
Evolution of �-expressions through GeneticProgrammingDorothea Heiss-Czedik{z and Walter Fontana{x{ Theoretical ChemistryUniversity of ViennaW�ahringerstra�e 17A-1090 Vienna, Austriaz Institute for Information Systems E184/2Vienna University of TechnologyA-1040 Vienna, AustriaxInternational Institute for AppliedSystems Analysis (IIASA)A-2361 Laxenburg, Austriafdorothea, walterg@tbi.univie.ac.atAbstractWe illustrate a minimal version of Genetic Programming operatingwith �-calculus by evolving the predecessor function. The expression ob-tained works di�erently than the original version of Kleene. In those runsthat were successful hundreds of di�erent expressions realizing the pre-decessor function were found, indicating a large degree of neutrality. Wesuggest that the study of the \�-calculus landscape" holds promise fora more rigorous and systematic understanding of the power and limita-tions of Genetic Programming as they derive from the language that mapssyntactical constructs into functional behaviors.keywords: genetic programming, �-calculus, predecessor function, landscapes
1

1 IntroductionThe Darwinian principle of adaptation through replication, heritable variation,and selection is not limited to a population of biological entities. It is applicableto any object that can be copied and varied, and for which at least some of thevariants are distinguishable (by an arbitrary criterion called \�tness"). GeneticProgramming (GP) applies the logical structure of the Darwinian scheme tocomputer programs, searching for those that compute a desired function. In therealm of computation the \phenotype" corresponds to the behavior of a program(i.e., the graph of a function in the set-theoretic sense) and the \genotype"corresponds to that which behaves (i.e., a syntactical construct expressing afunction).Genetic Programming [Koza, 1992] has indeed become a powerful machinelearning method. Its success has been demonstrated in a variety of applica-tions, such as solving symbolic regression problems [Koza, 1992], discoveringgame-playing strategies [Koza, 1992, Angeline, 1993], inducing decision trees[Koza, 1992], generating controllers (e.g., for robots) [Koza, 1992, Reynolds, 1994,Spencer, 1994, Handley, 1994], cracking and evolving randomizers [Koza, 1992,Jannink, 1994].A question, however, remains: When is the Darwinian process e�ective?The search for an answer is still a frontier in biology. The question is hard,because replication and variation apply to the carrier of behavior (\genotype"),while selection applies to the behavior (\phenotype"), and, at least in biology,we don't su�ciently understand the mapping between the two.GP applications typically start with a cleverly crafted representation of aproblem domain from which suitable high-level primitives are inferred. It maybe argued that in such cases GP plays a minor role in �nding the solutioncompared to the contribution of the user [Abbott, 1993, Taylor, 1993]. Thepoint relevant here is that the problem-speci�c components of applicationsmake a rigorous and general theoretical exploration of GP nearly impossible[O'Reilly and Oppacher, 1994].An analysis is needed of the intrinsic constraints and opportunities of GPderiving from the speci�c language that maps syntactical constructs (genotypes)into functional behaviors (phenotypes). Such an analysis could begin by turn-ing to an abstract universe of functions that is (i) transparent, (ii) su�cientlyformal to encourage mathematical analysis, and (iii) canonical (i.e., it shouldcapture a programming language paradigm). One such universe is �-calculus,invented by Alonzo Church [Church, 1932, Church, 1933] to study the prop-erties of functions. As is well known, �-calculus is the syntactically unsug-ared core of functional programming languages. The notion of �-de�nability isequivalent to Turing's notion of computability and the Herbrand-G�odel notionof general recursiveness. An exploration of the characteristic features of the\�-calculus landscape", that is, the program-to-function mapping in �-calculus,would greatly help in framing what is possible and what is not with GP within2

