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A Computational Approach to Edge Detection
JOHN CANNY, MEMBER, IEEE

Abstract-This paper describes a computational approach to edge
detection. The success of the approach depends on the definition of a
comprehensive set of goals for the computation of edge points. These
goals must be precise enough to delimit the desired behavior of the
detector while making minimal assumptions about the form of the so-
lution. We define detection and localization criteria for a class of edges,
and present mathematical forms for these criteria as functionals on the
operator impulse response. A third criterion is then added to ensure
that the detector has only one response to- a single edge. We use the
criteria in numerical optimization to derive detectors for several com-
mon image features, including step edges. On specializing the analysis
to step edges, we find that there is a natural uncertainty principle be-
tween detection and localization performance, which are the two main
goals. With this principle we derive a single operator shape which is
optimal at any scale. The optimal detector has a simple approximate
implementation in which edges are marked at maxima in gradient mag-
nitude of a Gaussian-smoothed image. We extend this simple detector
using operators of several widths to cope with different signal-to-noise
ratios in the image. We present a general method, called feature syn-
thesis, for the fine-to-coarse integration of information from operators
at different scales. Finally we show that step edge detector perfor-
mance improves considerably as the operator point spread function is
extended along the edge. This detection scheme uses several elongated
operators at each point, and the directional operator outputs are in-
tegrated with the gradient maximum detector.

Index Terms-Edge detection, feature extraction, image processing,
machine vision, multiscale image analysis.

I. INTRODUCTION
EDGE detectors of some kind, particularly step edge

detectors, have been an essential part of many com-
puter vision systems. The edge detection process serves
to simplify the analysis of images by drastically reducing
the amount of data to be processed, while at the same time
preserving useful structural information about object
boundaries. There is certainly a great deal of diversity in
the applications of edge detection, but it is felt that many
applications share a common set of requirements. These
requirements yield an abstract edge detection problem, the
solution of which can be applied in any of the original
problem domains.
We should mention some specific applications here. The

Binford-Horn line finder [14] used the output of an edge
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detector as input to a program which could isolate simple
geometric solids. More recently the model-based vision
system ACRONYM [3] used an edge detector as the front
end to a sophisticated recognition program. Shape from
motion [29], [13] can be used to infer the structure of
three-dimensional objects from the motion of edge con-
tours or edge points in the image plane. Several modem
theories of stereopsis assume that images are prepro-
cessed by an edge detector before matching is done [19],
[20]. Beattie [1] describes an edge-based labeling scheme
for low-level image understanding. Finally, some novel
methods have been suggested for the extraction of three-
dimensional information from image contours, namely
shape from contour [27] and shape from texture [31].

In all of these examples there are common criteria rel-
evant to edge detector performance. The first and most
obvious is low error rate. It is important that edges that
occur in the image should not be missed and that there be
no spurious responses. In all the above cases, system per-
formance will be hampered by edge detector errors. The
second criterion is that the edge points be well localized.
That is, the distance between the points marked by the
detector and the "center" of the true edge should be min-
imized. This is particularly true of stereo and shape from
motion, where small disparities are measured between left
and right images or between images produced at slightly
different times.

In this paper we will develop a mathematical form for
these two criteria which can be used to design detectors
for arbitrary edges. We will also discover that the first two
criteria are not "tight" enough, and that it is necessary
to add a third criterion to circumvent the possibility of
multiple responses to a single edge. Using numerical op-
timization, we derive optimal operators for ridge and roof
edges. We will then specialize the criteria for step edges
and give a parametric closed form for the solution. In the
process we will discover that there is an uncertainty prin-
ciple relating detection and localization of noisy step
edges, and that there is a direct tradeoff between the two.
One consequence of this relationship is that there is a sin-
gle unique "shape" of impulse response for an optimal
step edge detector, and that the tradeoff between detection
and localization can be varied by changing the spatial
width of the detector. Several examples of the detector
performance on real images will be given.

