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1. Introduction 31. IntroductionTerm rewriting can be divided roughly in �rst-order term rewriting [DJ90, Klo92], where�rst-order terms are replaced (reduced, rewritten) according to a �xed set of rewrite rules,and higher-order term rewriting, of which the paradigm is lambda calculus [Bar84]. Thedistinctive feature of the latter is the presence of bound variables. Term rewriting has becomein the last decade a �rmly established discipline, with applications in many areas [BE91]such as abstract data types, functional programming, automated theorem proving, and prooftheory.Term graph rewriting originates with the observation that rewrite rules often ask for du-plications of subterms. E.g., the Combinatory Logic rewrite rule Sxyz ��! xz(yz), wherethe variables x; y; z stand for arbitrary terms, duplicates the term instantiated for z. Tosave space and time, actual implementations do not perform such a duplication literally, butwork instead with pointers to shared subterms. Thus we arrive at rewriting of dags (directedacyclic graphs) rather than terms (�nite trees). Recent years have seen the development ofthe basic theory for acyclic term graph rewriting [BvEG+87, HP88, Plu93, SPvE93]. Typi-cal results are con
uence, when an orthogonality restraint is imposed (rules cannot interferebadly with each other) [Sme93], modularity for properties such as con
uence and termination(the properties stay preserved in combinations of systems) [Plu93], and adequacy (in whatsense is term graph rewriting adequate for ordinary term rewriting) [Ari93, KKSdV94].Term graph rewriting with cycles goes one step further by admitting cyclic term graphs.These arise naturally when dealing with recursive structures. Classical is the implementationby D. Turner [Tur79] of the �xed point combinator Y by means of a cyclic graph (Figure 1).Only in the last few years a �rm foundation of cyclic term graph rewriting has been given, withas a main theorem the con
uence property for orthogonal term graph rewriting. Establishingcon
uence was not altogether trivial since it faced the need for solving the problem of cycliccollapsing terms [Ari92, Ari93, FW91].
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Yβ γFigure 1.Previous de�nitions of term graph rewriting tend to use one of two ways: (1) category-theory oriented [Ken87, Ken88, Ken90, Rao84], (2) implementation-oriented [PvE93]. The�rst describes graph rewrite steps as push-outs in a category, and some papers have beendevoted to analyzing whether this can be done by single or double push-out constructions[L�o93]. The second uses notions like pointers, redirections, indirections. We would like to�nd an approach that is less `abstract' than the �rst, and less `concrete' than the second.So, the aim of the present paper is to provide a smooth framework for term graph rewriting,for the general case where cycles are admitted. The starting point is that a cyclic term graphis nothing else than a system of recursion equations. This is an obvious view, however, itseems that the possibilities generated by this point of view have not yet been exploited fully.Some papers indeed describe term graphs as systems of equations, but do not consider the



4equational transformations that then are possible. As a typical example of the bene�ts of an
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{α = Ι(α)} → {α = α} → {α = ●}

µα. Ι(α) → µα. α   = ●
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cyclic I         black hole

Figure 2.equational treatment of term graph rewriting, we mention the problem of `cyclic-I', or moregeneral of cyclic collapsing graphs. See Figure 2. This matter has been called `a persistenttechnical problem' [KKSdV94], and indeed several proposals concerning the way that cyclic-I (i.e., the graph f� = I(�)g, where I has the `collapsing' rewrite rule I(x) ��! x) shouldbe rewritten to, occur in the literature. One possibility is that cyclic-I rewrites to itself.An equational treatment, however, leaves in our opinion no doubt about the proper way ofrewriting cyclic-I: it should be rewritten to a new constant that we like to call `black hole',written as �. For graph rewriting, it is as it were a point of singularity; we need a new constantfor it to ensure con
uence of orthogonal term graph rewriting, even though there is no properterm graph corresponding to it. Interestingly the same observation was made by Corradini in[Cor93] using the cpo approach. This view is also supported by a comparison with the relatedsystem of �-expressions: the new constant � is present there as ��:�, an expression rewritingonly to itself: ��:� ��! ��:�. In terms of systems of recursion equations, � is the systemf� = �g. The same `singularity' shows up in the theory of orthogonal in�nitary rewriting[KKSdV95]: without more, in�nitary con
uence fails, but equating all in�nite collapsing treessuch as I!, the in�nite unwinding I(I(I(I(I(� � �) � � �) of either the graph f� = I(�)g or the �-term��:I(�), in�nitary con
uence holds. (It should be mentioned that the `collapse problem' notonly is present with the unary collapse operator I, but also e.g., in the in�nitary version orthe cyclic graph version of Combinatory Logic with its collapsing rule Kxy ��! x.)As another example of the ease that Equational Logic introduces for term graph rewrit-ing, we mention: checking bisimilarity of two term graphs in an equational way, somewhatreminiscent to the elegant uni�cation algorithm of Martelli-Montanari [MM82].An interesting consequence of treating term graphs as systems of recursion equations, isthat we are naturally invited to perform the operation of substitution on them. E.g., thegraph (or recursion system) f� = F(�); � = G(�)g, where the �rst equation always is takenas the leading root equation, can be transformed by substitution to f� = F(G(�))g. Herethe node � is `hidden' or nameless. Thus, allowing the operation of substitution on recursionequations, we get for free a notion of hidden or nameless nodes, a notion that has a certainLinear Logic 
avor since it says that some nodes can be used only once, in contrast withordinary nodes that can be re-used (shared) inde�nitely. (But we note that this feature ofhidden nodes is not forced upon us; if desired we can avoid it altogether. It is an `add-on'feature.)



2. Term rewriting with �-recursion 5Lambda graph rewriting attempts to do the same as above for lambda calculus. (It is nottreated in the present paper.) Acyclic lambda graphs were already considered in the well-known thesis of Wadsworth [Wad71]; and recently there has been a lot of activity concerningthem [GAL92], following a solution of Levy's optimality problem for lambda rewriting [L�e80],by Lamping and Kathail [Lam90, Kat90]. As yet, no systematic study has been made oflambda graph rewriting with cycles; but work in progress by the authors [AK94] intendsto provide a �rst step, revealing that there is a remarkable contrast with orthogonal termgraph rewriting. The latter is con
uent, but lambda graph rewriting with cycles is in fullgenerality inherently non-con
uent. However, suitable restrictions can be formulated thatensure con
uence.The paper is organized as follows: we start (in Section 2) with a discussion of rewritingwith �-recursion, a related but less expressive framework; �-expressions describe cyclic termgraphs, but are not able to express sharing of common subterms. Our discussion of �-recursionwill provide an intuition why introducing the `cycle-breaking' constant � is necessary. Thenext section (Section 3) presents our notational framework for systems of recursion equations.We establish that the bisimilarity class of a term graph (possibly with cycles, as all graphs inthis paper) is a complete lattice, partially ordered by functional bisimulation. In the follow-ing section (Section 4), using Equational Logic reasoning, we characterize the fundamentalnotions of copying, substitution, 
attening, and hiding. In Section 5, a translation between�-expressions and recursion systems is discussed. Using this translation in Section 6 a soundand complete proof system with respect to the semantics given by in�nite tree unwinding isgiven. In Section 7, the notions of redex, reduction and a characterization of rules are intro-duced; the concept of orthogonality for term graph rewriting is presented. A system withoutambiguous rules is shown to be con
uent. Moreover, if non-left-linear rules are also discarded(i.e., for orthogonal term graph rewriting) it is shown that con
uence holds even if copyingis admitted. The observation that copying does not destroy con
uence was already shownin [Sme93] for acyclic terms. In Section 8, a translation of a term rewriting system into itscorresponding term graph rewriting system is presented. We end the paper with directionsfor future work.2. Term rewriting with �-recursionAlthough we will deal mostly with rewriting of systems of recursion equations, we start withthe related format of �-expressions and the �-rule. This is done for two reasons: �rst, toappreciate the extra expressive power that recursion equations have above �-expressions, andsecond, because the �-formalism will provide us with a good intuition on how to solve theproblem of cyclic collapsing contexts that constitute a problem for con
uence.2.1 Orthogonal TRSs with the �-ruleDe�nition 2.1 Let R be a (�rst-order) TRS. Then R� results from R by adding the �-rule:�x:Z(x) ��! Z(�x:Z(x)):Usually this rewriting rule is rendered as �x:Z ��! Z[xn�x:Z], where [ n ] is the substitutionoperator. Here we use the notation as used for `higher-order term rewriting' by means ofCombinatory Reduction Systems (CRSs), as in [Klo, KvOvR93, vR93].



6Proposition 2.2 Let R be an orthogonal TRS. Then R� is an orthogonal CRS, and hencecon
uent.Proof: It is simple to check that R� is an orthogonal CRS, hence the general con
uencetheorem for orthogonal CRSs applies. See e.g., [vR93]. 2Remark 2.3(i) Orthogonality is not necessary to guarantee con
uence. In fact:Let R be a left-linear, con
uent TRS. Then R� is a con
uent CRS.(ii) In (i) left-linearity is necessary. Otherwise there is the following counterexample:S(x)�S(y) ��! x�y0�x ��! 0x�0 ��! xx�x ��! 0S(x)�x ��! S(0)This a con
uent TRS de�ning cut-o� subtraction on natural numbers. However, R� isnot con
uent: let ! be �x:S(x), then ! ��! S(!), and!�! ��! 0#S(!)�! ��! S(0)Example 2.4 Let R be the orthogonal TRS with the two collapsing rules: A(Z) ��!Z;B(Z) ��! Z, then R� is the orthogonal CRS with rules:A(Z) ��! ZB(Z) ��! Z�x:Z(x) ��! Z(�x:Z(x))Now we have the reductions:�x:A(B(x)) ��! �x:A(x) ��! �x:x�x:A(B(x)) ��! �x:B(x) ��! �x:xThe expression �x:x plays an important role, and we will abbreviate it by �. Note that theterm �x:A(B(x)) corresponds to the in�nite term (AB)!, and the reduction �x:A(B(x)) ��!�x:A(x) corresponds to the in�nite reduction (AB)! ��!! A!. Analogously, we have (AB)! ��!! B!. However, note that the �-calculus is able to perform the reduction �x:A(x) ��! �, whilethe in�nitary calculus can only reduce A! to itself, and likewise B!, thus violating con
uence.