the paradigm of functional programming.This, then, is the motivation for our use of �-calculus. The present paperby no means characterizes the features of the �-calculus landscape. That is along-term challenge. Our contribution merely consists in illustrating GP withinthis semantically elegant and minimalist framework, raising a few questions,and providing support for the claim that the study of the �-calculus landscapeholds promise for a more rigorous and systematic understanding of GP.As an example we attempt to evolve the predecessor function. Church hadjust about convinced himself that there is no �-de�nition of the predecessorfunction, when Kleene found a representation for it [Kleene, 1981, Revesz, 1988].It was an important result, because otherwise a computable function would existthat is not �-de�nable. Although the predecessor function seems di�cult to �nd,there is no particular practical bene�t in �nding it, since it is already known.Section 2 brie
y introduces the �-calculus. Section 3 introduces geneticoperators that naturally �t the syntactical machinery of �-calculus. In Section4 the predecessor function is evolved as an example. In Sections 5 and 6 thein
uence of di�erent parameter settings is discussed. Section 7 concludes, andraises a few issues.2 �-calculusIn �-calculus functions are represented as �-expressions. The simplest �-expressionis a variable (without type or sort) of which there is an in�nite supply. To buildmore complex �-expressions there are only two constructions: application andabstraction.The syntax of a �-expression (following [Revesz, 1988]) is:h�-expressioni ::= hvariableijhabstractionijhapplicationi (1)habstractioni ::= �hvariablei:h�-expressioni (2)happlicationi ::= (h�-expressioni)h�-expressioni (3)Abstraction introduces a formal parameter hvariablei (e.g., x) and turns agiven h�-expressioni into a unary function. For example, x is a �-expression byvirtue of (1), and abstracting x via (2) yields �x:x which is the identity functionI , de�ned in usual notation as I(x) = x. The x after the dot in �x:x correspondsto the body of the function (i.e., the right hand side in the de�ning equationI(x) = x). In �x:x the � preceding the x declares it as a formal parameter,corresponding to the left hand side in the equation I(x) = x.Of course, we could also abstract some other variable, say, y to get �y:x.In an expression of the form �hvariablei:h�-expressioni all occurrences of thehvariablei in h�-expressioni are called \bound". A variable that is not boundis termed \free". Names of bound variables don't matter, and we identify ex-pressions that di�er only in the names of bound variables.3

happlicationi is intended to express the application of an operator (hereenclosed in parentheses) to an operand. There is no syntactical distinctionbetween operator and operand, both are arbitrary �-expressions.�-calculus is meant to be a theory of the evaluation of functions. This isachieved by de�ning a reduction relation between expressions that captures thenotion of \substitution": (�x:P)Q) [Q=x]P (4)where P and Q are �-expressions and x is a variable. [Q=x]P means the substi-tution of Q for all occurrences of x in P . (We assume unique names for boundvariables, distinct from names of free variables.) The situation in equation (4)corresponds to the substitution of the actual parameter Q for the formal pa-rameter x in the body P of a function �x:P . The reduced form corresponds tothe result of the evaluation. For example, I(y) def== (�x:x)y) [y=x]x = y.An expression that contains no (sub)-expression to which scheme (4) appliesis called a \normal form", and the process of rewriting an expression into normalform is a \normalization". Not every expression does have a normal form.One may encounter an in�nite sequence of reductions, corresponding to a non-terminating computation.Everything computable can be de�ned with just the syntax (1-3) and the rule(4). Recall, however, that there is no syntactical distinction between functionsand arguments. Natural numbers, for example, are functions too, and they canbe represented in a variety of ways. We will use the Church numerals here, andhenceforth refer to them simply as numerals:0 def== �f:�x:x1 def== �f:�x:(f)x2 def== �f:�x:(f)(f)x3 def== �f:�x:(f)(f)(f)xIn general, the numeral representing the number n iterates its �rst argument toits second argument n times. In the following we use the short-hand notationn def== �f:�x: (f) : : : (f)| {z }n times x def== �f:�x:(f)nx: (5)Note that in (untyped) �-calculus every expression can act via (4) as a mapsending any expression into some expression (that may or may not possess anormal form). In recursion theory, however, the notion of function is a mapfrom non-negative integers to non-negative integers. Thus, only the behaviorof �-expressions restricted to a representation of numbers (i.e., numerals) isconsidered. In other words, arithmetic functions are �-expressions whose re-duced form is a numeral when they are applied to one (or several) numeral(s).4

