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Abstract. We discuss the security of Message Authentication Code
(MAC) schemes from the viewpoint of differential attack, and propose an
attack that is effective against DES-MAC and FEAL-MAC. The attack
derives the secret authentication key in the chosen plaintext scenario. For
example, DES(8-round)-MAC can be broken with 234 pairs of plaintext,
while FEAL8-MAC can be broken with 222 pairs. The proposed attack
is applicable to any MAC scheme, even if the 32-bits are randomly se-
lected from among the 64-bits of ciphertext generated by a cryptosystem
vulnerable to differential attack in the chosen plaintext scenario.

1 Introduction

Authentication, which certifies data integrity and data origin, is becoming an
important technique because the transfer of valuable information needed for
electronic funds transfer, business contracts, etc. must be made across computer
networks. Data integrity ensures that the data has not been modified or de-
stroyed. Data origin authentication is the verification that the source of data
received is as claimed.
There are two frameworks of authentication: digital signature schemes us-

ing public key cryptosystems and message authentication code (MAC) schemes
based on secret key cryptosystems.
MAC schemes have been standardized and are being discussed by ISO/TC68/

SC2 [ISO8731/2] for banking services. MAC is produced by the sender using
a secret authentication key, which is known only to the sender and receiver
of the authenticated message, and appended to the original message. Upon
reception, the receiver uses the authentication key to check whether the re-
ceived message-MAC pair is valid. The MAC of message m is the left half
32-bits of the last ciphertext block of m in CBC-mode. The Data Encryp-
tion Standard(DES) [FIPS77, ISO8731/1] and the Fast Data Encryption Al-
gorithm(FEAL) [MSS88, MKOM90] cryptosystems are used to generate the ci-
phertext. Hereafter, we denote the MAC scheme based on DES by DES-MAC,
and the MAC scheme based on FEAL by FEAL-MAC. We describe their specific



iteration number versions as DES(N-round)-MAC and FEAL N-MAC where N
is the iteration number.

It is already known that differential attack is effective against DES [BS90,
BS92], FEAL [BS91-1] , and other iterated cryptosystems [BS91-2]. Differential
attack requires many ciphertext pairs corresponding to plaintext pairs where
the plaintext pairs are different in a significant way. Thus the differential attack
is a type of chosen plaintext attack, although the value of plaintexts are not
used in the attack procedure directly. Differential attack can derive the encryp-
tion/decryption key with less computational time than required by exhaustive
attack using an appropriate number of ciphertext pairs in the chosen plaintext
scenario. DES(8-round) can be broken with 215 plaintext pairs, and FEAL8 can
be broken with 210 plaintext pairs. Some known plaintext attacks on these iter-
ated cryptosystems have also been proposed [CG91, K91, MY92, M93].
In this paper, we analyze the security of MAC schemes from the viewpoint of

differential attack. Since the left half 32-bits of ciphertext in CBC-mode is used
as MAC, the following question is important to establishing the security of MAC
schemes: Is differential attack effective against the MAC schemes? That is, how
many plaintext pairs with the left-half (partial information) of their ciphertexts
are necessary to derive the secret authentication key? We introduced an attack
that is effective against both DES-MAC and FEAL-MAC, and estimate the
number of appropriate plaintext pairs needed for the attack to derive the secret
authentication key.

It is interesting that our procedure is also effective against any MAC scheme,
where the 32-bits are randomly selected among the 64-bits of ciphertext gener-
ated by a cryptosystem vulnerable to differential attack in the chosen plaintext
scenario. We will also discuss the influence of the bit length of ciphertext avail-
able as the MAC.

