Complexity Theoretical Results for
Randomized Branching Programs

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
der Universitat Dortmund

am Fachbereich Informatik
von

Martin Sauerhoff

Dortmund

1998



Tag der mindlichen Prifung: 11.1.1999
Dekan: Prof. Dr. Heinrich Miiller

Gutachter: Prof. Dr. Ingo Wegener, Prof. Dr. Martin Dietzfelbinger









Abstract

This work is settled in the area of complexity theory for rieséd variants of branching pro-
grams. Today, branching programs can be considered one efdhdard nonuniform models of
computation. One reason for their popularity is that thégvato describe computations in an
intuitively straightforward way and promise to be easieatmlyze than the traditional models.

In complexity theory, we are mainly interested in upper awvadr bounds on the size of branch-
ing programs. Although proving superpolynomial lower bdsion the size of general branch-
ing programs still remains a challenging open problem,eh®s been considerable success
in the study of lower bound techniques for various restdctariants, most notably perhaps
read-once branching programs and OBDDs (ordered binangidaadiagrams). Surprisingly,
OBDDs have also turned out to be extremely useful in pracdipplications as a data structure
for Boolean functions.

So far, research has concentrated on deterministic andyn@ £xtent, also nondeterministic
types of branching programs. Given the practical and thealémportance of the probabilistic
mode of computation, it seems natural to ask whether we aaremny interesting results for
probabilistic variants of branching programs, defined ialagy to the well-known probabilistic
Turing machines. At the time of the beginning of this workryvkttle was known about such
randomized variants of branching programs. Meanwhile jeicierable part of the “complexity
landscape” for randomized variants of branching prograuitis dmited read access to the input
variables is charted. Here we describe how some piecesxftiowledge have been obtained.
Lower bound results for randomized OBDDs and randomizetbsyic readk-times branching
programs form the main part of this work.



Danksagung

An dieser Stelle mochte ich mich bei den Menschen bedarkemurch ihre Hilfe wesentlich
zum Gelingen dieser Arbeit beigetragen haben.

Besonderer Dank gebiihrt meinem Betreuer, Prof. Dr. Inggailer, dem ich einen grof3en Teil
meines Wissens Uber theoretische Informatik verdankehaEmich in das spannende Gebiet
der Branchingprogramme eingefiihrt und diese Arbeit dwiele hilfreiche Diskussionen und
motivierende Gesprache begleitet. An nachster Stelleermen ist mein inoffizielleyZweitbe-
treuer* Prof. Dr. Martin Dietzfelbinger, dessen Tur imnuéfen stand, wenn ich mit Fragen zu
ihm kam. Seine Hinweise, z. B. zur Mathematik der endlichémiér, haben mit zum Gelingen
dieser Arbeit beigetragen. AuBerdem haben mir die Gebpréadt Prof. Dr. Matthias Krause
sehr geholfen, dem ich wichtige Einsichten in die Zusamraagk zwischen der Komplexitat
von Branchingprogrammen und der Kommunikationskompiéxierdanke.

Bei allen Mitarbeiterinnen und Mitarbeitern am Lehrstuhiidchte ich mich fur die freundli-
che und motivierende Arbeitsatmosphare bedanken, inidsedrbeit entstehen konnte. Ein
spezieller Dank geht an Detlef Sieling fur viele anregeBigkussionen zum Thema dieser
Arbeit und an Martin Lobbing fur seine Hilfe bei Softwanead Hardware-Problemen.

Schlief3lich bedanke ich mich bei der Deutschen Forschwmsmschaft fur die finanzielle
Unterstiitzung dieser Arbeit.

Acknowledgement

At this place, | would like to thank all the people who have mdlais work possible by their
support.

| owe a special debt of gratitude to my thesis advisor, Prof.lBgjo Wegener. A large part
of my knowledge on theoretical computer science is due ta f has introduced me to the
exciting field of branching programs and has guided me duhirgwork by many helpful and
motivating discussions. Next, | am also grateful to my ireddfi “second advisor” Prof. Dr.
Martin Dietzfelbinger who was always willing to discuss gtiens. His hints, e. g., concerning
the mathematics of finite fields, have had considerable impadhe success of this work.
Furthermore, also the discussions with Prof. Dr. Matthiaause have been very helpful, to
whom | owe important insights into the relations betweercibmplexity of branching programs
and communication complexity.

I would like to thank all colleagues at the Lehrstuhl Il foetfriendly and constructive atmo-
sphere in which | could work at this thesis. Special thanksogDetlef Sieling for many inter-
esting discussions on the subjects of this work, and Maridibting for his support concerning
software and hardware problems.

Finally, | gratefully acknowledge the financial support bistwork by the German Research
Foundation (Deutsche Forschungsgemeinschaft).



Contents

1 Introduction 1
1.1 Motivation . . . . . . . e 1
1.2 Modelsof Computation . . . . . . ... ... ... 4

1.2.1 Circuits and Nonuniform Turing Machines . . . . ... ... ... 4

1.2.2 General BranchingPrograms . . . . . ... . ... ... ...... 6
1.3 Restricted BranchingPrograms . . . . . . . . ... ... .. .. . oo 8
1.4 Branching Programs as a Data Structure . . . . . .. ... ........ 13
1.5 Previous Results on Nondeterministic and Randomizeddring Programs . . 17
1.6 Summaryof ResultsinthisWork . . . . ... ... . ... ... ... ... 18
1.7 Notation . . . . . . . 20

2 Nondeterministic and Randomized Branching Programs 21

2.1 Nondeterministic Branching Programs . . . . . . . .. ... .......... 21
2.1.1 Nondeterministic Variants of General Branching Paogs . . . . . . . 21
2.1.2 Nondeterministic Variants of Restricted Branchimgglams . . . . . . 25

2.2 Randomized Branching Programs . . . . . . ... ... ... ... ... 29
2.2.1 Randomized General Branching Programs . . . . . ... ... .. 29
2.2.2 Randomized Restricted Branching Programs . . . . .. ... .. 38

3 Upper and Lower Bounds on the Size of Randomized OBDDs 43
3.1 Communication Complexity Theory . . . .. ... .. ... ... ..... 43
3.2 AlistofFunctions . .. ............................45
3.3 Upper Bounds for RandomizedOBDDs . . . . ... ... ... ... ... 49

3.3.1 The Fingerprinting Technique for Randomized OBDDs..... . . . . 50
3.3.2 Applications of Fingerprinting . . . . . .. ... ... ... ..., 50

Vil



3.4 Lower Bounds for Randomized OBDDs at®@dBDDs . . . . . .. ... ... 57

3.4.1 The Reduction Technique . ......................75

3.4.2 Lower Bounds fok-Stable Functions . . . .. ... ... ....... 60

3.4.3 Lower Bounds for Randomizé®BDDs . . . ... ... ....... 64
35 Summary ... 65
On the Resource Randomness 69
4.1 A Normal Form for Randomized Branching Programs . . . . ...... . . .. 70
4.2 Multiple Access to Probabilistic Variables . . . . . ... ... ....... 73
4.3 SUMMAIY . . . ot e e e 78

Upper and Lower Bounds for Randomized Readk-Times Branching Programs 79

5.1 The Technique of Generalized Rectangles . . . . ... ... ....... 80
5.1.1 Branching Programs with Nonboolean Variables . . . ...... . .. 80
5.1.2 Lower Bounds for Deterministic and Nondeterminidtieadk-Times

Branching Programs . . . . . .. .. ... .. ... ... .. .. ... 81
5.1.3 TheRandomizedCase . . . ... ... .. ... .. 87

5.2 NP versus BPP for Read-Once Branching Programs . . . . ... ..... 92

5.3 P versus ZPP for Read-Once Branching Programs . . . . . ... ... .. 106

5.4 A Lower Bound for Randomized ReadfimesBPs . . . . ... ... .... 109
5.4.1 Facts from the Paper of Borodin, Razborov, and Smijens . . . . . 109
5.4.2 Preparations forthe Proof . ... ... ... .. .......... 111
5.4.3 The Proof of the LowerBoundResult . . . . ... ......... 113

5.5 The Separation of the Readfimes Hierarchy by Thathachar . . . . ... .. 122

5.6 Summary . . ... 129

Concluding Remarks 131

References 133

viii



Chapter 1

Introduction

We start with an introduction into the theoretical contektios work and try to motivate why
it is reasonable to do complexity theory for branching pawgs (Section 1.1). In Section 1.2,
we review some definitions and basic facts concerning theetsaaf computation which are
relevant for the following, including general branchinggrams. Then we introduce some of
the restricted variants of branching programs which anedsted in the literature (Section 1.3).
In Section 1.4, we take a short excursion to the field of pcactind talk about the role which
branching programs play as a data structure for Booleartiums: Finally, we discuss pre-
viously known results on nondeterministic and randomizeghbhing programs and give an
overview on what follows in the next chapters (Sections hdé h6, resp.).

1.1 Motivation

Computational complexity theory deals with the complexif}computations done by humans
or human computers. Its central question can be put as fell@iven a discrete function, i.e., a
function of the typeN — N, what is the amount of resources necessary and sufficienttpate
this function by a certain computational device? This qoestlready suggests that there can
be many different “flavors” of complexity theory, dependiog the exact specification of the
type of resources and on the choice of the model of computaiibe most important model of
computation is still the Turing machine (TM). In order to b®eato justify that it really captures
the notion of “intuitive computability,” the Turing machenwas designed to mimic the way a
mathematician successively computes the digits of therdeepresentation of a real number
using “paper and pencil.” Usually, we are interested in ttié&” (the number of elementary
computation steps) used for the computation of such a madid the “space” (the maximal
number of storage locations used).

In practice, we want to solve combinatorial problems likeo"3 this graph havecoloring?”

or “What is the minimum area to layout this circuit?”. It ispmrtant that also these “problems”
(either described by a set of strings, or a string functiom oelation over strings) fit into the
original framework of the theory. But the real key to the ssexand practical applicability of

1



complexity theory is that we can introduce just the right amtmf “sloppyness” into the above
central question to make it amenable to formal analysisaitimaking it completely pointless.

It is not possible in general and also not desirable for ratteasons to exactly describe,
e.g., the minimal time within which a given problem can bevedlon a Turing machine as a
function of the input size. Such a function necessarily deg¢oo much on the low level details
of the model of computation. In complexity theory, we only to sort problems roughly into
large classes according to the resources required to duve in the worst-case. The following
complexity classes belong to the most basic ones of cldssiaaplexity theory:

e P (NP), the class of languages decidable in polynomial tignddterministic (nondeter-
ministic) Turing machines; and

e L (NL), the class of languages decidable by deterministanffeterministic) Turing ma-
chines using at most logarithmic space (and extra readamdywrite-only tapes for input
and output, resp.).

The interest in these classes is harder to motivate thanotineafization of the notion of an

“intuitively computable function.” One cornerstone of sical complexity theory is the as-
sumption that the class of problems which are “intuitivefficgently solvable in a sequential

way” coincides with the class of problems solvable in polyi@ time by a Turing machine,

i. e., with the class P. The importance of polynomials in te&pect is due to their desirable clo-
sure properties and the fact that, in practice, algorithntls polynomial running time are most

often sufficiently fast, whereas algorithms with superpolyial running time are not (compare
this with the choice of linear functions to model certainl+@arld phenomena in physics).

A problem is generally considered to be “efficiently sohealsl parallel” if it is solvable within
polylogarithmic time and with polynomially many processon a PRAM (parallel random ac-
cess machine). The well-known “parallel computation thiestates that space for sequential
models of computation and time for parallel models are podyially related (which can be
proven for known models, e.g., for PRAMs and Turing machind$us, complexity classes
defined with respect to sublinear space bounds on Turing imeshlike L, are interesting be-
cause of their relation to the parallel world of computation

Finally, the practical impact of the theory of NP-compleges is surely sufficient to motivate
our interest in nondeterministic models of computation emhplexity classes like NL and NP.
It is important to note here that, in some cases, it is corapyleeasonable also from a practical
point of view to consider computational devices for whichdi@ct physical realization exists.

Even the classical deterministic Turing machine is an idedldevice which cannot really be
built (since real computers always have non-zero error godity, for example). On the other

hand, recent experiments with quantum and DNA computingvghat nondeterminism might

very well be implemented as a feature of a real computer irfiuthee.

It is easy to see that IC NL C P C NP, but to prove that one of these inclusions is proper
belongs to the fundamental open problems of complexityriheld is embarrassing that after
we have invented a lot of interesting complexity classesstilledo not know even for the basic
ones whether they are different at all. Although we are “sthiat it should be easier to verify
whether a given solution is correct than to compute one, fdhe to prove that LG NL or

2



P ; NP failed so far. The fact that the latter question is openesi@mmost 30 years reminds
us of the weakness of our methods to prove lower bounds fdio@kpdefined functions. (We
adopt the convention here that a function is cakbegblicitly definedf it is computable by a
nondeterministic Turing machine in polynomial time.) FArmy such bounds is probably the
greatest challenge of complexity theory at all.

Since the hope to solve such problems like “P versus NP” tjrdar the classical model of
Turing machines has dwindled away as the years passed, exitggheory has turned to new
models of computation which promise to be easier to hanittke branching programs. As we
will review in detall in the next section, the size of branmaprograms is closely related to the
size of circuits as well as to space complexity on the nomumifvariant of Turing machines.
Some standard complexity classes, e. g., the class L, carbevdirectly characterized in terms
of branching programs, which has done a great deal to estiablianching programs as an
interesting nonuniform model of computation.

Because of these tight relations to the other models, it isnportant problem to prove super-
polynomial lower bounds on the size of branching programsfoexplicitly defined function.
Up to now, also this problem is unsolved. But there are sonua geguments why branching
programs are a promising model of computation for provingdobounds:

e Their combinatorial structure is especially simple.

e Computations can be directly visualized graphically (vihie a fact not to be underesti-
mated).

e Since a computation of a branching program corresponds #itaip a graph, it is easy
to define reasonably restricted variants.

In order to gain a deeper understanding of the model of biaggtrograms, several restricted
variants have been intensively investigated. Some of thasants will be discussed later in
this chapter. But it also makes sense to consider differemtas of computation for branching
programs, like nondeterminism and randomization.

Randomized algorithms are known at least since the famoeslex@xperiments of Buffon in
the eighteenth century, but they have become fashionabledtlife applications only in the
last few years. The algorithms for testing primality by S@lp and Strassen and by Rabin
are usually considered to be the first really important ramided algorithms. The appropriate
model of computation, the probabilistic Turing machines baen made popular by the thesis
of Gill [44]. We only list the probabilistic complexity claes which are standard today without
going into the details of their definition:

e ZPP, the class of languages decidable in polynoewgkectedime with zero error on a
probabilistic Turing machineL@s Vegas algorithms

e RP (BPP), the class of languages decidable with one-sided(bounded error, resp.) in
polynomial time on a probabilistic Turing machind@nte Carlo algorithm}

e PP, the class of languages decidable with unbounded emallés thant /2) in polyno-
mial time on a probabilistic Turing machine.

3



The kind of knowledge we have on these classes is comparaltet for the deterministic
and nondeterministic classes: although some interesticlgsion relations and even closure
properties of these classes could be proven, we completelyany separation results because of
our inability to prove appropriate lower bounds. (For a thagh introduction into this subject,
we refer to standard textbooks on complexity theory, e ).}

Randomized variants of branching programs are probablypraattically applicable as a data
structure for the representation of Boolean functions heratypes, e.g., OBDDs (ordered bi-
nary decision diagrams) are. The interest in these vari@rtisanching programs is motivated
by theory. Because of the close relations between detestitinnondeterministic, and proba-
bilistic models, it is desirable to understand also the philistic mode of computation in order
to complete the overall picture of the model under consiitamaAs we learn from the example
of the recently developed theory of probabilistically ckelale proofs, the classical theory may
benefit in a hitherto unsuspected way from insights into tieety of probabilistic models. It is
not too bold to say that the main stream of modern complekigpty is “probabilistic,” and it
seems that there still is an enormous potential of developifioe probabilistic methods. Ana-
lyzing randomized branching programs, as the so far mostdsting probabilistic nonuniform
model of computation, hopefully will again increase our Wiexge on these methods a little
bit.

1.2 Models of Computation

In this work, we are mainly concerned wittonuniformmodels of computation. A nonuniform
model of computation describes a sequence of (Booleanjifunscby a sequence of represen-
tations, one for each input length. Circuits are the mostupgpmodel of this type. In the
following subsection, we review some definitions and baaats about the standard nonuni-
form models of computation. After this, we define the basfetpf branching programs and
discuss the relation of branching programs to the other tsode

1.2.1 Circuits and Nonuniform Turing Machines

Circuits cannot be simulated by conventional (uniform)ifigrmachines, since they can also
represent non-recursive functions. In order to be ablelate¢he results for nonuniform models
to the classical theory, the following definition of a norfomin variant of Turing machines is
used.

Definition 1.1: A nonuniform Turing machinglso calledadvice-taking Turing machinés a
Turing machine with an extra read-only tape (oracle tap@)inputz, this tape is automatically
loaded with the “oracle stringA(|z|), whereA: N — {0,1}* is an arbitrary function (called
“oracle function” in the following). The computation timé such a machine is defined as for
usual Turing machines. The space used for inpig the sum of the space required on the
working tape(s) andllog |A(|z])|].



Definition 1.2: If X is a class of languages defined in terms of resource-bounaiéagima-
chines, thenX/ Poly is the class of languages defined by nonuniform Turinghimees with the
same resource bounds and an oracle functio™N — {0,1}* with |A(n)| = n°"),

We identify a languagd. C {0,1}* with its corresponding sequence of Boolean functions
(fE),.en, wherefL(z) = 1iff 2 € LN {0,1}".

The classes PPoly and L/ Poly are the nonuniform analogs to the classes P and L for uni-
form Turing machines. Furthermore, it is a well-known fauatt P/ Poly can be equivalently
characterized as the class of sequences of functions cabiiputy a sequence of circuits of
polynomial size. We discuss some further well-known reladi between nonuniform Turing
machines and circuits.

Circuits are a parallel model of computation. As alreadyl s#hove, a parallel algorithm is
considered to be efficient if it runs in polylogarithmic tinaed uses at most a polynomial
amount of hardware. This has led to the definition of the cexipt classes NC (Nick's class)
and AC (alternating class) for circuits.

Definition 1.3:

(1) NC* is the class of sequences of Boolean functiofis,.cn computable by a sequence of
circuits over the basiéA, v, -} with fan-in 2, polynomial size and depth(log” n), where
k>1.NC:= s, NC*.

(2) AC* is the class of sequences of Boolean functi¢fig.cx computable by a sequence
of circuits over the basi§A, v, —} with unbounded fan-in, polynomial size and depth
O(log* n), wherek > 0. AC := |, AC*.

The following theorem summarizes our current knowledgeherrélations of some of the above
classes.

Theorem 1.4: AC® G NC' C L/ PolyC AC' C NC = AC C P/ Paoly.

The inclusions in this theorem follow directly from the déffions or by straightforward sim-
ulations. For the history and a proof of the result’Ag NC!, see the monograph [112] of
Wegener. Again, we do not know whether the remaining inolusiare proper. To prove a
lower bound which would separate one of these classes woubdiiat to a major breakthrough
in complexity theory.

We finally remark that all the above nonuniform complexitgsdes defined via circuit com-
plexity can be replaced by uniform variants where we restrigselves to uniform circuits. It
is sufficient here to consider log-space uniform circuite &ll a sequence of circuifss,, ) .en
log-space unifornif there is a deterministic, uniform Turing machine whichngoutes an en-
coding ofG,, on input ofn using spac®(log n). (Note that there are different, more restrictive
as well as more permissive definitions of a uniform circuéte $72], Ch. 2.) We believe that
separation results for the nonuniform classes defined at@veg over to their uniform counter-
parts since many circuits considered so far for upper boanel$og-space uniform (and lower
bounds carry over trivially). Although even a proof of, . §C! S NP would not have any
immediate consequences for the “P versus NP” question, we ¢@od reasons to assume that
such a result would yield important new insights into theegahnature of lower bound proofs.

5



1.2.2 General Branching Programs

Now we are ready to define the most fundamental model of caatipatfor this work. The
original definition goes back to Lee [71] and Masek [73].

Definition 1.5: A branching program (BP9n the variable sefz, .. ., z,, } is a directed acyclic
graph with one source and sinks labeled by the constants Qresft. Each non-sink node is
labeled by a variable; and has exactly two outgoing edges labeled by 0 or 1, resp.

This graph represents a Boolean functjpn{0,1}* — {0, 1} in the following way. To com-
pute f(a) for some inputz € {0,1}", start at the source node. For a non-sink node labeled by
x;, check the value of this variable and follow the edge whiclalizled by this value (this is
called a “test of variable;"). Iterate this until a sink node is reached. The valug an input

a is the value of the reached sink. For a fixed inputhe sequence of nodes visited in this way
is uniquely determined and is called tbemputation path fon.

Thesizeof a branching progran is the number of its nodes and is denoted @Y, Thedepth
of a branching program is the maximum length (number of edgks path from the source to
one of the sinks.

The above model can be modified in a straightforward way iriora represent arbitrary func-
tions f: M™ — N, whereM and N are finite sets and is defined on variables with values
from M. In general, we will work with the Boolean model. Furthermowe remark that it is
sufficient to have a single sink for each of the different ealthe function assumes (sinks with
the same value can be merged). We usually assume that a ingupcbgram has (at most) two
unique sinks with labelg and1 in the following.

Usually, we consider sequences of branching programs geptieg sequencesf,,).cn Of
Boolean functions, wherg,: {0,1}" — {0,1}. In order to avoid an unnecessarily blown-up
notation, we will frequently talk of functions where we rigahean “sequences of functions.”

It is easy to see that every Boolean functipn{0,1}* — {0,1} can be represented by a
branching program of depthand size2"*! + 1 (use the complete binary tree where the nodes
of each level are labeled by a different input variable torespnt the DNF of the function).
For an arbitrary Boolean functiofi, we define BPf) as the minimal size of a branching pro-
gram representing. Furthermore, let P-BP be the class of all sequences of Bodlenctions
representable by a sequence of branching programs of polghsize.

The depth of a branching program obviously measures thedfmsemputation required in the
worst-case. On the other hand, nodes of branching progréosslg correspond to configura-
tions of other sequential models of computation. Cobharh488 Pudlak andak [91] have
independently used this correspondence to prove that zkeo§ibranching programs is essen-
tially the logarithm of the space complexity on nonuniformriiig machines. Especially, we
have the following important result:

Theorem 1.6 (Cobham / Pudhk and Zak):  P-BP= L/ Poly.



Furthermore, also the size of branching programs and tledizircuits are closely related.
Let C(f) be the size of an optimal circuit for the Boolean functipn A formula is a circuit
whose gates have fan-out 1, and the size of a formula is théewuof its literals. Letl(f)
denote the minimal size of a formula using arbitrary binaagegs and negations. Lét'(f)
denote the minimal size of a formula using only gates fromVv, —}. It is well-known that
L*(f) < L(f)* (this can be easily proven by recursively replacing gateb@EXOR-type by
an appropriate formula ovemn, v, —}).

For these complexity measures we have:

Theorem 1.7 (Wegener / Sauerhoff, Wegener, and Werchner):
(1) (1/3)-C(f) <BP(f) < L*(f) + 2;

(2) BP(f) = O(L(f)?), wheres := log,(3 + v/5) < 1.194.

Part (2) of this theorem is a recent result with a mathemiiticuite involved proof [96],
whereas Part (1) has already been known for a long time (dgig,[l112]) and can be proven
by straightforward simulations. For the proof of the secarejuality of (1), one applies ele-
mentary construction techniques for branching prograres &ection 1.4). The essence of the
proof of the first inequality is that branching programs carsben as a special kind of multi-
plexer circuits. We take a closer look on this corresponddrere, since it yields an important
alternative view on the semantics of branching programs.

Extending Definition 1.5, we can recursively assign a fuorcto each of the nodes of a given
branching program; we say that such a function is computetefwesented) at its node. First,
we assign the constant functioland1 to the sinks. A non-sink nodelabeled byz; and with

0- and1-successors, andw, resp., is assigned the function

fo :=te(xi, fun, fuy), Where itdz,y,z):=zyV (-z)z

and f,,, and f,,, are the functions computed at the successors. (This is tealka “Shannon
decomposition formula.”) Using this definition, we can noas#y construct a circuit for the
given branching program by recursively replacing each nody three gates computing,
according to the above formula.

Having seen the above relations between the size of bragghisgrams and the size of cir-
cuits (or formulas), it is natural to ask whether there ararabterizations of familiar complex-
ity classes defined via circuit complexity in terms of brainghprograms. The most impor-
tant result of this kind is closely related to the history e$ults on width-restricted branching
programs. We do not report this history here (for referense, e.g., [10] or the mono-
graph [112]). We first give a definition of the width of a braim@hprogram and the relevant
complexity classes.

Definition 1.8: For a node; of a branching program, defirigv) as the number of edges on the
longest path from the source to For: > 0, let theith level ofG be the set of all nodeswith
I(v) = i. Thewidth of a branching program is the maximum taken over the sizets dévels.

Let P-WIDTH(k)-BP be the class of sequences of functions representabibeadmghing pro-
grams of polynomial size and width Define P-BWBP.= | J,., P-WIDTH(k)-BP (“BW" =
bounded width). N



Since Yao [116] had proven that width-2 branching prograepsesenting the majority function
require superpolynomial size, it had been conjectureddhan arbitrary constant width is not
sufficient to compute it in polynomial size. This has beemuigen by the following famous
result of Barrington [16], which supplies a direct and siempharacterization of the familiar
class NC in terms of branching programs.

Theorem 1.9 (Barrington):  P-BWBP= P-WIDTH(5)-BP = NC!.

Because of all the results which we have presented aboweoihious why it is an important
(open) problem to prove superpolynomial lower bounds orsthe of branching programs for
an explicitly defined function. (Here, a sequence of fumig,, ).cn is calledexplicitly defined
if the languagé J . f, ' (1) is contained in NP.)

As already mentioned, the present record of success in tliedidower bounds for general
branching programs is poor. It is not hard to show that artratyi sequence of Boolean func-
tions (f.)nen has branching programs of siz&2"/n), while on the other hand, for almost
all sequences of functions also the optimal branching progrhave siz€(2"/n) (see [29],
[71], [112]). In spite of this, the largest known lower bouiod an explicitly defined function
is still that of orderQ(n?/log® n) which follows by the method of Netiporuk from 1966 [79]
(the respective function is contained in P). There are oaly dther results for general branch-
ing programs. Pudlak [89] and Babai, Pudlak, Rodl, anen$zrédi [14] have proven weaker
bounds by a different method for certain symmetric functioBabai, Nisan and Szegedy [13]
have applied results on multiparty communication proted¢olprove a lower bound for an en-
coding of the so-called generalized inner product fungtlmrt also this bound is smaller than
that of Neciporuk.

It is a natural development that theory has turned to theyaisabf more restricted variants of
branching programs after the available tools had turnedwhbe insufficient to tackle the gen-
eral lower bound problem. In the next section, we introdeerestricted variants of branching
programs which are relevant for this work.

1.3 Restricted Branching Programs

The variants of branching programs which play a role in thofang are all restricted with
respect to the number of read accesses to the input variabesmost popular model of this
kind (or, rather, a class of models) is the following one.

Definition 1.10: Letk € N. A read+%-times branching progrars a branching program with
the restriction that on each path from the source to a sink gagable is allowed to appear at
mostk times as the label of a node.

Let P-BR: denote the class of sequences of Boolean functions repabdery readk-times
branching programs of polynomial size. We allow that the bank may depend on the input
size of the represented functions. For a functiolN — N, we formally define

P-BPF: := {(fn)nen | 3 (Gn)nen: G, is a readk(n)-times BP representing,
and|G,,| = Poly(n) }.

8



A read+-times branching program has depth at miast wheren is the number of variables.
The parametek thus allows to control the available time of computation.

It has been noticed by Borodin, Razborov, and Smolensky tfzat] another interesting, more
general variant of readé-times branching programs is obtained by requiring therig&in on
the number of read accesses only to hold focalhputation pathénstead ofall paths). These
branching programs are sometimes calteth-syntactic (or semantic) reddtimes branching
programs whereas the above model is calleghtactic readk-times In this work, we only
consider the syntactic variant and usually omit the prefgntactic” for readability purposes.

The first type of read-times branching programs which has been intensively tiga&®d are
read-once branching programs e., the casé = 1. In this case, the syntactic and the general
(non-syntactic) model coincide. Read-once branchingnarog (including OBDDs defined be-
low) are the variant of branching programs whose theory istrtteroughly understood. It has
also been the first variant for which exponential lower bauad the size could be established.
Wegener [113] andak [117] independently have proven such bounds on thedizertain
functions testing the existence of cliques in graphs. Liteer bound results include func-
tions which correspond to other combinatorial problemg (gtesting whether a graph contains
a perfect matching or an undirected Hamiltonian circui§][3 problem involving projective
planes [40]), functions which test properties of matricegy(, the permutation matrix function,
[60], [68]), arithmetic functions (computing the middl@-bf multiplication, [88]), functions
representing codes ([61], [83]) and many more. Most of thgrsefs are based on variants of
the “cut and paste” argument already applied in the first wofiiWegener andak. The various
approaches have been unified and generalized by the teehofi@imon and Szegedy [107].

Read#-times branching programs fdr > 1 are much more difficult to handle than read-
once branching programs. In contrast to read-once bragghivgrams, read-times branching
programs witht > 1 may containnconsistent path&lso called null-chains). An inconsistent
path is a path which cannot be part of a computation pathesihkeast one variable would have
to be tested with different results on it.

Nevertheless, the last years have also brought some ititgressults for (syntactic) reak-
times branching programs whete> 1. (Definitions of the nondeterministic and randomized
variants of branching programs mentioned here are present€hapter 2.) The first expo-
nential lower bounds on the size of readimes branching programs have been independently
proven by Okolnishnikova [83] fot < clogn/loglogn, ¢ < 1 arbitrarily chosen, and by
Borodin, Razborov, and Smolensky [27] even for nondeteistioread4-times branching pro-
grams andk < clog n, for an appropriate constant(wheren is the input size). Jukna [61]
has extended these results by showing an exponential gapdrethe size of nondeterministic
read#-times BPs for the function of Okolnishnikova and its conmpéant.

Already in the beginning of the research on read-once biiaggbrograms, Wegener has pre-
sented a function for which read-twice branching programgehpolynomial size, whereas
every read-once branching program must have exponential (f112], [113]). It remained
open whether, in general, the classes of sequences ofdnsatpresentable in polynomial size
by read#-times branching programs form a proper hierarchy with eespo#.

9



Okolnishnikova [84] has been the first to make some progrétssamswering this open ques-
tion. She has managed to prove an exponential gap betweesizéhef readk-times and
read#*-times branching programs, whek¢ > k2 (which she later has improved o >
ckIn k, ¢ appropriately chosen, and also extended to the nondetistinioase [85]). Recently,
Thathachar [109] resolved the open question concernindsetactic) readstimes hierar-
chy. He has even shown an exponential gap between the sizendéterministic or random-
ized readk-times branching programs and deterministic rékaeH )-times branching programs
(which holds for allk < (1/v/2 — §)+/Iog n, d > 0 an arbitrarily small constant).

Up to now, proving lower bounds for the non-syntactic modaiead+-times branching pro-
grams is an open problem. Non-syntactic réatimes branching programs (with the restriction
imposed only on the computation paths) have originally lmssidered to be the more natural
model since they directly correspond to a restricted vardrTuring machines, the so-called
read+-times eraser Turing machineSuch a machine is allowed to access each location on the
input tape at most times (of course, this is only interesting when consideguoglinear space
bounds). For the cade = 1, the correspondence of these machines to branching pregeam
analyzed in the thesis of Meinel [74] (also published in }68h general, logarithmic space
on nonuniform read=times eraser Turing machines corresponds to polynongal f&ir non-
syntactic read:-times branching programs, analogously to the result offaaband Pudlak
andZak presented in Section 1.2. But although the model seetbs hatural, it is not clear to
which extent non-syntactic reddtimes branching programs can really be helpful to gain new
insights into lower bound techniques.

One can say that, intuitively, all restrictions of branahiprograms which are not defined in
terms of “simple” properties of the graph but in terms of tleerhputation” of the branching
program (like general, non-syntactic readimes branching programs) turn out to be hard to
understand. The models of the former type are generallybismed under the label “syntactic
models,” whereas the latter type is called “non-syntaadic’"semantic.” Of course, this is no
formal distinction. One possible criterion to compare thedels on this level could be the
complexity of the problem to decide whether a given branghprogram fulfills the required
restriction, this problem is called the “consistency tefst” the respective type of branching
programs by Sieling and Wegener [106]. It is easy to see tiatconsistency test for the
syntactic variant of read-times branching programs is in P, whereas it is coONP-cotaft
non-syntactic read-times branching programs if > 2 (this follows by a simple application
of a well-known reduction from [39]).

There are some investigations on variants of branchinggrpnos at the borderline between
syntactic and non-syntactic models. (A +k)-branching programs a read-once branching
program where for each computation path there may be a setnobstk variables which do
not fulfill the restriction on the number of tests. Obvioysly, +%)-branching programs allow
the existence of inconsistent paths. Sieling [102] firsvproa hierarchy result for varyingon
syntactic(1, +k)-branching programs (where the restriction must hold fopaths). Savicky
and Zak have recently extended this result to the general, symtactic case [98]. Further
interesting ideas have been presented by Jukna and RazZbéiow hey have replaced eraser
Turing machines by so-called “corrupting Turing machinesiich seem to be a physically more
appropriate model of the concept of restricted read acdéms.variants of branching programs

10



defined according to these machines are cakdantic read=times branching programand
semantiq(1, +k)-branching programsJukna and Razborov have presented exponential lower
bounds for semantic read-once nondeterministic branchiegrams and semantid, +%)-
branching programs.

In the remainder of this section, we introduce some furtlestricted variants of branching
programs which have originally been motivated from praetidhese models are even more
restricted than syntactic reddtimes branching programs. OBDDs (ordered binary decision
diagrams) introduced by Bryant [30] are a widely known modgich has turned out to be
extremely useful as a data structure for the representafi@oolean functions.

Definition 1.11: Letx be a permutation of the sét, ..., n}. A 7-OBDD on the variable set
{z1,...,z,} is aread-once branching program with the following addiicordering restric-
tion: For each edge leading from a node labeled by some variglite a node labeled by;
it must hold thatr(:) < (). We call a graph a®BDD if it is a 7-OBDD for some permu-
tationw. The permutationr is called thevariable orderingof the OBDD. We frequently will
describe a variable ordering simply by an ordered list ofheables (e.qg., 41, ..., z," for
7 =id).

Define P-OBDD as the class of sequences of functions regedsenn polynomial size by
OBDDs.

OBDDs are closely related to DFAs (deterministic finite awdda); we do not discuss this in
detail here. It is well-known that DFAs can be reduced effitigi. e., given an arbitrary DFA,
we can compute a minimal DFA for the same language in polyabtime. This minimal
DFA is even uniquely determined. If we fix a variable orderfog OBDDs, they share these
properties.

Theorem 1.12 (Bryant/ Sieling and Wegener):The 7-OBDD of minimal size for a given
function f is uniquely determined (up to isomorphisms) and can be ctedpgivom an arbi-
trary 7-OBDD G for f in time O(|G]).

We adopt the usual convention to call the unique, minimal OBbr a functionf thereduced
OBDD for f (according to the fixed ordering), and the respective operas calledreduction
The uniqueness of the minimal OBDD was already proven by ®rj20], his algorithm for
reduction has later been improved by Sieling and Wegends][1@erhaps the most important
fact about OBDDs for theory is that the reduced OBDD also aadéscribed in a simple way.

Before stating this result, we give the definition of two loastions.

Definition 1.13: Let f: {0,1}" — {0,1} be defined onx, ..., z,. Thesubfunction (restric-
tion) f|.,=. of f, a € {0, 1}, is defined by

flaiza(@1y ooy @n) == f(Z1, .y Tic1, @, Big1y oy T

We say thatf essentially depends a variabler; if f|.,—0 & f|z;=1 # 0.

11



Theorem 1.14 (Sieling and Wegener)Let be areduced-OBDD for the functiory defined
onzy,...,z,. Forthe ease of notation, assume thas the orderingzy, . .., z,.

Fori = 2,3...,n+ 1, let S; be the set of subfunctions ¢fof the typef|.,—a,. 2 1=a; 1+
where(ay, ..., a;_;) € {0,1}*7!, which essentially depend an. LetS, = {f}. Obviously,
Sny1 € {0,1}.

Then the functions represented at the nodes tdbeled byz; are exactly those ii;, fori =
1,...,n, and the functions represented at the sinks are thosg_in. (The function represented
at a node of a branching program has been defined in Sectiap Especially, the number of
nodes of7 labeled byz; is exactly|.S;|, and|G| = [Sy| + -+ + [Sa| + [Sny1l-

As it turned out, OBDDs cannot only be reduced, but also mdstramportant operations
required for practice can be carried out efficiently, as wi @vscuss in the next section. This
is the reason why they are interesting as a data structurBdotean functions. For practical
purposes, it is desirable to know which functions can beasgmted in small size and which
not, and hence, complexity theoretical results for OBDB® dlave immediate consequences
for practice. Lower bounds for OBDDs have been proven, éng20], [21], [31], and [50]. It

is also possible to design a variant of the Turing machineehuathich allows to characterize
the class P-OBDD [99].

We cannot review the enormous amount of literature conngrall the various aspects of the
application of OBDDs here. Instead, we refer to the mondgraipMinato [76] and to the
overview article of Bryant [32]. The monograph of Hachteba®omenzi [47] covers some
aspects of the application of OBDDs for the verification a€uits.

Itis a general rule of thumb that the easier it is to maniguéatiata structure for Boolean func-
tions, the smaller is the class of sequences of functioneseptable in polynomial size. Since
many important functions, like multiplication, are not ¢aimed in the class P-OBDD, practi-
cians have intensively sought for new, generalized vesiahtOBDDs which promise an even
better trade-off between efficiency of algorithms and tkze sif the graphs. Two straightforward
generalizations are described in the following definition.

Definition 1.15:

(1) A k£IBDD (“IBDD” = indexed binary decision diagram) is a branchingggram whose set
of nodes can be partitioned intoparts (calledayers L, ..., L such that
(i) edges starting irL; end inL; with j > i, and
(ii) there are variable orderings,, . .., m; such that for all edges withif; the ordering
restriction for OBDDs from above holds with respectito

(2) ALOBDDis akIBDD wheren; = - - - = .

k1BDDs have been invented and intensively analyzed by JaineB Abadir and Fussell [53].
Bollig, Sauerhoff, Sieling, and Wegener [21] have showr the classes of sequences of func-
tions representable in polynomial size el 8DDs (and alsd:OBDDs) form a proper hierarchy
with respect ta:.

12



1.4 Branching Programs as a Data Structure

We have already mentioned that certain variants of braigghiagrams are used as a data struc-
ture for the representation of Boolean functions. VLSI gasiespecially the verification of
symbolic descriptions of hardware, is the main field of aggtion for such data structures. We
discuss these practical issues here because it is alsotanptw know how to handle and how
to construct branching programs for theoretical purpoBesthermore, the existence or nonex-
istence of efficient algorithms for certain operations ofteelds interesting insights into the
nature of the considered variant of branching programs.

Although a randomly chosen Boolean function requires armegptially large representation,
functions occurring in practice are usually strongly stawed and have inherent symmetries.
These can be exploited by branching programs, often leddiagsuccinct representation. The
interesting thing about OBDDs and similar variants of btang programs is that they can also
be manipulated efficiently.

In his pioneering paper on OBDDs, Bryant [30] presented tadishasic operations on rep-
resentations for Boolean functions for which efficient aitions would be desirable. His list
has later been extended by Sieling and Wegener [106]. Weraeltion the most important
operations here.

Evaluation:

Input: A representatiorG for a Boolean functionf: {0,1}" — {0,1}, an assignment
ac{0,1}"

Output: f(a).

Satisfiability-Test:

Input: A representatior/ for a functionf.

Output: Yes, if there is an assignment {0, 1}" such thatf(a) = 1; no, otherwise.
Replacement by constants:

Input:  Arepresentatiot for f, a variablez; on whichf is defined, and a constant {0,1}.
Output: A representatiofi’ for the functionf|.,-. which is obtained frony by replacingz;
by c.

Boolean synthesis:

Input: Representation&’;, G- for functions f; and f», resp., and a Boolean operation
®: {0,1}% — {0,1}.
Output: A representatioty for f; ® f.

Evaluation and replacement by constants are “low levelrafiens and need no further mo-
tivation. We intuitively feel that both should be easy torgasut for any reasonable kind of
representation. Replacement by constants is an operati@hvs needed very often in up-
per and lower bound arguments. We remark that there are tnpfactically relevant types

13



of restricted branching programs for which the operatiqgriaeement by constants may cause
problems. For the so-calleatdered functional decision diagranf®FDDs), the best known
algorithm for the replacement of variables by constantsrbasing time©(|G?), and already
logarithmically many applications of this operation magrigase the size of the representation
exponentially (see [18] for details). Furthermore, for aiamat of read-once branching pro-
grams described below, even the replacement of a singlablarby a constant may lead to an
exponential blow-up of the size.

Testing satisfiability and the synthesis operation aretdhd&mental operations for verification.
The synthesis operation is required to construct a reptaen from a given circuit description
(by “simulating” the gates of the circuit). Efficient algtiims for synthesis and testing satisfi-
ability are sufficient to efficiently check the equivalendewo representations (by exploiting
the fact thatf = g iff f & g is not satisfiable). Of course, it can turn out to be more effitto
design a special algorithm for the equivalence test.

