
Secure circuit evaluation

A protocol based on hiding information from an oracle

�

Mart��n Abadi

DEC Systems Research Center

130 Lytton Avenue

Palo Alto, CA 94301

Joan Feigenbaum

AT&T Bell Laboratories

600 Mountain Avenue

Murray Hill, NJ 07974

Abstract: We present a simple protocol for two-player secure circuit evaluation. The pro-

tocol enables players C and D to cooperate in the computation of f(x) while D conceals her

data x from C and C conceals his circuit for f from D. The protocol is based on the tech-

nique of hiding information from an oracle [Abadi, Feigenbaum, Kilian, J. Comput. System

Sci. 39(1):21{50, August, 1989].

1. Introduction

This paper describes a protocol for two-player secure circuit evaluation. We think of

player C as a computer that runs a secret program for f and player D as another computer

with some con�dential data x. Suppose that D wishes to compute f(x) but does not have

an algorithm for f , and that C is willing to let D use his algorithm but does not want to

reveal it. Alternatively, suppose that C has an algorithm, and possibly some con�dential

data as well, but needs D's con�dential data in order to perform the computation. The

protocol enables C and D to cooperate in the computation of f(x) while D conceals her

data x from C and C conceals his circuit for f from D; in fact, the circuit is hidden from

D in an information-theoretic sense.

For example, suppose that C is a time-sharing computer and that D is one of C's users.

Typically, when D wants to log in, she submits a name and a password, and C runs a

program that checks whether they are correct. Of course, C does not have to divulge his

program. Our protocol provides a way for D to log in without revealing her name or her

password.

The protocol that we present is very simple. It allows player C to hide his circuit in

the information-theoretic sense and player D to encrypt her inputs under a complexity-

theoretic assumption. Our protocol uses the technique of hiding information from an oracle

that was de�ned in our joint work with Kilian [AFK]. Speci�cally, we show how a function

�

An extended abstract of this paper appeared in the Proceedings of the Fifth Annual Symposium on

Theoretical Aspects of Computer Science [AF].



that is encryptable, in the sense of [AFK], can be used as a building block in a protocol for

secure circuit evaluation. We also show how hiding and encryption can be traded o� and

that it is impossible, in a two-player protocol, for both players to accomplish hiding. Our

basic protocol could be extended to work for n players. Because the extended protocol

would be complex, and because our basic technique is illustrated by the two-player case,

we do not present this extension.

Secure circuit evaluation was �rst studied by Yao [Y82B]. Since then, many researchers

have studied it and related problems, in various models using di�erent techniques [BGW,

CCD, CDvdG, GHY87, GMW, H, K, Y86]. Comparisons of previously published protocols

for secure circuit evaluation and related problems appear in, e.g., [CDvdG, H]. Before

presenting our scheme, we would like to draw attention to the protocol of [CDvdG], which

is the one that resembles ours most closely (although it was derived independently). In

[CDvdG], Chaum, Damg�ard, and van de Graaf also give a circuit-evaluation protocol that

allows one player to hide his secrets unconditionally; they use a technique called blinding,

which is similar to what is called hiding information from an oracle in [AFK].

1

The protocol

in [CDvdG] is more complex than the one we present, but it also achieves more, e.g., it is

an p-player protocol in which each player's secrets are protected against collusion by the

other p � 1.

In Section 2, we present our protocol, after reviewing an essential ingredient from

[AFK]. In Section 3, we give our de�nitions of the terms \hiding" and \encryption" and

provide proofs of the security properties of the protocol. Section 4 discusses what types of

cheating by players C and D can be prevented. Finally, two open problems are stated in

Section 5.

2. The protocol

As a preliminary, we review one of the results in [AFK].

2

The quadratic residuosity function takes two arguments, an integer k of the form p � q,

where p and q and distinct primes, approximately the same size, congruent to 3 mod 4,

and an integer u in the set Z

�

k

[+1] | the integers relatively prime to k with Jacobi symbol

1. (One can de�ne the quadratic residuosity of a broader class of pairs of integers, but the

increased generality is not needed here.) The value r(u; k) is 1 if there is an integer a in

Z

�

k

[+1] such that a

2

� u mod k, and it is 0 otherwise.