2 Related Works

2.1 Differential Attack against Ciphertext Case

Biham and Shamir proposed a differential attack against various iterated
cryptosystems [BS90, BS91-1, BS91-2, BS92]. Each iteration is a function usu-
ally based on S boxes, bit permutations, arithmetic operations, and exclusive-or
operations (denoted by XOR). The S boxes are known to be nonlinear. Since
they are usually the only part of the cryptosystem that is not linear, the security
of the cryptosystem depends on which type of S box is selected.
Differential attack depends on the following fact: Even though we cannot

determine the XOR value of the S-box output from its input XOR value, some
specific input XOR values yield specific output XOR value with high probability.
To find the subkeys entering each iteration function, differential attack pro-

ceeds as follows (see p.16 of [BS90]):

Step 1: Choose an appropriate plaintext XOR.



Step 2: Create an appropriate number of plaintext pairs with the plaintext
XOR chosen at Step 1, encrypt them and keep only the resultant
ciphertext pairs.

Step 3: For each pair, derive the expected output XOR of as many S boxes in
the last round as possible from the plaintext XOR and the ciphertext
pair.

Step 4: For each possible subkey value, count the number of pairs that result
with the expected output XOR using this subkey value in the last
round, and choose the value that is counted most often as the subkey
candidate.

Note that the input pair of the last round is known, since it appears here as part
of the ciphertext pair.
The pushing mechanism, with which the knowledge of the XORs of the plain-

text pairs is passed through as many rounds as possible without making them
zero, is termed the statistical characteristic of the cryptosystem in [BS90]. A
pair whose intermediate XORs equal the values specified by the characteristic is
called a right pair with respect to the characteristic. Any other pair is called a
wrong pair with respect to the characteristic.
[BS90] showed many characteristics for several variants of DES with different

round number. The two characteristics listed below will be referred to in a later
section. These characteristics yield the known highest probability for the round
number indicated.

Ω1P = 405C0000 04000000, Ω2T = 405C0000 04000000

with probability 1/10, 486 for 5 rounds

Ω2P = 00000000 19600000, Ω4T = 19600000 00000000

with probability (1/234)N ≈ (2−8)N for 2N rounds

[BS91-1] also pointed out that the following characteristics permit FEAL to
be cryptanalyzed within various numbers of rounds.

Σ1P = A2008000 80800000, Σ2T = A2008000 80800000

with probability 1/16 for 5 rounds

Σ2P = 80608000 80608000, Σ3T = 80608000 80608000

with probability (1/4)4N for 4N rounds

Note that since differential attack requires many ciphertext pairs correspond-
ing to plaintext pairs with particular differences, ΩP and ΣP , the differential
attack is a type of chosen plaintext attack, although the value of plaintexts are
not used in the attack procedure directly.



There are four possible types of attack, 3R-attack, 2R-attack, 1R-attack and
0R-attack, depending on the number of additional rounds in the cryptosystem
that are not covered by the characteristic itself. A 3R-attack is advisable over a
2R-attack, and both are advisable over a 1R-attack, since characteristic that has
higher probability requires fewer ciphertext pairs for the attack. For example,
the differential attack on DES reduced to eight rounds, DES(8 round), in [BS90]
uses a five-round characteristic, Ω1P , with 3R-attack.

To find the right key with a counting scheme in Step 4, we need a high
probability characteristic and enough ciphertext pairs to guarantee the existence
of several right pairs. Usually we relate the number of pairs needed by a counting
scheme to the number of right pairs needed. The number of right pairs needed is
mainly a function of the ratio between the number of right pairs and the average

count in the counting scheme, denoted by S/N . In the DES case, S/N = 2k·p
α·β

holds, where k-bits of subkey are counted at Step 4, α is the average count per
counted pair, β is the ratio of the counted to all pairs, and p is the characteristic’s
probability. When S/N is high enough, only a few right pairs are needed to
uniquely identify the right value of the subkey bits.

Biham and Shamir found the suitable characteristic for each round number,
for example, (Ω1P , Ω

1
T ) for DES(8-round), (Ω

2
P , Ω

2
T ) for DES(arbitrary round),

(Σ1P , Σ
1
T ) for FEAL8, and (Σ

2
P , Σ

2
T ) for FEAL(arbitrary round), and peeled off

the subkey from the last round using 3R-attack.

