for SYL. Let z1; : : : ; zr be the probabilistic variables ofG.

First consider a node inG which is labeled by a variablex0i or y0i . Replace the variable byxi
or yi, resp. Replace the0-edge by two edges labeled by “0” and by “�1”, resp., and the1-edge
by an edge labeled by “1”. Next, consider a node labeled byx1i or y1i . The variable is again
replaced byxi or yi. Replace the0-edge by two edges labeled by “0” and by “1”, resp., and the1-edge by an edge labeled by “�1”. Nodes labeled by probabilistic variables are not modified.
Call the resulting graphG0. Obviously,G0 is a randomized read-(2k)-times 3-way BP and it
holds thatjG0j = jGj.
We claim thatG0 computes SYL with two-sided error at most". Let bc : Zn3 ! f00; 01; 10gn
be the one-to-one and onto function withc(bc(x)) = x for all x 2 Zn3. Let g : f0; 1g4n �f0; 1gr ! f0; 1g be the function computed byG as a deterministic read-k-times BP, and letg0 : Z2n3 � f0; 1gr ! f0; 1g be the function computed byG0. It holds for arbitraryx; y 2 Zn3
that

Prfg0(x; y; z) 6= SYL(x; y)g = Prfg(bc(x);bc(y); z) 6= gSYL(bc(x);bc(y))g � ";
where the values ofz = (z1; : : : ; zr) are chosen fromf0; 1gr according to the uniform distribu-
tion. Hence,G0 fulfills the claimed error bound. By Theorem 5.28 it follows thatjG0j = exp�
� nk3 � 42k�� ;
and the claimed lower bound for arbitrary", " < 1=2, follows from this by the lemma on
probability amplification for randomized read-k-times BPs (Lemma 2.24). 2� � �
It remains to prove the generalized variant of Lindsey’s lemma already used above. Before
we start with the proof, we state some general definitions. For the whole proof, letp 6= 2 be

115

a fixed prime. Letr1; : : : ; r(p�1)=2 be the quadratic residues modulop ander1; : : : ; er(p�1)=2 the
non-residues (we regard0 neither as a residue nor as a non-residue). Let�ap� := 8><>:1; if a 2 fr1; : : : ; r(p�1)=2g;0; if a = 0;�1; if a 2 fer1; : : : ; er(p�1)=2g;
be the Legendre symbol modulop. Furthermore, letA be an arbitraryt� u-matrix overZp.
Proof of Lemma 5.27:

Part (1): The first part of the lemma can be easily proven even forarbitrary fieldsZp, not only

for Z3. Define thept � pu-Matrix M = (m(x; y))x2Ztp; y2Zup by m(x; y) := �x>Ayp �
. Let an

arbitrary 2-dimensional rectangle be given by the setsS � Ztp, T � Zup. Let d denote the sum
of 1’s and(�1)’s of M in this rectangle. We show thatjdj � (p� 1)pt+up�(rank(A)+1)=2:
In the following, we regardM as a real-valued matrix with entries0, 1, and�1. If we do
not state something different explicitly, all calculations are done in real-valued vector spaces.
Furthermore, all congruences “�” are modulop. The overall structure of the proof is similar
to the proof of the upper bound on the discrepancy of the function RowTestC in Section 5.2
(Theorem 5.14).

We consider the symmetric matrixfM := M>M , fM = (em(x; y))x;y2Zup (where the matrix

product is calculated inR). It holds thatem(x; y) = m(x)>m(y), wherem(x) is the column ofM with indexx 2 Zup. Our goal is to computekMk2 = p�, where� is the maximal eigenvalue

of fM .

Step 1:As in the proof of Theorem 5.14, we first calculate the entriesof fM .

Claim 1: For x; y 2 Zup, it holds thatm(x)>m(y) = (��p� (p� 1)pt�1; if Ay � �Ax, Ax;Ay 6� 0, � 2 Zpnf0g;0; otherwise.

Proof: Obviously,m(x)>m(y) = 0 if Ax � 0 orAy � 0. Therefore, letAx 6� 0, Ay 6� 0. We
have m(x)>m(y) = Xz2Ztp�z>Axp ��z>Ayp �= X(az;bz)=(1;1)1 + X(az;bz)=(�1;1)(�1) + X(az ;bz)=(1;�1)(�1) + X(az ;bz)=(�1;�1)1; (5.14)

116

whereaz := �z>Axp �
, bz := � z>Ayp �

and the summation is done over allz 2 Ztp which fulfill

the given restrictions.

First of all, we count the number ofz 2 Ztp with (az; bz) = (1; 1). It holds that�z>Axp � = 1 ^ �z>Ayp � = 1 , 9 i; j : z>Ax � ri ^ z>Ay � rj: (5.15)

For fixed i and j, we are looking for the number of solutions inZtp for the system of linear
equationsa1z1 + : : :+ atzt � ri^ b1z1 + : : :+ btzt � rj
in the variablesz1; : : : ; zt, wherea := Ax, a = (ai)1�i�t, andb := Ay, b = (bi)1�i�t.
If Ax andAy are linearly independent inZtp, this system has exactlypt�2 solutions. Hence,
there are(p�12)2pt�2 vectorsz 2 Ztp which fulfill (5.15).

If Ax andAy are linearly dependent,Ay � �Ax for an� 6� 0, then this system has either no

solution or exactlypt�1 solutions. The latter case occurs if and only ifrj � �ri. If
��p� = 1,

then for eachi 2 f1; : : : ; (p � 1)=2g there is exactly onej with rj � �ri, and hence the total

number of vectors fulfilling (5.15) is(p�12)pt�1. If
��p� = �1, thenrj � �ri is always false

and the total number ofz-vectors is zero.

By an analogous argumentation, we get the same number ofz-vectors with(az; bz) = (�1;�1).
It remains to calculate the number ofz 2 Ztp with (az; bz) = (1;�1) (analogously for(az; bz) =(�1; 1)). Again, we count the solutions of linear equations inZtp. Here we are looking for
solutions for the systema1z1 + : : :+ atzt � ri^ b1z1 + : : :+ btzt � erj;
where theai andbi are defined as above. IfAx andAy are linearly independent, the number
of solutions for eachi; j is againpt�2. If Ay � �Ax, � 6� 0, it is required thaterj = �rj for
solutions to exist. Hence, we get a total number of(p�12)pt�1 vectorsz 2 Ztp with (az; bz) =(1;�1), if

��p� = �1, and no solutions, otherwise.

By substituting our results into (5.14), the claim follows. 2
Step 2:Now we calculate the maximal eigenvalue of the matrixfM = M>M . We claim that all
columnsem(x) of fM , wherex 2 Zup, already are eigenvectors offM .

Claim 2: For x; y 2 Zup, it holds thatem(x)> em(y) = 8><>:��p� (p� 1)3pu�rank(A)p2(t�1); if Ay � �Ax, Ax;Ay 6� 0,� 2 Zpnf0g;0; otherwise.

117

Proof: LetAx;Ay 6� 0. It holds thatem(x)> em(y) = Xz2Zup em(z; x)em(z; y):
By Claim 1, we get:em(z; x)em(z; y) = 8><>:��1zp ���2zp � (p� 1)2p2(t�1); if Az � �1zAx, Az � �2zAy,

for �1z ; �2z 6� 0, Ax;Ay 6� 0;0; otherwise.

