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In�nite Objects in Type TheoryThierry CoquandProgramming Methodology Group. Department of Computer Sciences. ChalmersUniversity of Technology and University of G�oteborg. S-412 96 G�oteborg, Swedene-mail coquand@cs.chalmers.seAbstract. We show that in�nite objects can be constructively under-stood without the consideration of partial elements, or greatest �xed-points, through the explicit consideration of proof objects. We presentthen a proof system based on these explanations. According to this anal-ysis, the proof expressions should have the same structure as the programexpressions of a pure functional lazy language: variable, constructor, ap-plication, abstraction, case expressions, and local let expressions.1 IntroductionThe usual explanation of in�nite objects relies on the use of greatest �xed-pointsof monotone operators, whose existence is justi�ed by the impredicative proofof Tarski's �xed point theorem. The proof theory of such in�nite objects, basedon the so called co-induction principle, originally due to David Park [21] andexplained with this name for instance in the paper [18], reects this explanation.Constructively, to rely on such impredicative methods is somewhat unsatisfac-tory (see for instance the discussion in [13]) and this paper is a tentative attemptfor a more direct understanding of in�nite objects. Interestingly, the explicit con-sideration of proof objects plays an essential rôle here and this approach suggestsan alternative reasoning system. In particular, the notion of constructors, or in-troduction rules, keeps the fundamental importance it has for proof systemsabout well-founded objects [15], while it appears as a derived notion in proofsystems based on co-induction (where this notion is secondary to the notion ofdestructors, or elimination rules). As a consequence, the strong normalisationproperty does not hold any more, but it is still the case that any closed termreduces to a canonical form.Briey, we can describe our approach as follows. A co-inductive predicate,relation, : : : is de�ned by its introduction rules. Following the proofs as programsprinciple, we represent them as constructors of a functional language with de-pendent types and each proof is now represented as a functional expression. Like? This research has been done within the ESPRIT Basic Research Action \Types forProofs and Programs". It has been paid by NUTEK, Chalmers and the Universityof G�oteborg.



in a programming language, we can de�ne a function by recursion, which cor-responds to a proof where the result we want to prove is used recursively. Thiscannot be considered to be a valid proof in general, and has to satisfy someconditions in order to be correct. We describe a simple syntactical check thatensures this correctness, which we believe leads to a natural style of proofs aboutin�nite (or lazy) objects.Since one important application we have in mind is the mechanisation of rea-soning about programs and processes, we analyse in our formalismsome concreteexamples from the literature [22, 18].Besides to illustrate further the increasingly recognized importance of in�niteproofs for programming language semantics, we hope to show also that the addi-tion of in�nite objects is an interesting extension of Type Theory. In particular,we can now represent a notion of processes in Type Theory.2 General presentation2.1 Type Theory of Well-Founded ObjectsWe recall briey some basic notions of type theory of well-founded objects, thatwill be important for the extension to in�nite objects. We use the word \ex-pressions" or \terms" for designing syntactical representations of such objects.The books [20, 15] contain more detailed explanations, and the reference [3] de-scribes the addition of case expressions and pattern-matching. We present �rstthese de�nitions in general terms, and will explicit them more in details in aspecial instance when we present the guarded induction principle.Computation Tree Semantics A(n inductive) set A is de�ned by its con-structors. A closed term of type A can be thought of as a well-founded tree,built out of constructors. We identify sets and propositions. The constructorscan be interpreted as introduction rules, and a closed proof of the propositionA is a well-founded proof tree built out of introduction rules.Besides terms purely built out of constructors, one needs also to considernoncanonical expressions [15, 7]. The addition of such expressions is done insuch a way however that any closed term of a closed set can be reduced to acanonical form, i.e. a term of the form c(a1; : : : ; an) where c is a constructor2.We can then associate in a natural way to any term a tree built out of con-structors, and we require this tree to be well-founded. This tree is called thecomputation tree of a term. A component of a closed term is a (closed)term of the same type that appears in its computation tree. This de�nes anorder relation on closed terms, called the component ordering.What is essential is the fact that the component ordering is well-founded.These notions can be traced back to Brouwer's idea of the \fully analysed"form of a proof [7].2 Our notations will follow [20].