In [AFK], we discussed the following scheme for computing the quadratic residuosity

function with secret data. To conceal the instance hu; ki, the player chooses b from Z

�

k

and c

1

The term \hiding" is also used in [CDvdG], but there it means something similar to what we mean

by the term \encryption."

2

The scenario considered in [AFK] is one in which player A wishes to know f(x) but lacks the com-

putational resources to compute f . She wants to query an in�nitely powerful oracle B and obtain f(x),

while hiding x from B. Examples are provided of functions for which it is possible to hide some important

information about x, but the main result in [AFK] is negative: A cannot obtain f(x) while revealing only

jxj for any f that is NP-hard. In this paper, we consider a more popular scenario, namely one in which

the computation of f requires possession of secret algorithms or data, rather than oracular power.

2



from f0; 1g, both according to uniform distributions, and computes v = u�b

2

�(�1)

c

mod k.

Informally, we often denote v by E(u). The new instance is hv; ki, and the key is the pair

hb; ci. Let e = r(u; k) and e

0

= r(v; k). Then, to decode, that is, to compute e from e

0

,

just let e equal e

0

+ c mod 2. We denote the decoded answer by F (e

0

). Correctness follows

from the facts that u � v is a residue mod k if and only if both u and v are residues or

neither is a residue and that �1 is a quadratic nonresidue if k is of the speci�ed form. Only

k needs to be known for all the operations to be feasible in polynomial time. We gave a

simple proof in [AFK] that this scheme for encoding instances of the quadratic residuosity

problem allows the encoder to obtain r(u; k) without revealing anything about u, in an

information-theoretic sense | that is, while hiding u.

This technique for consulting an oracle with no information transfer is a building block

in our protocol for secure circuit evaluation. We also use a standard technique for en-

crypting single bits: given a bit b, it is easy to generate a y such that r(y; k) = b [GM].

Informally, we often denote y by Y (b).

In our current setting, player D has the input x, which can be written x

1

. . .x

n

in

binary. Player C has a circuit to compute f on inputs of length n. In the initial phase of

the protocol, C sends to D the number a of AND gates in his circuit. D then generates

k = p � q, where p and q are distinct primes, approximately the same size, congruent to

3 mod 4, and large enough with respect to a, in a sense that we make precise in the next

section. Next, D encrypts her input bits x

1

; . . . ; x

n

, using modulus k as explained above.

Finally, D sends k and Y (x

1

); . . . ; Y (x

n

) to C.

We assume without loss of generality that player C's circuit consists of unary NOT

gates and binary AND gates and that it has no consecutive NOT gates. In the protocol, C

simulates the evaluation of the circuit on D's input. Instead of bits b

i

, C will have integers

of the form Y (b

i

) that represent bits. We must now show how to simulate the logical

operations NOT and AND using this scheme for representing bits.

When C must compute the NOT of a bit b, represented by its encryption Y (b), he

computes Y (b). Because p � q � 3 mod 4, �1 is a quadratic nonresidue mod k, and thus

C does not need to know b: Y (b) � (�1) � Y (b) mod k.

To compute the AND of two bits b and b

0

, represented by their encryptions Y (b) and

Y (b

0

), C requires the cooperation of D. C transforms b and b

0

further, to obtain E(Y (b)) and

E(Y (b

0

)), which he sends to D. Then D computes b

e

= r(E(Y (b)); k), b

0

e

= r(E(Y (b

0

)); k),

which she can do e�ciently, because she knows p and q. Let b

3

, b

2

, b

1

, and b

0

equal (b

e

^b

0

e

),

(b

e

^b

0

e

), (b

e

^b

0

e

), and (b

e

^b

0

e

), respectively. D returns hY (b

3

); Y (b

2

); Y (b

1

); Y (b

0

)i. Since C

knows whether b = b

e

and whether b

0

= b

0

e

, he can easily obtain the encrypted conjunction

of Y (b) and Y (b

0

) from the message: it is Y (b

3

) if both equations hold, Y (b

2

) if only the

�rst equation holds, Y (b

1

) if only the second equation holds, and Y (b

0

) if neither equation

holds.