We consider the first case, letAz � �1zAx, Az � �2zAy, �1z ; �2z 6� 0. ThenAy � �1z(�2z)�1Ax,
andAx andAy are linearly dependent. Therefore, there is an� 6� 0 with Ay � �Ax, and�1z(�2z)�1 � � for all z. Especially, it holds that��1zp ���2zp � = ��1zp ��(�2z)�1p � = ��1z(�2z)�1p � = ��p�
for all z 2 Zup. How manyz-vectors are there for which the first case occurs? Their number is
obviously equal to the number of solutions ofAz � �1zAx;
for �1z 6� 0. There arepu�rank(A) solutions for fixed�1z , andp � 1 values�1z 6� 0. Hence, the
total number ofz-vectors for which the first case occurs is(p � 1)pu�rank(A). Putting all the
results together, we get the claimed value forem(x)> em(y). 2
From Claim 2, it follows thatfM � em(x) = (p� 1)2pt+u�rank(A)�1 � em(x);
for x 2 Zu3 with Ax 6� 0 (to see this, compare the entries with indexz 2 Zup on both sides).

Hence,em(x) is an eigenvector for the eigenvalue� := (p � 1)2pt+u�rank(A)�1 of fM . Further-
more,0 and� are all the eigenvalues offM , since all columns offM are eigenvectors for these
eigenvalues. Therefore,� is the maximal eigenvalue offM = M>M .

Step 3:Now we are ready to estimate the sum of1’s and(�1)’s in the given rectangle of the
matrixM . We proceed as in the proof of Theorem 5.14. We know from abovethatkMk2 = p� = (p� 1)p(t+u�rank(A)�1)=2:
Let 1S and1T be the characteristic vectors ofS andT , resp. By the inequality of Cauchy-
Schwartz we getjdj = j1S> �M � 1T j � k1Sk2 � kM � 1Tk2� p(t+u)=2 � (p� 1)p(t+u�rank(A)�1)=2 = (p� 1)pt+up�(rank(A)+1)=2:

118

Part (2): For this part, letM := M1;0, M = (m(x; y))x2Zt3; y2Zu3. We show thatjd1;0j � 3t+u � 3�rank(A)=2:
The proof follows the same pattern as for Part (1). The first step can again be easily done for
generalp, we substitutep = 3 later on to simplify the calculations.

Step 1:Again, letm(x) be the column with numberx 2 Zup of M .

Claim 3: For x; y 2 Zup, it holds thatm(x)>m(y) = 8>>>>>>><>>>>>>>:(3�p2)2pt�2; if Ax andAy are linearly independent inZp;(p+12)pt�1; if Ay � �Ay, Ax;Ay 6� 0,
��p� = 1;pt�1; if Ay � �Ay, Ax;Ay 6� 0,
��p� = �1;(3�p2)pt�1; if eitherAx � 0 or Ay � 0;pt; if Ax � Ay � 0.

Proof: We start with the calculation of the number ofz 2 Ztp with m(z; x) = 1 andm(z; y) =1. We see that we have done this already in the proof of Part (1),X(az;bz)=(1;1)1 = 8>><>>:(p�12)2 � pt�2; if Ax andAy are linearly independent;(p�12) � pt�1; if Ay � �Ax, Ax;Ay 6� 0,
��p� = 1;0; otherwise.

Next, we compute the number ofz 2 Ztp with m(z; x) = �1 andm(z; y) = �1, i. e., the
number of solutions of the systemz>Ax � 0 ^ z>Ay � 0
in the variablesz1; : : : ; zt in Ztp. This number of solutions ispt�rank(Ax;Ay). More explicitly, we
have X(az;bz)=(�1;�1)1 = 8><>:pt�2; if Ax andAy are linearly independent;pt; if Ax � Ay � 0;pt�1; otherwise.

Finally, we need the number ofz 2 Ztp with m(z; x) = 1 andm(z; y) = �1 (analogously form(z; x) = �1 andm(z; x) = 1). The conditionm(z; x) = 1 is equivalent to9 i 2 f1; : : : ; (p� 1)=2g : z>Ax � ri ^ z>Ay � 0:
Let us consider the number of solutions for fixedi. If Ax andAy are linearly independent, there
arept�2 solutions. IfAx � 0, there are no solutions (sinceri 6� 0); and ifAy � 0 andAx 6� 0,

119

we have exactlypt�1 solutions. Finally, forAx;Ay 6� 0 andAx, Ay linearly dependent, the
number of solutions is again0 (ri 6� 0). Hence,X(az ;bz)=(1;�1)1 = 8><>:(p�12) � pt�2; if Ax andAy are linearly independent;(p�12) � pt�1; if Ax 6� 0, Ay � 0;0; otherwise.

By summing up our results, we getm(x)>m(y)= X(az ;bz)=(1;1)1 + X(az ;bz)=(�1;1)(�1) + X(az;bz)=(1;�1)(�1) + X(az;bz)=(�1;�1)1= 8>>>>>>><>>>>>>>:(p�12)2pt�2 + pt�2 � (p� 1)pt�2; if Ax andAy are linearly indep.;(p�12)pt�1 + pt�1; if Ay � �Ay, Ax;Ay 6� 0,
��p� = 1;pt�1; if Ay � �Ay, Ax;Ay 6� 0,
��p� = �1;pt�1 � (p�12)pt�1; if eitherAx � 0 orAy � 0;pt; if Ax � Ay � 0. 2

Now letp = 3. All the following congruences are modulo 3. By the above claim, we getm(x)>m(y) = 8>>><>>>:2 � 3t�1; if Ay � �Ay, Ax;Ay 6� 0, � � 1;3t�1; if Ay � �Ay, Ax;Ay 6� 0, � � �1;3t; if Ax � Ay � 0;0; otherwise.

Step 2:As in the proof of Part (1), we compute the largest eigenvalueof fM , wherefM = M>M ,em(x; y) = m(x)>m(y). This is a little bit more complicated here, since the columns offM are
no longer eigenvectors. But by Claim 3, we will obtain that this matrix has a simple block
structure.

The matrixfM has only entries0, a := 2 � 3t�1, b := 3t�1 and3t. Let

ker(A) := fx 2 Zu3 j Ax = 0g and

im(A) := fy 2 Zt3 j 9 x 2 Zu3 : Ax = yg:
Obviously, em(x; y) = 3t, if x; y 2 ker(A) and em(x; y) = 0, if x 2 ker(A), but y 62 ker(A)
or vice versa. Next, we consider the vectorsx; y 62 ker(A). For v 2 im(A)nf0g define the
following subspaces ofZu3:U+(v) := fx 2 Zu3 j Ax = vg and U�(v) := fx 2 Zu3 j Ax = �vg:

120

These sets are either disjoint or equal for differentv. There are(1=2)(3rank(A) � 1) =: r vectorsv1; : : : ; vr such that the setsU+(vi); U�(vi) form a partition of im(A)nf0g.
We have shown above that forv 2 im(A)nf0g it holds thatem(x; y) = 8><>:a; x; y 2 U+(v)b; x 2 U+(v) andy 2 U�(v) or vice versa;0; x 2 (U+(v) [U�(v)) andy 62 (U+(v) [U�(v)) or vice versa.

It holds that j ker(A)j = 3u�rank(A) =: k and alsojU+(v)j = jU�(v)j = k for all v 2
im(A)nf0g. LetP be apu� pu-permutation matrix such that after application of the respective
permutation the order of vectors ofZu3 is consistent with the following order of subspaces:

ker(A); U+(v1); U�(v1); U+(v2); U�(v2); : : : ; U+(vr); U�(vr):
(The order of the vectors within each of these subspaces doesnot matter.) By the considerations
above, we obtain thatfM 0 := P�1fMP is a block diagonal matrix of the formfM 0 = diag(B0; B1; : : : ; Br);
where the blockB0 is ak � k-matrix with all entries equal to3t and the blocksBi with i � 1
are(2k)� (2k)-matrices of the formBi = 0BBBBBBB@a : : : a b : : : b

...
...