�-expressions that are arithmetic functions don't contain free variables. Suchexpressions are termed \closed expressions", also known as combinators.As an example take the successor function, which increments its argumentby one: succ def== �n:�g:�y:((n)g)(g)y. Normalizing the application of succ tothe numeral 2 yields:(succ)2 def== (�n:�g:�y:((n)g)(g)y| {z }succ)�f:�x:(f)(f)x| {z }2)�g:�y:((�f:�x:(f)(f)x)g)(g)y)�g:�y:(�x:(g)(g)x)(g)y) �g:�y:(g)(g)(g)y � 3:A more detailed introduction of �-calculus can be found, for example, in[Revesz, 1988, Hankin, 1994, Barendregt, 1984].3 Genetic programming in �-calculusIn GP the task is to �nd a program with a prespeci�ed behavior in a givenlanguage. A �tness function is de�ned to grade the actual behavior of a programwith respect to the desired target behavior.In the present case GP is not operating on conventional programs but on �-expressions1. Since we want to evolve arithmetic functions, we restrict the spaceof �-expressions to closed expressions, and we will use simple genetic operatorsthat preserve syntactical legality and closure.GP starts with a population of randomly generated closed expressions. Anexpression is chosen for reproduction with a probability proportional to its �t-ness. The reproduction event produces either an exact copy, a mutant, or arecombinant with another randomly chosen expression. Selection pressure re-sults from constraining a population to a constant number of expressions: eachtime an expression has been reproduced, another one, chosen randomly, is re-moved.3.1 MutationAccording to the grammar (1-3), a mutation should naturally consist in intro-ducing or removing the two expression constructors habstractioni and happlicationi.Our mutation operators are inspired by [O'Reilly and Oppacher, 1994], and aremotivated by minimizing the syntactical change of a �-expression upon mutationwhile preserving closure of the expression.An abstraction of a new variable can be inserted before any (sub-)expression.Similarly, any unused abstraction (i.e., an abstraction that does not bind a vari-1Genetic Programming originally operated on LISP programs which are basically �-expressions cast in user friendly syntax. 5

able) can be deleted. For example, �x0:x0 and �x0:�x1:x0 can be transformedinto one another by insertion and deletion of �x1:.The insertion of an application requires two steps. First, a (sub-)expressionis chosen randomly and is determined (randomly) to become the operator orthe operand in the application to be created. Second, the missing operandor operator expression has to be generated. This happens according to thefollowing scheme: let V be the set of variables that are bound at the point wherethe missing expression has to be inserted. The missing expression is either arandomly chosen variable in V or, if V = ;, the identity function �x:x. Forexample, �x0:x0 can be mutated into �x0:(x0)x0 or (�x0:x0)�x:x by insertionof an application. Similarly, an application can be removed by erasing either theoperator or the operand expression, but only if the expression to be erased doesnot contain an application (i.e., if it is of the form �x1:�x2: � � ��xn:x, where xmay or may not be one of the xi) For example, �x0:(x0)�x1:x0 can be mutatedinto �x0:x0 by deleting the underlined portion of an application.To summarize, the most basic scheme allows deletions or insertions of the fol-lowing underlined constructs in the context of any closed expression: (i) �hxi:�,where � stands for an expression, and hxi is a variable, (ii) (hsimplei)�, and (iii)(�)hsimplei, where hsimplei is the identity function or a bound variable2. Thesemoves are independent from one another. In our speci�c case we deviate fromthe basic moves in two minor ways: we insert a �x:x only if there's no boundvariable to insert (this minimizes syntactical change due to insertions), and wealso allow the deletion of compound expressions of the form �x1:�x2: � � ��xn:x(this speeds up things by bundling a number of primitive deletions).Every combinator (closed expression) can be transformed into any othercombinator by a �nite number of mutations: in the worst case �rst delete allapplications and abstractions of one combinator until �x:x is left, then proceedby inserting abstractions and applications to yield the wanted combinator.3.2 CrossoverCrossover of parse trees is usually the exchange of subtrees [Koza, 1992]. In�-expressions this would correspond to the exchange of sub-expressions. How-ever, the exchange of arbitrary sub-expressions of combinators may lead to freevariables in the o�spring expressions, thus violating conservation of closure.Therefore, we allow only sub-expressions that are combinators to be chosen forexchange. A combinator is an \encapsulated" unit whose action is independentfrom the context it is in, and thus could be regarded as a \natural" buildingblock.2The substitution of a bound variable by another is possible, but not realized here.
6