The players follow one of two versions of the �nal phase of the protocol, depending

upon which of them is supposed to receive the answer f(x). In Case 1, C retains the

answer. At the end of the gate-simulation phase, C has the encrypted bit Y (f(x)). He

encodes this bit further by computing E(Y (f(x))), which he then sends to D. Player D

returns the residuosity bit r(E(Y (f(x))); k). C decodes the bit to obtain f(x). In Case 2,

3



in which player D receives the answer, C sends to D the encrypted bit Y (1) � Y (f(x)), and

D decrypts to obtain the residuosity bit r(Y (1) � Y (f(x)); k), which is, by de�nition, f(x).

As discussed below, in Section 3, C multiplies the encrypted bit Y (f(x)) by a random

square Y (1) so that D does not learn whether the �nal gate of the circuit is a NOT or an

AND.

In the following description of the protocol, the notation \P1 ! P2: m" means player

P1 sends the message m to player P2. The notation \P: s" means that player P evaluates

the statement s.

Initial Phase:

C ! D: The number of AND gates in his circuit.

D: Generate k and Y (x

1

); . . . ; Y (x

n

).

D ! C: k; Y (x

1

); . . . ; Y (x

n

).

Gate-Simulation Phase:

NOT gate with input Y (b)

C: Y (b) := (�1) � Y (b) mod k.

AND gate with inputs Y (b), Y (b

0

)

C ! D: E(Y (b)); E(Y (b

0

)).

D: b

e

:= r(E(Y (b)); k); b

0

e

:= r(E(Y (b

0

)); k).

hb

3

; b

2

; b

1

; b

0

i := hb

e

^ b

0

e

; b

e

^ b

0

e

; b

e

^ b

0

e

; b

e

^ b

0

e

i.

D ! C: Y (b

3

); Y (b

2

); Y (b

1

); Y (b

0

).

C: If b = b

e

and b

0

= b

0

e

then Y (b ^ b

0

) := Y (b

3

).

If b = b

e

and b

0

6= b

0

e

then Y (b ^ b

0

) := Y (b

2

).

If b 6= b

e

and b = b

0

e

then Y (b ^ b

0

) := Y (b

1

).

If b 6= b

e

and b

0

6= b

0

e

then Y (b ^ b

0

) := Y (b

0

).

Final Phase:

Case 1: C keeps the answer

C ! D: E(Y (f(x))).

D: b := r(E(Y (f(x))); k).

D ! C: b.

C: f(x) := F (b).

Case 2: D receives the answer

C ! D: Y (1) � Y (f(x)).

D: f(x) := r(Y (1) � Y (f(x)); k).

4



It is clear from this description that f(x) is computed correctly. In Case 1, the fact

that C computes f(x) follows from the properties of the decoding function F ; see [AFK,

Theorem 1]. In Case 2, if f(x) = 1, then the message Y (1) �Y (f(x)) is a quadratic residue

mod k, and, if f(x) = 0, then Y (1) �Y (f(x)) is a quadratic nonresidue. Thus, D computes

f(x).

It is also clear from this description that the distinction between \data" and \circuits"

is unnecessary. If C has the ability to hide a circuit, then he can also hide some private

data, simply by \hardwiring" it into the circuit. Conversely, in protocols in which C has

the ability to hide data, he can also hide a circuit through a detour: C can run the protocol,

take the circuit for f to be a universal circuit, and use an encoding of the circuit he wants

to hide as input.

3. Security properties

Let us �rst clarify the di�erence between hiding and encryption. For a general dis-

cussion of hiding, see [AFK, BF]; here we only discuss a special case that pertains to

two-player protocols.

Let P

0

and P

1

be the two players. Player P

j

starts each execution of the protocol with

a secret s

j

(which in this paper is either the circuit or the input data) and, during the

course of the execution, uses a sequence c

j

of coin tosses. We say that player P

j

hides a

piece of information i if the sequence of messages that P

j

sends during the execution is

independent of i, s

1�j

, and c

1�j

. Similarly, P

j

hides everything about i except l if, given

l, the sequence of messages sent by P

j

is independent of i, s

1�j

, and c

1�j

. For example,

P

j

may hide everything about s

j

except js

j

j or may hide one variable in the pair hu

j

; v

j

i

and not the other. Note that our de�nition allows l to depend on information possessed

by both P

j

and P

1�j

.