...
...a : : : a b : : : bb : : : b a : : : a

...
...

...
...b : : : b a : : : a
1CCCCCCCA ;

each of the four constant submatrices has dimensionk � k.

The matrixB0 has the eigenvalues0 andk � 3t = 3u+t�rank(A), and the matricesBi, i � 1, have
the eigenvaluesk � (a � b) = 3t+u�rank(A)�1, k � (a + b) = 3t+u�rank(A) and, if k � 2, also0.
It follows thatfM altogether has the eigenvalues0 (if rank(A) � u� 1), 3t, 3t+u�rank(A)�1 and3t+u�rank(A), and thus3t+u�rank(A) is the maximal eigenvalue.

Step 3:This step is analogous to the proof of Part (1).

Part (3): Here we have to consider the matrixM�1;0. The proof is analogous to the proof for
Part (2) (for the matrixM1;0) due to the “duality” of the values�1 and1. 2

121

5.5 The Separation of the Read-k-Times Hierarchy
by Thathachar

We conclude the account on applications of the technique of generalized rectangles by present-
ing some more details on Thathachar’s result that the classes of sequences of functions which
are representable by read-k-times branching programs of polynomial size form a proper hierar-
chy with respect tok.

Thathachar has proven that a function which is closely related to the function ModSum from
Section 5.2 is contained in the class P-BP(k+1), but not in NP-BPk[BPP"-BPk, for an error
probability " � (1 � � 0)(1=3) � 2�5k+1

andk = k(N) � (1=p2 � �)plogN , whereN is the
input size of the function and�; � 0 > 0 are arbitrarily small constants.

After presenting the precise result of Thathachar (withoutproof), we show that the lower bound
in fact even holds for a larger range of error probabilities,namely for all" � (1 � � 0)3�(k+1),� 0 > 0 an arbitrarily small constant. This follows from an asymptotically exact estimate of the
number of1-inputs of the function.

We first give the definition of Thathachar’s function. Letq 6= 2 be a prime andk � 2. We
considerk-dimensional matrices as inputs, the indices of matrix entries are from the hypercubef1; : : : ; ngk. Ford 2 f1; : : : ; kg andi 2 f1; : : : ; ng, we define the index setIdi := f(i1; : : : ; ink) 2 f1; : : : ; ngk j id = ig;
this is “the ith hyperplane in thedth direction” (e. g., fork = 2, the setsI1i , I2i contain the
indices of rows and columns, resp.). Notice thatjIdi j = nk�1 for all i andd. For the whole
section, letX be ak-dimensional Boolean matrix of variables and letXdi be the set of variables
in X corresponding to the index setIdi .

Definition 5.30: Define CHSPkq : f0; 1gnk ! f0; 1g (“Conjunctive Hyperplanar Sum-of-Pro-
ducts”) on thek-dimensional matrixX of Boolean variables by

CHSPkq(X) := ^1�d�k PlaneTestd(X);
where PlaneTestd : f0; 1gnk ! f0; 1g is defined ford 2 f1; : : : ; kg by

PlaneTestd(X) := 24 nXi=1 Mx2Xdi x � 0 mod q35 :
(As usual, “�” denotes the addition inZ2, a� b := (a+ b) mod 2 for a; b 2 f0; 1g.)
We remark that in Thathachar’s original paper, the functionCHSPkq is defined using the so-called
“Fourier encoding” of the inputs, i. e., the variables take values inf�1; 1g instead off0; 1g. It
is easy to verify that Thathachar’s results hold for both encodings because of the one-to-one and
onto mapping between these sets of values.

122

Thathachar has proven the following.

Theorem 5.31 (Thathachar): LetN = nk+1 be the input size ofCHSPk+1q and letk and" be

functions ofN with 1 � k � (1=p2 � �)plogN and 0 � " � (1 � � 0)(1=3) � 2�(2q�1)k+1 ,
where�; � 0 > 0 are arbitrarily small constants. Then it holds that

(1) CHSPk+1q 2 coNP-BP1;

(2) CHSPk+1q 62 NP-BPk[BPP"-BPk.

The first part of this theorem is easy to see. A nondeterministic read-once branching program for
CHSPk+1q simply “guesses” a single directiond 2 f1; : : : ; k + 1g and evaluates PlaneTestd(X)
by a deterministic OBDD of polynomial size. For a0-input X, it holds that at least one of
the k + 1 functions PlaneTestd(X) yields the output zero. This nondeterministic read-once
branching program can also be seen as a randomized read-oncebranching program with one-
sided error at most1� 1=(k + 1), hence we even have CHSPk+1q 2 coRP1�1=(k+1)-BP1.

The lower bounds in Part (2) (for nondeterministic and randomized read-k-times BPs) have
been established by the technique of generalized rectangles from Section 5.1. By an improved
estimate of the number of1-inputs of CHSPk+1q and using Thathachar’s results, the lower bound
for the randomized case can be proven also for larger values of ". More precisely, we get the
following improved result.

Theorem 5.32: LetG be a randomized read-k-times BP forCHSPk+1q with two-sided error".
The parametersk and " may both depend on the input sizeN = nk+1 of CHSPk+1q . Then it
holds thatjGj = exp �
 �(%(k)� ") �N1=(k+1) � k�3 � 2�2k�� ;
where%(k) is a term with%(k) = q�(k+1)(1 + o(1)) (for N !1).

The most difficult part of the proof of this theorem has already been done by Thathachar. He
has shown that the function CHSPk+1q fulfills the “rectangle balance property” of Lemma 5.11
with respect to(k; p)-rectangles where the parameterp is chosen appropriately.

Lemma 5.33 (Thathachar): Letp := 144 � k � 2k, and letR be an arbitrary(k; p)-rectangle inf0; 1gN , N = nk+1. Then it holds that2�N � jR \ (CHSPk+1q)�1(0)j � � � 2�N � jR \ (CHSPk+1q)�1(1)j � �(N);
where� := q � 1 and�(N) := 2(6(k+1)2k+1)�1N1=(k+1)

, := cos(�=q)1=80 < 1.

Furthermore, we use the following, asymptotically preciseestimate of the number of1-inputs
of CHSPkq as a tool:

Lemma 5.34: LetN = nk andq = o(N1=2k). Then it holds thatj(CHSPkq)�1(1)j � 2�N = q�k � (1 + o(1)):
123

We first derive the desired result and defer the technical proof of the above lemma to the end of
the section.

Proof of Theorem 5.32: The theorem follows immediately by Theorem 5.11 and the above
two lemmas. We consider(k; p)-rectangles withp := 144 � k � 2k. Furthermore, we choose� as
the uniform distribution onf0; 1gN , whereN = nk+1, and� and� as indicated in Lemma 5.33.
Let G be a randomized read-k-times BP for CHSPk+1q with two-sided error". Then Theo-
rem 5.11 yields:jGj � 12 ��� (%(k)� ")�(n) �1=(kp) = exp �
 �(%(k)� ")N1=(k+1)k�32�2k�� ;
where%(k) := 2�N j(CHSPk+1q)�1(1)j = q�(k+1)(1 + o(1)). 2
We list some implications of the above results on the complexity classes defined in terms of the
size of read-k-times branching programs.