Examples The set N of integers is de�ned by its constructors 0 : N and s : (N)N:A closed element of type N is thus a �nite object of the form sk(0):Let us consider a type P with constructors out : (N)(P)P; in : ((N)P)P andnil : P: A closed element p : P has to be thought of as a well-founded tree builtwith the constructors out; in and nil: For instance, if u(n) = out(n; nil); the termin(u) has for components all the instances out(sk(0); nil) and nil:The requirement that we should be able to think of all closed elements as atree, with a de�nite branching (that may be in�nite), imposes strong restrictionon the type of the constructors. Thus, we cannot have a set X with a constructorof type ((X)X)X or of type (((X)N)N)X: However, a condition of strict posi-tivity [8] on the type of the constructors is enough to ensure that we can thinkof elements as trees built out of constructors.Noncanonical Constants We now give a general way of adding new non-canonical constant. These additions will be such that it will be possible at each\stages" to associate a well-founded proof tree to any closed object. A new con-stant f is �rst given a type (x1 : A1; : : : ; xn : An)A; and then by its de�nitionf(x1; : : : ; xn) = e; where e is an expression built on previously de�ned constantsand case expressions. The de�nition may be recursive, but, using the seman-tics of a term as a well-founded tree, we can ensure that the recursive calls arewell-founded and justify in such a way this recursivity. We notice, as in [6], thatthere is a simple syntactical check that ensures this: there exists a lexicographicordering of the arguments of f; such that all recursive calls are well-founded forthe lexicographic extension of the component ordering.Examples The Ackerman function A : (N)(N)N de�ned by the equationA(0; n) = s(n); A(s(m); 0) = A(m; s(0)); A(s(m); s(n)) = A(m;A(s(m); n));follows the schema of de�nition, since the recursive calls are always smaller forthe lexicographic ordering. We can thus add it as a noncanonical constant.Soundness As noticed in [15], to follow this semantics of well-founded treeswill ensure that there is no closed term of type ?; which is de�ned as a set withno constructor. Indeed, there is by de�nition no canonical element of this type,and hence no element that reduces to a canonical form.This simple remark is important if we look at this set theory as a proofsystem. Indeed, it expresses a form of consistency of this proof system. So, aslong as we add new rules that are justi�ed w.r.t. this semantics in term of well-founded trees, we are sure of the consistency of our rules.



2.2 In�nite ObjectsAnalogy between proofs and processes It is tempting to think of an objectof type P as a process p which has three possible behaviours: it can either emitan integer and becomes p1; when it is of the form out(n; p1); or express that itneeds an integer as input, if it is of the form in(u); or show that it is inert, ifit is of the form nil: In this reading, the computation tree of an element is the\behaviour tree" [19] of the process associated to it.With this reading, the restriction to well-founded objects seems too strong.For the type P as de�ned above, this will mean that we consider only pro-cesses that eventually become inert. This forbids for instance a process p =in([n]out(s(n); p)) that interactively asks for an integer and outputs its succes-sor.It is thus quite natural to consider also lazy elements that can be thoughtof as arbitrary, not necessarily well-founded, trees built out of constructors. Inparticular, a lazy term eventually reduce to constructor form, and there cannotbe any lazy proof of ? :As we have seen, the consideration of such objects is common in the analysisof processes [19]. The consideration of not necessarily well-founded objects arousealso in proof theory, for the study of proofs in !-logic [9].The process p = in([n]out(s(n); p)) recursively de�ned is a lazy element of theset P: It makes also sense of considering lazy elements of the set 
;which has onlyone constructor s : (
)
: The well-founded version of this type is empty, but theset 
 contains the recursively de�ned lazy element ! = s(!): An object is calledproductive if we can associate a computation tree to it, without requiring thiscomputation tree to be well-founded. If x is a (productive) object of type 
; itshould reduce to an element x = s(x1) because s is the only constructor of theset 
, and similarly x1 should reduce to an element x1 = s(x2), and so on.We can now see well-founded objects as special cases of productive objects.They are productive objects that are accessible for the component relation. If Ais a data type, we will write a�A for stressing that a is a well-founded elementof A; and, in general, a : A for expressing only that a is a productive elementof A: Sometimes, we consider only well-founded elements of a data type A; forinstance if A is the data type N of natural numbers, and it is then understoodthat a : A means that a is well-founded.Though this notion of productivity seems clear, at least in the case of �nitelybranching trees, the main problem will be to give a �nitary precise de�nitionof productivity. We will give this de�nition after reviewing some attempts inadding in�nite objects to type theory. Though simple, it is surprising that thede�nition we shall present achieves this goal without in�nitary considerationsbased on greatest �xed-points or in�nite ordinals3.3 This de�nition can be extracted from the paper [11], where the notion of \conver-gence" corresponds to our notion of productivity.