3.3 SelectionIn a population of n �-expressions an expression, expri, is chosen to reproducewith probability pr(expri) = f(expri)= nXk=1 f(exprk) (6)where f(expri) is the �tness of expri.The o�spring of a �-expression is added to the population. To induce aselection pressure, we maintain a constant population size by removing anotherexpression from the population [Moran, 1958]. We use two slightly di�erentschemes for removal The so-called non-elitist method chooses the expression tobe removed with an expression-independent probabilitypd(expri) = 1=n: (7)The so-called elitist method does the same, except that the �-expression withthe currently best �tness is prevented from being removed.3.4 Fitness functionHere we are interested in the behavior of a �-expression expr when applied tothe representation of the number i, numerali:(expr)numerali) resulti; (8)where resulti is the resulting normal form expression.The �tness function grades the expression's behavior, resulti with respect tothe desired target behavior, targeti. This can be done only for a �nite numberof (�tness) cases. The �tness function must assign some viability to expressionsthat are not solutions. This poses a di�culty, as there are two ways in which a�-expression can \fail" when applied to a numeral: (i) resulti is a numeral, butdoes not match the desired targeti, or (ii) resulti is not a numeral. In fact, case(ii) is typical. A simple, problem-independent way to deal with this situationis to reward a �-expression to the extent that its actual resulti is syntactically\close" to some numeral. We do by using a regular expression to �nd the biggestnumeral expression numi that is contained in resulti. Then we \punish" theexpression expr in proportion to the syntactical \junk" that resulti contains inaddition to the pattern numi (see below). Next we use the arithmetic di�erencebetween the number represented by numi and the desired one represented bytargeti to assess how much the case i is satis�ed. The �tness contributed bythe case i, case, is simply the product of these two factors. Speci�cally,case(resulti; targeti) = primitives(numi)primitives(resulti)| {z }syntactical distance � 1jnumi � targetij+ �| {z }arithmetic distance (9)7

primitives(h�-expressioni) denotes the sum of the number of applications, ab-stractions, and variable occurrences in h�-expressioni. A numeral numi rep-resenting the number k consists of two abstractions, k applications, and k + 1occurrences of variables. Therefore, primitives(numi) = 2 � k+3. A small con-stant � avoids division by zero when numi = targeti. The maximum �tness percase is 1=�, when resulti = numi = targeti. If the result contains no numeralat all, the �tness case contributes nothing to the overall �tness. The overall�tness for expression expr becomes:f(expr) = CXi=0 case(resulti; targeti) (10)where C + 1 is the number of �tness cases and resulti is obtained according to(8).The functions (9) and (10) are applicable to any arithmetic target function,i.e., pairs of natural numbers (i; targeti); i = 0; 1; : : :. The only aspect in whichthe �tness function does more than that, is in keeping expressions viable thatare not functions mapping numerals to numerals, while inducing a selectionpressure towards arithmetic functions in general.4 Example: predecessor functionAs mentioned in the introduction, we chose the predecessor function as an ex-ample for a �-expression to be evolved by GP. The predecessor function has ahistorical meaning in �-calculus and seems to be di�cult to �nd [Kleene, 1981].Its behavior is de�ned aspred(n) = � n� 1 if n > 00 if n = 0We look for a �-expression that has the same behavior when applied to Churchnumerals.A simpli�ed version of Kleene's representation for the predecessor functioncan be found in [Revesz, 1988]:�x1:(((x1)�x2:�x3:((x3)�x4:�x5:(x4)(((x2)�x6:�x7:x6)x4)x5)(x2)�x8:�x9:x8)�x10:((x10)�x11:�x12:x12)�x13:�x14:x14)�x15:�x16:x16The trick of this expression (not easily intelligible when seeing it as it stands)consists in introducing ordered pairs. Application of this expression to thenumeral n generates n+1 ordered pairs iteratively, such that the zeroth pair is[0; 0] and the i-th pair (0 < i � n) is [i; i� 1]. It is easy to obtain [i+1; i] from[i; i � 1]. Finally, the second element of the pair [n; n � 1] is projected out asthe result of the predecessor function. 8

