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Abstract. We show that infinite objects can be constructively under-
stood without the consideration of partial elements, or greatest fixed-
points, through the explicit consideration of proof objects. We present
then a proof system based on these explanations. According to this anal-
ysis, the proof expressions should have the same structure as the program
expressions of a pure functional lazy language: variable, constructor, ap-
plication, abstraction, case expressions, and local let expressions.

1 Introduction

The usual explanation of infinite objects relies on the use of greatest fixed-points
of monotone operators, whose existence is justified by the impredicative proof
of Tarski’s fixed point theorem. The proof theory of such infinite objects, based
on the so called co-induction principle, originally due to David Park [21] and
explained with this name for instance in the paper [18], reflects this explanation.
Constructively, to rely on such impredicative methods is somewhat unsatisfac-
tory (see for instance the discussion in [13]) and this paper is a tentative attempt
for a more direct understanding of infinite objects. Interestingly, the explicit con-
sideration of proof objects plays an essential role here and this approach suggests
an alternative reasoning system. In particular, the notion of constructors, or in-
troduction rules, keeps the fundamental importance it has for proof systems
about well-founded objects [15], while it appears as a derived notion in proof
systems based on co-induction (where this notion is secondary to the notion of
destructors, or elimination rules). As a consequence, the strong normalisation
property does not hold any more, but it is still the case that any closed term
reduces to a canonical form.

Briefly, we can describe our approach as follows. A co-inductive predicate,
relation, ... 1s defined by its introduction rules. Following the proofs as programs
principle, we represent them as constructors of a functional language with de-
pendent types and each proof is now represented as a functional expression. Like
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in a programming language, we can define a function by recursion, which cor-
responds to a proof where the result we want to prove is used recursively. This
cannot be considered to be a valid proof in general, and has to satisfy some
conditions in order to be correct. We describe a simple syntactical check that
ensures this correctness, which we believe leads to a natural style of proofs about
infinite (or lazy) objects.

Since one important application we have in mind is the mechanisation of rea-
soning about programs and processes, we analyse in our formalism some concrete
examples from the literature [22, 18].

Besides to illustrate further the increasingly recognized importance of infinite
proofs for programming language semantics, we hope to show also that the addi-
tion of infinite objects is an interesting extension of Type Theory. In particular,
we can now represent a notion of processes in Type Theory.

2 General presentation

2.1 Type Theory of Well-Founded Objects

We recall briefly some basic notions of type theory of well-founded objects, that
will be important for the extension to infinite objects. We use the word “ex-
pressions” or “terms” for designing syntactical representations of such objects.
The books [20, 15] contain more detailed explanations, and the reference [3] de-
scribes the addition of case expressions and pattern-matching. We present first
these definitions in general terms, and will explicit them more in details in a
special instance when we present the guarded induction principle.

Computation Tree Semantics A(n inductive) set A is defined by its con-
structors. A closed term of type A can be thought of as a well-founded tree,
built out of constructors. We identify sets and propositions. The constructors
can be interpreted as introduction rules, and a closed proof of the proposition
A 1s a well-founded proof tree built out of introduction rules.

Besides terms purely built out of constructors, one needs also to consider
noncanonical expressions [15, 7]. The addition of such expressions is done in
such a way however that any closed term of a closed set can be reduced to a
canonical form, i.e. a term of the form ¢(ay, ..., a,) where ¢ is a constructor?.
We can then associate in a natural way to any term a tree built out of con-
structors, and we require this tree to be well-founded. This tree is called the
computation tree of a term. A component of a closed term is a (closed)
term of the same type that appears in its computation tree. This defines an
order relation on closed terms, called the component ordering.

What is essential is the fact that the component ordering is well-founded.

These notions can be traced back to Brouwer’s idea of the “fully analysed”
form of a proof [7].

2 Our notations will follow [20].



Examples The set N of integers is defined by its constructors 0 : N and s : (N)N.
A closed element of type N is thus a finite object of the form sk(O).