2.2 Attacks against Authentication Schemes

There are two frameworks for authentication, digital signature schemes using
public key cryptosystems and message authentication code (MAC) schemes based
on secret key cryptosystems. In the former case, a mixed type digital signature
scheme [DP80] is practical. The signer calculates signature s = f(h(m)), where
m is a message, h is a public hash function and f is a secret signature function
known to the signer, and sends both s andm to the receiver. The receiver checks
whether f−1(s) = h(m) holds using h and the public validation function f−1.
Here, hash functions are used to compress long messages into short digests to
attain high efficiency, and they are not required to be secret. In the latter case,
the MAC is produced by the sender using a secret authentication key, which is
known only to the sender and receiver, and appended to the original message.
Upon reception, the receiver uses the authentication key to check whether the
received message-MAC pair is valid. Note that while a receiver who doesn’t know
the secret key can not generate a signature value in a digital signature scheme,
he can calculate (forge) the MAC of any message using the authentication key
in the MAC scheme. Thus the MAC scheme is applicable only to the case where
the sender and receiver trust each other.

There are two kinds of threats in authentication schemes:

(1) forgery of a digital signature: a valid signature-message pair is found using
previously used pairs,



(2) determination of secret information: the secret key of the public key cryp-
tosystem or the secret authentication key of the MAC scheme are revealed.

The collision free property of hash functions is discussed in [D87, ZMI90] as
a form of Type (1) threat. If an attacker finds a pair of messages, m and m′,
satisfying h(m) = h(m′), where h is a public hash function, then signature value,
s, of h(m) is as valid as that of h(m′). Thus, he can replace the true message,
m, with the invalid message m′; the value, s, remains valid. It is possible to find
a pair of such messages using the birthday paradox strategy in computational
time, O(2ℓ/2), when the bit length of hashed value is ℓ. Other attacks of Type (1)
have been discussed that addressed the weak key and semi weak key properties
of cryptosystems [MOI90], and differential properties [BS91-1].
Type (2) attack means that if the attack succeeds, the authentication system

is totally broken, while a Type (1) attack is a kind of ad-hoc forgery. Deriving
the secret key of a public key cryptosystem is breaking the cryptosystem itself.
Until now, there has not been sufficient discussion of Type (2) attacks on MAC
schemes. We will point out the first attack procedure of this type from the
viewpoint of differential attack.

3 How to Attack MAC Schemes

3.1 What are the Problems

In the attacks employed in the ciphertext case, it is important for the attacker
to use the full length of the ciphertext. On the other hand, only the left half
32-bits of ciphertext in CBC-mode is available as the MAC value. Thus, what
happens in the MAC case, where the attacker can not use the full ciphertext,
but only partial information of the ciphertext?
The following questions are interesting in the differential attack against MAC

schemes to derive the secret authentication key: 1) how many plaintext pairs are
needed together with the left-half (partial information) of their ciphertexts, 2)
what is the influence of the location of ciphertext information available to an
attack, and 3) what is the influence of the bit length of ciphertext information
available as the MAC.

3.2 Outline of MAC Attack

Hereafter, we will distinguish the real plaintext (message), M , to be authenti-
cated from P treated as the plaintext in the references in [BS90, BS91-1], and the
real ciphertext, C, from the ciphertext, T , where P = IP (M) and C = IP−1(T )
in DES, where IP is the initial permutation, and (PH , PL) = (MH ,MH ⊕ML)
and (CH , CL) = (TH , TH ⊕ TL) in FEAL, where PH is the left half of P and PL
is the right half of P .
Since the proposed procedure is a chosen plaintext attack, we assume the

case, where a plaintext (message) is a single block and the initial value of CBC-
mode is public.



Since the right half of the ciphertext can not be used for an attack, we modify
the differential attack against MAC schemes, which are based on 0R-attack or
1R-attack introduced by [BS90], to derive the secret subkeys, generated from
the authentication key, in the first round, as follows:

Step 1: Choose the appropriate pair of real plaintext XOR, ωP , and real ci-
phertext XOR, ωT , that has high characteristic probability and many
number of subkey bits whose occurrences can be checked at Step 4.