2. Term rewriting with �-recursion 7Example 2.5 Let CL be \Combinatory Logic", with the rules:SZ1Z2Z3 ��! Z1Z3(Z2Z3)KZ1Z2 ��! Z1IZ ��! ZThen CL� (\Combinatory Logic with �-recursion") is the orthogonal CRS obtained by addingthe �-rule. CL� is con
uent.2.2 Connection with term graphsAnticipating a more precise treatment of term graphs in the next section, and a precisetranslation of �-terms into recursion systems (i.e., term graph) in Section 5, we now describethe assignment of a term graph to a �-term. To that end, let us review the formation of�-terms over a signature �.De�nition 2.6 Let � be a �rst-order signature. Then Term(��), the set of �-terms over �,is given by:(i) �; �; 
; � � � 2 Term(��) (variables);(ii) t1; � � � ; tn 2 Term(��) =) F(t1; � � � ; tn) 2 Term(��), for an n-ary function symbol in �;(iii) t 2 Term(��) =) ��:t 2 Term(��).De�nition 2.7 Let t 2 Term(��). Then the term graph 
(t) is de�ned as follows:(i) 
(�) is:
α(ii) 
(F(t1; � � � ; tn)) is :
F

1γ(t  ) nγ(t  ).....(iii) 
(��:t) : if � does not occur free in t, then 
(��:t) = 
(t).Suppose t contains a free � and t 6� �. Let 
(t) be e.g.,
α

α α

F

H
G(where all the free �'s are displayed) then 
(��:t) is:
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α

H

F

GIn case the root node has already a name, say �, we will replace it by �.(iv) 
(��:�) is :Working in R� is already a form of term graph rewriting. The reductions in Example 2.4and Example 2.5 are shown pictorially in Figure 3 and Figure 4, respectively.
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Figure 3.
µα.αα
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(µα.αα)(µα.αα)@ @

@@

α

Figure 4.Example 2.8 Let SKIM be as in Table 1. Let SKIM� be SKIM minus the rule Yx ��!x(Yx) and extended with the �-rule and the following the new version of the Y rule:YZ ��! �x:Zx



2. Term rewriting with �-recursion 9Sxyz ��! xz(yz)Kxy ��! xIx ��! xCxyz ��! xzyBxyz ��! x(yz)Yx ��! x(Yx)UzP(xy) ��! zxyP0(Pxy) ��! xP1(Pxy) ��! ycond true x y ��! xcond false x y ��! yplus n m ��! n+mtimes n m ��! n �meq n n ��! trueeq n m ��! false if n 6= mTable 1. SKIMwhich pictorially looks as in Figure 1. SKIM� is an orthogonal CRS, hence con
uent.Actually, this is the way that SKIM was implemented.The shortcoming of �-expressions as in R� is that while some cyclic graphs can be rep-resented as such, many cannot, e.g., the graphs in Figure 5 cannot be represented by a�-expression. Roughly said, �-expressions only describe \vertical sharing" (see Figure 6) andnot \horizontal sharing". We say that a graph has only vertical sharing if the graph can bepartitioned into a tree and a set of edges with the property that either begin and end nodesare identical, or the end node is an ancestor (in the tree) of the begin node. (We will comeback to this distinction in Section 3.4.) Equivalently, a graph has only vertical sharing ifthere are no two di�erent acyclic paths starting from the root to the same node.
F

G H

F

0Figure 5. Horizontal sharingExample 2.9 The �-term corresponding to the graph in Figure 6 is��:F(��:G(G(�; �);H(0));H(H(H(�))); �
:G(0;G(�;H(
)))):
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HFigure 6. Vertical sharing3. Systems of recursion equationsIn this section we will consider systems of recursion equations, establish a notational frame-work for them, and study some of their properties. Speci�cally we introduce the notion ofbisimilarity of systems of recursion equations. This notion is well-known from the theoryof processes (or `concurrency' or `communicating processes' or `process algebra') - see Mil-ner [Mil89], Baeten & Weijland [BW90]. We establish lattice properties of the bisimilarityequivalence class, and show that checking whether two graphs are bisimilar can be done inan equational way.3.1 Syntax of systems of recursion equationsOur notation for graphs comes from the intuition that a natural way of linearly representing agraph is by associating a unique name to each node and by writing down the interconnectionsthrough a set of recursion equations. For example, we will represent the graph depicted inFigure 7 as follows: f� = F(�; 
); � = G(�); 
 = H(�; �)gwhere we assume that the �rst recursion variable represents the root of the graph. Alterna-tively, we sometimes write the above as:f� j � = F(�; 
); � = G(�); 
 = H(�; �)g:Systems of recursion equations are considered modulo renaming of the (bound) recursionvariables. E.g., f� = F(�; �); � = G(�); � = H(�; �)g is equivalent to the above system.Similar notations appear in the literature [GKS90, Far90]. E.g., fu : F(u; v); v : G(u)g inthe language DACTL [GKS90]. However, we insist on an equational notation, not just forthe sake of style, but because Equational Logic reasoning can fruitfully support our thinkingabout common term graph operations, as will become clear shortly.De�nition 3.1 Let � be a �rst-order signature.(i) The set of TRS terms over � (Term(�)) is given by:(i.1) �; �; 
; � � � 2 Term(�) (variables);(i.2) if t1; � � � ; tn 2 Term(�) then F(t1; � � � ; tn) 2 Term(�).(ii) A system of recursion equations over � is of the formf�1 = t1; � � � ; �n = tng



3. Systems of recursion equations 11
α

β γ
G H

F

Figure 7.with t1; � � � ; tn 2 Term(�), �1; � � � ; �n recursion variables such that 8i; j; 1 � i < j � n,�i 6� �j . The variables �i are bound; other variables occurring in the system are free. Asystem without free variables is closed.We do not have nesting of recursion equations as in [Ari92], see however Section 9. Moreover,multiple de�nitions of a variable are not allowed. E.g., f� = 3; � = 4; � � �g is not a well-formed system. Unless otherwise stated we only consider systems without useless equations;an equation is useless if its leading recursion variable is not reachable from the root of thesystem, in the obvious sense. We automatically perform this removal (garbage collection).We call a system of recursion equations in 
attened form if the right-hand side of eachequation is of the form F(�1; � � � ; �n), where the �i are recursion variables, not necessarilydistinct from each other. E.g., f� = F(�); � = G(�)g is in 
attened form, while f� =F(G(�))g is not. The distinction between the two terms above will become clear after havingintroduced (in Section 4) the substitution operation. A 
attened system is in canonical formif it does not contain trivial equations of the form � = �; such equations also if not presentin the original term can arise as a result of a reduction step. We perform the substitutionof each occurrence of � by � and the removal of the corresponding equation as part of acanonicalization step. An equation of the form � = � will be replaced by � = �.Notation: we denote by M j � the subsystem rooted at �. E.g., let M bef� = F(�); � = G(
)g, then M j � is f� = G(
)g; the equation � = F(�) gets removed.3.2 Correspondence with terms graphsTerm graphs can be described in many ways. The usual way is to equip a set of nodes and aset of edges with several functions. E.g.,De�nition 3.2 Let � be a �rst-order signature, with Fun(�) the set of functions and con-stant symbols. Then a term graph over �, is a structurehN;Lab; Succ; rootiwith:(i) N a set of nodes;(ii) Lab : N ! Fun(�) [ ?;(iii) Succ : N ! N�, such that for all s 2 N , if n is the arity of Lab(s), then Succ(s) mustbe a n-tuple of nodes;(iv) root 2 N .



12An important point of this paper is that such de�nitions can be avoided and that we can doeverything with systems of recursion equations. However, for an intuitive and quick graspof such a system, it is for human consumption often convenient to draw the correspondinggraph, as we will do many times in this paper.We will now give a de�nition of term graph independent of a system of recursion equations,slightly di�erent from the one given above, using the concept of a structure in model theory.Our notion of term graph is more complicated than the usual one, since we employ names ofnodes (to be distinguished from the label of a node), and also admit a partial naming (somenodes named, others nameless). Actually, we employ equivalence classes of such objects,identifying objects that can be obtained from each other by 1-1 renaming (cf. �-conversionin lambda calculus).First we de�ne a pseudo-term graph. This is a �rst-order structure (in the sense of modeltheory) of the form G = hNODES; ROOT; �1; :::; �k; a1; :::; amiHere NODES is some set of elements s; t; � � � called nodes, ROOT is a unary predicate, �i (i =1; � � � ; k) are binary predicates, and a1; � � � ; am are constants. Elements satisfying the ROOTpredicate are called roots, and constants are also called node names. Now let � be a �rst-ordersignature, with set of function symbols Fun(�). We de�ne: a �-term graph is a pseudo-termgraph as above together with a partial mapcontent : NODES! Fun(�)such that if content(s) is an n-ary function symbol, s has an ith-successor for every i = 1; � � � nand no more, and if content(s) is unde�ned, s has no i-successor. In the last case, s is calledan empty node.In fact, we are interested in �-term graphs modulo renaming. We de�ne (G; content) and(G0; content0) to be �-equivalent, if G and G0 are isomorphic in the model-theoretic sense,and the content mappings commute with this isomorphism. Now the objects of interest arethe �-equivalence classes.This de�nition is still too general for our purpose; it admits multiple roots, or none at all,it admits totally unnamed graphs, and empty nodes without a name; it does not require thegraph to be connected; but it is easy to formulate some extra requirements so that we havean exact match with systems of recursion equations. We will not do so, as we will not needthis de�nition of graph. However, it should be noted that this de�nition (or similar variantslike the one above) is an unnecessary circumlocution; a system of recursion equations is mucheasier de�ned, leaving notions as i-successor implicit. Explicit de�nitions like the one abovedo not seem to help the intuition much.There is another way of introducing term graphs that we �nd much more helpful for anintuitive grasp, even though it may seem a bit too fancy at �rst sight. This is by perceivingthe `underlying space' in which a term is written, as Baire space, and then considering thehomomorphic images of this space obtained by identifying nodes. Terms written in such ahomomorphic image are then just term graphs. We will give the precise de�nitions in Section3.4.Hereafter we allow ourselves to interchangeably use the words: system of recursion equa-tions or (term) graph.



3. Systems of recursion equations 13We now introduce some notation that will be needed in the next section: given a graph gwe will denote by ROOT(g) and NODES(g) the root and the set of nodes in g; if s is a node ina term graph g and s0 is its ith-successor, then we will write s!i s0.De�nition 3.3 An access path of a node s of a term graph g is a possibly empty �nitesequence of positive natural numbers hi1; i2; � � � ; iji such that there exist nodes s1; � � � ; sj�1in g with ROOT(g)!i1 s1 !i2 � � � !ij�1 sj�1 !ij s.In general a node s may have several access paths; we will denode by Acc(s) the set of theaccess paths of s (the empty access path h i denotes one of the access paths to the root). Wewill call a term graph g connected if the access set of each node in g is not empty. Notation:given access paths �1 and �2, �1 � �2 denotes the concatenation of �1 and �2.Remark 3.4 The access sets express various properties of graphs:(i) if every node s in g has a singleton as Acc(s) then g is a tree;(ii) if for all nodes s in g, Acc(s) is �nite then g is a dag;(iii) if there exists a node s in g, with Acc(s) in�nite then g is a cyclic graph, provided g is a�nite graph.3.3 BisimulationsIn this section, we will restrict our attention to closed systems of recursion equations in
attened form only. At the end of this section we will discuss how to cover the non-
at case.De�nition 3.5 Let g = f�0 = t0; � � � ; �n = tng, and let h = f�00 = t00; � � � ; �0m = t0mg. ThenR is a bisimulation from g to h if(i) R is a binary relation with domain f�0; � � � ; �ng and codomain f�00; � � � ; �0mg;(ii) �0 R �00 (the roots are related);(iii) if �i R �0j,�i = Fi(�i1; � � � ; �ik) (k � 0)�0j = Fj(�0j1; � � � ; �0jk0) (k0 � 0) then Fi � Fj , k = k0, and �i1 R �0j1; � � � ; �ik R �0jk0So, related nodes have the same label, and their successor nodes are again related. (Notation:we will interchangeably use the notation � R �0 or (�; �0) 2 R.)De�nition 3.6(i) Graphs g,h are bisimilar if there is a bisimulation from g to h. We will write: g$h.(ii) g!h if there is a functional bisimulation from g to h, i.e., a bisimulation that is a function.Remark 3.7 Bisimilarity is an equivalence relation.A functional bisimulation is what in the literature [BvEG+87, Sme93] is called a rootedhomomorphism; it collapses (compresses) the graph to a smaller one. Vice versa we saythat the graph is `expanded', and this is the `copying' or `unsharing' or `unwinding' partialorder appearing in [Ari92, Ari93, AA93]. See Figure 8, where some unwindings of the graphf� = F(�)g are considered. We use the notation (n;m) to indicate the unwinding of thisgraph starting with n `acyclic steps' followed by a cycle of m steps (n � 0;m � 1).The importance of the notion of bisimilarity stems from the fact that bisimilarity corre-sponds to having the same tree unwinding (i.e., same semantics). We need a proposition�rst:
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(2, 3) (3, 3) (4, 6)←

F

F

F

F

F

(3, 3) (2, 6)↔

Figure 8.Proposition 3.8(i) Let g be a graph, [[g]] its tree unwinding. Then: g [[g]].(ii) Let g; h be trees (�nite or in�nite). Then: g$h() g = h.Proof:(i) It is easy to see that [[g]] can be obtained as follows:ROOT([[g]]) = h iNODES([[g]]) = SfAcc(s) j s 2 NODES(g)gi-successor : if s!i s0 in g; and � 2 Acc(s); then � !i � � i:(Note that � � i 2 Acc(s0).)The content of each node in [[g]] contributed by Acc(s) is the content of s.Now de�ne � : NODES([[g]])! NODES(g) by:if � 2 Acc(s); then �(�) = s:Checking that this yields � : [[g]]!g, i.e., � is a functional bisimulation from [[g]] to g, isroutine.(ii) If g is a tree, let (g)n be the �nite tree truncated at depth n (appending some constant,e.g., 
, at the cut-points). Now it is easy to prove from g$h that (g)n = (h)n for all n.Hence g = h (More precisely, g and h are isomorphic.). 2Corollary 3.9 Let g; h be graphs. Then : g$h () [[g]] = [[h]].Proof:(=)) Suppose g$h. By Proposition 3.8(i):[[g]] $ g $ h$ [[h]] :By transitivity of $, [[g]] $ [[h]]. By Proposition 3.8(ii): [[g]] = [[h]].((=) Suppose [[g]] = [[h]]. By Proposition 3.8:g $ [[g]] $ [[h]] $ h:By transitivity of $, g $ h.



