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AbstractGeometric matching in general is a di�cult unsolved problem in computer vision.Fortunately, in many practical applications, some a priori knowledge exists which con-siderably simpli�es the problem. In visual navigation, for example, the motion betweensuccessive positions is usually either small or approximately known, but a more preciseregistration is required for environment modeling. The algorithm described in thisreport meets this need. Objects are represented by free-form curves, i.e., arbitraryspace curves of the type found in practice. A curve is available in the form of a setof chained points. The proposed algorithm is based on iteratively matching pointson one curve to the closest points on the other. A least-squares technique is usedto estimate 3-D motion from the point correspondences, which reduces the averagedistance between curves in the two sets. Both synthetic and real data have been usedto test the algorithm, and the results show that it is e�cient and robust, and yieldsan accurate motion estimate. The algorithm can be easily extended to solve similarproblems such as 2-D curve matching and 3-D surface matching.Keywords: Free-Form Curve Matching, 3-D registration, Motion Estimation, Dy-namic Scene Analysis, 3-D Vision R�esum�eLe recalage de deux ensembles de primitives g�eom�etriques est un probl�eme eng�en�eral tr�es dur et non r�esolu. Heureusement, dans beaucoup d'applications pratiques,des connaissances a priori simpli�ent considerablement le probl�eme. Dans la navigation�a base de vision, par exemple, le mouvement entre deux positions successives estg�en�eralement soit petit soit approximativement connu. A partir de cette estim�ee grossi�ere,notre algorithme permet de calculer le mouvement avec une tr�es bonne pr�ecision,n�ecessaire �a l'obtention d'un mod�ele satisfaisant de l'environnement. Les objets sontrepr�esent�es au moyen de courbes. Chaque courbe �etant repr�esent�ee par une liste depoints châ�n�es, aucune contrainte n'est a priori impos�ee sur la forme de la courbe,donc sur celle de l'objet. L'algorithme propos�e est bas�e sur la mise en correspondanceit�erative de points d'une courbe avec les points les plus proches d'une autre courbe. Unetechnique de moindres carr�es est utilis�ee pour estimer le mouvement 3D �a partir descorrespondances de points. L'application de ce mouvement r�eduit la distance moyenneentre les courbes dans les deux ensembles. Des donn�ees de synth�ese et des donn�eesr�eelles one �et�e utilis�ees pour tester cet algorithme. Les r�esultats montrent qu'il este�cace et robuste, et donne une estimation pr�ecise du mouvement. L'algorithm peutêtre facilement �etendu �a des probl�emes similaires comme le recalage de courbes 2D oule recalage de surfaces 3D.Mots cl�es: Recalage de courbes, mise en correspondance 3D, estimation du mouve-ment, analyse de sc�enes dynamiques, vision 3D
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1 IntroductionGeometric matching remains one of the bottlenecks in computer and robotvision, although progress has been made in recent years for some particularapplications. There are two main applications: object recognition and visualnavigation. The problem in object recognition is to match observed data toa prestored model representing di�erent objects of interest. The problem invisual navigation is to match data observed in a dynamic scene at di�erentinstants in order to recover object motions and to interpret the scene. Bestand Jain [1], and Chin and Dyer [2] have made two excellent surveys of pre-1985 work on matching in object recognition. Besl [3] surveys the currentmethods for geometric matching and geometric representations while empha-sizing the latter. Most of the previous work focused on polyhedral objects;geometric primitives such as points, lines and planar patches were usuallyused. This is of course very limited compared with the real world we live in.Recently, curved objects have attracted the attention of many researchersin computer vision. This paper deals with objects represented by curves,particularly free-form curves, i.e., arbitrary space curves of the type found inpractice.A free-form curve is represented by a set of chained points. Several match-ing techniques for free-form curves have been proposed in the literature. Inthe �rst category of techniques, curvature extrema are detected and thenused in matching [4]. However, it is di�cult to localize precisely curvatureextrema [5, 6], especially when the curves are smooth. Very small variationsin the curves can change the number of curvature extrema and their positionson the curves. Thus, matching based on curvature extrema is highly sensi-tive to noise. In the second category, a curve is transformed into a sequenceof local, rotationally and translationally invariant features (e.g., curvatureand torsion). The curve matching problem is then reduced to a 1-D stringmatching problem [7, 8, 9]. As more information is used, the methods inthis category tend to be more robust than those in the �rst category. How-ever, these methods are still subject to noise disturbance because they usearclength sampling of the curves to obtain point sets. The arclength itself issensitive to noise.The methods cited above exploit global matching criteria in the sensethat they can deal with two sets of free-form curves which di�er by a largemotion/transformation. This ability to deal with large motions is usually es-3



sential for applications to object recognition. In many other applications, forexample, visual navigation, the motion between curves in successive frames isin general either small (because the maximumvelocity of an object is limitedand the sample frequency is high) or known within a reasonable precision(because a mobile vehicle is usually equipped with several instruments suchas odometric and inertial systems which can provide such information). Inthe latter case, we can �rst apply the given estimate of the motion to the�rst frame to produce an intermediate frame; then the motion between theintermediate frame and the second frame can be considered to be small. Inthis paper we propose a new method for the registration of curves undergoingsmall motion.The key idea underlying our approach is the following. Given that themotion between two successive frames is small, a curve in the �rst frame isclose to the corresponding curve in the second frame. By matching points onthe curves in the �rst frame to their closest points on the curves in the second,we can �nd a motion that brings the curves in the two frames closer (i.e.,the distance between the two curves becomes smaller). Iteratively applyingthis procedure, the algorithm yields a better and better motion estimate.Interestingly enough, during the preparation of this paper Besl and McKaypublished a paper in PAMI (issue February 1992) which exploited the sameidea [10]. Our work is an independent and much improved treatment. Amore detailed comparison is given in Sect. 6.4.2 Problem StatementA 3-D (space) curve segment C is a vector function x : [a; b]! R3, where aand b are scalar. In computer vision applications, the data of a space curveare available in the form of a set of chained 3-D points from either a stereoalgorithm [11] or a range imaging sensor [12]. If we know the type of thecurve, we can obtain its description x by �tting, say, conics to the pointdata [13, 14]. In this work, we shall use directly the chained points, i.e., weare interested in free-form space curves without regard to particular curveprimitives.The use of chained points is equivalent to a piecewise linear approximationto a curve. Let xi;j (j = 1; : : : ; Ni) be the Ni chained points on the curveCi. The approximation error can be made arbitrarily small by increasing Ni4