Step 2: Create an appropriate number of real plaintext pairs, (M,M∗), where
M ⊕ M∗ = ωP , calculate their MAC values, γ = MAC(K,M) and
γ∗ =MAC(K, M∗), where K is the authentication key, and keep only
the real plaintext pairs (M,M∗) which satisfy

γ ⊕ γ∗ = the left half of 32-bits of ωT .

Step 3: Derive the expected output XOR, A′, of the first round function using
the differential rules.

Step 4: For each possible subkey value of K1, where K1 is used by the first
round function, count the number of pairs that result with the expected
output XOR, A′, using this subkey value of K1 in the first round, and
choose the value that is counted most often as the subkey candidate of
K1.

Remark

In the DES(r-round)-MAC case, where r ≥ 8, ωP is transformed to Ω
2
P by the

initial permutation (IP ), that is, IP (ωP ) = Ω2P , and ωT is transformed to Ω
2
T

by IP , that is, ωT = IP
−1(Ω2T ), in the 0R-attack. ωT is transformed to a value

related to Ω2T by IP , that is, ωT = IP−1(ϕ ⊕ (Ω2T )L, (Ω
2
T )H), where ϕ is the

output XOR of the last round iteration function with an input, (Ω2T )H , in the
1R-attack. A′ = 00000000.
In the FEAL N-MAC case, where N ≥ 8, ωP equals (σ, 00000000), where

σ = 80608000, ωT equals (σ, 00000000) or a value related to (σ, 00000000), and
A′ = 00800000.
Note

If there are several candidates for K1, we can adopt two strategies to attain high
efficiency in order to reduce the number of candidates.

(1) Choose another ω̃P at Step 1, apply the same procedure, and choose the
common value between ωP and ω̃P cases as the subkey candidate of K1.

(2) Derive the expected output XORs, B′, of the second round iteration function,
and count the number of pairs that result with the expected output XOR,
B′, using the subkey candidate value of K1 and newly selected subkey value
of K2 in the second round. If the counted number is zero, the candidate for
K1 is discarded.

We can apply the first strategy without the increase in the number of plaintext
pairs using quartets which combine the two characteristics [BS90]. The second
strategy applied to the case of FEAL-MAC will be described in detail in Section
5.



4 Discussion

4.1 DES-MAC

The procedure described is based on 0R-attack or 1R-attack, and can be consid-
ered a differential attack against a cryptosystem changing the roles of plaintext
and ciphertext. So the discussion of [BS90] is applicable with slight modification.
Note that MAC values, which are the partial information of ciphertext, are suf-
ficient in the proposed attack, since the actual plaintext values are not necessary
in the original differential attack.
The possibility of subkey value can be checked on some bits of the subkey

in the first round entering the S boxes with nonzero input XORs. If we use ωP
corresponding to Ω2P , three S boxes, S1, S2, and S3, yield 18 bits of subkey K1.
Since the input XOR is constant, we can not distinguish between several

subkey values. However, the number of such values is small and each can be
checked later in parallel by the next part of the algorithm (see p.40 line 9 of
[BS90]).
Let’s consider the case of DES, which is reduced to an even round, where 0R-

attack is applicable. Note that the β component of S/N should be 2−32, since the
output XOR of the last round iteration is ΩT = (ψ, 0), where ψ = 19600000, ωT
has specific 64 bits, and the left half 32-bits ωT are determined definitely. Thus,

DES(8-round)-MAC can be broken with 234 pairs, since S/N = 218×(2−4)8

43×2−32 = 2
12.