3. Systems of recursion equations 152We will show next that the equivalence class of a graph g with respect to the equivalencerelation of bisimilarity, partially ordered by functional bisimilarity, is a complete lattice (i.e.,a partial order where every subset has a least upper bound (lub) and a greatest lower bound(glb)). For the acyclic case, the lattice property is proved in Smetsers [Sme93]. We expectthat in maybe slightly di�erent but related settings this is a well-known fact, but we includethe following proof for completeness sake and also to demonstrate the use of the notion ofbisimilarity.Remark 3.10(i) Let R1; R2 be two bisimulations from g to h. Then R1 \R2 is again a bisimulation fromg to h.(ii) Let g$h. Then there exists a unique minimal bisimulation from g to h. Notation: Rg;h.Clearly, the inverse relation (Rg;h)�1 is Rh;g.(iii) Let g!h. Then Rg;h is functional.Proof: Directly from the de�nition of bisimulation. 2Notation: instead of R, we will denote a functional bisimulation also by �.Proposition 3.11 Functional bisimilarity is a partial order.Proof: ! is clearly re
exive and transitive (because functional bisimulations are closed undercomposition). Now suppose g!h!g. Then, by Remark 3.10, the minimal bisimulations fromg to h, and from h to g, respectively, are each other's inverse and moreover functional. Itfollows that they are bijections. In other words, g and h are rooted isomorphic. 2De�nition 3.12 Let R : g$h be a bisimulation. Then the associated graph 
R is de�ned asfollows:(i) NODES(
R) = RROOT(
R) = (ROOT(g); ROOT(h))the label of each node (s; t) is that of s (or, what is the same, of t) .(ii) Let s 2 NODES(g), t 2 NODES(h), (s; t) 2 R, s!i s0; t!i t0.Then in 
R : (s; t)!i (s0; t0).Proposition 3.13(i) Let R : g$h. Then R is minimal () (s; t) 2 R implies Acc(s) \ Acc(t) 6= ;.(ii) Let Rg;h : g$h, and (s; t) 2 NODES(
Rg;h). Then Acc((s; t)) = Acc(s) \ Acc(t).Proof:(i) Let R : g$h. By the de�nition of minimal bisimulation, it follows that whenevers 2 NODES(g), t 2 NODES(h) have a common access path, we have (s; t) 2 R.Reversely, a pair (s; t) with common access path must be in every bisimulationfrom g to h. Hence it is in the minimal bisimulation, being the intersection of allbisimulations.(ii) Let (s; t) 2 Rg;h. A common access path of s; t obviously is an access path of(s; t) in 
Rg;h , and vice versa.



16 2Corollary 3.14 Let R : g$h be a bisimulation. Then: R is minimal () 
R is connected.Proof: R is minimal i� whenever (s; t) 2 R we have Acc(s)\Acc(t) 6= ; (Proposition 3.13(i))i� whenever (s; t) 2 R we have Acc((s; t)) 6= ; (Proposition 3.13(ii)) i� 
R is connected. 2
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(3, 3) (2, 6)↔ ↔ (3, 3)

Figure 10.Remark 3.15 Let R1 : g$h and R2 : h$r be two minimal bisimulations. Then the com-position R1 �R2 : g$r is again a bisimulation, but it needs not be minimal (see Figure 9(a)).As an example, let g be (3; 3), h be (2; 6) and r = g. See Figure 10; here the middle �gure isthe composition of the two bisimulations in the left �gure. The right �gure is the associatedgraph, which is not connected. (An example with r di�erent from g; h is also easy to give.)



3. Systems of recursion equations 17Proposition 3.16 Let R : g1$g2 be a minimal bisimulation, and likewiseR1 : g1$h; R2 : g2$h:Let (s1; s2) 2 R. Then there exists a t 2 h such that (s1; t) 2 R1, (s2; t) 2 R2.Proof: By Proposition 3.13(i) there exists a common access path � to s1 and to s2. Let tbe the node in h reached after the same access path �, then by applying again Proposition3.13(i) we have that t must be related to s1 via R1 and to s2 via R2. (See Figure 9(b).) 2Proposition 3.17 Let R : g1$g2 be a minimal bisimulation and let �1 : g1!h and �2 :g2!h be minimal functional bisimulations. Suppose (s1; s2) 2 R and �1(s1) = t. Then, also�2(s2) = t. (See Figure 9(c).)Proof: Suppose, in addition to the assumptions of Proposition 3.16, that R1 and R2 arefunctional. Then t is unique. Hence the proposition follows. 2Before stating the main theorem of this section we introduce the following de�nition.De�nition 3.18 Let G be a set of bisimilar graphs. An accessible �bre through G is a choicefunction 	 on G (i.e., a function selecting an element of each g 2 G)	 : G! [g2G NODES(g)with 	(g) 2 NODES(g), such that: \g2G Acc(	(g)) 6= ;:In other words, 	 can be obtained as end stage of a march in lock-step, simultaneously in allgraphs g 2 G.Theorem 3.19 The bisimilarity class of graph g, partially ordered by functional bisimulation,is a complete lattice.Proof: The proof will be given in four parts:(i) Given g1$g2, we show the existence of g1 _ g2 (i.e., the join).(ii) Given g1$g2, we show the existence of g1 ^ g2 (i.e., the meet).(iii) Given a set G of bisimilar graphs, we show the existence of WG.(iv) Likewise for VG.(i) Let R : g1$g2 be a minimal bisimulation. Then the associated graph 
R is in fact g1_ g2.To see that 
R!g1 and 
R!g2, take the projection maps:p1 : (s1; s2) 7! s1p2 : (s1; s2) 7! s2It is easy to see that these are functional bisimulations as required. Moreover, if h!g1and h!g2, then h!
R. Namely, if t 2 h, t 7! s1 2 g1 and t 7! s2 2 g2, we de�ne:t 7! (s1; s2) and this is the required functional bisimulation from h to 
R. (See Figure11.)
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3. Systems of recursion equations 19(ii) Let g1$g2. Again the minimal bisimulationR from g1 to g2 enables a simple constructionof g1^ g2. Let � be the equivalence relation induced by R on NODES(g1)[NODES(g2). Theequivalence classes �s1 (s1 2 NODES(g1)) will be the nodes of a graph called �R. If s0 isROOT(g1), then �s0 is ROOT(�R). For i-successor we de�ne: if s !i s0, then �s!i �s0. Weclaim that �R is g1 ^ g2. To show g1!�R and g2!�R, take s1 7!�s1 and s2 7!�s2. It is easyto show that these are functional bisimulations �1; �2, as required.Moreover to show : if g1!h and g2!h, then �R!h. So take �s1 2 �R. Let �1 : g1!hbe the minimal bisimulation. Let �1(s1) = t. Then de�ne  (�s1) = t. Well-de�nednessfollows from Proposition 3.17, which entails that all elements in �s1 are sent to t. (SeeFigure 12 and 9(d).)(iii) WG is the graph with as nodes the accessible �bres through G. It is clear how to de�nethe root of WG, and how to de�ne the successor relations.(iv) On V = Sg2G NODES(g) we de�ne: for s1 2 NODES(g1), s2 2 NODES(g2): s1 �m s2 if s1; s2are related by the minimal bisimulation between g1; g2. As noted before (Remark 3.15),�m is not yet an equivalence relation on V , by the failure of transitivity. Let � be theequivalence relation on V generated by �m. Then the graph VG will have as nodes: the�-equivalence classes. Root and successor relations are de�ned as before, and verifyingthat the graph is indeed VG is as in (ii). 2

Figure 13.Example 3.20 (i) Already the simplest cyclic graph, f� = F(�)g, has a non-trivial completelattice of expansions (see Figure 13). In fact, this lattice is isomorphic to the lattice:(N+ [ f1g; j)where N+ is the set of positive natural numbers, and the partial order j is de�ned by:n j m if n divides mn j 11 j 1



20 This can be seen as follows. As said before, let (n;m) , for n � 0;m � 1, be the graphstarting with n `acyclic steps' followed by a cycle of m steps. Let 1 be the in�niteunwinding of f� = F(�)g. Now we have (see Figure 8):(n;m) ! (n0;m0) i� n0 � n0 and m0 j m1 ! 11 ! (n;m) for all n � 0;m � 1It is not hard to see that the �rst component n of (n;m) does not make the lattice morecomplicated than the one of positive natural numbers with divisor relation, as follows.Let p1; p2; p3; � � � be the sequence of prime numbers 2; 3; 5; � � �. Let m have the primedecomposition: m = pe11 :pe22 :pe33 : � � �(An in�nite product; all but �nitely many ei are 0.)De�ne shift(m) = pe12 :pe23 :pe34 : � � �. Now de�ne :�(n;m) = 2n:shift(m):Then, (n;m) ! (n0;m0) i� �(n0;m0) j �(n;m). This proves the isomorphism with (N+ [f1g; j). Finally, note that _ and ^ are given by:(n;m) _ (n0;m0) = (max(n; n0); lcm(m;m0))(n;m) ^ (n0;m0) = (min(n; n0); gcd(m;m0))(ii) The complete lattice of f� = F(�; �); � = Cg is even more complicated: it contains asublattice of in�nite elements of cardinality continuum. In fact, the sublattice of in�niteelements is isomorphic to the lattice of partitions of N , the set of natural numbers. Figure14, displaying from left to right respectively, the bottom, an intermediate element, thetop of this lattice, suggests why this is so.
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CF Figure 14.Remark 3.21 Note the generality of the copying mechanism, in contrast with the restrictedcopying mechanism embodied in the �-rule (the notion of copying will be de�ned precisely be-low). The example above with instead of f� = F(�)g the �-term ��:F(�), would yield a sub-lattice isomorphic with (N [f1g; <): ��:F(�) ��! F(��:F(�)) ��! � � � ��! Fn(��:F(�)) ��!� � �



3. Systems of recursion equations 21Remark 3.22 Our notation g h (g expands to h; g is a homomorphic image of h) intends tobe reminiscent of the usual partial order symbol �, so that : information of g � informationof h. (It also suggests that h has more nodes than g.) The question is what `information' ismeant here. The answer is that h contains more history information than g. (Here a `history'is the same as an access path.) Namely: suppose s; t are nodes in g; h respectively, such thats; t are related in a minimal bisimulation R : g h. Then we have: Acc(t) � Acc(s). (In fact,if t1; � � � ; tn are all the nodes related to s, we have Acc(t1)[ � � � [ Acc(tn) = Acc(s).) That is,we have sharper information about how we came to arrive, from the root, in t. Indeed, thisis the reason why (in the setting of concurrency theory) a functional bisimulation is called ahistory relation in Lynch & Vaandrager [LV93]. The tree unwinding of a graph has maximuminformation; it is the top of the lattice. Each node in the tree has a singleton as history set.Intermezzo 3.23 Our use of the notion of bisimulation in the present setting was suggestedby process algebra (or `concurrency'). Having established that functional bisimilarity is apartial order on term graphs, the question arises whether the same holds for process graphs.The situation there is more complicated, because of the laws x + y = y + x and x + x = xthat process graphs modulo bisimilarity satisfy. That is, edges leaving a node are unordered,and bisimilar nodes need not have the same out-degree (i.e., number of edges departing fromthem). Another di�erence with term graphs is that in process graphs the nodes are unlabeled,but the edges are. This di�erence is not essential for the present question, however. Figure 15
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a Figure 15.displays a functional bisimulation between two process graphs g and h. Somewhat surprising,the situation for process graphs is now that for �nitely branching process graphs, functionalbisimilarity is also a partial order. The proof is more complicated than the easy one for termgraphs. For in�nitely branching process graphs, functional bisimilarity is only a pre-order.Figure 16 displays two in�nitely branching process graphs, functionally bisimulating each
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aaFigure 16.other, yet di�erent. The functional bisimulations are given by replacing the underlined parts



22as follows: f = aa+ aa + a(a+ a) + a(a+ a) + a(a+ a) + � � �g = aa + a(a+ a) + a(a+ a) + a(a+ a) + � � �f = aa + aa + a(a+ a) + a(a+ a) + � � �Another important di�erence with process graphs is that there minimal bisimulations are ingeneral not unique (e.g., the term a+ a admits two minimal bisimulations with itself).So far we have restricted our attention to 
at systems only. We extend the notion of bisim-ulation to non-
at systems in two ways.Weak bisimulation: Let us �rst introduce the notion of 
attening, which is properly de�nedin Section 4. For now it su�ces to say that flat is a function that rewrites an equation of theform � = Fn(t1; � � � ; tn); n � 0, to � = F(�1; � � � ; �n), and adds to the system the equations�i = ti; i = 1; � � � ; n, where �1; � � � ; �n are new names. E.g., flat(f� = F(G(0);H(1))g) =f� = F(�; �); � = G(
); 
 = 0; " = H( );  = 1g.De�nition 3.24 Graphs g and h are weakly bisimilar if flat(g)$flat(h).Strong bisimulation: We introduce a stronger notion of bisimulation, written as $s, onnon-
at systems by using a di�erent mechanism to 
atten a term, consisting in introducingnew function symbols which memorize the structure of a term. Given for example the termg � f� = F(H(B(�));G(�))g, instead of 
attening g as f� = F(�0; �00); �0 = H(�000); �00 =G(�); �000 = B(�)g, we introduce a new function symbol H1B, coding the fact that the �rstsuccessor of the function symbol H is B. We thus obtain f� = F(H1B(�);G(�)). All theproper subterms of g are now in a simple form, that is, of the form F(~�), for a functionsymbol F. We then introduce the new function symbol F1H1B2G which codes the fact that the�rst successor and the second successor of the function symbol F are H1H and G, respectively.Thus, we will obtain the corresponding 
at system f� = F1H1H2G(�; �)g. We call this new
attening procedure flat�.De�nition 3.25 Graphs g and h are strongly bisimilar if flat�(g)$flat�(h).The notion of strong bisimulation corresponds to saying: recursion variables map to recur-sion variables, while unnamed terms correspond to unnamed terms.Proposition 3.26 g$sh =) g$h.Example 3.27(i) E.g., the terms f� = F(�; �)g and f� = F(F(�; �); �)g are weakly bisimilar, but notstrongly bisimilar, because it entails mapping the recursion variable � to F(�; �).(ii) Consider g1 � f� = F(�;G(�))g and g2 � f� = F(F(�;G(�));G(�))g, where flat�(g1) �f� = F2G(�; �)g and flat�(g2) � f� = F1F2G2G(�; �; �)g. Then, g1 and g2 are notstrongly bisimilar even though they have the same tree unwinding, i.e., they are weaklybisimilar.The notion of functional bisimulation is similarly extended to non-
at terms. Moreover, itis easy to show that the class of strongly bisimilar terms still enjoys lattice properties.



3. Systems of recursion equations 233.4 Another view of term graphsInstead of starting with a recursion system (term graph) and next introducing the accesspaths, we can also start from a general space of access paths and `build' a term graph out ofthis. The general space of access paths (i.e., Acc) is an object much studied in MathematicalLogic under the name Baire space (when equipped with a topological structure). It consistsof all access paths, i.e., �nite sequences, �; �; � � �, of natural numbers, and can be pictured asthe `universal tree' in Figure 17.
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<0> <1> <2> <3>

<00> <01> <02> <10> <11> <20> <21>

<010>

<0102> Figure 17.De�nition 3.28 A tree T is a subset of Acc satisfying:(i) �i 2 T =) � 2 T ;(ii) �i 2 T =) �0; �1; � � � �(i� 1) 2 T .(Here �i is short for � � i, the concatenation of the sequence � and the natural number i.)De�nition 3.29 A �-tree is a tree T with a map � : T ! Fun(�) such that�(�) = F n =) �0; � � � ; �(n� 1) 2 T; �n 62 T(Here F n is an n-ary function symbol in the signature �.)De�nition 3.30 A �-term graph G is a �-tree T together with a set H of equations betweennodes such that(i) � = � 2 H(ii) � = � 2 H =) � = � 2 H(iii) � = � 2 H; � = � 2 H =) � = � 2 H(iv) � = � 2 H =) �� = �� 2 H for all � with �� 2 H(v) � = � 2 H =) �(�) = �(�)We will refer to G as (T;H).Example 3.31 The term graph in Figure 18 is in this representation given by:�(hi) = F2�(h0i) = G1�(h1i) = H1H is generated by fh0i = h10i; h1i = h00ig
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F

G HFigure 18.(The rest of � and H is deducible from the requirements in De�nition 3.30. E.g., h0i =h000i; h1i = h100i 2 H.)The following facts can be routinely proved.Proposition 3.32(i) G1$G2 i� G1 = (T;H1); G2 = (T;H2);(ii) G1!G2 i� G1 = (T;H1); G2 = (T;H2) and H1 � H2;(iii) (T;H1) ^ (T;H2) = (T;H1 \H2);(iv) (T;H1) _ (T;H2) = (T;H1 [H2), with H1 [H2 denoting the closure with respect to therules in De�nition 3.30.((iii) and (iv) in fact generalize analogously to meet and join of in�nite sets f(T;Hi) j i 2 Ig:) An interesting feature of this representation is that the di�erence between `�-like' graphsand others comes out easily.De�nition 3.33 G = (T;H) is �-like or has only vertical sharing if H is generated by a`basis' H 0 � H containing only equations of the form � = �� (or �� = �), called cyclicequations.Example 3.34 Let (T;H) be as in Example 3.31. Then the corresponding C is generatedby h0i = h000i; h1i = h100i. This yields the term graph in Figure 26(b).It is easy to determine the minimal �-like expansion, as follows. Write the graph as a
at system of recursion equations, and then form the corresponding dependency tree of therecursion variables, stopping when an earlier variable is reached. Then identify nodes in thattree having the same recursion variables as label. Thus the graph in Figure 18 with recursionsystem f� = F(�; 
); � = G(
); 
 = H(�)gyields the tree (written as a term) �(�(
(�)); 
(�(
)))yielding the node equations h0i = h000i; h1i = h100i found above.Remark 3.35 Remarkably, the �-like graphs are not closed under expansion. E.g., the meetof the graphs given by ��:F(F(�; �); �)��:F(�;F(�; �))



3. Systems of recursion equations 25Re
exivity: t = tSymmetry: t1 = t2t2 = t1Transitivity: t1 = t2 t2 = t3t1 = t3Substitution: t = st� = s� for every substitution �Congruence: t1 = s1 � � � tn = snF(t1; � � � ; tn) = F(s1; � � � ; sn)Table 2. Equational Logicis a graph with horizontal sharing, namelyf� j � = F(�; 
); � = F(�; 
); 
 = F(�; �)g(See Figure 19.)
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Figure 19.Remark 3.36 Lat(T;H) can have at most 2@0 elements. This follows at once since thereare at most 2@0 subsets of H.For some purposes this view of term graphs as \terms written in homomorphic images ofBaire space" is very convenient, as it yields immediately the complete lattice structure of! and the existence of a minimal �-like expansion. However, for the purpose of performingactual rewrite steps on term graphs this view seems less suitable than recursion systems.3.5 Equationally testing for bisimilarity



26 Re
exivity: t = tSymmetry: t1 = t2t2 = t1Transitivity: t1 = t2 t2 = t3t1 = t3Term decomposition: F(t1; � � � ; tn) = F(s1; � � � ; sn)t1 = s1; � � � ; tn = snTable 3. Syntactic matchingIn this section we show how bisimilarity of term graphs can be tested in an equational mannerusing the proof system of Table 3 (`syntactic matching'). Instead of the congruence rule ofEquational Logic (see Table 2) we use (as in some algorithms for syntactic uni�cation of�rst-order terms [Klo92]) its reverse, the term decomposition rule. This rule says that fromF(t1; � � � ; tn) = F(s1; � � � ; sn) we may infer ti = si (i = 1; � � � ; n). An equation F(~t) = G(~s)with di�erent F,G will be considered a contradiction.Proposition 3.37 Let A = f�0 = t0(~�); � � � ; �n = tn(~�)g and B = f�0 = s0(~�); � � � ; �m =sm(~�)g be two term graphs in canonical form. Then A$B i� the equational theory A [B [f�0 = �0g does not derive a contradiction, using the proof system of Table 3.Proof: Let A and B be as described in the hypothesis. We employ the following notation: If�p = F(� � � ; �q; � � �), where �q is the ith argument of Fp, we write �p !i �q. For �p and �p0 , indi�erent graphs, we write (�p; �p0)!i (�q; �q0) as abbreviation for �p !i �q and �p0 !i �q0 .If �q = Fq(� � �), �q0 = Fq0(� � �) and Fq = Fq0 , we write:(�p; �p)!matchi (�q; �q0)Otherwise, i.e., if Fq 6= Fq0 , we write(�p; �p)!failurei (�q; �q0)Suppose A and B are not bisimilar. Then clearly there must be a sequence (re
ectingan unsuccessful attempt to construct a minimal bisimulation starting at relating the roots(�0; �0)) as follows: (�0; �0) !matchi0(�f(1); �g(1)) !matchi1(�f(2); �g(2)) !matchi2...(�f(k); �g(k)) !failureik(�f(k+1); �g(k+1))



4. Copying, substitution and 
attening 27such that the last step is the �rst failure step. So�f(k+1) = F(� � �); �g(k+1) = G(� � �) with F 6= GObviously this failing attempt corresponds to the derivation of the contradictory equationF(� � �) = G(� � �), starting from the equational theory:T = A [B [ f�0 = �0g:So we have proved that if there does not exist a bisimulation between A and B, the theoryT will derive a \contradiction". The proof of the reverse statement is equally simple andomitted. 2Example 3.38 We want to test the bisimilarity of:A � f� = F(�; �); � = Cg and B � f
 = F(�; �); � = F(
; �); � = Cg:(See the corresponding graphs in Figure 20.)
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C CFFigure 20.So consider the theory:T = f� = 
; � = F(�; �); � = C; 
 = F(�; �); � = F(
; �); � = Cg:All we can derive from T is: T 0 = T [ fF(�; �) = F(�; �); � = 
; � = �; � = 
;F(�; �) =F(
; �)g (apart from equations obtained by re
exivity, symmetry and transitivity). As T 0is consistent (i.e., does not contain a contradiction), we conclude A$B. Figure 20, withthe bisimulation explicitly indicated, con�rms this �nding. The bisimulation, in the form ofequations, is found as a subset of T 0 : f� = 
; � = �; � = "g.Remark 3.39 Evidently, the property of bisimilarity for �nite graphs is decidable, since thedeductive closure T 0 of T with respect to the proof system of Table 3 (see previous example)is �nite for �nite T ; or, since there are only �nitely many relations on a pair of �nite graphs.4. Copying, substitution and flatteningIn this section we characterize the fundamental notions of copying, substitution, and 
atteningusing the simple deductive system of Equational Logic. The notion of copying is also well-known in `general' graph theory [SS93] under the name `graph coverings'.