and decreasing the distances kxi;j �xi;j+1k. At every point xi;j, we computethe tangent direction ui;j which will be used in the matching procedure. Itis not necessary in our algorithm to know precisely the tangent directions.We use the simple estimateui;j = (xi;j+1 � xi;j�1)=kxi;j+1 � xi;j�1k ;except at the beginning and end points whereui;1 = (xi;2 � xi;1)=kxi;1 � xi;1k ;ui;Ni = (xi;Ni � xi;Ni�1)=kxi;Ni � xi;Ni�1k :Given two 3-D frames of a scene observed at two di�erent positions, eachcontaining a set of curves. Let Ci (i = 1; : : : ;m) and C 0k (k = 1; : : : ; n) bethe curves observed in the �rst and second frames, respectively. Let xi;j(j = 1; : : : ; Ni) and x0k;l (l = 1; : : : ; Nk) be the points on the curves Ci andC 0j, respectively. The objective is to �nd the motion between the two frames,i.e., R for rotation and t for translation, such that the following criterionF(R; t) = mXi=1 NiXj=1 pi;j d2(Rxi;j + t; C 0k) + nXk=1 NkXl=1 qk;l d2(RTx0k;l �RTt; Ci)(1)is minimized, where d(x; C) denotes the distance of the point x to the curveC (to be de�ned below), pi;j (resp. qk:l) takes value 1 if the point xi;j (resp.x0k;l) can be matched to a point on the curve C 0k in the second frame (resp. Ciin the �rst frame) and takes value 0 otherwise. Of course, the minimizationof Eq. (1) must be accompanied by the maximization ofmXi=1 NiXj=1 pi;j + nXk=1 NkXl=1 qk;l :If not, the trivial solution of Eq. (1) is achieved when pi;j = qk;l = 0 for all i,j, k and l.The above criteria are symmetric in the sense that neither of the twoframes prevails over the other. To economize computation, we shall only usethe �rst part of the right hand side of Eq. (1), together with the maximizationof Pmi=1PNij=1 pi;j . In other words, the objective function to be minimized isF(R; t) = 1Pmi=1PNij=1 pi;j mXi=1 NiXj=1 pi;j d2(Rxi;j + t; C 0k) : (2)5



This modi�cation only a�ects a little bit the accuracy of the �nal motionestimation. It also slows down a little bit the convergence, in the sense of thenumber of iterations, of the iterative algorithm described in the next section,but speeds up the whole process.Furthermore, we assume the motion between the two frames is small orapproximately known. In the latter case, we can �rst apply the approximateestimate of the motion between the two frames to the �rst one to producean intermediate frame; then the motion between the intermediate frame andthe second frame can be considered to be small. Small depends essentiallyon the scene of interest. If the scene is dominated by a repetitive pattern, themotion should not be bigger than half of the pattern distance. For example,in the situation illustrated in Fig. 1, our algorithm will converge to a localminimum. In this case, other methods based on more global criteria, suchas those cited in the introduction section, must be used to recover a roughestimation of the motion. The algorithm described in this paper can then beused to obtain a precise motion estimate.
Fig. 1. Our algorithm exploits a local matching technique, and converges to the clos-est local minimum, which is not necessarily the optimal one3 Iterative Pseudo Point Matching AlgorithmWe describe in this section an iterative algorithm for curve registration bymatching points in the �rst frame, after applying the previously recovered6



motion estimate (R; t), with their closest points in the second. A least-squares estimation reduces the average distance between curves in the twoframes. As a point in one frame and its closest point in the other do notnecessarily correspond to a single point in space, several iterations are indis-pensable. Hence the name of the algorithm.3.1 Finding Closest PointsLet us �rst de�ne the distance d(x; C 0k) between point x and curve C 0k, which isused in Eq. (2), the criterion de�ned in the last section. If C 0k is a parametriccurve (x0k : [a; b]! R3), thend(x; C 0k) = minu2[a;b] d(x;x0k(u)) ; (3)where d(x1;x2) is the Euclidean distance between the two points x1 and x2,i.e., d(x1;x2) = kx1�x2k. In our case, C 0k is given as a set of chained pointsx0k;l (l = 1; : : : ; Nk). We simply de�ned(x; C 0k) = minl2f1;:::;Nkg d(x;x0k;l) : (4)See the next section for more discussions on the distance.The closest point y in the second frame to a given point x is the onesatisfying d(x;y) = mink2f1;:::;ng d(x; C 0k) = mink2f1;:::;ng minl2f1;:::;Nkg d(x;x0k;l) :The worst case cost of �nding the closest point is O(Nnk ), where Nnk is thetotal number of points in the second frame. The total cost while performingthe above computation for each point in the �rst frame is O(Nmi Nnk ), whereNmi is the total number of points in the �rst frame. The use of k-D trees canconsiderably speed up this process, see Sect. 4.1.3.2 Pseudo Point MatchingFor each point x we can always �nd a closest point y. However, becausethere are some spurious points in both frames due to sensor capability, or7



because some points visible in one frame are not in the other due to sen-sor/object motion, it probably does not make any sense to pair x with y.Many constraints can be imposed to remove such spurious pairings. Forexample, distance continuity along a curve, which is similar to the �guralcontinuity in stereo matching [15, 16], should be very useful to discard thefalse matches. These constraints are not incorporated in our algorithm inorder to maintain the algorithm in its simplest form. Instead, we impose thefollowing two simple constraints, which are all unary.The �rst is the maximum tolerance for distance. If the distance betweena point xi;j and its closest one yi;j, denoted by d(xi;j;yi;j), is bigger than themaximum tolerable distance Dmax, then we set pi;j = 0 in Eq. (2), i.e., wecannot pair a reasonable point in the second frame with the point xi;j. Thisconstraint is easily justi�ed for we know that the motion between the twoframes is small and hence the distance between two points reasonably pairedcannot be very big. In our algorithm, Dmax is set adaptively and in a robustmanner during each iteration by analyzing distances statistics. See Sect. 3.3.The second is the orientation consistency. It can be easily shown thatthe angle between the tangent of point x and that of its closest point y cannot go beyond the rotation angle between the two frames [17]. Therefore,we can impose that the angle between the tangents of two paired pointsshould not be bigger than a pre�xed value �, which is the maximum of therotation angle expected between the two frames. In our implementation, weset � = 60� to take into account noise e�ect in the tangent computation.If the tangents can be precisely computed, � can be set to a smaller value.This constraint is especially useful when the motion is relatively big.3.3 Updating the MatchingInstead of using all matches recovered so far, we exploit a robust techniqueto discard several of them by analyzing the statistics of the distances. Tothis end, one parameter, denoted by D, needs to be set by the user, whichindicates when he considers the registration between two frames is good. SeeSect. 4.3 for the choice of the value D.Let DImax denote the maximum tolerable distance in iteration I. At thispoint, each point in the �rst frame (after applying the previously recoveredmotion) whose distance to its closest point is less than DI�1max is retained,together with its closest point and their distance. Let fxig, fyig, and fdig8



be the resulting sets of original points, closest points, and their distancesafter the pseudo point matching, and let N be the cardinal of the sets. Nowcompute the mean � and the sample deviation � of the distances, which aregiven by � = 1N NXi=1 di ;� =vuut 1N NXi=1(di � �)2 :Depending on the value of �, we adaptively set the maximum tolerabledistance DImax as shown below�:if � < D /* the registration is quite good */DImax = �+ 3� ;else if � < 3D /* the registration is still good */DImax = �+ 2� ;else if � < 6D /* the registration is not too bad */DImax = �+ � ;else /* the registration is really bad */DImax = � ;endifHere, � is the median of all the distances. That is, the number of di's lessthan � is approximately equal to the number of di's larger than �.At this point, we use the newly set DImax to update the matching previ-ously recovered: a paring between xi and yi is removed if their distance diis bigger than DImax. The pairings remained are used to compute the motionbetween the two frames, as to be described below.BecauseDmax is adaptively set based on the statistics of the distances, ouralgorithm is rather robust to relatively big motion and to gross outliers (as tobe shown in the experiment section). For example, when the registration isreally bad, only half of the originally recovered matches are retained. Even ifthere remain several false matches in the retained set, the use of least-squares�Here we assume the distribution of distances is approximately Gaussian when theregistration is good. This has been con�rmed by experiments. A typical histogram isshown in Fig. 2. 9
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Fig. 2. A histogram of distancestechnique yields still a reasonable motion estimate, which is su�cient for thealgorithm to converge to the correct solution.3.4 Computing MotionAt this point, we have a set of 3-D points which have been reasonably pairedwith a set of closest points, denoted respectively by fxig and fyig. Let Nbe the number of pairs. Because N is usually much greater than 3 (threepoints are the minimum for the computed rigid motion to be unique), it isnecessary to devise a procedure for computing the motion by minimizing thefollowing mean-squares objective functionF(R; t) = 1N NXi=1 kRxi + t� yik2 ; (5)which is the direct result of Eq. (2) with the de�nition of distance givenby Eq. (4). Any optimization method, such as steepest descent, conjugate10