DES(10-round)-MAC can be broken with 242 pairs, since S/N = 218×(2−4)10

43×2−32 =

24. DES(12-round)-MAC can not be broken, since S/N = 218×(2−4)12

43×2−32 = 2−4.
Concerning the influence of the location of ciphertext information available

as MAC, since the value of the β component of S/N is 2−32 constantly (in
0R-attack), the security of DES(even-round)-MAC does not depend on the bit
location in the ciphertext used as MAC.
We utilize the following fact in the above discussion: Biham and Shamir

observed experimentally that when S/N is about 1−2, about 20−40 occurrences
of right pairs are sufficient. When the S/N is much higher, even three or four
right pairs are usually enough. When the S/N is much smaller than 1, the
identification of the right value of subkey bits requires an unreasonably large
number of pairs. (see p.23 in [BS90])
Let’s consider the case of DES, which is reduced to an odd round, where 1R-

attack is applicable. Note that the β component of S/N should be 2−20 ∼ 2−32,
since the output XOR of the last round iteration is ΩT = (ϕ, ψ), where ϕ
contains 20 bits of zeros released by S4, . . . , S8 at the last iteration, ωT has
12 free bits among 64 bits, and the left half of 32-bits of ωT might contain
them. With careful check on the bit location of MAC, since 7 bits among the 12
free bits are contained in the left half of 32-bits of ωT , β = 2

−25 holds. Thus,

DES(7-round)-MAC can be broken with 226 pairs, since S/N = 218×(2−4)6

43×β = 213.

DES(9-round)-MAC can be broken with 234 pairs, since S/N = 218×(2−4)8

43×β = 25.

DES(11-round)-MAC can not be broken, since S/N = 218×(2−4)10

43×β = 1
23 .



It is also clear that our attack is effective to any DES(N -round)-MAC scheme,
where N ≤ 10 ; the 32-bits can be randomly selected from among the 64-bits
of ciphertext. It is not effective against DES(N ′-round)-MAC scheme, where
N ′ ≥ 12. Only the security of DES(11-round)-MAC depends on the bit location

in the ciphertext used as MAC, since S/N = 218×(2−4)10

43×β = 2−8 ∼ 24.
Concerning the influence of the bit length of ciphertext information available

as the MAC, the value of the β component of S/N is 2−ℓ in DES(even-round)-
MAC if the bit length of MAC is ℓ. For example, DES(8-round)-MAC(24 bit)

is breakable, since S/N = 218×(2−4)8

43×2−24 = 24, while DES(8-round)-MAC(18 bit)

can not be broken, since S/N = 218×(2−4)8

43×2−18 = 2
−2. The similar discussion holds

in DES(odd-round)-MAC. Note that when we use the small bits of MAC, it is
easy to find a pair of collision messages, while it is difficult to derive the secret
authentication key.
If we use ω̃P corresponding to Ω

3
P = 00196000 00000000, three S boxes,

S3, S4, and S5, give 12 more of the bits in subkey K1 (this is in addition to
the 18 bits derived with Ω2P ). This reduces the computational time of the attack
procedure.
While 234 plaintext pairs are necessary for differential attack against DES(10-

round) in the ciphertext case, 242 pairs are necessary in the MAC case, since
2R-attack and 3R-attack are not applicable to the MAC case. It is an open
problem whether 2R-attack and 3R-attack are applicable to MAC schemes.

4.2 FEAL-MAC

The attack procedure is based on 0R-attack or 1R-attack, and can be considered
as a differential attack against a cryptosystem changing the roles of plaintext and
ciphertext. So the discussion of [BS91-1] is applicable with slight modification.
The possibility of subkey value can be checked using some subkey bits from

the first round, where the input XOR, a′, equals σ = 80608000, and the output
XOR, A′, equals 00800000.
Biham and Shamir make the following statement in [BS91-1]: “the success-

fully filtered pairs are used in the process of counting the number of times each
possible value of the last actual subkey is suggested, and finding the most pop-
ular value. Complicating factors are the small number of bits set in h′ 3 (which
is a constant defined by the characteristic), and the fact that many values of
H ′ suggest many common values of the last actual subkey. Our (Biham and
Shamir’s) calculations show that the right value of the last subkey is counted
with detectably higher probability than a random value up to N ≤ 31 round. ”
(see p.10 line 26 of [BS91-1])
We can apply the above explanation to FEAL-MAC schemes by replacing

the last actual subkey with the first actual subkey: h′ with a′, and H ′ with A′.
In estimating the sufficient number of plaintext pairs, though Biham and