284.1 CopyingDe�nition 4.1 A variable substitution � is a function from variables to variables. We ex-tend � to terms and systems of recursion equations, respectively, as follows: �(F(t1; � � � ; tn)) =F(�(t1); � � � ; �(tn)) and �(f�0 = t0; � � � ; �n = tng) = f�(�0) = �(t0); � � � ; �(�n) = �(tn)g.We will also write t� instead of �(t). A one-to-one variable substitution is also called renam-ing.De�nition 4.2 g ��!c h i� there exists a variable substitution � such that h� = g, leavingthe free variables of h unchanged. We say that h collapses to g or that g copies to h.E.g.: g � f� = F(�); � = G(�)g ��!ch � f� = F(�0); �0 = G(�0); �0 = F(�); � = G(�00); �00 = F(�0)gwhere the variable substitution � is: �; �0; �00 are mapped to �, and �; �0 are mapped to �(See Figure 21).
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Figure 21.Proposition 4.3 g ��!c h() h!s g.Proof: It is easy to check that the variable substitution � de�ning the copy operation de�nesa functional bisimulation from h to g. 2Remark 4.4 In general h!g 6=) g ��! c h, if h and g are not in 
attened form. In fact,there is a functional bisimulation from g = f� = F(F(�; �); �)g to h = f� = F(�; �)g,however, h 6��!c g.Corollary 4.5 g1 $s g2 =) 9g3; g1 ��!c g3 and g2 ��!c g3:Proof: Follow from the fact that the strong bisimilarity class is a lattice and from Proposition4.3. 2Proposition 4.6 ��!c is con
uent.Proof: Follow from Proposition 4.3 and the above corollary. 2



4. Copying, substitution and 
attening 29Remark 4.7 In the de�nition of copying we allow several variable substitutions to occur atonce. The question arises whether it su�ces to substitute one variable at the time. We willcall this restricted version: sequential copying, and denote it by g ��!1c g0. Note that for�nite graphs: g ��!1c g0 () g ��!c g0 and j g0 j=j g j +1where j g j is the number of nodes of g.The following example shows that iterated sequential copying is not as powerful as generalcopying. (I.e., the transitive re
exive closure of ��! 1c is strictly contained in ��! c .)Consider M � f� = F(�; �)g ��! c M1 � f� = F(�0; �00); �0 = F(�0; �); �00 = F(�; �00)g.We claim that M 6�!! 1c M1. Suppose otherwise, then for some M0 we must have M ��!1c M0 ��!1c M1. Reasoning backwards, we have four possibilities for M0:f� = F(�0; �); �0 = F(�0; �)gf� = F(�0; �0); �0 = F(�0; �)gf� = F(�; �00); �00 = F(�; �00)gf� = F(�00; �00); �00 = F(�; �00)gHowever, in none of these cases we have M0 ��!1c M1.This example is due to Stefan Blom (personal communication), who also proved thatsequential copying is su�cient to reach (in the limit) the (in�nite) unwinding of a system.Also, for the acyclic case, �!!1c and ��!c coincide.4.2 SubstitutionSubstitution is the operation of substituting the right-hand side of some recursion variablefor some occurrences of that variable in the system. E.g. fromf� = F(�); � = G(�)g (4)we obtain by substitution: f� = F(�); � = G(F(�))g (5)and also f� = F(G(�))g (6)Such systems are `not-
at'. We use the notation ��!s for the substitution transformation,in fact for the transitive closure. The union of ��!c and ��! s is ��!cs . While copyingcorresponds to strong bisimilarity, substitution corresponds to weak bisimilarity. (Note that(5) and (6) are not strongly bisimilar.)Proposition 4.8 ��!s and ��!cs are not con
uent.Proof: Consider system (4) above, and the transformations (4) ��!s (5) and (4) ��!s (6).Now (5) and (6) have no common��!cs reduct. In fact, every s or cs reduct of (5) starts with� = F(GF)2n(), while every reduct of (6) starts with � = (FG)2n(). While (5) and (6) have



30the same tree unwinding, they are on the way to that unwinding, irreversibly `out-of-synch'.2 This non-con
uence fact puts a restriction on future developments: we cannot hope tohave con
uence when combining orthogonal term graph rewrite rules (as in Section 7) withcopying and substitution. (However, see Proposition 4.10(ii) below.)The graphs corresponding to (4) and (6) above are as in Figure 23. Unnamed nodescan be seen as hidden or inaccessible nodes. Substitution, as in f� = F(�); � = G(�)g toyield f� = F(G(�))g is communication between the two �'s, which subsequently are hidden,nameless.Remark 4.9 (i) Already `self-substitution' may be non-con
uent; e.g., considerf� = F(�; �)g ��!s f� = F(F(�; �); �)gf� = F(�; �)g ��!s f� = F(�;F(�; �))gNo further substitutions or copying can make the systems on the right-hand-sides convergeagain.(ii) It is easy to see that the presence of cycles is essential to these non-con
uence phenomena.Indeed, for acyclic �nite systems ��!cs is con
uent.4.3 FlatteningFlattening is the operation that takes a non-
at system, and reverts it into a 
at system byintroducing new recursion variables (`nodes') in a way as general as possible. The e�ect of
attening on a graph is: naming unnamed nodes. In contrast to the two previous operations,the result of 
attening is unique (modulo renaming of recursion variables). Notation: ��!f .For example,f� = F(G(C);G(C))g ��!f f� = F(�; 
); � = G(�); 
 = G(�); � = C; � = Cg:Note that we do not obtain: f� = F(�; �); � = G(�); � = Cg. The union of ��!s and ��!fis ��!sf , and of ��!cs and ��!f is ��!csf .Substitution and 
attening, ��! s and ��! f , are roughly each other's inverse; but notquite, the di�erence is a copying step ��!c . This is expressed in (i) of the next propositionand in Figure 22, where the dashed arrow has the usual existential meaning.
s f

cFigure 22.



4. Copying, substitution and 
attening 31Proposition 4.10(i) ��!s � ��!f ���!c .(ii) ��!csf is con
uent.Proof: Routine, using Proposition 4.3.An example of the strict inclusion in (i) is :g � f� = F(�; �)g ��!c g1 � f� = F(�0; �00); �0 = F(�0; �); �00 = F(�; �00gbut g 6��!sf g1. 2Example 4.11 (i) � = F(�)� = G(�) ��!s � = F(G(�))#f#s � = F(�)� = G(�)#c� = F(�)� = G(F(�)) ��!f � = F(�)� = G(
)
 = F(�)(ii) by adding a 
attening step also the example in Remark 4.9 can be made to commutethrough a copy step. In fact, both the terms reduce to f� = F(�0; �00); �0 = F(�; �00); �00 =F(�0; �)g. Note that in order to �nd a term h such that g1 ��!c h and g2 ��!c h, withg1$g2 is enough (by Proposition 4.3) to �nd the term corresponding to g1 ^ g2.
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Substitution step with garbage collectionFigure 23.4.4 HidingNodes that are used only once (that is, with in-degree 1) may be `hidden'. This means thattheir name (�; �; � � �) is removed. Notation: g ��!h h. Hidden or unnamed nodes are `frozen',and cannot directly be accessed for sharing. Actually, hiding is also the result of substitution.We have the following characterization of ��!s .



32Proposition 4.12 ��!cs =��!c � ��!h .Proof: First prove that ��! s ���! c � ��! h , next prove that in a reduction involvingc-steps and h-steps, the h-steps can be postponed to the end. 2Proposition 4.13 g ��!h h () h ��!f g.Note that hiding comes in naturally once we admit the Equational Logic treatment, hencesubstitution, and that it has an intuitively plausible interpretation. In fact, it may be seento be in the spirit of recent proof systems in Linear Logic, where a `resource-conscious'distinction is made between items (assumptions) that may be used only once and items thatmay be re-used inde�nitely as in classical logic. Barendsen and Smetsers [BS93] introduceexplicit notations to introduce `unique types' for some node graphs, meaning that these areto be used only one, like our hidden nodes.Essentially, hiding makes it possible to mix terms (tree-like parts) and graphs. For anapplication exploiting this feature, see the section in the sequel on weakly orthogonality;without hiding there is no natural notion.Note that copying of a hidden part of a graph requires explicit duplication of that part, asin Figure 24; there is no `handle' in the hidden part to keep the e�ect of copying `local'.
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f � = F(�; �);� = G(H(C;H(
; 
)));
 = G(C)g ��!c f � = F(�; �0);� = G(H(C;H(
; 
)));�0 = G(H(C;H(
; 
)));
 = G(C)gFigure 24.Remark 4.14 The study of recursion equations of course goes back a long way and severalnotions discussed above occur already e.g., [CKV74, Gue81, dB, Vui73, Vui74, Cou78, CV76,dB80, Cou90]. We will discuss [CKV74] in some detail, also to compare some terminology.



4. Copying, substitution and 
attening 33The paper studies `systems of recursive equations', also called there `systems of �xed-pointequations'. An example is X1 (= F(X1;G(X1;X2))X2 (= H(F(X1;X2))(principal variable X1)where we would write: � = F(�;G(�; �))� = H(F(�; �))Our notion of `
at' is called `uniform' in [CKV74], where also the procedure of 
atteninga non-
at system is introduced. Other than in our paper, a general notion of semantics isintroduced, using cpo's. Systems are called `equivalent' if they have the same solution inevery model. However, this generality is at once eliminated: systems are equivalent i� theyare equivalent with respect to the `canonical representation', which is nothing else than thesemantics of tree unwinding discussed also in this paper.The paper [CKV74] next discusses procedures to minimize the number of equations ina system, while retaining equivalence. In the course of this it is shown that equivalence ofsystems (bisimilarity, in our terminology - see Proposition 3.9) is decidable. From a historicalpoint of view, it is interesting that in this proof the notion of bisimilarity (which so to saywas lurking around the corner) has not been introduced and used. Instead, the proof is givenby constructing the complement of a bisimulation, as follows.Let a 
at recursion system E = f�i = ti(~�) j i = 1; � � � ; ng be given. We want to decidewhether �k and �l (or rather the subgraphs determined by them) are equivalent. (This is thesame problem as deciding whether two recursion systems are equivalent.) Now we constructa sequence of relations D0 � D1 � D2 � � � �, which will be constant eventually, as follows.With Fi we denote the function symbol at the head of ti, and ki is the arity of Fi.D0 = f(�i; �j) j Fi 6= FjgDn+1 = Dn [ f(�i; �j) j Fi � Fj and for some m with 1 � m � ki; (�im ; �jm) 2 DngHere �i !m �imetc:;It is clear that for some N , DN = DN+1. Now [CKV74] states: �i is equivalent with �j i�(�i; �j) 62 DN . In fact the complement of DN , i.e., (NODES(E)� NODES(E))�DN , is just themaximal `auto-bisimulation' of E.Note however that the work cited above does not relate systems of equations to term graphrewriting as we do in this paper. Their notion of equivalence corresponds to our notion ofbisimilarity but not to the strong version of it. E.g., the systems X (= F(X;G(X)) andX (= F(F(Y;G(Y ));G(Y )) are equivalent in [CKV74], whereas we do not consider themto be strongly bisimilar. Moreover, di�erently from [CKV74], in this paper we devise acomputation rule, i.e., copying, which yields equivalent systems (in the strong sense) andstill maintains con
uence.4.5 Acyclic substitutionWe next de�ne a notion of substitution which avoids the non-con
uence trap. The newsubstitution is called acyclic substitution, written as ��!as , and consists in de�ning an orderon the nodes in a graph as in Figure 25, and then allowing substitution upwards only. More
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Figure 25.precisely: call two nodes cyclically equivalent if they are lying on a common cycle. A planeis a cyclic equivalence class. If there is a path from node s to node t, and s; t are not in thesame plane, we de�ne s > t. Now suppose � > �. Thenf� � � ; � = t(�); � � � ; � = s; � � �g ��!as f� � � ; � = t(s); � � � ; � = s; � � �g:Here in t(�) just one occurrence of � is displayed and replaced by s. So in Figure 25,displaying the systemf� = F(�; �; �); � = H(G(�); 
); 
 = H(C; �); � = G(
)gthe only ��!as -steps are from � in �, from � in �, from 
 in �.Proposition 4.15 ��!as is con
uent.Proof: We �rst show that ��! as is weakly-con
uent. Consider two diverging acyclicsubstitutions, the �rst for � in �, the second for � in 
. So we have the system equations asfollows: � = � � � � � � �� = ���
 = � � �� � ��� = ===Here �, �, 
, � need not be all di�erent. Clearly, � 6= � and 
 6= � since the substitutionsare acyclic. Now distinguish:1: Case 1. �, � and 
; � have empty intersection. Then the two substitutions aretrivially commuting.