Often the sequence of messages sent by P is dependent on the piece of information i,

and thus i is not hidden, but this dependence is hard to detect and to exploit in polynomial

time. Let Q be another player who interacts with P in a two-party protocol, and, at the

end of the protocol, performs a random-polynomial-time computation and outputs a value.

The sequence of messages exchanged by P and Q, together with the value output by Q, is

called the transcript of the protocol. For any particular execution, the transcript and the

sequence of private computations performed by Q is called Q's view of the protocol. Player

P encrypts a piece of information i, except for l(i), if, for any random-polynomial-time Q

�

who plays the role of Q in the protocol, there is a random-polynomial-time simulator M

Q

�

that, given l(i), can produce a distribution of views that is polynomial-time indistinguish-

able from the real distribution produced by P and Q

�

. Intuitively, whatever knowledge

Q

�

extracts from the transcript can also be obtained by M

Q

�

without looking at the tran-

script. See, for example, [GM, GMR, GMW, H, Y82A] for a discussion of polynomial-time

indistinguishability and minimum-knowledge proof systems.

Our protocol uses both hiding and encryption. In this section, we show that C hides

everything about his circuit, except the number of AND gates and the modulus k, and

5



that D encrypts x, except for jxj. We also show that there is no two-player protocol in

which both players hide everything except one bit (such as the functional value f(x)).

Before presenting our proofs, we address the question of why it makes sense to construct

a protocol that uses both hiding and encryption. In other words, if one believes the

QRA (and in fact relies on it), then why bother to hide some secrets unconditionally?

First, as demonstrated by our protocol and that of [CDvdG], hiding can be conceptually

simpler than encryption, and it is not necessarily more expensive in terms of computational

resources. Second, there may be a disparity in power among players. We may want to

treat only certain players as though they could crack cryptosystems based on intractability

assumptions. Finally, there may be a disparity in the sensitivity of di�erent secrets. For

instance, some data are so ephemeral that, by the time they are decrypted, they are

no longer valuable. On the other hand, a circuit (or a secret algorithm) may be used

repeatedly over a long period.

For the remainder of this section, a is the number of AND gates in C's circuit and

n = jxj is the number of input bits.

Lemma 1: During the initial and gate-simulation phases, C hides everything about his

circuit except a and k.

Proof: The sequence of messages sent from C to D during the �rst two phases of the

protocol is of the form

ha; y

1

; y

2

; . . . ; y

2a�1

; y

2a

i;

where each y

i

is a member of Z

�

k

[+1]; the y

i

's are the encoded integers E(Y (b)). The

distribution of the subsequence y

1

, y

2

, . . ., y

2a

is uniform on (Z

�

k

[+1])

2a

and, given a and

k, the subsequence is independent of the circuit, the input x, and the coin tosses of D.

This follows immediately from the structure of the protocol and the fact that the encoding

function E hides the integer Y (b) [Theorem 1, AFK].

In the protocol, D's data is not hidden from C, but it is encrypted. As usual, the proof

of polynomial-time indistinguishability depends on a hypothesis about the intractability

of a computational problem. Here, the hypothesis we use is the Quadratic Residuosity

Assumption (QRA). Intuitively, the QRA says that r(u; k) cannot be computed e�ciently,

where k = p�q, the primes p and q are distinct, approximately the same size, and congruent

to 3 mod 4, and u 2 Z

�

k

[+1]. Various versions of the QRA are used extensively in recent

cryptographic literature; some attention is devoted in [Y82A] to the relative strengths of

the di�erent versions. In what follows, we assume that the pairs (u; k) have the speci�ed

form and refer to the computation of r(u; k) as the Quadratic Residuosity Problem (QRP);

we use the term \family of polynomial-sized circuits" as it is used throughout the related

literature (see, e.g., [H] for details).