Theorem 5.35: Let1 � k � (1=p2� �)plogN and0 � " � (1� � 0)q�(k+1), where�; � 0 > 0
are arbitrarily small constants. Then the following holds:

(1) P-BP(k+1)n (NP-BPk [BPP"-BPk) 6= ;, P-BPk $ RP1�1=(k+1)-BPk;

(2) RP-BPk 6= coRP-BPk, RP"-BPk $ RP1�1=(k+1)-BPk;

(3) NP-BPk 6� BPP"-BP1, BPP"-BP1$ BPP"0-BP1

where"0 := 1�1=(k+1)2�1=(k+1) + � 00(N), for � 00(N) > 0 with � 00(N)�1 = 2Poly(N).
All statements can be easily derived from Theorem 5.31 and Theorem 5.32. For Part (3), apply
Lemma 2.32.

We see that the restriction on the error probability needed for the lower bound on the size of
CHSPk+1q , " � (1 � � 0)q�(k+1), is still far away from the error of the best known randomized
read-k-times branching program of polynomial size for this function, which is nearly1=2. It
remains open to determine the least error probability for which polynomial size still can be
guaranteed. It is not clear whether CHSPk+1q 2 BPP-BPk or not.

It seems to be hard to prove a better lower bound on the size of randomized read-k-times branch-
ing programs for CHSPk+1q by the technique of Section 5.1, since the number of1-inputs of the
function is very small ifk is large. One possible remedy against this is trying to use a distribu-
tion of the inputs different from the uniform one which puts alarger weight on the1-inputs.� � �
We now present the proof of Lemma 5.34 left out above. This estimate of the number of1-inputs
of CHSPk+1q is done essentially along the same lines as the estimate for ModSum in Section 5.2.
We first introduce some notation and prove a technical lemma.

124

In Section 5.2, we have definedS(n; c) as the number of solutions of the equationx1 + � � �+ xn � c mod 3, where thexi are Boolean variables. Here we generalize this defi-
nition to arbitrary moduli as follows. For natural numbersn andm andc 2 Zm, letS(n;m; c) := nXk=0 �nk�[k � c modm]:
The exact value ofS(n;m; c) seems to be hard to determine, but at least we have an asymptoti-
cally precise estimate:

Lemma 5.36: For m = o(pn) andc 2 f0; : : : ; m� 1g it holds thatnXk=0 �nk�[k � c modm] = 2nm (1 + o(1)):
The following proof of this fact is due to M. Dietzfelbinger.

Proof: Our goal is to show that all valuesS(n;m; c) for c = 0; : : : ; m � 1 lie in an interval
of the size of the largest binomial coefficient

� nn=2�. Since it holds that
Pm�1c=0 S(n;m; c) = 2n,

it follows that a single value is of size2n=m plus an error term no larger than the interval size� nn=2�, which is asymptotically smaller than2n=m for m = o(pn).
To prove this, we consider an arbitrary real-valued sequence (ak)k2Zwith the following proper-
ties:

(1) ak � 0 for all k 2 Z;

(2) (ak)k2Zhas a finite support, i. e.,jfk j ak 6= 0gj <1;

(3) There is an indexk0 2 Z such thatak � ak0 for all k � k0 � k0 andak � ak0 for allk0 � k � k0. Especially,ak0 is the maximum of the sequence(ak)k2Z.
The sequence(ak) defined byak := �nk�, k 2 Z (and setting

�nk� := 0 for k 62 f0; : : : ; ng)
obviously has the above properties.

For c 2 f0; : : : ; m� 1g, definesc := Xk 2Zk� cmodmak:
Claim: For arbitrary c; d 2 f0; : : : ; m� 1g, it holds thatjsc � sdj � ak0 .
Proof: We assume that the sequence(ak)k2Zhas at least one value different from zero (other-
wise, the claim is obviously fulfilled). Letic := minfi 2 Z j aim+c > 0g andid := minfi 2Z j aim+d > 0g. Because of the symmetry of the claim inc andd, we can assume w. l. o. g. thatic � id. Because of Property (3), the indexiM := maxfi j aim+c � aim+dg is defined.

125

We can estimate the differencesc � sd as followssc � sd =Xk�c ak �Xk�d ak =Xi�ic(aim+c � aim+d)= Xic�i�iM(aim+c � aim+d) + Xi�iM+1(aim+c � aim+d)� Xi�iM+1(aim+c � aim+d)= a(iM+1)m+c � a(iM+1)m+d + Xi�iM+2(aim+c � aim+d)= a(iM+1)m+c + Xi�iM+1(a(i+1)m+c � aim+d)� a(iM+1)m+c � ak0 :
The third line follows sinceaim+c � aim+d � 0 for ic � i � iM . The inequality in Line 6
holds sinceaim+c+m � aim+d for im � iM + 1. By an analogous argumentation, we obtainsc � sd � �a(iM+1)m+d � �ak0 . 2
Now defineS := m�1Xc=0 sc:
Sincejsc � sdj � ak0 for all c; d, it follows that���� Sm � sc���� � ak0 ;
for all c 2 f0; : : : ; m� 1g.
It remains only to apply this result to the sequence of binomial coefficients. By Stirling’s for-
mula we getak0 = � nbn=2c� =r2� � 2npn � (1 + o(1));
and applying our above result:����2nm � S(n;m; c)���� �r 2� � 2npn � (1 + o(1)):
It follows thatS(n;m; c) = (2n=m)(1 + o(1)) if m = o(pn) as claimed. 2
Now we are ready to calculate the number of 1-inputs of CHSPkq .

126

Proof of Lemma 5.34: Let X be thek-dimensional input matrix of CHSPkp. We start by
“guessing” the results of the parity checks for allkn hyperplanes, let these be the constantspdi 2 Z2, for d 2 f1; : : : ; kg andi 2 f1; : : : ; ng. It holds that CHSPkq(X) = 1 if and only ifXx2Xdi x � pdi mod 2; for all d 2 f1; : : : ; kg andi 2 f1; : : : ; ng; (5.16)

and additionallynXi=1 pdi � 0 mod q; for all d 2 f1; : : : ; kg. (5.17)

Equation (5.16) can also be seen as a linear system of equations for thenk variables ofX inZ2. We recursively define thekn� nk-matrix of the coefficients of this system. First, letM1 be
then� n-indentity matrix. Fork > 1, define thekn� nk-matrixMk as follows (empty spaces
indicate zero-entries):

Mk :=
26666666666666666664

1 1 : : : 1 1 1 : : : 1
... 1 1 : : : 1Mk�1 Mk�1 : : : Mk�1

37777777777777777775 :
The matrixMk consists ofn lines containingnk�1 consecutive ones each in the upper part and
of n copies of the(k� 1)n� nk�1-dimensional matrixMk�1 in the lower part.

Let x = (x1; : : : ; xnk) and b := (p11; : : : ; p1n; : : : ; pk1; : : : ; pkn) 2 Zkn2 . By these definitions,
Equation (5.16) becomesMk � x � b mod 2: (5.18)

We count the number of solutions of this system for fixedpdi . As the second step, we will count
the number of possible choices for thepdi .
We prove by induction thatMk has rankkn� (k � 1). Fork = 1, the claim is obviously true.
Now consider the matrixMk, k > 1. We assume thatMk�1 has rank(k � 1)n � (k � 2).

127

For i = 1; : : : ; n call the columns(i � 1)nk�1 + 1; : : : ; ink�1 in Mk the ith block. Apply the
following column-transformations onMk: Add the first block to alln � 1 other blocks, which
cancels out all copies ofMk�1 in the lower part except in the first block and changes all zeros
to ones in the first row of the blocks2; : : : ; n. It is easy to see that the set of column vectors in
the blocks2; : : : ; n obtained in this way has rankn � 1. Furthermore, no column vector from
the first block is a linear combination of columns in the blocks2; : : : ; n and vice versa. Finally,
the column vectors of the first block have rank(k � 1)n� (k � 2) by assumption. Hence,Mk
has rank(k � 1)n� (k � 2) + (n� 1) = kn� (k � 1) altogether.