4. Copying, substitution and 
attening 352: Case 2. The two sets as in case 1 have one element in common.2.1: Case 2.1. � = 
. Then the situation is� = � � � � � � � � � � �� = ���� = ===and the commuting property of the two substitutions is again trivial.2.2: Case 2.2. � = �. Then we have
 = � � �� � ��� = � � � � � � �� = ���Again the substitutions commute. However, in this case we need toperform two substitutions step, one for � in � and one for � in 
.2.3: Case 2.3. � = �. Easy.3: Case 3. �; � = 
; �3.1: Case 3.1. � = 
, � = �. We have� = � � � � � � � � � � �� = ���and commutation is trivial.3.2: Case 3.2. � = �; � = 
. This case is ruled out by acyclicity of thesubstitutions.From the above case analysis it is easy to see that ��!as satis�es the parallel move lemma,and thus is con
uent. 2As before, the notion of ��!as is not primitive and can be analyzed in terms of copyingand acyclic hiding (��!ah ). This is hiding of a node not on a cycle.Proposition 4.16 ��!as ���!c � ��!ahAs an example of the strict inclusion in the above proposition consider:M � f� = F�; � = G�g ��!c f� = F�; � = G�0; �0 = F�0; �0 = G�0g ��!ahf� = FG�0; �0 = F�0; �0 = G�0gbut M 6��!as M1.Theorem 4.17 ��!c [ ��!ah is con
uent.



36Remark 4.18 Copying, however, does not commute with acyclic hiding.� = F(�; �)� = G(�)� = 0 ��!ah � = F(�; �)� = G(0)#c #c� = F(�0; �)� = G(�)�0 = G(�)� = 0 ��!c ��!ah � = F(�0; �)� = G(0)�0 = G(0)Before doing the hiding an extra copy step is required.Remark 4.19 Another easy way of avoiding the out-of-synch phenomenon is by performinga parallel substitution, which consists in substituting at once for all the recursion variables.Notation: ��!ps .f�1 = t1; � � � ; �n = tng ��!ps f�1 = t1[ ~�n=~tn]; � � � ; �n = tn[ ~�n=~tn]gFor example, we havef� = F(�); � = G(
); 
 = H(�)g ��!ps f� = F(G(
)); � = G(H(�)); 
 = H(F(�))gWe expect that ��!ps [ ��!c is con
uent, but refrain from proving this as this notion ofsubstitution is less interesting to us (we always have references to the original nodes, whichseems not to be a proper form of unwinding).5. Translations between �-terms and recursion systems5.1 Translation of a �-term into a recursion systemWe will transform a �-term in a number of steps into a recursion system. During the pro-cedure, named 
, we have a recursion system in which also �-terms may appear on theright-hand side of the equations. Let M be a �-term. Suppose M has been �-converted(renamed) such that all variables bound by � are distinct. Moreover, rename those variablesin greek letters �; �; � � �.(i) If M does not start with �, or if M is �, we write � =M ;(ii) if M is ��:N , we write � = N ;(iii) let one of the right-hand sides of the equations contain a subterm ��:P . Then add theequation � = P to the system, and replace ��:P by �;(iv) if no � appears in the system, remove equations of the form � = � after substituting �for all (other) occurrences of �;(v) replace an equation � = � by � =�.Remark 5.1 The translation 
 is not injective. In fact, precisely the �-terms that areprovably equal by means of the following identities (all provable from EL�) are identi�ed by
: ��:t = t if � does not occur free in t��:��:t = ��:��:t��:��:t(�; �) = ��:t(�; �):



5. Translations between �-terms and recursion systems 37Example 5.2(i) ��:��:F(�; �) ��!� = ��:F(�; �) ��!� = �; � = F(�; �) ��!� = F(�; �)(ii) ��:F(G(H(�))) ��!� = F(G(H(�)))The second example indicates that the translation may result in a non-
at system.We claim that 
 as de�ned here, yields the same graph as 
 in De�nition 2.7. We omit thetedious routine proof of this claim. Also: 
 is non-deterministic, but yields a unique result.5.2 Translation of a recursion system into a �-termWe will now de�ne a translation:� : Graph(�)! Term(��)We will do so by using an auxiliary function � and a notion of `environments':mu : Term(�)� Env(�)! Term(��)Thus: �(f�jEg) = muE(�)where E 2 Env(�) is a set of recursion equations. (So E is a system of recursion equationsas before, but without indication of a root equation.)muE(�) = � if � does not occur in the left-hand side of any equation in Emuf�=tg[E(�) = ��:muE(t)muE(Fn(t1; � � � ; tn)) = Fn(muE(t1); � � � ;muE(tn))Now de�ne for a system of recursion equations f� j Eg:�(f� j Eg) =muE(�)Remark 5.3 Let E be f�0 j �0 = t0(~�); � � � ; �n = tn(~�)g. Then:�(f�0 j Eg) = ��0:t0(�0; �(f�1 j E � �0g); � � � ; �(f�n j E � �0g)g)where E � �0 is the set of equations f�1 = t1(~�); � � � ; �n = tn(~�)g.Example 5.4 f� j Eg = f� j � = F(�; �); � = G(�); � = H(�)g. Then:��(f� j Eg = muE(�) =��:muf�=G(�); �=H(�)g(F(�; �)) =��:F(muf�=G(�); �=H(�)g(�);muf�=G(�); �=H(�)g(�)) =��:F(��:muf�=H(�)g(G(�)); ��:muf�=G(�)g(H(�))) =��:F(��:G(muf�=H(�)g(�)); ��:H(muf�=G(�)g(�))) =��:F(��:G(��:mu;(H(�))); ��:H(��:mu;(G(�)))) =��:F(��:G(��:H(�)); ��:H(��:G(�))):



38Note that the binder �� turns out to be super
uous, and likewise the �rst �� and the second��. Removing these we obtain F(��:G(H(�)); ��:H(G(�))):Remark 5.5 It is interesting to compare the translation � with the following non-deterministic translation procedure �0, which roughly seems to be the procedure that isthe inverse of 
 in the previous section:(i) Replace the root equation � =M by ��:M ;(ii) let the system contain an equation � = N . Then: omit this equation, and replace eachoccurrence of � by ��:N ;(iii) repeat until no more equations are present.(Optimization: if in (i),M does not contain � (directly or indirectly, via other equations),then ��:M =M and we can replace just by M . Likewise for (ii).)As before the translation is performed in a number of steps, during which we have a hybrid�-term.Note that the result of the above procedure is not unique. In fact, let M be f� j Eg as inExample 5.4. Then applying �0 on M may yield bothF(G(��:H(G(�))); ��:(H(G(�))))or F(��:G(H(�));H(��:G(H(�)))):However, we do not obtain the minimal term containing vertical sharing only, which wasfound in Example 5.4. The above terms and the minimal one are displayed in Figure 26.
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Figure 26.The following proposition states that the translation � indeed is `best possible': it onlyremoves the horizontal sharing, but preserves all the vertical sharing.Proposition 5.6 Let M a term graph. Then:(i) M ��!c 
(�(M));(ii) 
(�(M)) has only vertical sharing;(iii) if M ��!c M 0 and M 0 has only vertical sharing, then 
(�(M)) ��!c M 0.



6. A complete proof system for �-terms 39Re
exivity: t = tSymmetry: t1 = t2t2 = t1Transitivity: t1 = t2 t2 = t3t1 = t3Substitution: t1 = s1 t = t0t1[x := t] = s1[x := t0]Unwinding: ��:t(�) = t(��:t(�))Renaming: ��:t(�) = ��:t(�)Folding: t1 = t(t1)t1 = ��:t(�) � guarded in t(�)Table 4. EL�Proof: Sketch: We use the representation of a term graph as G = (T;H) of Section 3.4.Suppose the term graph G exhibits a cyclic node equation � = �� . For convenience, supposethe recursion system corresponding to G is 
at. The cyclic equation is visible as a cyclicdependence of the recursion variables. An inspection of the translation procedure � readilyshows that the cyclic dependence stays preserved. Hence the result of the translation yieldsthe `minimally horizontally-unshared' term graph. 26. A complete proof system for �-termsAs an application of the theory for term graphs discussed in Sections 3 and 4, and thetranslations given in the previous section, we present a simple proof of completeness of theproof system EL� shown in Table 4. Completeness is with respect to the semantics of in-�nite unwinding. The theorem is undoubtedly well-known to many people, also because itis analogous to the completeness theorem in Milner [Mil84] for �-terms in process algebra(`regular behaviors'). At present we do not know references to proofs in the literature (actu-ally, this question for references including the proof system in Table 4 was mentioned to usin correspondence by T. Nipkow); anyway we include the proof below because it shows theconvenience of reasoning with the concepts of bisimulation and copying.De�nition 6.1 A recursion variable � is guarded in t(�) if � is preceded by a functionsymbol other than � (equivalently, if t(�) contains a function symbol other than �).