gradient, or complex, can be used to �nd the least-squares rotation andtranslation. Fortunately, several much more e�cient algorithms exist forsolving this particular problem. In the following, the dual number quaternionmethod [18] is summarized.A quaternion q can be considered as being either a 4-D vector [q1; q2; q3; q4]Tor a pair (�q; q4) where �q = [q1; q2; q3]T . A dual quaternion q̂ consists of twoquaternions q and s, i.e., q̂ = q+ "s ; (6)where a special multiplication rule for " is de�ned by "2 = 0. Two importantmatrix functions of quaternions are de�ned asQ(q) = " q4I+K(�q) �q��qT q4 # ; (7)W(q) = " q4I�K(�q) �q��qT q4 # ; (8)where I is the identity matrix, and K(�q) is the skew-symmetric matrix de-�ned as K(�q) = 264 0 �q3 q2q3 0 �q1�q2 q1 0 375 :A 3-D rigid motion can be represented by a dual quaternion q̂ satisfyingthe following two constraints:qTq = 1 and qTs = 0 : (9)Thus, we have still six independent parameters for representating a 3-D mo-tion. The rotation matrix R can be expressed asR = (q24 � �qT �q)I+ 2�q�qT + 2q4K(�q) ; (10)and the translation vector t = �p, where �p is the vector part of the quaternionp given by p =W(q)Ts : (11)The scalar part p4 of p is always zero.11



A 3-D vector x is identi�ed with the quaternion (x; 0), and we shall alsouse x to represent its corresponding quaternion if there is no ambiguity inthe context. It can then be easily shown thatRx+ t =W(q)Ts+W(q)TQ(q)x :Thus the objective function Eq. (5) can be written as a quadratic function ofq and s F = 1N [qTC1q+NsT s+ sTC2q+ const.] ; (12)whereC1 = �2 NXi=1Q(yi)TW(xi) = �2 NXi=1 " K(y)K(x) + yxT �K(y)x�yTK(x) yTx # ;(13)C2 = 2 NXi=1[W(xi)�Q(yi)] = 2 NXi=1 " �K(x)�K(y) x� y�(x� y)T 0 # ; (14)const. = NXi=1(xTi xi + yTi yi) : (15)By adjoining the constraints (Eq. (9)), the optimal dual quaternion isobtained by minimizingF 0 = 1N [qTC1q+NsT s+ sTC2q+ const. + �1(qTq� 1) + �2(sTq)] ;(16)where �1 and �2 are Lagrange multipliers. Taking the partial derivativesgives @F 0@q = 1N h(C1 + CT1 )q+ CT2 s+ 2�1q+ �2si = 0 ; (17)@F 0@s = 1N [2Ns+ C2q+ �2q] = 0 : (18)Multiplying Eq. (18) by q gives �2 = �qTC2q = 0, because C2 is skew-symmetric. Thus s is given bys = � 12NC2q : (19)12



Substituting these into Eq. (17) yieldsAq = �1q ; (20)where A = 12 � 12NCT2 C2 � C1 � CT1 � : (21)Thus, the quaternion q is an eigenvector of the matrix A and �1 is thecorresponding eigenvalue. Substituting the above result back into Eq. (16)gives F 0 = 1N (const.� �1) : (22)The error is thus minimized if we select the eigenvector corresponding to thelargest eigenvalue.Having computed q, the rotation matrix R is computed from Eq. (10).The dual part s is computed from Eq. (19) and the translation vector t canthen be solved from Eq. (11).Other e�cient algorithms include quaternion method [19] and singularvalue decomposition [20]. We have implemented both the quaternion methodand the dual number quaternion one. They yield exactly the same motionestimate. One advantage of the dual quaternion method is that the matricesC1 and C2 can be incrementally computed. Following [18], they then exhibitbetter performance for the translation than the singular value decompositionmethod.3.5 SummaryWe can now summarize the iterative pseudo point matching algorithm asfollows:� input: Two 3D frames containing m curves Ci and n curves C 0k, respec-tively. Each curve C is a set of chained 3D points xj.� output: The optimal motion between the two frames.� procedure: 13



a) initializationD0max is set to 20D, which implies that every point in the �rst framewhose distance to its closest point in the second frame is bigger thanD0max is discarded from consideration during the �rst iteration. Thenumber 20 is not crucial in the algorithm, and can be replaced by alarger one.b) preprocessing(i) Compute the tangent at each point of the �rst frame.(ii) Compute the tangent at each point of the second frame.(iii) Build the k-D tree representation of the second frame (see Sect. 4.1).c) iteration until convergence of the computed motion(i) Finding the closest points satisfying the distance and orientationconstraints, as described in Sect. 3.2.(ii) Update the matching through statistic analysis of distances, asdescribed in Sect. 3.3.(iii) Compute the motion between the two frames from the updatedmatches, as decribed in Sect. 3.4.(iv) Apply the motion to all points and their tangents in the �rst frame.Several remarks should be made here. The construction and the use ofk-D trees for �nding closest points will be described in the next section. Themotion is computed between the original points in the �rst frame and thepoints in the second frame. Therefore, the �nal motion given by the algorithmrepresents the transformation between the original �rst frame and the secondframe. The iteration-termination condition is de�ned as the change in themotion estimate between two successive iterations. The change in translationat iteration I is de�ned as �t = ktI � tI�1kktIk :To measure the change in rotation, we use the rotation axis representation,which is a 3-D vector, denoted by r. Let � = krk and n = r=krk, the relationbetween r and the quaternion q isq = " sin(�=2)ncos(�=2) # :14



We do not use the quaternions because their di�erence does not make muchsense. We then de�ne the change in rotation at iteration I as�r = krI � rI�1kkrIk :We terminate the iteration when both �r and �t are less than 1%.4 Practical ConsiderationsIn this section, we consider several important aspects in practice, includingsearch for closest points, curve sampling, choice of the parameter D, anduncertainty.4.1 Search for Closest PointsAs can be observed in the last section, the search for the closest point to agiven point is O(N) in time, where N = Nnk is the total number of pointsin the second frame. Several methods exist to speed up the search process,including bucketing techniques and k-D trees (abbreviation for k-dimensionalbinary search tree). We have chosen k-D trees, because curves we have inform of chained points are sparse in space. It is not e�cient enough to usebucketing techniques because only a few buckets would contain many points,and many others nothing.The k-D tree is a generalization of bisection in one dimension to k di-mensions [21]. In our case, k = 3. A 3-D tree is constructed as follows.First choose a plane parallel to yz-plane passing through a data point P tocut the whole space into two (generalized) rectangular parallelepipedsy suchthat there are approximately equal numbers of points on either side of thecut. We obtain then a left son and a right son. Next, each son is furthersplit by a plane parallel to xz-plane such that there are approximately equalnumbers of points on either side of the cut, and we obtain a left grandsonand a right one. We continue splitting each grandson by choosing a planeparallel to xy-plane, and so on, letting at each step the direction of the cut-ting plane alternate between yz-, xz- and xy-plane. This splitting processyA generalized rectangular parallelepiped is possibly an in�nite volume.15