GP was able to �nd predecessor functions. Among almost 300 runs, four ofthem were successful. Many more runs were successful, if the requirement wasdropped that pred(0) be 0. We will return to this point later.One of the successful runs turned out 805 di�erent predecessor functions(in normal form) until it was stopped. All the ones we examined are based onthe same principle, which is di�erent than Kleene's. We will demonstrate thisprinciple on the shortest predecessor function found (most of them were muchlonger, with the longest having 116 abstractions).The expression reads:�x1:((x1)�x2:((x2)�x3:x3)�x4:�x5:((x2)x4)(x4)x5| {z }S)�x6:(x1)�x7:�x8:�x9:x9| {z }A ;which we may write in abbreviated form aspred def== �x1:((x1)S)AApplying this expression to a numeral n, see (5), gives(pred)n = (�x1:((x1)S)A)�f:�x:(f)nx:The �rst reduction step produces ((�f:�x:(f)nx)S)An with An � �x6:(�f:�x:(f)nx)�x7:�x8:�x9:x9. Note that A depends on n. The next step gives (�x:(S)nx)An,yielding �nally (pred)n = (S)nAn:When pred is applied to the numeral n, its subexpression S is iterated n timeson An. When n = 0, S is not applied to A0 � �x6:(�f:�x:x)�x7 :�x8:�x9:x9 atall, and A0 normalizes to �x6:�x:x which is the Church numeral for 0 (modulonames of bound variables). Therefore, (pred)0 = 0.In the case of n > 0, An>0 � �x6:(�f:�x:(f)nx)�x7:�x8:�x9:x9, whosenormal form is A0 def== �x6:�x:�x8:�x9:x9 independently of n > 0. WhenS is applied to A0 the result is the numeral representing 0. A similar analysis(left to the reader) reveals that S, when applied to a Church numeral, actsexactly like a successor function! The mechanism of this predecessor function isquite elegant: it applies n > 0 times an expression S to an expression A0 that isnot a numeral. The �rst application is, therefore, not a successor action, but ithappens to return the numeral for zero. The next n�1 applications of S simplyincrement zero to n� 1, yielding the predecessor of n:(pred)n = (S)nA0 = (S):::(S)| {z }n times A0 = (S):::(S)| {z }n�1 times(S)A0 = (S):::(S)| {z }n�1 times 0 � n� 1:Throughout our experiments we used 9 �tness cases (numerals 0 to 8) totest the arithmetic action of a candidate �-expression, and to evaluate its �t-ness. Fitness was computed as described above with � = 0:1 (maximum �tness9