QRA: Let fC

m

g be an arbitrary family of polynomial-sized circuits with a source of

random bits. Let P (C

m

) denote the probability that C

m

outputs the correct bit r(u; k)

when given as input a random QRP instance hu; ki of length m. Then, for any positive

constant d, the inequality

P (C

m

) <

1

2

+

1

m

d

6



holds for all su�ciently large m.

Some of the literature states this assumption by saying that the QRP gives rise to a hard-bit

family.

Lemma 2: Assume that jkj > max(a; n). Then, under the QRA, D encrypts x, except for

n, during the initial and gate-simulation phases of the protocol.

Proof: We show that the distribution of transcripts produced by D and any random-

polynomial-time C

�

can be simulated by a random-polynomial-time machine M

C

�

with

input n. The simulator produces sequences of the form

ha; k; y

1

; . . . ; y

n

; z

1

; z

2

; y

n+1

; y

n+2

; y

n+3

; y

n+4

; . . . ;

z

2a�1

; z

2a

; y

n+4a�3

; y

n+4a�2

; y

n+4a�1

; y

n+4a

; oi

according to the following distribution:

(1) a is chosen by M

C

�

exactly as it was chosen by C

�

,

(2) k is chosen as D chooses it in the initial phase,

(3) the subsequence hy

1

; . . . y

n

i is drawn uniformly from (Z

�

k

[+1])

n

,

(4) each of the subsequences hy

n+4i+1

; y

n+4i+2

; y

n+4i+3

; y

n+4i+4

i, 0 � i � a� 1, is drawn

independently from the uniform distribution on (Z

�

k

[+1])

4

,

(5) each of the subsequences hz

2i+1

; z

2i+2

i, 0 � i � a � 1, is computed exactly as C

�

computes his i

th

message of the gate-simulation phase, given the history ha; k; y

1

; . . . ; y

n+4i

i,

and

(6) o is computed exactly as C

�

computes his output. (Note that o is the output of C

�

,

not the output of the protocol, as computed in the �nal phase.)

The QRA guarantees that the distribution of subsequences hy

1

; . . . ; y

n

; y

n+1

; . . . ; y

n+4a

i is

polynomial-time indistinguishable from the distribution really computed by D. Similarly,

under the QRA, the results of the computations performed with the simulated inputs are

indistinguishable from those of the computations with the real inputs, because C

�

is limited

to random polynomial time. Together, these observations imply that the views produced

by M

C

�

are polynomial-time indistinguishable from the real views produced by C

�

and D.

In practice, during the second step of the initial phase, D would choose p and q large

enough so that their product k could not be factored in a reasonable amount of time using

the best known factoring algorithms. For the purpose of proving that the QRA implies

the secrecy of D's input bits, we need to assume that the size of the modulus k is \big

enough" with respect to a and n; the requirement that jkj > max(a; n) su�ces. It would

also su�ce to require that jkj be \polynomially related" to a and n; we chose the statement

jkj > max(a; n) for simplicity and clarity.

We have the following results about the information communicated during the �nal

phase.

7



Lemma 3: In Case 1 of the �nal phase, C hides everything about his circuit except k, and

D hides everything about x except k and f(x).

Proof: The pair of messages exchanged in Case 1 is of the form hy; r(y; k)i. The distri-

bution of y is uniform on Z

�

k

[+1] and, given k, is independent of the circuit, x, and the

coin tosses of D. Given k, the one-bit message r(y; k) that D sends still depends on the

coin tosses of C, in the following way: half of the possible coin-toss sequences correspond

to f(x) = r(y; k) and half to f(x) = 1 � r(y; k). However, given k and f(x), the message

r(y; k) is independent of x, the circuit, and C's coin tosses.

We omit the proof of Lemma 4, because it is very similar to that of Lemma 3.

Lemma 4: In Case 2 of the �nal phase, D (obviously) hides everything about x, and C

hides everything about his circuit except k and f(x).

In Case 2, C multiplies the encrypted output of the circuit's �nal gate by a random square

so that D does not learn whether the �nal gate is a NOT or an AND. Suppose that C

did not multiply by a random square but instead sent the output of the �nal gate, that

is, Y (f(x)). If the �nal gate is a NOT, then Y (f(x)) is the additive inverse, mod k, of

one of the elements of some quadruple that D sent during the protocol. If the �nal gate

is an AND, then Y (f(x)) is itself one of the elements of the last quadruple that D sent.