stops when we reach a rectangular parallelepiped not containing any point;the corresponding node is a leaf of the tree. A k-D tree can be constructedin O(N logN) time with O(N) storage, which are both optimal [21].We now investigate the use of the 3-D tree in searching for closest points.In fact, given a point x in the �rst frame, instead of searching for its closestpoint in the second frame, we search for all points whose distances to x iswithin the maximum tolerable distance Dmax. Thus, for each point x wehave a list of candidates arranging in increasing distance order, the list beingpossibly empty. This provides the user with the exibility to implementmoresophisticated method, say relaxation, at the step of pseudo point matching.The search algorithm is a recursive procedure. More formally, a node v ofthe 3-D tree T is characterized by two items (P (v); t(v)). Point P (v) is thepoint through which the space is cut into two. The parameter t(v), takingvalue 0, 1, or 2, indicates whether the cutting plane is parallel to yz-, xz-, orxy-plane. The algorithm accumulates the retrieved points in a list U externalto the procedure, initialized as empty. The search for the closest points to xis e�ected by calling SEARCH(root(T );x;Dmax) of the following procedure:� input: a point x, a 3-D tree T , and the maximumtolerable distanceDmax.� output: a list U containing all points whose distances to x is withinDmax.� procedure: SEARCH(v;x;Dmax)| if (v == leaf) return ;| c1 = x[t(v)] ;| c2 = P (v)[t(v)] ; /* c2 has been used to cut the space */| if (jc1 � c2j � Dmax) then if (kx� P (v)k � Dmax) then U ( P (v) ;| if (c1 �Dmax < c2) then SEARCH(leftson(v);x;Dmax) ;| if (c2 �Dmax < c1) then SEARCH(rightson(v);x;Dmax) ;Unfortunately, the worst-case search time is O(N2=3) with the 3-D treemethod (see [21, pp.77]). Other more e�cient algorithms exist, such as adirect access method, but they require much more storage. In practice, weobserved good performance with 3-D trees. We found that the search timedepends heavily on Dmax. When Dmax is small, the search can be performedvery fast (see the experiment section). As we update Dmax during eachiteration, it becomes quite small after a few iterations.16



4.2 Curve SamplingAs described earlier, we use chained points to represent a free-form curve,which is equivalent to a piecewise linear approximation. We have also as-sumed that the approximation error was small enough. However, the algo-rithm developed in the last section is based on the use of a simpli�ed, insteadof real, de�nition of the distance between a point and a curve (see Eq. (4)).That is, we use the minimum of all distances from a given point to eachsample point of the curve. Di�erent sampling of a curve (even the approx-imation error is negligible) does a�ect the �nal estimation of the motion.Take a simple example as shown in Fig. 3. The curve consists of two linesegments (Fig. 3a). The sampling in the �rst frame consists of three pointsas indicated by the crosses in Fig. 3a. We have two samplings in the secondframe. The �rst sampling consists of three points as indicated by dark dots,and the second sampling consists of �ve points by adding two additionalones (indicated by empty dots) to the �rst sampling, as shown in Fig. 3a.The motion result between the two frames with the �rst sampling is shownin Fig. 3b, and that with the second sampling, in Fig. 3c. Clearly, more sam-ples, better results. To solve the problem resulted from sampling, we shouldideally use the real distance de�nition (Eq. (3)) by considering all points (re-ferred as curve points) on the line segments composing the curve, and usethe closest curve points instead of the closest sample points. However, welose the e�ciency achieved with sample points.
(a) (b) (c)Fig. 3. Inuence of curve sampling on motion estimationNow we describe two methods to overcome the above problem while main-17



taining the e�ciency of the algorithm. The �rst consists in simply increasingthe number of sample points. The more the number of sample points, theless the sampling will a�ect the �nal motion estimation. However, this causestwo problems. The �rst is the increase in the memory required. The secondis the increase in the search time because we increase also the size of the k-Dtree. Thus a tradeo� must be found. It is clear that the e�ect of sampling onthe �nal motion estimation is approximately less than a half of the averagesample interval, because in the case of a perfect registration (as shown, forexample, in Fig. 5) the distance between a point in the �rst frame and itsmatch in the second frame is not bigger than half of the corresponding in-terval in the second frame. Therefore, let e (10 mm in our implementation)be the tolerable e�ect of sampling, then if two neighboring sample points aremore than 2e away from each other, we add, between them, as many pointsas necessary such that the distance between every two neighboring points isless than or equal to 2e. This process is only needed for curves in the secondframe, and can be done in the preprocessing stage.The second method is an approximation
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cFig. 4. Computing the closestpoint to the real de�nition of the distance betweena point and a curve (Eq. (3)). As describedin Sect. 4.1, for a given point x0, we obtaina list of points in the second frame whosedistances to x0 are all less thanDmax. Thesepoints are arranged in increasing distanceorder. Let x1 and x2 be the �rst and secondpoints in the list. Instead of taking x1 as thematch of x0, we can assign a virtual point,to be described below, to x0. The virtual point is xc, which is the closestpoint on the line passing through x1 and x2 (see Fig. 4). It satis�es thefollowing relations (xc � x0) � (x2 � x1) = 0 ;(xc � x1)� (x2 � x1) = 0 ;where � and � denote the inner product and cross product of two vectors.Explicitly, it is xc = x1 + (x0 � x1) � (x2 � x1)kx2 � x1k2 (x2 � x1) :18



Before doing that, we should ensure that x1 and x2 are neighbors.Each of the two methods has its own merit and drawback. We can expectto obtain more precise estimation of motion with the second method. How-ever, we must compute the virtual point for each point in the �rst frame andduring each iteration, while with the �rst method the additional computationis only performed in the preprocessing stage. We have implemented the �rstmethod because we can obtain an estimation with required precision.4.3 Choice of the Parameter DThe only parameter needed to be supplied by the user is D, which indicateswhen the registration between two frames can be considered to be good.In other words, the value of D should correspond to the expected averagedistance when the registration is good. When the motion is big, D shouldnot be very small. Because we set D0max = 20D, if D is very small we cannot�nd any matches in the �rst iteration and of course we cannot improve themotion estimate. (A solution to this is to set D0max bigger, say 30D).The value of D has an impact on the con- s� � � � � � � � s� � � � s@ @ @ @ @ s�@ �@ �@Fig. 5. Illustration of a per-fect registration toshow how to choose D
vergence of the algorithm. If D is smallerthan necessary, then more iterations are re-quired for the algorithm to converge becausemany good matches will be discarded at thestep of matching update. On the other hand,if D is much bigger than necessary, it is pos-sible for the algorithm not to converge to thecorrect solution because possibly many falsematches will not be discarded. Thus, to beprudent, it is better to choose a small valuefor D.We have worked out a better solution toD instead of an ad hoc choice. Let �D be the average distance betweensuccessive points in the second frame, that is�D = Pnk=1PNk�1l=1 kxk;l � xk;l+1kPnk=1(Nk � 1) :Consider a perfect registration shown in Fig. 5. Points from the �rst frameare marked by a cross and those from the second, by a dot. Assume that a19