Problem with the addition of in�nite objects Some problems in addingin�nite objects in Type Theory are analysed by Martin-L�of in the reference[16]. One basic problem can be expressed as follows: how to add in�nite objectswithout also adding partial objects, that is objects that do not reduce to acanonical form? We recall that this condition was indeed crucial as a guaranteeof consistency of Type Theory seen as a proof system.For instance, it is not correct to de�ne a function f : (
)
 by the equationf(s(x)) = f(x); because then f(!) does not reduce to canonical form. In con-trast, the de�nition f(s(x)) = s(f(x)) should be clearly allowed, because theelement f(x) is then productive if x : 
 is productive. Indeed, if x is productive,we have a chain of equalitiesx = s(x1); x1 = s(x2); x2 = s(x3); : : :which will give the chain equalitiesf(x) = s(f(x1)); f(x1) = s(f(x2)); f(x2) = s(f(x3)); : : :Is their a simple syntactical criteria that ensures the preservation of productivity,which is not too restrictive?In our analysis, a de�nition of the primitive recursive formf(s(x)) = g(x; f(x))cannot be justi�ed in general. Indeed, the justi�cation of such a de�nition reliesultimately on the fact that we consider only well-founded objects [15].In [16], a di�erent view is followed, based on an unexpected analogy betweenthe addition of in�nite objects in type theory and non-standard extensions innon-standard analysis. This explanation rejects circular de�nitions such as ! =s(!); but allow non well-founded de�nitions such as!0 = s(!1); !1 = s(!2); : : :In this approach, a de�nition like f(s(x)) = f(x) is allowed. This implies theexistence of closed terms that have no canonical form, namely f(!0). Despitethis problem, it is still possible however to establish the consistency of TypeTheory with such an extension [16].In the next paragraph, we will suggest a proof principle which can also beseen as a way of de�ning functions over not necessarily well-founded objects.This new proof principle relies directly on the semantics of an object as a notnecessarily well-founded tree built out of constructors.