Let us consider a type P with constructors out : (N)(P)P, in : ((N)P)P and
nil : P. A closed element p : P has to be thought of as a well-founded tree built
with the constructors out, in and nil. For instance, if u(n) = out(n, nil), the term
in(u) has for components all the instances out(s*(0), nil) and nil.

The requirement that we should be able to think of all closed elements as a
tree, with a definite branching (that may be infinite), imposes strong restriction
on the type of the constructors. Thus, we cannot have a set X with a constructor
of type ((X)X)X or of type (((X)N)N)X. However, a condition of strict posi-
tivity [8] on the type of the constructors is enough to ensure that we can think
of elements as trees built out of constructors.

Noncanonical Constants We now give a general way of adding new non-
canonical constant. These additions will be such that it will be possible at each
“stages” to associate a well-founded proof tree to any closed object. A new con-
stant f is first given a type (z1 : A1,..., 2, : An)A, and then by its definition
flz1,...,2,) = e, where e is an expression built on previously defined constants
and case expressions. The definition may be recursive, but, using the seman-
tics of a term as a well-founded tree, we can ensure that the recursive calls are
well-founded and justify in such a way this recursivity. We notice, as in [6], that
there 1s a simple syntactical check that ensures this: there exists a lexicographic
ordering of the arguments of f, such that all recursive calls are well-founded for
the lexicographic extension of the component ordering.

Examples The Ackerman function A : (N)(N)N defined by the equation
A(0,n) = s(n), A(s(m),0) = A(m,s(0)), A(s(m),s(n)) = A(m, A(s(m),n)),

follows the schema of definition, since the recursive calls are always smaller for
the lexicographic ordering. We can thus add it as a noncanonical constant.

Soundness As noticed in [15], to follow this semantics of well-founded trees
will ensure that there is no closed term of type L, which is defined as a set with
no constructor. Indeed, there is by definition no canonical element of this type,
and hence no element that reduces to a canonical form.

This simple remark is important if we look at this set theory as a proof
system. Indeed, it expresses a form of consistency of this proof system. So, as
long as we add new rules that are justified w.r.t. this semantics in term of well-
founded trees, we are sure of the consistency of our rules.



2.2 Infinite Objects

Analogy between proofs and processes It is tempting to think of an object
of type P as a process p which has three possible behaviours: it can either emit
an integer and becomes py, when it is of the form out(n, p1), or express that it
needs an integer as input, if it is of the form in(w), or show that it is inert, if
it is of the form nil. In this reading, the computation tree of an element is the
“behaviour tree” [19] of the process associated to it.

With this reading, the restriction to well-founded objects seems too strong.
For the type P as defined above, this will mean that we consider only pro-
cesses that eventually become inert. This forbids for instance a process p =
in([n]out(s(n), p)) that interactively asks for an integer and outputs its succes-
sor.

It is thus quite natural to consider also lazy elements that can be thought
of as arbitrary, not necessarily well-founded, trees built out of constructors. In
particular, a lazy term eventually reduce to constructor form, and there cannot
be any lazy proof of L .

As we have seen, the consideration of such objects is common in the analysis
of processes [19]. The consideration of not necessarily well-founded objects arouse
also in proof theory, for the study of proofs in w-logic [9].

The process p = in([n]out(s(n), p)) recursively defined is a lazy element of the
set P. It makes also sense of considering lazy elements of the set {2, which has only
one constructor s : (§2)£2. The well-founded version of this type is empty, but the
set §2 contains the recursively defined lazy element w = s(w). An object is called
productive if we can associate a computation tree to it, without requiring this
computation tree to be well-founded. If # is a (productive) object of type {2, it
should reduce to an element » = s(x1) because s is the only constructor of the
set 2, and similarly #; should reduce to an element z; = s(z2), and so on.