Now we apply the following row-transformations toMk in order to simplify the system (5.18).
For d = 1; : : : ; k � 1, add the rows(d � 1)n + 2; : : : ; dn + n to row (d � 1)n + 1. In each
modified row(d� 1)n+1, this cancels out all entries in the coefficient matrix, and on the right
hand side of the equation we obtain the new constantnXi=1 pdi + nXi=1 pd+1i :
Let fMk the matrix obtained fromMk by removing the rows(d� 1)n+1, d = 1; : : : ; k� 1. Leteb be the right hand side obtained fromb in the same way. Then we can replace system (5.18) byfMk � x � eb mod 2 ^ (5.19)nXi=1 pdi + nXi=1 pd+1i � 0 mod 2; for d = 1; : : : ; k � 1. (5.20)

We have proven above thatfMk has full rank. Hence, system (5.18) has exactly2nk�kn+k�1
solutions if (5.20) is fulfilled, and no solution otherwise.

It remains to count the number of thepdi fulfilling (5.17) and (5.20). We first notice that (5.20)
is equivalent tonXi=1 p1i � nXi=1 p2i � � � � � nXi=1 pki mod 2:
For c 2 Z2 defineNc := jf(x1; : : : ; xn) 2 Zn2 j x1 + � � � + xn � c mod 2 ^ nXi=1 xi � 0 mod qgj;
to count the number of possible choices for a set of constantspd1; : : : ; pdn for fixed parityc. We
haveN0 = S(n; 2q; 0) andN1 = S(n; 2q; q). Lemma 5.36 yieldsN0; N1 = 2n2q (1 + o(1)):
Altogether, there areNk0 + Nk1 choices for thepdi fulfilling (5.17) and (5.20). For each of these
choices we obtain2nk�kn+k�1 1-inputs for CHSPkq . Hence, the total number of 1-inputs is2nk�kn+k�1(Nk0 +Nk1) = 2nk � 2�kn+k�1 � 2�2n2q�k (1 + o(1)) = 2nk � q�k(1 + o(1)): 2

128

5.6 Summary

To conclude the chapter, we give a summary on what is known about the most important com-
plexity classes defined in terms of the size of randomized read-k-times branching programs.

The following theorem contains the results for the special casek = 1. A graphical version of a
part of these statements is given in Figure 5.2 on the next page.

Theorem 5.37:

(1) BPP-BP16� NP-BP1[coNP-BP1;

(2) NP-BP16� BPP"-BP1for all constant" < 1=4;

(3) BPP"-BP1$ BPP1=3+�-BP1for all constant" < 1=4 and� : N ! (0; 1=6) with �(n)�1 = 2Poly(n);
(4) RP"-BP1$ RP1=2-BP1for all constant" < 1=3, RP-BP16= coRP-BP1;

(5) NP-BP1[coNP-BP1$ PP-BP1;

(6) P-BP1$ ZPP-BP1.

The parts (2), (3), and (4) have been proven in Section 5.2. Part (6) is from Section 5.3. Parts (1)
and (5) follow from the fact that the function 2PERM (defined in Section 3.5) is contained in
BPP-OBDD, but not in NP-BP1[coNP-BP1, as follows from the known lower bounds on the
size of nondeterministic read-once branching programs forthe function PERM.

The list of results for read-k-times branching programs wherek > 1 is still shorter. The follow-
ing conclusions are obtained from the improved results of Thathachar given in Section 5.5. We
choose the minimal valueq = 3 as the order of the prime field for the function CHSPkq in order
to maximize the range of error probabilities for which the results hold.

Theorem 5.38: For all k � (1=p2 � �)plogN (whereN is the input size) and0 � " �(1� � 0)3�(k+1), �; � 0 > 0 arbitrarily small constants, the following holds.

(1) NP-BPk 6� BPP"-BPk;

(2) BPP"-BPk $ BPP"0-BPk for "0 := 1�1=(k+1)2�1=(k+1) + � 00(N), where � 00(N) > 0 and� 00(N)�1 = 2Poly(N);
(3) RP"-BP1$ RP1�1=(k+1)-BP1, RP-BP16= coRP-BP1;

(4) P-BPk $ NP-BPk, NP-BPk 6= coNP-BPk.

129

P-BP1

BPP-BP1

BPP"<1=4-BP1
NP-BP1 coNP-BP1

RP-BP1

RP"<1=3-BP1

PP-BP1

NP-BP1\ coNP-BP1

NP-BP1[coNP-BP1

ZPP-BP1

RP-BP1\ coRP-BP1

Figure 5.2: The complexity landscape for read-once BPs.

Some open problems are already indicated by the arrows without slashes in Figure 5.2. Perhaps
the most important task is to clarify the relation between the analogs of the classes NP and
BPP at least for read-once branching programs. For this, better lower bounds on the size of
randomized read-once branching programs with bounded error than that proven here are needed.
We list some further interesting questions below.

Open Problems:

(1) Find a sequence of functions(fn)n2N such that (fn) 2 NP-BP1 (or even better:(fn) 2 NP-BP1\ coNP-BP1), but(fn) 62 BPP1=2��-BP1 for arbitrarily small constants� > 0, proving that NP-BP16� BPP-BP1.

(2) Prove that RP"-BP1$ RP"0-BP1 and BPP"-BP1$ BPP"0-BP1 for all0 � " < "0 < 1.

(3) Does it hold that ZPP-BP1= RP-BP1\ coRP-BP1?

(4) Does it hold that RP-BP1\ coRP-BP1$ NP-BP1\ coNP-BP1?

For read-k-times branching programs wherek > 1, the same problems with “BPk” instead of
“BP1” can be investigated. Additionally, also the following questions are open:

(5) Prove that BPP-BPk 6� NP-BPk [coNP-BPk.

(6) Prove that P-BPk $ ZPP-BPk.

130

Chapter 6

Concluding Remarks

At the end of this work, we summarize the achievements of the preceding chapters and comment
on some possible avenues for future research.

We have been mainly concerned with the types of restricted branching programs for which
the deterministic variants have been most thoroughly understood before: OBDDs, read-once
branching programs, and (syntactic) read-k-times branching programs wherek may be larger
than1.

For OBDDs, we have now a quite clear picture of the relations between the deterministic, non-
deterministic, and randomized mode of computation. We havepresented a generally applicable
technique for proving lower bounds which has helped to resolve the most important questions
concerning the analogs of the complexity classes P, NP, RP, and BPP. Nevertheless, some white
spots on the map of the complexity theoretical landscape remain, most prominently perhaps the
open problem to prove lower bounds for randomized OBDDs withunbounded error.

Read-once branching programs have once again turned out to have surprising features which
distinguish them from their simpler structured relatives,the OBDDs. One phenomenon which
has been known before is that the replacement of variables byconstants may cause an expo-
nential blow-up of the size if one fixes a graph ordering for the read-once branching program.
Without a fixed graph ordering, also the Boolean synthesis oftwo read-once branching pro-
grams may lead to an exponential blow-up. Here we have added another fact which lies in
the same direction. Unlike other, well-known probabilistic models of computation, randomized
read-once branching programs are highly sensitive to changes of the allowed error probability.
We have seen that the size of randomized read-once branchingprograms may grow exponen-
tially if one decreases the allowed one-sided error probability from 1=2 to below1=3. It is even
not unlikely that one can prove an exponential gap between the sizes of randomized read-once
branching programs for constant error probabilities separated only by an arbitrarily small posi-
tive constant. The important consequence for the deterministic case which we have drawn from
this result is that even for read-once branching programs with “very similar” graph orderings
the AND-synthesis may lead to an exponential blow-up of the size.