The representations of Boolean functions traditionallgdug switching theory, like minimal
polynomials or circuits, all have the feature that evahmtireplacement by constants and syn-
thesis are trivial, but the satisfiability test is NP-contel€T his also holds for general branching
programs, because a CNF formula can be simulated by a brapptogram of at most the same
size (see Theorem 1.7 in Section 1.2). We explicitly descdtlile algorithms for the three other
operations here since they demonstrate important staridaneiques for the manipulation of
branching programs.

Theorem 1.16: LetG, G4, and G2 be branching programs.
(1) The evaluation of/ can be carried out in timé(d), whered is the depth of7.

(2) Replacement of a variable iff by a constant can be carried out in tin@(|G|), and it
holds that|G'| < |G| for the resulting graph?’.

(3) Boolean synthesis @f; and GG; with an arbitrary binary operation can be carried out in
time O(|G1| + |G2|). The resulting graph has size(|G:| + |G2|).

Proof: Part (1): We only have to follow the computation path for the given gissient as
described in the definition of branching programs.

Part (2): For each node labeled byz;, we redirect all edges leading toto the c-successor
of ». This can be done during a single depth-first search thraugh

Part (3): We may assume for simplicity that all branching programsdtechhere have exactly
one0- and onel-sink. For the unary operation (NOT) we simply copy the input and swap the
values of thdé)- and1-sinks. For the operation (AND), we “concatenate” copies of, andGs

in the following way: Identify the -sink of (; with the source of>, and merge the-sink of G;
with the 0-sink of (5. The operation/ (OR) is handled analogously. All remaining operations
are carried out using the above ideas by simulating an appteformula ovef{ A, v, -} for
the operation. a

For OBDDs, all operations of the problem list, especialyoathe satisfiability test, and many
more can be done in polynomial time. We only state the resexsults and refer to Bryant's
original paper [30] for a proof.

14



Theorem 1.17: Let(, G, and (G5 be OBDDs ordered with respect to a variable ordering

(1) The evaluation off can be carried outin timé&(d) = O(n), whered is the depth of7 and
n is the number of variables.

(2) Satisfiability ofG can be checked in tim@(|G|).

(3) Replacement of a variable @ by a constant can be carried out in tindg|G|), the result-
ing graphG’ is again ordered byr and it holds thatG’| < |G].

(4) Boolean synthesis ¢f, and GG, with an arbitrary binary operation can be carried out in
time O(|G1||G2|). The resulting graplt?’ is again ordered byr and has siz&®(|G1||G2|).

We note that all algorithms for the operations mentionedsatbwork with the same, fixed vari-
able ordering. The crucial point for the representation @firection by an OBDD s to find a
variable ordering leading to a “small” OBDD (if there is suzlariable ordering at all).

Itis known that it is not possible to compute an optimal Valeaordering efficiently if P£ NP.
More precisely, the problem we are faced with is the follayirGiven an arbitrary OBDDY
representingf, compute an ordering,,: such that the size of the reduceg,,-OBDD for f

is minimal among all choices of the variable ordering. Thisljem has first been proven to
be NP-complete by Bollig and Wegener [22]. Sieling has edeinthis by showing that even
no polynomial time approximation algorithm with constartrat-case performance ratio exists
under the assumption NP ([103], [104]).

We remark that a large part of the literature on OBDDs is cameg with the question how the
above operations (and others) can be implemented effigiantd how they can be used for the
various applications. Of course, we do not go into theseildetare. We again refer to the
monograph of Minato [76] and suggest that the reader looks@bf the sophisticated OBDD
packages which already exist. Important basic implememaéchniques are described in the
papers of Brace, Rudell, and Bryant [28] and Minato, Ishiarad Yajima [77].

At the end of this section, we discuss whether also (symjaetad#-times branching programs
might be used as a data structure for the representationaéBo functions.

If we consider arbitrary read-times branching programs as the class of representatibes,
answer to the above question is negative. First, it has beewik for quite a long time that the
satisfiability problem is NP-complete already for readriets branching programs (Fortune,
Hopcroft, and M. Schmidt [39]). For read-once branchinggoamns, satisfiability can be tested
in polynomial time. But another problem with re&elimes branching programs even occurs
in the casé: = 1. This is the fact that the Boolean synthesis of two input gsapf polyno-
mial size may lead to an exponentially large result. The shoids for the “quantification”
operations, i.e., the task to compute representationéofunctions Vz;: f(zy,...,z,)" Or
“Jz;: f(z1,...,T,)" from a representation fof. For verifying the equivalence of two read-
once branching programs, only a coRP-algorithm is knownrfBIChandra, and Wegman [17]).
Finally, it also seems to be difficult to exploit the power dfitiple reads if one has to construct
a readk-times branching program from an arbitrary circuit.

Of course, heuristical solutions to the above problems neafpbnd. So far, such an approach
has only been tried for the more restrictelBDDs instead of general readtimes branching

15



programs. Jain, Bitner, Abadir, Abraham, and Fussell [58jehdescribed heuristics for testing
satisfiability and for constructing a representation froigiveen circuit. Boolean synthesis can
be carried out efficiently if the orderings of variables ie thyers of the:IBDDs are fixed.

Sieling and Wegener [106] have concentrated on the questi@ther there is a way to work
with read-once branching programs as a data structure,iie spthe drawbacks mentioned
above. They have discovered that many operations, ingugloolean synthesis and the equiv-
alence test, can be carried out efficiently on read-oncecbiag programs if one works with
a fixedgraph ordering which is the generalization of the variable ordering of aBOD (a
similar approach has been considered independently byo@amd Meinel [42]).

Definition 1.18: LetX = {z1,...,z,}. LetGy be aread-once branching program with exactly
one (unlabeled) sink where on each path from the source &irkell variables fromX appear.
Such a graph is calledgraph ordering

A read-once branching program with graph orderid¢y on the variable sek’, Go-BP1 for
short, is a read-once branching program with the followiddiional ordering property. For
an arbitrary inputz € {0,1}", let L(a) be the list of labels at the nodes on the computation
path fora in the read-once branching program, and similarlyllgta) be the list of labels on
the computation path far in the graph ordering7,. We require that.(a) is a subsequence
of Ly(a).

It is easy to see that an arbitrary read-once branching prog@r is ordered with respect to
a suitably chosen graph orderirg, (this can be constructed efficiently frofi by inserting
“dummy tests”). Sieling and Wegener [106] have proven that#;-BP1 of minimal size for a
given functionf is uniquely determined and can be efficiently computed fromarbitrary 7o-
BP1 for f. Furthermore, &7,-BP1 for f ® g, where® is an arbitrary Boolean operation, can
be computed from twd-BP1sG; andG, for f andg, resp., in imeO(|Gy||G1]|G]) (this is
also the size of the result graph). The running time of thalmsis operation can be improved
to O(]|G1]|G-]) if one considers a variant of graph ordered read-once braggitograms with
stronger structural properties (so-called “well-struetl BDDs”, WBDDs), see [106] for de-
tails. Usually, one has to pay with an increase of the sizenefgraphs for this improved
running time.

Altogether, graph ordered read-once branching programysintieed be used for practical pur-
poses. The operations satisfiability test and Boolean sgigltan be carried out in polynomial
time even for graph ordered redstimes branching programs, which are refatimes branch-
ing programs witht layers all ordered according to the same graph ordering &saaghtfor-
ward generalization similar to the generalization of OBOD¢OBDDs). The main problem
for the application of these data structures is that it seerbe even more difficult to find good
graph orderings than to find variable orderings for OBDDsrtlr@rmore, it is known that the
replacement of variables by constants may lead to an exgpiahétow-up of the size of the
read-once branching program if the graph ordering is fixadlif® and Wegener [106]). If
the running time is measured with respect to the size of tpatiand the output graph, one
can prove that the replacement operation is as difficult asetjuivalence test for (arbitrary)
read-once branching programs [101], for which probably alypomial time algorithm exists.

16



1.5 Previous Results on Nondeterministic and
Randomized Branching Programs

In the previous sections, we have mainly been concerned dgthrministic branching pro-
grams. In the following, we review complexity theoreticakults on nondeterministic and
randomized branching programs which have been previousiyvk or which have been estab-
lished independently from this work. The nondeterministitl randomized models of compu-
tation mentioned here will be defined and discussed in degitiei next chapter.

The first exponential lower bound for a nondeterministiciasatr of branching programs has
been established independently by Jukna [59] and by Kravsimel, and Waack [68]. They
have proven such a bound on the size of nondeterministicagad branching programs for the
permutation matrix function.

An overview on the different modes of computation for reat@branching programs has been
given in the thesis of Meinel [74]. Meinel has analyzed thatiens of complexity classes
defined in terms of variants of nondeterministic read-on@nbhing programs among each
other and to well-known nonuniform complexity classes.

Later on, Borodin, Razborov, and Smolensky [27] have mathégerove an exponential lower
bound even for nondeterministic reaetimes branching programs (whekemay be larger
than1). We have already mentioned this result and the relatedtsesiuOkolnishnikova ([83],
[84], [85]) in Section 1.3.

Recently, some further nondeterministic variants of bramg programs have been studied by
Jukna and Razborov [56], Bollig and Wegener [23], and by W&at0]. We will comment on
the models considered in these papers later on in Chapter 2.

Although nondeterministic branching programs have beeswknfor quite a long time, the
probabilistic mode of computation has been introduced fanbhing programs only recently.
As we will show later on, randomized branching programs \eidtunded error probability can
be derandomized by the same technique as probabilistigitsiyand the analogs of the classes
BPP, RP, and ZPP defined in terms of the size of branching amegcoincide with the analog
of P, i.e., the class of sequences of functions with bramcpimgrams of polynomial size.
Hence, at the first glance, the randomized model does not seemvery exciting. Ablayev
and Karpinski [3] were the first to notice that the situati@edmes much more interesting if we
consider restricted variants of branching programs. Theyetanalyzed randomized OBDDs
and have presented an example of a function which can be dethpy randomized OBDDs
of polynomial size with small one-sided error, but which lkeaponential size for deterministic
OBDDs and even for deterministicOBDDs. Later on, they have extended the lower bound
also to nondeterministiEOBDDs [5] (in this paper, a slightly modified version of thegimal
function is used). Furthermore, in their first paper [3] ialso shown that a nonboolean variant
of the considered function has exponential size for det@stic read-once branching programs.

Exponential lower bounds for randomized OBDDs have beevegrdy Ablayev [2] for a func-
tion from a paper of Savicky andak [97] and independently by the author for functions from
the literature on OBDDs [95]. An exponential lower bound be size of randomized OBDDs

17



for integer multiplication is due to Ablayev and Karpinsk].[ These results hold for the Monte
Carlo model, i. e., bounded error (one-sided or two-sidadyl are proven by tools from com-
munication complexity theory. Recently, Ablayev, Karginsand Mubarakzjanov [6] have
presented a function contained in the analog of the clasePBridomized OBDDs, but not in
BPPUNPUCcoNP. By applying a known result from communication comitiepd8], Karpinski
and Mubarakzjanov [64] have shown that ZRPHAP for OBDDs.

Agrawal and Thierauf [7] have considered the question wéretandomized OBDDs can be
used as a data structure for Boolean functions, suppottmgperations defined in Section 1.4.
They have observed that the known synthesis algorithm fobD®can be used also for ran-
domized OBDDs. Unfortunately, an iterated applicationhi$ talgorithm will lead to a degra-
dation of the error guarantee. Sometimes, this can be cosapethby a “probability amplifica-
tion” technique. A more severe problem is that the satidftgtiest (more precisely, its promise
variant) is NP-complete for randomized OBDDs, as Agrawal &hierauf have proven. Alto-
gether, these results show that it is unlikely that randechi@BDDs are applicable as a data
structure in the same way as deterministic OBDDs.

There had been no results on randomized redidaes branching programs prior to this work.
We have already mentioned that Thathachar [109] recentyorred the results presented here
in order to prove that the classes of sequences of functitmreadk-times branching programs
of polynomial size form a proper hierarchy with respeck:to

1.6 Summary of Results in this Work

We give a short overview on what is done in this work.

In the next chapter, we introduce nondeterministic and eamided variants of branching pro-
grams. There are several possible approaches to enhancapiieilities of a simple branching
program by adding nondeterminism and randomness. We discuse of these approaches and
motivate the choice of the model used here.

One main part of the work deals with randomized OBDDs. We eselts from communi-

cation complexity theory to derive lower bounds on rand@di©DBDDs (this technique has
independently also been applied by Ablayev [2], as alreadptioned). It turns out that the
relations of the complexity classes belonging to the MoraddCerror model, i. e., the analogs
of the classes BPP, RP, and NP defined in terms of the size ofD8BEan be completely
characterized. These results are presented in Chapter 3.

In Chapter 4, we take a closer look at how the size of branchingrams depends on the re-
source randomness. We show that an arbitrary randomizetthireg program can be turned
into a randomized branching program requiring only a nundférandom bits” which is log-
arithmic in the input size, while the size of the branchinggram only increases by a linear
factor. An analogous result holds for most of the restrictadants of branching programs,
especially for randomized OBDDs and randomized reaiines branching programs. Further-
more, we discuss a nonstandard model of randomized brapphigrams where each random
bit may be used more than once without explicitly storing it.

18



The second main part of the work is about lower bounds foreamided read:-times branch-
ing programs (Chapter 5). As might be suspected, it is mdfeedi to prove lower bounds
for this model than for randomized OBDDs. We describe an tdimm of the technique of
Borodin, Razborov, and Smolensky [27] to the randomizetinggttogether with the following
two applications. First, we show an exponential gap betwleesizes of randomized read-once
branching programs for different constant worst-casergarobabilities, which is perhaps the
most surprising result of the chapter. Furthermore, we @iavexponential lower bound on the
size of randomized reakHimes branching programs férlarger thani.

Publications

B. Bollig, M. Lobbing, M. Sauerhoff, and |. Wegener (199%)omplexity theoretical aspects
of OFDDs. InProc. of IFIP WG 10.5 Workshop on Applications of the ReedléviExpansion
in Circuit Design 198 — 205, Chiba, Japan. Also published Representation of Discrete
Functions T. Sasao (Ed.), Kluwer Academic Publishers, 1996.

B. Bollig, M. Lobbing, M. Sauerhoff, and I. Wegener (199&)n the complexity of the hid-
den weighted bit function for various BDD models. Submitted heoretical Informatics and
Applications

B. Bollig, M. Sauerhoff, D. Sieling, and |. Wegener (1998)ietarchy theorems fokOBDDs
andkIBDDs. Theoretical Computer Scienc205(1):45-60.

R. Drechsler, M. Sauerhoff, and D. Sieling (1998). The camnity of the inclusion opera-
tion on OFDDs.|EEE Trans. on Computer Aided Design of Integrated Circaitd Systems
17(5):457-459.

M. Sauerhoff (1998). Lower bounds for randomized réatiimes branching programs. Rroc.
of the 15th Ann. Symp. on Theoretical Aspects of ComputenSzi(STACSLNCS 1373
105 - 115. Springer-Verlag.

M. Sauerhoff (1998). On the size of randomized OBDDs and-mrax® branching programs
for k-stable functions. To appear ®roc. of STACS'99

M. Sauerhoff and |. Wegener (1996). On the complexity of miging the OBDD size for
incompletely specified functionfEEE Trans. on Computer Aided Design of Integrated Circuits
and Systemd 5(11):1435-1437.

M. Sauerhoff, I. Wegener, and R. Werchner (1996). Optimdéced binary decision diagrams
for fanout-free circuits. IrProc. of Synthesis and System Integration of Mixed Techresdo
(SASIMI) 197-204, Fukuoka (Japan), 1996. SubmitteDiszrete Applied Mathematics

M. Sauerhoff, I. Wegener, and R. Werchner (1998). Relatiragpthing program size and for-
mula size over the full binary basis. To appeaPimc. of STACS'99

19



1.7 Notation

Before we start into the next chapter, we list some notatiooaventions used throughout this
work.

Our fundamental object of study is a Boolean function andpaesentation for such a func-
tion. It is usually important to state which variables aredidy the representation. Let
X = {z,...,z,} be a set of variables. To be formally precise, we could defiBoalean
function f depending on these variables as a mapping of assignmentz* to Boolean val-
ues, where2X is the set of all functions of the typ& — {0,1}. A representation forf
defined on variables fronX can be evaluated if we supply an assignment to these vasiable
In order to simplify notation, we usually identify assignm® with Boolean vectors (assum-
ing that the order of variables is obvious or does not mattBg the expression “a function
f:{0,1}" — {0,1} defined on variables from the s&t = {z,,...,z,}" we then abbreviate
the fact thatf is a mapping of assignments as described above.

We will frequently talk about sequences of concrete Boolfarttions, like (XYZ,,),en.”
For the ease of notation, we use the name of the function (“XYthout lower index as an
abbreviation for the whole sequence.

The binary Boolean operations “AND”, “OR”, and “NOT” are d&ed by ‘A", “V”, and “="

(or “="), respectively.

The following definitions have already occurred in Sectiadddnd are included here for easier
reference.

Let f: {0,1}" — {0, 1} be defined on the variables, ..., z,. Thesubfunction (restriction)
flai=a O f, wherea € {0,1}, is defined by

flaiza(@1, .o @n) == f(@1, o, Ti1, @, Big1y oo, Tn).
We say thaff essentially dependm a variabler; if f|.,—o @ f|.;=1 # 0.
Leta = (an_1,an 2,...,a0) € {0,1}". By |a|s we denote the value of, interpreted as the

binary representation of a nonnegative integer, i. e.,

n—1
la]s = Zao - 2%
i=0

Let P = P(zy,...,z,) be a predicate with free variables, ..., z,, wherez; assumes val-
ues inV;, then the expressiofP] denotes the functiorf: V; x -+ x V,, — {0,1} with
flzr, ... x,) = 1iff P(zy,...,2,)Is true.

By Poly we denote the class of functions which grow at mosymaially, i. e., Poly is the
class of all functiongf with |f(n)| = n°(1). The class Polylog contains all functioiswith
|f(n)] = 1og®" n. We call a functionf exponentialif there is a constart > 0 such that
|f(n)| = Q(2™), andsuperpolynomiaif |f(n)| = n“(1). We remark that all logarithms in this
work are logarithms to the bageif not explicitly stated differently.

The complexity measures and complexity classes considenedwill be defined together with
their corresponding model of computation. We use the raitatd€ for the class containing
the sequences of Boolean functidifs),en with (=f,) € C.

20



Chapter 2

Nondeterministic and Randomized
Branching Programs

In analogy to the definitions for Turing machines, differemddes of acceptance can be studied
for branching programs. Here we introduce both nondetastiinand randomized branching
programs (Section 2.1 and 2.2, resp.). We define complelasses in terms of these models
and observe basic inclusion relations. As in Chapter 1 féerdgnistic branching programs,
we also discuss the relations to known complexity classesiifcuits and Turing machines.

2.1 Nondeterministic Branching Programs

We start with an overview on some alternative approachesttoduce nondeterminism into
general branching programs in Section 2.1.1. Furthermibiis,also interesting to consider
different modes of acceptance for the various restrictpegyof branching programs. In Sec-
tion 2.1.2, we take a look at some of these models.

2.1.1 Nondeterministic Variants of General Branching Progams

Already the “ancestor” of today’s model of branching prags the so-called switching net-
work or switching-and-rectifier network from the works of &mon [100], has in fact been
a nondeterministic model. These networks have also beelestextensively in the Russian
literature on switching theory.

Definition 2.1: A switching-and-rectifier network on the variable e, . .., 2, } is a directed
graphG = (V, E) (not necessary acyclic) with two distinguished vertiggise V, calledstart
andend vertexresp. Edges off may be either unlabeled or carry labels of the form £ 0”

or“z; = 1.” Unlabeled edges are also callzde edges.

Such a graph represents a Boolean functfor{0,1}™ — {0,1} in the following way. For a
given inputa € {0,1}", call an edge of G activated fora if its label is consistent witla, i. e.,

21



if e is unlabeled or it is labeled byt; = ¢ if a; = ¢, ¢ € {0,1}. We definef(a) = 1 iff there
is a directedcs-t-path of activated edges farin GG.

Thesizeof the switching-and-rectifier network is the number of @béled edges. By SRIN)
we denote the minimal size of a switching-and-rectifier mekwepresenting the functiofi

For historical reasons, there are often several names ®raad the same model of branching
programs. Switching-and-rectifier networks are also knawader the nameontact gating
schemeswhereas undirected switching-and-rectifier networksadse calledcontact schemes
or simply switching networks

In the literature on branching programs, several restiiatersions of switching-and-rectifier
networks have been considered, which we do not introduce. héfe only remark that the
power of switching-and-rectifier networks is not substlitireduced if we forbid the use of
free edges and the existence of cycles.

Theorem 2.2: A switching-and-rectifier network representing a functiorf can be simulated
by an acyclic switching-and-rectifier netwofK for f without free edges, where the size(#f
is polynomial in the size af.

Proof: First observe that we can always ensure that the numbeall edges of a switching-
and-rectifier network is at most quadratic in the number bélad edges (see, e. g., [27]).

The ideas necessary to make a switching-and-rectifier metacyclic can already be found in
an early paper of Pudlak [90]. We describe a complete glyorihere. First, we compute a
setB of edges ofG = (V, F) such that the removal of these edges rendeeyclic without

changing the set of vertices reachable from the start ver{gxis can be done by a depth-first

search througl?). Letb := |B|. For the construction of the acyclic switching-and-reetifi
networkG', we start with disjoint copie§’, . .., G, of the graph obtained fror&' by removing
the edgesirB. Fori = 1,...,b — 1 and each edge:, v) € B, we insert an edge leading from

the copy ofu in GG; to the copy ofv in GG;;;. Furthermore, we introduce an unlabeled edge
leading from the copy of the end vertéxf GG in G; to its copy inGG;,;. The start vertex' of

' is the copy of the start vertexof ¢ in 1, and its end verteX is the copy oft in GG,. This
switching-and-rectifier network’ computes the same function &s since for a computation

in the original network, it is sufficient to run through eadage in B at most once. Obviously,
the number of edges ¥ is at most quadratically larger than that@f

In remains to describe how the free edges:6tan be eliminated. The initial step is to replace
each vertex with an outgoing free edge to the end verterf &' by the vertex' itself. After
that, we visit the vertices of the resulting graph in a regdr®pological order and replace each
free edge leaving the actual vertex as follows. ket (u,v) be a free edge, where has
outgoing edges;, . .., e, to verticeswy, . .., w. Deletee, and fori = 1,... k insert a new
edge(u, w;) carrying the label ok;. The graph obtained by this process is a switching-and-
rectifier network forf containing only labeled edges and having a size at most gtiadt the
size of the networky'. O

22



In a paper of Borodin, Razborov, and Smolensky [27], the n&meadeterministic branching
programs” is used simply for acyclic switching-and-reetifnetworks. We use the following,
more restrictive definition.

Definition 2.3: A nondeterministic branching program on the variable §et, ..., z,} is a
directed, acyclic graph with the same structure as destiibBefinition 1.5 for (usual) branch-
ing programs, but which may additionally contain unlabetedes with two unlabeled outgoing
edges. These nodes are calfemhdeterministic node§ V"-nodes, guessing nodes, existential
nodes).

The functionf: {0,1}" — {0,1} represented by a nondeterministic branching program is
specified analogously to Definition 2.1. Let an input {0,1}" be given. We call an edge
activated fora if it leaves a nondeterministic node or if it leavesgpode and is labeled by
a;. We definef(a) = 1 iff there is a path consisting of activated edges from thea®to the
1-sink (such a path is calleatcepting path

The size of a nondeterministic branching program is measured by timaber of its nodes.
Let NBP(f) be the minimal size of a nondeterministic branching progfamf. By NP-BP
we denote the class of sequences of functions with nondetistio branching programs of
polynomial size.

Nondeterministic branching programs by this definition e#so be seen as a special form of
acyclic switching-and-rectifier networks. The followingoposition shows that our definition
is not too restrictive.

Proposition 2.4: For an arbitrary Boolean functiorf, it holds thatSRN(f) < 2- NBP(f) and
NBP(f) = SRN(f)°"),

Proof: The first part of the statement follows immediately from tledinitions. The facto® in
the inequality is due to the fact that the size of nondeteistimbranching programs is defined
with respect to the number of nodes and not to the number @fealgfor switching-and-rectifier
networks.

In order to simulate a given switching-and-rectifier netwwdwy a nondeterministic branch-
ing program, we first make the network acyclic. It remains $plit’ nodes with outgoing
edges on which different variables are tested. We considsode v with outgoing edges
€1, )€k erit, -, exts, Wheree; = (v, w;) is labeled by %;; = ¢;”, for j = 1,...,k, and
ert; = (V,witj),j = 1,...,1,is unlabeled. We replaceby a tree of nondeterministic nodes
by which the nodes;, .. ., v, andwg1,. .., w41 are reached. The nodg¢ obtainsw; as its

cj-successor and thesink as its—c;-successor. ad

It turns out that the classes of functions representablenliiglsing-and-rectifier networks, by
acyclic switching-and-rectifier networks, and by nondeiieistic branching programs of poly-
nomial size are all identical to the class NBoly.

Theorem 2.5: NL/Poly= NP-BP.

23



The proof of this result is done essentially by the same sitioris as in the proofs of Cobham
or Pudlak andzak for the deterministic case.

We mention another approach to describe the nondeteriuibistnching programs of Defini-
tion 2.3. The definition of2-branching programs due to Meinel ([74], [75]) has the ngatdire
that it summarizes all interesting modes of acceptancertordhing programs.

Definition 2.6: Let Q be a set of binary Boolean operations. Srbranching program on
the variable sef{z;,...,z,} is a directed, acyclic graph with the same structure as alusua
branching program, but which may additionally contain reotabeled by a function € Q
instead of a variable and having two outgoing edges labeledand1, resp.

The semantics of aft-branching program is defined as follows. For each nodéthe graph,

we recursively define a functiof), represented at this node. For the sinks or some node labeled
by a variable, this is done as already described in Chapter dsual branching programs. The
function represented at a noddabeled byw € Q is defined as, = w(fu,, fu,), Wheref,,
andf,, are the functions at th& and1-successor of, resp.

Meinel [75] has shown that for an arbitrary set of binary Bmol operations), there is an
Qe {0,{V} {r},{V,A},{®}} such that eack-branching program can be simulated by an
Q'-branching program with an at most polynomial increase efsize and vice versa.

The usual deterministic branching programs are obtainezekiing® = (0. The nondeterminis-
tic branching programs of Definition 2.3 af& }-branching programs in the sense of this defini-
tion. The cas& = {A} corresponds to “co-nondeterministic” acceptance, andltiss of func-
tions with { A}-branching programs of polynomial size is the same as ¢gdhily = coNP-BP.
By the famous result of Immerman [52] and Szelepcsényi]io®llows that these classes are
also identical to NI Poly.

Theorem 2.7 (Immerman / Szelepaanyi):  NP-BP= coNP-BP

The class of functions representable Py, A}-branching programs of polynomial size co-
incides with the class /Poly. This is due to the fact that every circuit of polynomsige
can be simulated by af\v, A}-branching program of polynomial size and vice ver§d, A}-
branching programs have also been considered in practiber time name “XBDDs” (see [55]),
but they have the obvious drawback that testing satisfigldiNP-complete.

Finally, settingQ = {@} leads toparity branching programswhose semantics can also be
defined by specifying that the represented function is etpaliff the number of accepting
paths is odd.

We do not review upper and lower bound results for nondetastic branching programs,
details can be found in the survey article of Razborov [9]c&rse, no superpolynomial lower
bounds are known, and proving such bounds seems to be ewder tizan for the deterministic
case.

24



2.1.2 Nondeterministic Variants of Restricted Branching Pograms

Definitions of nondeterministic reatHimes branching programs and nondeterministic OBDDs
are derived in a straightforward way from Definition 2.3 bguéing that the nodes labeled by
variables fulfill the usual restrictions as for determiitdiranching programs. By NP-BRand
NP-OBDD we denote the classes of functions representaple@ymomial size by the respective
models.

We have already reported lower bound results for nondetestit readk-times branching pro-
grams in Chapter 1. We add some further details here, stastith nondeterministic read-once
branching programs. Not surprisingly, this has been thelaterministic model of branching
programs for which the first exponential lower bound couldeb&blished.

The function for which this bound has been obtained is therfygation matrix function” de-
fined below. This simple function already reveals many ingoarfeatures of nondeterministic
read-once branching programs.

Definition 2.8: The function PERM: {0,1}"” — {0,1} is defined on am x n-matrix X =
(zij)1<ij<n Of Boolean variables. Let PERNIX) = 1 iff X is a permutation matrix, i. e., if
each row and each column contains exactly one entry equal to

Jukna [60] and Krause, Meinel, and Waack [68] have indepahdshown that nondeterminis-
tic read-once branching programs for PERM have exponesitial They also have shown that
PERMe coNP-BP1. Hence, we have:

Theorem 2.9: P-BPI; NP-BP1 andNP-BP1+# coNP-BP1

Borodin, Razborov, and Smolensky [27] have presented dasimasult for the “clique-only
function” which tests whether a graph anvertices consists of a clique of sizg2 andn/2
isolated vertices.

One may also ask how the smallest class defined via the sizenofeterministic read-once

branching programs, namely NP-BRToNP-BP1, is related to P-BP1. Only very recently,
this question has been answered by Jukna, Razborov, $aaoll"Wegener [57]. They have

proven an exponential gap between these two classes. BEypege have:

Theorem 2.10 (Juknaet al.): P-BPlg NP-BP1N coNP-BP1

The function used in the paper of Juketzal. to prove the above theorem is described in Chap-
ter 5, where we show that this function can even be computedrimomized read-once branch-
ing programs with zero error.

Next, we discuss nondeterministic reldimes branching programs whekemay be larger
than1. As mentioned in Chapter 1, the first exponential lower boandhe size of read-
times branching programs is due to Borodin, Razborov, andi&mky [27]. They have proven
that there is a sequence of explicitly defined functiofig.cn such thatf,, has exponential size

25



for nondeterministic (syntactic) redgtimes BPs ifk < clogn for an appropriate constant
By an easy modification of their proof, it can be concluded #iso the complement gf, has
exponential size for nondeterministic readimes BPs. In Chapter 5, we will complement this
by showing that this function is also hard for randomizediregimes branching programs.

The latest milestone for the development of complexity théor read4-times BPs has been
the result of Thathachar [109]. As already mentioned, Taethr has managed to prove an
exponential gap between the size of nondeterministic ketuhes branching programs and de-
terministic read-k+1)-times branching programs. From his result, also the fahgwelations
between the deterministic and nondeterministic classesefd#-times branching programs
follow.

Theorem 2.11 (Thathachar): For k < (1/v/2—4)+/log n, § > 0 an arbitrarily small constant,
it holds thatP-BP: G NP-BP:, andNP-BP: # coNP-BR:.

It is not known whether P-BP# NP-BP: N coNP-BR: for k& > 2.

All proofs for lower bounds on the size of nondeterminisgéad+-times branching programs
mentioned above (including the cake= 1) are based on a technique derived from commu-
nication complexity theory which we call “technique of gesized rectangles” in this work.
This technique will be described in detail in Chapter 5 (imection with an extension to
randomized read-times BPs).

Now we turn to a much simpler model, namely nondeterminiS8DDs. We first describe ex-
amples for an exponential gap between the sizes of detestigiaind nondeterministic OBDDs.
A class of functions studied in the literature on complexitgory for OBDDs and read-once
branching programs are the so-called “pointer functiodsfunction from this class outputs a
single bit of the input vector as the result, and the “addr@sdex) of this bit is also computed
from the input. We formally define two popular representsiof this class.

Definition 2.12:

(1) The function ISA (“indirect storage access”) is defined an = 2" + r variables
To,...,Tor_1 @Ndyg, ..., y,_1. Lets:= |2"/r|. Define

ISAL(z, )=\ @100 = i A [[(@irs - 2pae1)lo = 4] A x5,

0<i<s—10<j<27—1

where we writdal, for the value of a vectar = (a,_1,a, o, . .., ao) interpreted as a binary
number, andP] denotes the Boolean function which assumes the valfiehe predicate
P is true.

(2) The function HWB (“hidden weighted bit") is defined om = (z,,...,z,). Define
sum(z) := Y., x; and letzo := 0. Then HWB,(2) := Zqum(s)-

The following lemma describes a general class of pointectfons which all can be represented

by nondeterministic OBDDs of polynomial size. The abovections can easily be seen to
belong to this class.

26



Lemma2.13: Let f;: {0,1}* — {0,1},7 = 1,...,n, be functions withf; A f; = 0if i # j.
Let fo := (=f1) A -+ A (= fn). Assume that there is a fixed variable orderinguch that the
functionsfy, f1,. .., f. can each be represented byraOBDD of polynomial size. Finally, let
f:{0,1}" — {0,1} be defined by

fa)="\ fia)Ami, forz = (... )€ {0,1}".

1<i<n

Thenf as well as- f can be represented in polynomial size by nondeterminis@BDDs.

Proof: The claim forf follows by a straightforward simulation of the formula fraime above
definition of f. At the top of the nondeterministic OBDD, we nondeterminaty choose an
indexi € {1,...,n} (e.g., by a tree on nondeterministic nodes). For gaeh{1,...,n} we
can check by a-OBDD of polynomial size whethef;(z) A z; = 1.

Sincef; A f; = 0fori # j, it holds that
(=H)@) = folx) v\ filz) A (-22),

1<i<n

and hence, alse f can be represented by a polynomial size nondeterminis@BDD. O

It follows that HWB and ISA are contained in the classes NFBOBand coNP-OBDD. On the
other hand, it is well-known that both functions have exptia¢ size for deterministic OBDDs
(see [31] and [29], resp.).

What can be said about the relation between the classes NPBGBId coNP-OBDD? It is
easy to see that the complement of the function PER& be computed by nondeterministic
OBDDs of polynomial size (by “guessing” two indices in thergarow or column and checking
whether the respective entries are both equal)toTogether with the mentioned lower bound
of Jukna and Krause, Meinel, and Waack, we obtain an expaheip between the size of
nondeterministic OBDDs for a function and its complement.

Summarizing the above results, we have:
Theorem 2.14:
P-OBDD ; NP-OBDDMN coNP-OBDD andNP-OBDD # coNP-OBDD

Lower bounds on the size of nondeterministic OBDDs for ofiections than PERM can be
proven by an adaptation of the fooling set technique frommamication complexity theory
(more information on this will be given in Chapter 3 in the taxt of lower bounds for ran-
domized OBDDs). In fact, already the proof that the functemmputing the middle-bit of
multiplication has exponential size for deterministic OB&by Bryant [31] is an application of
this technique. Hence, Bryant's bound also holds for nardahistic OBDDs. This fooling set
technique is also closely related to the well-known “cut padte” argument used in the proofs
of lower bounds on the size of read-once branching programs.

We conclude the section by discussing two further variahteadeterministic branching pro-

grams which originally have been motivated from practicehe Tirst model is obtained by
imposing strong structural restrictions on nondeterntimiead-once branching programs.

27



Definition 2.15: A k-partitioned BDD with variable orderings,, . . . , 7 is a nondeterministic
read-once branching program constructed from a tree of etenchinistic nodes at the top with
k sinks which are identified with the sources of OBDEs . . ., (.. The OBDDG,; is ordered
according tor;, wherei =1, ..., k.

A branching program is simply callgartitioned BDD if a £ andny, . . ., 7, exist such that it
is ak-partitioned BDD with variable orderings, . . ., 7.

This model has been introduced by Jain, Bitner, Abraham,Fargsell [54]. Its complexity
theory has been studied by Bollig and Wegener [23]. Obviguspartitioned BDDs allow a
control of the available “amount of nondeterminism” by treeametei:. Among other results,
Bollig and Wegener have proven that the classes of functiepgesentable by-partitioned
BDDs in polynomial size form a proper hierarchy with respect.

The last type of models introduced in this section uses thigypaode of acceptance already
introduced in form of theg @ }-branching programs above. Gergov and Meinel have sugdeste
{@}-read-once branching programs as a data structure for Bodlenctions [42] (the defi-
nition of this model is derived in the obvious way from Defioit 2.6). Later on, they have
also considered OBDDs withy-nodes, which they have called MOD-2-OBDDs [43]. These
data structures have the drawback that only randomizeditiges are known for checking the
equivalence of two graphs.

Recently, Waack introduced the following generalizedastriof MOD-2-OBDDs.

Definition 2.16: A parity OBDD on variables{z,...,z,} with variable orderingn (7-
POBDD)is a directed, acyclic graph with one source and sinks lableye or 1, respectively.
Non-sink nodes are labeled by a variable and may have ailyitnaany outgoing edges labeled
by 0 or1. As in a usual OBDD, the sequence of tests of variables on gaithfrom the source

to a sink has to be consistent with

Such a parity OBDD computes the outgufor an inputa € {0, 1}" iff the number of paths
from the source to thé-sink activated fom is odd.

The suitable measure for the size of a parity OBDD is the nurobits edges.

Even for a fixed variable ordering, there can be many diffeR®DBDDs with the same number
of nodes representing the same function. NeverthelessckVees shown how a-POBDD for

a function f with the minimal number of nodes can be constructed in patyiabtime from
an arbitraryr-POBDD for f. Furthermore, he has devised polynomial time algorithngte
operations “synthesis” and “satisfiability test” (see Cieafl) on POBDDs. Hence, also the
equivalence check can be done deterministically in polyinbtime.

An exponential lower bound on the size of MOD-2-OBDDs (anddeg also POBDDs) for the
middle-bit of multiplication has been proven by Gergov [4Hor this, Gergov has used the
rank method of communication complexity theory and Raméepretic arguments of Alon
and Maass [10] as tools.

28



2.2 Randomized Branching Programs

Analogously to the last section, we introduce randomizethués of general as well as re-
stricted branching programs (Section 2.2.1 and Sectio 2:@sp.).

2.2.1 Randomized General Branching Programs

In order to define randomized branching programs in a “natag,” it is a good idea to look at
existing probabilistic models of computation. The most amant standard models using ran-
domness are probabilistic Turing machines (for the uniferanld of computation) and proba-
bilistic circuits (for the the nonuniform world). The lattenodel is defined here for the conve-
nience of the reader.

Definition 2.17: A probabilistic circuitis a circuit with “usual” variables;, .. ., z,, and some
distinguished “special” variables, . .., 2, (these are callegrobabilistic variablesn the fol-
lowing). We say that a circuit’ (p, ¢)-computesa Boolean functioryf: {0,1}"* — {0,1} if

(1) PC(a,b) =1} > p,foralla € f~1(1); and

(2) P{C(a,b) =1} < g, foralla € £71(0),

whereC'(a, b) denotes the output @ for assignments = (a,...,a,) andb = (b1, ...,b,)t0
the usual and probabilistic variables, resp., and the as®gts for the probabilistic variables

are chosen at random according to the uniform distributiomf{0, 1} (i. e., technicallyp and
C(a,b) are random variables).

Ablayev and Karpinski [3] have introduced randomized OBRIefined analogously to proba-
bilistic circuits. In the following, we define a randomizeariant of general branching programs
in the same way.

Definition 2.18: Let a branching prograr¥ with the following special properties be given:
(1) G has three types of sinks, labeled byt or “?”;
(2) G is defined on two disjoint sets of variabl&s= {z1,...,z,} andZ = {z1,..., 2. };
(3) on each path from the source to a sink, each variable #famtested at most once.
By an obvious extension of the usual semantics for detestitnbranching programs (Defini-
tion 1.5),G represents a functiog: {0,1}" x {0,1}" — {0,1,?}.
We call G a randomized branching program (with unbounded erribrjor all assignments
a = (ai,...,a,) € {0,1}™ to the variables inX it either holds that

Pr{g(a,b) =1} >1/2 or PHg(a,b) =0} >1/2,

whereb = (b, .. .,b,) is an assignment to the variables4rchosen randomly according to the
uniform distribution from{0, 1}". We say thatz as a randomized branching program represents
the functionf: {0,1}" — {0, 1} defined by

fla) = {

1
0

, ifPr{g(a,b) =1} >1/2;
, ifPr{g(a,b) =0} > 1/2.

29



The variables fron¥ will be calledprobabilistic variablesand nodes labeled by such variables
probabilistic nodes The probability Pfg(a,b) # f(a)} is called theerror probability of G on
input a with respect tof (or “error of G on a” for short). We consider the following special
types of randomized branching progrants.is called a randomized branching program for
with

o (two-sided) errorat mosts, where0 < ¢ < 1/2, if for all a € {0, 1}" it holds that
Prig(a,b) = fla)} 21— ¢
e one-sided erromt mosts, 0 < ¢ < 1, if forall a € {0, 1}" it holds that

Prg(a,b) =0} =1, if f(a) = 0;
Prig(a,b) =1} >1—¢, if f(a) = 1;

e zero error and failure probability at most 0 < ¢ < 1, if for all a € {0,1}™ it holds that

Pr{g(a,b) =1} =0 A Pr{g(a,b) =72} <e, if f(a)=0;
Pr{g(a,b) =0} =0 A P{g(a,b) =7} <e, if f(a)=1;

In general, we are only interested in upper bounds on thetwasse error probability of a
randomized branching program, i.e., the maximum of thereurobabilities over all inputs.

As a convention, we will assume that for the one-sided, tidee or unbounded error model
a branching program does not contain “?"-sinks (sinks of thpe are only important for the
randomized branching programs with zero error).

In the following, we present some arguments why it is reabten@ define randomized branch-
ing programs as done above. First notice that it does not reakse to consider a model
of randomized branching programs with a weaker assumptithe error probability than in
the case of “unbounded error,” since all Boolean functicas lse computed by a randomized
branching program of constant size with an error probahift1 /2 for all inputs.