We can now see well-founded objects as special cases of productive objects.
They are productive objects that are accessible for the component relation. If A
is a data type, we will write aeA for stressing that @ is a well-founded element
of A, and, in general, a : A for expressing only that a is a productive element
of A. Sometimes, we consider only well-founded elements of a data type A, for
instance if A 1s the data type N of natural numbers, and it is then understood
that @ : A means that a is well-founded.

Though this notion of productivity seems clear, at least in the case of finitely
branching trees, the main problem will be to give a finitary precise definition
of productivity. We will give this definition after reviewing some attempts in
adding infinite objects to type theory. Though simple, it is surprising that the
definition we shall present achieves this goal without infinitary considerations
based on greatest fixed-points or infinite ordinals®.

® This definition can be extracted from the paper [11], where the notion of “conver-
gence” corresponds to our notion of productivity.



Problem with the addition of infinite objects Some problems in adding
infinite objects in Type Theory are analysed by Martin-Lof in the reference
[16]. One basic problem can be expressed as follows: how to add infinite objects
without also adding partial objects, that is objects that do not reduce to a
canonical form? We recall that this condition was indeed crucial as a guarantee
of consistency of Type Theory seen as a proof system.

For instance, it is not correct to define a function f : (£2)2 by the equation
f(s(x)) = f(x), because then f(w) does not reduce to canonical form. In con-
trast, the definition f(s(x)) = s(f(x)) should be clearly allowed, because the
element f(z) is then productive if # : £2 is productive. Indeed, if # is productive,
we have a chain of equalities

r=s(z1), v1 = s(x2), 22 = s(x3z),. ..

which will give the chain equalities

fx) = s(f(x1)), (1) = s(f(22)), flx2) = s(f(23)),. ..

Is their a simple syntactical criteria that ensures the preservation of productivity,
which is not too restrictive?

In our analysis, a definition of the primitive recursive form

cannot be justified in general. Indeed, the justification of such a definition relies
ultimately on the fact that we consider only well-founded objects [15].

In [16], a different view is followed, based on an unexpected analogy between
the addition of infinite objects in type theory and non-standard extensions in
non-standard analysis. This explanation rejects circular definitions such as w =
s(w), but allow non well-founded definitions such as

wo = s(w1), wi = s(wa),...

In this approach, a definition like f(s(z)) = f(z) is allowed. This implies the
existence of closed terms that have no canonical form, namely f(wg). Despite
this problem, it is still possible however to establish the consistency of Type
Theory with such an extension [16].

In the next paragraph, we will suggest a proof principle which can also be
seen as a way of defining functions over not necessarily well-founded objects.
This new proof principle relies directly on the semantics of an object as a not
necessarily well-founded tree built out of constructors.



A key example At this point, the basic difficulty is to find a way of defining
functions that ensures that any instances of such functions on productive ele-
ments are productive. For this, the first step is of course to have a precise notion
of productivity.

In order to find this definition, let us analyse a key example. We consider the
function f : (P)P defined by the equations

F(nil) = nil, f(in(uw)) =in([n]f(u(n))), flout(n,p)) = out(n, f(p)).

It should be clear intuitively that f(p) is productive if p is productive. How can
we be convinced of this fact in a clear and rigourous way? One answer may be a
definition of productivity as a greatest fixed-point. While this answer is formally
satisfactory, it can be argued that its impredicative use of Tarski’s fixed point
theorem is not a satisfactory finitary explanation of infinite objects.

It can be noticed however that it is directly clear that f(p) reduces to a
canonical form if p is productive. Furthermore, we can see that all components
of f(p) are then of the form f(q), for some productive ¢ : P, or nil. This remark
suggests the definitions of the next section.

2.3 Guarded induction principle

Reducible elements In order to simplify the discussion, we suppose that we
have introduced only two data types, the data type N of expressions built on the
constructors s : (N)N and 0 : N, and the data type of lazy expressions P built on
constructors nil : P, in : ((neN)P)P, and out : (neN)(P)P. We hope that it is clear
how this discussion extends to the consideration on any inductively defined data

types.