40Example 6.2 The following derivation shows that EL� ` �":F("; ") = ��:��:F(�; �).�":F("; ") = F(�":F("; "); �":F("; ")) by unwinding�":F("; ") = ��:F(�":F("; "); �) by folding�":F("; ") = ���:F(�; �) by foldingRemark 6.3 Note that the proviso in the folding rule is necessary; without it we couldderive: M =MM = ��:� N = NN = ��:���:� = NM = NThe addition in De�nition 6.1 \other than �" is necessary too; otherwise we would have forM not containing �: ��:M =MM = ��:MM = ��:��:�M = ��:�Let Term(��) be the set of �-terms over the signature �, let Graph(�) be the set of 
atrecursion systems over �, and let Term1(�) be the set of possibly in�nite terms (trees) over�. As de�ned before, we have a semantic mapping [[ ]], denoting in�nite unwinding:[[ ]] : Term(��) ! Term1(�)[[ ]] : Graph(�) ! Term1(�)(Actually, we should use [[ ]]1 and [[ ]]2, but our ambiguous notation will not cause confusion.)Let 
 : Term(��) ! Graph(�) and � : Graph(�) ! Term(��) be the translations as in theprevious section.Proposition 6.4 Let M 2 Term(��), E 2 Graph(�). Then:(i)[[E]] = [[�(E)]] and (ii)[[M ]] = [[
(M)]]:That is, 
 and � are sound with respect to [[ ]].Proof: (i): easy induction on the number of recursive equations.(ii): by structural induction on M . 2De�nition 6.5 Let M0 2 Term(��). Then:M0 j= E (M0 solves E)if E = f�0 = t0(~�); � � � ; �n = tn(~�)g and there are M1; � � � ;Mn 2 Term(��) such thatEL� `Mi = ti( ~M ) for all i = 0; � � � ; n:



6. A complete proof system for �-terms 41Example 6.6 (i) Let E be f� = F(�)g, we have ��:F(�) j= E, because ��:F(�) =F(��:F(�)) by applying the unwinding rule.(ii) If E is f� = F(�); � = G(�)g then �
:F(G(
)) j= E, because(1) EL� ` �
:F(G(
)) = F(��:G(F(�)))by the application of the unwinding, folding and transitive rule.(2) EL� ` ��:G(F(�)) = G(�
:F(G(
))):Proposition 6.7 Let M 2 Term(��), E 2 Graph(�). Then:M j= E =) EL� `M = �(E):Proof: We must prove a stronger statement in order to let the following induction argumentgo through. To that end, let N;M1; � � � ;Mk 2 Term(��). We de�ne N j= E for systemsE = f�0 = t0(~�; ~M); � � � ; �n = tn(~�; ~M )g as before, but with the di�erence that the right-hand sides of the equations in E now are allowed to contain occurrences of ~M =M1; � � � ;Mkas indicated. Notation: E(~�)[~� := ~M ] denotes the substitution of M1; � � � ;Mk for �1; � � � ; �k,respectively.We aim to prove:Let E(~�) be the system of recursion equations f�0 = t0(~�; ~�); � � � ; �n = tn(~�; ~�)g. (Here~� = �1; � � � ; �k are free recursion variables.) Then:M0 j= E(~�)[~� := ~N ] =) EL� `M0 = �(E(~�))[~� := ~N ]:(Henceforth we will write just ` for EL� `.)The proof is by induction on the number of equations in E.1: Base case: easy.2: Induction step: suppose proved for n. Now consider M0, E(~�), ~N as in thestatement to prove. Let M1; � � � ;Mn be the auxiliary solutions, i.e.,`Mi = ti(M0;M1; � � � ;Mn; ~N ) (i = 0; � � � ; n)So Mi j= f�i j E � �0g[�0; ~� := M0; ~N ] (i = 1; � � � ; n): By induction hypothesis: ` Mi = �(f�i j E � �0g)[�0; ~� := M0; ~N ] (i = 1; � � � ; n). We know: ` M0 =t0(M0;M1; � � � ;Mn; ~N). So:`M0 = t0(M0; �(f�1 j E��0g)[�0 :=M0]; � � � ; �(f�n j E��0g)[�0 :=M0]; ~�)[~� := ~N ]But then by folding:`M0 = ��0:t0(�0; �(f�1 j E � �0g); � � � ; �(f�n j E � �0g); ~�)[~� := ~N ]By Remark 5.3: `M0 = �(f�0 j E(~�)g)[~� := ~N ]which ends the proof.



42 2Proposition 6.8 Let M 2 Term(��), E 2 Graph(�). Then:M j= E and E ��!c E0 =)M j= E0:Proof: To avoid cumbersome notation we consider an example. Let E be f� = F(�; �); � =G(�)g. Suppose M j= E; so there is an N such that EL� ` M = F(M;N) and EL� ` N =G(M). Now suppose E ��! c E0 via addition of equations �0 = �; �00 = �; �0 = �, nextderiving a canonical system E0. Then it is clear that M j= E0, by substituting for �; �0; �00respectively �; �0 the �-terms M;M;M respectively N;N . 2Proposition 6.9 For M 2 Term(��): M j= flat(
(M)).Proof: The translation procedure 
 yields starting from M , a sequence of hybrid recursionsystems (i.e., where right-hand sides may contain �-terms). The relation j= is extended tosuch systems as in the proof of Proposition 6.7. Let this sequence be E0; E1; � � � ; Ek = 
(M).We prove M j= Ei (i = 0; � � � ; k).1: Base case: If E0 was obtained by applying clause (i) of the de�nition of 
, thentrivially M j= f� = Mg. If E0 was obtained by clause (ii), then M � ��:N j=f� = Ng by applying the unwinding axiom of EL�.2: Induction step: Suppose M j= Em. Let Em+1 be obtained by lifting out anoccurrence of ��:P(�; ~�) from a right-hand side, replacing it by �, and adding� = P(�; ~�) to the system. Now it is clear that adding ��:P(�; ~�) as a solutionfor � does the job. Here ~� denotes the tuple of solutions for ~� that are alreadypresent. 2Theorem 6.10 Let M1;M2 2 Term(��). Then:[[M1]] = [[M2]]() EL� `M1 =M2:Proof: Soundness ((=): clear. Completeness (=)): By soundness of 
 we have:[[M1]] = [[M2]] = [[
(M1)]] = [[
(M2)]]:Since 
attening does not a�ect the basic structure of a term, we have that [[flat(
(M1))]] =[[flat(
(M2))]]. This means that flat(
(M1))$sflat(
(M2)), and by Corollary 4.5 thereexists an E such that flat(
(Mi)) ��! c E (i = 1; 2). By Proposition 6.9 we have Mi j=flat(
(Mi)); i = 1; 2. Hence, by Proposition 6.8, Mi j= E; i = 1; 2. By Proposition 6.7:EL� `Mi = �(E). So EL� `M1 =M2. 2Example 6.11 We want to show that the following two terms M1 and M2 are provablyequal: ��:F(�;F(�; �)) and ��:F(F(�; �); �):



7. Orthogonal term graph rewriting with copying 43Following the steps of the proof we derive that we need to show them both equal to��:F(��:F(�;F(�; �)); ��:F(F(�; �); �)):In fact`M1 = F(M1;F(M1;M1)) unwinding rule`M1 = ��:F(M1;F(�;M1)) folding rule` F(M1;M1) = F(F(M1;F(M1;M1));M1) unwinding rule` F(M1;M1) = ��:F(F(M1; �);M1) folding rule`M1 = F(��:F(M1;F(�;M1)); ��:F(F(M1; �);M1)) transitivity rule`M1 = ��:F(��:F(�;F(�; �)); ��:F(F(�; �); �)) folding ruleSimilarly for M2.7. Orthogonal term graph rewriting with copyingAnalogous to term graphs, graph rewrite rules are also expressed in equational format. Forexample, the cyclic Y-rule depicted in Figure 1, is expressed as:f� = Ap(�; 
); � = Yg ��! f� = Ap(
; �)gDe�nition 7.1 Let l and r be term graphs with the same root. Then: l! r is a term graphrule.As is customary in TRSs two conditions are imposed on rules. Namely, (1) the left-handside cannot be of the form f� = �g, (2) the free variables occurring in the right-hand sideare a subset of those occurring in the left-hand side. However, rules are not restricted to 
atsystems only. For example, f� = F(G(0))g ��! f� = 0g is a legitimate rule.De�nition 7.2 Let � : l ! r. The rule � is said to be left-linear if for all variables �occurring in l, Acc(�) is a singleton.In other words, the rules f� = F(�)g ��! f� = 0g and f� = F(�; �)g ! f� = 0g arenon-left-linear. For example, the left-hand side of a left-linear rule has to be a tree.Before stating the de�nition of overlapping rules we need some more de�nitions.De�nition 7.3 A substitution � is a map from Term(�) to Term(�) such that�(F(t1; � � � ; tn)) = F(�(t1); � � � ; �(tn)):We extend � to system of recursion equations as follows (we will require that � only actsnon trivially on the free variables of the system): �(f�0 = t0; � � � ; �n = tng) = f�(�0) =�(t0); � � � ; �(�n) = �(tn)g. We will also write t� instead of �(t).De�nition 7.4 Let g1; g2 be term graphs. g1 and g2 are called compatible (written as g1 " g2)if there exists a term graph g3, substitutions �1 and �2, such that(i) g�11 � g3 and g�22 � g3(ii) ROOT(g�11 ) = ROOT(g�22 ) = ROOT(g3).



44De�nition 7.5 Let �1 : l1 ! r1; �2 : l2 ! r2. We say that �1 overlaps with �2 i� 9� occurringin l1, such that (l1 j �) " l2If �1 = �2, then it must be the case that � is distinct from the root of l1.Example 7.6 Rule � : l � f� = L(�); � = L(�)g ��! f� = 0g overlaps with itself because(l j �) " l. The rule f� = L(L(�)g ��! f� = 0g is not overlapping. Likewise the rules:f� = F(�); � = G(�)g ��! f� = 0g and f� = H(�); � = G(�)g ��! f� = 0g are notoverlapping.In the following, TGRS stands for Term Graph Rewriting System.De�nition 7.7 A TGRS is said to be orthogonal if all the rules are left-linear and non-overlapping.De�nition 7.8 Let � : l! r, � a bound variable occurring in g. Then (�; �; �) is a redex ifl� � g and ROOT(l�) = �.Thus, detection of a redex boils down to matching parts of a system of recursion equations.If � is the root of a redex in g we also write g � C[� = t], where C[2] is the usual notationfor a context.De�nition 7.9 Let (�; �; �) be a redex occurring in g. Let � : l ! r, g � C[� = t]. Theng ��! h � C[� = (r�)0], with (r�)0 denoting the renaming of all bound variables (using freshvariables), except the root, of r�.Note that only the root equation gets rewritten, and that it may be replaced by severalequations. Renaming is necessary to avoid collision with the variables in a system.Example 7.10
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7. Orthogonal term graph rewriting with copying 45(i) Consider the rule:f� = F(�; �); � = G(�; 
; �); 
 = H(
; �; �; �)g ��! f� = G(�; �; �)gand the system:f" = P("; �); � = F(�; �); � = G(�; �; �); � = G(�; "; �); � = H(�; �; �; �); � = CgBoth rule and system are displayed from left to right, respectively, in Figure 27. After1-1 renaming the rule we obtain:f� = F(�; �); � = G(�; �; �); � = H(�; �; �; �)g ��! f� = G(�; �; �)gWe recognize the left-hand-side of the rule as a subset of the system under consideration(underlined part):f" = P("; �); � = F(�; �); � = G(�; �; �); � = G(�; "; �); � = H(�; �; �; �); � = Cgand rewrite accordingly, replacing only the �rst line (the root equation) � = F(�; �) of theredex by the right-hand side � = G(�; �; �) of the rule (which in this example happens tobe just one equation):f" = P("; �); � = G(�; �; �); � = G(�; �; �); � = G(�; "; �); � = H(�; �; �; �); � = CgIn this case, no garbage collection, i.e., , removal of super
uous equations, is necessary.(ii) In the previous example, matching was done on the basis of 1-1 matching (renaming) ofvariables, but we want to be able to rewrite also e.g., f� = F(�; �; �); � = G(�)g withthe rewrite rule:f� = F(�; �; �); � = G(�); � = G(�)g ��! f� = G(�; �); � = H(�; �; �)gThis is possible, with the matching (variable substitution) � ! �; � ! �; � ! �; � !�; � ! �; � ! �, which this time is not 1-1, we get the resultf� = G(�; �); � = H(�; �; �); � = G(�)g(iii) To allow for reduction of non-
at systems, a term (i.e., TRS term) can be substitutedfor the free variables of a rule. Thus, the rule:f� = F(�)g ! f� = �gis applicable to g � f = F(G(0))g, with substitution: �!  ; � ! G(0): After reductionwe will obtain: f = G(0)g:(iv) Consider the following rules:�1 : f� = F(�); � = G(�)g ��! f� = H(�)g and �2 : f� = F(G(�))g ��! f� = �gand the following systems:g1 � f = F(�); � = G(�); � = 0g g2 � f = F(G(0))g g3 � f = F(G(�)); � = 0gRule �1 is applicable to g1 but not to g2 and g3 because it involves matching � with eitherF(G(0)) or (G(�)). On the other hand, rule �2 is applicable to both g2 and g3, but not tog1.