A key example At this point, the basic di�culty is to �nd a way of de�ningfunctions that ensures that any instances of such functions on productive ele-ments are productive. For this, the �rst step is of course to have a precise notionof productivity.In order to �nd this de�nition, let us analyse a key example. We consider thefunction f : (P)P de�ned by the equationsf(nil) = nil; f(in(u)) = in([n]f(u(n))); f(out(n; p)) = out(n; f(p)):It should be clear intuitively that f(p) is productive if p is productive. How canwe be convinced of this fact in a clear and rigourous way? One answer may be ade�nition of productivity as a greatest �xed-point. While this answer is formallysatisfactory, it can be argued that its impredicative use of Tarski's �xed pointtheorem is not a satisfactory �nitary explanation of in�nite objects.It can be noticed however that it is directly clear that f(p) reduces to acanonical form if p is productive. Furthermore, we can see that all componentsof f(p) are then of the form f(q); for some productive q : P; or nil: This remarksuggests the de�nitions of the next section.2.3 Guarded induction principleReducible elements In order to simplify the discussion, we suppose that wehave introduced only two data types, the data type N of expressions built on theconstructors s : (N)N and 0 : N; and the data type of lazy expressions P built onconstructors nil : P; in : ((n�N)P)P; and out : (n�N)(P)P:We hope that it is clearhow this discussion extends to the consideration on any inductively de�ned datatypes.De�nition: We de�ne what are the direct components of a closed ex-pression p : P: If p reduces to nil; it has no direct component. If p reduces toout(sk(0); q); it has for direct component q: If p reduces to in(u); it has for directcomponents all u(sk(0)): A component of p is p itself or a component of one ofits direct component.De�nition:An element of type P is productive i� all its components reduceeither to nil; or to an element of the form in(u); or to an element of the formout(sk(0); p):We can then de�ne when a close expression is reducible of type A; whereA is a type built from the data type N and P: An expression c of type (A)Bis reducible i� the expression c(a) is reducible of type B when a is reducible oftype A. For the type N; it is simply to be convertible to a �nite expression sk(0):For the type P; it is to be productive.



Guarded de�nitions Let f be a constant of type(x1 : A1; : : : ; xp : Ap)A;where A is a set (ground data type). We will give a su�cient condition ona recursive de�nition f(x1; : : : ; xp) = e of f to ensure that f is a reducibleexpression. For this, we de�ne when f is guarded by at least n constructors anexpression e: It means intuitively that all occurences of f in e are of the formf(u1; : : : ; up) where f does not occur in any ui; and are all guarded by onlyconstructors and at least n constructors. This is by case analysis on e :{ if f does not occur in e, then f is guarded by at least n constructors in e;for all n,{ if e is of the form c(u1; : : : ; uk) where c is a constructor, then f is guardedby at least n constructors in e i� n � 1 and f is guarded by at least n� 1constructors in all ui; or n = 0 and f is guarded by at least 0 constructorsin all ui;{ if e is of the form [x]u; then f is guarded by at least n constructors in e i�f is guarded by at least n constructors in u;{ if e is a case expression case(v; p1 ! e1; : : : ; pk ! ek); then f is guarded byat least n constructors in e i� f does not occur in v and f is guarded by atleast n constructors in all ei;{ if e is of the form f(u1; : : : ; up) and f does not occur in u1; : : : ; up; then, fis guarded by at least 0 constructor in f(u1; : : : ; up):Finally, we say that f is guarded in e i� f is guarded by at least n constructorsin e for some n � 1:Guarded induction principle The guarded condition is well-known for therecursive de�nition of processes [19]. The two important points here are �rst, itsjusti�cation based on an inductive notion of productivity, and second, its use asa proof principle. In our setting, the importance of this notion comes from thefollowing result.Theorem: If f : (x1 : A1; : : : ; xn : An)A; where A is a ground data type,has a guarded recursive de�nitionf(x1; : : : ; xn) = e;where e is an expression built out only from f and reducible constants, then fis reducible.Proof: We illustrate this proof on the previous example, which is hopefullygeneric enough. We consider f : (P)P de�ned by the equationf(p) = case(p; nil ! nil; in(u)! in([n]f(u(n))); out(n; q)! out(n; f(q))):Since p is reducible, f(p) either reduces to nil; or to in([n]f(u(n))) if p reduces toin(u) or to out(n; f(q)) if p reduces to out(n; q): Hence either f(p) reduces to nil;