Shamir imply that four right pairs are sufficient if N ≤ 24 to derive the subset

3 They employ the notation of an eight round cryptosystem.



key using a counting method in the ciphertext attack (see p.11 of [BS91-1]),
it is not clear how many pairs are sufficient to derive the subset key in the
proposed MAC attack, where the value of A′ described in the above is fixed.
Our experimental results, described in the next section, confirm that at most
26 right pairs are sufficient to derive the subkey K1 with a checking method, by
simply checking whether all pairs that pass the check of Step 2 also pass Step4
using A′.

Since FEAL8 has the characteristic probability, 2−16, we can find 26 right
pairs from 222 pairs of plaintext with high probability in Step 2. On the other
hand, the probability that a wrong pair is found is 2−10, since the 32 bits are
used in Step 2 to filter right pairs. Thus FEAL8-MAC can be broken with 222

pairs of plaintext with overwhelming probability (= 1− 1
210 ).

Since FEAL12 has the characteristic probability, 2−24, we can find 26 right
pairs from 230 pairs of plaintext with high probability in Step 2. On the other
hand, the probability that a wrong pair is found is 2−2 in Step 2. Since we
confirmed with an experiment that even if one wrong pair is contained among
64 right pairs, we can find a correct bits among the subkey with high probability
(99 %), FEAL12-MAC can also be broken with 230 pairs of plaintext with high
probability.

On the other hand, since FEAL16 has the characteristic probability, 2−32, it
is difficult to find pairs containing 26 right pairs and a few wrong pairs from 238

pairs of plaintext at Step 2. Since the selected pairs at Step 2 contain many
wrong pairs with high probability, it is necessary to use the counting method
instead of the checking method to break FEAL16-MAC. It is an open problem
to estimate the sufficient number of pairs for the counting method.

Note that these attacks are applicable to FEAL-MAC only in the chosen
plaintext attack, though some known plaintext attacks are pointed out to ci-
phertext case [CG91, MY92, K91]. It is an open problem to break MAC schemes
in the known plaintext attack.

5 Experimental Results

The purpose of this experiment is to estimate the sufficient number of right pairs
to derive the subkey K1. We will describe experimental results on FEAL8-MAC
using the attack technique cut off the spread of carry bit, developed in [MY92].
Here, we adopt the second strategy described in Section 3: check whether all
pairs that pass the check of Step 2 also pass Step 4 using B′ of the second
round function in addition to the expected output XORs, A′.
For convenience, we use the modified F-function defined by [MY92] in our

experiment.

5.1 Notation

We use the following notations in this section.



M : A plaintext input to the FEAL-MAC algorithm

AM : Output of the first round function (32 bits) corresponding to M

BM : Output of the second round function (32 bits) corresponding to M

bM : Input of the second round function (32 bits) corresponding to M

B[i] : The i-th bit of B, where 0 ≤ i ≤ 31

K1 : Subkey value used by the first round function (32 bits)

K2 : Subkey value used by the second round function (32 bits)

K1[i ∼ j] : The j − i+ 1 bits data consisting of the i-th, . . . , j-th bits of K1

K1[i, j] : The XORed value of the i-th and j-th bits of K1

5.2 Attack Procedure against FEAL-MAC Attack

We select ωP = (σ, 00000000), where σ = 80608000, ωT = (σ, 00000000), and
A′ = B′ = 00800000. Hereafter, we will explain how to implement Step 4 of
the MAC attack procedure to reduce the number of candidates for K1.
The following procedure selects the 12 bits for K1 that influence the 8 bits,

80, of A′.