cross is located in the middle of two dots. Then in this case, the mean � ofthe distances between two sets of points is equal to �D=2. Therefore, we canexpect � > �D=2 when the registration is not perfect. In our implementation,we set D = �D which gives us satisfactory results.4.4 UncertaintyThe importance of explicitly estimating and manipulating uncertainty is nowwell recognized by the computer vision and robotics community [22, 23, 24,25, 26]. This is extremely important when the data available have di�erentuncertainty distribution for example in stereo where uncertainty increasessigni�cantly with depth. We have shown in [27] that accounting for uncer-tainty in motion estimation (via, e.g., a Kalman �lter) yields much betterresults.For computational tractability and as a reasonable approximation, theuncertainty in a 3-D point reconstructed from stereo is usually modeled asGaussian; that is, it is characterized by a 3-D position vector and a 3� 3 co-variance matrix. The algorithm for motion computation described in Sect. 3.4is very e�cient. However, it assumes each point has equal uncertainty. Andunfortunately it is di�cult to extend it to fully take uncertainty into account.To fully take uncertainty into account, we can use for example Kalman �l-tering techniques which have been widely and successfully applied to solvequite a number of vision problems [28].While I was saying di�cult to fully take uncertainty into account in thealgorithm described in Sect. 3.4, I do mean we can extend it to partially takeuncertainty into account. Indeed, we can associate, to each pairing betweenthe two frames, a weighting factor. Instead of minimizingEq. (5), we computeR and t by minimizing the following functionF(R; t) = 1N NXi=1 wikRxi + t� yik2 ; (23)where wi is the positive weighting factor associated with the pairing betweenxi and yi. Under the dual quaternion representation, the objective functionF(R; t) can be written as a quadratic function of q and sF = 1N [qTC1q+W sTs + sTC2q+ const.] ; (24)20



where C1 = �2 NXi=1wiQ(yi)TW(xi) ; (25)C2 = 2 NXi=1wi[W(xi)�Q(yi)] ; (26)W = NXi=1wi ; (27)const. = NXi=1wi(xTi xi + yTi yi) : (28)We can observe the similarity between Eq. (24) and Eq. (12). The quaternionq is the eigenvector of the matrixA = 12 � 12WCT2 C2 �C1 � CT1 �corresponding to the largest eigenvalue. The quaternion s is then given bys = � 12WC2q :The weighting factor wi should be related to the uncertainty of Rxi+ t�yi. Let �xi, �yi , and �i be the covariance matrices of xi, yi, and Rxi+t�yi.�xi and �yi are given by the sensing system, e.g., stereo. �i is computed as�i = R�xiRT + �yi ;where R takes the rotation matrix computed during a previous iteration asan approximation. The trace of �i roughly indicates the magnitude of theuncertainty of Rxi + t� yi. Therefore, we choose wi aswi = 1tr(�i) = 1tr(�xi) + tr(�yi) :Thus, the weighting factor is independent of the rotation.21



4.5 Coarse-to-Fine StrategyAs to be shown in the next section, we �nd fast convergence of the algorithmduring the �rst few iterations that slows down as it approaches the localminimum. We �nd also that more search time is required during the �rstfew iterations because the search space is larger at the beginning, as describedin Sect. 4.3. Since the total search time is linear in the number of points inthe �rst frame, it is natural to exploit a coarse-to-�ne strategy. During the�rst few iterations, we can use coarser samples (e.g., every �ve) instead of allsample points on the curve. When the algorithm almost converges, we useall available points in order to obtain a precise estimation.5 Experimental ResultsThe proposed algorithm has been implemented in C. In order to maintainthe modularity, the code is not optimized. The motion estimation algo-rithm described in Sect. 4.4 is not used; that is, we do not take into accountmeasurement uncertainty in the experiments described below. In all theseexperiments, the same parameters are used: e = 10 mm (see Sect. 4.2) andD is computed as described in Sect. 4.3. It is thus never larger than 2e. Theprogram is run on a SUN 4/60 workstation, and any quoted times are givenfor execution on that machine.This section is divided into three subsections. In the �rst the algorithm isapplied to synthetic data. The results show clearly the typical behaviour ofthe algorithm to be expected in practice. The second describes the robustnessand e�ciency of the algorithm using synthetic data with di�erent levels ofnoise and di�erent samplings. The third describes the experimental resultswith real data.5.1 A Case StudyIn this experiment, the parametric curve described by x(u) = [u2; 5u sin(u)+10u cos(1:5u); 0]T is used. The curve is sampled twice in di�erent ways. Eachsample set contains 200 points. The second set is then rotated and translatedwith r = [0:02; 0:25; �0:15]T and t = [40:0; 120:0; �50:0]T . We thus get twonoise-free frames. (The same noise-free data are used in the experimentsdescribed in the next section.) 22



For each point, zero-mean Gaussian noise with a standard deviation equalto 2 is added to its x, y and z components. We show in Fig. 6 the front andtop views of the noisy data. For visual convenience, points are linked. Thesolid curve is the one in the �rst frame, and the dashed one, in the secondframe. The data are used as is; no smoothing is performed.
Fig. 6. Front and top views of the dataThe �rst step is then to �nd matches for the points in the �rst frame. AsD0max is big, each point has a match. We �nd 200 matches in total, whichare shown in Fig. 7, where matched points are linked. Many false matchesare observed. We then update these matches using the technique describedin Sect. 3.3, and 100 matches survive, which are shown in Fig. 8.Even after the updating, there are still some false matches. Because thereare more good matches then false matches, the motion estimation algorithmstill yields a reasonable estimate. This can be observed in Fig. 9, where themotion estimated has been applied to the points in the �rst frame. We canobserve the improvement of the registration of the two curves, especially inthe top view.Now we enter the second iteration. We �nd at this time 176 matches,which are shown in Fig. 10a. (Top view is not shown, because the two curvesare very close.) Several false matches are observable. After updating, 146matches remain, as shown in Fig. 10b. Almost all these matches are correct.Motion is then computed from these matches.23



Fig. 7. Matched points in the �rst iteration before updating (front and top views)
Fig. 8. Matched points in the �rst iteration after updating (front and top views)We iterate the process in the same manner. The motion result after 10iterations is shown in Fig. 11. The registration between the two curves isalready quite good.The algorithm yields after 15 iterations the following motion estimate:r̂ = [2:442 � 10�2; 2:503 � 10�1; �1:484 � 10�1]T ;t̂ = [3:879 � 101; 1:139 � 102; �4:967 � 101]T :24



Fig. 9. Front and top views of the motion result after the �rst iteration
(a) (b)Fig. 10. Matched points before and after updating in the second iteration (only thefront view)To measure the precision in motion estimation, we de�ne the rotation erroras er = kr� r̂k=krk � 100% ; (29)where r and r̂ are respectively the real and estimated rotation parameters,25