Why do we restrict the probabilistic variables to be read ashonce? This is done in order to
ensure that randomized branching programs can be simubgt@dobabilistic space-bounded
Turing machines. At the end of this subsection, we will shbat analogous versions of the
theorem of Cobham, Pudlak addk from Chapter 1 hold for the type of randomized branching
programs defined above. For space-bounded Turing mactliireknown that the probabilistic
model where random bits may be accessed more than once @vithplicitly storing them)
tends to be more powerful than the model where these bits mjyhbe read once (Babai,
Nisan, Szegedy [13], Nisan [81]). This may already serveraargument why we have to be
careful with the type of randomness we allow. We will comelbiacthis issue in Chapter 4.

Alternatively to the above definition, we could also chooseléfine randomized branching
programs based on the nondeterministic branching prograithsunlabeled nodes from the
last section. In the following, we discuss this alternatip@roach.

30



We consider a grapli which is syntactically a nondeterministic branching peogr(as in
Definition 2.3 from the last section). We define a new semamticuch a graph as follows. For
a pathp from the source to a sink, let(p) be the number of unlabeled nodesorfor a given
assignment: € {0, 1} to the variables o7, let A(a) be the set of accepting paths foin G.
Then we define thacceptance probability af for a by

acg(a) = » 270

pEA(a)

The following lemma shows that this definition leads to a mmized model which is equivalent
to the model from Definition 2.18.

Lemma 2.19: Let G be a randomized branching program (in the sense of Definiidr8)
with r probabilistic variables which represengs {0,1}" x {0,1}" — {0, 1} according to the
deterministic semantics. L&' be a nondeterministic branching program with the same graph
structure as(@, but with unlabeled nodes instead of nodes labeled by piibs@éd variables.
Then it holds for alu € {0,1}" that

acc (a) = Pr{g(a,b) = 1},

whereb € {0,1}" is chosen uniformly at random.

Proof: For the whole proof, let. € {0,1}" be a fixed input. Let7, denote the randomized
branching program which is obtained frofh by replacing the usual (non-probabilistic) vari-
ables ofG according toa. Then it holds thae” - Pr{g(a,b) = 1} is the number of accepting
assignments of/,. We prove that this number is equal2b- acg: (a).

We define a mapping from the computation paths leading to thaink in GG to the accepting
paths inG’. Because of the isomorphism betwegandG’, each computation pathleading to
thel-sink in G’ has an obvious corresponding patin G' where for each nodethec-successor
is chosen if and only this successor is also chosen dihis pathy' is uniquely defined. We let
e(p) :=p'.

It holds that this mapping is one-to-one and onto. It is one-to-one because of the igurism
betweenGG and ', and it is onto because of the read-once property afith respect to the
probabilistic variables. Now lgf' € A(a). It holds that there are exactly—*(*") assignments
which are consistent with the computation path- ¢ ~!(p'). This is because all usual and some
probabilistic variables are already fixed by this path. Ghlyvalues of — u(p') probabilistic
variables may be freely chosen. Hence,

97 . aC(‘G/(a) _ Z ZT—u(p,)

p'EA(a)

is exactly the number of satisfying assignmentsd@qras claimed. a

In the following, we only consider randomized branchinggreoms according to Definition 2.18.
We remark that the above lemma also shows that the order dfpiiistic variables on the

31



computation paths does not matter, and hence, we could egeiire an OBDD-like ordering
restriction for the probabilistic variables without gatiia different model. This also proves the
following simple fact about the number of probabilistic iednles used in a randomized branch-
ing program:

Proposition 2.20: Let G be an arbitrary randomized branching program, and gt be the
maximal number of probabilistic variables tested on a patimfthe source to a sink i&. Then
there is a randomized branching progra® which is isomorphic td@- apart from the labels at
the probabilistic nodes and which uses at mggt. probabilistic variables altogether.

This shows that it does not matter whether we measure thedatos randomness” used by a
randomized branching program by determining the maximatimer of probabilistic variables

on a path from the source to the sinks or by counting the pribdvariables used altogether.
In the following, we stick to the latter measure for the antofrrandomness.

A further consequence of Lemma 2.19 is that nondetermintiséinching programs are a special
case of randomized branching programs, which seems to liralles More precisely:

Proposition 2.21: A nondeterministic branching prograd can be transformed into a ran-
domized branching prograif¥’ of the same size with one-sided error at miost1/2" and vice
versa, where is the number of probabilistic variables 6f.

If we talk of nondeterministic branching programs in thddaling, we will assume that they
have the structure described in Definition 2.18. It will bewenient to define complexity classes
for randomized branching programs in analogy to the stahdasses for Turing machines.

Definition 2.22: Let ZPR-BP be the class of functions computable by randomized biagc
programs of polynomial size with zero error and failure @blity at mosts, 0 < ¢ < 1. Let
RP.-BP, for0 < ¢ < 1, and BPR-BP, for0 < ¢ < 1/2, be the classes of functions computable
by randomized branching programs of polynomial size witle-sided and two-sided error at
moste, resp. Finally, let PP-BP be the class of functions compeatay randomized branching
programs of polynomial size with unbounded error. Furthemenwe define

ZPP-BP= | | ZPR-BP, RP-BP:= | ] RP.-BP, and
£€[0,1) £€[0,1)
BPP-BP= | | BPR-BP,
56[0,%)
wheree is a constant with respect to the input size.

We will sometimes allow that the error probabiliydepends on the input size of the represented
functions, i. e., we have a functien N — [0,1) ore: N — [0,1/2) instead of a constant. As
an example, we give a precise definition covering also thég dar the class RP-BP For a
functiones: N — [0,1), let

RP-BR := {(fn)nen | 3 (Gn)nen: G, is arand. BP reptf,, with one-sided error
at mosts(n) and|G,,| = Poly(n) }.

32



It turns out that many standard facts concerning the clazB& RP, BPP, and PP for Turing
machines (defined with respect to polynomial time algorghoarry over to the classes defined
above in terms of the size of randomized branching progravtust of the following relations
follow directly from Definition 2.18, the remaining ones damobtained simply by “simulating”
the well-known proofs for Turing machines.

Proposition 2.23:

P-BPC ZPP-BP= coZPP-BP= RP-BP cORP-BP
RP-BPC BPP-BP— coBPP-BPC PP-BP— coPP-BP
RP-BPC NP-BP, NP-BPU coNP-BPC PP-BP.

We can also adapt the well-known technique of iterating abdlistic computations to decrease
the error probability of randomized branching programs.

Lemma 2.24 (Probability amplification):

(1) LetG be a randomized readl-times BP representing: {0,1}" — {0, 1} with one-sided
error at moste € [0,1). Then a randomized rea@rk)-times BPG' for f with one-sided
error at most=™ and siz¢ G'| = O(m|G|) can be constructed.

(2) LetG be a randomized read-times BP representing: {0,1}" — {0, 1} with two-sided
error at mostz € [0, 3). Let0 < &' < e. Then a randomized rea@nk)-times BPG' for f
with two-sided error less thasi can be constructed which has sigé| = O(m?|G|), with

m=0 (log (™) (2 —¢) 72).

Proof: Part (1): We use copies-y, ..., (¢, of G with disjoint sets of probabilistic variables
and identify thel-sink of G; and the source of7;,;, fori = 1,...,m — 1. The resulting
read{mk)-times branching program obviously fulfills the claimedoceriound.

Part (2): For the construction of the grapif we start with a “counting pyramid” of depth
(m will be chosen below). This is a branching program consistifrm + 1 layers of nodes; the
ith layer,i € {0,...,m — 1}, contains nodes, , . . ., v; ;, wherev; ; hasv; ; andv; ;41 as itso-
and1-successors, resp. The nodes, for 0 < i < m — 1, are replaced by copies 6f, where
the copies on each level of the pyramid use the same set cdipitisitic variables disjoint from
the probabilistic variables on the other levels. Finalg hodes),, ; with 0 < j < |m/2] are
replaced by &-sink and the nodes,, ; with |[m/2| +1 < j < m by al-sink.

Obviously, we have obtained a reéai#)-times branching prograr@’ of size O(m?|G|). Let
g': {0,1}" x {0,1}™" — {0,1} be the function computed b¥' as a deterministic branching
program, where is the number of probabilistic variables @i. By Chernoff bounds, we can
bound the error probability of’ from above by

—(1/2 —¢)*m

PHg'(z,2) # f(2)} < 2exp ( 1:(1 )

> <2exp (—(1/2 - £)’m).

33



We choosen such tha exp (—(1/2 — ¢)*m) < €, i.e.,
m = [In(2/¢") (1/2 —¢)7> +1].

[m]

We remark that a statement analogous to Part (1) of the alowmé holds for randomized
branching programs with zero error. We see that we have tdqregy smaller error probability
by an increase in the number of tests of variables. This doematter for general branching
programs, but can be crucial for the restricted variants.

Randomized branching programs are closely related to pitidtic circuits. Hence, it is not
surprising that also the well-known derandomization téghe of Ajtai and Ben-Or [9] for
probabilistic circuits is applicable to randomized brainghprograms. This technique yields
the following result.

Theorem 2.25: RP-BP= BPP-BP= P-BPR.

Proof: Decrease the error probability of a given randomized bramgiprogram for ann-
variable function with two-sided errar < 1/2 to less thar2™" by Lemma 2.24. As for prob-
abilistic circuits, the resulting randomized branchinggnam can be made deterministic by an
appropriate choice of the probabilistic variables. m|

Hence, even randomized branching programs with two-sidest &irn out not to offer any
advantage over the well-studied deterministic branchimmgmmams. At a first glance, this is
quite disappointing, but this situation will change whentwe to the more restricted models
in the next subsection. It is not known whether P-BIPP-BP.

We have not yet discussed the relation of the complexityselasiefined above to the standard
classes for Turing machines. The remainder of the subseistidevoted to this issue. In order
to characterize classes defined via the space complexityob@apilistic Turing machines, it
turns out to be more convenient to first look at the variantamfdomized branching programs
defined in the following.

Definition 2.26: A generalized branching program (GBB)a branching program which may
contain cycles. Like a switching-and-rectifier network ¢&@n 2.1), a generalized branching
program has a distinguishesthrt nodeinstead of a source. Aondeterministic generalized BP
is a nondeterministic branching program in the sense ofi@e2t1 (with unlabeled nondeter-
ministic nodes) which may contain cycles.

A randomized generalized branching progrésra nondeterministic generalized BP where the
computations are interpreted as random walks on the grapha Graph(G and a given input

a € {0,1}", we assign probabilities to the edgesw) of G by

1, if v is labeled by a variable ar(d, w) is activated forw;
pa(v,w) =<0, if v is labeled by a variable and, w) is not activated fon;
1/2, if vis an unlabeled (probabilistic) node.

34



The graphG together with this assignment of probabilities can be seetha state-transition
diagram of a homogenous Markov chain. lggt) denote the probability that the-sink is
reached from the start node Gfafter an arbitrary number of steps in this transition diagra
We require that for alk € {0,1}" it holds that eithet < p(a) < 1/20r1/2 < p(a) < 1.
The functionf: {0,1}" — {0,1} represented by+ is defined byf(a) := [p(a) > 1/2] for
a € {0,1}".

By Theorem 2.2 from Section 2.1, we know that cycles in a gaized branching program can

always be removed in the deterministic and nondetermincsise. But the randomized case
remains interesting. In analogy to Definition 2.22, we defioenplexity classes ZPP-GBP,

RP-GBP, BPP-GBP, and PP-GBP in terms of generalized bragghograms instead of usual

ones.

It turns out that randomized generalized branching prografrpolynomial size can be sim-
ulated by logarithmically space-bounded probabilisticidigt machines and vice versa. The
classes ZPL, RL, BPL, and PL are defined as the classes ofdgegulecidable by probabilis-
tic uniform Turing machines with logarithmic space boundhgsthe respective error model
(see, e.g., [25] or [72], Ch. 2). Here we consider the norumifcounterparts of these classes.

Theorem 2.27:

ZPP-GBP= ZPL/ Poly; RP-GBP= RL/Poly,
BPP-GBP= BPL/ Poly;, PP-GBP= PL/ Poly.

Proof: We adapt the proof of the Theorem of Pudlak &t (see Chapter 1) to the randomized
setting. We only consider the identity PP-GBFPL/ Poly, the rest can be proven analogously.

First, let a sequence of randomized generalized branchiograms(G.,.).cn representing a
sequence of function§f,).en With unbounded error be given. We construct a nonuniform
Turing machineM computing f,,. The machineM uses an encoding @f,, as its oracle. It
evaluatesf,, on a given inputz € {0,1}" by executing a random walk on the state-transition
diagram described bgr,, as indicated in Definition 2.26 (the successor of a probstiiinode

is determined by a random coin toss of the probabilistic igimachine). The oracle of this
machine has polynomial size, and the actual node on thedtzath can be stored using space
O(log |G|

Now let a probabilistic nonuniform Turing maching computing f,, with error probability
smaller thari /2 be given. Sincé/ uses an oracle of at most polynomial size and at most loga-
rithmic space, the total number of configurations\éfis polynomially bounded. We construct

a randomized generalized branching progr@mfor f,,, where the nodes can be mapped one-
to-one and onto to the set of all possible configuration®/ofThe start node of/,, corresponds

to the initial configuration of\/, 1-sinks correspond to accepting configurations éssihks to
rejecting configurations. The vertexor a non-accepting, hon-rejecting configuratiénvhere

the head on the input tape points to tile symbol of the input is labeled by;. If M works
deterministically for both possible values of tita input bit, the0- and1-edges ofv directly
lead to the nodes belonging to the respective successogaaations. If forz; = ¢, c € {0,1},

35



the successor configuration 6fis chosen at random betweéh andC”, direct thec-edge of

v to an intermediate, probabilistic node which has the nodeg¢'f andC" as its successors.
Because of our above remark, the graph constructed in this way has polynomial size. It is
easy to see that it represerfiswith error smaller than /2. O

Itis known that NL= RL = ZPL (for uniform Turing machines), this follows from Nt coNL
(by the theorem of Immerman and Szelepcsényi) andNRL by an early result of Gill [45].
The same proof also works for the nonuniform versions oféh®asses, thus we have

NP-BP= RP-GBP= ZPP-GBP

Itis open whether NL; BPL G PL (and hence, also whether NP-BPBPP-GBPS PP-GBP).

Now we return to randomized branching programs withouteycMe already have seen that
the probabilistic complexity classes up to BPP-BP collapge-BP, and this class has already
been characterized by Turing machine complexity. It isregéng that also the class PP-BP
has a counterpart defined via Turing machine complexity,alathe class PLPPoly of func-
tions computable in logarithmic space and polynomial timetHe worst-case) by probabilistic,
nonuniform Turing machines.

Theorem 2.28: PP-BP= PLP/ Poly.

Proof: We apply the same simulations as in the proof of the last #mor The inclusion
PP-BPC PLP/ Poly follows immediately, because the Turing machine coiegtd in the above
proof already works in polynomial time.

For the proof of the opposite direction, we first construcaadomized generalized branching
program from the given Turing machine as described abovease the Turing machine uses
at most polynomial time, we need to run through each cycldéresulting state-transition

diagram at most a polynomial number of times for a given ingthis allows us to make the

transition diagram acyclic by the technique already désctifor switching-and-rectifier net-

works (see the proof of Theorem 2.2). Thus, we obtain a usualamized branching program
of polynomial size and without cycles. m|

It has been proven by Jung [62] that PEPPL (for uniform Turing machines). Jung has shown
that a certain decision problem defined in terms of formulses matrices is contained in PLP.
On the other hand, this problem is known to be PL-completé véspect to log-space reduc-
tions [26]. Intuitively, the reason behind this is that therputation of a probabilistic Turing
machine can be described by a Markov process, and the statidistribution of this process
can be computed by solving a system of linear equations (ondiyix inversion, resp.). The
PL-completeness result also holds for nonuniform Turinghi@es. Hence, Jung’s result also
carries over and we have PP-BPPP-GBP. Generalized randomized branching programs are
no more powerful than usual ones if we consider the weakssiaton on the error probabili-
ties.

36



PL/Poly = PLP/Poly- - - - PP-BP = PP-GBP

BPL/POly - ------ BPP-GBP

NL/Poly = coNL/Poly- - - NP-BP = coNP-BP
L/Poly--------- P-BP = ZPP-BP = RP-BP = BPP-BP

NCL - P-WIDTH(5)-BP = P-BWBP

\

AC®

Figure 2.1: Nonuniform complexity classes beloyly.

All the results on complexity classes for nondeterministicl randomized general branching
programs presented so far are summarized in Figure 2.1. [Blsses defined via branching
program complexity are linked to their counterpart definedWring machine complexity by
broken lines. A slash through an arrow indicates propeusion (AC G NC', AC® & ACY);
for all other inclusions, we do not know whether they are proBy P{A, V}-BP we denote
the class of functions representable{ay, v }-BPs of polynomial size.

37



2.2.2 Randomized Restricted Branching Programs

In this section, we deal with randomized variants of réaines branching programs and
OBDDs. Such variants are defined in the obvious way:

Definition 2.29: Let X := {z1,...,z,}andZ := {z1,...,2,}, X NZ = 0.

A randomized read-times branching program oX U Z is a randomized branching program
for which Z is the set of probabilistic variables and where on each patin the source to a
sink each usual (non-probabilistic) variable frofnappears at mogt times.

Let 7 be a permutation o41,...,n}. A randomizedr-OBDD on X U Z is a randomized
branching program where on each path from the source to alsilariables fromX appear
in the order prescribed by.

Randomized OBDDs are special randomized read-once bragmphdbgrams. Nondeterministic
read#-times branching programs and nondeterministic OBDDs ¢tviwie have both consid-
ered already in Section 2.1) can also be derived as specie$ @d the above definitions.

Notice that for a randomized OBDD according to the above difimit is not required that

a variable ordering on all the variables U 7 exists. We can only assume that there is a
variable orderingr’ on 7 such that the probabilistic variables appear according tn each
path, as explained in the last subsection. But then the afditypes” of variables, where the
type indicates whether a variable is probabilistic or noobabilistic, may still be different on
different paths.

Let us call a randomized OBDDs which fulfills the orderingtriesion according to a variable
ordering on all its variablesompletely orderedSuch a graph has the same syntax as a usual,
deterministic OBDD, which is desirable if one wants to dasagorithms for the operations
mentioned in Chapter 1 (as Agrawal and Thierauf [7] have jYlone

Is it a real restriction for randomized OBDDs to require tlta¢y are completely ordered?
Below, we give a partial answer by showing that the “loosétyctured” randomized OBDD
of Definition 2.29 can be converted into completely orderedsby paying with an increase of
the number of probabilistic variables.

Lemma 2.30: Let ¢ be a randomized OBDD with probabilistic variables and: usual vari-
ables. Then there is a completely ordered randomized OBDWith (n + 1)r probabilistic
variables which is isomorphic t& apart from the labels at its probabilistic nodes and fulfills

Pr.{G(z,z) =1} = Pr.{G'(z,2') =1}, forallz e {0,1}",

whereG(z, z) andG'(z, 2') are the outputs off andG’, resp., on an assignmentto the usual
variables and assignmentse {0,1}" andz' € {0,1}("+Y" to the probabilistic variables of
the two randomized OBDDs.

Proof: Letz,...,z, bethe usual variables ¢f, w. |. 0. g. they also appear in this order in the
OBDD, and lety, . . ., 2, be the probabilistic variables 6f. We construct a randomized OBDD

38



G' with the claimed properties. Our plan is to replage. . ., z, by (n + 1)r new probabilistic
variabIeSZ;:, where0 < i < nandl < j < r. In G the variables will be ordered according to
z?,...,zo. T, z},...,z1

T T

n

2 2 n
Ty 21y vy Zny ey Ty Z1yeeny Zn.

Initialize G' as a copy ofG. For technical reasons, we add a dummy node at the ta@ of
labeled byz, whose outgoing edges both lead to the original soura@ ofFori = 0,...,n,
let S; be the set oft;-nodes inG'. In the following algorithm, we will define additional sets
Vo, ..., Va1 Of Nnodes inGG’. We initialize V., as the set of sinks af’. Now we relabel the
probabilistic variables i+, executing the following step fdr=n,n —1,...,1,0.

Stepk: Starting at the nodes froisi,, carry out a breadth-first search on the part:6feachable
only via nodes which are not containedlif,;. Replace all probabilistic variables at the nodes
found (excluding the nodes froit}.,.;) by the probabilistic variablesy, . . ., z¥ such that these
variables occur ordered on each path. Ugbe the set oéll nodes inG’ reachable from a node
in Sk, not regarding whether these nodes are containég,inor not (i. e.,V;, contains all nodes
lying on paths starting it and ending in one of the sinks).

Finally, remove the dummy node at the top(@f The graph’’ obtained in this way obviously
has the same structure & we only have changed the labels of the probabilistic nodes.

It is easy to see that, after carrying out the algorithm, theables inG' are indeed ordered as
claimed above. The following fact can easily be verified kjuiction:

Fact: After thekth step,0 < k£ < n, the subgraph of7' induced by the nodes ¥, is ordered
according tozy, 25, ..., 2%, ..., z,,2},..., 2", and the se¥, contains all nodes of’ which

)~

are labeled by variables from the given list.

Finally, we have to show that RiG(z, z) = 1} = Pr..{G'(z, ') = 1}. Since both randomized
OBDDs G and’ fulfill the read-once property with respect to their probisbic variables and
have the same number of (different) probabilistic varialda each path from the source to the
1-sink, this follows immediately from Lemma 2.19. [}

In Chapter 4, we will show that in the caselmdundederror, we can even obtain a completely
ordered OBDD with onlyO(logn) probabilistic variables, where is the number of usual
variables in the original OBDD. It remains open whether tbengiderable) increase of the
number of probabilistic variables is unavoidable for naed®ainistic OBDDs and randomized
OBDDs with unbounded error. In the following, we will alwaysrk with the randomized
OBDDs of Definition 2.29. Hence, the lower bounds which we pibve hold for the “more
general” model. On the other hand, the constructions foufsger bounds will in fact always
be completely ordered randomized OBDDs.

Complexity classes for randomized OBDDs and randomizedtteimes BPs are defined anal-
ogously to the last section (Definition 2.22). Rbre {P,NP,ZPP,RP,BPP, PP}, let C-BPk
andC-OBDD denote the classes of sequences of functions withnpaiyal size read-times
branching programs or OBDDs, resp., of the “type” indicatgd’.

39



For readk-times branching programs and OBDDs, it is not as easy aseoeml branching
programs to “simulate” known proofs for Turing machinescégse programs may no longer
be “iterated” or “concatenated.” As a consequence, theofistrivial relations” between the
above classes is shorter than for randomized general brapphograms:

Proposition 2.31: For R € {BPk, OBDD} (and arbitraryk > 1), it holds that

P-R C ZPPR = coZPPR;
BPPR = coBPPR C PPR = coPPR;
RP-R C NP-R;NP-R U coNPR C PPR.

The only known technique to decrease the error probabifitgad+-times branching programs
(Lemma 2.24 in the last subsection) requires an increaskeofiimber of tests of variables.
Hence, it is even not obvious that RP is a subclass of BPPdorrdimes branching programs.
We prove this below.

Lemma 2.32: Letk > 1, and letG be a randomized readl-times branching program which
represents the functiofi: {0,1}" — {0, 1} with one-sided error at most < 1. Letr > 1 be
arbitrarily chosen. Then there is a randomized refatimes branching programy’ with size at
mostO(|G| + r) which representg with two-sided error at most/(1 + &) + 27".

Proof: We construct a randomized reaetimes BPG' for f with two-sided error as follows.
Introduce new probabilistic variables, . . ., z, which are tested in a subprograf at the top
of G', whered € {i-27" | 0 < i < 2"}. This program has two sinks labeled &wnd1 — §
reached with the respective probabilities. Such a programlz constructed by reducing a
complete binary tree where the nodes on each level are tigie different variable from
21, ..., 2, and the sinks are labeled appropriatelydgnd1 — §. This can be done such that
at mostr probabilistic nodes are needed in the reduced graph.iTiek of the programRs

is identified with thel-sink of (7, and the(1 — 4)-sink of R; is identified with the source node
of .

We compute the worst-case error probability(dfas a randomized branching program for
First, letz € £~1(0). Then it holds that:’ computes the correct outplitvith probability1 — 4,

since( has one-sided error. Farc f~'(1), G' computes the correct outpuwvith probability

atleasty + (1 —0)(1 —¢).

The error ofG" is minimized by choosing &as close as possible #g,; := /(1 +¢). Since we
can construct a prograf; forall § € {i-27" | 0 < ¢ < 2"}, we can ensure thit—d.,.| < 27".

The resulting randomized reddtimes branching prograr&” for this value ofd has error at
moste /(1 + ) + 27" and sizeO(|G| + r). O

Corollary 2.33: For arbitrary £ > 1, it holds thatRP-BR: C BPP-BR..
For randomized OBDDs, a restricted form of “probability difipation” is possible without
leaving the model, as we will prove now. (This fact has beestaliered independently by

Agrawal and Thierauf [7] and the author.) The inclusion RBBID C BPP-OBDD directly
follows from this fact.

40



Lemma 2.34 (Probability amplification for OBDDs):

(1) LetG be a randomized-OBDD representingf: {0,1}" — {0, 1} with one-sided error
at moste € [0,1). Then a randomized-OBDD & for f can be constructed, which has
one-sided error at most™ and sizedG'| = O(|G|™).

(2) Letd be a randomized-OBDD representingf: {0,1}" — {0, 1} with two-sided error
at mosts € [0, %), and let0 < &' < e. Then a randomized-OBDD ' for f can be
constructed, which has two-sided error less thaand size/GG'| = O(|G|™), wherem =

0 (log((a’)’l) (- a)*z).

Proof: We use essentially the same ideas as in the proof of Lemma Bu24ve apply the
efficient synthesis algorithm for OBDDs (see Chapter 1) tmbime the graphs. We have to
ensure that the considered randomized OBDDs syntactiaadiyusual OBDDs for which the
synthesis algorithm works. As a preprocessing step, weetber apply Lemma 2.30. This
does not change the size of the given randomized OBDD andioafgases the number of
probabilistic variables. In the following, we assume tha given randomized OBDI is
completely ordered.

Part (1): We use the synthesis algorithm for OBDDs with the operatgr n m copies of
the graphG with disjoint sets of probabilistic variables. A common igdale ordering for all
m copies ofG is obtained by interleaving the different sets of probabdi variables. The
resulting graphz’ is a randomized OBDD with the same variable ordering on th&u@on-
probabilistic) variables a& and sizeO(|G|™).

Part (2): We again use the synthesis algorithm, but in a generalizesiorefor OBDDs with
several sinks labeled by values{f, . .., m}. We apply the addition of integers as operation to
sum upm copies of the OBDOY, where each copy uses a different set of probabilistic e
(as in Part (1)). The resulting graph is an OBDD with the saaréable ordering on the usual

variables as7 and with sink values i{0, ..., m}. Replacing the sinks with values greater or
equal tom/2 by the1-sink and all others by the-sink we get an OBDD with the required
properties. a

We see that, in contrast to the situation for Turing macharesfor general branching programs,
the number of “iterations?n has to be constant here in order to ensure that the resul@&iD
still has polynomial size.

Although it is easy to prove for Turing machines that ZPMRPN coRP, the question whether
these classes are identical or not for randomized fetiches BPs and for randomized OBDDs
is open up to now. Recently, Karpinski and MubarakzjanoYl@é&e proven that ZPP-OBDB
P-OBDD by using a similar result on one-way communicatiomptexity byDuris, Hromkovig,
Rolim, and Schnitger [38]. Non-trivial results on the cles$BPP-OBDD, RP-OBDD, and
NP-OBDD are presented in the next chapter.

41



42



Chapter 3

Upper and Lower Bounds on the Size of
Randomized OBDDs

In this chapter, we present results on the analogs of the lexihpclasses RP and BPP defined
in terms of the size of OBDDs. Since the proofs of the lowerrutsurely on tools from com-
munication complexity theory, we will start with a short oview on the relevant notions from
this field. After this, we present a list of functions whiclearsed as examples in the following
(Section 3.2). In Section 3.3 and 3.4, resp., we prove uppéid@ver bounds on the size of
randomized OBDDs. Finally, we summarize the current kndgfeon complexity classes for
OBDDs.

3.1 Communication Complexity Theory

We only define the most important notions from communicatiomplexity theory needed later
on. For a thorough introduction into this field, we refer te thonographs of Hromkovi¢ [51]
or Kushilevitz and Nisan [70].

The main subject of communication complexity theory is thalgsis of the simple communi-
cation game introduced by Yao [115] which we describe in tilefing.

Let a functionf: {0,1}" — {0,1} be given which is defined on the set of variablés=
{z1,...,z,}. Furthermore, lefl = (Vx,Vy) be a partition ofV, i.e.,V = Vx U V4, and
Vx NVy = 0. Let X be the set of all assignments to variables friggm and letY” be the set of
all assignments to variables froly-. There are two players taking part in the communication
game, traditionally called Alice and Bob. Alice has an assigntz € X, Bob an assignment

y € Y, and their goal is to determin&z + y) by sending messages to each other, wherey
denotes the complete assignment to the variabl&sabtained by assigning the variableslip
according tar and the variables ity according tqy. Each player is assumed to have unlimited
(but deterministic) computational power to compute his sages.

A deterministic communication protoc an algorithm specifying which player is the next
to communicate and determining the message which this plaijlesend given his input and

43



the messages exchanged so far. Furthermore, after a fimtberuof communication rounds
(turns in the game), the algorithm has to stop, and the lasteplhas to output eithér or 1

as the result of the protocol. Such a protocomputes the functiofi with respect td1 if for
each(z,y) € X x Y it outputs the correct valug(z + y). The(deterministic) communication
complexity off with respect td1, denoted byD( f, IT), is the minimal number of bits exchanged
by a communication protocol which computgslf the partitionTT is clear from the context, we
simply write D( f) for the deterministic communication complexity #f (In communication
complexity theory, also @ariable partition models considered, where the communication
complexity is defined as the minimum over the complexity fibchoices ofIl. Here, we will
always work with fixed partitions.)

It is usually convenient to indicate the chosen partitionhef variables by directly writing the
function f in the form f: X x Y — {0,1}, whereX andY are arbitrary finite sets which
contain the inputs for Alice and Bob, resp. Of course, infits the setsX andY are usually
coded by binary vectors.

In the following, we will cite a simple, but fundamental tmem which is the basis of the com-
binatorial analysis of communication protocols. This tleeo and the notions introduced here
will play an important role for the techniques for provingver bounds on the size of OBDDs
and readk-times branching programs described later on. The centi@dm of communication
complexity theory is the (combinatorial) rectangle, whiek define now.

Definition 3.1: LetV be a set of variables, and [HBt= (Vx, V4 ) be a partition of’. Assum-
ing an appropriate one-to-one correspondence, we idesggignments to these variables with
Boolean vectors of suitable length. A getC {0, 1}/V! of assignments t& is called alcombi-
natorial) rectangle with respect td if it can be written ask = A x B, whereA C {0, 1}/Vx!
andB C {0,1}"! are sets of assignments¥a andV, resp.

Let f: {0,1}* — {0,1} be an arbitrary function defined dn. Then a rectangl& with respect
to a partition ofV is called f-monochromatiéf R C f~'(0) or R C f~'(1).

Due to the fact that the players Alice and Bob only hold ond phthe input each, the set
of all inputs for which the same, fixed sequence of bits is erged between the players is a
rectangle (see, e. g., [51] or [70] for a proof). This obstoraleads to the following theorem.

Theorem 3.2: Let f: {0,1}" — {0, 1} be defined on the variable s&t and letll = (Vy, Vy)
be a partition of V. Furthermore, let a deterministic communication protoébivhich com-
putesf with respect td1 be given. Let be the number of bits exchangedByThenP defines
a partition of the inputs of into at most¢ f-monochromatic rectangles.

In communication complexity theory, many other variantsha basic communication game
outlined above are considered. For the following, randeahigrotocols will be especially im-
portant. Hence, we also introduce this model.

In a randomized communication protocdhe players Alice and Bob each have access to a
string of random bits calledr, andrg here, additional to their inputs € X andy € Y,
resp. These strings of random bits have a fixed length and these obtained as the result of

44



independent, unbiased coin tosses. The random bits haveedorbmunicated explicitly if the
other player is to know them. This is called thevate coinmodel of randomness, which has
to be distinguished from thpublic coinmodel where both players may read the same, public
string of random bits.

A randomized protocol may err when computing a given functfo Let P be a randomized
protocol, and letP(z, y; ra, rg) denote the output aP for inputs(z,y) € X x Y and random
stringsra andrg. For(z,y) € X x Y, define theerror (probability) of P with respect tof by

EP('T/vy) = PI’TA:TB{P(.’L'.,:[/; TAvrB) 7é f(Tuy)}v

where the stringsa, rg are chosen at random according to the uniform distribute. also
say thatP computesf with error ep.

Usually, we are only interested in theorst-case errari. e., the maximum ot p(z, y) taken
over all inputs(z,y) € X x Y. For randomized protocols, the number of communicated bits
may depend on the values of the random bits. Hence, it makee $e define thevorst-case
complexityof a randomized protocol as the maximum number of bits exgédifor any choice

of the inputs and the random strings.

As for randomized branching programs, different types ofrecan be considered. Here, we
only deal with bounded (two-sided) error. We uBg(f) to denote the minimum worst-case
complexity of a randomized protocol which computesiith worst-case error at most 0 <
e<1/2.

Nondeterministic communication protocols are defined @@isly to the randomized model.
In a nondeterministic communication protocol, both playleave access to stringg andrg
of advice bitsadditional to their inputs. A nondeterministic protoddl(nondeterministically)
computes a given functiof, if it holds for each inpufz,y) € X x Y thatf(z,y) = 1 if and
only if there is an assignment to the advice bits of Alice anth Buch that the protocét yields
the outputl.

Finally, we consider protocols which are restricted witepect to the number communication
rounds. A central role for the following plays the most rigséd casepne-way communication
protocols In a one-way communication protocol, Alice sends a singéssage to Bob who
has to output the result of the protocol, which may dependi®smput and the message he has
obtained. In order to indicate that we consider protocolth i restricted number of rounds,
we append the maximal number of rounds as an exponent to thplexity measures defined
above, e. g.D*(f) denotes the minimum number of bits exchanged by a detertiikisound
protocol for f.

3.2 A List of Functions

In this section, we present a collection of standard fumstisom the literature on OBDDs and
read-once branching programs which will appear in the negtisns. We survey known lower
bounds for these functions and discuss the reasons why théylifficult” for OBDDs on an
intuitive level.

45



For easier reference, we include the definitions of the fonstHWB, ISA, and PERM which
have already been presented in Chapter 2.

Definition 3.3:

@)

@)

@)

(4)

(®)

(6)

®)

The function HWB (“hidden weighted bit”) is defined om = (z1,...,z,). Define
sumz) :== Y., z; and letzg := 0. Then HWB, () := Zeum(a)-

The function ISA (“indirect storage access”) is defined en = 2" + r variables
T, ..., Tor_1 andyg, ...,y 1. Lets:= |27/r|. Define

ISA.(z,y) =\ e 90)le = A (@i 2o = Gl A 5

0<i<s—10<j<2m—1

Letn = 2. The function SEQ: {0, 1}2"+ — {0,1} (“shifted equality”) is defined on
vectors of variables = (zg,z1,...,2,-1) € {0,1}", vy = (v0,¥1,---,Yn_1) € {0,1}"
ands = (s;_1, S1_9,...,%0) € {0,1}.. Fori € {0,...,n — 1} define

SEQ(QE,y) =1 & ZTj = Y(i+j)modn fOI'j =0,...,n—1;

SEQ.(z,y,5) = \/ sl =] A SEQ,(z,9).

0<i<n—1

The function SIR: {0,1}?"+" — {0, 1} (“shifted inner product”) is defined on the same
input as SEQ by:

n1
SIP (z,y):=1 & Zm]-y(i+]-]n,ndn #Z0mod 2, fori=0,...,.n—1;
j=0
SIP.(z,y,8) = \/ lsh=1 A SIP,(2,y).
0<i<n—1

LetN := (3) and1l < s < n. Define the function ¢l : {0,1}" — {0,1} (“s-clique”)
on the Boolean variable¥ := (z;;)1<icj<n. Let G(X) be the undirected graph on the
nodes from{1,...,n} described byX, i.e., the edgdi, j} exists inG(X) iff z;; = 1.
Letcl, .(X) = 1iff the graphG(X) contains ars-clique. Define ct= (Cl,, |n/2)nen-

Define the function CLQ,: {0,1}¥ — {0,1} (“s-clique-only”) on the same set of vari-
ables as ¢l above. Let CLQ (X) = 1 iff the graphG(X) consists of an-clique and
n — s isolated vertices. Define CL&- (CLO,, |,/2] )nen-

The function PERM: {0,1}* — {0, 1} (“permutation matrix”) is defined on am x n-
matrix X = (z;;)1<i j<» Of BoOlean variables. Let PERNIX) = 1iff X is a permutation
matrix, i. e., if each row and each column contains exactly entry equal td.

The functionl ROW-OR4COL,, : {0,1}"" — {0,1} is also defined on a Booleanx n-
matrix X. Let

IROW-OR4COL,(X)=1 & (Fie{l,...,n}:z1=- =z =1) V
Fjief{l,....on}ra ;= =z,;=1).

46



(9) The function EQ-ADJ-ROW: {0,1}"* — {0,1} (“equal adjacent row”) is defined on a
Booleann x n-matrix X by

EQ-ADJ-ROW,(X) = \/ A (2 = zi1,)-

1<i<n—11<j<n

(10) Define PM,DET,: {0,1}** — {0,1} on a Booleam x n-matrix X by

PMn(X) = |:Z Tix(1) " """ " Tnm(n) ?é 0:| ’ and

wESy

DETH(X) = |:Z (*1)7“) . xl,w(l) st iEny,r(") # 0:| s

wESy

where the calculations within the brackets are donR,it%,, is the permutation group of
ordern, andr(7) the number of transpositions of a permutatian

(11) Letn = ¢* + ¢ + 1, whereq = p™, p is a prime andm an arbitrary natural num-
ber. LetP = {1,...,n} be the set of “points” of a projective plane of ordeand let
Li,..., L, C P bethe “lines.” Each such line contains exagthy 1 points, two lines in-
tersect in exactly one point and for each point there aretxae- 1 lines running through
this point. A setd C P is called ablocking seif ANL; #Pfori=1,...,n.

DefineB,: {0,1}" — {0,1} by
Bn(fl;lv o '7"””) = ( A \/ 7‘.]) A (“T;-Fk-{-])(:’;l', B --,'Tn)v
1<i<n j€L;

wherek := (q+ 1)/2 if ¢ is prime, k := [,/q] otherwise, and™(z1, ..., =,) is the
threshold function with output iff z; + - -+ + x, > s. It holds thatB, (z1,...,z,) = 1
iff {7 | z; = 1} is a blocking set of size at mogtt+ k.

(12) Letn = 2!, and definen := |n/l]. We are going to define a function on the variables

Zo,---,Z,—1, Where we imagine the firdt- m of these variables to be arranged as an
I x m-matrix. Fori = 0,...,0 —1letz’ := (Tim, ..., Za41)m-1) be theith row of this
matrix.

First, defineXx: {0,1}™ — {0,1} as follows. Chop the input vectd,1}™ into k& :=
|v/m| blocks of sizek each. X is defined as the disjunction of the conjunctions of all
variables in each of these blocks. Now define ADDRO, 1} — {0,1} by

ADDR, (g, .-, Tn 1) = Za, a:= (A2, .., Az"))]a-

All of the above functions have exponential size for detaistic OBDDs, some even for de-
terministic and nondeterministic read-once branchingmams.

a7



The function HWB and an exponential lower bound on its OB & due to Bryant [31].
An indirect storage access function similar to ISA has fiestn investigated by Paul [86].
The variant considered here and the function EQ-ADJ-ROV¢ lieeen introduced by Breit-
bart, Hunt, and Rosenkrantz ([29], the latter function aagypears in a preliminary, unpub-
lished version). They have proven exponential lower bowrdhe size of OBDDs for these
functions.

Several functions similar to SEQ and SIP have been anaipztbe literature on branching
programs (early examples of functions similar to SEQ arg,,econtained in the papers of
Alon and Maass [10] and of Krause [66]). The function SEQ atered here is from the
monograph of Kushilevitz and Nisan [70], where also a prd@froexponential lower bound
on the size of OBDDs can be found. The function SIP is basechddea by M. Krause
(personal communication).

An exponential lower bound on the size of nondeterministad-once branching programs
for PERM is due to Jukna [60] and Krause, Meinel, and Waack [68

The functionl ROW-OR4COL has been introduced by B. Bollig, who has also proven an
exponential lower bound on the size of nondeterministid+eace branching programs for
its complement (personal communication). A similar fuostis considered by Bollig and
Wegener in [23].

The clique and clique-only functions have been investigaby Wegener [113] and
Zak [117], resp., as mentioned earlier. An exponentialdowound for the nondetermin-
istic case is due to Borodin, Razborov, and Smolensky [27].

The functions PM and DET have been shown to have exponsigt&for read-once branch-
ing programs by Dunne [36] and Krause [65], resp.

The functionsB and ADDR are both from a paper of Jukna, Razborov, Savickgi, \&/e-
gener [57]. These functions are contained in NP-BRbdNP-BP1, but have exponential size
for read-once branching programs, as the authors of ther pape proven.

The above list of lower bound results for OBDDs or read-on@bhing programs is far from
being complete. Nevertheless, it already contains sombeofitost “typical” examples. Al-
though of course no simple “criteria” exist by which a givemétion could be classified to be
contained in P-OBDD or P-BP1 or not, the known results give arly good intuition about
characteristic features of functions which have only |&8@&DDs or even read-once branching
programs.