Step 1: Select 12 bit data of K1 using the bits K1[8 ∼ 13],K1[16 ∼ 20], and
K1[21, 22], the remaining bits are determined arbitrarily.

Step 2: Calculate all right pairs, (M,M∗), using the first round function with
the selected K1, and check whether AM ⊕ AM∗ = 00800000 holds. If
all checks are correct, then let the 12 bit data be a candidate of K1.

The following procedure can select more 12 bits of K1 and 1 bit of K2 in
addition to the 12 bits selected above.

Step 1: Select 17 bits ofK1 usingK1[0 ∼ 3],K1[14 ∼ 15],K1[23 ∼ 28],K2[12 ∼
13],K2[20 ∼ 22], the remaining bits are fixed arbitrarily.

Step 2: Calculate all right pairs using the first round function and the selected
K1, and select pairs, (M,M∗), satisfying

b[4]⊕ b[12]⊕ b[20]⊕ b[28] = K2[12]⊕K2[20]. (1)

Step 3: Calculate the pairs selected in the above step using the second round
function and the selected K2, and check whether

BM [16]⊕BM∗ [16] = 0, BM [17]⊕BM∗ [17] = 0, BM [23]⊕BM∗ [23] = 1.
(2)

If all checks are correct for the pairs, then let the value of the 24 bit
data be a candidate of K1.



Since we can ignore the influence of K2[8 ∼ 11] and K2[16 ∼ 19] considering
equation (1) at Step 2, we don’t have to guess these bits in the above procedure.
This technique, cut off the spread of carry bit, was developed by [MY92] to
reduce the computational time needed to get the subkey information. Equation
(2) corresponds to the fact that BM ⊕B

∗

M should be B
′ = 00800000. Note that

since we don’t know BM [18 ∼ 22] here, only three bits are checked in equation
(2).
After the calculation of these 24 bits of subkey K1, we can determine 30 bits

by repeating the previous method without the above restrictions of equation (1).
Though K1[7] and K1[31] remain undetermined with this procedure, they can
be determined by an exhaustive search.
The above procedure was implemented and tested. We have confirmed that

26 right pairs are sufficient to derive the subkey K1 with the above procedure.
We could decrease the number of pairs required by checking the XOR outputs
of higher round functions, C′, D′ and so on.

6 Conclusion and Remarks

We have proposed a modified differential attack which is effective against MAC
schemes, where only the left half 32-bits of the ciphertext is available to the
attacker. The attack derives the secret authentication key in the chosen plaintext
scenario. The procedure is considered as a form of differential attack, 0R-attack
or 1R-attack, against a cryptosystem where the roles of plaintext and ciphertext
are reversed. We have also pointed out that our procedure is also effective against
any MAC scheme even if the 32-bits are randomly selected from among the 64-
bits of ciphertext generated by a cryptosystem vulnerable to differential attack
in the chosen plaintext scenario.
More exactly, based on the discussion of [BS90], and with slight modification

of the S/N ratio, it appears that DES(12-round)-MAC is secure, while DES(8-
round)-MAC can be broken with 234 pairs of plaintext in the chosen plaintext
scenario. It is clear that our attack is effective against any DES(N -round)-MAC
scheme, where N ≤ 10 ; the 32-bits can be randomly selected from among the
64-bits of ciphertext.
Concerning the influence of the bit length of ciphertext information available

as the MAC, it becomes clear that, for example, DES(8-round)-MAC(24 bit) is
breakable, while DES(8-round)-MAC(18 bit) can not be broken.
Based on our experiment and the discussion of [BS91-1], it is clear that

FEAL8-MAC can be broken with 222 pairs of plaintext with overwhelming prob-
ability and FEAL12-MAC can be broken with 230 pairs with high probability in
the chosen plaintext scenario.
There are several open problems:

(1) whether MAC is broken in the known plaintext attack,
(2) whether 2R-attack and 3R-attack are effective against MAC schemes, and
(3) how many pairs of plaintexts are sufficient to break FEAL16-MAC using the
counting method.
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