The probability that Y (f(x)) is both of these is exponentially small; thus translation by a

random square is necessary in order to conceal whether the �nal gate is a NOT.

The security properties proven in Lemmas 1-4 are summarized in the following theorem.

Theorem 1: During the inital and gate-simulation phases of the protocol, C hides every-

thing except the modulus k and the number of AND gates in the circuit, and (under QRA)

D encrypts the input except for its size. In Case 1 of the �nal phase, C hides everything

except k and D hides everything except k and f(x). In Case 2, D hides everything and C

hides everything except k and f(x).

As we remarked in Section 2, it is possible to transform the protocol so that the circuit

is encrypted and the data are hidden. To accomplish this, C would use a universal circuit

U

n

, and modify U

n

so that the bits of x are hardwired into it. D would supply a circuit

for f as encrypted input.

Both versions of our protocol (the one that hides the circuit while encrypting the data

and the one that hides the data while encrypting the circuit) have the property that

exactly one bit of information is exchanged; from it, one of the parties computes the value

f(x). The encoding of the bit exchanged is a function of the circuit, the input, and the

random coin tosses of the parties. Is it possible to construct a two-player protocol that

hides everything while exchanging the one bit f(x) (as it is in the multiplayer case [BGW,

CCD])? Intuitively, the answer must be \no," because the player who sends to the other

an encoding of the one bit f(x) needs some information in order to compute it. Our next

result gives a very simple, formal proof that such protocols do not exist.

Theorem 2: No protocol that hides all secrets and communicates only one bit of informa-

tion can compute f(x) accurately for all f and all x.

8



Proof: Suppose that such a protocol did exist. Then it would have to work for functions

of two arguments, one owned by C and hardwired into the circuit, and one owned by

D. Without loss of generality, we may assume that it is D who sends the one bit that is

communicated. We show that there are inputs on which C computes the wrong answer.

The crucial fact is that D must decide whether to send a 0 or a 1 based only on her input

and on the number a of AND gates in C's circuit.

Consider the boolean function x = w, where x is D's input, w is C's input, and

jxj = jwj = n. Assume without loss of generality that x

1

and x

2

are distinct input strings

of length n for which there is a positive probability that D communicates a 0 for functions

with aAND gates. There are runs of the protocol on which C receives the same information

for D's inputs x

1

and x

2

, and thus there is a positive probability that he computes the

wrong answer for at least one input when w = x

1

.

This example of the string-equality function shows that there is a positive probability

that C computes a wrong answer for at least one input. We now show that, in fact, if

D communicates only one bit of information, then there are functions for which there is

a substantial probability that C computes the wrong answer on many inputs. For this

proof, we consider the boolean function x � w, where x and w are as above. Once again,

�x a number n of input bits and a number a of AND gates. Let S be the set of inputs

x for which the probability that D sends a 0 is at least 1=2. We can assume without loss

of generality that jSj � 2

n�1

and that the probability that C outputs 0, given that D

sends 0, is at least 1=2. Let w be a string for which there are at least 2

n�2

elements of S

that are greater than or equal to w and at least 2

n�2

elements of S that are less than w.

Call these sets S

1

and S

2

, respectively. For each x 2 S

1

, f(x) = 1, and, for each x 2 S

2

,

f(x) = 0. Thus, for at least 1=4 of all possible values of x (those in S

1

), the probability

that C computes the wrong answer on any particular run of the protocol is

P (C outputs 0)

� P (D sends 0 and C outputs 0)

= P (D sends 0) � P (C outputs 0 j D sends 0)

� 1=4:

Note that the \information-theoretic" security achieved by the protocols in [BGW,

CCD] does not contradict Theorem 2. The results in [BGW, CCD] apply only when the

number p of players is strictly greater than two and the number of cheaters is strictly less

than p=2; our Theorem 2 applies only to the case p = 2.