Definition: We define what are the direct components of a closed ex-
pression p : P. If p reduces to nil, it has no direct component. If p reduces to
out(s*(0), ), it has for direct component g. If p reduces to in(u), it has for direct
components all u(s*(0)). A component of p is p itself or a component of one of
its direct component.

Definition: An element of type P is productive iff all its components reduce
either to nil, or to an element of the form in(u), or to an element of the form

out(s*(0), p).

We can then define when a close expression is reducible of type A, where
A is a type built from the data type N and P. An expression ¢ of type (A)B
is reducible iff the expression c¢(a) is reducible of type B when a is reducible of
type A. For the type N, it is simply to be convertible to a finite expression s*(0).
For the type P, it is to be productive.



Guarded definitions Let f be a constant of type
(z1: A, ... zp Ap)A,

where A is a set (ground data type). We will give a sufficient condition on
a recursive definition f(z1,...,2,) = e of f to ensure that f is a reducible
expression. For this, we define when f is guarded by at least n constructors an
expression e. It means intuitively that all occurences of f in e are of the form
flui,...,up) where f does not occur in any u;, and are all guarded by only
constructors and at least n constructors. This is by case analysis on e :

— if f does not occur in e, then f is guarded by at least n constructors in e,
for all n,

— if e is of the form e(uy, ..., ux) where ¢ is a constructor, then f is guarded
by at least n constructors in e iff n > 1 and f is guarded by at least n L 1
constructors in all u;, or n = 0 and f is guarded by at least 0 constructors
in all u;,

— if e is of the form [z]u, then f is guarded by at least n constructors in e iff
f 1s guarded by at least n constructors in u,

— if e is a case expression case(v,p1 — €1,...,pr — €k), then f is guarded by
at least n constructors in e iff f does not occur in v and f is guarded by at
least n constructors in all e;,

— if e is of the form f(u1,...,u,) and f does not occur in uy, ..., up, then, f
is guarded by at least 0 constructor in f(u1, ..., up).

Finally, we say that f is guarded in e iff f is guarded by at least n constructors
in e for some n > 1.

Guarded induction principle The guarded condition is well-known for the
recursive definition of processes [19]. The two important points here are first, its
justification based on an inductive notion of productivity, and second, its use as
a proof principle. In our setting, the importance of this notion comes from the
following result.

Theorem: If f : (z1 : A1,..., 2y : Ap)A, where A is a ground data type,
has a guarded recursive definition

fler, ..., 2n) =€,

where e 1s an expression built out only from f and reducible constants, then f
is reducible.

Proof: We illustrate this proof on the previous example, which 1s hopefully
generic enough. We consider f : (P)P defined by the equation

f(p) = case(p, nil = nilin(u) — in([n]f(u(n))), out(n, ¢) — out(n, f(¢))).

Since p is reducible, f(p) either reduces to nil, or to in([n]f(u(n))) if p reduces to
in(u) or to out(n, f(q)) if p reduces to out(n, q). Hence either f(p) reduces to nil,



or the direct components of f(p) are all of the form f(q), where ¢ is reducible.
Hence f(p) is productive if p is productive. This means that f is reducible.
Q.E.D.

This theorem can be read as a proof principle. In order to establish that a
proposition ¢ follows from other propositions ¢1, ..., ¢4, it is enough to build a
proof term e for it, using not only natural deduction, case analysis, and already
proven lemmas, but also using the proposition we want to prove recursively,
provided such a recursive call is guarded by introduction rules. We call this proof
principle the “guarded induction principle”. We hope to show by the examples
given below that this reasoning principle is quite flexible and intuitive in practice.

The guarded induction principle will ensure that all closed expressions are
reducible, and hence that they reduce to a canonical form. In particular, this
implies that there will be no closed proof of L . This is a way of expressing the
correctness of the guarded induction principle.