In the following, we group the known functions into some tiitively defined” classes of typical
functions which tend to have large size for deterministiclIB® or even deterministic read-
once branching programs. Also this list is not meant to beestive.

— Multiplexer functionsFor a function of this type, the set of variables can be pantd into

a set of “control variables” and a set of “data variables.”eTvaluation of a multiplexer
function can be decomposed into two stages: First, a sutifumis selected by the control
variables. Next, this subfunction is applied to the dat@atdes in order to get the result.
To be more precise, we describe a generic multiplexer fanctivhich probably covers al-
ready many concrete examples. This function is of the fgr{0, 1}™** — {0,1}, with

J(81, - 8m Tty 8n) = fosrrnsn) (T1, - Tn).

48



The functionsg: {0,1}™ — {1,...,k} and f;: {0,1}" — {0,1}, 1 < i < k, may be
specified as parameters. Known examples of multiplexertiume have large OBDD size
because at least some of their subfunctigingn the sense of the above definition) require
“very different” variable orderings in order to be repretahie in polynomial size.
The complement of the permutation matrix function can aksdéscribed in terms of a mul-
tiplexer function (the same holds foROW-OR41COL and some further, similar functions).
Definef,: {0,1} x {0,1}** — {0,1} by

fu(s, X) := (s ANTEST,(X)) V ((-s) ATEST,(XT)), where

TEST,.(X) =1 :& for at least one row o the number of ones in this

row is different from one;

then it holds thaf— PERM,)(X) = (3 s € {0,1}: fa(s, X)).

— Pointer functions This type of functions has already been described in Seetib.2. Pointer
functions are a variant of multiplexer functions where altiables are used both as control
variables and as data variables. Again, the evaluationdf aufunction has two stages. In
the first stage, an index of a variable (the address) is cosdgubm the input. In the second
stage, the value of the addressed bit is output as the result.

Pointer functions tend to be hard for OBDDs because the \afloae and the same variable
can be required for the computation of the address as wellleasutput bit. Because of the
fixed variable ordering and the read-once property of OBOBs values of many variables
have to be “stored” in the graph, which leads to exponenitial SThe functions ISA (indirect
storage access), HWB (hidden weighted bit), and ADDR areesgmtatives for this type of
functions.

— Functions relying on bitstring comparisanSome of the functions for which exponential
lower bounds on the size of OBDDs have been proven are diffi@dause they inherently
rely on the comparison of several different, large partshefinput. The functions SEQ and
EQ-ADJ-ROW are concrete examples which illustrate this.

For which of the above types of functions can randomizatielp ko obtain OBDDs of polyno-
mial size? In general, randomized OBDDs do not seem to berlibfin deterministic ones for
multiplexer functions, since the main difficulty with theianctions are the different variable
orderings required for their subfunctions. Neverthelessne counterexamples to this intuition
will be presented in the next section. The difficulty with pir functions is that many bits
have to be stored which may be needed as the output bit. & turhithat in this case, random-
ization indeed cannot help, as we will see in Section 3.4 @retdounds. The last type of
functions, functions relying on bitstring comparisons|iwirn out to be especially amenable
for the randomized approach.

3.3 Upper Bounds for Randomized OBDDs

All known constructions of randomized OBDDs of polynomi&esfor functions which are
hard for the deterministic model are based on the same tgabnivhich is described in the
following subsection. After this, we present some new examfor the application of this
technique.

49



3.3.1 The Fingerprinting Technique for Randomized OBDDs

The fingerprinting technique for the construction of randited OBDDs is due to Ablayev and
Karpinski [3], who have applied it to design a randomized @B& polynomial size with small
one-sided error for a function similar to SEQ.

Fingerprinting is a general technique which has been usddsiyn efficient randomized algo-
rithms for several different comparison problems, mostgrently perhaps the verification of
polynomial identities. More details on this and a historyregults can be found in the mono-
graph of Motwani and Raghavan [78].

The variant of fingerprinting applied to the constructiomrafidomized OBDDs is based on an
adaptation of a well-known randomized one-way commurdeagirotocol for the string equal-
ity function from communication complexity. We describésthesult in more detail since it
illustrates the underlying general ideas.

The string equality function EQ {0,1}" x {0,1}" — {0,1} is defined by EQ(z,y) = 1 iff

z = yforz,y € {0,1}". The communication complexity of this function has beendhbghly
analyzed with respect to various models (see, e. g., [70B. well-known that EQ has linear
complexity for deterministic protocols. We describe a mmized communication protocol
with one-sided error for EQ, which is attributed to Rabin and Yao (the result is mentioned
already in Yao's first paper on communication complexityq]J, but apparently has never been
published). Both players, Alice and Bob, regard their inpettorsz andy, resp., as binary
representations of integers frof®,...,2" — 1}. Alice randomly chooses a prime from
the list of the firstn? primes, computese|, mod p, and sends the result apdto Bob. Bob
computesy|» mod p and compares this with the result of Alice. He outputbthe results are
equal, and) otherwise. The protocol us€¥(log n) bits of communication, since thgh prime
number is known to have siz@(k log k). The protocol always works correctif = y. On the
other hand, one can prove that for the casé¢ y, the probability thap is chosen such that
|z|2 = |y|2 mod p is at mostl /n.

Essentially the same ideas as in this protocol can be usedntract randomized OBDDs
of polynomial size for some functions which are hard for dsiaistic OBDDs because they
require to solve several instances of E@here the bitstrings which have to be compared are
composed in different ways from the input variables.

3.3.2 Applications of Fingerprinting

Now we are going to apply the fingerprinting technique to s@urecrete examples which will
be used in connection with appropriate lower bound resalseparate some of the complexity
classes for OBDDs. It is characteristic for all these upmenta results that we always can even
ensure a one-sided worst-case error probability whichgeéadero with the input size.

Theorem 3.4: It holds that
SEQ PERM EQ-ADJ-ROWe coRR-OBDD
forall e: N — [0,1) with e(n) = Q(Poly(n)~1).

50



Proof: We use the fingerprinting technigque to construct random@B®Ds for the three func-
tions.

Shifted equality This is the function which has the closest relation to theadity function
from communication complexity theory. The following comsttion is an adaptation of the first
application of fingerprinting by Ablayev and Karpinski [3]rfa similar function.

We choose the variable ordering, ..., s;_1, Zo,...,Tn_1, Y0,---,Yn_1.- The randomized
OBDD  for SEQ, starts with a tree by whichs|, is computed. Fors|, = i, the source
of a sub-OBDDG; is reached, which probabilistically checks whether SEQy) = 1.

Now we describe the construction@f. Fork € N let P, be thekth prime number. The OBDD
G, starts with a tree of nodes labeled by probabilistic vaealdy which a prime numberis
chosen at random frof\Py, . .., Py} (M is fixed below). For each fixeg, the OBDD then
deterministically computes

n—1 n—1
a, 1= Z z;-2modp and b,:= ny L gli=imodn 164 p,
=0 7=0

The1l-sink of the graph; is reached if and only, = b,. It is easy to see how a deterministic
OBDD can be constructed that does the above computatiorfifadvalue ofp and hag)(pn)
nodes.

We analyze the error of; as a randomized OBDD for SEQIf SEQ,(2,y) = 1, thena, = b,
for all primesp and the error is zero. If SEQz, y) = 0, thenG; errs if a, = b, for the chosen
primep. This is the case if and only jf divides

n—1

n—1
fo L9 y; - 2limimedn| < gn
=0

7=0

Since there are at mostprimes dividing this number, the error probability is boexddrom
above byn/M. We chooseVl := [¢(n)'n]. Using the fact from number theory th& =
O(klog k) (see, e.g., [94]), we obtain that the size of the randomizZBBD G is of order

@) (n (M + ZnPk)) =0 (g(n)"*n*logn) .

Equal adjacent row Here we probabilistically compare consecutive rows ofitigut matrix
X = (zij)1<ij<n- L€tT; = (241, .., z; ) be theith row of the matrix. The randomized OBDD
for EQ-ADJ-ROW, uses the “row-wise” variable ordering

T1,1,21,2,- -3 T1ny £2,1, 222, -+, L2y -+ -5 Tndy- -y Tnn

and we again start by randomly chosing a prime numtfeom { Py, ..., Py }.

We describe the deterministic subprogram for a fixed valug bl a pseudocode program
which can easily be transformed into a deterministic OBDIpaolfiynomial size. We use two

51



registersR; and R, which can hold numbers fronf0,...,p — 1}, the temporary contents
of these registers can be represented in the OBDImby’) nodes on the same level. The
subprogram for the primg does the following computations:

Ry := |z1]2 mod p; 7 := 2;

for : := 2to n do
R, := |z;]o mod p; if r = 1 thenr := 2 elser := 1fi;
if Ry = R, then output 1; stop;

od;

output 0.

The randomized OBDD using these modules for eadtomputes the output for all p if
EQ-ADJ-ROW,(X) = 1. If EQ-ADJ-ROW, (X ) = 0, the error probability is

Prpg{pli__qu}{a 1€ {2, - .,’I’L}Z ‘CE,‘Q = ‘CIT,‘,,1 ‘2 mod p}
= Prpg{pli__qu}{a i€ {2, .. .,TL}Z p leldeSHx,‘g — ‘Zi,1 ‘2‘}

Since a rough estimate of the error probability will be sidint, we (generously) assume that
the sets of the prime factors of all the differenc¢es|> — |z;_1]2| are disjoint. Even then there
are less than(n— 1) primes which can divide one of the differences (sifieg, — |z;-1]2| < 2
fori = 2,...,n). Hence, the worst-case error is bounded from above®y/. By the same
arguments as above, it follows that the constructed rangein©BDD has polynomial size if
we chooseVl := [¢(n) 1n?].

Permutation matrix functianAt the first glance, this function seems to have nothing tevidb
string comparisons. The key to the applicability of the fiqpgiting technique is the following
nonstandard representation of the function PERMgain, letz; be theith row of X. Then it
holds that PERM(X) = 1 if and only if

Z lzi]s = 2" —1 A all z; contain exactly one entry equal to 1
i=1

We apply the fingerprinting technique to check probabdaty whether the binary representa-
tion of the sum of the valuds;|, is equal to the stringl, ..., 1) € {0,1}".

Again, we choose the “row-wise” variable ordering for th@damized OBDD and start by
randomly choosing a prime humberFor each fixegh, we compute the sum of glt;|» modulo

p while checking simultaneously whether eaghcontains exactly one entry equal to It is
easy to see that this can be done by a deterministic OBDD ghpatial size. If a row with a
wrong number of entries equal tds detected, theé-sink is reached. Otherwise, a computation
path reaches the-sink if the sum of alljz;|» modulop is is equal to(2” — 1) mod p, and it
reaches thé@-sink for all other summation results.

If PERM,(X) = 1, the1-sink is reached for alp. The randomized OBDD can err only if
PERM,(X) = 0 and the matrixX has exactly one entry equal ton each row. For such an

52



input X, the error probability is

Prcip,....Pu} {Z |zi]o = 2" — 1 mod p} .

i=1
Since

n

Do lwls (20— 1)

i=1

< n'2"71~,

it holds that there are fewer than— 1 + [log n] primes for which the sum of thi;|, is equal

to 2” — 1 modulop. Hence, the error probability can be bounded from aboverhi/. It only
remains to choos#/ := [¢(n)~! - 2n]. Analogously to the other constructions, it follows that
the whole randomized OBDD has polynomial size. m|

The above examples all exploit the fact that checking noalégjof bitstrings is easy for ran-
domized algorithms in a more or less straightforward way.declude the list of upper bound
results by a more sophisticated construction for the clignly function. We consider the gen-
eral version of the clique-only function where the size @& tfiques is specified by an arbitrary
functions: N — Nwith 1 < s5(n) < n. Let CLO, := (CLO, 4(n))nen-

Theorem 3.5: Forall e: N — [0, 1) with e(n) = Q(Poly(n)~"), it holds that

CLO, € coRR-OBDD.

We remark that Agrawal and Thierauf [7] independently hasedusome of the ideas in the
following proof to establish that the variant of CL.@hich uses the full adjacency matrix as its
input has randomized OBDDs of polynomial size.

Proof: We consider a fixed input sizeand a fixed size = s(n) of the cliques for the whole

proof. We first describe a basic observation which shows hitstring comparisons can help to
evaluate the clique-only function. Since this idea will dotctly lead to a randomized OBDD
of polynomial size, we extend it by more technical detaited@n.

Consider an arbitrary input’ = (z;;)1<i<;j<n Of CLO, ;. For the whole proof, it is a good idea
to visualize this input as the upper half of a Boolear n-matrix. Fori = 1, ..., n, define the
vectorZ(:) € {0,1}" by

T, F1<j<i—1;
L) =41, ifj=i
The vectorL(i) describes which vertices are adjacent to dtevertex in the grapltz(X') en-

coded byX (where each vertex is considered to be adjacent with its€lfip key observation
needed to apply the fingerprinting technique to GL,@s the following.

53



Observation: The graphG(X) contains ans-clique andn — s isolated vertices if and only
if there are exactly verticesi for which the vector (i) does not contain only a singleat
position: (and zeros at the other positions), and all thesesctors are equal.

Since each entry;; is used intwo adjacency lists, this observation alone does not lead @ven t
a read-once algorithm, though. Nevertheless, we claimittgsufficient to run once through
all the variables in order to check the above property of thiacency lists of all vertices.

In the following, we first describe the essence of the our @agh in an intuitive way. We are
going to run once through all the columns.f We will prove below that, ifX is al-input for
CLO, ,, then exactlys — 1 of these columns are different from the zero vector. Furttwee, if
the:th columne; and thejth columnc; are both different from the zero vector anet j, thenc;

is a proper prefix ot;. This prefix property can be checked by the fingerprintinghoet Yet,
we also have to ensure that in the case thas a0-input the described property is not fulfilled.
We describe the essential “prefix property” more formallg @nove that it holds exactly for the
1-inputs of CLQ, ,. For the following definitions, assume that the inpltontains at least one
entry different from zero. By 0", we denote a zero vector of arbitrary length. Pog j < n,
letc; € {0,1}7~! be thejth column of X, i.e.,(¢;); :== @ fori =1,...,5 — 1. Let

Jmin = min{j | ¢; # 0}, and iin = min{i |z, .. # 0}.
Notice thatiyin < jmin — 1. Define the vectoRT € {0,1}" by

0 if 1 <5 <imin—10Mmin+1 <5 < jrin — 1;
RT;:=q1 if J = tmin;
[Cj 7é 0]7 If .jmin S 7 S n.

Furthermore, le§,,.x := max{j | ¢; # 0} and define the vectdt'T € {0,1}" by

Ti > 11 <8< Jrnax — 1

CT;:=<1 if 7 = Jmax;
0 if Jmax +1 <7 <
Lemma: It holds that the graphG(X) contains ans-clique on the verticess,...,v; €
{1,...,n} andn — s isolated vertices if and only iZ(X') is not empty and (1) and (2) are
fulfilled.

@) {i|CT; =1}y ={i | RT; =1} = {v1, ..., vs}.
(2) Letj < j'andc¢; # 0, ¢; # 0. Thenc; is a proper prefix of;..
Proof of the lemma: “Only if” : Let G(X) contain{v,...,v,} =: C as aclique ana — s

isolated vertices outside @¢f. W.I. 0.g. assume that; < --- < v,. Obviously,G(X) is not
empty.

By our first observation described above, it follows that 0 if i is an isolated vertex, and,
is a proper prefix ot,, if i < j. It remains to verify that the vectoiT andCT, resp., both
describe the cliqué'.

54



We do this forRT first. We claim that from the nodes {1, . . ., jmin — 1}, Only i, belongs to
the given cliqgue”. By the definition ofj;,, no nodej with 1 < 5 < j.i, — 1 has an adjacent
node: with i < j. This shows that there is at most one ngdeith 1 < j < j.., — 1 belonging
to the cliqueC. Sincez; ,, ;... = 1, it holds thati,.;,, € C. A nodej with j.i, < j < n
belongs toC if and only if ¢; # 0.

In order to verify thatCT also represent§’, we first observe that no nodewith j > j.... can
belong toC'. For the nodeswith 1 < i < jn... it holds thati € C'ifand only ifz; ;.. = 1.

L Jmax

“If” : SinceG(X) is not empty by assumptioRT andCT are defined. We have to show that
C :={wv,...,vs} isaclique inG(X) and all other vertices are isolated.

Letv € C. SinceCT; = 0for i > jmax, it holds thatv < j.... We have to show that an
arbitrary vertex is adjacent to if and only if it belongs toC'. First, consider a vertekwith

1 <i < wv— 1. Because of (1) and the definition 6fT, it holds thatz; ;... = 1 if and only if

1 € C. By (2) and the definition oRT we obtain that is adjacent ta if and only if; € C.
Now consider a vertex with v +1 < j < n. By (1), it holds thatz, ;.. = 1. From (2), it
follows thatz, ; = 1 if and only if j € C'. Altogether, we have shown thais adjacent exactly
to the vertices irC'.

Now letv ¢ C'. Because of (1) and the definition BT, vertexv has no adjacent verticésvith
1 <i < wv—1. Itremains to show that also has no adjacent verticgsvith v +1 < j < n.
If j ¢ C, we haver; = 0 and hence especially, ; = 0. If j € C andz, ; = 1, it follows by
(2) thatz, ;... = 1, which is not possible since ¢ C'. Altogether, we have shown thatis an
isolated vertex. m|

Now we first sketch a deterministic algorithm for Cl.QObased on the above lemma. Through-
out the algorithm, we usa..: to store the contents of the last non-zero column found so far
Jast Will hold the index of this column. Furthermor®T will denote the temporary version of
the respective vector from the above lemma. InitialRZe by the zero vector.

Forj = 2,...,n, examine thejth columne; of X. If ¢; = 0, go to the next column. If
c; # 0, then selRT; := 1. If j is the first non-zero column, defig;, := j andi, and
setRT;_.. = 1. If ¢; # 0 butj is not the first such column, then check whethgy; is a
proper prefix ofc;. If not, the algorithm terminates with outp0t Otherwise, sety.: = ¢;,
Jiast := J and continue with the next column. Finally, when all colurhiase been examined,
Set(Crast)j.. = 1. Thene,s contains the vecto€ T from the above lemma. The algorithm
outputsl if CT = RT and the number of non-zero entries in both vectors &snd it outputs)
otherwise.

The correctness of this algorithm follows from the lemmacthive have already proven. The
final step is to replace the comparisons of vectors in the elatyorithm by probabilistic tests
according to the randomized communication protocol fordtneg equality function.

On the next page, we describe the complete randomized igoas pseudocode.

55



Algorithm for CLO, ,:
Input: n, 5; X = (24)1<i<j<n

Important variables:

imin:  row of the first non-zero entry in the actual column
Jlast: index of the last non-zero column found so far

hiast:  fingerprint of the last non-zero column found so far
hrr:  fingerprint of the actual version of the vecfi’

h: fingerprint of the actual column

hupper: fingerprint of the entries . . . ji. oOf the actual column
count: actual number of potential clique vertices

1. Let P; denote theith prime number. Choosg € {Py,..., Py} uniformly at random, where
M = [e(n)"!n].
2. hgrr := 0; hlagt := 0; jlast := 0; count:= 0;
for j :=2ton do
hupper 1= 0; 1 := 0] imin := 0;
if jlast 7 0 then
for i := 110 jjase dO

b:= Tij,
hupper = (hupper + 2" b) mod p;
t:=tVb,
ift £ 0Aimin = 0then iy, :=1;
od,
fi;
h = hupper:
for i := jlass +1t0j — 1 do
b:= Tij,
h:= (h+ 2%-b) mod p;
t:=tVb
if ¢ 7£ 0 A tmin = 0then imin 1= ¢;
od;

if t = 0 (zero column}hen continue with next value of
else(at least one entry equal 19
if jiast = O (first non-zero columnhen hgy := 2= mod p;
hrr == (hrr + 2) mod p;
if jiast 7 0 A huast 7 hupper then output 0; stop;
count:= count+ 1;
if count> s then output 0; stop;
Piast := h;
Jlast = J;
fi
od;
Piast = (P1ast + 27+) mod p;
output [hast = hrr A Ccount= s|;

56



It would be extremely tedious to give a detailed descriptibthe construction of a randomized
OBDD from this algorithm. Instead, we rely on the known siatidn of on-line eraser Turing
machines by OBDDs, see Sawada, Takenaga, and Yajima [98]edtsy to see that the algo-
rithm only uses spac@(log n) and reads the variables once in the column-wise order. Hénce
can be simulated by a randomized OBDD of polynomial size. rfEqeired bound on the error
follows from the correctness of the above deterministicsicer and the estimate of the error of
the randomized bitstring comparison. O

We have now demonstrated the usefulness of randomizatio@B®Ds in several examples.
The constructions above should be sufficient to get soméioritabout the types of functions
for which the fingerprinting technique usually works.

3.4 Lower Bounds for Randomized OBDDs and:OBDDs

In this section, we are concerned with the limits of the poaferandomization for OBDDs.
We first describe a general technique for proving lower bauiod several variants of OBDDs.
Then we apply this technique to some of the functions preskintthe last section.

3.4.1 The Reduction Technique

Here we describe the technique underlying all the known fgroblower bounds on determin-
istic, nondeterministic, and randomized OBDDsi®BDDs in a unified way. We call this
general approach “reduction technique.”

To put it intuitively, the known proofs of lower bounds on thige of OBDDs are all based on
the fact that a large amount of information has to be exchémgeoss a suitably chosen cut
in the graph in order to evaluate the given function. Redutts) communication complexity
theory are then explicitly or implicitly used to get loweruals on the necessary amount of
information. A similar approach works fé&tOBDDs.

Babai, Nisan, and Szegedy [13] seem to be the first who hav&igypused communication
complexity theory to prove lower bounds for branching peogs. Before them, Bryant [31] and
Krause [66] had already employed fooling set techniquesdeglower bounds for OBDDs and
kOBDDs, resp. These techniques can also be seen as appigcaficesults on communication
complexity, although this is not explicitly mentioned iretbriginal papers.

Our goal is to clearly separate the communication complekieoretical part of these proofs
from the conclusions on the size of the OBDD/@®BDD. We will directly handle the more
general case dfOBDDs.

The following definition will be used to establish the conti@t between the size dflOBDDs
and communication complexity with respect to a fixed pantiti

57



Definition 3.6: Let f: {0,1}" — {0,1} be an arbitrary function defined on the variable set
X ={z1,...,z,}. Letavariable ordering oX be given byr: {1,...,n} — {1,...,n}. Let
1<p<n—1landL := {Z.q),... Txp)}» B := {Za(p41),---, Tx(n)}. Define the function
f:{0,1}? x {0,1}* 7 — {0,1} on assignments to L. andy to R by f'(z,y) := f(z + y),
wherez + y denotes the joint assignment 16 obtained fromz andy. Then we callf’ the
partitioned version off with respect tar andp and denote this function bf».

Usually, we cannot directly analyze the communication clexity of the function represented
by a£OBDD with respect to a suitable partition of the variabldss therefore important to be
able to identify hard subproblems which can be analyzed eathilable tools. As for Turing
machines, we use a reduction to show that the whole functiatléast as hard as the considered
subproblem.

Several notions of reducibility defined analogously to thelaknown notions for Turing ma-
chines have been introduced in communication complexim (for a thorough treatment,
see, e. g., Babai, Frankl, and Simon [12]). The most commpe itytherectangular reduction
which is the analog of many-one reducibility for Turing maes.

Definition 3.7 (Rectangular reduction): Let X, Y; and X, Y, be finite sets. Lef: X; x
Y; — {0,1} andg: X, x Y, — {0,1} be arbitrary functions. Then we call a paip;, ¢-)
of functionsy;: X; — X, andy,: Yy — Y, arectangular reduction frony to g (or simply
“reduction” for short) if

9(e1(z), p2(y)) = f(z,y) forall (z,y) € Xy x Yy

If such a pair of functions exists fgt andg, we say thaff is reducible tog.

The key property of rectangular reductions which we will déethe following.

Proposition 3.8: Let f and g be as in Definition 3.7, and lef be reducible tog. Let P, be
a k-round communication protocol fog. Then there is &-round communication protocol
Py for f which uses the same amount of communicatio®as(This holds for deterministic,
nondeterministic, and randomized protocols as well.)

We remark that one could also try to use more general typesdoiations instead of rectangular
ones, e.gd., the reductions basedavacle protocolsdefined in [12] which are the analogs of
Turing reductions for communication protocols. But apaoini special cases, such general
reductions do not allow to transfer upper bounds for pro®edth a fixed number of rounds as

shown in the above proposition for rectangular reductions.

Now we are ready to formally describe the connection betvikersize ofiOBDDs and com-
munication complexity.

58



Lemma 3.9 (Reduction technique):Let g: {0,1}" — {0,1} be defined on the variable set
X ={=z1,...,z,}. Letw be a variable ordering orX . Assume that there is a functign U x

V — {0,1}, whereU andV are finite sets, and a parametgmwith 1 < p < n — 1 such that
f is reducible to the partitioned versiogi? of g. Let G be a randomizedOBDD ordered
according tor which representg with two-sided error at most. Then it holds that

llog |G > RZ*7(f)/(2k — 1),

whereRZ*~1( f) denotes the minimal number of bits exchanged by a randoriized1)-round
communication protocol fof with two-sided error at most. Analogous assertions hold for
deterministic, nondeterministic, and randomizg€dBDDs with zero, one-sided or unbounded
error and the corresponding measures f@k — 1)-round communication complexity.

Proof: Sincef is reducible tgy™?, it follows thatR%*~!(g™?) > R?*~1(f) by the above propo-
sition. Hence, it is sufficient to show thetk — 1)[log |G[] > R2*~'(g™F). To prove this in-

equality, we construct a randomizé€2k — 1)-round protocol forg™? from GG. The basic ideas
of this construction are due to Jukna [58] and Krause [66].

First, we partition the randomizetlOBDD G into k sets of nodes (layerd); such that: (i)
edges run only front; to £; with j > i; and (i) the subgraph containing all edges for which
at least the first node lies ifi; is a randomizedr-OBDD (possibly with several sources and
sinks). This partition usually will not be uniquely detemad.

Furthermore, we split each lay€¥; into anupper partand alower partusing the variable or-
deringm and the given parametgr Let L := {z.(1), ..., Zx(;) } @NAR := {Zr(11), - -, Ta(n) }-
The lower part of theth layer consists of all paths in thth layer starting at a node which is
labeled by a variable fronk (such paths only contain nodes labeled by variables ffoar by
probabilistic variables). The upper part consists of theaiming nodes and edges of tfth
layer (the nodes of this part are labeled by variables ffoar by probabilistic variables).

Finally, we identify sets of nodes (cuts) which separatéekht layers or the upper and the
lower part of the same layer. For=1,.. .k, defineCy;_1) as the set of source nodes of the
ith layer. LetCy, be the set of sinks aff. Fori = 1,... k, letCy;_; be the set of nodes in the
lower part of theith level which are reached by edges from the upper partidet; = Cy;_» if
the upper part is empty and; _; = Cy; if the lower part is empty).

Now we are ready to describe the protodofor ¢g™*. Player Alice obtains an assignment
to the variables in. and player Bob an assignmepnto R as inputs. Both use the graghas
an “oracle” Letv, € Cj be the source ofi. Leti € {1,...,k}. Inthe(2: — 1)-th round

of the protocolP, Alice follows a path in the upper part of théh layer starting abs;_» in
the following way. If she encounters a usual variable, shievis the successor determined
by her inputz. If she encounters a probabilistic variable, she locallgades a value for this
variable at random and precedes to the corresponding swceshe sends the number of the
nodewy;_; € Cy;_; reached in this way to Bob. Then théth round of communication starts.
In the same manner as Alice, Bob follows a path in the lowet githe ith layer determined
by y and some choices of probabilistic variablesi K k — 1, he communicates the reached
nodews; € Cy; to Alice and round; + 1 starts. Otherwise, Bob reaches a sink and outputs its
value as the result of the protocol.

59



Since each probabilistic variable appears at most once on path in(G, both players can
choose the values of the probabilistic variables indepetigleBecause of the error guarantee
of G, it follows that the above protocdP computes;™? with error at most. Furthermore, it
uses at most

2%k—1

> Nog [Cif] < (2k —1)log |G]].

i=1

bits of communication. O

The proofs of the lower bounds on the size of OBDDs a6BDDs, resp., by Bryant [31] and
Krause [66] turn out to be in fact combinations of rectangudluctions with lower bounds
on the nondeterministic communication complexity by thelifay set method. Hence, their
bounds even hold for nondeterministic OBDDs &@BDDs, although this is not mentioned in
the original papers.

3.4.2 Lower Bounds fork-Stable Functions

In Section 3.2, we have already discussed several typesictiéins which are known to be hard
for deterministic OBDDs. We have claimed that the functimfiermally introduced as “pointer
functions” are all hard even for randomized OBDDs.

In order to get a formally precise statement, we now applydher bound technique presented
in the last section to the class of so-callgdstable” functions, which has been studied in
the literature of lower bounds for read-once branching mots for a long time. It turns out
that every known pointer function is itselfstable or at least containskastable function as a
“subproblem.”

Definition 3.10: Let k € {1,...,n — 1}. A function f: {0,1}" — {0,1} defined on the
variable setX (|X| = n), is calledk-stableif the following holds. For an arbitrary sef; C X,
|X:1| = k, and each variable € X there is an assignmebto the variables inX'\ X, such that
either f(a + b) = a(x) for all assignmenta to X, or f(a + b) = —a(z) for all assignments
to X;. (Again,a + b denotes the complete assignmenftavhich is obtained by assigning the
variables inX; according toz and the variables ifX' \ X; according td.)

This definition is originally due to Dunne [36]; the nami-$table function” has been coined
by Jukna [59]. It is a well-known fact that/astable function has siz& — 1 for deterministic
read-once branching programs. Lower bounds of this type baen proven by several authors,
e.g., Dunne [36], Jukna [59], Krause [65] and Jukna, Razh&avicky, and Wegener [57]. We
list the functions introduced in Section 3.2 for which it Haen proven that they akestable
for some parametet.

— Itholds that the clique-function,gl is k-stable fork := min{(}) -1, (n—s+2)/2}. Thiscan
be proven easily by using the ideas contained in the workalafa [59] and Wegener [113].
Jukna has proven a similar result for the directed versiothefclique-function, with the
adjacency matrix as input. This functionkisstable fork := min{(3),n — s} — 1.

60



— Krause [65] has proven that RMind DET, are both(n—1)-stable.

— Letn = ¢+ ¢+ 1, whereg = p™ for some primep and an arbitrary positive integer. Let
k:=(g+1)/2if gis a prime, and: := [,/g| otherwise. Then the blocking set functiét
is k-stable, as the proof of the lower bound on the size of detestit read-once branching
programs forB,, by Jukna, Razborov, Savicky and Wegener in [57] shows.

— Letn =2, m := |n/l], andk := [/m] as in the definition of the function ADDR Then
it holds that ADDR, is (k—1)-stable. (See Jukna [59] and Jukna, Razborov, Savicky and
Wegener [57].)

Now we are going to prove a lower bound on the size of randodn@BDDs for allk-stable
functions, including the functions above.

Lemma 3.11: Letg: {0,1}" — {0, 1} be ak-stable function. Let be a randomized OBDD
for g with arbitrary two-sided erroe < 1/2. Then it holds thatG| = 29*).

Proof: Our goal is to apply Lemma 3.9. For this, we are going to casi rectangular reduc-
tion from the following function to a suitable partitionedrgion ofg. Let INDEX,,: U x V —
{0,1}, whereU := {0,1}™, V := {1,...,m}, be defined by INDEX(u,v) := wu, for

u = (ur,...,un) € Uandv € V. Kremer, Nisan, and Ron [69] have shown that each
randomized one-way protocol which computes INDEXith two-sided error smaller thary 8
needs2(m) bits of communication. (We remark that Ablayev [1] has amatya related func-
tion for which he has also proven a linear lower bound for mnized one-way protocols.) In
order to be able to apply this result, we first assume dhatl /8 for the errors of G.

Let an arbitrary variable orderingon the variable seX of g be given. For the ease of notation,
we assume here thatmaps each index to the corresponding variable, k e{1,...,n} — X.
DefineL := {x(1),...,w(k)} andR := {n(k + 1),...,7(n)}.

We observe that, sincg¢ is k-stable, the following holds. For each variablee L, there

is an assignment, to R such that eithetf(a + b,) = a(z) for all assignments to L or
fla+b,) = —a(z) for all assignments to L. Let us first assume that always the former case
occurs. In the following, we define a rectangular reductipn ¢,) from INDEX,, to g™*.

The functiony,: U — {0,1}* is only a permutation of the bits of its input vector. For an
arbitrary inputu = (uy,...,ux) € U = {0,1}*, define the assignmentto the variables i,

by a(z) := u, 1(,) for z € L. Setp;(u) := a. The functionp,: V — {0,1}"* is defined by
@2(v) == bx(v), Wherev € V = {1,... k}. For arbitrary(u,v) € U x V, we have

g™*(p1(u), a(v)) = INDEX (1, v),

hence| ¢, ¢2) is a rectangular reduction from INDEXo g™*. By Lemma 3.9 and the known
lower bound on the randomized communication complexityfiDEX,, it follows that

Mog |G[] > RL(INDEX,) = Q(k),

for all £ < 1/8. To obtain the claimed lower bound for an arbitrary error bbility
e < 1/2, we apply the probability amplification technique for OBDM@sscribed in Sec-
tion 2.2.2 (Lemma 2.34).

61



We still have to handle the case that for some variablesL, it holds thatf(a + b,) = —a(z)
for all assignments to L. For this case, we slightly extend our reduction conceptddition
to the transformation of the input by the pair of functidns, ¢2), we allow to negate the result
for the “target problem,y(¢1(u), p2(v)), depending on the input € V. More precisely, such
a reduction consists af;, ¢, and an additional function: V' x {0,1} — {0, 1} for which
v(v, g(p1(u), pa(v))) = f(u,v) forall (u,v) e U x V.

Itis easy to see that analogous versions of Propositionr8l& amma 3.9 from the last section
hold for this extended type of reductions.

Here we choose(v,c) = cfor c € {0,1}if f(a + bx(,)) = a(x(v)) for all assignments to L,
andv(v,c) = —cforc e {0,1}if f(a+ b)) = —a(x(v)) for all assignments to L. Itis easy
to see that for this choice efandy;, ¢, we have

v(v, g(p1(u), pa(v))) = INDEXk(u,v) forall (u,v) € U x V.

[m]

From this lemma, we immediately obtain that the exampldssthble functions already men-
tioned are all hard for randomized OBDDs with bounded error:

Theorem 3.12:  cl,PM, DET, B, ADDR ¢ BPP-OBDD

There are some pointer functions, e.g., HWB and ISA, whiaimcé bek-stable for large:

in the sense of Definition 3.10, because they are contain®dBR1 (for HWB and ISA, this
has been proven by Sieling and Wegener [106]). In this respleey are easier than arty
stable function. Nevertheless, they share a common propéith these functions which also
makes them hard for randomized OBDDs. This is the prope#yttiey can be seen to solve an
instance of the function INDEXfor somek as a subproblem. The following lemma formally
describes this property.

Lemma 3.13: Letg: {0,1}" — {0,1} be defined on the variable s&t. Letk with1 < £ <

n — 1 be fixed. Assume that for each variable orderingn X, there is a parametet with

1 <1 < n— 1such thaiNDEX, is reducible to the partitioned versigyt of g. Finally, let

G be a randomized OBDD representiggwith two-sided errors < 1/2. Then it holds that
|G| = 2900,

The proof of this lemma is already contained in the proof efl&fmma fork-stable functions.

Theorem 3.14: ISA,HWB ¢ BPP-OBDD

Proof: In order to apply Lemma 3.13, we show how the known proofs efitver bounds on
the size of deterministic OBDDs yield rectangular redutsio

Indirect storage accesslLet = be an arbitrary variable ordering on the input variables
Zo,...,Tor—q andy07 ey Yr1 of |SA,,

62



Remember that we have definee- |2"/r | as the number of “blocks” of-variables. Consider
the maximal position in the list of variables ordered acamydo = where at most — 1 of
the z-variables and some variablgs, .. ., y;, have been tested. We claim that INDEX is
reducible to(ISA,,)™**+'~1. (This proves the claim, since= ©(n/logn).)

Let I be the set containing the first— 1 of the z-variables according ta and R the set of
the remaininge-variables. By the pigeonhole principle, there is a grayp, . . ., (i, +1)-—1 Of
z-variables,0 < iy < s — 1, with no variable inL.. Choose an assignmento all y-variables
which evaluates tg, when interpreted as a binary number. We replacethariables according
to ¢ and consider the restricted functioiSA,,)|,—..

We first construct a rectangular reductiopy, ») from INDEX,_; to ((ISA,)|,=.)™*"". Let

U ={0,1}*"andV = {1,...,s — 1}. Analogously to the proof of Lemma 3.9 for ttie
stable functions, defing;: U — {0, 1}*~! simply as a permutation of the input bits according
to the order of the variables frorh given byr. For the definition ofps: V. — {0,1}"+1,
choose assignments, . . ., b,_; to the variables iR such thaiISA,)|,-.(a + b;) = a; for all
assignmenta to L. Forv € V, definepy(v) := ba(,).

It is easy to verify thaty:, ¢») is indeed a rectangular reduction from INDEX to the func-
tion ((ISA,)|,=.)™*~". We obtain a rectangular reduction from INDEX to (ISA,)™*+~! by
adding appropriate parts of the assignmetut they-variables to the assignments computed by
1 andeps, resp.

Hidden weighted bit HWB,, is defined on the variables,, ..., z,. Letw be an arbitrary
ordering of these variables. For the ease of notatiom, ket a multiple ofl 0. Definep = 0.6 n,
L= {.7:,..(1], B J:,r(p]} andR := {J:,r(p+1)7 RS ,"E.,,(n]}. Letk := 0.1 n. We claim that INDEX,
is reducible to the partitioned version HV{yBof HWB,,.

Again, we adapt the known proof for the deterministic cassotustruct a rectangular reduction.
Chooses € {0.1n,0.5n} such that the s := {s,...,s + 0.4n} contains at least.2n
indices from{x(1),...,7(p)}. Choosew,...,w, € W N {x(1),...,7(p)}.

LetU = {0,1}* andV = {1,...,k}. Foreachu € U andv € V, we define assignmenisgu)
to L andb(v) to R, resp., for the rectangular reduction. Defirle)., := u; forj € {1,... k}.
Fix the values of the(u);, i & {wy, ..., w:}, such that(u) altogether contains exacthyones.
This is possible for both choices e6ince0 < u; +---+u < 0.1n. Foreveryw € {1,...k},
chooseh(v) such that it contains exactly, — s ones. This is possible sinee, € .

We claim that we have constructed a rectangular reductiom iNDEX, to HWB?. Let
u € U andv € V. Letc be the assignment tey, ..., z, which is obtained by joining the
assignmenta(u) andb(v). Then it holds that HWB(¢) = c.,,, since the number of ones in
is s + (w, — ) = w,. It holds thatc,,, = a(u),, = u, because of the definitions efanda(u)
and the fact that, € {n(1),...,7(p)}. a

63



3.4.3 Lower Bounds for RandomizedkOBDDs

Lower bounds on the size of deterministic (and impliciths@lnondeterministickOBDDs
wherek may be larger than have already been proven by Krause [66], as mentioned at the
beginning of the section. His proofs can be seen as rectangediuctions from the string
equality function EQ to the target functions.

Bollig, Sauerhoff, Sieling, and Wegener [21] have (imligi used the reduction method to
prove that the classes of sequences of functionsA@BDDs of polynomial size form a proper
hierarchy with respect té. They have exploited the fact that the so-called “pointenging
function” has linear complexity for randomizé¢t—1)-round communication protocols whereas
it has deterministid:-round protocols of polylogarithmic length, whekds not too large (this
has been shown by Nisan and Wigderson [82], who have impreasier results oburis, Galil,
and Schnitger [37] and of Halstenberg and Reischuk [49]}ha\lgh this is not mentioned in
the paper of Bollig, Sauerhoff, Sieling, and Wegener [24gitt lower bound proof also holds
for randomized:OBDDs.

In this subsection, we present two more examples demoingttabw the reduction technique
can be used to get lower bounds on the size of randonti@RDDs. We consider the functions
1ROW-OR41COL and SIP defined in Section 3.2.

Theorem 3.15: Let G be a randomized&OBDD for IROW-OR4COL,, with arbitrary two-
sided errore, 0 < ¢ < 1/2. Then it holds thatG| = 2%/*),

Proof: We will reduce the complement of the set disjointness famcfrom communication
complexity theory to a partitioned version tROW-OR4COL,,. The set disjointness function
DISJ,: {0,1}*x{0,1}* — {0,1} is defined on vectors, y € {0, 1}", which are interpreted as
subsets of1,...,n}, by DISJ,(z,y) = 1iff zNy = (. It has been proven by Kalyanasundaram
and Schnitger [63] and Razborov [93] that D|SJas communication complexit®(n) for
randomized communication protocols with two-sided ermghgre the protocols may use an
arbitrary number of rounds).

Consider a given variable ordering on then? variables ofIROW-OR4COL,. Forp ¢
{1,...,n — 1}, definel. := {zx1),...,Tx(p)} ANAR := {Zr(ps1),- - -, Tx(n)}. ChoOSE such
that|| 7| — |R|| < 1. We claim that- DISJ,,/s) is reducible tol ROW-OR4COL;".