4. Cheating

In this section, we address the question of what happens when either C or D tries to

cheat. It is common to provide mechanisms to avoid or to detect cheating in protocols

for secure computation, e.g., to turn protocols into \validated protocols" in which players

use zero-knowledge subprotocols to prove that they have acted honestly (e.g., [GHY87,

9



GMW]). However, the issue of cheating is di�erent in a setting in which some secrets are

hidden rather than encrypted.

How might C try to cheat? He could try to choose the sequence of AND computations

that he requests so as to compromise D's data rather than to compute f(x). However,

under the QRA, everything that she sends him during the gate-simulation phase of the

protocol is something that he could generate himself { quadruples of elements of Z

�

k

[+1],

three of which are nonresidues and one of which is a residue. In Case 1 of the �nal phase,

she \opens" one bit, allowing him to learn f(x). Thus, by using a di�erent circuit, he

could obtain a di�erent boolean function of x, but nothing else. Because Case 1 of the

�nal phase involves the opening of one bit, C could, instead, cheat by obtaining the value

r(u; k) for one arbitrary u. To prevent this, one can use a protocol that requires C to

\commit" to one circuit and \prove" that he simulated the circuit to which he committed

himself; see, e.g., [CDvdG] for a good discussion of this issue.

How might D try to cheat? We cannot accuse D of sending incorrect encrypted bits,

because x is D's private data. D could deviate from the protocol by sending wrong answers

when C asks her for the AND of two encrypted bits or by sending the wrong residuosity

bit in Case 1 of the �nal phase. This could cause C to compute a wrong answer, but it

would not compromise the privacy of C's secrets. C is capable of hiding; that is, none of

the messages that he sends to D in the course of the computation conveys any information

at all, even when D leads the computation astray. Therefore, D cannot cheat to \decrypt"

C's messages and learn something she is not supposed to know.

In any case, D can be required to prove that she computes the (encrypted) output of

the AND gates correctly and that she sends the correct residuosity bit in the �nal phase.

The set of tuples hk; Y (b); Y (b

0

); Y (b

3

); Y (b

2

); Y (b

1

); Y (b

0

)i that satisfy the following

conditions is an NP set: k = p � q; Y (b) and Y (b

0

) are legal encryptions of bits; and

hY (b

3

); Y (b

2

); Y (b

1

); Y (b

0

)i is a legal reply from D to C's query about the AND of b and

b

0

. Using trivial modi�cations of interactive proof systems in [BCC, GHY89], D can prove

that her replies are correct with a zero-knowledge subprotocol. (More e�cient subprotocols

can be constructed, using the special properties of quadratic residues; we omit discussion

of e�ciency, because our goal is simply to point out that this type of cheating can be

thwarted.) Similarly, in the �nal phase, D can prove that she knows a certi�cate of the

residuosity of E(Y (f(x))); that is, if b = 1, D must prove that she knows a number u such

that u

2

� E(Y (f(x))) mod k, and, if b = 0, she must prove that she knows a number u

such that (�1) � u

2

� E(Y (f(x))) mod k.

5. Open problems

Our protocol uses the quadratic residuosity predicate r(u; k) as a building block. No

communication is required for C to compute the negation of an encrypted bit, but commu-

nication is required for C to compute a conjunction. Can C, by computing some function of

Y (b) and Y (b

0

), take the AND of two encrypted bits without asking for help from D? Bras-

sard and Cr�epeau raised a similar question in [BC], where they used a circuit-evaluation

protocol based on \permuted truth tables" in their work on zero-knowledge proof systems.

10



The quadratic residuosity predicate is not the only one that can be used as a building

block in a protocol for secure circuit evaluation. To be usable as a building block, a

boolean function must be encryptable (in the sense of [AFK]), be computable by player D

(perhaps with knowledge of a secret key), and not be computable by player C. Is it possible

to design a better protocol using a di�erent building block? More speci�cally, we would

like to reduce the number of rounds of communication needed by each run of the protocol,

or, alternatively, to prove a nontrivial lower bound on the number of rounds needed for

secure circuit evaluation.

6. Acknowledgements

We are grateful to Gilles Brassard, Stuart Haber, Cynthia Hibbard, and two anonymous

referees for their comments on previous versions of this paper.