or the direct components of f(p) are all of the form f(q); where q is reducible.Hence f(p) is productive if p is productive. This means that f is reducible.Q.E.D.This theorem can be read as a proof principle. In order to establish that aproposition � follows from other propositions �1; : : : ; �q; it is enough to build aproof term e for it, using not only natural deduction, case analysis, and alreadyproven lemmas, but also using the proposition we want to prove recursively,provided such a recursive call is guarded by introduction rules. We call this proofprinciple the \guarded induction principle". We hope to show by the examplesgiven below that this reasoning principle is quite exible and intuitive in practice.The guarded induction principle will ensure that all closed expressions arereducible, and hence that they reduce to a canonical form. In particular, thisimplies that there will be no closed proof of ? : This is a way of expressing thecorrectness of the guarded induction principle.Some remarks on this proof principle First, it has to be noticed that thiscriteria cannot accept nested occurences of the function, contrary to the well-founded cases. Thus, we cannot de�ne a function f : (
)
 by the equationf(s(s(x))) = s(f(f(x)));since the nested occurence of f in the right handside is not guarded. Indeed,in this case, it can be checked that f(!) is not productive: since ! reduces tos(s(!)), the term f(!) has for component f(f(!)) and this term does not reduceto canonical form.Another remark is that we can combine this test with the previous test onwell-founded recursive calls, if some arguments are explicitely assumed to be well-founded. This situation will occur in one example [18] analysed below, where anin�nite proof is de�ned by well-founded recursion over an evaluation relation.Finally, this guarded condition may seem too restrictive, especially in thede�nition of functions over in�nite objects. Several programs on streams, evenif they preserve productivity, do not obey in general this guarded condition [26].Here is a simple example. If we consider the set of streams of integer S with onlyone constructor cons : (N)(S)S; we can de�ne of the function map : ((N)N)(S)Sby the guarded equationmap(f; cons(x; l)) = cons(f(x);map(f; l));and thus consider the equationu = cons(0;map(s; u));which should represent the stream cons(0; cons(s(0); : : :)): This de�nition is notallowed because it is not guarded. Indeed, the occurence of u in the right handsideappears in map(s; u) and map is not a constructor.



We think that the situation is similar to the one of well-founded objects,where the condition on structurally smaller recursive calls does not capture allusual de�nitions of programs de�ned over well-founded objects (though its scopeis surprisingly large [3, 6]).Though this does not seem to be the general case, some non guarded def-initions can be turned easily in de�nitions that are guarded. For the previousattempt of the de�nition of the stream cons(0; cons(s(0); : : :)); we can instead�rst introduce the function v : (N)S by the guarded de�nitionv(n) = cons(n; v(s(n)));and then u = v(0)4.Furthermore, the �rst intended application is for reasoning about in�niteobjects, and not for programming on them. For this application, the guardedcondition is enough to give a proof system at least as powerful as the one basedon co-induction, and seems more exible on the examples we have tried. It isactually by trying to understand intuitively what was going on in proofs byco-induction that the guarded condition came out as a proof principle.To summarize, what is important about the guarded condition is that it canbe ensured by a simple syntactical check, that it can be directly justi�ed, andthat it seems to provide a powerful enough proof principle for reasoning aboutin�nite objects.2.4 Reformulation with rule setsIn this section we express in an abstract way how one can understand inductivelya greatest �xed-point. We follow the terminology of [1].We start with a set U of atoms and a set � of rules, which are pairs (X;x)such that X � U and x 2 U: We write � : X 7! x to mean that (X;x) 2 �: Anelement (X;x) 2 � is called a rule of conclusion x and of premissesX: Thereis a monotone operator � associated to �; given by�(Y ) = fx 2 U j � : X 7! x for X � Y g:The kernel of � is given byK(�) =[fX j X � �(X)g:This is the greatest �xed point of �:4 We introduce below a natural notion of equality between streams. This rela-tion Eq is such that Eq(v(n); cons(n;map(s; v(n)))): We will show also that, con-versely, Eq(l; cons(n;map(s; l))) implies Eq(l; v(n)): It can be proved that v(n) andcons(n;map(s; v(n))) are not convertible as expressions. Intuitively, any conversionderivation is �nite, and any proof of equality of these two expressions has to bein�nite.