It is easy to see that there are either at Iéag® | rows or at leastn /2| columns which do not
consist solely of variables belonging foor R, resp. W.lI. 0. g. this holds for the rows. Then
thereisasef = {i;,...,i./2)} C {1,...,n} such that for each row with indexe I there is
at least one variable belonging foand at least one variable belongingRo

Letinputsu, v € {0, 1}1*/2! for — DISJ,, /5 be given. We define assignments to the variables in
L and inR corresponding ta, v as follows. Set all variables in the:/2| rows with indices not
in7to0. Forj =1,...,|n/2], setall thel.-variables in thé;-th row to1 if j € u, and set them
allto 0 if j ¢ u. Do the same for th&-variables and. We obtain thal ROW-OR1COL*
yields the result on these assignmentsfcandR if and only ifu N v # (. Hence~ DISJ, /2

is reducible tolROW-OR41COL’*. By Lemma 3.9 and the known result on the randomized
communication complexity of DI§Jthe claim follows. O

64



We summarize what is known about the functidROW-OR41COL.:

(1) IROW-OR4COL € NP-OBDD C PP-OBDD, but
IROW-OR4COL ¢ BPP4OBDD if k = O(n/log"** n), & > 0;

(2) TROW-OR4COL € RP-BP1C BPP-BP1, butROW-OR1COL ¢ coNP-BP1.

It only remains to supply the upper bounds claimed here: Adeterministic OBDD for
1ROW-OR41COL guesses an index of a row or a column and checks detetioatlig whether
the row or column, resp., only contains ones. A randomized+@nce branching program with
error at most /2 is obtained by combining two OBDDs for the test of the rows #redcolumns,
resp., by a single probabilistic node.

For the function SIP, we even get a lower bound on the sizemafomizedi OBDDs in the case
of unbounded error if the number of probabilistic variakilesot too large. On the other hand,
itis easy to see that SIP P-BP1.

Theorem 3.16: Let G be a randomize@OBDD which representSIP, with unbounded error.
Letr be the number of probabilistic variables usedin Then it holds thatG| = 2%(n="/k),

Proof: This is done by a rectangular reduction from the inner proéluection IR, : {0,1}™ x
{0,1}™ — {0, 1} defined by IR,(z,y) := 1 iff 221’01 z;y; 7 0 mod 2. It has been shown by
Chor and Goldreich [34] that IPhas randomized communication complexity at least 3 —
3log(1/4) if the error is bounded by/2 — 4 for an arbitrarily small constardt > 0.

Let G be a randomizedOBDD with r probabilistic variables representing SIRith un-
bounded error. Let be the variable ordering on the variables of Sied byG. Choose
the partition(L, R) of the variables and the parameteas in the proof of Theorem 3.15. Call
variablesz, andy, partnerswith respect to the function Sjff r + i = s mod n. By the
pigeonhole principle, it can be shown that there is@a {0, ...,n — 1} such that for at least
[n/2] pairs of variables which are partners with respect tg"Steth variables lie in different
parts of the partitiof L, R). It follows that IR, /2 is reducible to the partitioned version gip
of SIP®.

Since G has onlyr probabilistic variables, the error probability is boundeodm above by
1/2 —1/2". By the result on the communication complexity of,JB,, the claim follows. O

3.5 Summary

At the end of this chapter, we summarize conclusions on tlagioas of the complexity classes
defined in terms of the size of randomized OBDDs which can lagvdrfrom the upper and
lower bound results known so far.

In the following theorem, we list the most important factstulns out that the relations between
the classes for the Monte Carlo error model can be completeyacterized.

65



Theorem 3.17:
(1) BPP-OBDD¢Z NP-OBDDU coNP-OBDD
(2) RP-OBDDN coRP-OBDD; NP-OBDDN coNP-OBDD¢ BPP-OBDD
3) RP-OBDD; NP-OBDD, RP-OBDD+# coRP-OBDD
(4) NP-OBDDU CONP-OBDD% PP-OBDD BPP-OBDD; PP-OBDD
(5) P-OBDD= ZPP-OBDD
Proof: Part (1) We consider the function 2PERM {0,1}2* — {0,1}, defined on two
Booleann x n-matricesX andY by
2PERM,(X,Y) := PERM,(X) A (- PERM,)(Y).

By Theorem 3.4, this function is contained in the class BEBBO (we can compute the con-
junction of two randomized OBDDs with one-sided error forFNE, and - PERM, simply
by concatenating the graphs as described in Chapter 1). ©atlier hand, it follows by the
known lower bound on the size of nondeterministic read-degching programs for PERM
by Jukna [60] and Krause, Meinel, and Waack [68] that 2PERMither contained in NP-BP1
nor in coNP-BP1, and thus, especially, 2PERNNP-OBDDU coNP-OBDD.

Part (2). This follows from the fact that, e. g.,
ISA € (NP-OBDDN coNP-OBDD)\ BPP-OBDD.

Part (3): The first part is a consequence of Part (2), the second giwvifrom the fact that
PERM € coRP-OBDD\ NP-BP1

Part (4): The first part follows from the above result for 2PERM, thesetpart from the result
for ISA and the fact that NP-OBDEC PP-OBDD. An explicit construction of a randomized
OBDD for HWB with unbounded error has been given in [19]. (VWenark that, recently,
Ablayev, Karpinski, and Mubarakzjanov [6] have observedat these relations also hold for
some further functions.)

Part (5). This has been shown by Karpinski and Mubarakzjanov [64]. O

These results are illustrated in Figure 3.1, together withsimple observations concerning the
classes NP-OBDD and coNP-OBDD from Section 2.1. Againdsaiiows indicate inclusions,
and slashes through the lines proper inclusions. Brokemwarrepresent non-inclusion.

With respect to the relation of the complexity classes fol3DB defined in Chapter 2, only few
open problems remain. The most important ones are probhaélfotlowing.

Open Problems:
(1) Does it hold that ZPP-OBDB: RP-OBDDN coRP-OBDD?

(2) Prove an exponential lower bound on the size of randodn@BDDs with unbounded error
for an explicitly defined function without using a restrati on the number of probabilistic
variables as in Theorem 3.16.

66



PP-OBDD

. NP-OBDDU coNP-OBDD
BPP-OBDD;~ NP-OBDD CcONP-OBDD
~ NP-OBDDN coNP-OBDD

RP-OBDD

RP-OBDDN coRP-OBDD

P-OBDD = ZPP-OBDD

Figure 3.1: The complexity landscape for OBDDs.

67



68



Chapter 4

On the Resource Randomness

In the preceding chapter, we have investigated the questi@ther or not randomization helps
to decrease the size of OBDDs for a given function from exptiakto polynomial order of
growth in the input size compared to the deterministic caggart from this “all-or-nothing”
scenario, it is interesting to ask how the size changes ifenworless probabilistic variables
are available. This quantitative question can be invetsiyor the randomized variants of the
different types of restricted branching programs.

In Section 4.1, we present some answers for the models withdexd (one-sided or two-sided)
worst-case error. For randomized OBDDs, randomized fetithes branching programs and
randomized general branching programs (and even most tthes) with bounded error, it

turns out that we cannot make use of more than logarithngicadiny probabilistic variables in

the input size. In the case of randomized OBDDs, we can phatehis bound is asymptotically
sharp: we present a function which has randomized OBDDs lghpmial size only if at least

logarithmically many probabilistic variables are avaiab

In Section 4.2, we look at the influence of the resource ramds® on the size of branching
programs from another point of view. As we have already rdedin connection with the
definition of randomized branching programs, the numbeilofwed read accesses to a single
probabilistic variable seems to be an important paramdtéreorandomized model. Here we
will ask what happens if we drop the restriction that probstic variables may be accessed
only once. It turns out that this does not really change thdetsowith bounded error. Yet, the
situation for the models with weak error guarantee is d#ffer For nondeterministic branching
programs or randomized branching programs with unbounded ¢éhe randomized model with
multiple read access to the probabilistic variables is npaxgerful than the usual one under the
assumption that NLPoly # NP/ Poly and PLP Poly # PP/ Poly, resp. For randomized
OBDDs and randomized redg@times branching programs, we can even prove (without addi-
tional assumptions) that the models with weak error guematready become more powerful
if the probabilistic variables may be read twice.

69



4.1 A Normal Form for Randomized Branching Programs

The examples of randomized OBDDs of polynomial size whichhaee constructed in the
last chapter all have the same structure. They always sttrtasmree of probabilistic nodes
by which one of polynomial many deterministic “subprogramsschosen at random. Also the
nondeterministic OBDDs in the proof of Lemma 2.13 in Secf.chhave this structure. Hence,
we see that a number of probabilistic variables logarithmithe number of subprograms is
sufficient in these cases.

Does this paradigm for the construction of randomized bnargcprograms cover all reasonable
applications of randomization? Or are there functions farch it is helpful to “intermingle”
usual nodes and probabilistic nodes? We prove here thatutider of probabilistic variables
can always be reduced t9(log n) while the size only increases by a linear factor, where
is the number of usual (non-probabilistic) variables. Rernnore, we can always assume that
a randomized branching program can be partitioned into & dfeprobabilistic nodes at the
top and a completely deterministic part at the bottom. Tesult holds for general branching
programs as well as for all restricted variants which we @bersin this work.

We prove this by adapting the proof of the following closedated result from communication
complexity theory. Newman [80] has shown that a randomizedmunication protocol with
public coins for an arbitrary functiofi: {0,1}"x{0,1}™ — {0, 1} can be turned into a protocol
with private coins such that the complexity increases attiopsin additional term o (log n)
and at mosD(log n) coins are used by the new protocol. Additionally, one hasay pith a
slight increase of the error probability for this transfation.

In a similar way, we can show that a randomized branchingrarag: with n usual variables
and an arbitrary number of probabilistic variables can lbeed into a branching program with
only O(log n) probabilistic variables and size(n|G|) (with a slight increase of the error prob-
ability). This even holds if we do not require that the proiliatic variables are read at most
once on each path from the source to the sinks in the origisaldhing program.

Theorem 4.1 (Normal Form for Randomized BPs):Let f: {0,1}" — {0,1} be a function
defined on the variable séf, | X| = n. LetG be a randomized branching program without
read-once restriction on the probabilistic variables winiepresents with two-sided error at
moste, 0 < ¢ < 1/2. LetG contain the variables fronX as usual variables and arbitrarily
many probabilistic variables. Then it holds for evéryith0 < § < 1/2 — ¢ that there is a
randomized branching prograif¥’ (with read-once restriction on the probabilistic variab)e
which representg with two-sided error at most + § and

(1) G' contains at mosflog n — 2log ¢ + 1] probabilistic variables;

(2) all probabilistic variables are tested in a tree at theptof ', and the sequence of tests of
these variables on each path from the source to a sink is stamiwith some fixed variable
ordering;

@) |G' = O ((n/0*)|G)).

Proof: Our proof is based on a simplified version of Newman'’s origpraof from the mono-
graph of Kushilevitz and Nisan [70].

70



Let r be the number of probabilistic variablesdh For an assignment € {0,1}" to the usual
variables and an assignment {0, 1}" to the probabilistic variables a¥ define

b {17 if G(a,b) # f(a);
1o, if Ga,b) = fla);

whereG(a, b) is the value computed by according to the deterministic semantics of branching
programs on the assignment obtained by concatenatarglb.

If b € {0,1}" is chosen randomly according to the uniform distributionl ane {0,1}" is a
fixed input,Z(a, b) is a random variable with

BlZ(a,b)] = Y Z(ab)-27" <¢,

be{0,1}"

according to the error bound ¢f. Let (G, be the deterministic branching program which is ob-
tained fromG by substituting € {0, 1} for the probabilistic variables (obviouslg,| < |G]).
Fort = 2" andby,...,b; € {0,1}" defineG,,  », as the branching program that starts with

a tree on probabilistic variables, . .., z; at the top by which one of the branching programs
Gy, ..., G, atits leavesiis selected. (More precisely(gtbe selected if(z;, zi—1,. .., 21)|]2 =
i)

We show by the probabilistic method that for an appropriattlosent = 2! there are vectors
bi,...,b € {0,1}" such thatG,, , computes the functiorf with error at most + § (as a
randomized branching program with probabilistic variablg . . ., z;).

First, let/ and thug = 2 be arbitrarily chosen. We consider vectéys. . ., b, which are chosen
independently according to the uniform distribution{gn1}". Furthermore, let € {0,1}" be
an arbitrary input. We show that the probability tha{ &, _ ,(a) # f(a)} is larger than the
errore by more thar is exponentially small. From the definitions it follows that

PH{Gun..0) 7 F(a)} = 3 Gula) # (@] Pl o2l = i} = 3 3 Z(a )

SinceE[Z(a, b)] < e (b uniformly chosen from{0, 1}"), we obtain by the Chernoff bound

Pr{ (1;2((11),) - s) > (5} < 2exp <7%> < 2exp(—d2t).

Now we fix! := [logn — 2log § + 1]. Then we have = 2! > 2n/4?, and
2exp(—46%t) < 2exp(—2n) < 27

Thus, the probability that for randomly chosen vectrs . . , b, there isanya € {0,1}" for
which the error ofGs, .. s, deviates by more thafi from ¢ is smaller than 1. Hence, there is a

.....

choice ofty, . . ., b;, such that
PGy, (a) # f(a)} < e+
foralla € {0,1}". o

71



We remark some important consequences which follow imntelgidrom the proof of this
theorem.

First, it is easy to see that analogous versions of this #radrold for all restricted variants of
branching programs where the operation “replacement @dlvkas by constants” only decreases
the size of the graph, which is the case for réatimes BPs and OBDDs. There is also a version
of this theorem for one-sided error and for zero error.

As a by-product, we have proven that randomized branchiograms with bounded error
where the requirement that the probabilistic variablestaséed at most once on each path is
not fulfilled can also be converted into the normal form, fdrieh the read-once property is
fulfilled. It is interesting whether this still holds if we nsider the models with only weak error
guarantees, i. e., nondeterministic branching programaratomized branching programs with
unbounded error. We will be concerned with this questiomariext section.

Finally, we also have obtained that an arbitrary randomi@8DDs can be converted into
a randomized OBDD which fulfills the ordering restrictioncacding to an ordering on all
variables and uses only logarithmically many probabdistriables, as announced in Chapter 2:

Corollary 4.2: LetG be arandomized OBDD representing afvariable functionf with one-
sided or two-sided error (bounded by a constant). Then tieeeecompletely ordered OBDD
G' representingf with the same error guarantee, at ma@stlog n) probabilistic variables, and
|G| = Poly(| 7).

The claim on the error probability of the completely orderaddomized OBDD follows by
applying the probability amplification technique of Lemm34£

In the remainder of this section, we show that the boun®@#ég n) on the number of prob-
abilistic variables achieved by Theorem 4.1 is essentigdlyt for randomized OBDDs. We
prove that the shifted equality function introduced in tastichapter has randomized OBDDs
of polynomial size using at mo&t(log n) probabilistic variables, but has superpolynomial size
if only o(log n) probabilistic variables are available.

Theorem 4.3:

(1) The complement &EQ, is representable by randomized OBDDs of polynomial sizetwhi
have one-sided errof/4 and use at mosD(log V) probabilistic variables, whereV :=
2n + 1,1 = logn, is the input size 0BEQ,.

(2) For every randomized OBDD¥ with r probabilistic variables which represents the com-
plement ofSEQ, with two-sided error at most, wheres is a constant smaller that/2, it
holds that

|G| = Q(2"/*").

This bound is superpolynomial in the input si¥ef SEQ, if » < log N —(1+¢) loglog N,
wheres > 0 is an arbitrarily small constant.

72



Proof: Part (1) This has already been shown in the last chapter (Theorem 3.4

Part (2). For the proof of the lower bound, we use the technique intced in the last chapter.

It is not hard to prove that the equality function from comnwation complexity theory is
reducible to a suitable restriction of SEQ@n the sense of the last chapter). It can be shown
that for every variable ordering, there is an € {0,...,n — 1} and a partition parameter
such that EQ, , is reducible to the partitioned versi¢8EQ,)™” of SEQ,. (Essentially, this
follows from a simple application of the pigeonhole prirleipSee [70] for details.)

It remains to provide an appropriate lower bound on the ramided communication complexity
of EQ,,/2) Where the number of random bits is restricted. I@y(f) denote the minimal
complexity of a randomized one-way protocol for an arbitramction f with at most random
bits. Canetti and Goldreich [33] have shown that for an eathjtfunction f it holds that

R (f) 2 DNf)- (14202770

This follows from the fact that a deterministic protocol focan be constructed by “simulating”

a given randomized protocol withrandom bits for a sufficient number of assignments to the
random bits and then determining the output by majority v8iaceD'(EQ,,.»|) = [n/2], we

get

R;,T(EQLn/ZJ) > [n/2] - (1+2¢-27)7Y,

for all e < 1/2. Hence, the claimed lower bound follows by Lemma 3.9 fromlése chapter.
O

4.2 Multiple Access to Probabilistic Variables

In this section, we are concerned with the seemingly “moregutul” type of randomized
branching programs where the probabilistic variables ateequired to obey the read-once re-
striction. Let us call this type “unrestricted randomizedrrhing programs” here. We prepend
the letter “U” to the names of the usual complexity classestain names for the respective
classes for this new model. From Theorem 4.1 in the last@gotie immediately get:

Corollary 4.4:

(1) UBPP-BP= BPP-BR UBPP-OBDD= BPP-OBDD

(2) UBPP-BR: = BPP:-BP.

For general branching programs and OBDDs (Part (1)), we bese UBPP-BP = BPPR.-BP
and UBPR-OBDD = BPR.-OBDD, resp., for all constant € [0,1/2), since we can apply the

probability amplification techniques presented in the &sition. For read-times branching
programs, Theorem 4.1 yields

UBPR-BPk C BPP.,5-BP¥,

73



forall 6: N — (0,1 —¢) with 6(n)~! = Poly(n). By choosingd := (1/2 — ¢)/2, we get
Part (2). It is not clear whether UBPBPL = BPR.-BPk. Taking already a result of the next
chapter on an exponential gap between the size of read-oanehing programs for different

worst-case errors into account, we conjecture that thisishe case.

The above statements only hold for the case of bounded eme+gided or two-sided). In the
following, we show why it is reasonable to believe that thed@mized models with weak error
guarantee, i. e., nondeterministic branching programsamdomized branching programs with
unbounded error, behave completely different.

First, we consider randomized general branching progra@msve have seen in Section 2.1, the
class of functions with nondeterministic branching progsaof polynomial size (in our usual
definitions) is identical to N[.Poly. Meinel [74] has already shown the following.

Theorem 4.5 (Meinel):  UNP-BP= NP/ Poly.

Proof: The proof is done by showing that UNP-BP is equal to the dlas®f functions with
nondeterministic circuits of polynomial size (a nondetistic circuit for a functionf is a
probabilistic circuit withr probabilistic variables tha2~", 0)-computes the functioif). By
the well-known simulations of circuits by nondetermirgstiuring machines and vice versa it
follows that the clas§,,q is equal to NP Poly.

The fact that UNP-BRC C,4 follows immediately from the simulation of branching pragrs
by circuits described in Chapter 1 (Theorem 1.7). It remé&nshow thatC,qs C UNP-BP. This
is more difficult than the opposite direction, since we do kredw how to simulate circuits by
branching programs such that the size does not blow up. Boawapply the simple simulation
of formulas over the basigA, v, =} by branching programs described in Section 1.2.

Let C' be a nondeterministic circuit computing a functipron variablese, . . ., z,,, with prob-
abilistic variables:y, . . ., z,. The simulation of”' is based on the following idea: We guess the
values at the outputs of all gates and afterwards check wh#tbhse guesses are consistent with
the given input and the structure 6f W. 1. 0. g. we may assume thay™and “A” are the only
types of binary gates ift'. Let ¢ be the number of these gates.

We construct a nondeterministic branching progi@ror f using unrestricted nondeterminism
as follows. Introduce additional probabilistic variablgs. . ., g., one for each binary gate.
Now consider theth binary gate, with type; € {V, A} and inputsl} andI?, wherel] and/?
may be other gates or input variables(bfn negated or unnegated form. We describe this gate
by the formulag; = w;(1}, I?) of depth1 (I} and/? are replaced by literals). Lgt be the gate

computing the functiorf at its output. The branching prograthsimulates the formula

9o A (g1 = Wil D) A A (90 = w12 1)) =
g A (@ ATV (g Awr (1)) A A (@ ARTL ) V (g0 Awel 1], 12)))

on the variableg;, . .., g., x1,...,2,, andz, ..., 2, as described in Chapter 1. This branching
programG has size at mosic + 3. O

74



Repeating tests enables us to implicitly store nondetestigally guessed bits in the graph,
without explicitly using memory space. The above resultwshthat this may considerably
increase the power of the nondeterministic model. For ramided branching programs with
unbounded error, a similar phenomenon occurs. Remembewthhave shown in Chapter 2
that PP-BP= PLP/ Poly.

Theorem 4.6: UPP-BP= PP/ Poly.

Proof: This follows essentially by the same idea as in the proof cédfam 4.5 above. The
interesting part is to show that PPoly C UPP-BP.

For this, we start with a sequence of probabilistic circtits),.cy with unbounded error which
compute a sequence of functiof)$,),.ecy € PP/ Poly. Again, we describé’, by a formulay
over the input variables,, ..., z, andzy, ..., z, of C, (wherezy, ..., 2, are the probabilistic
ones), and additional variables, .. ., g., one for each gate of the tyde, v}. It holds that

27¢, if C(z,2)=1;and

PraE{le}"{Qg‘glzal,---,gn:an(z7Z) = ]} = {0 if (1(T Z) -0

wherea = (ay, . .., a.) is chosen uniformly at random frof®, 1}°. Now we introduce another
setzy, .. ., z,,, of probabilistic variables and replageby the formula

¢ = (5 A(zz5 A AN 2Z)) Vo

For a random choice of the values for theand thez'-variables, it holds that

] —lec
P"n,e{o,nr,he{0,1}<'+1{99’\g;:a;,z;:b](1”7Z) =C(z,2)} = ) + 270,

From this and the fact that,, computesf,, with an error probability smaller thah/2 with
respect to the-variables, it follows that a randomized branching progfamy,, simulatingy’
has an error probability smaller than2 with respect to the-, g-, andz’-variables. Such a
branching program needs orily + 4 nodes according to the results of Chapter 1. m|

Hence, we have obtained that the unrestricted model is/readte powerful in the case of non-
deterministic computation or computation with unboundedref we assume that NLPoly #
NP/ Poly and PLRP Poly # PP/ Poly, resp.

We add that the simulations used for proving that/¥®ly C UNP-BP and PPPoly C
UPP-BP, resp., already work if the probabilistic variatdes allowed to be read twice. Hence,
it is sufficient to allowtwo read accesses to each probabilistic variable, this moddidady as
powerful as the most general model without any restrictiarthe probabilistic variables (for
the nondeterministic case, this has already been remaskbtemel [74]).

Now we turn to the restricted types of branching programseHee only consider randomized
OBDDs and randomized reddtimes branching programs. By using an idea of Meinel [74],
we first show that also in this case it is sufficient to allowt the probabilistic variables are read
at most twice.

75



Lemma 4.7: Let G be a randomized OBDD (reakHimes branching program) without read-
once restriction on the probabilistic variables which neterministically represents a func-
tion f (represents a functiorf with unbounded error). Let be the number of probabilistic
variables of G and let each of these variables be read at mastimes inG. Then there is

a randomized branching prograif@’ of the same type a§ which also nondeterministically
representsf (representsf with unbounded error) and hasr randomized variables which are
read at most twice and which has sizé| < |G| + r(2m — 1).

Proof: Letz,. ..,z be the probabilistic variables @i. Introduce new probabilistic variables
2], wherel < i < randl < j < m. Let be a copy ofG. Consider a node of
labeled byz;. Let ;7 be the maximal number of occurrences:pbn paths reachingin GG. Then
replace the labet; of the copy ofv in G' by z{“. By doing this for all probabilistic nodes
in GG, we obtain a randomized branching program where each pildtiabvariable is read at
most once. Now we have only to add a subprogram which checktheh:] = --- = 2 for
alli = 1,...,r. This can obviously be done with the claimed number of nodése whole
randomized branching prograGt’ has the same number of accepting paths for each input as
G, hence, it represents the same function in the nondetesticirdiase as well as in the case
of unbounded error. Since the structure(@fis identical to the original branching program,
it is also clear that this construction works for most typésestricted branching programs,
including OBDDs and read-times branching programs. m|

For nondeterministic OBDDs and nondeterministic réatiines branching programs, we can
even prove that the model with multiple read accesses tortiiEpilistic variables is more pow-

erful than our usual one (without additional assumptiontherrelation of complexity classes).
We again use the permutation matrix function as an example.

Theorem 4.8: PERMe UNP-OBDD.

Proof: The function PERM can be computed by a deterministic readetiwanching program
of polynomial size by first checking the rows and then the gwla of the input matrix. The
idea for the following construction is to use probabilistariables to “make a copy” of all usual
variables of PERM in order to be able to access them twice.

We construct a randomized OBDG with multiple read access to the probabilistic variables
which uses the input variable¥ = (z;;)i<i ;<. 0f PERM, and probabilistic variableg =
(zij)1<ij<n- We choose the “row-wise” variable ordering f6f (the “column-wise” ordering
works as well).

The OBDD consists of two parts. In the first part, the OBDD runs throtigh rows of X

and checks whether each variablg has the same value as its corresponding, probabilistic
variablez;;. Simultaneously, it checks whether each rowXotontains exactly one entry equal
to 1. Figure 4.1 shows the construction for a single row (missidges lead to the-sink). If

a nonequivalent pair of variables; andz;; is found or if a row contains zero or at least two
ones, thed-sink is reached. Otherwise, the OBDD continues with the nex, until all rows

of X and” have been checked. The second part of the OBDD simply vervifiesther each

76



Figure 4.1: Sub-OBDD evaluating a single row in the rand@udi®BDD for PERM.

77



column of Z contains exactly one entry equaltoThel-sink is reached if this is the case, and
the0-sink otherwise.

Let G(X, Z) be the output of7 for inputs X andZ. It holds thatG(X, Z) = 1 if and only if
PERM,(X) =1andZ = X. Hence G nondeterministically computes PERM a

Together with the fact that PERM NP-BP1, we have:
Corollary 4.9:  NP-OBDD g UNP-OBDD, andNP-BPlg UNP-BP1

For the case of reafl-times branching programs, an analogous statement candvensins-
ing the result of Thathachar [109]. He has presented a seguainfunctions( f,).en With
(fn) € P-BRE+1)\ NP-BPF: (see the next chapter for a discussion of this result and aidefi
tion of the function). Also for this function, a nondeternsitic OBDD with at most two read
accesses to the probabilistic variables can be construtteddo not describe this here, since
the construction is completely analogous to the above oneERM.

The case of randomized restricted branching programs wilounded error remains open so
far, since we do not know how superpolynomial lower boundsnefor the most restricted
model, randomized OBDDs, can be proven.

4.3 Summary

The results presented in this chapter have revealed thantuels of randomized OBDDs,
randomized read-times BPs, and randomized general branching programshwithded error
(one-sided or two-sided) are robust with respect to differestrictions and extensions of the
available type of randomness compared to the basic defirofichapter 2. By this, we mean
that the programs of one type can be converted into a diffeyge with an at most polynomial
increase of the size.

The results concerning the number of read accesses to thalglistic variables already in-
dicate that the models with weak error guarantee, i. e., etnhinistic branching programs
and randomized branching programs with unbounded erratu@ing the restricted variants,
OBDDs and read+times BPs) behave differently from the models with boundedr. It re-

mains open to analyze the dependence of the size of nondeisticmbranching programs and
randomized branching programs with unbounded error ondingaer of probabilistic variables.

Itis also open to provide an example where the size of randeanOBDDs (or even more gen-
eral types of branching programs) with unbounded error auliipte access to the probabilistic
variables is exponentially smaller than the size for theauswdel with read-once restriction.

78



Chapter 5

Upper and Lower Bounds for Randomized
Read+%-Times Branching Programs

In this chapter, we prove complexity theoretical resultsrfmdomized read-times branching
programs. The main part of the chapter is devoted to the thgkowing exponential lower
bounds for this class of models. All known lower bound restdtr nondeterministic and ran-
domized read:times branching programs are based on the same technidueh we call
“technique of generalized rectangles” here. This techmiguescribed in Section 5.1.

In Section 5.2 and Section 5.3, we present results for rem@-branching programs. We are
first concerned with the relation between the analogs of keses NP and BPP for read-once
branching programs (Section 5.2). We apply the techniqugeagralized rectangles to prove
that the classes NP-BP1 and BPP-BP1 are incomparable ifrtreatiowed for the randomized
model is smaller than /4. Furthermore, we obtain an exponential gap between ths size
randomized read-once branching programs for differenstzort worst-case error probabilities.
This result shows that there is no general probability aficplion technique for read-once
branching programs analogous to that for randomized OBD@gperal branching programs
(see Chapter 2).

After this, we turn to the relation between the classes P-BRd ZPP-BP1 (Section 5.3).
We prove a polynomial upper bound on the size of randomized-mnce branching pro-
grams with zero error for thé-stable function ADDR from Section 3.2, which shows that
P-BPlg ZPP-BP1. This is another fact which underlines the diffeeehetween read-once
branching programs and OBDDs, since it also known that P-DBDZPP-OBDD (see Sec-
tion 3.5).

In the remaining sections, we will be concerned with the ngeaeral case of reakHimes
branching programs where may be larger than. By applying the technigue of generalized
rectangles in its general form, we prove a lower bound on iteeaf randomized read-times
branching programs for a function of Borodin, Razborov, &maolensky which is exponential
forall k < clog n, c an appropriate constant (Section 5.4). In Section 5.5, wepbete the pre-
sentation of lower bounds for randomized rdatimes branching programs by reporting some

79



details of the recent results of Thathachar, who applieddblenique of generalized rectangles
to solve the problem to separate the so-called vegidies hierarchy.

5.1 The Technique of Generalized Rectangles

The technique of generalized rectangles has first beenideddoy Borodin, Razborov, and
Smolensky [27] in a special version for the case of nondatestic read#-times branching
programs. Okolnishnikova'’s lower bound technique [83]deterministic read-times branch-
ing programs is also closely related.

Before we present the technique, we first define a simple siterto the model of branching
programs in the next subsection. We will directly prove #itsments concerning the lower
bound technique for so-calledway branching programs, which are branching programs with
s-valued variables instead of Boolean ones. In Subsectib2,5we then introduce the tech-
nigue of generalized rectangles by describing how it wodkstlie case of deterministic and
nondeterministic read-times branching programs. After this, we show how the idesasbe
applied to prove also lower bounds for randomized reaanes branching programs (Subsec-
tion 5.1.3).

5.1.1 Branching Programs with Nonboolean Variables

As Borodin, Razborov, and Smolensky [27], we will describe proof technique for the fol-
lowing extended type of branching programs (which also fenlzonsidered by Borodin and
Cook [24] and by Alon and Maass [10] before).

Definition 5.1: Let s > 2 be an integer. Ars-way branching progranmon the variable set
{z1,...,z,} is a directed acyclic multigraph which has one source andsinks, the latter
labeled by the constan@sand1. Each non-sink node is labeled by a variabl@nd has exactly

s outgoing edges labeled by the values from the$et {0,...,s — 1}; each value occurs
exactly once. The semantics of asway branching program is an obvious generalization of
the semantics of usual branching programs (which are 2-wagdhing programs in the new
terminology).

Restricted types of-way branching programs, like reddtimess-way BPs, are defined in the
obvious way. We define mndomizeds-way branching progranby extending Definition 2.18,
with the following technical restriction: a randomizedvay branching program is syntactically
an s-way branching program, but the probabilistic variables/roaly have the valueg and1

as in a usual, randomized 2-way branching program. Thislgiegpthe presentation, but is no
real restriction compared to the model where the probdigisriables may have more values.
The rest of Definition 2.18 is adapted in a straightforwarg weathe case of-valued variables.

Many of the facts proven so far for randomized 2-way branglpirograms also hold for the gen-
eralized type. Here, we will only need the probability arfiptition technique from Lemma 2.24,
which is proven for the extended model in the same way as &2#vay model.

80



5.1.2 Lower Bounds for Deterministic and Nondeterministic
Read+-Times Branching Programs

In order to show how the technique of generalized rectanigleslated to known proof tech-
niques, we first restrict ourselves to the simple dase 1 and Boolean variables, i. e., to usual
deterministic read-once branching programs. After this describe the extended approach for
deterministic and nondeterministic readimess-way branching programs.

Let us consider the reduction technique for OBDDs from Cémaftas a starting point. The
basic idea of the reduction technique is to use an OBDD fonatfan f to construct a one-way
communication protocol for a partitioned version fofwhere the partition of the variables for
the two players is defined by cutting the variable orderinthefOBDD, written down as a list,
into two parts. It is obvious that the original reductionhemue cannot work for read-once
branching programs. Although each variable is still reathast once on each path like in an
OBDD, the variables may now appear in different orderingsliffierent paths. Hence, there is
no patrtition of the variables which works for the whole graphd we no longer have a simple
relation to communication complexity.

The idea to overcome this problem is to work with a separatétipa of the variables for each
path and afterwards “bundle” paths together which use theegzartition. This approach leads
to a simple decomposition formula for the function représdrby the read-once branching
program which can again be used to prove lower bounds onzke si

In the following, we describe this technique in more detkibr the presentation, we use ideas
of Okolnishnikova [83]. It turns out to be easier to decongasgiven read-once branching
program if it has the following special structure.

Definition 5.2: A read-once branching program on the variahles . ., z,, is calledregular if
for each node the same set of variables is tested on all paths from the sdowc Furthermore,
it is required that on each path from the source to the sirlks @riables are tested.

Itis easy to see that an arbitrary read-once branching progf can be converted into a regular
read-once branching prografi with size|G’| < 2n|G| by inserting dummy tests.

We introduce the following additional notation.
Definition 5.3: LetG be an arbitrary branching program on the variable’set {z1,...,2,}.
Letw, w be nodes of7.

(1) DefineX(v,w) C X as the set of all variables tested on paths froto w, including the
variable aty and excluding the variable at.

(2) For an arbitrary assignmente {0,1}" to the variables of7, definef, ,,(a) = 1 iff there
is a path fromv to w which is consistent with the assignment. e., for each node on the
path labeled by a variable, the path runs through thg-edge starting at).

Notice that a functiory, ., only depends on variables froM(v, w), more precisely, it does not
essentially depend on variables froxi\ X (v, w).

81



= X(vo,v1)

- L

Figure 5.1: Paths belonging to the functiéy) ., A fo, v,-

Using the above definition, we can now describe the struafigeregular read-once branching
program in a simple way. Le% be a regular read-once branching program on the variable set
X = {z1,...,z.}, and letf: {0,1}* — {0,1} be the function represented l6y. First, we
again choose a cut i similar to the reduction technique. Define the cut as thefsat oodes
reached aftep tests, where € {1,...,n — 1} is a parameter fixed in advance. Let us call this
set of noded.;. Furthermore, definé, and, as the “trivial” cuts containing only the source
and the sinks of7, resp.

Let us consider an arbitrary sequence of nodesv;, v2) € Lo X L1 X L. SinceG is regular,

it holds that the same set of variables is tested on all patins 4, to v;, namelyX (vg, v1). It
also holds that on each path fram to v, exactly the variables iX (vq,v2) = X\ X (vg,v1)

are tested. Hence, we again have a partition of the variagsles an OBDD. The important
difference is that, in the case of read-once branching jprogr the partition may depend on the
chosen “intermediate” node € I;. By our definition, it holds that a computation path for a
given complete assignmeamto all variables of7 runs to the nodes,, v;, andwvs if and only if
fown(a) = 1andf, ,,(a) = 1. The functionf,, ., A f. ., hence represents the computation
paths running through the given sequeliag v1, v2) of nodes; these paths are symbolized by
the shaded area in Figure 5.1.

In order to obtain a characterization of the functipmepresented by, we observe thaf is
the disjunction of the functiong,, ., A f., .., belonging to sequencésy, vy, v2) Wherew, is the

1-sink of G.. Let (vi, vi,vi) € Lo x Ly x Lo, wherei = 1,. .., ¢, denote all different sequences
of nodes where the last node is thaink. Then it holds that
f= D Fopai M Foiai- (5.1)

1<i<t

We have an EXOR-sum here since no computation path can ranghmore than one of the
sequences of nodes. Furthermore, it holds that

t< |l <|al.

82



In order to derive a lower bound drv|, we are thus interested in a lower bound on the number
ofimplicantsf,; .: A f.: .; of f inadecomposition according to Equation (5.1). More geera

i i
v, V]

we consider functiong; A f», wheref; depends on the variables from a 3gtwith | X;| = p,
f» depends on the remaining variabl®s := X\ X;, and for which it holds thaf; A fo < f
(i.e.,(fi A fa)(x) = 1implies f(z) = 1).
Using the terminology from communication complexity thedantroduced in Chapter 3, we
have just shown that the given read-once branching prog¢atefines a partition of the set of
1-inputs of f into combinatorial rectangles with respect to differenttiians of the variables.
By definingR; := (f,; .i A f“{ﬂ,év)*1 (1),for: =1,...,t, we can rewrite Equation (5.1) as
= R

1<i<t

where it holds thaf; N R; = 0 if ¢ # j. The setsk; C {0,1}" are obviously combinatorial
rectangles according to Definition 3.1.

We emphasize again that the partitions of the variables raay fvtom rectangle to rectangle.
This is the fundamental difference to the situation for camination protocols with a fixed
partition (see Theorem 3.2) and to the reduction techniqu©BDDs. If we apply the above
considerations to an OBDD instead of a read-once branching program, the partitiontbef
variables will in fact be the same for all rectangles. In tase, the above results turn out to be
simply a “low level” formulation of the reduction technique

Now we turn to the more general case of deterministic redidhess-way branching programs.
The new idea for the general case is to consider more than wnhrough the graph. This
can also be seen as a generalization of the reduction teehfiag #OBDDs from Chapter 3.
As a consequence, we have to work with a generalized typerobowtorial rectangles (hence
the name of the proof technique). The following definitiordige to Borodin, Razborov, and
Smolensky [27] (the namgk, p)-rectangle” has been introduced by Jukna [61]).

Here and in the following, we work with variables which cakdavalues from the set =
{0,...,s — 1} instead of Boolean ones.

Definition 5.4 ((k, p)-Rectangle): Let X be a set of variables, := | X|. Letk be an integer
andl < p < n. LetsetsXy,..., X}, C X be given with

1) X1U---U Xy, =X and|X;| < [n/p],fori=1,... kp;

(2) each variable fronX appears in at mogt of the setsX;.

Let R C S™ be given, and letfr: S™ — {0,1} be the characteristic function @t (i.e.,
fr(z) = 1iff z € R). If there are functiong;: S* — {0,1},i = 1,...,kp, wheref; does
not essentially depend on variables frof X;, such thatfg = fi A -+ A fip, then we callR
a(k, p)-rectangle inS™ with respect to the set¥7, ..., Xy, (or simply a “rectangle” when the
parameters are clear from the context).

Let f: S® — {0,1} be an arbitrary function. Ak, p)-rectangleR is called f-monochromatic
if RC f~1(0)orR C f7(1).

83



For the following, it will sometimes be convenient to switbktween the representation of
(k, p)-rectangles as sets and as characteristic functions. Weselthe same name for the set
as well as for its characteristic function.

The numbet: in the above definition will correspond to the maximal numtferead accesses to
the variables in the considered branching programs, wkeheaparameter controls the num-
ber of parts in which the branching program will be decompogy lettingk = 1 andp = 2,
one obtains a simple combinatorial rectangle with respeetitalancedpartition (X, X») of
the variable seX, i. e., a partition with | X | — | X,|| < 1. We will use the namg-dimensional
rectangleto designate this special case of Definition 5.4 (since @sp)-rectangles are “com-
binatorial” and hence the traditional name is ambiguous).

In the following, we describe the structure of reldimes branching programs similar to the
decomposition formula for read-once branching programghvtve have seen above.

Theorem 5.5 (Technigue of Generalized Rectangles for Det.eRd.-Times BPSs):

Let G be a deterministic read-times s-way BP for a functionf: S — {0,1} defined on
the variable setX, n := |X|. Letp € {1,...,n}. ThenG defines a partition of5” into

at most(s|G|)** f-monochromatigk, p)-rectangles (where the sef, .. ., X, according to
Definition 5.4 may be different for each rectangle).

This theorem can be directly used to prove lower bounds orsitteof deterministic readl-
times branching programs if the numberfemonochromatic#, p)-rectangles in a partition of
the input set can be bounded from below. We do not prove sughdsohere, but we will need
the theorem later on in the context of randomized redatnes branching programs.

Proof: Borodin, Razborov, and Smolensky [27] have proven a sinmésult for switching-
and-rectifier networks (i. e., the nondeterministic case)the following, we adapt their proof
(Theorem 1 in [27]) to the deterministic setting and to uswrahching programs.

Let X := {x,...,z,} be the set of all variables i¢. As above, letX (v, w) denote the set
of variables on paths between two nodeandw (including the variable at and excluding
the variable atv). Consider an arbitrary path in G from the source to one of the sinks. Itis
easy to see that there dreniquely determined edges= (w;, w}),i = 1,...,l on P with the
following properties:

(1) Foreach,1 <i<I+1, |X(w_,,ws)| <n/p;
(2) foreachi, 1 <i <1, |X(w}_,,w})| > n/p;

wherew; denotes the source ¢ andw,, the sink reached vi®&. A sequence,...,¢; of
edges of this kind is calledteace (of P) in [27].
We are going to map the pafhto a(k, p)-rectangle using the trace &f. Fori = 1,...,] we

define the sets
X; = X (w;_y,w;) U {var(w;)},

where vatv) denotes the variable tested at an arbitrary nodeG. Furthermore, lefX;,;, :=
X(w;7 Wit1 )

84



Claim: It holds that

(1) each variable fromX is contained it at most of the setsX;,7 = 1,...,l+ 1;
2) 1Xi| < [n/plfori=1,...;1+1;

() I=kpandX;;; =0,0rl < kp—1andX;.; # 0.