II. ONE-DIMENSIONAL FORMULATION
To facilitate the analysis we first consider one-dimen-

sional edge profiles. That is, we will assume that two-
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Fig. 1. (a) A noisy step edge. (b) Difference of boxes operator. (c) Dif-
ference of boxes operator applied to the edge. (d) First derivative of
Gaussian operator. (e) First derivative of Gaussian applied to the edge.

dimensional edges locally have a constant cross-section
in some direction. This would be true for example, of
smooth edge contours or of ridges, but not true of corners.
We will assume that the image consists of the edge and
additive white Gaussian noise.
The detection problem is formulated as follows: We be-

gin with an edge of known cross-section bathed in white
Gaussian noise as in Fig. l(a), which shows a step edge.
We convolve this with a filter whose impulse response
could be illustrated by either Fig. 1(b) or (d). The outputs
of the convolutions are shown, respectively, in Fig. l(c)
and (e). We will mark the center of an edge at a local
maximum in the output of the convolution. The design
problem then becomes one of finding the filter which gives
the best performance with respect to the criteria given be-
low. For example, the filter in Fig. l(d) performs much
better than Fig. l(b) on this example, because the re-
sponse of the latter exhibits several local maxima in the
region of the edge.

In summary, the three performance criteria are as fol-
lows:

1) Good detection. There should be a low probability

of failing to mark real edge points, and low probability of
falsely marking nonedge points. Since both these proba-
bilities are monotonically decreasing functions of the out-
put signal-to-noise ratio, this criterion corresponds to
maximizing signal-to-noise ratio.

2) Good localization. The points marked as edge points
by the operator should be as close as possible to the center
of the true edge.

3) Only one response to a single edge. This is implic-
itly captured in the first criterion since when there are two
responses to the same edge, one of them must be consid-
ered false. However, the mathematical form of the first
criterion did not capture the multiple response require-
ment and it had to be made explicit.

A. Detection and Localization Criteria
A crucial step in our method is to capture the intuitive

criteria given above in a mathematical form which is read-
ily solvable. We deal first with signal-to-noise ratio and
localization. Let the impulse response of the filter bef(x),
and denote the edge itself by G(x). We will assume that
the edge is centered at x = 0. Then the response of the

(a)

(b)

(c)

(d)

(e)
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filter to this edge at its center HG is given by a convolution
integral:

+w

HG= J G(-x)f(x)dx
-w

ric, and that its derivatives of odd orders [which appear
in the coefficients of even order in (5)] are zero at the
origin. Equations (4) and (5) give

(1)

assuming the filter has a finite impulse response bounded
by [- W, W]. The root-mean-squared response to the
noise n(x) only, will be

HG(O)x0 = -H(XO) (6)
Now Hx(xo) is a Gaussian random quantity whose vari-

ance is the mean-squared value of Hn(xo), and is given
by

H, = no Lwf2(x) dx] (2)

where n2 is the mean-squared noise amplitude per unit
length. We define our first criterion, the output signal-to-
noise ratio, as the quotient of these two responses.

| G(-x) f(x) dx
SNR =

I+W
nO , f2(x) dZx

(3)

W+ w
E[H, (XO)2] = no2 f '2(X) dx

-w
(7)

where E [ y] is the expectation value of y. Combining this
result with (6) and substituting for HG(0) gives

(8)

+w
n2 f,2(X) dX

E[X2] 2-W2 X2
L G'(-x)f'(x) dx

where 6xo is an approximation to the standard deviation
of xo. The localization is defined as the reciprocal of 6xo.

For the localization criterion, we want some measure
which increases as localization improves, and we will use
the reciprocal of the root-mean-squared distance of the
marked edge from the center of the true edge. Since we
have decided to mark edges at local maxima in the re-
sponse of the operatorf(x), the first derivative of the re-
sponse will be zero at these points. Note also that since
edges are centered at x = 0, in the absence of noise there
should be a local maximum in the response at x = O.