From a more theoretical point of view, it is interesting thatit has really been possible to separate
the models belonging to the nondeterministic and the randomized mode of computation and to

131

the different types of error even for read-once branching programs. Proving such separation
results is of course a greater challenge than proving only a large lower bound. Further improve-
ments are still necessary to decrease the gap between the error probabilities for which lower and
upper bounds, resp., can be proven. Especially, the problemto prove that NP-BP16� BPP-BP1
has so far resisted the joint attempts of several people to solve it. A proof technique which is
precise enough to tackle this problem will probably also yield interesting new insights into the
subtle features of read-once branching programs.

We have also constructed a randomized read-once branching program of polynomial size with
zero error for a function which has been conjectured to be hard even for randomized read-once
branching programs with bounded error before. This examplehas shown that randomized read-
once branching programs can be astonishingly powerful. They are not merely “usual read-once
branching programs plus some special nodes,” but really a new model which does not behave
according to our intuition obtained from deterministic read-once branching programs.

Finally, the extended version of the “technique of generalized rectangles” of Borodin, Razborov,
and Smolensky presented here has shown to be powerful enoughto yield an exponential lower
bound even for the general model of randomized read-k-times branching programs wherek may
be larger than1. The importance of this method has been further underlined by Thathachar’s
separation result for the read-k-times hierarchy.

Much needs to be done for the more general types of branching programs. In the future, espe-
cially the different types of non-syntactic or semantic models with restricted read access will
have to be investigated (and already have been investigatedto some extent in recent publica-
tions). The most important goal is probably still to prove a superpolynomial lower bound for the
non-syntactic version of read-k-times branching programs, before we can start to think about
superpolynomial lower bounds for general branching programs.

132

Bibliography

[1] F. Ablayev. Lower bounds for one-way probabilistic communication complexity and their
application to space complexity.Theoretical Computer Science, 157:139 – 159, 1996.

[2] F. Ablayev. Randomization and nondeterminism are incomparable for polynomial or-
dered binary decision diagrams. InProc. of the 24th Int. Coll. on Automata, Languages,
and Programming (ICALP), LNCS 1256, 195–202. Springer-Verlag, 1997.

[3] F. Ablayev and M. Karpinski. On the power of randomized branching programs. InProc.
of the 23rd Int. Coll. on Automata, Languages, and Programming (ICALP), LNCS 1099,
348–356. Springer-Verlag, 1996.

[4] F. Ablayev and M. Karpinski. A lower bound for integer multiplication on randomized
read-once branching programs. Technical Report TR98-011,Electr. Coll. on Compu-
tational Complexity, 1998. (This paper is concerned with lower bounds on the size of
randomizedorderedread-once branching programs, i. e., randomized OBDDs.).

[5] F. Ablayev and M. Karpinski. On the power of randomized ordered branching programs.
Technical Report TR98-004, Electr. Coll. on ComputationalComplexity, 1998.

[6] F. Ablayev, M. Karpinski, and R. Mubarakzjanov. On BPP versus NP[coNP for ordered
read-once branching programs. InRandomized Algorithms, Proc. of the International
Workshop, 25–34, Brno, 1998.

[7] M. Agrawal and T. Thierauf. The satisfiability problem for probabilistic ordered branch-
ing programs. InProc. of the 13th IEEE Int. Conf. on Computational Complexity, 81–90,
1998.

[8] A. V. Aho, J. Ullman, and M. Yannakakis. On notions of information transfer in VLSI
circuits. InProc. of the 15th Ann. ACM Symp. on Theory of Computing (STOC), 133 –
139, 1983.

[9] M. Ajtai and M. Ben-Or. A theorem on probabilistic constant depth computations. In
Proc. of the 16th Ann. ACM Symp. on Theory of Computing (STOC), 471 – 474, 1984.

[10] N. Alon and W. Maass. Meanders and their applications inlower bounds arguments.
Journal of Computer and System Sciences, 37:118–129, 1988.

133

[11] N. Alon and J. H. Spencer.The Probabilistic Method. Series in Discrete Mathematics
and Optimization. Wiley-Interscience, New York, 1992.

[12] L. Babai, P. Frankl, and J. Simon. Complexity classes incommunication complexity
theory. InProc. of the 27th IEEE Symp. on Foundations of Computer Science (FOCS),
337 – 347, 1986.

[13] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom generators for
logspace and time-space trade-offs.Journal of Computer and System Sciences, 45:204–
232, 1992.

[14] L. Babai, P. Pudlák, V. Rödl, and E. Szemerédi. Lowerbounds to the complexity of
symmetric Boolean functions.Theoretical Computer Science, 74:313 – 323, 1990.

[15] J. L. Balcázar, J. Diaz, and J. Gabarró.Structural Complexity I. Springer-Verlag, Berlin,
1988.

[16] D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.

[17] M. Blum, A. H. Chandra, and M. N. Wegman. Equivalence of free Boolean graphs can be
decided probabilistically in polynomial time.Information Processing Letters, 10:80–82,
1980.

[18] B. Bollig, M. Löbbing, M. Sauerhoff, and I. Wegener. Complexity theoretical aspects
of OFDDs. InProc. of IFIP WG 10.5 Workshop on Applications of the Reed-Muller
Expansion in Circuit Design, 198 – 205, Chiba, Japan, 1995.

[19] B. Bollig, M. Löbbing, M. Sauerhoff, and I. Wegener. Onthe complexity of the hid-
den weighted bit function for various BDD models.Manuscript, 1998. Submitted to
RAIRO—Theoretical Informatics and Applications.

[20] B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener. Read k times ordered binary de-
cision diagrams—efficient algorithms in the presence of null-chains. Technical Report
474, Universität Dortmund, 1994.

[21] B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener. Hierarchy theorems forkOBDDs
andkIBDDs. Theoretical Computer Science, 205(1):45–60, 1998.

[22] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Computers, 45(9):993–1002, Sept. 1996.

[23] B. Bollig and I. Wegener. Complexity theoretical results for partitioned (nondeterminis-
tic) binary decision diagrams. InProc. of the Int. Symp. on Mathematical Foundations of
Computer Science (MFCS), LNCS 1295, 159–168. Springer-Verlag, 1997.

[24] A. Borodin and S. Cook. A time-space tradeoff for sorting on a general sequential model
of computation.SIAM J. Comp., 11(2):287 – 297, 1982.

134

[25] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa. Two applications
of inductive counting for complementation problems.SIAM J. Comp., 18(3):559–578,
1989.

[26] A. Borodin, S. A. Cook, and N. Pippenger. Parallel computation for well-endowed rings
and space-bounded probabilistic machines.Information and Control, 58:113–136, 1983.

[27] A. Borodin, A. A. Razborov, and R. Smolensky. On lower bounds for read-k-times
branching programs.Computational Complexity, 3:1–18, 1993.

[28] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD pack-
age. InProc. of the 27th ACM/IEEE Design Automation Conference (DAC), 40–45, June
1990.

[29] Y. Breitbart, H. Hunt III, and D. Rosenkrantz. On the size of binary decision diagrams
representing Boolean functions.Theoretical Computer Science, 145:45 – 69, 1995.

[30] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.IEEE Trans.
Computers, C-35(8):677–691, Aug. 1986.