Some remarks on this proof principle First, it has to be noticed that this
criteria cannot accept nested occurences of the function, contrary to the well-
founded cases. Thus, we cannot define a function f : (£2)§2 by the equation

F(s(s(2))) = s(f(f(2))),

since the nested occurence of f in the right handside is not guarded. Indeed,
in this case, it can be checked that f(w) is not productive: since w reduces to
s(s(w)), the term f(w) has for component f(f(w)) and this term does not reduce
to canonical form.

Another remark is that we can combine this test with the previous test on
well-founded recursive calls, if some arguments are explicitely assumed to be well-
founded. This situation will occur in one example [18] analysed below, where an
infinite proof is defined by well-founded recursion over an evaluation relation.

Finally, this guarded condition may seem too restrictive, especially in the
definition of functions over infinite objects. Several programs on streams, even
if they preserve productivity, do not obey in general this guarded condition [26].
Here is a simple example. If we consider the set of streams of integer S with only
one constructor cons : (N)(S)S, we can define of the function map : ((N)N)(S)S
by the guarded equation

map(f, cons(x,1)) = cons(f(x), map(f,1)),
and thus consider the equation
u = cons(0, map(s, u)),

which should represent the stream cons(0, cons(s(0),...)). This definition is not
allowed because it 18 not guarded. Indeed, the occurence of u in the right handside
appears in map(s, u) and map is not a constructor.



We think that the situation is similar to the one of well-founded objects,
where the condition on structurally smaller recursive calls does not capture all
usual definitions of programs defined over well-founded objects (though its scope
is surprisingly large [3, 6]).

Though this does not seem to be the general case, some non guarded def-
initions can be turned easily in definitions that are guarded. For the previous
attempt of the definition of the stream cons(0,cons(s(0),...)), we can instead
first introduce the function v : (N)S by the guarded definition

v(n) = cons(n, v(s(n))),
and then u = v(0)%.

Furthermore, the first intended application is for reasoning about infinite
objects, and not for programming on them. For this application, the guarded
condition is enough to give a proof system at least as powerful as the one based
on co-induction, and seems more flexible on the examples we have tried. It is
actually by trying to understand intuitively what was going on in proofs by
co-induction that the guarded condition came out as a proof principle.

To summarize, what is important about the guarded condition is that it can
be ensured by a simple syntactical check, that it can be directly justified, and
that it seems to provide a powerful enough proof principle for reasoning about
infinite objects.

2.4 Reformulation with rule sets

In this section we express in an abstract way how one can understand inductively
a greatest fixed-point. We follow the terminology of [1].

We start with a set U of atoms and a set @ of rules, which are pairs (X, x)
such that X C U and # € U. We write ¢ : X — # to mean that (X, z) € &. An
element (X, z) € @ is called a rule of conclusion # and of premisses X. There
s a monotone operator ¢ associated to @, given by

$(YV)={eelU|P: X —uwfor X CY}.

The kernel of ¢ is given by
K(¢) = [J{X | X Co(X)).

This is the greatest fixed point of ¢.

% We introduce below a natural notion of equality between streams. This rela-
tion Eq is such that Eq(v(n),cons(n, map(s,v(n)))). We will show also that, con-
versely, Eq(l, cons(n, map(s,1))) implies Eq(l, v(n)). It can be proved that v(n) and
cons(n, map(s,v(n))) are not convertible as expressions. Intuitively, any conversion
derivation is finite, and any proof of equality of these two expressions has to be
infinite.



We now give a purely inductive description of K(¢) in the case where @ is
deterministic, i.e. when @ : X7 — 2z and @ : X5 — 2z entail X; = X5.