is therefore 90). A population size of 1000 was used. Usually 105 to 2 � 105 ex-pressions were generated during a run. Other parameters, such as the mutationrate, were varied in di�erent experiments. In the following we brie
y comparethese settings.5 Parameter settingsFor each combination of parameter settings 9 runs were performed. This issu�cient for a qualitative assessment, but obviously not for a statistical study.We brie
y summarize our �ndings.1. Elitist vs. non-elitist selection. With non-elitist removal (Section 3.3)the temporarily best expression will get lost sometimes. Under these conditionsGP never found a solution. In particular, the highest �tness score did either notimprove at all or only marginally, even when 1{5�106 expressions were generatedin the process. In almost all runs the best �-expression present in the initialpopulation is �x1:�x2:�x3:x3. It corresponds to the constant function f(x) = 0,and, thus, solves two �tness cases correctly, as well as returning numerals for theothers. During most runs better �-expressions were generated, but they werelost before they could proliferate su�ciently, despite their probability of beingchosen for reproduction (proportional to �tness) is higher than their probabilityof being removed (independent of �tness).2. Normal form. When a �-expression is generated (either randomly atthe outset, or by mutation, or by crossover) it is usually not in normal form.A �-expression can be admitted to the population either \as it is", or it canbe normalized. While nothing changes semantically (\phenotypically") duringnormalization (that is, both the original expression and its normal form com-pute the same function), the e�ects of a genetic operation can be considerablywidened at the syntactical level. This in turn will a�ect future variation.The populations whose expressions were in normal form performed slightlybetter. An advantage of dealing with normal forms could be the enormousreduction of the search space, because one is moving between equivalence classesof expressions rather than individual expressions. This seems to outweigh theloss of redundancy, which is thought to bu�er the disruptive action of crossover[Koza, 1992].3. Number of �-expression generated. After 105 �-expression were gen-erated the runs had usually converged, in the sense that no signi�cant furtherimprovement in �tness occurred.
10

4. Mutation and crossover rates. Only four out of 300 runs found apredecessor function. In one of these four runs the mutation rate was 0.01and the crossover rate was 0.6 (i.e. 1% of the �-expressions were generatedusing mutation, 60% of the �-expressions were generated using crossover theremaining 39% were duplicated by copying). These rates correspond to thoseused by Koza [Koza, 1992]. The other successful runs occurred with mutationand crossover rates of 0.2 and 0.4, respectively, as well as 0.3 and 0.3, and0.4 and 0.6. However, the other eight unsuccessful runs performed with thesesame settings were not signi�cantly better than most runs performed with othersettings.Experiments with mutation and recombination rates varying from 0 to 0.4and 0 to 0.8, respectively, were performed, using elitist selection, keeping theexpressions in normal form, and generating 2 �105 �-expressions. The only clearconclusion from these experiments is that runs where either the mutation or thecrossover rate were zero performed signi�cantly worse than runs were both wereoperative.These explorations con�rm the well-known di�culty of determining \good"parameter settings in Genetic Programming [Kinnear, 1994, p.14].6 DiscussionWith the exception of the four successful runs, almost none found an expressionthat computed anything close to the predecessor function. In 56% of the runsno expression was found that returned the correct value for at least three out ofthe nine �tness cases. In only 6% of the runs an expression solved at least four�tness cases. Why were most runs so unsuccessful?1. Fitness proportional selection without scaling is problematic.Early in a run most �-expressions have a very low �tness and the few betterones will quickly dominate the population, leading to premature convergence.Later in the run the average �tness is close to the optimal �tness and �tnessproportionate selection degenerates to random selection [Goldberg, 1989]. Thismay be counteracted by playing with scaled �tness or tournament selection[Koza, 1992]. However, our point was not to �ne-tune the system.2. The requirement that pred(0) = 0. The nature of the natural numbersrequires that the predecessor of zero be zero. Our success rate would have beenmore impressive without this requirement. Dropping it, resulted in 11% of theruns �nding a \predecessor" function, compared to the meager 1.3% that endedwith a genuine predecessor complying with pred(0) = 0.The reason for this behavior is not that the \predecessor" functionality with-out the zero case is so much simpler to realize. As a matter of fact, the distancebetween a predecessor expression (with pred(0) = 0) and a \predecessor" (withpred(0) = something) was at times just one mutation. GP had to generate onlya few hundred �-expressions to �nd a correct predecessor function, when the11