[31] R. E. Bryant. On the complexity of VLSI implementationsand graph representations of
Boolean functions with application to integer multiplication. IEEE Trans. Computers,
C-40(2):205–213, Feb. 1991.

[32] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293–318, Sept. 1992.

[33] R. Canetti and O. Goldreich. Bounds on tradeoffs between randomness and communica-
tion complexity.Computational Complexity, 3:141 – 167, 1993.

[34] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity.SIAM J. Comp., 17(2):230 – 261, 1988.

[35] A. Cobham. The recognition problem for the set of perfect squares. InProc. of the 7th
Symposium on Switching an Automata Theory (SWAT), 78–87, 1966.

[36] P. E. Dunne. Lower bounds on the complexity of 1-time only branching programs. In
Proc. of Fundamentals of Computation Theory (FCT), LNCS 199, 90–99. Springer-
Verlag, 1984.

[37] P.Ďuriš, Z. Galil, and G. Schnitger. Lower bounds on communication complexity.Infor-
mation and Computation, 73:1–22, 1987.

[38] P. Ďuriš, J. Hromkovič, J. D. P. Rolim, and G. Schnitger. Las Vegas versus determinism
for one-way communication complexity, finite automata, andpolynomial-time compu-
tations. InProc. of the 14th Ann. Symp. on Theoretical Aspects of Computer Science
(STACS), LNCS 1200, 117–128. Springer-Verlag, 1997. To appear inInformation and
Computation.

135

[39] S. Fortune, J. Hopcroft, and E. Meineche Schmidt. The complexity of equivalence and
containment for free single variable program schemes. InProc. of the 5th Int. Coll. on
Automata, Languages, and Programming (ICALP), LNCS 62, 227–240. Springer-Verlag,
1978.

[40] A. Gál. A simple function that requires exponential size read-once branching programs.
Information Processing Letters, 62:13 – 16, 1997.

[41] J. Gergov. Time-space tradeoffs for integer multiplication on various types of input obliv-
ious sequential machines.Information Processing Letters, 51:265 – 269, 1994.

[42] J. Gergov and C. Meinel. Frontiers of feasible and probabilistic feasible Boolean manip-
ulation with branching programs. InProc. of the 10th Ann. Symp. on Theoretical Aspects
of Computer Science (STACS), LNCS 665, 576–585, 1993.

[43] J. Gergov and C. Meinel. MOD-2-OBDDs—a data structure that generalizes EXOR-
sum-of-products and ordered binary decision diagrams.Formal Methods in System De-
sign, 8:273–282, 1996.

[44] J. Gill. Probabilistic Turing Machines and Complexity of Computations. Ph. D. disserta-
tion, U. C. Berkeley, 1972.

[45] J. Gill. Computational complexity of probabilistic Turing machines.SIAM J. Comp.,
6:675 – 695, 1977.

[46] R. L. Graham, D. E. Knuth, and O. Patashnik.Concrete Mathematics. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1994.

[47] G. D. Hachtel and F. Somenzi.Logic Synthesis and Verification Algorithms. Kluwer Aca-
demic Publishers, Boston, 1996.

[48] B. Halstenberg and R. Reischuk. Relations between communication complexity classes.
Journal of Computer and System Sciences, 41(3):402 – 429, 1990.

[49] B. Halstenberg and R. Reischuk. On different modes of communication.SIAM J. Comp.,
22(5):913 – 934, 1993.

[50] K. Hosaka, Y. Takenaga, and S. Yajima. On the size of ordered binary decision diagrams
representing threshold functions. InProc. of the 5th Int. Symp. on Algorithms and Com-
putation (ISAAC), LNCS 834, 584 – 592. Springer-Verlag, 1994.

[51] J. Hromkovič.Communication Complexity and Parallel Computing. Springer-Verlag,
Berlin, 1997.

[52] N. Immerman. Nondeterministic space is closed under complementation.SIAM J. Comp.,
17(5):935–938, 1988.

136

[53] J. Jain, J. Bitner, M. S. Abadir, J. A. Abraham, and D. S. Fussell. Indexed BDDs: Algo-
rithmic advances in techniques to represent and verify Boolean functions.IEEE Trans.
Computers, 46:1230–1245, 1997.

[54] J. Jain, J. Bitner, J. A. Abraham, and D. S. Fussell. Functional partitioning for verification
and related problems. In T. Knight and J. Savage, editors,Advanced Research in VLSI
and Parallel Systems: Proceedings of the 1992 Brown/MIT Conference, 210–226, 1992.

[55] S.-W. Jeong, B. F. Plessier, G. D. Hachtel, and F. Somenzi. Extended BDD’s: Trading off
canonicity for structure in verification algorithms. InProc. of the ACM/IEEE Int. Conf.
on Computer Aided Design (ICCAD), 464–467, 1991.

[56] S. Jukna and A. Razborov. Neither reading few bits twicenor reading illegally helps
much.Discrete Applied Mathematics, 85:223–238, 1998.

[57] S. Jukna, A. Razborov, P. Savický, and I. Wegener. On P versus NP\ co-NP for decision
trees and read-once branching programs. InProc. of the 22nd Int. Symp. on Mathemat-
ical Foundations of Computer Science (MFCS), LNCS 1295, 319–326. Springer-Verlag,
1997. To appear inComputational Complexity.

[58] S. P. Jukna. Lower bounds on communication complexity.Mathematical Logic and Its
Applications, 5:22 – 30, 1987.

[59] S. P. Jukna. Entropy of contact circuits and lower bounds on their complexity.Theoretical
Computer Science, 57:113 – 129, 1988.

[60] S. P. Jukna. The effect of null-chains on the complexityof contact schemes. InProc.
of Fundamentals of Computation Theory (FCT), LNCS 380, 246–256. Springer-Verlag,
1989.

[61] S. P. Jukna. A note on read-k times branching programs.Theoretical Informatics and
Applications, 29(1):75–83, 1995.

[62] H. Jung. On probabilistic time and space. InProc. of the 12th Colloquium on Automata,
Languages and Programming, LNCS 194, 310–317. Springer-Verlag, 1985.

[63] B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of
set intersection.SIAM J. Comp., 5(4):545–557, 1992.

[64] M. Karpinski and R. Mubarakzjanov. Some separation problems on randomized OBDDs.
Manuscript, July 1998.

[65] M. Krause. Exponential lower bounds on the complexity of local and real-time branching
programs.Journal of Information Processing and Cybernetics, EIK, 24(3):99–110, 1988.

[66] M. Krause. Lower bounds for depth-restricted branching programs.Information and
Computation, 91(1):1–14, Mar. 1991.

137

[67] M. Krause. Geometric arguments yield better bounds forthreshold circuits and dis-
tributed computing.Theoretical Computer Science, 156:99 – 117, 1996.

[68] M. Krause, C. Meinel, and S. Waack. Separating the eraser Turing machine classes Le,
NLe, co-NLe and Pe. Theoretical Computer Science, 86:267–275, 1991.

[69] I. Kremer, N. Nisan, and D. Ron. On randomized one-roundcommunication complexity.
In Proc. of the 27th Ann. ACM Symp. on Theory of Computing (STOC), 596 – 605, 1995.

[70] E. Kushilevitz and N. Nisan.Communication Complexity. Cambridge University Press,
Cambridge, 1997.

[71] C. Y. Lee. Representation of switching circuits by binary-decision programs.Bell Sys-
tems Technical Journal, 38:985–999, 1959.