First, we define Sg(x) as the set of y € U such that there exists @ : X — x
with y € X. Let z € 535(1‘) mean that z = « or inductively that z € S%(y) for
some y € Sg(x). An element of Sg(x) is called a direct component of x, and
an element of S%(z) a component of x. Let C(¢) C U be the set of x € U
such that there exists a rule of conclusion @. This defines the set of canonical
elements. The alternative description of K(¢) is

K'(¢) ={x €U | 5p(x) C C(¢)},
that is, K'(¢) is the set of elements whose components are all canonical.
Theorem: K(¢) = K'(¢).
Proof: If A C ¢(A) and = € A, then we have A C C(¢) and 535(1‘) C A,

using the fact that @ is deterministic, and hence all the components of z are
canonical. This shows the inclusion K(¢) € K'(¢). Conversely, the inclusion
K'(¢) C ¢(K'(¢)) holds in general, and hence K'(¢) C K(¢), without any
hypothesis on ¢. Q.E.D

This theorem shows how it is possible to define the kernel of a rule set in a
predicative way, namely as K'(¢), despite the fact that its usual definition as
K(¢) is not predicative. (We take here “predicative” as defined for instance in

[14]).

3 Simple examples of proofs and programs

3.1 Divergence
We introduce the following set of expressions
0: Exp, s: (Exp)Exp, w : Exp,
and the following inductively defined relation
e; : Eval(0,0), ey : (x : Exp)Eval(s(x),s(z)), es : Eval(w,s(w)),
and the following predicate

inf: (2, y - Exp)(Eval(z,s(y)))(Inf(y))Inf(z).
The term
Poo © Inf(w)
is defined by the guarded equation
Poo = inf(w,w, €3, poo),

and is thus a lazy proof of Inf(w).



Though this example is quite simple, it illustrates one difference between
the present proof system and proofs based on co-induction. A proof that w is
divergent using co-induction will consist in finding a predicate P, which holds for
w, such that P(z) implies that there exists y such Eval(z, y) and P(y). Thus, one
has to find an “invariant” predicate. By contrast, the present approach does not
involve the search of suitable predicates, but analyses the problem by looking at
the introduction rule for the predicate Inf>.

3.2 Abstract divergence

In general, if we start with a set A with a binary relation R, one can describe
inductively the predicate of accessibility

acc: (z: A)((y : A)(R(x, y))Acc(y))Acc(z),
of which we consider only well-founded elements, and the predicate of divergence

inf: (z,y: A)(R(z, v))(Inf(y))Inf(z).

Classically, these subsets form a partition of A. In the present intuitionistic
framework, one cannot expect in general to have a proof of

(z : A)[Acc(z) + Inf(x)].

In particular, we cannot derive in our system some results of [12], which
establish the equivalence of two notions of divergence using the fact that an
element either diverges or converges. It seems quite interesting to investigate
this problem more in detail from an intuitionistic point of view (our guess is
that this equivalence is not really used, and the non equivalence indicates only
that the stronger notion of divergence is the correct intuitionistic notion).

It is however possible to show that these subsets are disjoint, by defining
¢ (x: A)(Ace(z))(Inf(2)) L
with the following equation

é(x,ace(x, f),inf(z,y,q,7)) = oy, f(y,q),7),

which is well-founded because the recursive call of ¢ is smaller on its second
argument, which is supposed to be well-founded.

5 Of course, it may be that the proposition we try to prove cannot be proved by case
analysis only, and we may have to find appropriate lemmas. We hope however that,
both for well-founded and infinite objects, the process of finding these lemmas can
be helped by such an analysis.



3.3 Representation of an unreliable medium

We want to build an element m : P that can be thought of as an unreliable
medium: it asks first for an integer input, and either forgets it, or outputs it,
and this recursively. For this, we introduce an infinite oracle set C with two
constructors 0 : (C)Cand 1: (C)C. An object of the set C can thus be thought of
as an infinite stream of the form 0(1(0(0(...)))), and in this case, the computation
tree of a term is similar to the binary development of a real number.

The following equations define a function m : (C)P

m(0(z)) = in([n]m(z)), m(1(x)) = in([n]out(n, m(x))),
since these equations satisfy the guarded condition.

What is important about this representation is that we will be able to define
by a predicate on C when an element of C contains infinitely many ones, and
hence to specify when an unreliable medium is fair.