initial population was seeded with a \predecessor" failing on zero. The point isthat when pred(0) had to be zero, the constant function f(x) = 0 was a trap(returning always a numeral and satisfying two �tness cases). The populationconverged to one of the many realizations of this local maximum.7 Concluding remarksIn this paper we have shown that an exceedingly simple version of GP is ableto �nd an elusive function like the predecessor function. Moreover, once a pre-decessor function was found, hundreds of expressions with neutral functionalitywere produced. The mapping from expressions to behaviors on numerals is in-deed many-to-one, and seems to possess some clustered structure. It was aninteresting aside that the evolved predecessor function works with a di�erentmechanism than Kleene's version. Yet both mechanisms make use of a succes-sor function as a component. We have not systematically tried to evolve otherarithmetic functions, but we can report that GP was successful in �nding, forexample, the addition operation. We emphasize once more that the GP com-ponent used was minimal, implementing only the essential Darwinian scheme,and that it was problem-independent in the restricted sense of being usable forany arithmetic function. The example presented indicates that a computationalanalysis of the \�-calculus landscape" is feasible.What would such an analysis be good for? The issue at the outset was tounderstand what GP can do. GP's power may derive not so much from the Dar-winian search strategy, but rather from the medium in which it operates, i.e.,the speci�c way in which functional action (\semantics") is expressed by syn-tactical structure in a programming language. What is \easy" for an unsugaredGP may simply re
ect the characteristic properties and constraints of a syntaxand its operational semantics. A programming language is a device mapping aspace of symbolic expressions (here �-expressions) into a space of possible be-haviors (here recursive functions). The set of possible expressions or programsis structured by a neighborhood relation. Two programs are neighbors if oneis transformed into the other by a single \basic" mutation re
ecting the gram-matical structure of the language. In �-calculus, basic mutations are insertionsor deletions of the two term constructors \application" and \abstraction" (seeSection 3.1). The domain of an untyped �-expression comprises the set of allpossible �-expressions. Our interest, however, is restricted to the behavior onnumerals. On this portion of the domain many expressions will coincide in theirbehavior; the mapping from �-expressions to functions (on numerals) is many-to-one. Call a behavior A \accessible" (in one step) from behavior B, if theprograms that realize A are typically neighbors of the programs that realize B.From this viewpoint, understanding GP means understanding this \accessibilityrelation".This raises a number of issues. Given a particular function, how \dense" in12

program-space are the expressions realizing it? Is there a notion of a \frequentlyrealized" function, as opposed to a \rare" one? What characterizes the mostfrequent ones? How are their programs distributed in program space? Areprograms with identical behavior accessible from one another by a few basicmutations? Do they form networks on which a population could evolve neutrally[Kimura, 1983], thereby exploring program space while not losing the currentlybest function?We bluntly take this perspective from a quite di�erent case concerning spe-ci�c biopolymers: RNA sequences (think genotypes) and their folding into struc-tures (think phenotypes) which determine chemical behavior [Schuster et al., 1994].In that context it was discovered (i) that there exists a well-de�ned notion of\frequent" structure, (ii) that almost all frequent structures are realized withina small (compared to sequence length) neighborhood of any random sequence,(iii) and that sequences folding into the same structure form extended con-nected networks that percolate through sequence space. The implications ofthese �ndings for the evolutionary adaptation of populations of RNA moleculesare immediate [Huynen et al., 1996]: the process of adaptation by mutation andselection is not suited for �nding prespeci�ed \rare" structures in a systematicway. It will �nd, however, without great di�culty any prespeci�ed \frequent"structure, no matter where the process starts in sequence space.Although nucleotide sequences and their folded structures are di�erent ob-jects than programs and their behaviors, the RNA example serves to illustrate(in a biologically relevant case) that what the Darwinian process can charac-teristically achieve is tightly constrained by the statistical regularities of thegenotype to phenotype mapping. By analogy, a starting point for a theoreticalanalysis of what GP can do, may be provided by a similar statistical study ofa canonical functional landscape, the \�-calculus landscape". The advantage ofthis landscape is its de�nitional transparency and the large body of mathemat-ical theory available on �-calculus.References[Abbott, 1993] Abbott, R. (1993). mailing listgenetic-programming@cs.stanford.edu.[Angeline, 1993] Angeline, P. J. (1993). Evolutionary Algorithms and EmergentIntelligence. PhD thesis, The Ohio State University.[Barendregt, 1984] Barendregt, H. G. (1984). The Lambda Calculus: Its Syntaxand Semantics. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, second revised edition.[Church, 1932] Church, A. (1932). A set of postulates for the foundation oflogic. Annals of Math., 2s. 33:346{366.13