We now give a purely inductive description of K(�) in the case where � isdeterministic, i.e. when � : X1 7! x and � : X2 7! x entail X1 = X2:First, we de�ne S�(x) as the set of y 2 U such that there exists � : X 7! xwith y 2 X: Let z 2 S��(x) mean that z = x or inductively that z 2 S��(y) forsome y 2 S�(x): An element of S�(x) is called a direct component of x, andan element of S��(x) a component of x: Let C(�) � U be the set of x 2 Usuch that there exists a rule of conclusion x: This de�nes the set of canonicalelements. The alternative description of K(�) isK 0(�) = fx 2 U j S��(x) � C(�)g;that is, K 0(�) is the set of elements whose components are all canonical.Theorem: K(�) = K 0(�):Proof: If A � �(A) and x 2 A; then we have A � C(�) and S��(x) � A;using the fact that � is deterministic, and hence all the components of x arecanonical. This shows the inclusion K(�) � K 0(�): Conversely, the inclusionK0(�) � �(K 0(�)) holds in general, and hence K 0(�) � K(�); without anyhypothesis on �: Q.E.DThis theorem shows how it is possible to de�ne the kernel of a rule set in apredicative way, namely as K 0(�); despite the fact that its usual de�nition asK(�) is not predicative. (We take here \predicative" as de�ned for instance in[14]).3 Simple examples of proofs and programs3.1 DivergenceWe introduce the following set of expressions0 : Exp; s : (Exp)Exp; ! : Exp;and the following inductively de�ned relatione1 : Eval(0; 0); e2 : (x : Exp)Eval(s(x); s(x)); e3 : Eval(!; s(!));and the following predicateinf : (x; y : Exp)(Eval(x; s(y)))(Inf(y))Inf(x):The term p1 : Inf(!)is de�ned by the guarded equationp1 = inf(!; !; e3; p1);and is thus a lazy proof of Inf(!):



Though this example is quite simple, it illustrates one di�erence betweenthe present proof system and proofs based on co-induction. A proof that ! isdivergent using co-induction will consist in �nding a predicate P , which holds for!, such that P (x) implies that there exists y such Eval(x; y) and P (y): Thus, onehas to �nd an \invariant" predicate. By contrast, the present approach does notinvolve the search of suitable predicates, but analyses the problem by looking atthe introduction rule for the predicate Inf5.3.2 Abstract divergenceIn general, if we start with a set A with a binary relation R; one can describeinductively the predicate of accessibilityacc : (x : A)((y : A)(R(x; y))Acc(y))Acc(x);of which we consider only well-founded elements, and the predicate of divergenceinf : (x; y : A)(R(x; y))(Inf(y))Inf(x):Classically, these subsets form a partition of A: In the present intuitionisticframework, one cannot expect in general to have a proof of(x : A)[Acc(x) + Inf(x)]:In particular, we cannot derive in our system some results of [12], whichestablish the equivalence of two notions of divergence using the fact that anelement either diverges or converges. It seems quite interesting to investigatethis problem more in detail from an intuitionistic point of view (our guess isthat this equivalence is not really used, and the non equivalence indicates onlythat the stronger notion of divergence is the correct intuitionistic notion).It is however possible to show that these subsets are disjoint, by de�ning� : (x : A)(Acc(x))(Inf(x)) ?with the following equation�(x; acc(x; f); inf(x; y; q; r)) = �(y; f(y; q); r);which is well-founded because the recursive call of � is smaller on its secondargument, which is supposed to be well-founded.5 Of course, it may be that the proposition we try to prove cannot be proved by caseanalysis only, and we may have to �nd appropriate lemmas. We hope however that,both for well-founded and in�nite objects, the process of �nding these lemmas canbe helped by such an analysis.