3.4 Definition of co-recursion

We now show on one example how to translate co-induction and co-recursion in
our proof system. We suppose given a map f : (X)[X 4+ X] and we want to build
from this a map corec(f) : (X)C satisfying the usual co-recursive equations [22].
For this, we define first ¢ : (X 4+ X)C by the guarded equations

¢(inl(z)) = 0(¢(f(x))) @(inr(x)) = e (f(2)))-

One can then check that corec(f)(x) = ¢(f(x)) is such that corec(f)(x) =
0(corec(f)(y)) when f(z) is of the form inl(y) and corec(f)(x) = 1(corec(f)(y))
when f(x) is of the form inr(y). Hence, we have a representation of co-recursion
over the set C.

This indicates how one can develop a realisability semantics of co-induction
with streams (see [27] and [24]) in such a way that an element of a coinductive
type is interpreted by a productive element.

3.5 Fairness

We introduce an inductively defined predicate Event; on C, such that Event; (x, y)
means that z is of the form = 0(0(...0(1(y)) ...)). We have two introduction
rules

dy : (x: C)Eventy(1(x),z), e :(x,y:C)(Eventy(x,y))Event; (0(x),y).

A well-founded proof of Eventy(z,y) has to be thought of as a finite term of the
form

e (z1,y, ..., e1(rn_1,9,d1(y)...),
with © = 0(z1), #1 = 0(x2),...,2n—1 = L(y).



Using the inductively defined predicate Event;, we can now introduce the
predicate Infy (#) which means that # contains infinitely many ones in its devel-
opment. It has only one introduction rule:

infy : (z,y: C)(Eventy(z,y))(Inf(y))Infy (2),

and a proof of Infy(zg) should be thought of as an infinite proof term of the form

inf (2o, £1, p1,infi (21, 22, pa, infi (.. .)))

where py, is a proof of Eventy (2p_1, #,). This corresponds closely to the intuition
of what it means for such a stream to have infinitely many ones.

A fair unreliable medium will then be defined as a medium m(x) : P, together
with a proof of Inf(z).

It may be interesting to see how far such ideas can be adapted to the repre-
sentation of proofs about a process system like CBS, which can be simulated in
a simple way in a lazy functional language [23].

3.6 Proof about the list of iterates

This example is taken from [22]. We define first a relation on the set of stream
of integers with the only constructor

eq: (n:N)(l1,l2 : S)(Eq(l1,!2))Eq(cons(n,{1), cons(n,l2)).

As a parenthesis, let us illustrate further our proof principle by showing that
Eq is transitive. For this, we declare

trans : (11, 12, 13 : S)(Eq(ll, lz))(Eq(lz, lg))Eq(ll, 13),
and define it by the guarded equation
trans(cons(n, 1), cons(n,ls), cons(n,l3),eq(n, 1, l2, p),eq(n,l2, 13, q))

=eq(n,li, I3, trans(ly,ls,13,p, q)).

Notice finally that if we have a closed infinite proof of Eq(l1,l2), then the two
infinite terms [y and [; have the same computation tree. This relation Eq is
analogous to bisimulation equivalence [19].

We end this parenthesis, and present the problem: it is to show that, if we
define v : (N)S by the guarded equation

v(n) = cons(n, v(s(n))),
and map : ((N)N)(S)S is defined by the guarded equation

map(f, cons(n,l)) = cons(f(n), map(f,1)),
then we have Eq(lg, v(0)) if Eq(lo, cons(0, map(s,{y))).



For this, we define a function
f(n:N)(:S)(Eq(l, cons(n, map(s,!))))Eq(l, v(n))
by the guarded equation

f(n,cons(n,l),eq(n,l,cons(s(n), map(s,!)), h))

=eq(n,l,v(s(n)), f(s(n), !, h)).
We have then
F(0,lg, k) : Eq(lo,v(0)) [h: Eq(lo, cons(0, map(s,y)))].