Let Hn(x) be the response of the filter to noise only, and
HG(x) be its response to the edge, and suppose there is a
local maximum in the total response at the point x = xO.
Then we have

Hn(XO) + HG(x0) = 0. (4)
The Taylor expansion of H&(xo) about the origin gives

H&(xo) = HG(O) + HG(0)x0 + O(x0). (5)
By assumption HG(0) = 0, i.e., the response of the fil-

ter in the absence of noise has a local maximum at the
origin, so the first term in the expansion can be ignored.
The displacement xo of the actual maximum is assumed
to be small so we will ignore quadratic and higher terms.
In fact by a simple argument we can show that if the edge
G(x) is either symmetric or antisymmetric, all even terms
in xo vanish. Suppose G(x) is antisymmetric, and express
f(x) as a sum of a symmetric component and an antisym-
metric component. The convolution of the symmetric
component with G(x) contributes nothing to the numerator
of the SNR, but it does contribute to the noise com-
ponent in the denominator. Therefore, if f(x) has any
symmetric component, its SNR will be worse than a
purely antisymmetric filter. A dual argument holds for
symmetric edges, so that if the edge G(x) is symmetric or
antisymmetric, the filterf(x) will follow suit. The net re-
sult of this is that the response HG(x) is always symmet-

Localization

r+W
3 G'(-x)f'(x) dx

nO f "'2(x) dx
(9)

Equations (3) and (9) are mathematical forms for the
first two criteria, and the design problem reduces to the
maximization of both of these simultaneously. In order to
do this, we maximize the product of (3) and (9). We could
conceivably have combined (3) and (9) using any function
that is monotonic in two arguments, but the use of the
product simplifies the analysis for step edges, as should
become clear in Section III. For the present we will make
use of the product of the criteria for arbitrary edges, i.e.,
we seek to maximize

|
W
G(-x) f(x) dx | G'(-x) f'(x) dx

+w +W
no f2(X) dx no

-
f 2(X) dx

(10)

There may be some additional constraints on the solution,
such as the multiple response constraint (12) described
next.

B. Eliminating Multiple Responses
In our specification of the edge detection problem, we

decided that edges would be marked at local maxima in
the response of a linear filter applied to the image. The
detection criterion given in the last section measures the
effectiveness of the filter in discriminating between signal
and noise at the center of an edge. It does not take into
account the behavior of the filter nearby the edge center.
The first two criteria can be trivially maximized as fol-
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lows. From the Schwarz inequality for integrals we can
show that SNR (3) is bounded above by

n-I G|t; G2(x) dx
w

and localization (9) by

I wno 1 81|G'2(x)dCX.

Both bounds are attained, and the product of SNR and
localization is maximized when f(x) = G( - x) in [-
W].
Thus, according to the first two criteria, the optimal

detector for step edges is a truncated step, or difference
of boxes operator. The difference of boxes was used by
Rosenfeld and Thurston [25], and in conjunction with lat-
eral inhibition by Herskovits and Binford [11]. However
it has a very high bandwidth and tends to exhibit many
maxima in its response to noisy step edges, which is a
serious problem when the imaging system adds noise or
when the image itself contains textured regions. These ex-
tra edges should be considered erroneous according to the
first of our criteria. However, the analytic form of this
criterion was derived from the response at a single point
(the center of the edge) and did not consider the interac-
tion of the responses at several nearby points. If we ex-
amine the output of a difference of boxes edge detector
we find that the response to a noisy step is a roughly tri-
angular peak with numerous sharp maxima in the vicinity
of the edge (see Fig. 1).
These maxima are so close together that it is not pos-

sible to select one as the response to the step while iden-
tifying the others as noise. We need to add to our criteria
the requirement that the function f will not have "too
many" responses to a single step edge in the vicinity of
the step. We need to limit the number of peaks in the
response so that there will be a low probability of declar-
ing more than one edge. Ideally, we would like to make
the distance between peaks in the noise response approx-
imate the width of the response of the operator to a single
step. This width will be some fraction of the operator
width W.

In order to express this as a functional constraint on f,
we need to obtain an expression for the distance between
adjacent noise peaks. We first note that the mean distance
between adjacent maxima in the output is twice the dis-
tance between adjacent zero-crossings in the derivative of
the operator output. Then we make use of a result due to
Rice [24] that the average distance between zero-cross-
ings of the response of a function g to Gaussian noise is

( R(O) 112

where R(i) is the autocorrelation function of g. In our
case we are looking for the mean zero-crossing spacing
for the function f'. Now since

R(O) = g2(x) dx and R "(0) = - g'2(x) dx
-00 b z r 00

the mean distance between zero-crossings off' will be
+OD ~ )1/2

'2(x) dx

x,,(f) = r (+

f tOt2(x) dx
\ oo

(12)

The distance between adjacent maxima in the noise re-
sponse of f, denoted Xmax, will be twice xzc. We set this
distance to be some fraction k of the operator width.