46Theorem 7.11 A TGRS without overlapping rules is con
uent up to renaming.Proof: Let (�; �1; �1) and (�; �2; �2) be two redexes occurring in g (�i : li ��! ri(i = 1; 2)).Let g ���! g1 and g ���! g2. Since all rules are non overlapping it must be the case that� 6� �. Moreover, the descendant of � in g2 is still a redex, likewise, for � in g1. Therefore,the following diagram trivially commutes.g � C[� = t; � = s] ��! g2 � C[� = t; � = (r2�2)0]_ _g1 � C[� = (r1�1)0; � = s]��!g3 � C[� = (r1�1)0; � = (r2�2)0] 2The restriction of non-left-linearity is not necessary to guarantee con
uence. However,we do need to restrict our attention to orthogonal TGRSs if also copying is considered, asobserved in [Sme93] for the acyclic case.Example 7.12 Consider the non-left-linear rule � : f� = F(
; 
)g ��! f� = 1g and thesystem g � f� = F(�; �); � = 1g. Rule � is applicable to g. However, if we perform one copystep obtaining g1: g��!c g1 � f� = F(�; �0); � = 1; �0 = 1gthen rule � is no longer applicable to g1.The proof of the following proposition is routine.Proposition 7.13 Given an orthogonal TGRS, then:g ��! g1 and g ��!c g2 =) 9g3; g2 �!! g3 and g1 ��!c g3:Pictorially: g ��! g1_c _cg2 �!! g3(Here �!! is the transitive re
exive closure of ��!.)Remark 7.14 Reduction �!! does not commute with ��c (or !, functional bisimulation).Counterexample: consider the rule f� = Cg ��! f� = DgThen g0 � f� = F(�; 
); � = C; 
 = Cg ��! f� = F(�; 
); � = C; 
 = Dg � g1. Alsog0  ��c f� = F(�; �); � = Cg � g2. Now g2 can be rewritten to g3 � f� = F(�; �); � = Dg,but that is not a  ��c -result of g1. (See Figure 28). So, reduction ��! does not commutewith bisimilarity$. Yet, many interesting facts can be established for this union �!! [  ��c; this has been established in work of Plump and Hofmann (\collapsed tree rewriting")[HP88, Plu93]. There, after each rewriting the graph can be maximally collapsed; this yieldsa gain in e�ciency.



7. Orthogonal term graph rewriting with copying 47
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Figure 28.Corollary 7.15 Orthogonal TGRSs are con
uent with respect to ��! [ ��!c .Proof: At once from Theorem 7.11 and Proposition 7.13. 2Proposition 7.16 Orthogonal TGRSs are con
uent with respect to ��! [ ��!csf .7.1 Weakly orthogonal term graph rewritingIt is well-known that for �rst-order term rewriting one can release the orthogonality condi-tion somewhat while still retaining con
uence. Speci�cally, all weakly orthogonal TRS arecon
uent. A TRS is called weakly orthogonal if all critical pairs are trivial, i.e., of the formht; ti. This is a useful result, since it admits also rewrite rules such as:or(x; true) ��! trueor(true; x) ��! true(Recently, this has also been shown to be the case for higher-order term rewriting in theframework of Combinatory Reduction Systems or CRSs: all weakly orthogonal CRSs arecon
uent. The prime example of a weakly orthogonal CRS is ���-calculus. This result isdue to van Oostrom and van Raamsdonk.)The question arises whether analogously we can upgrade the con
uence theorem for or-thogonal TGRSs to allow for rules that are only weakly orthogonal. To that end, we notethat the notion does not carry over directly to TGRSs.Example 7.17 Consider the TGRS system R with rules:�1 : f� = F(�); � = G(�)g ��! f� = F( );  = 0g�2 : f� = G(�)g ��! f� = 0gIf we apply naively the familiar notion of weakly orthogonality we erroneously deduce that theabove rules are weakly orthogonal and thus deriving that R is con
uent. However, considerthe term: M � f� = H(�; �); � = F(�); � = G("); " = 0g



48Then we have the following reductions:M ��!�1 M1 � f� = H(�; �); � = F( );  = 0; � = G("); " = 0g ��!�1M 01 � f� = H(�; �); � = F( );  = 0; � = 0gM ��!�1 M2 � f� = H(�; �); � = F(�); � = 0gNote that M1 and M2 are not equivalent up to renaming; note however that M2 ��!c M 01.From this example we conclude that in analyzing the critical pairs we cannot discardthe garbage in a term. That is, let M be the common instance of rules �1 and �2, i.e.,M � (�1 j �) " �2, with M � f� = F(�); � = G(
); 
 = �g. We consider the critical pairhf� = F( );  = 0; � = G(
); 
 = 0g; f� = F(�); � = 0; 
 = �gi, not trivial because thetwo terms are not equivalent up to renaming.Interestingly enough the rules:f� = F(G(�))g ��! f� = F(0)gf� = G(�)g ��! f� = 0gare not even overlapping.De�nition 7.18 Given two rules �1 and �2, we say that �1 overlaps weakly with �2 () if �1overlaps with �2 then if we let M be the common instance of �1 and �2, we have M ��!�1 M1and M ��!�2 M2, with M1 and M2 equivalent up to renaming without removing the garbage.Proposition 7.19 A TGRS with weakly overlapping rules is con
uent.Note that if we apply the naive version of weakly orthogonality then the system is con
uentup to copying.De�nition 7.20 A TGRS is said to be weakly orthogonal i� all the rules are left-linear andweakly overlapping.8. Translation of a TRS into a TGRS8.1 Flat translationIn this section we will not study the relation between `ordinary' term rewriting and term graphrewriting; we only brie
y indicate the straightforward way in which TRSs can be translatedinto TGRSs, thereby preserving orthogonality. This translation yields an acyclic TGRS (i.e.,left-hand side, right-hand side of all rules are acyclic). For a comparison between TRSs andTGRSs with respect to obtaining normal forms, in the acyclic setting, see [BvEG+87]. Forgeneral notions of adequacy of graph rewriting versus term rewriting, see [KKSdV94, Ari93].De�nition 8.1 Let R be a TRS, � : l(~x) ��! r(~x) a rule in R. Then � will be translated asfollows:(i) replace ~x = x1; � � � ; xn by recursion variables ~� = �1; � � � ; �n;



8. Translation of a TRS into a TGRS 49(ii) consider the so obtained TRS rulef�0 = l(~�)g ��! f�0 = r(~�)gNow the intended graph rewriting rule is obtained by 
attening left-and-right hand sideof the last rule: 
at(f�0 = l(~�)g) ��! 
at(f�0 = r(~�)g):It should be pointed out that with the resulting TGRS, we are also able to rewrite cyclicgraphs. That is, we not only pro�t from the `horizontal' sharing of subterms as in acyclicgraphs, but also from being able to rewrite cyclic terms. Now we have a link with trans-�nite orthogonal term rewriting, as developed in [KKSdV95]. Without the routine proofswe mention the following `soundness' property of graph rewriting with respect to in�nitaryrewriting.Let R be an orthogonal TRS. Let R
 be its graph version as de�ned above. Let R1 be thein�nitary version of R. (Actually, the rules of R1 are as for R, but the instantiations mayinvolve in�nite terms.)Let [[ ]] be the possibly in�nite unwinding of a graph in R
 , yielding a tree in R1.Then:(i) g ��!csf g0 =) [[g]] = [[g0]](ii) g ��!R
 g0 =) [[g]] ��!�! [[g0]].Here, in (ii), the left-hand side is a graph rewriting step, while the right-hand side is apossibly in�nite rewriting sequence in R1. Soundness with respect to in�nitary rewriting isalso proved in [FW91].Note that every orthogonal acyclic 
at TGRS, is the image under this translation of an(orthogonal) TRS.Example 8.2 (i) Consider the rules of Combinatory Logic:Ap(Ap(Ap(S; x); y; z)) ��! Ap(Ap(x; z);Ap(y; z))Ap(Ap(K; x); y) ��! xPictorially the S-rule is drawn in Figure 29; in Figure 30 we show which nodes are shared.
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Figure 30.These will be translated into a TGRS in the following way:f� = Ap(�; "); � = Ap(�;  ); � = Ap(�; �); � = Sg ��! f� = Ap(
; �); 
 = Ap(�; "); � = Ap( ; ")gf� = Ap(�; 
); � = Ap(�; �); � = Kg ��! f� = 
g(ii) Consider Combinatory Logic with the rule Dxx ��! x. This TRS is not con
uent [Klo],but its TGRS translation is. The translation consists of the TGRS in the preceding examples,plus f� = Ap(�; 
); � = Ap(�; 
); � = Dg ��! f� = 
g:Con
uence follows from Theorem 7.11; the rules do not overlap.Example 8.3 Consider the TRS rules:C ��! A(B(C))A(x) ��! xB(x) ��! xthen by applying the translation we obtain:f� = Cg ��! f� = A(�); � = B(�); � = Cgf� = A(�)g ��! f� = �gf� = B(�)g ��! f� = �gRemark 8.4 Note that we could apply a more optimized translation, thus avoiding thecreation of a new redex each time the �rst rule is applied. That is, we can translate the �rstrule as: f� = Cg ��! f� = A(�); � = B(�)gThis translation exhibits the \redex capturing " phenomenon discussed in Farmer and Watro[FW91].We will consider this optimization not as part of the basic graph rewriting mechanism, butrather as an `add-on feature" whose e�ect will not be studied in the present paper.



9. Concluding remarks and future work 51Proposition 8.5 The translation of an orthogonal TRS is an orthogonal TGRS.Proof: Clear. 2As mentioned in the previous section the translation of a weakly orthogonal TRS is notnecessarily a weakly orthogonal TGRS.Example 8.6 Let R be a TRS with rules:F(G(x)) ��! F(0)G(x) ��! 0R is weakly orthogonal because the critical pair hF(G(x));G(x)i has a common reduct, namelythe term F(0). While the translated system R0:f� = F(�); � = G(�); � = xg ��! f� = F( );  = 0gf� = G(�); � = xg ��! f� = 0gis not weakly orthogonal (as already pointed out in the previous section).8.2 Non-
at translationProposition 8.7 The non-
at translation of a weakly orthogonal TRS is a weakly orthogonalTGRS.9. Concluding remarks and future workSome of the simplicity of term rewriting is lost in dealing with term graphs due to the match-ing of sets of equations instead of matching of terms. Furthermore, the natural operationof substitution introduces non-con
uence. This loss of con
uence is the more surprising ina comparison with the con
uent R�-calculus, where also a form of substitution is present inorder to create redexes. This raises the desire of �nding a calculus for term graph rewritingthat combines the simplicity of term rewriting with the ability to express the di�erent formsof sharing that arise in common implementations of functional languages (i.e., horizontaland vertical sharing). Presently we are elaborating a framework employing nested systemsof recursion equations that seems promising in this respect. To design and understand sucha framework, an analysis of fundamental operations on term graphs such as copying, substi-tution, 
attening and hiding as in Section 4 of this paper is indispensable.We are also interested in extending the framework to accommodate cyclic �-graphs, anendeavor that can be seen as an extension of the work on the ��-calculi (�-calculi with explicitsubstitution) [ACCL91, Cur93, HL89, Les94, Ros92]. However, the latter concern acyclicsubstitutions only, while we aim at a calculus allowing cyclic substitutions. A preliminarystudy appears in [AK94].Furthermore, we intend to study the suitability of equational graph rewriting for expressingside-e�ect operations. To that end, an extension is needed to include both rules and termswith multiple roots.We expect that a �nal system obtained along these lines, can be used to express theoperational semantics of current functional languages extended with a notion of state[HPJW+92, Nik91].
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