Fig. 11. Front and top views of the motion result after ten iterationsand the translation error aset = kt� t̂k=ktk � 100% ; (30)where t is the real translation parameter and t̂ is the estimated one. InFig. 12, we show the evolution of the rotation and translation errors versusthe number of iterations. Fast convergence is observed during the �rst fewiterations and relatively slower later. After 15 iterations, the rotation erroris 1.6% and the translation error is 4.6%.We show in Table 1 several intermediate results during di�erent itera-tions. The results are divided into three parts. The second to fourth rowsindicate the execution time (in seconds) required for �nding matches, up-dating the matching, and computing the motion, respectively. The �fth rowshows the values of Dmax used in di�erent iterations. The last row shows thecomparison of the numbers of matches found in di�erent iterations beforeand after updating. We have the following remarks:� Dmax almost decreases monotonically with the number of iterations. This isbecause the registration becomes better and better, and Dmax is computeddynamically through the statistic analysis of distances.� The time required for �nding matches almost decreases monotonically, too.This is because of the almost monotonic decrease of Dmax. Less search ink-D tree is required when the search region becomes smaller.26
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Fig. 12. Evolution of the rotation and translation errors versus the number of iterations� The time required for updating the matching is negligible.� The time required for computing the motion is almost constant, as it isrelated to the number of matches (here almost constant). Furthermore,the motion algorithm is very e�cient: about 0.05 seconds for 145 matches.� The numbers of matches before and after updating do not vary much afterthe �rst few iterations. This also implies that the Gaussian assumption ofthe distance distribution is reasonable.The total execution time is 6.5 seconds in this experiment.5.2 Synthetic DataIn this section, we describe the robustness and e�ciency of the algorithmusing the same synthetic data as in the last section, but with di�erent levelsof noise and di�erent samplings. All results given below are the average often tries. 27



Table 1. Several detail results in di�erent iterationsiteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15matching time 2.20 1.30 0.62 0.33 0.25 0.28 0.22 0.17 0.15 0.17 0.15 0.12 0.13 0.13 0.12update time 0.03 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.02motion time 0.05 0.05 0.05 0.05 0.05 0.03 0.05 0.03 0.02 0.07 0.05 0.03 0.03 0.02 0.02Dmax 235 140 78.5 46.1 32.8 34.7 28.0 22.4 18.9 16.7 15.3 13.6 12.3 10.7 9.89nb. beforeafter 200100 176146 150143 148137 147147 148148 148147 148147 148146 148146 147147 146145 143143 143143 143143The �rst series of experiments are carried out with respect to di�erentlevels of noise. The standard deviation of the noise added to each point variesfrom 0 to 20. Similar to Fig. 12, we show, as a sample, in Fig. 13 and Fig. 14the evolutions of the rotation and translation errors versus the number ofiterations with a standard deviation equal to 2 and 8. From these results, weobserve that� The translation error decreases almost monotonically, while the shape forthe rotation error is more complex.� Noise has a stronger impact on the rotation parameters than on the trans-lation parameters. When noise is small, there is in general a smaller errorin rotation than in translation. When noise is important, the inverse isobserved.We think the above phenomena are due to the fact that the relation be-tween the measurements and the rotation parameters is nonlinear while thatbetween the measurements and the translation parameters is linear.To visually demonstrate the e�ect of the noise added and the ability of thealgorithm, we show in Fig. 15 and Fig. 16 two sample results. In each �gure,the upper row displays the front and top views of the two noisy curves beforeregistration; the lower row displays the front and top views of the two noisycurves after registration. In Fig. 15 and Fig. 16, we have added, to each x, y,and z components of each point of the two curves, zero-mean Gaussian noisewith a standard deviation equal to 8 and 16, respectively. Even though thecurves are so noisy, the registration between them is surprisingly good.We now summarize more results in Table 2. The rotation and translationerrors are measured in percents, and the execution time, in seconds. Each28
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Fig. 13. Evolution of the rotation and translation errors versus the number of itera-tions with a standard deviation equal to 2number shown is the average of 10 tries. 15 iterations have been applied. Wehave the following conclusions:� The errors in rotation and in translation increase with the increase in thenoise added to the data, as expected.� Noise in the measurements has more e�ect in the rotation than in trans-lation.� The algorithm is robust. It yields a reasonable motion estimation evenwhen the data are signi�cantly corrupted.� The execution time increases also with the increase in the noise added tothe data. This is because when the data are very noisy the value of Dmaxstays big, and the search have to be performed in a large space.We now investigate the ability of the algorithm with respect to di�erentsamplings of curves. The same data are used. Zero-mean Gaussian noise witha standard deviation equal to 2 is added to each x, y, and z components of29
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Fig. 14. Evolution of the rotation and translation errors versus the number of itera-tions with a standard deviation equal to 8Table 2. A summary of the experimental results with synthetic datastandard deviation 0 2 4 6 8 10 12 14 16 18 20rotation error 2.25 2.12 4.63 9.62 13.73 14.31 20.47 18.07 23.87 37.04 33.20translation error 1.77 4.36 4.55 4.84 5.70 7.81 8.93 9.89 17.15 22.00 27.17execution time 6.27 6.82 8.58 9.26 11.12 11.86 12.59 13.35 16.40 16.56 17.32each point of the two curves. We have already described in Sect. 4.2 the e�ectof di�erent samplings of the curves in the second frames. Here we vary thesampling of the curve in the �rst frame from 1 (i.e., all points) to 10 (i.e., oneout of every ten points). Ten tries are carried out for each sampling. Theerrors in rotation and in translation (in percents), and the execution time (inseconds) versus di�erent samplings are shown in Table 3. Two remarks canbe made:� Generally speaking, the more samples there are in a curve, the less the30



Fig. 15. Front and top views of two noisy curves with a standard deviation equal to8 before and after registrationerror in the estimation of the rotation and translation will be. However,the exact relation is not very clear. Consider sampling = 1 and sampling= 10. The latter has only 20 points while the former has 200 points. Themotion error, however, is only twice as large.� The execution time decreases monotonically as the number of samplepoints decreases. The relation, however, is not linear. Fast decrease isobserved when the number of sample points is high.In the foregoing discussions we have observed that using coarsely sam-31



Fig. 16. Front and top views of two noisy curves with a standard deviation equal to16 before and after registrationpled points in the curves in the �rst frame does not a�ect too much theaccuracy of the �nal motion estimation, but it considerably speeds up thewhole process. It is natural to think about using a coarse-to-�ne strategysuch as that described in Sect. 4.5. The �nding of fast convergence of thealgorithm during the �rst few iterations (see Fig. 13 and Fig. 14) and the �nd-ing of relatively expensive search (see Table 1) justify the following strategy.During the �rst few iterations, we use coarser, instead of all, sample points,which allows for �nding an estimation close to the optimal. We then use all32



Table 3. Results with respect to di�erent samplingsfraction of points 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10rotation error 2.12 3.44 4.19 4.88 4.09 7.52 4.75 6.09 5.98 4.90translation error 4.36 5.14 4.27 4.75 4.11 6.67 8.54 7.45 8.52 7.34execution time 6.82 3.53 2.41 1.85 1.52 1.28 1.11 1.01 0.89 0.83sample points to re�ne this estimate. We have conducted ten experimentsusing the same data as before by adding zero-mean Gaussian noise with astandard deviation equal to 3. During the �rst �ve iterations, only 40 points(one out of every �ve points) are used. These are followed by ten iterationsusing all points. The average results of the ten experiments are: rotationerror = 4.56%, translation error = 4.29%, and execution time = 3.39 s. Forcomparison, we performed 15 iterations using all points. The average resultsof the ten tries are: rotation error = 4.68%, translation error = 4.14%, andexecution time = 7.49 s. Only little di�erence between the �nal motion esti-mations is observed, but the algorithm is more than twice faster by exploitingthe coarse-to-�ne strategy.5.3 Real DataIn this section, we provide an example with real data. A trinocular stereosystem mounted on our mobile vehicle is used to take images of a chair scene(the scene is static but the robot moves). We show in Fig. 17 two imagestaken by the �rst camera from two di�erent positions. The displacementbetween the two positions is about 4 degrees in rotation and 100 millimetersin translation. The chair is about 3 meters from the mobile vehicle.The curve-based trinocular stereo algorithm developed in our labora-tory [11] is used to reconstruct the 3-D frames corresponding to the twopositions. There are 36 curves and 588 points in the �rst frame, and 48curves and 763 points in the second frame. We show in the upper row ofFig. 18 the front view and the top view of the superposition of the two 3-Dframes. The curves in the �rst frame is displayed in solid lines while thosein the second frames, in dashed lines. We apply the algorithm to the twoframes. The algorithm converges after 12 iterations. It takes in total 32.5seconds on a SUN 4/60 workstation and half of the time is spent in the �rst33