Proof of the claim: As in [27]. Part (1) follows from the fact that is a readk-times BP.
Part (2) follows directly from Property (1) of the trace.

We prove Part (3) in detail. Since each of theariables occurs at mosttimes onP, it holds
that

!
Z | X (wi_y, wi)| + | X (wy, wigr)| < kn.

i=1
On the other hand, by Property (2) of the trace,

!
Z | X (wi_y, w)| + | X (wy, wigr)| > 1 % + | X (w, wig1)],
=1

and hence,
U< kp— 2 X (0], wi).
This only holds with equality if X (w;), wi41)] = 0, i. €., X;41 = 0. O

For nodesv, w in G, let f,.,(a) = 1 if and only if there is path fromv to w in G which is
consistent withw € S™. Fori = 1,. .., define the functiom; on the variable sek’; by

Ti = fw;,l,w.' A [Var(wi) = Si]v

wheres; € S is the label at edgéw;, w;). If | < kp — 1, letrip1 := fugw,,, and letX; := 0
andr; := 1forj =1+ 2,...,kp. Using the above results, we obtain that= r A --- A 1y,

is the characteristic function of @, p)-rectangle with respect to the setg, ..., X,. (The
restriction X; U --- U X, = X from the definition can easily be met by inserting “missing
variables” into one of theX;.)

We have thus assigned(&, p)-rectangle to each path from the source to a sink/inAddi-
tionally, it holds that these rectangles form a partitionSéf since an input front™ defines a
unique path inZ and thus cannot belong to more than one rectangle. (Here ac the fact
that( is deterministic)

To prove the claim on the number of rectangles, we first olesérat different traces lead to
different rectangles. The number of traces is bounded froava by(s|G|)*?. This is because
the number of edges @f can be bounded bs{G| from above, each trace has upifpedges as
proven in Part (3) of the above claim, and no trace is part offeer trace (i. e., the set of traces
is prefix-free). Hence, the claimed upper bound on the nurmberctangles follows. a

85



We remark that the requirement thaty'U- - - U X}, = X" in the definition of (%, p)-rectangles
is not really essential; it only ensures that the usual coatbrial (2-dimensional) rectangles
are a special case of Definition 5.4. Each rectangle witheeisip setsX, . . ., X, fulfilling
the “weaker” definition without this property is also a rewjée with respect to modified sets
where the “missing” variables are included somewhere anidiwtinus fulfills the “stronger”
definition from above. (The weaker definition is in fact thaed by Borodin, Razborov, and
Smolensky in [27].)

The nondeterministic case can be handled essentially #h@game lines. For the sake of com-
pleteness, we state the result of Borodin, Razborov, andersky [27] in a version adapted
to nondeterministic branching programs according to tHadien of Chapter 2 (instead of the
switching-and-rectifier networks considered by BorodiazBorov, and Smolensky).

Theorem 5.6 (Technique of Generalized Rectangles for NontleRead-k-Times BPs):
Let G be a nondeterministic reak-times s-way BP which nondeterministically represents a
functionf: S — {0,1} defined on the variable séf, n := | X|. Letp € {1,...,n}. Then

there aret < (s|G|)* (k, p)-rectanglesR,, ..., R, C f~(1) such that
=Y R
1<i<t

This is proven analogously to Theorem 5.5. The only diffeeeis that each input may now
be contained in more than one rectangle, because a singiedap activate several paths from
the source to thé-sink in a nondeterministic branching program. As a consega, we only
obtain acoverof the 1-inputs and not a partition as in the deterministic caser édetailed
proof, see [27].)

At the end of this subsection, we present some known apjaicabf the technique of general-
ized rectangles. First, we introduce the following two nemdtions:

Definition 5.7:
(1) Letn =27 d > 0. The function SYL,: Z3 x Z% — {0, 1} (“Sylvester inner product”) is
defined by
SYL.(z,y)=1 :& z'Ay=0mod3,
whereA = (a;;)i<; j<o iS the Sylvester matrix of dimensiaf x 24, i.e.,

Aip1j41 = (7] )<bin(i),bin(]’)>.’

for 0 < 4,5 < 2¢ — 1, where birfi) is the binary representation oind< - , - > the inner
product inZg

(2) Letn=2°—1,s>1,andletl <r < (n—1)/2. LetC, . C {0,1}" be the primitive BCH
(Bose-Chaudhuri-Hocquenghem) code of lengtbver ¥, with designed distancer + 1
(see, e.g., [87] for details on the construction of such eegodrorz = (z1,...,2,) €
{0,1}" define

BCH..(z) =1 & x€ (.
Let BCH, := (BCH, ,(n))nen Wherer: N — Nwith 1 < r(n) < (n —1)/2.

86



For these functions and the two clique functions introducedhapter 3, the following results
have been obtained.

Theorem 5.8:

(1) cl,CLO ¢ NP-BP1 butCLO € coNP-BP1
(Borodin, Razborov, and Smolensky [27])

(2) Fork < clogn, c < 1 some appropriately fixed constant, it holds t&xL ¢ NP-BPk.
(Borodin, Razborov, and Smolensky [27])

(3) Forr =+/(n—1)/(2(k + 1)*e**+1) andk < (1/2 — ) log n/ loglogn, £ > 0 an arbitrary
small constant, it holds thd&CH, ¢ NP-BP%. On the other handBCH, € coNP-BPIfor
arbitrary r € {1,...,(n—1)/2}.

(Okolnishnikova [83] and Jukna [61])

The lower bounds implicitly contained in these statemergsrafact even exponentially large
in the input size.

All the lower bounds from this theorem have been proven bytduhnique of generalized
rectangles. The functions BGHnd SYL have been the first ones for which exponential lower
bounds on the size of deterministic and nondeterminis@zi+etimes branching programs,
resp., could be proven (as mentioned earlier, these rdsalts been obtained independently by
Okolnishnikova and Borodin, Razborov, and Smolensky, .Jeslukna has extended the lower
bound for BCH to the nondeterministic case, and he also has observedthabmplement is
computable by nondeterministic read-once branching pmogrof polynomial size.

The proof of the lower bound for the characteristic functiaf the BCH codes also works for
other codes where for fixed input sizethe number of code words as well as the Hamming
distance between different code words is large. Anothemkniamily of codes for which this
applies are the Reed-Muller codes (see also the paper ofJarkeh Razborov [56] for further
lower bound results using these codes).

5.1.3 The Randomized Case

In this subsection, we show how the ideas presented in theuasection can be used to prove
lower bounds on the size of randomized réatimes branching programs with bounded error.

In communication complexity theory, it is often helpful #gard a randomized communication
protocol as a collection of deterministic protocols togetith a probability distribution on
these protocols. We borrow this idea to describe a firstateet approach for proving lower
bounds on randomized readdtimes branching programs which is extended afterwards.

We assume that we are given a randomized redidies s-way branching progrand: repre-
senting a functionf: S* — {0,1} with two-sided error at most which has the following
simplified structure. The branching program starts with mplete tree om = O(log n) prob-
abilistic variables:y, . . ., z, by which one of the (disjoint) subgraplis, . . ., Gs- is selected.
All these subgraphs are deterministic rdatimess-way branching programs.

87



We argue why an arbitrary randomized refadimess-way branching program can be converted
into this simplified form with only a moderate increase of taquired resources. In Chapter 4,
it has been described how an arbitrary randomized fetiches @-way) branching program
H with n usual variables can be turned into a randomized rfeéidies branching prograrf/’

of sizeO(n|H|) with r = O(log n) probabilistic variables which are all tested in a tree at the
top. This also holds for the-way case ifs is a constant (as can be seen by a straightforward
extension of the proof of Theorem 4.1). Compareditpalso the error probability of the new
programH’ is increased by a constant> 0 which can be chosen arbitrarily small. The bottom
part of H' is completely deterministic, but the subgraphs reachetiéjree on the probabilistic
variables may share nodes. In a last step, we thereforeeebguwopying shared nodes that these
subgraphs are disjoint. This leads to a randomized ketighes s-way branching prograni/”
with the required structure and size at m@’st |H'| = Poly(n) - |H]|.

Now we work with the simplified graph calle@. Letg: S™ x {0,1}" — {0, 1} be the function
represented by according to the deterministic semantics, angylet. ., go-: S* — {0,1} be
the functions represented by the subgra@hs. . ., Gi5-. It holds that

Prig(a,2) # F(0)} = 52 Ylosto) # J@) <,

for arbitrary assignments to the usual variables ande {0,1}" chosen uniformly at random.
Since the subgraphS; are deterministic, we can apply Theorem 5.5 to them. Thiklyia
separate partition of the input s6t into g;-monochromatiqk, p)-rectangles for each of the
subgraphs. Altogether, we have obtained a set of at most 2" - (s|G|)*? (k,p)-rectangles
such that for the characteristic functions. . ., r,, of these rectangles it holds that

where||¢||» := max{|¢(z)| | z € S"} for an arbitrary functionp: S™ — {0, 1}.

Hence, we have a concise description of the function reptedeby the randomized redd-
times branching program in terms of a small numbetiof)-rectangles which can be seen as
the analog of the descriptions for the deterministic anddeserministic case. Unfortunately,
the collection of rectangles in representations of the aligpe is rather loosely structured, and
it seems to be very difficult to prove lower bounds on their bem

In order to be able to exploit that each of the subgraphgields a partition of the input set, we
restrict ourselves only to a single such subgraph. We chaosedexi, such that the number of
inputs which are computed correctly b, is large. By a simple counting argument (originally
due to Yao [116]) one can prove that there i5;awhich computes the correct output at least on
a(1 — ¢)-fraction of the inputs. We work with a probability distrithan on the inputs instead of
the original probability distribution on the assignmentpmbabilistic variables from this point
on. The functiory;, represented by#;, can be regarded as an approximation of the funcfion
where the error of the approximation (with respect to thérithistion on the inputs) is bounded
by e.

88



We make these considerations more precise by formally aefitiie type of approximation
which we are interested in.

Definition 5.9: Let X be a set of variables, := |X|. Letk be an integer and € {1,...,n}.

A function ¢: S* — {0,1} is called astep function with parameteris and p, if there is a
partition of S™ into (k, p)-rectanglesk,, . .., R,, (where the respective sel§, ..., X;, C X

from Definition 5.4 may be different for alkR;) and constants;, ...,¢, € {0,1} such that
p(z) =c¢; forallz € R;, i = 1,...,m. For a step functiop we call the least numben such
that there are rectangles as described alloge@umber of rectangles used py

Let f: S™ — {0,1} be defined on the variable s&t and lety be a step function as described
above. Letu: S™ — [0, 1] be an arbitrary probability distribution o$”. Define

ei=Y n(zeRi| fo) #c}).
i=1
Then we say thap approximatesf with total error e with respect tqu.

Above, we have already collected the ideas to prove theviioligp key lemma on the relation
between randomized reddtimes branching programs and step functions.

Lemma5.10: Let f: S™ — {0,1} be defined on the variable s&t, |X| = n. Lety be an
arbitrary probability distribution onS™, and letp € {1,...,n}. Then for any randomized
read+#-timess-way BPG representingf with two-sided error at most there is a step function
defined onX with parameters: and p which approximateg with total error at most: with
respect tou and which uses at mogt|G/|)*? rectangles.

Proof: Different from the informal considerations above, we docmivert the given branching
program into a “normal form” in order to avoid the overheadtba resources resulting from
this. Itis sufficient here to choose an assignmgrio the probabilistic variables @¥ such that
the deterministic read-timess-way BP(G' obtained by replacing the variables according¢o
correctly computes a large fraction of the inputs (thiskifias been used for the first time by
Yao in [116], as mentioned above).

Let r be the number of probabilistic variables Gf and letg: S™ x {0,1}" — {0,1} be the
function represented b§ according to the deterministic semantics. We know that

> 27 gla,2) # flw)] <
ze{0,1}"

for all z € S™ due to the error bound @. Hence, also

doulz) Y 2 glaz) £ fa)] < e

zeSn” ze{0,1}"

By changing the order of summation, we get

Yo 2y @) lgla2) £ f(2)] <

ze{0,1}" zeS™

89



It follows that there is at least one assignment {0,1}" to the probabilistic variables with

> ul)-lg(x,20) # f(2)] = Prig(z, 20) # @)} < e, (5.2)

zeSn

where the index: indicates that the assignmentso the usual variables are chosen randomly
according to the distributiop. For the following, letG’ be the deterministic reakHimess-way

BP obtained by replacing the probabilistic variables:oéccording taz. Let f': S — {0,1}

be the function computed by’ (according to the deterministic semantics).

It only remains to apply Theorem 5.5 €. We obtain a partition of™ into f’-monochromatic
(k,p)-rectanglesi,, . .., R;, wheret < (s|G'|)*?. This shows thaf' is in fact a step function
which uses at mogtrectangles. By (5.2), we know thgt approximates with total error at
moste with respect tqu. O

In order to prove large lower bounds on the size of randomieed#-times BPs, we have to
choose functions which are “hard” to approximate by stegfionms. In the hypothesis of the
following theorem, we describe one important type of sugicfions.

Theorem 5.11: Let f: S® — {0,1} be defined on the variable s&t, | X| = n. Lety be an
arbitrary probability distribution onS™ andp € {1,...,n}. Assume thaf has the following
“rectangle balance property”: There are a constant> 0 and a real-valued function such
that for every(k, p)-rectangleR in S™ (with respect to setX, ..., X), C X according to
Definition 3.1 which may depend @) it holds that

(RN f74(0)) > a- (RN fH(1)) - d(n). (RB)

Then for any randomized reddtimess-way BPG for f with two-sided error at mostit holds
that

o- -1 ~ max(a, 1) -\ )
PRI EEUECER

In the applications of this theorerfiin) will be exponentially small im. We will demonstrate
later on that this theorem can be indeed used to prove expiahlever bounds on the size of
randomized read-times branching programs.

Proof: By Lemma 5.10, there is a step functipnvhich approximateg with total error at most

¢ with respect tgx and which uses at mogt|G7|)*? rectangles. Choose an arbitrary partition
of S into (k, p)-rectangles such that is constant within each rectangle. Foe {0,1} let
R{,...,R; be the(k,p)-rectangles for whichp computes the result In the following, we
derive a lower bound ony. It holds that

70

p(f71(1) = Zu(R? nF')+ Zu(RJ Ny, (5.3)

90



since theR?, R} are a partition ofS™. Sincey approximatesf with total error at most with
respect tqu, we have

e> > u(RINFH))+ D u(REN £71(0)) (5.4)
i=1
Summing up Inequality (RB) for all rectanglég, i = 1,...,r, yields

rd(n) 2 0= 3 p(RLN S 7H0) 30 (RN 0),

Taking Equation (5.3) into account, the last line can betemitis

\%

ri-d(n) > ap(fN(1) - (aZu(R?ﬂf%l)HZu(Rl mf%n)))

= a-u(f1(1) = (aer +e), (5.5)

where we have defined

1

eni= Y (RIS, eni= Y0 u(REA£7H0)),

i=1

We still have to take into account Equation (5.4), which shpse > e; + e9. The right hand
side of the above Inequality (5.5) is minimized by maximigin

ae; + e
under the constraint; + ey < ¢. It follows that
ri-6(n) > a-p(fH(1) — max(a, 1) - e

The claimed lower bound ofd7| follow from this by Lemma 5.10. ad

The above “rectangle balance property” says that eachnglet® which is not “very small”
already contains a certain amounteihputs of the considered function. Especially, this means
that there are no “large” rectangles containing otinputs. If we also can prove that the
considered function has manyinputs, we know that many rectangles are needed to cover
these inputs with small error.

We finally discuss a special class of functions fulfilling teetangle balance property. Consider
a functionf which has the property that for some constant 0 andd(n) exponentially small
in n it holds for each(k, p)-rectangleR that

(RO f7H0)) = B w(RO (1)) < d(n).

91



Obviously, we can ensure by a modification othat the measures 6f and1-inputs in each
rectangle are even nearly equal (i.@.+ 1). Functions with this property belong to the “hard-
est” functions for randomized reddtimes branching programs. This can be compared with the
situation for the inner product function considered in commication complexity theory (see,
e.g., [51], [70]) which is known to be one of the hardest fiorts for randomized communica-
tion protocols.

Altogether, we have collected the tools to prove lower bauad the size of deterministic,

nondeterministic, and randomized reldimess-way branching programs with bounded error.
It remains to show that the technique of generalized rettarmgally yields interesting results
for the latter mode of computation, which we will do in theléoVing.

5.2 NP versus BPP for Read-Once Branching Programs

In this section, we show that the analogs of the classes NBBRdor read-once branching pro-
grams are incomparable if the error allowed for the randeshizad-once branching programs
is smaller thari /4.

One part of this result has been already proven in Chapteh@&relwe have constructed ran-
domized OBDDs with one-sided error of polynomial size foe tomplement of the permu-
tation matrix function, whereas it is known that the funotibself has exponential size for
nondeterministic read-once branching programs. Furtbegpthe function 2PERM defined in
the proof of Theorem 3.17 (for two Booleanx n-matricesX andY’, let 2PERM,(X,Y) :=
PERM,(X) A (-PERM,)(Y)) is contained in BPP-OBDE(NP-BP1U coNP-BPJ). Hence,
we have:

Theorem 5.12:
(1) RP-BP1+# coRP-BP1
(2) BPP-BP1Z NP-BP1UcoNP-BP1

Itis much harder to show that nondeterminism can be more goltban randomness for read-
once branching programs, since we have to consider a funatioch is “easy” enough to be

computable by nondeterministic read-once branching arogr but for which nevertheless a
large lower bound on the size of randomized read-once bmagghtograms can be proven. We
claim that the following function has these properties.djider to avoid a confusion with other
subscripts, we omit the subscript indicating the input $azethe functions considered in this

section.)

Definition 5.13: Define the function ModSum{0,1}"* — {0,1} on then x n-matrix X =
(%:5)1<i,j<n Of Boolean variables by ModSum¥) := RowTes{X) A RowTest{X "), where
RowTest {0,1}"" — {0,1} is defined by

n

RowTestX) := Z[T“ +--+12;, =0mod 3] = 0mod 2| .

i=1

92



The main result of this section is the following one.

Theorem 5.14:

(1) ModSume coRR/,-BP1and
ModSume BPP3,5-BP1for all §: N — (0,1/6) with §(n)~! = 2PoMn);
(2) ModSum¢ BPR.-BP1for all constants < 1/4.

In order to prove Part (2), we are going to apply the technigugeneralized rectangles in
its variant described by Theorem 5.11. Before we start with proof, we introduce some
definitions and technical tools. First, we prove a simple bimatorial lemma which states
that each balanced partition of the variable set of ModSupiitss either many rows or many
columns of the input matrix.

Lemma 5.15: Let (X4, X5) be an arbitrary balanced partition of the variable s&t Then it
holds that there isa setC {1,...,n} with |/| > n/4 such that

2< H{zin,...,zin} N Xy <n-2, foralliel;or
2< {z14 .m0} N Xy <n—2, foralliel.

Proof: Defines; := [{j | j € {1,...,n} Az € Xi}|,1 <i < n,andL := {i | 5; < 2},
H := {i| s; > n — 2}. Since the given partition is balanced, it holds that

n

LnQ/QJ < Ze, < [nQ/ﬂ.

i=1

The unionZ. U H contains exactly the indices of rows of the matkixwhich do not fulfill the
first assertion in the claim above. We show that if the firseet&m (for the rows) is not fulfilled,
then the second (for the columns) holds.

Assume in the following that the first assertion does not hiokl, |L U H| > (3/4)n + 1. We
have

|H| <

[n?/2] < n?/2 +1
- 1

n—1 n—

<n/2+1,

for n large enough. If we swap the roles &f and X, we also obtainZ| < n/2 + 1. Taking
the assumption into account, it follows thd@t > n/4 and|H| > n/4. Hence, there is a set
I C {1,...,n} with |[T| > n/2 such that for eacti € I the column: of X containsn/4
variables fromX; andn/4 variables fromX,. Therefore, the second assertion of the claim is
fulfilled for this set!. ad

We will see that if many rows are split by a given balancedipat of the input matrix of
ModSum, then the “communication problem” which is desdtilbethe following occurs as a
subproblem if we want to evaluate ModSum.

93



Definition 5.16: Let V := {0,1}2. Lety: V — Z3 be defined byp(z,y) := = + y, where
z,y € {0,1} (thus we havey~'(0) = {(0,0)}, ¢~ (1) = {(0,1),(1,0)} andp~'(2) =
{@,DH.

For arbitraryc, € {0,1} andey, .. ., ¢, € Z;define RowTestG ., .. : V" x V" — {0,1} by

RowTestC, ¢, .. (z,y) = Z[cp(n) + ¢(y;) + ¢; = 0mod 3] = ¢y mod 2|
=1

wherez,y € V™.

The main work for the proof of Theorem 5.14 is to show that theve communication problem
is “hard” for randomized communication protocols. For thi® use the method of proving an
upper bound on the discrepancy of the function RowTestC.

Definition 5.17 (Discrepancy): Let finite setsX andY and a functionf: X x Y — {0,1}
be given. Then we define ttdiscrepancy off with respect to a 2-dimensional rectandte
R=AxBandAC X,BCY,by

Disc(f, R) := .

=y A o0 R

By Disc(f) we denote the maximum of Digf, R) taken over all choices of 2-dimensional
rectanglesk in X x Y.

We only state the following key lemma and defer its proof te émd of the section.

Lemma 5.18: For arbitrary ¢, € {0,1} andc, ..., c, € Zs, it holds that

Disc(RowTestG, ., ..) < (\/ﬁ/4) "

For an introduction to lower bound proofs based on the dimey in communication complex-
ity theory, we refer to the monograph of Kushilevitz and Mi§a0]. The more general notion
of discrepancy from combinatorics is discussed in the moaqgiyof Alon and Spencer [11].

Finally, we also have to calculate the number ahputs of the function ModSum. We again
anticipate the respective result proven later on.

Lemma5.19: |ModSuni!(1)|-27 = (1/4) - (1 + o(1)).
Now we are ready to start with the proof of the main result.

Proof of Theorem 5.14: Part (1): We can easily construct a randomized read-once branching
program with one-sided error at mast2 for - ModSum as follows. We use two polynomial
size OBDDs whose variables are ordered “row-wise” and “coitwise,” resp., to compute

- RowTestX) and— RowTestX 7). These two graphs are connected by a single node labeled
by a probabilistic variable which chooses whethegRowTestX ) or - RowTestX ") is cor-
rectly evaluated.

94



To obtain a randomized read-once branching program withdidted error at most/3 + d(n),
for d(n) € (0,1/6) with d(n)~" = 2P™") apply Lemma 2.32.

Part (2): We are going to apply the technique described in the lasiosectVe only consider
2-dimensional rectangles and 2-way branching prograns &ed choose the distributignin
Theorem 5.11 as the uniform distribution ¢f 1}"".

We claim that ModSum fulfills the “rectangle balance progkof Theorem 5.11. For the proof
of this fact, let an arbitrary 2-dimensional rectangle= A x B with respect to an arbitrary
balanced partitiof X, X5) of the input variablesX” = (z;;)1<i j<» 0f ModSum be given, where
A andB are sets of assignments ¥y and X,, resp. We show that

277" . |R N ModSunt' (0)] > 2" - |R N ModSunt ' (1)| — é(n), (5.6)

where the “error-termd(n) is defined such thak(n) is exponentially small im later on.

The function ModSum is a conjunction of a “row-wise” and altoan-wise” test of the ma-
trix X. Our plan is to prove that for any choice of the partitiohi;, X,), at least one of
these tests is “difficult.” Expressed in another way, we wilbw that one of the implicants
- RowTestX) or —RowTestX ") of —ModSun{X) belongs to the class of “hardest” func-
tions mentioned at the end of Section 5.1, for which the numb&0- and1-inputs in every
rectangle are nearly equal.

We first apply Lemma 5.15. W.1.0.g., let the first assertiorir&f lemma hold, i. e., “many”
rows of the matrixX are split by the given partitiofiX;, X»). In this case, we expect the
evaluation of RowTes$X) to be difficult. We fix setsX; C X; and X} C X, such that there
arem := n/4 rows: for which exactly two variables;; are in X} and two inX}, and we have
X1l = [ X5 = 2m.

As the next step, we prove for an arbitrary assignmeotall variables which are not i'; U X},
that

2~ X=Xl | R, N ModSung ' (0)| > 2- X=X | R, 0 ModSung ' (1)] — é(n).

(For an arbitrary functiory and a (partial) assignment we write f, for the subfunction off
obtained by substituting variables by constants accortbng R, is the restriction ofR by
a if we regardR as the characteristic function of the rectangle.) The cgirmequality (5.6)
follows from the above inequality by the law of total prohiiti Let 2X\(XiUXz) denote the set
of all assignments to variables from\ (X; U X}). Forc € {0,1} it holds that

S 2 XL R, 0 ModSung (¢)] - 27X

IUx!
X\(X]UX))

=27 . %" |R, N ModSun'(c)|

IUx!
X\(X]uXh)

a€2

ag?2

= 27X |R 0 ModSunt'(¢)|,

95



For the rest of the proof let be a fixed assignment to the variables noihU X3. It holds
thatR, = A’ x B’, whereA' and B’ are sets of assignments X and X}, resp. Let us call
the remaining free variables ,, z; , andz?,, 27,, wherei € {1,...,m} and the variables with
upper index; are from the sek;, j = 1,2. Then the function RowTestan be written as

RowTest(X,) = 2[7111 +al,+ 1z} + 3, + ¢ =0mod3] = cymod 2|,

i=1

with appropriate constants € {0,1} andci,...,c, € Zs depending only oru. By the
definitions it follows that

ModSum(X,) =1 = RowTestC, ., .. (#(X.),y(Xa)) =1, (5.7)
where

o(Xa) = ((&11,215), .-, (T 1, Ty o)) and

Now we can apply Lemma 5.18. Since DiBowTestC, .,. ...) < (v14/4)™, we have

27" . ||R, N RowTestG', . (0)] — |R, N RowTestG', . (1)]| < (V14/4)™,

m.

hence,

274" . |R, N RowTestC* (0)] >

0:C1y-1Cm

27" . |R, N RowTestG' ()| — (V14/4)™.

Using (5.7), we get
27" . |R, N ModSung'(0)| > 27%™ . |R, N ModSung ' (1)| — d(n),
whered(n) := (v/14/4)"/*. As already discussed, the rectangle balance property aiSvm

(Inequality (5.6)) follows from this by the law of total prability.

It only remains to apply Theorem 5.11. L@&tbe an arbitrary randomized read-once branching
program for ModSum with two-sided error at masts < 1/4. Leta := 1 andd(n) :=
(V14/4)"*. By Lemma 5.19, we havéModSunt! (1)|-2=* = (1/4)-(1+0(1)). Theorem5.11
yields

1 (a-(1/4)(1+ o(1)) — max(a,1) - =)'/
a2 () )
(/40 +oe) =\
-3 (M) e
wherec := (1/8)log(4/v/14) > 0.012. ]

96



As an immediate consequence of this result, we obtain:

Theorem 5.20:

(1) NP-BP1¢ BPR.-BP1for all constant: < 1/4;

2 RPE-BPlg RP,/,-BP1C NP-BP1for all constants < 1/3;

?3) BPPE-BPlg BPP,3,s-BP1for all constants < 1/4 and
6: N = (0,1/6) with §(n) ! = 2PoM"),

Part (2) and Part (3) of this theorem show that, contrary ¢csftuation for OBDDs and general
branching programs, there is no probability amplificatieahinique for randomized read-once
branching programs which allows to decrease the error fmibtyabelow an arbitrary small
constant without an exponential blow-up of the size of ttebhing program. This observation
also holds if we consider a fixed graph ordering (see Sectiépfar the read-once branching
programs.

The above result can be seen as an enforced version of thenkesuit that the Boolean synthe-
sis of two read-once branching programs with different graplerings may lead to an exponen-
tially large result. Consider the polynomially large rantized read-once branching program
G which represents: ModSum with one-sided worst-case erilgR2 described in the proof of
Theorem 5.14. A graph ordering, for this read-once branching program starts with a single
probabilistic variablez by which either a row-wise or column-wise ordered list of theual
variables is chosen. Lét; andG, be copies of7 where the probabilistic variableis replaced
by new variables; andz,, resp. Foti = 1,2, the graph; is ordered with respect 6%, which

is the graph ordering obtained fro6t by replacingz by z;. Theorem 5.14 shows that there is
no common graph ordering on the usual variables of ModSunitengrobabilistic variables;
andz, which contains thé as suborderings and which would allow to efficiently comghte
AND-synthesis of the two graph ordered read-once branchingrams; and(Gs. The result
of the AND-synthesis of these graphs has exponential sizarfitrary graph orderings. We
see that even for read-once branching programs with “vemlai” graph orderings there may
be no common extension of the orderings which would allowféicient Boolean synthesis.

We conjecture that by choosing a probability distributigifedent from the uniform distribution,
the lower bound for ModSum could be improved to match the uppand from Theorem 5.14.

Conjecture:  ModSum¢ BPR.-BP1forall ¢ < 1/3.

Note that a worst-case error of exactly3 cannot be achieved because of the restriction to
Boolean valued probabilistic variables. A promising cledior the probability distribution is

(X) = 1/w, if RowTestX) =1V RowTestX") = 1;
" )0,  ifRowTest{X) = RowTestX") = 0;
wherew := |{X | RowTestX) = 1VRowTestX ") = 1}|. By the proof of Lemma 5.19 below

it is easy to see that(ModSunt!(1)) = (1/3) - (1 + o(1)). What remains to do is to check
whether ModSum also has the rectangle balance property@gghect to the new distributign

97



We still have to prove Lemma 5.18 and Lemma 5.19 already ustiztiproof of Theorem 5.14.
We start with the easier proof of Lemma 5.19. We prepare toefdry stating some simple
technical facts in advance. First, we define for arbitratured numbers: andc € Z:

n

S(n.c) =Y (Z) [k = ¢ mod 3].

k=0

By standard techniques for the manipulation of binomialffi@ents, it can be shown that
S(n,c) € {|27/3],[2"/3]} (see [46], Exercise 5.75). Especially, it holds thét, ¢) = (1/3)-
2" (1 + o(1)).

Fact5.21: Let Xy,..., X,, be Boolean valued random variables wi{ X; = 1} = (1/2) -
(1+0(1)),i=1,2,...,n. Letc € Z3. Then

(1) P{X; 4+ -+ X, =cmod 3} = (1/3) - (1 + o(1));

2 PX;=1| X1+ -+ X,, =cmod 3} = (1/2) - (1 4+ o(1)) for arbitrary i € {1,...,n}.

Proof: The number of solutions of the equatiop+-- - - + 2, = ¢ mod 3, (z1,...,x,) € Z},is
equal toS(n, c). By the above remark§(n, c)-27" = (1/3)-(1+0(1)). Hence, Part (1) follows.
Part (2) also follows by this approximation and the defimitaf conditional probabilities. O

Proof of Lemma 5.19: We consider the following system of linear equation&.iy) where the
variablesz; ; are restricted to Boolean values.

Tip+ T2+t = M Tyt 2zt + 21 =

To1+Xop+ -+ Tan = T2 Tio+ Too+ o+ Thp2

C2

(5.8)

Tn1+ Tnat+ -+ Ton

Il
<
3

Tin+Ton+ - -+ Ton Cn

Let X = (zi;)1<ij<n- It holds that ModSurfiX') = 1 if and only if system (5.8) is fulfilled and
additionally

Z[Ti =0mod3]=0mod2 A Z[q = 0 mod 3] = 0 mod 2. (5.9)

i=1 i=1

In the following, we first calculate the number of (Booleaalusions of system (5.8) for fixed
r; andc;. The second step is to count the number,aindc; fulfilling (5.9).

98



Define A as the following(2n — 1) x n2-matrix (where empty spaces indicate zero-entries)

1 1 1 1

A=
11 1
11 1
I 11 1]
Let

CEiI:(CEi’]7...7CEi’n)7 Z':],...,’I’L,
z:=(z',....z")7 and
bi=(cl, .. Cn,T2y . Tn) .

By application of elementary transformations, we can rsystem (5.8) in the form

A-z=bmod3 A (5.10)
r+4--4+r,=c+---+ ¢, mod 3. (5.11)

We count the number of solutions r” of the reduced system (5.10).
Claim: Pr, ,..{A 2 =b} = 372+ (1 4+ o(1)).
Here and in the following, the expression ;Pi{E(z)}" denotes the probability of the event

E(z) depending on the outcome of the random variablehich assumes values uniformly
distributed in the setl.

Proof of the claim: Let (4;),...,(A,) denote the first» equations of system (5.10) and
(B3),...,(B,) the last(n — 1) ones. Define

Uy = {z € Z}" | z fulfills eqns.(A;), ..., (4,)},

Uy = {z € Z7" | z fulfills eqns.(A;), .. ., (A,) and(B,), ..., (Bg)}, k=2

n.

gy

By these definitions, Pr,..{A -z = b} = |Uy| - 277" We prove by induction that faok =
1,...,n the following holds:

1) PQEZ;Z{WJ =1jz € Uy} = (1/2) - (1 + o(1)) for arbitraryi, j € {1,...,n};
() |Ux] =377+ 27 - (14 0(1).

99



If we have proven this, we obtain the desired sizelfgrand the proof of the overall claim is
completed.

We start by computinglU;|. Observe that the sets of variables involved in each of tis¢ fir
equations(4,),. .., (A,) are pairwise disjoint. Hence, the numberofe 73" fulfiling
(A1),...,(A,) can be obtained by considering the equations separatelynaiitiplying the
results. By Fact 5.21(1), we obtain

U] = ((1/3)-2"- (1 4 0(1)))" = 37" -2"" - (1 + o(1)).

Using Fact 5.21(2) we obtain Claim (1) fér= 1.

Now letk > 1 and assume that Claim (1) and (2) are proverkfer 1. By definition, we have
U = Upoy N {z € 23" | z fulfills (By)}.

We first observe in which other equations the variables ofaéqo (B,) are used: The vari-
ableszy 1, .. ., zx,, do not occurin(Bs), ..., (Bx_1), but each variable, ; has one additional
occurrence in equatiofy;).

Now we prove Claim (1). It holds that
PrﬁeZ;z{T/i’]’ =1 ‘ T € Uk} = Prmg[]kil{fr/i’]' =1 ‘ z fulfills (Bk)}
= Pl’meyk 1{(Ei,]‘ =1 ‘ Tp1+ -+ Thn = Tk mod 3}

If i # k, the last expression {4 /2) - (1 + o(1)) directly by the induction hypothesis. 1f= £,
Claim (1) follows by the induction hypothesis and Fact 521(

It remains to consider Claim (2). We verify that
Ul = (1/3) - (1 +0(1)) - [Ug-1],

or, equivalently,

Pr o fulfills (By) |2 € Ui} = 2+ (1+0(1).

w| —

s

Since Prey, ,{zri =1} = (1/2) - (1 + o(1)) by assumption, we can conclude by Fact 5.21(1)
that
PI’.T!EZ’Z’Z{Z fulfills (Bg) | z € Ugp—1} = Ploey, {@k1 + - + Ttn = 1, mod 3}
= (4 o)),
which proves Claim (2). m|

Now we know the number of solutions of the reduced systen®j5dr fixed row- and column-
sumsr; andc;. It remains to calculate the number of differentandc; fulfilling (5.9) which
lead tol-inputs of ModSum. For € Z3, define

N.:=[{(z1,...,20) €EZF | 21+ -+ 2, =cmod 3 A Z[TZ = 0 mod 3] = 0 mod 2}|.

i=1

100



Claim: For arbitrary ¢ € Z3, it holds thatN, = (1/6) - (3" + 1) - (1 + o(1)).

Proof of the claim: Letk € {0,...,n}andi € {0,...,n — k}. Avector(z,...,z,) € Z}
wherek entries are equal thand: entries are equal tb(and, hencey — k — i are equal to-1)
belongs to the set in the definition &% if and only if & = 0 mod 2 andi—(n—k—i) = ¢ mod 3.
Altogether, there ar¢?) (*7*) vectors with the given number ofs and1’s. By summing up
over all possible choices fdrandi, we get:

n n—k

N, = ZZ()( >[l.,0mod2/\77(n7kf7i)zcmod3]

Z()’»—Umodﬂz< )[z— (n—k—i) = cmod 3].

We first simplify the expression in the innermost sum (takirtg account tha2 = —1 mod 3):
—(n—k—i)=cmod3 <& i=—(n—Fk+c)mod3.

Then the above sum can be rewritten as

N, = Z( )[k—(]mon] S(n—k,—(n—k+c))

:i(J[A =0 mod 2] - ( A k>

k=0

wheree,,_;, € (—1,1). Here we have used th&{m, d) € {[2™/3], [2™,3]}.

The desired result is obtained by the following calculagion

Z (k)[k—[]mon] n- ’“+Z ( )[k—(]modZ]e,, &
k=0 k=0

>y (7) (L+ (=% 2n % 4
k=0 N

B+ +0e) =

N, =

W~

n

=22

(?) [k =0 mod 2]e,_

k=0

(3" +1)- (1 +0(1)).

=21
=21

[m]

At this point, we can put all results together. To count thenbar ofr; ande¢;, we still have
to take into account Equation (5.11). For eacke 73, there are exactlyV? choices for
r1,...,Tn € Zzandey,...,c, € Z3zsuch that

rn+--+r,=c¢c+---+c¢,=cmod3

101



and Condition (5.9) is fulfilled. Altogether, we have

1

3-N2=
D)

(3% +2-3" 4+ 1) (1+0(1))
choices for the;; andc;. For each of these choices, we obtaif"+! - 27* . (1 + o(1)) 1-inputs
by our first claim. Thus, the total number bfinputs is

S 4280 41) (372 (1 o(1) = 727 - (14 o(1).

[m]

We finally supply the missing proof of Lemma 5.18 which stdtest the function RowTestC
has small discrepancy.

Proof of Lemma 5.18: The technique used here is the same as in the various knowfsphat
the inner product function iff.» has linear randomized communication complexity (if theerr
is bounded byl /2 — 27", ¢ some appropriate constant). A proof explicitly based on gpen
bound on the discrepancy can be found in the monograph ofikugh and Nisan [70]. Similar
approaches have been described by Chor and Goldreich [24gtdtiberg and Reischuk [48]
and by Krause [67].

Define thed” x 4"-matrix M, M = (m(,y))a yev=, DY

(z.9) 1, ifRowTestC,.,, ..(z,y) =1;
Y 1, otherwise.

LetR =S x T,with S, C V", be an arbitrary 2-dimensional rectangle. We show that

1 1
DisC(ROWTESIC, ¢, ., B) = gr | 3 m(,y)| = R 13- M- 17 < (V14/4)"

[Von|
(z,y)ER

wherels and1+ are the characteristic vectors 8fand7’, respectively.

To establish this upper bound, we show thaf||,, the spectral norm a#/, is small compared
to 42", The first step in the proof is to calculate the entriedbt= (7(z,y)). yev-, defined by

M = MTM. It holds that|| M ||z = v/ Amax, Where,.., is the largest eigenvalue aff (see,

e.g., [114]). Note that all eigenvalues bf are real and non-negative. The second step will be
to derive an upper bound o%,..

First step:Let m(z) be the column of\f with indexz € V™. It holds that

m(z,y) = m(@) m(y) = Y m(z,z)m(y, ).

102



We evaluate this sum by counting the numbet’sfand(—1)’s, i. e., we compute

Ni(z,y) :={z € V" | m(z,z)m(y,z) = 1}|, and
Noa(z,y) = [{z € V" | m(z, 2)m(y, z) = —1}[.

Itis sufficient to determinéV, (z, y), sinceN_;(z,y) = 4* — Ni(z,y). It holds that

m(z,z)m(y,z) =1 & Z[cp(x,) + ¢(2;) +¢; =0mod 3] =

i=1

> le(y:) + p(2i) + ¢ = 0 mod 3] mod 2

i=1
n

& Z([np(n) + ¢(z2i) + ¢; = 0 mod 3] —

- [p(yi) + ¢(2i) + ¢ = 0 mod 3]) = 0 mod 2
Forz,y € V",i € {1,...,n}andz’ € V define
Si(2") = ([p(x:) + (2") + ¢ = 0mod 3] — [o(y:) + ¢(2') + ¢; = 0 mod 3]) mod 2.
We have to compute the number of vecters V" with
Si(z1) + -+ 4+ Sn(2zn) = 0 mod 2.

Let D := {i | p(z:) # ¢(y:)} andd := |D|. Fori ¢ D, it holds thatS;(z") = 0 for arbitrary
2! € V, which leads tdV'| = 4 possible choices fot'. Hence, for allz; with i ¢ D we have
4= choices altogether.

Now we consider the casec D, i.e., we havep(z;) # ¢(y;). It holds thatS;(z") = 0 if and
only if

(p(m;) + o(2') + ;) mod 3 € {1,2} A (¢o(y;) + ©(2') + ;) mod 3 € {1,2}.

We count the number of satisfying this condition:

(¢(z:) + ¢i) mod 3 | (¢(y;) + ;) mod 3 | possiblep(z') | number ofz’ € V
1 {1,2}n{0,1} = {1} 2
0 2 {1,2} n{0,2} = {2} 1
1 0 {0,1} N {1,2} = {1} 2
1 2 {0,1} n{0,2} = {0} 1
2 0 {0,2} N {1,2} = {2} 1
2 1 {0,2}n{0,1} = {0} 1

Let P := {i | {(p(x;) + ¢;) mod 3, (p(y;) + ¢;) mod 3} = {0,1}} C D andp := |P|. From
the table above we see that

2, ifieP
EROIER A
1, ifie D\P,

3

103



we also have

i

2, ifie Pand
STy =47 hreran
3, ifie D\P.