[Church, 1933] Church, A. (1933). A set of postulates for the foundation oflogic (second paper). Annals of Math., 2s. 34:839{864.[Goldberg, 1989] Goldberg, D. E. (1989). Genetic Algorithms in Search, Opti-mization, and Machine Learning. Addison-Wesley.[Handley, 1994] Handley, S. G. (1994). The automatic generation of plans for amobile robot via genetic programming with automatically de�ned functions.In Kinnear, K. E., editor, Advances in Genetic Programming. MIT Press,Cambridge, MA.[Hankin, 1994] Hankin, C. (1994). Lambda Calculi. A Guide for Computer Sci-entists. Clarendon Press, Oxford.[Huynen et al., 1996] Huynen, M., Stadler, P. F., and Fontana, W. (1996).Smoothness within ruggedness: The role of neutrality in adaptation. Proc.Natl. Acad. Sci. USA, 93:397{401.[Jannink, 1994] Jannink, J. (1994). Cracking and co-evolving randomizers. InKinnear, K. E., editor, Advances in Genetic Programming. MIT Press, Cam-bridge, MA.[Kimura, 1983] Kimura, M. (1983). The Neutral Theory of Molecular Evolution.Cambridge University Press, Cambridge.[Kinnear, 1994] Kinnear, K. E., editor (1994). Advances in Genetic Program-ming. MIT Press, Cambridge, MA.[Kleene, 1981] Kleene, S. C. (1981). Origins of recursive function theory. Annalsof the History of Computing, 3(1):52 { 67.[Koza, 1992] Koza, J. R. (1992). Genetic Programming. MIT Press, Cambridge,MA.[Moran, 1958] Moran, P. A. P. (1958). Random processes in genetics.Proc.Camb.Phil.Soc., 54:60{71.[O'Reilly and Oppacher, 1994] O'Reilly, U.-M. and Oppacher, F. (1994). Pro-gram search with a hierarchical variable length representation: Genetic pro-gramming, simulated annealing, hill climbing. In Davidor, Y., Schwefel, H.,and Manner, R., editors, Parallel Problem Solving from Nature - PPSN III,Int. Conf. on Evolutionary Computation, Jerusalem, Israel. Springer Verlag.[Revesz, 1988] Revesz, G. E. (1988). Lambda-Calculus, Combinators, and Func-tional Programming. Cambridge University Press.[Reynolds, 1994] Reynolds, C. W. (1994). Evolution of obstacle avoidance be-havior: Using noise to promote robust solutions. In Kinnear, K. E., editor,Advances in Genetic Programming. MIT Press, Cambridge, MA.14

[Schuster et al., 1994] Schuster, P., Fontana, W., Stadler, P. F., and Hofacker, I.(1994). From sequences to shapes and back: A case study in RNA secondarystructures. Proc. Roy. Soc. (London) B, 255:279{284.[Spencer, 1994] Spencer, G. (1994). Automatic generation of programs forcrawling and walking. In Kinnear, K. E., editor, Advances in Genetic Pro-gramming. MIT Press, Cambridge, MA.[Taylor, 1993]Taylor, S. (1993). mailing list genetic-programming@cs.stanford.eduMessage-ID: <199309090140.AA04904@xedoc.xedoc.com.au>.

15