Fig. 17. Images of a chair scene taken by the �rst camera from two di�erent positionsiteration (so we could speed up the process by setting D0max to a smallervalue). The �nal motion estimate isr̂ = [�1:527 � 10�3; 6:639 � 10�2; 2:894 � 10�3]T ;t̂ = [�4:266 � 100; �1:586 � 100; �1:009 � 102]T :The motion change is: �r = 0:78% and t = 0:53%. The result is shown inthe lower row of Fig. 18 where we have applied the estimated motion to the�rst frame. Excellent registration is observed for the chair. The registrationof the border of the wall is a little bit worse because more error is introducedduring the 3-D reconstruction for it is far away from the cameras.Now we exploit the coarse-to-�ne strategy. As before, we do coarse match-ing in the �rst �ve iterations by sampling evenly one out of every �ve pointson the curves in the �rst frame, followed by �ne matching using all points.The algorithm converges after 12 iterations and yields exactly the same mo-tion estimation as when only doing �ne matching. The execution time, how-ever, decreases from 32.5 seconds to 10.5 seconds, about three times faster.If now we sample evenly one out of every ten points on the curves in the �rstframe, and do coarse matching in the �rst �ve iterations and �ne match-ing in the subsequent ones, the algorithm converges after 13 iterations (one34



Fig. 18. Superposition of two 3-D frames before and after registration: front and topviewsiteration more), and the �nal motion estimate isr̂ = [�1:438 � 10�3; 6:653 � 10�2; 2:995 � 10�3]T ;t̂ = [�4:282 � 100; �1:637 � 100; �1:007 � 102]T ;which is almost the same as the one estimated using directly all points. Themotion change is: �r = 0:71% and t = 0:50%. The execution time is now 8.8seconds. 35



6 Discussions6.1 ComplexityAs described earlier, each iteration of our algorithm consists of three mainsteps. The �rst is to �nd closest points, at an expected cost of O(Nmi logNnk ),where Nmi and Nnk are the number of points in the �rst and second frames,respectively. The second is to update the matching recovered in the �rst step,at a cost of O(Nmi ). The last step is to compute the 3-D motion, also at acost of O(Nmi ). Thus the total complexity of our algorithm is O(Nmi logNnk ).For simplicity, we assume here Nmi = Nnk = N .We now compare the complexity of our algorithm with that of the string-based matching methods (e.g., [8]). Typically, a string-based matchingmethodfor registration of two curves each containing n points has a cost O(n log n).Letm be the number of curves in each frame, and assume each curve containsapproximately the same number of points (i.e., n � N=m). Because there arem possible pairings of curves in the two frames, the total cost of a typicalstring-based matching method isO(m2Nm log Nm) = O(mN log Nm ) :A simple computation shows that if N � mm=(m�1), then mN log Nm �N logN . In practice, a curve contains at least two points, i.e., N � 2m.Since 2m � mm=(m�1) for m � 2, our algorithm has a lower bound of com-putational cost. If there is only one curve in each frame (i.e, m = 1 andn = N), our algorithm has the same complexity as a typical string-basedmatching method.6.2 How About Large Motion ?Because of the local property of the matching criterion used, our algorithmconverges to the closest minimum. It is thus best applied in situations wherethe motion is small or approximately known, and a precise estimation of themotion is required. In the case of large motion, the algorithm can be adaptedin two di�erent ways. The �rst way is to apply �rst the global methodsas cited in the introductory section to obtain an estimation, which is thenre�ned by applying the algorithm described in this paper. The second way is36



to obtain a set of initial registrations by sampling the 6-D motion space, andthen apply our algorithm to each initial registration. The �nal estimationcorresponding to the global minimum error is retained as the optimal one.This method has been used in [10] to solve the object recognition problem.6.3 Multiple Object MotionsIn a dynamic environment, there is usually more than one moving object. Itis important to have reliable algorithm for segmenting the scene into objectsusing motion information. However, little work has been done so far in thisdirection.We have proposed in [29] a framework to deal with multiple object mo-tions. It consists of two levels. The �rst level deals with the tracking of 3-Dtokens from frame to frame and the estimation of their motions. The pro-cessing is completely parallel for each token. The second level groups tokensinto objects based on the similarity of motion parameters. Tokens comingfrom a single object should have the same motion parameters. In [29] thetokens used are 3-D line segments, and the experiments have shown that theframework is exible and powerful. Now if we replace 3-D line segments by3-D curves and estimate 3-D motion for each curve, the general frameworkis still applicable.6.4 Highlights With Respect to Previous WorkAs noted in the introduction, independent work on curve matching was con-ducted by Besl and McKay [10]. They use the same idea: iterativelymatchingpoints in one set to the closest points in another setz. The main di�erencelies in the matching criterion. Refer to Eq. (2). In our algorithm, pi;j cantake value either 1 or 0 depending on whether the point in the �rst set has areasonable match in the second set or not. This is determined by the max-imum tolerable distance Dmax, which, in turn, is set in a dynamic way byanalyzing the statistics of the distances as described in Sect. 3.3. Therefor,our algorithm is capable of dealing with the following situations:zBesl and McKay show two sets of data di�ering by a large motion. They then samplethe 6-D motion space to obtain a set of initial registrations, as described in Sect. 6.2.However, they do not show the particular initial registration which leads to the �nalresult. 37



� Gross outliers in the data. The outliers are automatically discarded in thematching and thus have no e�ect on the �nal motion estimation.� Appearance and disappearance in which curves in one set do not appearin the other set. This is usually the case in navigation where objects mayenter or leave the �eld of view.� Occlusion. An object may occlude other objects, and it may itself beoccluded. This is common in both object recognition and navigation.In the algorithm of Besl and McKay, pi;j takes always value 1. Thus, theiralgorithm can only deal with the case in which the �rst set is a subset of thesecond set. It is powerless in the situations described above.Other di�erences between the two algorithms include:� k-D trees are used in our algorithm to speed up the computation for �ndingthe closest points.� The dual quaternion method is used in our algorithm to compute the3-D motion, which has a possibility to partially take into account theuncertainty of data points. The singular value decomposition method isused in their algorithm.7 ConclusionsWe have described an algorithm for the registration of free-form curves, i.e.,arbitrary space curves of the type found in practice. We have used theassumption that the motion between two frames is small or approximatelyknown, a realistic assumption in many practical applications including visualnavigation. A number of experiments have been carried out and good resultshave been obtained.Our algorithm has the following features:� It is simple. The reader can easily reproduce the algorithm.� It is extensible. More sophisticated strategies such as �gural continuitycan be easily integrated in the algorithm.� It is general. First, the representation used is general for representing arbi-trary space curves of the type found in practice. Second, the ideas behindthe algorithm are applicable to (many) other matching problems. The al-gorithm can easily be adapted to solve for example 2-D curve matchingand 3-D surface matching. 38