Now we compute the number of choices for the: € D, under the assumption that exactly
k of the S;(z;) for i € P and exactlyl of the S;(z;) for i € D\P are equal tol. By our
considerations above, there are

P\ ok gp-k . d—p 3l qd—p—l
k l

possible values for alt; with i € D. We sum up these expressions for all choices of
{0,...,p}andl € {0,...,d — p} wherek + [ = 0 mod 2, thus we have

idi(f) (d;p> :27. 3" [k +1=0mod 2]

k=0 I=0
possibilities. Evaluating this sum by application of thedshial theorem yields

1
5 At ()2 =),

Putting the results together, we obtain
n—d 1 d d d—1
Ni(z,y) = 4" 547+ (1) 27 - [p=0]

Nosta) =4 (G4t (=)
Sincem(z) "m(y) = Ni(z,y) — N_1(x,y), we get

m(z,y) = m(z)"m(y) = 4" (=1)- 2% [p = 0],
where

d:=|{i|p(z:) # ¢(y:)}| and
p =i [{(¢(zi) + ¢;) mod 3, (¢p(y;) + ¢;) mod 3} = {0, 1}}].

Second stepWWe are now going to derive an upper bound on the value of tigesaeigenvalue
Amax Of M. To estimate this value, we use the following simple factrfiinear algebra.

Let || - || denote a vector norm of” as well as a matrix norm which is compatible with this
vector norm, i. e., it holds thatAdz|| < ||A]| - ||z|| for an arbitrary complex-valuea x n-matrix
Aandz € C*. Let A be an arbitrary complex-valuedx n-matrix, A an eigenvalue oft andx
(z # 0) an eigenvector belonging ta Then it holds thal| A||||z|| > [|Az|| = || z|| = [A]||z]],

104



hence,|\| < ||A]| (where| - | is the absolute value iff). For our purpose, it turns out to be
useful to choose the norm defined by

n
|All == max{Zai]- = ]7...,77,}7
=1

whereA = (aij)1<ij<n iS @ complex-valued x n-matrix. This norm is compatible with the
vector norm||z||e := max{|z;| | 1 < i < n}, wherez € C*. (Obviously, summing column-
wise instead of row-wise works as well.)

Forz,y € V™ defined(z,y) := |{i | p(z:) # ¢(y:)}| andp(z,y) := [{i | {(¢(z;)+ ¢;) mod 3,
(¢(yi) + ¢;) mod 3} = {0,1}}|. We compute the sum of the absolute values of the entries in
an arbitrary rows € V" of M:

S Jiia,y) = 3 4027 () =0 < 3 ar gl

yevn yevn yev "

To get rid of the function, for fixedk € {0,...,n}, we count the number af € V" for which
d(z,y) = k. For eachi there are at most three valugsfor which ¢(z;) # ¢(y;), and at most
two valuesy; for which ¢(z;) = ¢(y;). Hence, the number af € V" with d(z,y) = k is at
most

n
. 3k: . 2n—k-
()

With this estimate, we get

Z g . 9dlmw) < Z (Z) gk gn—k yn g—k _ 14n
k=0

yevn

It follows that | Amay| < |[M||e < 147 and thug| M ||y = v/Apax < V14",

Finally, we use these results to estimate the discrepanBpwfTestC with respect to the rect-
angleR = S x T. It holds that

Disc(ROWTESLG, ., .. .., B) < 472" - 1L - M - 17|
<47 1glly - M - 17l
<A™ [1glla - [[M]l2 - (17l

< a7 /ST VI
<oV Vit = (Vi)

In the second line, we have applied Cauchy-Schwartz’s ialgguand in the last line we have
used the trivial upper bounds|, |T| < 4™. a

105



5.3 P versus ZPP for Read-Once Branching Programs

The question whether Las Vegas (error-free) algorithmslmmderandomized in an efficient
way is obviously of high practical relevance in the conteixTering machines and polynomial
time computability, where it is widely believed to have a atdge answer, i.e., & ZPP. Here
we are concerned with the same question for read-once brapptograms.

If we consider logarithmic space bounds instead of the ysoighomial time bounds, we have
to be very careful with our usual intuition with respect tackuguestions. As explained in
Chapter 2, itis known that Las Vegas algorithms and nondetestic algorithms are equivalent
in the context of logarithmically space-bounded compateti(more precisely, N ZPL); an
analogous result for polynomial time computability would guite surprising. Nevertheless,
under the usual assumptiond. NL we also have that IS ZPL.

Furthermore, it is known that the deterministic communaatcomplexity is always at most
the square of the complexity of randomized protocols wittozgror (Aho, Ullman, and Yan-
nakakis [8]). For one-way communication, the determinisbmplexity can even be at most
twice as large as in the randomized, zero error case, as les dwwn recently bﬁ)urié,
Hromkovi¢, Rolim, and Schnitger [38]. Karpinski and Muakzjanov [64] have observed how
this result can be used to show that P-OBBIXPP-OBDD, as already remarked earlier.

Of course, we would also like to know how the analogs of thesda P and ZPP are related
for the less restricted types of branching programs. Theltre$ this section is an exponential
gap between the size of deterministic read-once branchiogy@ms and randomized read-once
branching programs with zero error. Especially, it hoIdmﬁ-BPlg ZPP-BP1.

We will prove that the function ADDR from the paper of Jukna, Razborov, Savicky, and
Wegener [57] (see Section 3.2) can be computed by a randdm@ae-once branching program
with zero error of polynomial size, i. e., by an efficient reauce Las Vegas algorithm. On the
other hand, as explained in Chapter 3, this functidndsable fork = O((n/logn)'/2). Hence,

it is neither contained in the class P-BP1 nor in BPP-OBDI2 Section 3.4). This result also
shows that the generic lower bound on the size of randomiZ&D> for k-stable functions
from Section 3.4 cannot be extended to randomized read4macehing programs.

For notational convenience, we consider the function AQRRIy for input sizes where we
can do without floors or ceilings.

Theorem 5.22: Letn = 2! and] = 2. Definem := n/l = 2'-L. The functiorADDR,, can be
represented by a randomized read-once branching prograpolyhomial size which has zero
error and failure probability at most/2.

Proof: Remember that we have grouped the input variables of ADDRo rows =i :=
(Zim, -+, T(i41ym-1), 8 = 0,...,1 — 1, of anl x m-matrix. Furthermore,

ADDR, (g, ..., &n 1) = Za, a:= |(Az"), ..., A@"))]a-

We call the bits\(z°), ..., A(z!~!) “address bits” and the bit, “output bit.” The algorithm
implemented by the randomized read-once branching profma®DDR,, will consist of two

106



phases. In the first phase, we read some rows of the inpubtaaatd compute the respective
address bits. After that, only a small sébf possible output bits will be left. The second phase
consists of evaluating all remaining address bits and irsgdthe values of all variables id in

the branching program. Finally, we have determined the detm@ddress. With probability at
least1 /2, the addressed bit will belong to the stored values.

Byv = (vi_1,...,v) € {0,1, x} we describe the address bits computed so far in the algarithm
let v; = x if the 7th bit is not yet known. The lower— [ bits of v determine theolumnwhere

the output bit is found, we call these bits the “column adsiteiss.” Accordingly, the upper
bits, v,_j, ..., v,—1, determine theow of the output bit and are called “row address bits.”

For an arbitrary vector let C(v) C {0,...,m — 1} be the set of columns which are addressed
by vectorsy’ which are obtained frome by assigning constant values to théits. Likewise,
let R(v) C {0,...,l — 1} the set of rows addressed in this way. Define

A(w):={im+j|i€ R(v),j € C(v)}

as the set of indices of addressed output bits. Now we desoribrandomized algorithm for
the computation of ADDR.

Algorithm:

(0) Initializev: Fori =0,...,1 — 1, letwv; := x.
(1) Choose: € {0,1} uniformly at random.

(2) Casez = 0:

Phase 1:Fori € {I —i,...,1 — 1} (the indices of the row address bits) read the révof
the input matrix and compute, := A(z%). Letr := |(vi_1,...,v,_p)| € {0,...,1 -1},
i. e.,7 is the row within which the output bit lies, and we have tRét) = {r}. If r > 1 1,
we have “lost” and output “?”.

Now assume that € {0,...,0 — [ —1}. Fori € {0,...,1 — [ — 1}\{r} read the row’
and compute; = A(z?). After this we have also determined all bits of the columnradd
except one. Hencé(’(v)| = 2 and thus alsoA(v)| = 2.

Phase 2:As the final step, we evaluate the last missing address,bit \(z"). While

we computev,, we store the values of the two variableswith j € A(v) (these vari-
ables lie within rowr). Afterwards, we know the complete address of the outpyt bit
a = |(vi-1,...,v0)]2. Since we have stored both possible output bits, we can bthpu
correct value.

(3) Casez =1:

Phase 1:Fori € {0,...,1 — [ — 1} (the indices of the column address bits) read the row
x' of the input matrix and compute := X\(z?). After this, we have”(v) = {c}, where

¢ = |(v_j_y,---,v0)|2, and henceA(v) = {im+¢ |l —1 < i <[ —1}. Notice that
|A(v)| = I = loglog n.

107



Phase 2:Now read all remaining rows with i € {I —I,...,1 — 1}, but again store all
values of variableg; with j € A(v) (i. e., the variables in colums). Finally, we know the
complete address= |(v;_1, .. ., vo)|2 Of the output bit. If it holds thata/m| <1 — -1,
i.e., the row where the output bit is found has already bead e Phase 1, output “?”.
Otherwise, we can output the stored value: pf

Let us analyze the error made by the above algorithmz betthe index of the row within which
the addressed output bit for a given inpuies, i.e.,r = |a/m], a = |(A(z'Y), ..., A(x°))]a.
The algorithm outputs “?” only in the following two cases.

— If z = 0 and Part (2) is executed, then “?” is output only i€ {I —I,...,1 —1}.

— If z = 1 and Part (3) is executed, then “?" is output only i {0,... 1 — 1 —1}.

We make sure that the algorithm works correct if none of thevatcases occurs. In the first
phases of Part (2) and Part (3), we do not read therrofithe output bit if the above cases do
not occur. In Phase 2 of both parts, the algorithm reads the feft over, but simultaneously
stores all variables with index id(v), hence, none of the possibly addressed output bits is
“forgotten.”

For each row the probability that it is read at the beginning of Part (2(3)ris 1/2. Hence,
“?” is only output with probabilityl /2, and if the computation yields a value froffi, 1}, it is
guaranteed to be correct.

It remains to code the above algorithm into a randomized-oea@ branching program. This
can be done by the standard construction techniques fochirsgnprograms. We have ensured
already in the description of the algorithm that each vaeabonly read once. For the evalua-
tion of the bitsv; we use polynomial size branching programs Xaas submodules. We can at
any time store the parts of the veciocomputed so far since the whole vector only has lehgth
The second phases can be represented in polynomial sizeaimays|A(v)| < loglogn and
hence, we need only to enlarge the width of the branchingrprody a logarithmic factor in
order to store all the needed values. O

By a modified algorithm based on the same ideas as above ds@lhpe to decrease the failure
probability even tal /3.

We have thus obtained an exponential gap between “Las Vegasteterministic algorithms
for the read-once branching program model. Together withriésult of Jukna, Razborov,
Savicky, and Wegener that ADDRs representable in polynomial size by nondeterministic
and co-nondeterministic read-once branching programsytein:

Corollary 5.23:  P-BP1G ZPP-BPIN1NP-BP1N coNP-BP1

108



5.4 A Lower Bound for Randomized Readk-Times BPs

In this section, we will apply the technique of generalizedtangles from Section 5.1 in its
general form in order to prove an exponential lower boundhendize of randomized redd-
times branching programs.

We consider the function “Sylvester inner product” intradd already in Section 5.1. We repeat
its definition here for easier reference. Define SYIZ} x 7% — {0,1} onn = 2¢ variables

by
SYLu(z,y) =1 & z'Ay=0mod 3,
whereA = (a; ;)i j<20 IS the Sylvester matrix of dimensiaf x 2%, i.e.,

(71)<bin(i],bin(]‘]>

Ait1,54+1 = )

for 0 < i,j < 27 — 1, where birfi) is the binary representation éfand< - , - > the inner

product inZ4. For the whole section, leY := {zi,...,z,} andY := {y,...,y.} be the sets
of variables on which SY/. is defined. As in Section 5.2, we omit the subscripts indicathe

input size of a function for better readability of the follmg.

Borodin, Razborov, and Smolensky [27] have proven thatftistion has no polynomial size
nondeterministic read-times BP fork < clogn for appropriatec. We show that this function
also has no polynomial size randomized rdatimes BPs with two-sided error.

First, we state some facts from the paper of Borodin, Razhamd Smolensky which we will
also use here.

5.4.1 Facts from the Paper of Borodin, Razborov, and Smoleky

As afirst step in their proof, Borodin, Razborov, and Smadtgreonsider a restriction afk, p)-
rectangles and the function itself which reduces the oaigiectangles to simple 2-dimensional
rectangles. We describe this step in the lemma below.

Lemma5.24: Let k be an integer angh € {1,...,n}. LetS = {0,...,s — 1} (as in Sec-
tion 5.1). LetX; C X,Y; C Y,: = 1,...,kp, and letr be the characteristic function of a
(k, p)-rectangle inS™ with respect to the set¥; U Y; (especially, let the set¥; U Y; fulfill the
requirements of Definition 3.1).

Then there are setX; C X andY,; C Y such that for each assignmeatto X, U Y, the
restriction r, of r (which is obtained by replacing the variables ¥y U Y, according toa)
is the characteristic function of a 2-dimensional rectangi S™ with respect to the partition
(X\Xo, V\Yp), where|(X\Xo) x (Y\Yy)| > n® (1 — 2k/p) /4*.

For the sake of completeness, we give the proof of this lemyn&drodin, Razborov, and
Smolensky (proof of Theorem 4 in [27]).

109



Proof: We consider a random coloring: {1, ...,kp} — {0, 1}, where the colors of different
indices from{1, ..., kp} are determined by independent, unbiased coin tosses. Define

Xo= |J X, and ¥, = |J Vi
1<i<kp 1<i<kp
x(i)=0 x(i)=1

Let a (k,p)-rectangle with respect t&; U Y;, i = 1,...,kp, be given by its characteristic
functionr: S™ — {0,1}. Letr = r; A --- A 1y, Wherer; depends only on the variables from
X;UY,. Foreach = 1,..., kp, it holds that eithetX; C X, orY; C Y;. Hence, the function
r; either depends only on the variables frofuU Y;, or it only depends on the variables from
Xy UY,;. For an arbitrary assignmentto X, U Yy, we can thus write, in the form

1 2
Tq =Ta ATy,

wherer! andr? only depend on the variables from\ X, andY'\Y;, resp. It remains to show
that there is a choice of such that( X\ X) x (Y\Yy)| > n2 (1 — 2k/p) /4*.

Call a pair(z,y) € X x Y of variablesindependentf it holds for all i = 1,...,kp that
eitherz ¢ X; ory ¢ Y;. The number of pair§z,y) which are not independent can be
bounded bykp - (1/4)[2n/p]? (since for a single index € {1,...,kp}, their number is at
most((1/2)|X; U Yi)?). Hence, by using the estimafén/p] < v/2(2n/p) and taking into
account that there ar€® pairs of variables altogether, we get the lower bo(hd- 2k/p) - n?

on the number of independent pairs.

For arbitrary variables € X andy € Y, it holds that Py{z ¢ X} > 27* and Py{y ¢ Yo} >
2-* where the probabilities are taken over random choiceg sfnce each variable occurs in
at mostk of the setsX; U Y;. Now let(z, y) be an independent pair. Then it holds that

Pri{e ¢ Xony & Yo} > 47",
since the eventsi'¢ X" and “y ¢ Y;," are independent. It follows that
E{e & Xo Ay ¢ Yo} >n® (1 - 2k/p) /4",
Hence, there is a choice gfsuch that( X\ X,) x (Y\Yy)| > n? (1 — 2k/p) /4. o

The key property of the function SYL which Borodin, Razbgramd Smolensky have used is
that not only full Sylvester matrices, but also their sulmicas have large rank (this is the math-
ematically most involved part of their proof). More prediseghey have proven the following
fact.

Lemma 5.25: For an arbitrary matrix A let a,(A) be the minimal rank of a submatrix cf
with at leasts entries. LetS be the Sylvester matrix of dimension= 2¢. Then

(){S(S) > 277(111(277) _ (]/2) -In S).

110



For the lower bound on the nondeterministic réatimes BP size of SYL, Borodin, Razborov,
and Smolensky have shown that “many’, p)-rectangles are needed to cover all 1-inputs. Fol-
lowing the technique from Section 5.1, we prove the stroffiggrthat in each rectangle which is
not “very small” the number of-inputs for SYL amounts to approximately one third of all in-
puts. Hence, SYL fulfills the “rectangle balanced proped§Theorem 5.11 and even belongs
to the class of “hardest” functions discussed at the end cfi@e5.1.

5.4.2 Preparations for the Proof

In the following, we state the most important building bleasf our proof in form of two
lemmas. One important step is to see that an arbitrary sabumof SYL can be written as the
transformation of an appropriate bilinear form. This isatésed in the following lemma.

Lemma 5.26: Let a be an assignment to the variables froky U Y;, where X, C X and
Yo C Y. Definet := | X\ Xy, u := |[Y'\Yp|. LetR be an arbitrary 2-dimensional rectangle in
7hx 74 i.e,R=T x UwithT C 7Z,andU C 7.%.

Then there is a one-to-one functign Z4 x Z% — Z4*' x Z3*' and a bilinear formF': Z4+ x
73 — Zydefined by (z, y) := =7 By, wherer € Zi' y € Z3 ' andBisa(t+1)x (u+1)-
matrix overZ s, such that the following holds:

1, if F(e(z,y)) =0 mod 3,
0, if Fle(z,y)) € Zs\{0};
@) [RNSYL'(1)] = [o(R) N F~}(0)], and|R N SYL, (0)] = [¢(R) N F~H(Z\{0})];

(3) rank B) > a;.,(A) (where A is the Sylvester matrix of dimensianx n and a,.,(A4) as
defined in Lemma 5.25).

(1) SYLa(z,y) = {

In these expression§YL, denotes the restriction YL resulting from the substitution of
variables according ta.

Proof: As in the definition of SYL, letd be the Sylvester matrix of dimensianx n. Let A’ be
thet x u-submatrix of4A which is obtained by deleting the rows and columngl@brresponding
to X, andYy, resp. There exist € Z, w € Z4 andy € Z3 such that SYl(z,y) = 1 if and
only if

T Ay+2 v+ w y+v=0mod3,
wherez € Z}andy € Zj. We can write

2T Ay+a2Tv+wTy+y=1"By
wherez’ € 7.5 andy' € 74+ are defined by

, 1, ifi=1; , 1, ifi=1;
x; = . and y; = £ .
i1, Hie{2,...;t+1}; yii1, Hied{2,... u+1};

111



and the matrixB = (b;;)1<i<t+1,1<j<u+1 iS defined by

Obviously, rankB) > rank(A'). Define the bilinear fornd: Z4' x Z:+' — Zsby F(z,y) :=
zTByforz € Z5, y € Z4*', andy: 74 x Zt — 75 x Z3 ' by o(z,y) := (2',y'), =’ and
y' as above. Thep, F and B have the claimed properties (1) to (3). (Property (2) foBdvwom
the fact thatp is one-to-one.) O

The second building block is a generalization of a lemmébalted to Lindsey (see, e. g., [34]).
This lemma plays the same role in the overall proof as the uppend on the discrepancy of
RowTestC in the proof of Section 5.2.

In its familiar form, Lindsey’s lemma states that in evenbmatrix of a Hadamard matrix
which is not too small the number @fs and(—1)’s is nearly balanced. (A Hadamard matrix
is an orthogonal matrix with entries equal+td or 1. A special type of Hadamard matrices are
Sylvester matrices, defined by the inner product lhas seen above.)

For our generalization of the lemma, we consider a matrixn@efby a bilinear form with values
in Z3. Consider the3' x 3*-matrix M = (m(z,9y))sez, yezy, defined bym(z,y) = 27 Ay,
wherez € Z4, y € Z% andA is at x u-matrix with “large” rank overZ;. We show that in
every submatrix of @/ which is not too small the number of entriés1, and—1 is nearly
balanced, i. e., amounts to approximately one third of &fies

This is done by the following indirect approach. For each paij}, i, € Zs, i # j, we define
a separaté’ x 3* matrix M;; by
1, if2TAy =i mod 3;
M;j(z,y) := ¢ =1, if zTAy = j mod 3;
0, otherwise;
wherez € 7% andy € 7Z%. We show that the sum afs and(—1)’s in submatrices of thesé#/;;
is small if the matrixA has large rank.

Lemma 5.27: Let A be an arbitraryt x u-matrix overZs. Define the matriced/;; as described
above. Furthermore, let an arbitrary rectangle be given bg setsS C Z4 T C Zj. Let
d;;(S,T) denote the sum dfs and(—1)’s of M;; in this rectangle, i. e.,

di;(S,T) := ZZMij(xvy)-

z€S yeT
Then it holds that
(1) |1, 1(S,T)] < (2//3) - 3+ 3ok /2,
(2) |d1o(S,T)| < 3t+n . 3-rank(4)/2,
(3) |d_10(S,T)| < 3t+n . 3-rank(4)/2,

The lengthy and technical proof of this lemma can be foundeend of the section.

112



5.4.3 The Proof of the Lower Bound Result

We now state and prove the main result of this section.

Theorem 5.28: Let ¢ be a randomized 3-way redetimes BP forSYL,, with two-sided error
at moste, wheres is a constant witl) < ¢ < 1/3. Then

0o (05

Proof: We apply Theorem 5.11 in its general form for 3-way réatimes branching programs
and (%, p)-rectangles wittp := 4k. Furthermore, we choogeas the uniform distribution on
73

Let R be an arbitraryk, p)-rectangle irZ2". As in the proof of Theorem 5.14, the main work
will be to prove a statement on the distribution of thenputs andl-inputs for SYL inR. We
claim that

w(RNSYL™Y0)) > a - u(RNSYL™H(1)) — d(n), (5.12)
wherea := 2 andd(n) is defined later on. The proof of this fact consists of thregspa

Part 1: Let R be a(k, p)-rectangle with respecttosel§ UY;, X; C X, Y; CY,i=1,... kp,
fulfilling the requirements of Definition 3.1. We first appleinma 5.24. LeX, C X,Y, C YV
be as described in the lemma. leebe an arbitrary assignment &, andYj, andt := | X'\ Xy,
u:=|Y\Ygl|.

In the following, we only consider the 2-dimensional recfienR,,, i. e., the restriction of?
resulting from the substitution af, and the subfunction SYL The rectangld?, has the prop-
erty that it consists of two factors depending enor y-variables only. We also know that
[(X\Xo) x (Y\Yy)| =t -u>n2/(24*%) =: 5.

Part 2: While the considered rectangle has become simpler by tiréctem, the function SYl,
is too complicated to be used itself. This problem is solvgtlé&mma 5.26. From this lemma,
we obtain a one-to-one functignand a bilinear form¥ onZ5 x Z3*! such that

SYL,(z,y)=1 < F(o(z,y)) =0 mod 3.

The 2-dimensional rectangl®, is transformed into the 2-dimensional rectangleR,) in
7.5 x 7.4+, Moreover, we know that for the matri® of F it holds that rankB) > «a.(A) by
Statement (3) of Lemma 5.26 &s defined above). By Lemma 5.25, we get a lower bound on
the rank ofB. It remains to show that for eache 73 the number of inputs in a rectangle in
75! x 7.3+ for which F(z,y) = c is approximately one third of the size of this rectangle.

Part 3: At this point we apply our generalized form of Lindsey’s lemntet R’ be an arbitrary
rectangleZ it x 7%+, In Lemma 5.27, substitute the matixfor A, R' for the rectangle and
t+ 1, u + 1 for ¢ andu, resp. Then it follows that

IR NF' (1) = [RnF(=1)|| < (2/v/3) - 3+F2. 37k = p,
HRI n F—](l)‘ _ ‘RI n F—1(0)H < 3t+u+2 . 3—r;mk(B]/2 < b7 and
HRI n F—](il)‘ _ ‘RI n F—1(0)H < 3t+u+2 . 3—r;mk(B]/2 < b.

113



We conclude that
|R' N FY(7Z3\{0})| > 2-|R' N F~(0)] — 2. (5.13)

To see this, let := |[R' N F1(0)], y := |R' N F~'(1)], z := |[R" N F~'(-1)|. Theny + z is
minimized under the constraintg — 2| < b, l[y —z| < band|z —z| < bif y = z =z — b.
Hencey + z > 2z — 2b.

In the above Inequality (5.13) substituf® = ¢(R,), apply Statement (2) from Lemma 5.26
and apply the uniform distribution on the assignments {oX'\ X,) x (Y'\Y,) on both sides to
obtain

u(RaNSYL,'(0)) > 2+ u(RaNSYL, ' (1)) — 26377,

This inequality holds for all assignmentso X, andY;, and hence, by the law of total prob-
ability, it carries over toR and SYL. We have thus shown that the rectangle balance gypper
Inequality (5.12), holds if we define := 2 and

d(n):=2b-37"" = 194/3 - 3~ rank(B)/2

Now we are ready to apply Theorem 5.11. As mentioned abokelds that rankB) > a,(A),
wheres = n?/(2 - 4*). By Lemma 5.25, we have

n
() =0 ()
Furthermore, it is easy to verify tha{SYL™*(1)) = 1/3 — o(1). Hence, for < 1/3 we obtain
by Theorem 5.11:

(o) - /(4k2) N
o> 5 (P e (a ().

[m]

We conclude the section by deriving an exponential lowemidoior the 2-way case from the
above result. We consider the function which is obtainedhfi®YL by encoding the values
from Z 3 by Boolean values.

Definec,: {00,01,10,11}" — Z7U{-} as the incompletely specified function which decodes
each pair of bits of the input vector as a valu&ZinJ {—}. More precisely, let; map00, 01,

10, and11to 0, 1, and—1 in Z3 and to— = “undefined,” resp. Fon > 2, letz; := (20, z}),
1 =1,...,n,and define

@, ) = (cr(m), s eaa),
if z; € {00,01,10} for all i, ande,(z1,...,z,) := —, if z; = 11 for at least for one €
{1,...,n}.

114



Define the functionSYL: {0,1}*» — {0,1} onz = ((2%,2!),...,(2%,2])) andy =
(v 91), - (ynum)) DY

SYL(z.y) — SYL(c(z), c(y)), if c(m)v_c(y) €L

0, otherwise.
Theorem 5.29: Let G be a randomized reaél-times 2-way BP foBYL with two-sided error
at mosts, wheres is a constant witl) < ¢ < 1/2. Then there is a constantsuch that

6100 (2()).

Proof: We show how the given randomized redimes 2-way BRG for SYL can be turned
into a 3-way BRG' for SYL. Let 2, . .., 2, be the probabilistic variables of.

First consider a node i which is labeled by a variable? or y?. Replace the variable by;

or y;, resp. Replace theedge by two edges labeled b§"“and by “—1", resp., and thé-edge
by an edge labeled byl*. Next, consider a node labeled by or y!. The variable is again
replaced byz; or y;. Replace th@-edge by two edges labeled by “and by “1”, resp., and the
1-edge by an edge labeled by f”. Nodes labeled by probabilistic variables are not modified
Call the resulting grapliz’. Obviously,G' is a randomized reafi2k)-times 3-way BP and it
holds thatG'| = |G].

We claim that' computes SYL with two-sided error at mast Let¢: Z; — {00,01,10}"
be the one-to-one and onto function witte(z)) = = for all z € 7Z%. Letg: {0,1}* x
{0,1}" — {0,1} be the function computed b§ as a deterministic reakHimes BP, and let
g': 727 x {0,1}" — {0,1} be the function computed b§'. It holds for arbitraryz,y € 7%
that

P (2,9, 2) # SYL(z,y)} = P{g(ax),2y), 2) # SYL(@(x), y))} <,

where the values of = (z1,. .., z,) are chosen fror0, 1}" according to the uniform distribu-
tion. HenceG' fulfills the claimed error bound. By Theorem 5.28 it followsat

)

and the claimed lower bound for arbitraey ¢ < 1/2, follows from this by the lemma on
probability amplification for randomized reddtimes BPs (Lemma 2.24). O

It remains to prove the generalized variant of Lindsey’s ieamalready used above. Before
we start with the proof, we state some general definitions. tlfi@ whole proof, lep # 2 be

115



a fixed prime. Letr;, ..., r(,_1)2 be the quadratic residues modyl@ndry, . .., 7(,_1)2 the
non-residues (we regafdneither as a residue nor as a non-residue). Let

1, ifae{ry,. .. ,7p-12h

<9> =20, ifa=0;
p

-1, ifae{r,. ..,Tp1eh

be the Legendre symbol modujo Furthermore, lefd be an arbitrary x u-matrix overZ,,.

Proof of Lemma 5.27:

Part (1): The first part of the lemma can be easily proven everafbitrary fieldsZ,, not only
for Zs. Define thep' x p*-Matrix M = (m(z,y))rezt, yezn Oy m(z,y) = ("T%) Let an

arbitrary 2-dimensional rectangle be given by the sets 7., T C 7. Letd denote the sum
of 1's and(—1)’s of M in this rectangle. We show that

‘d‘ < (p _ 1)pt+up—(rank(A]+1]/2-

In the following, we regard/ as a real-valued matrix with entriés 1, and—1. If we do
not state something different explicitly, all calculatioare done in real-valued vector spaces.
Furthermore, all congruences=" are modulop. The overall structure of the proof is similar
to the proof of the upper bound on the discrepancy of the fandRowTestC in Section 5.2
(Theorem 5.14).

We consider the symmetric matrixl = MTM, M = (M(2,y))ayez: (Where the matrix

product is calculated iR). It holds thati(z,y) = m(z) m(y), wherem(z) is the column of
M with indexz € Z,. Our goal is to comput¢M ||, = VX, where) is the maximal eigenvalue

of M.
Step 1:As in the proof of Theorem 5.14, we first calculate the entoieay.
Claim 1: For z,y € Z,, it holds that

(%) (p—1Dp't, if Ay = adz, Az, Ay £ 0, a € Z,\{0};
0, otherwise.

m(x) m(y) = {

Proof: Obviously,m(z) m(y) = 0 if Az = 0or Ay = 0. Therefore, letdz # 0, Ay # 0. We
have
2T Az 2T Ay
o) miy) = 3 (2 (222)
2€Z} p p

- Zl + Z(*IH (-1) + 1, (5.14)

(@b)=(L1)  (ab)=(-11)  (ap)=(L,-1)  (aba)=(-1,-1)

116



wherea. = (%) b, = (%) and the summation is done over alk Z; which fulfill
the given restrictions.
First of all, we count the number ofe 7! with (a.,b.) = (1,1). It holds that

TAz TA
(Z T) =1A (Z 1/) =1 & 3Jij:2TAz=r A 2T Ay=r; (5.15)
P P

For fixedi and j, we are looking for the number of solutions #j, for the system of linear
equations

a1 z1+ ... Faz =15

ANbizi+.. . +bz =1,
in the variables:, . . ., z;, wherea := Az, a = (a;)1<i<t, andb := Ay, b = (b;)1<i<-
If Az and Ay are linearly independent iti’, this system has exactly > solutions. Hence,
there are(Z;1)?p'~2 vectorsz € 7 which fulfill (5.15).
If Az and Ay are linearly dependentiy = aAx for ana # 0, then this system has either no
solution or exactlyy’~! solutions. The latter case occurs if and onlyjif= ar;. If (%) =1,
then for each € {1,...,(p — 1)/2} there is exactly ong with r; = ar;, and hence the total
number of vectors fulfilling (5.15) is%)p’”. If (%) = —1, thenr; = ar; is always false
and the total number af-vectors is zero.
By an analogous argumentation, we get the same numbevedtors with(a.,b.) = (=1, —1).

It remains to calculate the numberof Z! with (a.,b.) = (1, —1) (analogously fofa., b.) =
(=1,1)). Again, we count the solutions of linear equations7ifi Here we are looking for
solutions for the system

a2+ ...tz =714
A b1Z1+...+thtE’l7j7

where thes; andb; are defined as above. Mz and Ay are linearly independent, the number
of solutions for eachi, j is againp'~2. If Ay = aAx, a £ 0, it is required thaf; = ar; for
solutions to exist. Hence, we get a total numbef%# )p'~' vectorsz € 7! with (a.,b.) =

(1,-1),if (%) = —1, and no solutions, otherwise.

By substituting our results into (5.14), the claim follows. m|

Step 2:Now we calculate the maximal eigenvalue of the mabdx= MT M. We claim that all
columnsm(z) of M, wherez € 7, already are eigenvectors of.

Claim 2: Forz,y € Z, it holds that

. (%) (p — 1)3prrank(p2t=1) " if Ay = qAz, Az, Ay # 0,
m(x) m(y) = a € Z,\{0};
0, otherwise.

117



Proof: Let Az, Ay # 0. It holds that
i) "dily) = Y iz, 2)i(z, )-
2€ZY

By Claim 1, we get:

(é) (ﬁ) (p— 1)1 if Az = Bl Az, Az = 52 Ay,

(2, o)z, y) = ! for B2, 82 # 0, Az, Ay # 0;
0, otherwise.

We consider the first case, ldt: = 81 Az, Az = %Ay, 8L, 5% # 0. ThenAy = (1(32)"! Az,
and Az and Ay are linearly dependent. Therefore, there iscagt 0 with Ay = aAz, and
BX(B?)~! = afor all 2. Especially, it holds that

(5)5)-G)(57)-(55-)-6)

forall z € Z;. How manyz-vectors are there for which the first case occurs? Their reurish
obviously equal to the number of solutions of

Az = Bl Az,

for B # 0. There arg*""x(4) solutions for fixeds!, andp — 1 valuess! # 0. Hence, the
total number ofz-vectors for which the first case occurs(js— 1)p*~"*"x(4), Putting all the
results together, we get the claimed valueddr:) " m(y). o

From Claim 2, it follows that
M - f(z) = (p— 1)2ptre k-1 5 )

for z € 73 with Az # 0 (to see this, compare the entries with index 7.; on both sides).
Hence,m(z) is an eigenvector for the eigenvalle= (p — 1)p'+u-rank(4)-1 of M. Further-
more,0 and )\ are all the eigenvalues aff, since all columns oM are eigenvectors for these
eigenvalues. Thereforg,is the maximal eigenvalue off = MT M.

Step 3:Now we are ready to estimate the sumiaf and(—1)’s in the given rectangle of the
matrix M. We proceed as in the proof of Theorem 5.14. We know from altioae

HMH2 _ \/X _ (p _ ])p(H—u—mnk(A]—U/Q-

Let 1 and 17 be the characteristic vectors 6fandT’, resp. By the inequality of Cauchy-
Schwartz we get

ld] =157 - M- 17| < |[1s]la- |M - 17]l2
< P2 (p  q)pltumrank(A)=1)/2 _ () )b —(rank(4)41)/2

118



Part (2): For this part, IetM := M, 9, M = (m(, y)).ezt, yens \We show that

‘dl,O‘ < 3t+u ) 3—rank(A)/2‘

The proof follows the same pattern as for Part (1). The fiegp slan again be easily done for
generalp, we substitutey = 3 later on to simplify the calculations.

Step 1:Again, letm(z) be the column with number € Z} of M.
Claim 3: Forz,y € Z,, it holds that

(gg—p) if Az and Ay are linearly independent iff.,
(Hhpt- if Ay = aAy, Az, Ay 0, (%) =1,

m(z) m(y) = { pt=1, if Ay = ady, Az, Ay #0, (2) = —1;
(gg—p) if either Az = 0 or Ay = 0;
o, if Az = Ay = 0.

Proof: We start with the calculation of the numberof 7! with m(z,z) = 1 andm(z,y) =
1. We see that we have done this already in the proof of Part (1),

(21)2.p'=2, if Az andAy are linearly independent;

2
Z 1 ={(52) pt, if Ay=adz, Az, Ay £0, (%):1;
(a=b2)=(1,1) 0, otherwise.
Next, we compute the number of € Z! with m(z,z) = —1 andm(z,y) = -1, i.e., the

number of solutions of the system
2TAz=0 A 2TAy =0

in the variables:, .. ., z in 7. This number of solutions ig'—*e"k(4=-4v) More explicitly, we
have

p'=2, if Az andAy are linearly independent;

1 =<9, if Az = Ay=0;
(a2,b2)=(=1,-1) p'~', otherwise.
Finally, we need the number of € Z! with m(z,z) = 1 andm(z,y) = —1 (analogously for

m(z,z) = —1 andm(z,z) = 1). The conditionmn(z, z) = 1 is equivalent to
Jie{l,...,(p—1)/2}: 2TAz=r; N 2TAy=0.

Let us consider the number of solutions for fixedf Az andAy are linearly independent, there
arep'~? solutions. IfAz = 0, there are no solutions (sineg# 0); and if Ay = 0 and Az # 0,

119



we have exactly'~! solutions. Finally, forAz, Ay # 0 and Az, Ay linearly dependent, the
number of solutions is again(r; # 0). Hence,

(172_1) p'=2, if Az andAy are linearly independent;
Z 1 = P*‘ cpttl if Az £ 0, Ay = 0;
(az,b2)=(1,-1) 07 otherwise.

By summing up our results, we get

= 1L+ ) (-)+ (-1

(az,02)=(1.1) (az,02)=(-1.1) (az,62)=(1,-1) (%bz):(*lfl)

(B2)2pt2+pt-2 — (p— 1)pt2, if Az andAy are linearly indep.;
=

(25t + if Ay = ady, Az, Ay 0, (%) —1;
=qr, if Ay = aAy, Az, Ay £ 0, (%):71;

Pt (B if either Az = 0 or Ay = 0;

v, if Ax = Ay =0.

Now letp = 3. All the following congruences are modulo 3. By the abovéncjave get

2.3171 if Ay = oAy, Az, Ay £0,a = 1;
T 31 if Ay=ady, Az,Ay#£0,a=—1;
m(z) m(y) = q 4 it 4
3, if Az = Ay =0;
0, otherwise.

Step 2:As in the proof of Part (1), we compute the largest eigenvafug, whereM = A/[IM,
m(z,y) = m(z) m(y). This is a little bit more complicated here, since the colsroh are
no longer eigenvectors. But by Claim 3, we will obtain thastmatrix has a simple block
structure.

The matrixM has only entrie$, a := 2 - 3=, b := 3t~ and3?. Let

ker(A) := {z € 73 | Az =0} and
im(A) :={y € Z| 3z € Z}: Az = y}.

Obviously,m(z,y) = 3!, if z,y € ker(A) andm(z,y) = 0, if z € ker(A), buty ¢ ker(A)
or vice versa. Next, we consider the vectary ¢ ker(A). Forv € im(A4)\{0} define the
following subspaces df ;:

Ut(w):={zeZy| Az =v} and U (v):={z € Z}| Az = —v}.

120



These sets are either disjoint or equal for differeriThere arg1/2)(372(4) — 1) =: r vectors
v1, ..., v, such that the se§* (v;), U~ (v;) form a partition of in{A)\{0}.

We have shown above that fore im(A4)\{0} it holds that

a, z,y € U*(v)
m(z,y)=qb, z€U*r(v)andy € U (v) orvice versa;
0, z€ (Ut (v)UU (v))andy & (U*(v) JU (v)) or vice versa.

It holds that|ker(A)| = 3* (4 —. L and also|U*(v)| = |[U~(v)] = k forall v €

im(A)\{0}. Let P be ap* x p*-permutation matrix such that after application of the sxtjpe

permutation the order of vectors @f; is consistent with the following order of subspaces:
ker(A), Ut (v1), U™ (v1), Ut (va), U (v3), ..., Ut (v,), U (v,).

(The order of the vectors within each of these subspacesmttesatter.) By the considerations
above, we obtain that/’ := P~ M P is a block diagonal matrix of the form

M' = diag By, By, . . ., B.),

where the blockB, is ak x k-matrix with all entries equal t8* and the blocks3; with 7 > 1
are(2k) x (2k)-matrices of the form

each of the four constant submatrices has dimensiark.

The matrix B, has the eigenvalugsandk - 3¢ = 3u+t—r2k(4) and the matrices;, i > 1, have
the eigenvalues - (a — b) = 3t+u-rank(A)-1 k. (g 4+ p) = gt+v-rank(4) gnd, ifk > 2, also0.
It follows that M altogether has the eigenvalu@éf rank(A4) < u — 1), 3, 3t+u—rank(4)-1 gang
gttu—rank(4) gnd thusst*+»—r22k(4) js the maximal eigenvalue.

Step 3:This step is analogous to the proof of Part (1).

Part (3): Here we have to consider the matfiX_, ,. The proof is analogous to the proof for
Part (2) (for the matrix\/; o) due to the “duality” of the values 1 and1. m|

121



5.5 The Separation of the Reade-Times Hierarchy
by Thathachar

We conclude the account on applications of the techniquenéglized rectangles by present-
ing some more details on Thathachar’s result that the dasssequences of functions which
are representable by reddtimes branching programs of polynomial size form a properdr-
chy with respect ta:.

Thathachar has proven that a function which is closely edlad the function ModSum from
Section 5.2 is contained in the class P{BP1), but not in NP-BR U BPR.-BP%, for an error
probabilitye < (1 — 7)(1/3) - 27" andk = k(N) < (1/v2 — 7)y/Tog N, whereN is the
input size of the function and, 7' > 0 are arbitrarily small constants.

After presenting the precise result of Thathachar (withprabf), we show that the lower bound
in fact even holds for a larger range of error probabilitieamely for alle < (1 — 7/)3=(++1),

7' > 0 an arbitrarily small constant. This follows from an asynjaally exact estimate of the
number of1-inputs of the function.