3.3 Representation of an unreliable mediumWe want to build an element m : P that can be thought of as an unreliablemedium: it asks �rst for an integer input, and either forgets it, or outputs it,and this recursively. For this, we introduce an in�nite oracle set C with twoconstructors 0 : (C)C and 1 : (C)C: An object of the set C can thus be thought ofas an in�nite stream of the form 0(1(0(0(: : :)))); and in this case, the computationtree of a term is similar to the binary development of a real number.The following equations de�ne a function m : (C)Pm(0(x)) = in([n]m(x)); m(1(x)) = in([n]out(n;m(x)));since these equations satisfy the guarded condition.What is important about this representation is that we will be able to de�neby a predicate on C when an element of C contains in�nitely many ones, andhence to specify when an unreliable medium is fair.3.4 De�nition of co-recursionWe now show on one example how to translate co-induction and co-recursion inour proof system. We suppose given a map f : (X)[X +X] and we want to buildfrom this a map corec(f) : (X)C satisfying the usual co-recursive equations [22].For this, we de�ne �rst � : (X +X)C by the guarded equations�(inl(x)) = 0(�(f(x))) �(inr(x)) = 1(�(f(x))):One can then check that corec(f)(x) = �(f(x)) is such that corec(f)(x) =0(corec(f)(y)) when f(x) is of the form inl(y) and corec(f)(x) = 1(corec(f)(y))when f(x) is of the form inr(y): Hence, we have a representation of co-recursionover the set C:This indicates how one can develop a realisability semantics of co-inductionwith streams (see [27] and [24]) in such a way that an element of a coinductivetype is interpreted by a productive element.3.5 FairnessWe introduce an inductively de�ned predicate Event1 on C; such that Event1(x; y)means that x is of the form x = 0(0(: : :0(1(y)) : : :)). We have two introductionrulesd1 : (x : C)Event1(1(x); x); e1 : (x; y : C)(Event1(x; y))Event1(0(x); y):A well-founded proof of Event1(x; y) has to be thought of as a �nite term of theform e1(x1; y; : : : ; e1(xn�1; y; d1(y)) : : :);with x = 0(x1); x1 = 0(x2); : : : ; xn�1 = 1(y):



Using the inductively de�ned predicate Event1; we can now introduce thepredicate Inf1(x) which means that x contains in�nitely many ones in its devel-opment. It has only one introduction rule:inf1 : (x; y : C)(Event1(x; y))(Inf1(y))Inf1(x);and a proof of Inf1(x0) should be thought of as an in�nite proof term of the forminf1(x0; x1; p1; inf1(x1; x2; p2; inf1(: : :)))where pn is a proof of Event1(xn�1; xn): This corresponds closely to the intuitionof what it means for such a stream to have in�nitely many ones.A fair unreliable mediumwill then be de�ned as a mediumm(x) : P; togetherwith a proof of Inf1(x):It may be interesting to see how far such ideas can be adapted to the repre-sentation of proofs about a process system like CBS, which can be simulated ina simple way in a lazy functional language [23].3.6 Proof about the list of iteratesThis example is taken from [22]. We de�ne �rst a relation on the set of streamof integers with the only constructoreq : (n : N)(l1; l2 : S)(Eq(l1; l2))Eq(cons(n; l1); cons(n; l2)):As a parenthesis, let us illustrate further our proof principle by showing thatEq is transitive. For this, we declaretrans : (l1; l2; l3 : S)(Eq(l1; l2))(Eq(l2; l3))Eq(l1; l3);and de�ne it by the guarded equationtrans(cons(n; l1); cons(n; l2); cons(n; l3); eq(n; l1; l2; p); eq(n; l2; l3; q))= eq(n; l1; l3; trans(l1; l2; l3; p; q)):Notice �nally that if we have a closed in�nite proof of Eq(l1; l2); then the twoin�nite terms l1 and l2 have the same computation tree. This relation Eq isanalogous to bisimulation equivalence [19].We end this parenthesis, and present the problem: it is to show that, if wede�ne v : (N)S by the guarded equationv(n) = cons(n; v(s(n)));and map : ((N)N)(S)S is de�ned by the guarded equationmap(f; cons(n; l)) = cons(f(n);map(f; l));then we have Eq(l0; v(0)) if Eq(l0; cons(0;map(s; l0))):