� It is e�cient. The most expensive computation is the process of �ndingclosest points, which has a complexity O(N logN). Exploiting the coarse-to-�ne strategy described in Sect. 4.5 considerably speeds up the algorithmwith only a small change in the precision in the �nal estimation.� It is robust to gross errors and can deal with appearance, disappearanceand occlusion of objects, as described in Sect. 6.4. This is achieved by ana-lyzing dynamically the statistics of the distances, as described in Sect. 3.3.� It yields an accurate estimation because all available information is usedin the algorithm.� It does not require any preprocessing of 3-D point data such as for examplesmoothing. The data are used as is in our algorithm. That is, there is noapproximation errorx.� It does not require any derivative estimation (which is sensitive to noise), incontrast with many other feature-based or string-based matching methods.Our algorithm can only partially take the uncertainty of measurementsinto account. To fully take into account the uncertainty, we should replacethe dual quaternion algorithm by other methods such as Kalman �lteringtechniques. This causes a signi�cant increase in the computational cost ofthe algorithm.Our algorithm converges to the closest local minimum, and thus is notappropriate for solving large motion problems. Two possible extensions ofthe algorithm to deal with large motions have been described in Sect. 6.2:coupling with a global method or sampling the motion space.In our algorithm, one parameter, the parameter D, needs to be set bythe user. It indicates when the registration can be considered to be good.It has an impact on the convergence rate, as described in Sect. 4.3. In ourimplementation, D is automatically computed using the intervals of chainedpoints. This method works well for all experiments we have carried out.However, a better method probably exists. Intuitively, the parameter D isrelated not only to the intervals of chained points but also to the shape ofthe curves. D should be smaller for rough curves than for smooth ones. Weare currently investigating this issue.We are currently extending the algorithm to solve surface matching prob-lems arising in navigation. When a mobile vehicle navigates in a naturalxIt is certain that errors have been introduced during the reconstruction of 3-D points,and that they have been propagated in the motion estimation39



environment, a correlation-based stereo algorithm or a range �nder providesa sequence of dense 3-D maps. Only minor modi�cations are needed in orderto produce an algorithm for registering successive 3-D maps.AcknowledgmentThe author would like to thank Olivier Faugeras for stimulating discussionsduring the work, and Steve Maybank for carefully reading the draft version.References[1] P. Besl and R. Jain, \Three-dimensional object recognition," ACM Com-puting Surveys, vol. 17, pp. 75{145, March 1985.[2] R. Chin and C. Dyer, \Model-based recognition in robot vision," ACMComputing Surveys, vol. 18, pp. 67{108, March 1986.[3] P. J. Besl, \Geometric modeling and computer vision," Proc. IEEE,vol. 76, pp. 936{958, August 1988.[4] R. Bolles and R. Cain, \Recognizing and locating partially visible ob-jects, the local-feature-focus method," Int'l J. Robotics Res., vol. 1,no. 3, pp. 57{82, 1982.[5] D. Walters, \Selection of image primitives for general-purpose visualprocessing," Comput. Vision, Graphics Image Process., vol. 37, no. 3,pp. 261{298, 1987.[6] E. E. Milios, \Shape matching using curvature processes," Comput. Vi-sion, Graphics Image Process., vol. 47, pp. 203{226, 1989.[7] T. Pavlidis, \Algorithms for shape analysis of contours and waveforms,"IEEE Trans. PAMI, vol. 2, no. 4, pp. 301{312, 1980.[8] J. T. Schwartz and M. Sharir, \Identi�cation of partially obscuredobjects in two and three dimensions by matching noisy characteristiccurves," Int'l J. Robotics Res., vol. 6, no. 2, pp. 29{44, 1987.40



[9] H. Wolfson, \On curve matching," IEEE Trans. PAMI, vol. 12, no. 5,pp. 483{489, 1990.[10] P. J. Besl and N. D. McKay, \A method for registration of 3-D shapes,"IEEE Trans. PAMI, vol. 14, pp. 239{256, February 1992.[11] L. Robert and O. Faugeras, \Curve-based stereo: Figural continuity andcurvature," in Proc. IEEE Conf. Comput. Vision Pattern Recog., (Maui,Hawaii), pp. 57{62, June 1991.[12] R. E. Sampson, \3D range sensor-phase shift detection," Computer,no. 20, pp. 23{24, 1987.[13] R. Safaee-Rad, I. Tchoukanov, B. Benhabib, and K. C. Smith, \Accu-rate parameter estimation of quadratic curves from grey-level images,"CVGIP: Image Understanding, vol. 54, pp. 259{274, September 1991.[14] G. Taubin, \Estimation of planar curves, surfaces, and nonplanar spacecurves de�ned by implicit equations with applications to edge andrange image segmentation," IEEE Trans. PAMI, vol. 13, pp. 1115{1138,November 1991.[15] J. E. W. Mayhew and J. P. Frisby, \Psychophysical and computationalstudies towards a theory of human stereopsis," Artif. Intell., vol. 17,pp. 349{385, 1981.[16] S. Pollard, J. Mayhew, and J. Frisby, \PMF: A stereo correspondencealgorithm using a disparity gradient limit," Perception, vol. 14, pp. 449{470, 1985.[17] Z. Zhang, O. Faugeras, and N. Ayache, \Analysis of a sequence of stereoscenes containing multiple moving objects using rigidity constraints," inProc. Second Int'l Conf. Comput. Vision, (Tampa, FL), pp. 177{186,IEEE, December 1988.[18] M. W. Walker, L. Shao, and R. A. Volz, \Estimating 3-D location pa-rameters using dual number quaternions," CVGIP: Image Understand-ing, vol. 54, pp. 358{367, November 1991.41



[19] O. Faugeras and M. Hebert, \The representation, recognition, and lo-cating of 3D shapes from range data," Int'l J. Robotics Res., vol. 5,no. 3, pp. 27{52, 1986.[20] K. Arun, T. Huang, and S. Blostein, \Least-squares �tting of two 3-Dpoint sets," IEEE Trans. PAMI, vol. 9, pp. 698{700, September 1987.[21] F. Preparata and M. Shamos, Computational Geometry, An Introduc-tion. New-York: Springer, Berlin, Heidelberg, 1986.[22] S. Blostein and T. Huang, \Error analysis in stereo determination of a3-D point position," IEEE Trans. PAMI, vol. 9, pp. 752{765, November1987.[23] L. Matthies and S. A. Shafer, \Error modeling in stereo navigation,"IEEE J. RA, vol. 3, pp. 239{248, June 1987.[24] D. Kriegman, E. Triendl, and T. Binford, \Stereo vision and navigationin buildings for mobile robots," IEEE Trans. RA, vol. 5, pp. 792{803,December 1989.[25] N. Ayache and O. D. Faugeras, \Maintaining Representations of theEnvironment of a Mobile Robot," IEEE Trans. RA, vol. 5, pp. 804{819,December 1989.[26] R. Szeliski, \Bayesian modeling of uncertainty in low-level vision," Int'lJ. Comput. Vision, vol. 5, no. 3, pp. 271{301, 1990.[27] Z. Zhang and O. Faugeras, \Determining motion from 3D line segments:A comparative study," Image and Vision Computing, vol. 9, pp. 10{19,February 1991.[28] Z. Zhang and O. Faugeras, 3D Dynamic Scene Analysis: A Stereo BasedApproach. Springer, Berlin, Heidelberg, 1992.[29] Z. Zhang and O. Faugeras, \Three-dimensional motion computation andobject segmentation in a long sequence of stereo frames," Int'l J. Com-put. Vision, March 1992. 42