Xmax(f) = 2x,,(f) = kW. (13)
This is a natural form for the constraint because the re-
sponse of the filter will be concentrated in a region of
width 2 W, and the expected number of noise maxima in
this region is Nn where

2W 2N = =-mk
Xmax k

(14)

Fixing k fixes the number of noise maxima that could lead
to a false response.
We remark here that the intermaximum spacing (12)

scales with the operator width. That is, we first define an
operator f, which is the result of stretching f by a factor
of w, fw(x) = f(xlw). Then after substituting into (12) we
find that the intermaximum spacing for f, is x,,( fj) =
wxzc(f ). Therefore, if a function f satisfies the multiple
response constraint (13) for fixed k, then the function f,
will also satisfy it, assuming W scales with w. For any
fixed k, the multiple response criterion is invariant with
respect to spatial scaling of f.

III. FINDING OPTIMAL DETECTORS BY NUMERICAL
OPTIMIZATION

In general it will be difficult (or impossible) to find a
closed form for the functionfwhich maximizes (10) sub-
ject to the multiple response constraint. Even when G has
a particularly simple form (e.g., it is a step edge), the
form offmay be complicated. However, if we are given
a candidate function f, evaluation of (10) and (12) is
straightforward. In particular, if the function f is repre-
sented by a discrete time sequence, evaluation of (10)
requires only the computation of four inner products
between sequences. This suggests that numerical optimi-
zation can be done directly on the sampled operator im-
pulse response.
The output will not be an analytic form for the operator,

but an implementation of a detector for the edge of inter-
est will require discrete point-spread functions anyway. It
is also possible to include additional constraints by using
a penalty method [15]. In this scheme, the constrained
optimization is reduced to one, or possibly several, un-
constrained optimizations. For each constraint we define
a penalty function which has a nonzero value when one
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Fig. 2. A ridge profile and the optimal operator for it.
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Fig. 3. A roof profile and an optimal operator for roofs.

of the constraints is violated. We then find the f which
maximizes

SNR(f) * Localization (f))-L piPi(f) (15)

where Pi is a function which has a positive value only
when a constraint is violated. The larger the value of ,t
the more nearly the constraints will be satisfied, but at the
same time the greater the likelihood that the problem will
be ill-conditioned. A sequence of values of ,ui may need
to be used, with the final form offfrom each optimization
used as the starting form for the next. The 1ui are increased
at each iteration so that the value of Pi(f ) will be re-
duced, until the constraints are "almost" satisfied.
An example of the method applied to the problem of

detecting "ridge" profiles is shown in Fig. 2. For a ridge,
the function G is defined to be a flat plateau of width w,
with step transitions to zero at the ends. The auxiliary
constraints are

* The multiple response constraint. This constraint is
taken directly from (12), and does not depend on the form
of the edge.

* The operator should have zero dc component. That
is it should have zero output to constant input.

Since the width of the operator is dependent on the
width of the ridge, there is a suggestion that several widths
of operators should be used. This has not been done in
the present implementation however. A wide ridge can be
considered to be two closely spaced edges, and the im-

plementation already includes detectors for these. The
only reason for using a ridge detector is that there are
ridges in images that are too small to be dealt with effec-
tively by the narrowest edge operator. These occur fre-
quently because there are many edges (e.g., scratches and
cracks or printed matter) which lie at or beyond the res-
olution of the camera and result in contours only one or
two pixels wide.
A similar procedure was used to find an optimal oper-

ator for roof edges. These edges typically occur at the
concave junctions of two planar faces in polyhedral ob-
jects. The results are shown in Fig. 3. Again there are
two subsidiary constraints, one for multiple responses and
one for zero response to constant input.
A roof edge detector has not been incorporated into the

implementation of the edge detector because it was found
that ideal roof edges were relatively rare. In any case the
ridge detector is an approximation to the ideal roof detec-
tor, and is adequate to cope with roofs. The situation may
be different in the case of an edge detector designed ex-
plicitly to deal with images of polyhedra, like the Bin-
ford-Horn line-finder [14].
The method just described has been used to find optimal