We can read this proof as a program that transforms a (lazy) proof tree which
establishes Eq(lg, v(0)) to a proof tree that establishes Eq(ly, map(s,{y)). Both
proof trees furthermore are infinite and built only with the introduction rule

Eq(llaZZ)
Eq(cons(n, 1), cons(n,ls))’

3.7 Soundness of a type inference system

As test examples, we have represented in a mechanized system the problem of
soundness of a type inference system analysed in [18]. This corresponds to using
the present version of type theory with possibly infinite objects instead of Peter
Aczel’s non-well-founded set theory [2].

We shall not describe the proof in detail, but only emphasize some points,
using freely the notation of [18]. In our formalism, it is directly justified to
introduce an object c¢l,, with the computation rule

oo =< z,exp, E+{f—clo} > .
The relation v : 7 given by the rule (15) of the paper [18] is seen in our formalism
as the introduction rule for a relation between expressions and types. Thus, in
the case of recursion, rule 6, page 217 (which is the only case where our proof
differs), we see the problem of proving ¢l : 7 as the problem of building an
infinite proof tree ending with ¢l : 7. But this is direct, using

eloo =< z,exp, B+ {f—clo} >

and the fact that it is allowed/guarded to use recursively ¢l : 7.



4 Mechanization

We now discuss briefly the mechanization of the present system, and how to
use it in the design an interactive proof search. This section is still tentative,
and only partial implementations of the ideas described here have been tried on
machine so far.

The starting point is to consider the logical framework as described in [20]
as a type system that refines the type system of a lazy programming language.
Thus the first step is to have a lazy functional language (like haskell or lml)
with dependent types. In particular, we can, like in a lazy functional language,
introduce new data types with their constructors. The typing relation z : A will
mean that x is a lazy element of the data type A, and we have to use another
notation, for instance zeA, for expressing that z is a well-founded element of
the data type A. An alternative notation is to have only one typing judgement,
and to have two kind of data types, ones that have only well-founded elements,
and ones that may have productive elements. We can then associate to any data
type of the second kind its well-founded part.

In general, of course, the definition of recursive programs,/proofs can lead to
inconsistent reasonings. We need to introduce the notion of correct environment.
The present paper gives a sufficient syntactic condition, to be guarded, for an
environment to be valid w.r.t. the semantic of terms as productive objects. This
check ensures in particular the consistency of an environment seen as a logical
theory, and is complementary to the check of structurally smaller recursive calls
[3, 6] for well-founded arguments.

We believe that this system leads to an intuitive interactive proof system,
well-suited for providing a mechanical help in the development of proofs in re-
lational (or natural) semantics [18]. The user introduces new sets, predicates,
relations defined by their introduction rule. We remark that, in practice and
probably because it is clearer, in [12, 4], the relations are not given by their
elimination rules, but by their introduction rules.

When one wants to prove a result, or builds a noncanonical function, one
first gives to it a name and a type. The use of case expression corresponds to the
analysis of the hypotheses. This analysis generates subgoals that can be further
analysed until we can write a solution. The possibility of declaring and proving
local lemmas (that can be themselves recursively defined) corresponds to the
addition of a local let construct in our proof term language. Recursive reasoning
1s allowed, and the system points out when it may lead to an inconsistency.

Conclusion

We hope to have shown that the guarded proof induction principle i1s a quite
natural way of reasoning about infinite objects. The duality between the guarded
conditions for infinite objects and the structurally smaller conditions [6, 3] com-
plements the categorical duality between initial and final objects that is the basis
of the notion of co-inductive definition [2, 17].



One main point of this paper, which goes back to the work of Lars Hallnas
[10], is that the impredicative notions that seem necessary in dealing with infi-
nite objects, typically the use of greatest fixed-point or infinite ordinals, can be
avoided altogether by explicit consideration of proof objects. Though it was not
originally conceived with this remark in mind, the proof system we present can
be seen as a further illustration of this basic idea®.
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