7. References

[AF] Mart��n Abadi and Joan Feigenbaum. \A Simple Protocol for Secure Circuit Eval-

uation," STACS '88 Proceedings, R. Cori and M. Wirsing (eds.), Springer Verlag (pub.),

1988, 264{272.

[AFK] Mart��n Abadi, Joan Feigenbaum, and Joe Kilian. \On Hiding Information from

an Oracle," J. Comput. System Sci. (39), 1989, 21{50.

[BF] Donald Beaver and Joan Feigenbaum. \Instance Hiding in Multioracle Queries," to

appear in STACS '90 Proceedings, C. Cho�rut and T. Lengauer (eds.), Springer Verlag

(pub.), 1990.

[BGW]Michael Ben-Or, Sha� Goldwasser, and Avi Wigderson. \Completeness Theorems

for Non-Cryptographic Fault-Tolerant Distributed Computation," Proceedings of the 20

th

Annual ACM Symposium on Theory of Computing, 1988, 1{10.

[BCC] Gilles Brassard, David Chaum, and Claude Cr�epeau. \MinimumDisclosure Proofs

of Knowledge," J. Comput. System Sci. (37), 1988, 156{189.

[BC] Gilles Brassard and Claude Cr�epeau. \Zero-knowledge Simulation of Boolean Cir-

cuits," CRYPTO '86 Proceedings, Andrew Odlyzko (ed.), Springer Verlag (pub.), 1987,

223{233.

[CCD] David Chaum, Claude Cr�epeau, and Ivan Damg�ard. \Multiparty Uncondition-

ally Secure Protocols," Proceedings of the 20

th

Annual ACM Symposium on Theory of

Computing, 1988, 11{19.

[CDvdG] David Chaum, Ivan Damg�ard, and Jeroen van de Graaf. \Multiparty Computa-

tions Ensuring Secrecy of Each Party's Input and Correctness of the Output," CRYPTO'87

Proceedings, Carl Pomerance (ed.), Springer-Verlag (pub.), 1988, 87{119.

[GHY89] Zvi Galil, Stuart Haber, and Moti Yung. \Minimum-Knowledge Interactive

Proofs for Decision Problems," SIAM J. on Comput. (18), 1989, 711{739.

[GHY87] Zvi Galil, Stuart Haber, and Moti Yung. \Cryptographic Computation: Se-

cure Fault-Tolerant Protocols and the Public-Key Model," CRYPTO'87 Proceedings, Carl

Pomerance (ed.), Springer-Verlag (pub.), 1988, 135{155.

11



[GMW] Oded Goldreich, Silvio Micali, and Avi Wigderson. \How to Play ANY Mental

Game," Proceedings of the 19

th

Annual ACM Symposium on Theory of Computing, 1987,

218{229.

[GM] Sha� Goldwasser and Silvio Micali. \Probabilistic Encryption," J.Comput. System

Sci. (28), 1984, 270{299.

[GMR] Sha� Goldwasser, SilvioMicali, and Charles Racko�. \The Knowledge Complexity

of Interactive Proof Systems," SIAM J. on Comput. (18), 1989, 186{208.

[H] Stuart Haber. \Multi-Party Cryptographic Computation: Techniques and Applica-

tions," PhD Thesis, Columbia University Computer Science Department, 1988.

[K] Joe Kilian. \Founding Cryptography on Oblivious Transfer," Proceedings of the 20

th

Annual ACM Symposium on Theory of Computing, 1988, 20{31.

[Y82A] Andrew C. Yao. \Theory and Applications of Trapdoor Functions," Proceedings

of the 23

rd

Annual IEEE Symposium on Foundations of Computer Science, 1982, 80{91.

[Y82B] Andrew C. Yao. \Protocols for Secure Computations," Proceedings of the 23

rd

Annual IEEE Symposium on Foundations of Computer Science, 1982, 160{164.

[Y86] Andrew C. Yao. \How to Generate and Exchange Secrets," Proceedings of the 27

th

Annual IEEE Symposium on Foundations of Computer Science, 1986, 162{167.

12