operators for both ridge and roof profiles and in addition
it successfully finds the optimal step edge operator de-
rived in Section IV. It should be possible to use it to find
operators for arbitrary one-dimensional edges, and it
should be possible to apply the method in two dimensions
to find optimal detectors for various types of corner.
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IV. A D[ETECIOR FOR STEP EDGES
We now specialize the results of the last section to the

case where the input G(x) is step edge. Specifically we set
G(x) Au (x) where it, (Y) is the nth derivative of a delta
function, and A is the amplitude of the sterp That is,

It (X) -
(0 fo x < 0;

(A, fro.-x-: 0 i

and substituting for G(x) in (3) and (9) gives

step edge detector. Through spatial scaling of f we can
trade off detection performance against localization, but
we cannot improve both simultaneously. This suggests
that a natural choice for the composite criterion would be
the product of (19) and (20). since this product would be
invariant under changes in scale.

(16)

2(f) A(f') -

0

1X f(x) dx

2+(w Lx +fw
-W

f ()d
-Wf2wd

(22)

SNR

Localization

A f(x) dx
r- -?W

F( +WK
no, 01 2(X) dX

Aif'(O)i
ilz

l -4 W.
no 1I f' (x) di

Both of these criteria improve directly with the ratio
A/no which might be termed the signal-to-noise ratio of
the image. We now remove this dependence on the image
and define two performance measures and A which de-
pend on the filter only:

ASNR - -2(f)
no I2(f) -

\10

+W.

ff(x) dx

(19)

Localization - A A(fJ)
~f,2(x) dX

(20)
Suppose now that we form a spatially scaled filter f,

from f, where fj (x) -f(/w). Recall from the end of Sec-
tion 11 that the multiple response criterion is unaffected by
spatial scaling. When we substitute ft into (19) and (20)
we obtairn for the performance of the scaled filter:

I

2(ff) wE2(f) and A(f't) A(f'). (21)
w

The first of these equations is quite intuitive, and im-
plies that a filter with a broad impulse response will have
better signal-to-noise ratio than a narrow filter when ap-
plied to a step edge. The second is less obvious, and it
implies that a narrow filter will give better localization
than a broad one. What is surprising is that the changes
are inversely related, that is, both criteria either increase
or decrease by U There is an uncertainty principle re-

lating the detection and localization performance of the

(17) The solutions to the maximization of this expression
will be a class offunctions all related by spatial scaling.
In fact this result is independent of the method of com-
bination of the criteria. To see this we assume that there

18 is a function f which gives the best localization A for a
(18) narticular E. That is we find f such that

2(f) cl and A(f') is maximized. (23)
Now suppose we seek a second function f, which gives
the best possible localization while its signal-to-noise ratio
is fixed to a different value, i.e.,

E(fv) = C2 while A(f,) is maximized. (24)
If we now define f1(x) in terms offi(x) as f1(x) = fJ,(xw)
where

}S-c2 lc

then the constraint on ft in (24) translates to a constraint
on f, which is identical to (23), and (24) can be rewritten
as

E(f1) = c1 and A(f1) is maximized (25)
w

which has the solution f - f So if we find a single such
function f, we can obtain maximal localization for any
fixed signal-to-noise ratio by scaling f. The design prob-
lem for step edge detection has a single uniquie (up to spa-
tial scaling) solution regardless of the absolute values of
signal to noise ratio or localization.
The optimal filter is implicitly defined by (22), but we

must transform the problem slightly before we can apply
the calculus of variations. Specifically, we transform the
maximization of (22) into a constrained minimization that
involves only integral functionals. All but one of the in-
tegrals in (22) are set to undetermined constant values.
We then find the extreme value of the remaining integral
(since it will correspond to an extreme in the total expres-
sion) as a function of the undetermined constants. The
values of the constants are then chosen so as to maximize
the original expression, which is now a function only of
these constants. Given the constants, we can uniquely
specify the function f(x) which gives a maximum of the
composite criterion.
A second modification involves the limits of the inte-

grals. The two integrals in the denominator of (22) have
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