For this, we de�ne a functionf : (n : N)(l : S)(Eq(l; cons(n;map(s; l))))Eq(l; v(n))by the guarded equationf(n; cons(n; l); eq(n; l; cons(s(n);map(s; l)); h))= eq(n; l; v(s(n)); f(s(n); l; h)):We have thenf(0; l0; h) : Eq(l0; v(0)) [h : Eq(l0; cons(0;map(s; l0)))]:We can read this proof as a program that transforms a (lazy) proof tree whichestablishes Eq(l0; v(0)) to a proof tree that establishes Eq(l0;map(s; l0)): Bothproof trees furthermore are in�nite and built only with the introduction ruleEq(l1; l2)Eq(cons(n; l1); cons(n; l2)) :3.7 Soundness of a type inference systemAs test examples, we have represented in a mechanized system the problem ofsoundness of a type inference system analysed in [18]. This corresponds to usingthe present version of type theory with possibly in�nite objects instead of PeterAczel's non-well-founded set theory [2].We shall not describe the proof in detail, but only emphasize some points,using freely the notation of [18]. In our formalism, it is directly justi�ed tointroduce an object cl1 with the computation rulecl1 =< x; exp;E + ff 7! cl1g > :The relation v : � given by the rule (15) of the paper [18] is seen in our formalismas the introduction rule for a relation between expressions and types. Thus, inthe case of recursion, rule 6, page 217 (which is the only case where our proofdi�ers), we see the problem of proving cl1 : � as the problem of building anin�nite proof tree ending with cl1 : �: But this is direct, usingcl1 =< x; exp;E + ff 7! cl1g >and the fact that it is allowed/guarded to use recursively cl1 : �:



4 MechanizationWe now discuss briey the mechanization of the present system, and how touse it in the design an interactive proof search. This section is still tentative,and only partial implementations of the ideas described here have been tried onmachine so far.The starting point is to consider the logical framework as described in [20]as a type system that re�nes the type system of a lazy programming language.Thus the �rst step is to have a lazy functional language (like haskell or lml)with dependent types. In particular, we can, like in a lazy functional language,introduce new data types with their constructors. The typing relation x : A willmean that x is a lazy element of the data type A; and we have to use anothernotation, for instance x�A; for expressing that x is a well-founded element ofthe data type A: An alternative notation is to have only one typing judgement,and to have two kind of data types, ones that have only well-founded elements,and ones that may have productive elements. We can then associate to any datatype of the second kind its well-founded part.In general, of course, the de�nition of recursive programs/proofs can lead toinconsistent reasonings. We need to introduce the notion of correct environment.The present paper gives a su�cient syntactic condition, to be guarded, for anenvironment to be valid w.r.t. the semantic of terms as productive objects. Thischeck ensures in particular the consistency of an environment seen as a logicaltheory, and is complementary to the check of structurally smaller recursive calls[3, 6] for well-founded arguments.We believe that this system leads to an intuitive interactive proof system,well-suited for providing a mechanical help in the development of proofs in re-lational (or natural) semantics [18]. The user introduces new sets, predicates,relations de�ned by their introduction rule. We remark that, in practice andprobably because it is clearer, in [12, 4], the relations are not given by theirelimination rules, but by their introduction rules.When one wants to prove a result, or builds a noncanonical function, one�rst gives to it a name and a type. The use of case expression corresponds to theanalysis of the hypotheses. This analysis generates subgoals that can be furtheranalysed until we can write a solution. The possibility of declaring and provinglocal lemmas (that can be themselves recursively de�ned) corresponds to theaddition of a local let construct in our proof term language. Recursive reasoningis allowed, and the system points out when it may lead to an inconsistency.ConclusionWe hope to have shown that the guarded proof induction principle is a quitenatural way of reasoning about in�nite objects. The duality between the guardedconditions for in�nite objects and the structurally smaller conditions [6, 3] com-plements the categorical duality between initial and �nal objects that is the basisof the notion of co-inductive de�nition [2, 17].
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