We first give the definition of Thathachar’s function. Lget£ 2 be a prime and > 2. We
considerk-dimensional matrices as inputs, the indices of matrixiesi@re from the hypercube
{1,...,n}*. Ford € {1,...,k}andi € {1,...,n}, we define the index set

I = {(ir, ... i) € {1,...,n}F | iy =i},

this is “theith hyperplane in theith direction” (e.g., fork = 2, the setsl}, I? contain the
indices of rows and columns, resp.). Notice thef = n*~' for all i andd. For the whole
section, letX be ak-dimensional Boolean matrix of variables and}&t be the set of variables
in X corresponding to the index s&t.

Definition 5.30: Define CHSI?: {0,1}"" — {0,1} (“Conjunctive Hyperplanar Sum-of-Pro-
ducts”) on thek-dimensional matrixX' of Boolean variables by

CHSP(X):= /\ PlaneTestX),

1<d<k

where PlaneTest {0,1}" — {0, 1} is defined ford € {1,...,k} by

i@mﬂmodq‘|.

i=1 gexd

PlaneTest X) :=

(As usual, ®” denotes the addition i, a @ b := (a + b) mod 2 fora,b € {0,1}.)

We remark that in Thathachar’s original paper, the func(‘uHSF’; is defined using the so-called
“Fourier encoding” of the inputs, i. e., the variables takéues in{—1,1} instead of{0, 1}. It

is easy to verify that Thathachar’s results hold for bothagtiegs because of the one-to-one and
onto mapping between these sets of values.

122



Thathachar has proven the following.

Theorem 5.31 (Thathachar): Let N = n*+! be the input size cEHSP*' and letk ande be
functions of N with1 < k < (1/v2 — 7)y/log N and0 < = < (1 — 7/)(1/3) - 27 e D**")
wherer, 7' > 0 are arbitrarily small constants. Then it holds that

(1) CHSP*' € coNP-BP1

(2) CHSP*' ¢ NP-BP: U BPP.-BP%.

The first part of this theorem is easy to see. A nondeternmmsad-once branching program for
CHSP;chl simply “guesses” a single directiohe {1,...,k + 1} and evaluates PlaneTgsX )

by a deterministic OBDD of polynomial size. For0ainput X, it holds that at least one of
the k + 1 functions PlaneTegtX) yields the output zero. This nondeterministic read-once
branching program can also be seen as a randomized ready@raehing program with one-
sided error at most — 1/(k + 1), hence we even have CH$¢’ € CORR_1/(t+1)-BP1.

The lower bounds in Part (2) (for nondeterministic and randed readk-times BPs) have
been established by the technique of generalized rectfrgle Section 5.1. By an improved
estimate of the number afinputs of CHSIf-;TH and using Thathachar's results, the lower bound
for the randomized case can be proven also for larger valfies More precisely, we get the
following improved result.

Theorem 5.32: Let G be a randomized reaél-times BP forCHSI-*g+1 with two-sided errok.

The parameterg and e may both depend on the input side = n**' of CHSE*'. Then it
holds that

|G| = exp (2 ((o(k) — &) - NY/ "D =3 9=2k))
whereo(k) is a term withg(k) = ¢~ *+1 (1 + o(1)) (for N — o).

The most difficult part of the proof of this theorem has alyedéen done by Thathachar. He
has shown that the function CHQS'}i fulfills the “rectangle balance property” of Lemma 5.11
with respect td £, p)-rectangles where the parameges chosen appropriately.

Lemma 5.33 (Thathachar): Letp := 144 - k- 2¥, and letR be an arbitrary(k, p)-rectangle in
{0,1}¥, N = n*¥+1. Then it holds that

27V |[RN (CHSP)7H(0)| > a- 277 - [R N (CHSP*)~!(1)] — 4(N),
wherea := ¢ — 1 andg(N) := 26U+ TINTER o /q) 50 < 1.

Furthermore, we use the following, asymptotically pre@sémate of the number dfinputs
of CHSP as a tool:

Lemma 5.34: Let N = n* andq = o(N'/**). Then it holds that

(CHSE) "' (1)]- 27" = ¢7" - (1 + 0(1)).

123



We first derive the desired result and defer the technicalfpsbthe above lemma to the end of
the section.

Proof of Theorem 5.32: The theorem follows immediately by Theorem 5.11 and the abov
two lemmas. We considék;, p)-rectangles withp := 144 - k - 2*. Furthermore, we choogeas
the uniform distribution o{0, 1}", whereN = n**!, anda ands as indicated in Lemma 5.33.
Let G be a randomized reatHimes BP for CHSEH with two-sided errors. Then Theo-
rem 5.11 yields:

a ) — e /(kp)
2 3 (HHD ) 0 (g - i)

wherep(k) := 27 [(CHSPB*')~1(1)] = g~ (1 + o(1)). O

We list some implications of the above results on the coniglelasses defined in terms of the
size of readk-times branching programs.

Theorem 5.35: Letl < k < (1/v/2—7)y/Iog N and0 < ¢ < (1 —7')g~*+1), wherer, 7’ > 0
are arbitrarily small constants. Then the following holds:

(1) P-BRE+1)\ (NP-BF: UBPPR.-BPk) # 0, P-BP: G RP_y(111)-BPk;

(2) RP-BR: # CORP-BR;, RP.-BPk & RP,_y(1+1)-BPF;

(3) NP-BF: ¢ BPR-BP1, BPR-BP1S BPPR.-BP1

wheres' := =/ 4+ 7(N), for 7(N) > 0 with /() =1 = 2PN,

All statements can be easily derived from Theorem 5.31 arebiidm 5.32. For Part (3), apply
Lemma 2.32.

We see that the restriction on the error probability neededtfe lower bound on the size of
CHSB™!, £ < (1 — 7)¢~ "+, is still far away from the error of the best known randomized
read4-times branching program of polynomial size for this funati which is nearlyl /2. It
remains open to determine the least error probability foiclvipolynomial size still can be
guaranteed. It is not clear whether CHSPe BPP-BR: or not.

It seems to be hard to prove a better lower bound on the sizmdbmized read-times branch-
ing programs for CHSP‘1 by the technique of Section 5.1, since the numbdrfputs of the
function is very small ift: is large. One possible remedy against this is trying to ussteiluli-

tion of the inputs different from the uniform one which put&eger weight on thé-inputs.

We now present the proof of Lemma 5.34 left out above. Thisnesé of the number of-inputs
of CHSP;chl is done essentially along the same lines as the estimateddSMm in Section 5.2.
We first introduce some notation and prove a technical lemma.

124



In Section 5.2, we have definefi(n,c) as the number of solutions of the equation
z1+ -+ x, = ¢ mod 3, where thez; are Boolean variables. Here we generalize this defi-
nition to arbitrary moduli as follows. For natural numberandm andc € Z,,, let

n

S(n,myc) =Y (’;) [k = ¢ mod m].

k=0

The exact value of (n, m, c) seems to be hard to determine, but at least we have an asymptot
cally precise estimate:

Lemma 5.36: For m = o(y/n) andc € {0,...,m — 1} it holds that

n

5 (2)ik = emo i - Ziv o)

k=0
The following proof of this fact is due to M. Dietzfelbinger.

Proof: Our goal is to show that all values(n, m,c) for ¢ = 0,...,m — 1 lie in an interval

of the size of the largest binomial coefficie(r;%). Since it holds thay ™' S(n,m,c) = 2,

it follows that a single value is of siz& /m plus an error term no larger than the interval size

(,72)» which is asymptotically smaller thart /m for m = o(\/n).

To prove this, we consider an arbitrary real-valued seqeéng .z with the following proper-

ties:

1) ap > 0forallk € Z;

(2) (ax)rez has a finite support, i. el{k | ax # 0}] < oc;

(3) There is an indeXq, € 7 such thata, < ap forall k& < &' < kg anda, > ap for all
ko < k < k'. Especiallyas, is the maximum of the sequente, )xcz.

The sequencéa,) defined bya,, := (}), k € Z (and setting(}) := 0 for k& ¢ {0,...,n})

obviously has the above properties.

Forc € {0,...,m — 1}, define

Se 1= E ag.

keZ
k=cmodm

Claim: For arbitrary ¢,d € {0,...,m — 1}, it holds that|s. — s4| < ax,.

Proof: We assume that the sequerag).cz has at least one value different from zero (other-
wise, the claim is obviously fulfilled). Let := min{i € Z | aijm4+. > 0} andiy := min{i €

7| a;m+a > 0}. Because of the symmetry of the claimdiandd, we can assume w. |. 0. g. that
i. < i,. Because of Property (3), the indéx := max{i | Gim+. < @im+a} iS defined.

125



We can estimate the differeneg — s, as follows
Se — 84 = Z ap — Z ar = Z(aim+c - aim+ri)
k=c k=d i>i.

= Z (aim+c — aim+d) + Z (aim+c — aim+ri)

i.<i<iy i+l

Z (aim+c - aim+ri)

i>ip 1

IN

= Q(ip+1)m+e — Qliyg+1)mt+d T g (Gimte — Aimtd)
i>in+2

= Q(ip+1)m+e T g (@(it1)mte — Qim+d)
iDig+

N

S Qi 4+1)mae < Ak -

The third line follows siNnC&imic — Aimya < 0 for i, < ¢ < iy. The inequality in Line 6
holds sinceu;m+ctm < @imta fOr i,, > iy + 1. By an analogous argumentation, we obtain

Se = 8d 2 —Q(ipg+1)ymed > —Qkg- o
Now define
m—1
S = Se
c=0

Sincels. — sa| < ax, for all ¢, d, it follows that

S
2 s,

S akg)
m

forallc e {0,...,m —1}.

It remains only to apply this result to the sequence of birdmwefficients. By Stirling’s for-
mula we get

on= () - \/g%-u +o(1)),

and applying our above result:

% —S(n,m,c)| < \/g \2/% -(1+0(1)).
It follows thatS(n,m,c) = (2"/m)(1 + o(1)) if m = o(y/n) as claimed. ad

Now we are ready to calculate the number of 1-inputs of Cj—JSP

126



Proof of Lemma 5.34: Let X be thek-dimensional input matrix of CHS;P We start by
“guessing” the results of the parity checks for all hyperplanes, let these be the constants
pl € Zo,ford e {1,...,k}andi € {1,...,n}. It holds thatCHSE’(X) = 1lifand only if

Y z=pimod2, forallde {1,... k}andie {1,... n}; (5.16)

zeXx{

and additionally

pr;(]mod g, forallde {1,...,k}. (5.17)
i=1

Equation (5.16) can also be seen as a linear system of egsdtinthen* variables ofX in
7.o. We recursively define thien x n*-matrix of the coefficients of this system. First, fef; be
then x n-indentity matrix. Fork > 1, define thekn x n*-matrix M, as follows (empty spaces
indicate zero-entries):

(11...1 |

Mk =

M, My || My

The matrix M, consists of: lines containing2*~! consecutive ones each in the upper part and
of n copies of thek — 1)n x n*~!-dimensional matrix\/,_, in the lower part.

Letz = (z1,...,2.) @andb := (p},...,pL,...,0% ... ,pF) € ZE". By these definitions,
Equation (5.16) becomes

My -z = bmod 2. (5.18)

We count the number of solutions of this system for fix¢dAs the second step, we will count
the number of possible choices for the

We prove by induction that/, has rankin — (k — 1). Fork = 1, the claim is obviously true.
Now consider the matriX\f;, k > 1. We assume that/,_, has rank(k — 1)n — (k — 2).

127



Fori = 1,...,n call the columngi — 1)n*=! + 1,... in*~! in M, theith block Apply the
following column-transformations of;: Add the first block to allz — 1 other blocks, which
cancels out all copies dff;_, in the lower part except in the first block and changes allzero
to ones in the first row of the blocks . . ., n. It is easy to see that the set of column vectors in
the blocks2, .. .,n obtained in this way has rank— 1. Furthermore, no column vector from
the first block is a linear combination of columns in the bisgk . ., n and vice versa. Finally,
the column vectors of the first block have raftk— 1)n — (k — 2) by assumption. Hencé/,
hasrankk — 1)n — (k — 2) + (n — 1) = kn — (k — 1) altogether.

Now we apply the following row-transformations 1d,, in order to simplify the system (5.18).
Ford =1,...,k—1,add therowgd — 1)n + 2,...,dn + ntorow(d — 1)n + 1. In each
modified row(d — 1)n + 1, this cancels out all entries in the coefficient matrix, andte right
hand side of the equation we obtain the new constant

dopid opit
i=1 i=1

Let M, the matrix obtained from,, by removing the rowgd—1)n+1,d=1,...,k—1. Let

b be the right hand side obtained frdnmn the same way. Then we can replace system (5.18) by
My -z=bmod2 A (5.19)

pr—i—prHEUmodZ, ford=1,...,k—1. (5.20)
i1 il

We have proven above that, has full rank. Hence, system (5.18) has exaetfy Fn+k-1
solutions if (5.20) is fulfilled, and no solution otherwise.

It remains to count the number of thé fulfilling (5.17) and (5.20). We first notice that (5.20)
is equivalent to

zn:l’i = zn:P,Q == ipf mod 2.
i=1 i=1 i1

Forc € 7.5 define

N.:=[{(z1,...,x,) €Z5 |21+ -+ 2, =cmod 2 A in = 0 mod ¢}/,
i=1
to count the number of possible choices for a set of consggnts. , p? for fixed parityc. We
haveN, = S(n,2q,0) andN; = S(n, 2q, ¢). Lemma 5.36 yields

n

2
N(]7N1 = qu(l + 0(1))

Altogether, there arVf + NF choices for the? fulfilling (5.17) and (5.20). For each of these
choices we obtaia™*~**++~1 1-inputs for CHSP. Hence, the total number of 1-inputs is

k
. . i .
gt —hntkol Nk Nk gnt L gkntkel g (Z_q) (1+0(1)) = 2" - g *(1 + o(1)).

[m]

128



5.6 Summary

To conclude the chapter, we give a summary on what is knowntahe most important com-
plexity classes defined in terms of the size of randomized-ktetimes branching programs.

The following theorem contains the results for the spe@aké = 1. A graphical version of a
part of these statements is given in Figure 5.2 on the nex.pag

Theorem 5.37:

(1) BPP-BP1Z NP-BP1J coNP-BP1

(2) NP-BP1¢ BPR.-BP1for all constant: < 1/4;

3) BPPE-BPlg BPP, /5, 5-BP1for all constants < 1/4 and
§: N = (0,1/6) with §(n) ! = 2P,

4) RPE-BPlg RP, /,-BP1for all constant < 1/3, RP-BP1# coRP-BP1
(5) NP-BP1U cONP-BP1S PP-BP1
(6) P-BP1G ZPP-BP1

The parts (2), (3), and (4) have been proven in Section 512 (®as from Section 5.3. Parts (1)
and (5) follow from the fact that the function 2PERM (definedSection 3.5) is contained in
BPP-OBDD, but not in NP-BPd coNP-BP1, as follows from the known lower bounds on the
size of nondeterministic read-once branching programgh®function PERM.

The list of results for read-times branching programs wheke> 1 is still shorter. The follow-
ing conclusions are obtained from the improved results aftachar given in Section 5.5. We
choose the minimal valug = 3 as the order of the prime field for the function CI—E‘Sﬁ’ order
to maximize the range of error probabilities for which theuis hold.

Theorem 5.38: For all k < (1/v/2 — 7)y/Iog N (where N is the input size) and < ¢ <
(1 —73-*+1) 7 7' > 0 arbitrarily small constants, the following holds.
(1) NP-BP: ¢ BPP-BPE;

(2) BPR-BPk C BPR-BPk for ' = {=//l) 4 7(N), wherer"(N) > 0 and

T”(N)71 — 2P0Iy(N);

(3) RP.-BP1G RP,_y(4+1)-BP1 RP-BP1# coRP-BP1
(4) P-BP: G NP-BPX, NP-BP% # CONP-BF.

129



PP-BP1

_____-NP-BP1UcoNP-BP1
BPP-BPL--~""~

e _ - -
BPR.,/,-BPL- NP-BP1 coNP-BP1

NP-BP1N coNP-BP1

RP-

RP-BP1 coRP-BP1
ZPP-BP1
P-BP1

Figure 5.2: The complexity landscape for read-once BPs.

Some open problems are already indicated by the arrows uiilashes in Figure 5.2. Perhaps
the most important task is to clarify the relation betweea #malogs of the classes NP and
BPP at least for read-once branching programs. For thisebletver bounds on the size of
randomized read-once branching programs with boundedtbaa that proven here are needed.
We list some further interesting questions below.

Open Problems:

(1) Find a sequence of functionsf,).en such that(f,) € NP-BP1 (or even better:
(fn) € NP-BPIN cOoNP-BP1), but(f,) ¢ BPP ,_s-BP1 for arbitrarily small constants
0 > 0, proving that NP-BPIZ BPP-BP1.

(2) Prove that RRBP1G RP.-BP1and BPRBP1G BPP.-BP1forall0 <e <& < 1.

(3) Does it hold that ZPP-BP% RP-BP1N coRP-BP1?

(4) Does it hold that RP-BR1coRP-BP1S NP-BP1N coNP-BP1?

For readk-times branching programs wheke> 1, the same problems with “BP? instead of
“BP1” can be investigated. Additionally, also the following gtiens are open:

(5) Prove that BPP-BPZ NP-BP: UcoNP-BR:.

(6) Prove that P-BP G ZPP-BF:.

130



Chapter 6

Concluding Remarks

At the end of this work, we summarize the achievements of teequling chapters and comment
on some possible avenues for future research.

We have been mainly concerned with the types of restricteahditing programs for which
the deterministic variants have been most thoroughly wstded before: OBDDs, read-once
branching programs, and (syntactic) rdatimes branching programs whekemay be larger
thant.

For OBDDs, we have now a quite clear picture of the relaticetsvben the deterministic, non-

deterministic, and randomized mode of computation. We lpagsented a generally applicable
technique for proving lower bounds which has helped to restile most important questions
concerning the analogs of the complexity classes P, NP, iRFBRP. Nevertheless, some white
spots on the map of the complexity theoretical landscapairgmrmost prominently perhaps the
open problem to prove lower bounds for randomized OBDDs withounded error.

Read-once branching programs have once again turned oavéodurprising features which
distinguish them from their simpler structured relativieee OBDDs. One phenomenon which
has been known before is that the replacement of variableobgtants may cause an expo-
nential blow-up of the size if one fixes a graph ordering f& thad-once branching program.
Without a fixed graph ordering, also the Boolean synthesisvofread-once branching pro-
grams may lead to an exponential blow-up. Here we have addetthexr fact which lies in
the same direction. Unlike other, well-known probabitistiodels of computation, randomized
read-once branching programs are highly sensitive to at&n§the allowed error probability.
We have seen that the size of randomized read-once branptoggams may grow exponen-
tially if one decreases the allowed one-sided error prditafiom 1/2 to below1/3. Itis even
not unlikely that one can prove an exponential gap betweesittes of randomized read-once
branching programs for constant error probabilities sateat only by an arbitrarily small posi-
tive constant. The important consequence for the detestiiréase which we have drawn from
this result is that even for read-once branching progrants Wiery similar’ graph orderings
the AND-synthesis may lead to an exponential blow-up of the.s

From a more theoretical point of view, it is interesting thdias really been possible to separate
the models belonging to the nondeterministic and the rafmEtmode of computation and to

131



the different types of error even for read-once branchimgpmms. Proving such separation
results is of course a greater challenge than proving ordygellower bound. Further improve-
ments are still necessary to decrease the gap betweendn@rbabilities for which lower and
upper bounds, resp., can be proven. Especially, the protigrove that NP-BP¥Z BPP-BP1
has so far resisted the joint attempts of several peoplelt® $0 A proof technique which is
precise enough to tackle this problem will probably alsdd/iateresting new insights into the
subtle features of read-once branching programs.

We have also constructed a randomized read-once branctoggam of polynomial size with
zero error for a function which has been conjectured to bd baen for randomized read-once
branching programs with bounded error before. This exarmateshown that randomized read-
once branching programs can be astonishingly powerfuly Bine not merely “usual read-once
branching programs plus some special nodes,” but reallynamedel which does not behave
according to our intuition obtained from deterministicdeance branching programs.

Finally, the extended version of the “technique of geneealirectangles” of Borodin, Razborov,
and Smolensky presented here has shown to be powerful enoygd an exponential lower
bound even for the general model of randomized redies branching programs whekenay
be larger than. The importance of this method has been further underline@tathachar's
separation result for the reddtimes hierarchy.

Much needs to be done for the more general types of branchoggams. In the future, espe-
cially the different types of non-syntactic or semantic relsdwith restricted read access will
have to be investigated (and already have been investigatedime extent in recent publica-
tions). The most important goal is probably still to proveiperpolynomial lower bound for the
non-syntactic version of reatHimes branching programs, before we can start to think abou
superpolynomial lower bounds for general branching progra

132



Bibliography

(1]

(2

3

—_

[4

—_—

(5]

(6]

(7]

F. Ablayev. Lower bounds for one-way probabilistic conmication complexity and their
application to space complexityheoretical Computer SciencE57:139 — 159, 1996.

F. Ablayev. Randomization and nondeterminism are ingarable for polynomial or-
dered binary decision diagrams. Rroc. of the 24th Int. Coll. on Automata, Languages,
and Programming (ICALR)LNCS 1256195-202. Springer-Verlag, 1997.

F. Ablayev and M. Karpinski. On the power of randomizedtching programs. IRroc.
of the 23rd Int. Coll. on Automata, Languages, and PrograngnflCALP) LNCS 1099
348-356. Springer-Verlag, 1996.

F. Ablayev and M. Karpinski. A lower bound for integer rtiplication on randomized
read-once branching programs. Technical Report TR98-Bigtr. Coll. on Compu-
tational Complexity, 1998. (This paper is concerned witlvdo bounds on the size of
randomizecdrderedread-once branching programs, i. e., randomized OBDDs.).

F. Ablayev and M. Karpinski. On the power of randomizedened branching programs.
Technical Report TR98-004, Electr. Coll. on Computaticd©amplexity, 1998.

F. Ablayev, M. Karpinski, and R. Mubarakzjanov. On BPPsuess NRU coNP for ordered
read-once branching programs. Randomized Algorithms, Proc. of the International
Workshop25-34, Brno, 1998.

M. Agrawal and T. Thierauf. The satisfiability problenrforobabilistic ordered branch-
ing programs. IrProc. of the 13th IEEE Int. Conf. on Computational Compig@di—90,
1998.

[8] A. V. Aho, J. Ullman, and M. Yannakakis. On notions of imation transfer in VLSI

[9

—

(10]

circuits. InProc. of the 15th Ann. ACM Symp. on Theory of Computing (STC83)—
139, 1983.

M. Ajtai and M. Ben-Or. A theorem on probabilistic constadepth computations. In
Proc. of the 16th Ann. ACM Symp. on Theory of Computing (ST®R)— 474, 1984.

N. Alon and W. Maass. Meanders and their applicationfower bounds arguments.
Journal of Computer and System Scien&¥s118-129, 1988.

133



[11] N. Alon and J. H. SpenceThe Probabilistic MethodSeries in Discrete Mathematics
and Optimization. Wiley-Interscience, New York, 1992.

[12] L. Babai, P. Frankl, and J. Simon. Complexity classesammunication complexity
theory. InProc. of the 27th IEEE Symp. on Foundations of Computer Sei@pOCS)
337 — 347, 1986.

[13] L. Babai, N. Nisan, and M. Szegedy. Multiparty protagdseudorandom generators for
logspace and time-space trade-offsurnal of Computer and System Scieneés204—
232,1992.

[14] L. Babai, P. Pudlak, V. Rodl, and E. Szemerédi. Loweunds to the complexity of
symmetric Boolean function§heoretical Computer Science4:313 — 323, 1990.

[15] J. L. Balcazar, J. Diaz, and J. Gabargructural Complexity.ISpringer-Verlag, Berlin,
1988.

[16] D. A. Barrington. Bounded-width polynomial-size bdming programs recognize exactly
those languages in NCJournal of Computer and System Scien@8150-164, 1989.

[17] M. Blum, A. H. Chandra, and M. N. Wegman. Equivalencere&fBoolean graphs can be
decided probabilistically in polynomial timénformation Processing Letteré0:80-82,
1980.

[18] B. Bollig, M. Ldbbing, M. Sauerhoff, and I. Wegener. @plexity theoretical aspects
of OFDDs. InProc. of IFIP WG 10.5 Workshop on Applications of the Reediévu
Expansion in Circuit Desigrnl98 — 205, Chiba, Japan, 1995.

[19] B. Bollig, M. Lobbing, M. Sauerhoff, and I. Wegener. Gime complexity of the hid-
den weighted bit function for various BDD modelglanuscript 1998. Submitted to
RAIRO—Theoretical Informatics and Applications.

[20] B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener. Riatimes ordered binary de-
cision diagrams—efficient algorithms in the presence of-clidins. Technical Report
474, Universitat Dortmund, 1994.

[21] B. Bollig, M. Sauerhoff, D. Sieling, and |. Wegener. Ifdechy theorems fokOBDDs
andkIBDDs. Theoretical Computer Scienc205(1):45-60, 1998.

[22] B. Bollig and I. Wegener. Improving the variable ordggiof OBDDs is NP-complete.
IEEE Trans. Computer€5(9):993-1002, Sept. 1996.

[23] B. Bollig and I. Wegener. Complexity theoretical resufor partitioned (nondeterminis-
tic) binary decision diagrams. IRroc. of the Int. Symp. on Mathematical Foundations of
Computer Science (MFC3)NCS 1295159-168. Springer-Verlag, 1997.

[24] A. Borodin and S. Cook. A time-space tradeoff for sagton a general sequential model
of computationSIAM J. Comp.11(2):287 — 297, 1982.

134



[25] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M.nipa. Two applications
of inductive counting for complementation problen8AM J. Comp. 18(3):559-578,
1989.

[26] A. Borodin, S. A. Cook, and N. Pippenger. Parallel coapion for well-endowed rings
and space-bounded probabilistic machitefarmation and Contrql58:113-136, 1983.

[27] A. Borodin, A. A. Razborov, and R. Smolensky. On lowerubhds for readk-times
branching program&omputational Complexifyd:1-18, 1993.

[28] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient iraplentation of a BDD pack-
age. InProc. of the 27th ACM/IEEE Design Automation ConferenceGpA0-45, June
1990.

[29] Y. Breitbart, H. Hunt Ill, and D. Rosenkrantz. On theesiaf binary decision diagrams
representing Boolean functioriBheoretical Computer Scienck45:45 — 69, 1995.

[30] R. E. Bryant. Graph-based algorithms for Boolean fiorcmanipulation|EEE Trans.
ComputersC-35(8):677-691, Aug. 1986.

[31] R. E. Bryant. On the complexity of VLSI implementatioasd graph representations of
Boolean functions with application to integer multiplicet. IEEE Trans. Computers
C-40(2):205-213, Feb. 1991.

[32] R. E. Bryant. Symbolic Boolean manipulation with ore@rinary-decision diagrams.
ACM Computing Survey24(3):293-318, Sept. 1992.

[33] R. Canetti and O. Goldreich. Bounds on tradeoffs betwaadomness and communica-
tion complexity.Computational Complexity3:141 — 167, 1993.

[34] B. Chor and O. Goldreich. Unbiased bits from sources eékvrandomness and proba-
bilistic communication complexitysIAM J. Comp.17(2):230 — 261, 1988.

[35] A. Cobham. The recognition problem for the set of perfaguares. IrProc. of the 7th
Symposium on Switching an Automata Theory (SWA8H87, 1966.

[36] P. E. Dunne. Lower bounds on the complexity of 1-timeydmanching programs. In
Proc. of Fundamentals of Computation Theory (FCOINCS 199 90-99. Springer-
Verlag, 1984.

[37] P.Durig, Z. Galil, and G. Schnitger. Lower bounds on commatiém complexityInfor-
mation and Computatiqry3:1-22, 1987.

[38] P.Duris, J. Hromkovig, J. D. P. Rolim, and G. Schnitger. Lag¥s versus determinism
for one-way communication complexity, finite automata, @oti/nomial-time compu-
tations. InProc. of the 14th Ann. Symp. on Theoretical Aspects of Canj3dience
(STACS)LNCS 1200117-128. Springer-Verlag, 1997. To appeatrformation and
Computation

135



[39] S. Fortune, J. Hopcroft, and E. Meineche Schmidt. Thamexity of equivalence and
containment for free single variable program scheme®rbrt. of the 5th Int. Coll. on
Automata, Languages, and Programming (ICAURNCS 62227-240. Springer-Verlag,
1978.

[40] A. Gal. A simple function that requires exponentiaesiead-once branching programs.
Information Processing Letter62:13 — 16, 1997.

[41] J. Gergov. Time-space tradeoffs for integer multiation on various types of input obliv-
ious sequential machinesformation Processing Letter§1:265 — 269, 1994.

[42] J. Gergov and C. Meinel. Frontiers of feasible and philistic feasible Boolean manip-
ulation with branching programs. Proc. of the 10th Ann. Symp. on Theoretical Aspects
of Computer Science (STACENCS 665576-585, 1993.

[43] J. Gergov and C. Meinel. MOD-2-OBDDs—a data structurat tgeneralizes EXOR-
sum-of-products and ordered binary decision diagrdroamal Methods in System De-
sign, 8:273-282, 1996.

[44] J. Gill. Probabilistic Turing Machines and Complexity of Compuias Ph. D. disserta-
tion, U. C. Berkeley, 1972.

[45] J. Gill. Computational complexity of probabilistic Ting machinesSIAM J. Comp.
6:675 — 695, 1977.

[46] R. L. Graham, D. E. Knuth, and O. Patashr@lancrete Mathematic#ddison-Wesley
Publishing Company, Reading, Massachusetts, 1994.

[47] G. D. Hachtel and F. Somentiogic Synthesis and Verification Algorithniduwer Aca-
demic Publishers, Boston, 1996.

[48] B. Halstenberg and R. Reischuk. Relations between asmization complexity classes.
Journal of Computer and System Scienddg3):402 — 429, 1990.

[49] B. Halstenberg and R. Reischuk. On different modes ofroanication SIAM J. Comp.
22(5):913 — 934, 1993.

[50] K. Hosaka, Y. Takenaga, and S. Yajima. On the size ofredibinary decision diagrams
representing threshold functions. Proc. of the 5th Int. Symp. on Algorithms and Com-
putation (ISAAC)LNCS 834584 — 592. Springer-Verlag, 1994.

[51] J. Hromkovi¢.Communication Complexity and Parallel Computir@pringer-Verlag,
Berlin, 1997.

[52] N.Immerman. Nondeterministic space is closed undemementationSIAM J. Comp.
17(5):935-938, 1988.

136



[53] J. Jain, J. Bitner, M. S. Abadir, J. A. Abraham, and D. 8s$ell. Indexed BDDs: Algo-
rithmic advances in techniques to represent and verify &mofunctionslEEE Trans.
Computers46:1230-1245, 1997.

[54] J. Jain, J. Bitner, J. A. Abraham, and D. S. Fussell. Banal partitioning for verification
and related problems. In T. Knight and J. Savage, editsisanced Research in VLSI
and Parallel Systems: Proceedings of the 1992 Brown/MITf€ence 210-226, 1992.

[55] S.-W. Jeong, B. F. Plessier, G. D. Hachtel, and F. Somentended BDD's: Trading off
canonicity for structure in verification algorithms. Rroc. of the ACM/IEEE Int. Conf.
on Computer Aided Design (ICCAD)64-467, 1991.

[56] S. Jukna and A. Razbhorov. Neither reading few bits twice reading illegally helps
much.Discrete Applied Mathematic85:223—-238, 1998.

[57] S. Jukna, A. Razborov, P. Savicky, and I. Wegener. OrrBus NF co-NP for decision
trees and read-once branching program$1oc. of the 22nd Int. Symp. on Mathemat-
ical Foundations of Computer Science (MFCISYICS 1295319-326. Springer-Verlag,
1997. To appear i€omputational Complexity

[58] S. P. Jukna. Lower bounds on communication complekigthematical Logic and Its
Applications 5:22 — 30, 1987.

[59] S.P.Jukna. Entropy of contact circuits and lower baumaltheir complexityT heoretical
Computer Scien¢g&7:113 — 129, 1988.

[60] S. P. Jukna. The effect of null-chains on the compleritycontact schemes. IRroc.
of Fundamentals of Computation Theory (FCINCS 380 246—256. Springer-Verlag,
1989.

[61] S. P. Jukna. A note on reddtimes branching programd.heoretical Informatics and
Applications 29(1):75-83, 1995.

[62] H. Jung. On probabilistic time and spaceAroc. of the 12th Colloquium on Automata,
Languages and ProgrammipngNCS 194310-317. Springer-Verlag, 1985.

[63] B. Kalyanasundaram and G. Schnitger. The probalulistimmunication complexity of
set intersectionSIAM J. Comp.5(4):545-557, 1992.

[64] M. Karpinski and R. Mubarakzjanov. Some separatiobfamms on randomized OBDDs.
Manuscript July 1998.

[65] M. Krause. Exponential lower bounds on the complexitpoal and real-time branching
programsJournal of Information Processing and Cybernetics, E24(3):99-110, 1988.

[66] M. Krause. Lower bounds for depth-restricted branghprograms.Information and
Computation91(1):1-14, Mar. 1991.

137



[67] M. Krause. Geometric arguments yield better boundstifweshold circuits and dis-
tributed computingTheoretical Computer SciencE56:99 — 117, 1996.

[68] M. Krause, C. Meinel, and S. Waack. Separating the effiseng machine classes.L
NL., co-NL, and R. Theoretical Computer Scienc®6:267—-275, 1991.

[69] I. Kremer, N. Nisan, and D. Ron. On randomized one-rocmmimunication complexity.
In Proc. of the 27th Ann. ACM Symp. on Theory of Computing (ST&86)— 605, 1995.

[70] E. Kushilevitz and N. NisanCommunication ComplexitfCambridge University Press,
Cambridge, 1997.

[71] C. Y. Lee. Representation of switching circuits by birdecision programsBell Sys-
tems Technical JournaB8:985-999, 1959.

[72] J. van Leeuwen, editoHandbook of Theoretical Computer Science—Volume A: Algo-
rithms and ComplexityElsevier Science Publishers, Amsterdam, 1990.

[73] W. Masek.A Fast Algorithm for the String Editing Problem and DecisiGraph Com-
plexity. M. Sc. Thesis, MIT, Dept. of EECS, May 1976.

[74] C. Meinel. Modified Branching Programs and Their Computational Poweabili-
tationsschrift, Humboldt-Universitat Berlin, 1988. Fished asLNCS 370 Springer-
Verlag.

[75] C. Meinel. Polynomial siz€-branching programs and their computational poweor-
mation and Computatiqrg5:163-182, 1990.

[76] S. Minato.Binary Decision Diagrams and Applications for VLSI CARluwer Aca-
demic Publishers, Boston, 1996.

[77] S. Minato, N. Ishiura, and S. Yajima. Shared binary dieci diagram with attributed
edges for efficient Boolean function manipulation.Rroc. of the 27th ACM/IEEE De-
sign Automation Conference (DAGR-57, June 1990.

[78] R. Motwani and P. RaghavaRandomized Algorithms€Cambridge University Press,
Cambridge, 1995.

[79] E. I. Netiporuk. A Boolean functionSoviet Mathematics Doklady(4):999 — 1000,
1966.

[80] I. Newman. Private vs. common random bits in commuimecatomplexity.Information
Processing Letters39:67 — 71, 1991.

[81] N. Nisan. On read-once vs. multiple access to randomindsgspaceT heoretical Com-
puter Sciencel07:135-144, 1993.

[82] N. Nisan and A. Wigderson. Rounds in communication clexipy revisited.SIAM J.
Comp, 22:211-219, 1993.

138



[83] E. A. Okol'nishnikova. On lower bounds for branchingpgrams . Siberian Advances in
Mathematics3(1):152 — 166, 1993.

[84] E. A. Okol'nishnikova. On comparison between the siab®ad+4-times branching pro-
grams. In A. D. Korshunov, editoQperations Research and Discrete Analy&65 —
225. Kluwer Academic Publishers, 1997.

[85] E. A. Okol'nishnikova. On the hierarchy on nondeterisiit branchingt-programs. In
Fundamentals of Computation Theory (FCINCS 1279 376-387. Springer-Verlag,
1997.

[86] W. Paul. A2.5n lower bound on the combinational complexity of Boolean fiorts.
SIAM J. Comp.6:427-443, 1977.

[87] W. W. Peterson and E. J. Welddarror-Correcting CodesThe MIT Press, Cambridge,
Massachusetts, 2nd edition, 1972.

[88] S. Ponzio. A lower bound for integer multiplication witead-once branching programs.
In Proc. of the 27th Ann. ACM Symp. on Theory of Computing (STCB0)-139, 1995.

[89] P. Pudlak. A lower bound on complexity of branchinggmams. InProc. of the 11th Int.
Symp. on Mathematical Foundations of Computer Science @)F80-489, 1984.

[90] P. Pudlak. The hierarchy of Boolean circuiBomputers and Artificial Intelligence
6(5):449 — 468, 1987.

[91] P. Pudlak and S. Zak. Space complexity of computatidechnical report, Univ. Prague,
1983.

[92] A. A. Razborov. Lower bounds for deterministic and netetministic branching pro-
grams. InProc. of Fundamentals of Computation Theory (FCOWNCS 529 47-60.
Springer-Verlag, 1991.

[93] A. A. Razborov. On the distributional complexity of gigitness.Theoretical Computer
Science106:385 — 390, 1992.

[94] P. RibenboimThe New Book of Prime Number Recorpringer-Verlag, Berlin, 1996.

[95] M. Sauerhoff. A lower bound for randomized re&adimes branching programs. Techni-
cal Report TR97-019, Electr. Coll. on Computational Corripje 1997.

[96] M. Sauerhoff, I. Wegener, and R. Werchner. Relatinghbhéng program size and for-
mula size over the full binary basis. Technical Report 688iversitat Dortmund, 1998.
Submitted to STACS '99.

[97] P. Savicky and SZak. A large lower bound for 1-branching programs. TechhReport
TR96-036, Electr. Coll. on Computational Complexity, 1996

139



[98] P. Savicky and SZak. A hierarchy for(1, +k)-branching programs with respect#oin
Proc. of the 22nd Int. Symp. on Mathematical Foundationsah@uter Science (MFCS)
LNCS 1295478-487. Springer-Verlag, 1997.

[99] H. Sawada, Y. Takenaga, and S. Yajima. On the relatidwéoen binary decision dia-
grams, Turing machines and combinational logic circuitschiical Report KUIS-92-
0003, Kyoto University, Oct. 1992.

[100] C. E. Shannon. The synthesis of two-terminal switgtgircuits. Bell Systems Technical
Journal 28(1):59 — 98, 1949.

[101] D. Sieling. On the complexity of operations on grapivein BDDs and tree driven BDDs.
Technical Report 554, Universitat Dortmund, 1994.

[102] D. Sieling. New lower bounds and hierarchy resultsristricted branching programs.
Journal of Computer and System Scien&3{1):79 — 87, Aug. 1996.

[103] D. Sieling. The nonapproximability of OBDD minimizah. Technical Report 663, Uni-
versitat Dortmund, 1998. Submitted licformation and Computation

[104] D. Sieling. On the existence of polynomial time appnaation schemes for OBDD min-
imization. InProc. of the 15th Ann. Symp. on Theoretical Aspects of Ca@n@aience
(STACS)LNCS 1353Springer-Verlag, 1998.

[105] D. Sieling and I. Wegener. Reduction of OBDDs in linéare. Information Processing
Letters 48:139-144, 1993.

[106] D. Sieling and I. Wegener. Graph driven BDDs—a new d#tiacture for Boolean func-
tions. Theoretical Computer Scienc#41:283 — 310, 1995.

[107] J. Simon and M. Szegedy. A new lower bound theorem fad+enly-once branching
programs and its applications. In J.-J. Cai, editatyances in Computational Complexity
Theory DIMACS Series in Discrete Mathematics and Theoretical QaenScience 13
183-193. American Mathematical Society, 1993.

[108] R. Szelepcsényi. The method of forced enumerationdadeterministic automatacta
Informatica 279-284, 1988.

[109] J. Thathachar. On separating the réatiimes branching program hierarchy. Rroc. of
the 30th Ann. ACM Symp. on Theory of Computing (STQZ98.

[110] S. Waack. On the descriptive and algorithmic power arfity ordered binary decision
diagrams. InProc. of the 14th Ann. Symp. on Theoretical Aspects of Canfdience
(STACS)LNCS 1200200 — 212. Springer-Verlag, 1997.

[111] I. Wegener. Optimal decision trees and one-time-tndnching programs for symmetric
Boolean functionsinformation and Contrql62(2/3):129-143, 1984.

140



[112] I. WegenerThe Complexity of Boolean Functiarf3eries in Computer Science. Wiley-
Teubner, Stuttgart, Chichester, 1987.

[113] I. Wegener. On the complexity of branching programd decision trees for clique func-
tions.Journal of the ACM35(2):461-471, Apr. 1988.

[114] J. H. Wilkinson.The Algebraic Eigenvalue Proble@larendon Press, Oxford, 1965.

[115] A. C. Yao. Some complexity questions related to disttive computing. IrProc. of the
11th Ann. ACM Symp. on Theory of Computing (STQG9 — 213, 1979.

[116] A. C. Yao. Lower bounds by probabilistic argumentsPlroc. of the 24th IEEE Symp.
on Foundations of Computer Science (FOCGE)0 — 428, 1983.

[117] S.Zak. An exponential lower bound for one-time-only bramghprograms. IrProc.
of the 11th Int. Symp. on Mathematical Foundations of CompS8tience (MFCS)
LNCS 176562-566. Springer-Verlag, 1984.

141