[72] J. van Leeuwen, editor.Handbook of Theoretical Computer Science—Volume A: Algo-
rithms and Complexity. Elsevier Science Publishers, Amsterdam, 1990.

[73] W. Masek.A Fast Algorithm for the String Editing Problem and DecisionGraph Com-
plexity. M. Sc. Thesis, MIT, Dept. of EECS, May 1976.

[74] C. Meinel. Modified Branching Programs and Their Computational Power. Habili-
tationsschrift, Humboldt-Universität Berlin, 1988. Published asLNCS 370, Springer-
Verlag.

[75] C. Meinel. Polynomial size
-branching programs and their computational power.Infor-
mation and Computation, 85:163–182, 1990.

[76] S. Minato.Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Aca-
demic Publishers, Boston, 1996.

[77] S. Minato, N. Ishiura, and S. Yajima. Shared binary decision diagram with attributed
edges for efficient Boolean function manipulation. InProc. of the 27th ACM/IEEE De-
sign Automation Conference (DAC), 52–57, June 1990.

[78] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press,
Cambridge, 1995.

[79] È. I. Nečiporuk. A Boolean function.Soviet Mathematics Doklady, 7(4):999 – 1000,
1966.

[80] I. Newman. Private vs. common random bits in communication complexity.Information
Processing Letters, 39:67 – 71, 1991.

[81] N. Nisan. On read-once vs. multiple access to randomness in logspace.Theoretical Com-
puter Science, 107:135–144, 1993.

[82] N. Nisan and A. Wigderson. Rounds in communication complexity revisited.SIAM J.
Comp., 22:211–219, 1993.

138

[83] E. A. Okol’nishnikova. On lower bounds for branching programs.Siberian Advances in
Mathematics, 3(1):152 – 166, 1993.

[84] E. A. Okol’nishnikova. On comparison between the sizesof read-k-times branching pro-
grams. In A. D. Korshunov, editor,Operations Research and Discrete Analysis, 205 –
225. Kluwer Academic Publishers, 1997.

[85] E. A. Okol’nishnikova. On the hierarchy on nondeterministic branchingk-programs. In
Fundamentals of Computation Theory (FCT), LNCS 1279, 376–387. Springer-Verlag,
1997.

[86] W. Paul. A2:5n lower bound on the combinational complexity of Boolean functions.
SIAM J. Comp., 6:427–443, 1977.

[87] W. W. Peterson and E. J. Weldon.Error-Correcting Codes. The MIT Press, Cambridge,
Massachusetts, 2nd edition, 1972.

[88] S. Ponzio. A lower bound for integer multiplication with read-once branching programs.
In Proc. of the 27th Ann. ACM Symp. on Theory of Computing (STOC), 130–139, 1995.

[89] P. Pudlák. A lower bound on complexity of branching programs. InProc. of the 11th Int.
Symp. on Mathematical Foundations of Computer Science (MFCS), 480–489, 1984.

[90] P. Pudlák. The hierarchy of Boolean circuits.Computers and Artificial Intelligence,
6(5):449 – 468, 1987.

[91] P. Pudlák and S. Zák. Space complexity of computations. Technical report, Univ. Prague,
1983.

[92] A. A. Razborov. Lower bounds for deterministic and nondeterministic branching pro-
grams. InProc. of Fundamentals of Computation Theory (FCT), LNCS 529, 47–60.
Springer-Verlag, 1991.

[93] A. A. Razborov. On the distributional complexity of disjointness.Theoretical Computer
Science, 106:385 – 390, 1992.

[94] P. Ribenboim.The New Book of Prime Number Records. Springer-Verlag, Berlin, 1996.

[95] M. Sauerhoff. A lower bound for randomized read-k-times branching programs. Techni-
cal Report TR97-019, Electr. Coll. on Computational Complexity, 1997.

[96] M. Sauerhoff, I. Wegener, and R. Werchner. Relating branching program size and for-
mula size over the full binary basis. Technical Report 683, Universität Dortmund, 1998.
Submitted to STACS ’99.

[97] P. Savický and S.̌Zák. A large lower bound for 1-branching programs. Technical Report
TR96-036, Electr. Coll. on Computational Complexity, 1996.

139

[98] P. Savický and S.̌Zák. A hierarchy for(1;+k)-branching programs with respect tok. In
Proc. of the 22nd Int. Symp. on Mathematical Foundations of Computer Science (MFCS),
LNCS 1295, 478–487. Springer-Verlag, 1997.

[99] H. Sawada, Y. Takenaga, and S. Yajima. On the relation between binary decision dia-
grams, Turing machines and combinational logic circuits. Technical Report KUIS-92-
0003, Kyoto University, Oct. 1992.

[100] C. E. Shannon. The synthesis of two-terminal switching circuits.Bell Systems Technical
Journal, 28(1):59 – 98, 1949.

[101] D. Sieling. On the complexity of operations on graph driven BDDs and tree driven BDDs.
Technical Report 554, Universität Dortmund, 1994.

[102] D. Sieling. New lower bounds and hierarchy results forrestricted branching programs.
Journal of Computer and System Sciences, 53(1):79 – 87, Aug. 1996.

[103] D. Sieling. The nonapproximability of OBDD minimization. Technical Report 663, Uni-
versität Dortmund, 1998. Submitted toInformation and Computation.

[104] D. Sieling. On the existence of polynomial time approximation schemes for OBDD min-
imization. InProc. of the 15th Ann. Symp. on Theoretical Aspects of Computer Science
(STACS), LNCS 1353. Springer-Verlag, 1998.

[105] D. Sieling and I. Wegener. Reduction of OBDDs in lineartime. Information Processing
Letters, 48:139–144, 1993.

[106] D. Sieling and I. Wegener. Graph driven BDDs—a new datastructure for Boolean func-
tions.Theoretical Computer Science, 141:283 – 310, 1995.

[107] J. Simon and M. Szegedy. A new lower bound theorem for read-only-once branching
programs and its applications. In J.-J. Cai, editor,Advances in Computational Complexity
Theory, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 13,
183–193. American Mathematical Society, 1993.

[108] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata.Acta
Informatica, 279–284, 1988.

[109] J. Thathachar. On separating the read-k-times branching program hierarchy. InProc. of
the 30th Ann. ACM Symp. on Theory of Computing (STOC), 1998.

[110] S. Waack. On the descriptive and algorithmic power of parity ordered binary decision
diagrams. InProc. of the 14th Ann. Symp. on Theoretical Aspects of Computer Science
(STACS), LNCS 1200, 200 – 212. Springer-Verlag, 1997.

[111] I. Wegener. Optimal decision trees and one-time-onlybranching programs for symmetric
Boolean functions.Information and Control, 62(2/3):129–143, 1984.

140

[112] I. Wegener.The Complexity of Boolean Functions. Series in Computer Science. Wiley-
Teubner, Stuttgart, Chichester, 1987.

[113] I. Wegener. On the complexity of branching programs and decision trees for clique func-
tions.Journal of the ACM, 35(2):461–471, Apr. 1988.

[114] J. H. Wilkinson.The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

[115] A. C. Yao. Some complexity questions related to distributive computing. InProc. of the
11th Ann. ACM Symp. on Theory of Computing (STOC), 209 – 213, 1979.

[116] A. C. Yao. Lower bounds by probabilistic arguments. InProc. of the 24th IEEE Symp.
on Foundations of Computer Science (FOCS), 420 – 428, 1983.

[117] S. Žák. An exponential lower bound for one-time-only branching programs. InProc.
of the 11th Int. Symp. on Mathematical Foundations of Computer Science (MFCS),
LNCS 176, 562–566. Springer-Verlag, 1984.

141

