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Abstract

This paper explores the idea of generic programming in which programs are param-
eterised by data types. Part of the constructive theory of lists, specifically the part
dealing with properties of segments, is generalised in two ways: from lists to arbitrary
inductive data types, and from functions to relations. The new theory is used to solve
a generic problem about segments.

1 Introduction

To what extent is it possible to construct programs without knowing exactly what data
types are involved? At first sight this may seem a strange question, but consider the case
of pattern matching. Over lists, this problem can be formulated in terms of two strings, a
pattern and a text; the object is to determine if and where the pattern occurs as a segment
of the text. Now, pattern matching can be generalised to other data types, including arrays
and trees of various kinds; the essential step is to be able to define the notion of ‘segment’
in these types. So the intriguing question arises: can one construct a useful algorithm,
parameterised by a data type, to solve the general problem of pattern matching?

In this paper we give a positive answer to the above question, though for a problem
somewhat simpler than pattern matching. The problem, the well-known maximum segment
sum, was chosen because sufficient list theory exists [4, 5, 6] for one to calculate an efficient
solution in a few equational steps. It turns out that we can generalise the theory of segments
to more or less arbitrary data types, so the calculation leads to a generic solution to the
problem.

In order to be able to construct a generic theory of segments, we need a reformulation of
the theory of lists with two new ingredients. The first ingredient is a categorical treatment
of data types [18, 19, 17]. In the categorical approach, data types are characterised in terms



of certain functors, and specifications can be parameterised by functors in a simple and
direct manner.

The second ingredient involves the move from functions to arbitrary relations [1, 8]. In-
troducing relations enables us to deal more smoothly with non-deterministic specifications,
but it also turns out that the calculus of relations leads to substantial simplifications in the
study of general data types.

The rest of the paper is structured as follows. In the next section we show—quite
informally—how the notion of segment can be defined in one or two other data types. This
will provide the motivation for the formal definitions in the sequel. After that, in Sections 3
and 4 we review the calculus of relations and data types. Then in Section 5 we show how
every data type comes equipped with a membership relation for testing whether or not
an element occurs in a given data structure. These membership relations are then used
in Sections 6-8 to develop a general theory of segments. In particular, we give suitably
generalised statements and proofs of some results at the heart of the original theory of
lists. As an application, we then obtain a generic solution to the maximum segment sum
problem. Finally, Section 9 contains a discussion of the implications of this research.

2 Towards generality

Let us start by being more precise about what we mean by a segment of a list, indeed,
what we mean by a list. There are two basic views of lists, one of which is given by the
type declaration

lista == nil | snoc(lista)a.

Formally, this means that lists are represented as finite trees (or terms) over nil and snoc.
For instance, the list [1,2, 3] is represented by the tree

snoc(snoc(snocnill)2)3).

Thinking of lists purely as trees, we see that a prefix of z is really the same thing as a
subtree of . The function subtrees takes a list and returns the set of all its subtrees:

subtreesnil = {nil}

subtrees(snocza) = subtreesz U {snocza}.

In the theory of lists, prefixes are called initial segments, and the function subtrees is called
inits. There is the subtle difference that inits returns a list rather than a set, but we ignore
this distinction for now (though we return to it in due course).

Dual to the notion of prefix is that of a suffix. A suffix of £ can be obtained by
substituting the empty list for a subtree of z. For instance, [3,4] is obtained from [1, 2, 3, 4]
by replacing [1,2] by the empty list. For the sake of a word we can say that the subtree
[1,2] has been pruned. The function prunings takes a list and returns all ways in which it
can be pruned:

pruningsnil = {nil}

prunings (snocxa) = {nil} U{snocyal|y € pruningsz}.



In the theory of lists, suffixes are called tail segments and prunings is called tails.
One can now define arbitrary segments by the equation:

segments = union - map prunings - subtrees.

Here union is the function that takes a collection of sets and returns its union, and map is

the operator that applies a function to all elements of a set. We can also define segments

in terms of list concatenation, but that definition does not generalise to other data types.
For comparison, consider now the other view of lists, given by the type declaration

lista == mnil | consa(lista).

With this data type the role of inits and tails are reversed: subtrees gives the tail segments
of a list, while prunings gives the initial segments. The function segments is defined in the
same way as before and again gives the segments of a list.

Pursuing the same theme, now consider binary trees, as defined by

bintreea ::= il | bina(bintreea) (bintreea).

The elements of this type are finite trees, this time over nil and bin, so it is again possible
to define the functions subtrees and prunings. The function subtrees takes a binary tree
and returns the set of all its subtrees:

subtreesnil = {nil}

subtrees(binazy) = subtreesz U subtreesy U {binazy}.

The function prunings takes a binary tree and substitutes nil for its subtrees in all possible
ways:

pruningsnil = {nil}

prunings (binazy) = {nil} U{binast|s € pruningsz,t € pruningsy}.

The segments of a tree are defined by the same equation as before. Jeuring [13] also
considered such a definition, though he spoke of treecuts rather than segments.

3 A calculus of relations

Let us now give a brief review of the relational calculus used in the sequel. The calculus is
based on Freyd’s theory of allegories [10]; basically, an allegory is a category with additional
axioms designed to capture the essential facts about relations. However, we will not take
a fully axiomatic approach, relying instead on appeal to naive set theory, though we do
assume a nodding acquaintance with categories, functors and natural transformations.

Relations The basis of the calculus is a category Rel whose objects are sets and whose
arrows are relations. Arrows go backwards: we write R : A < B to denote that R is
a relation of type ‘A from B’ and we can think of R as a subset of A x B. Relational
composition, like its functional counterpart, also goes backwards: R - S is pronounced ‘R



after S’. Composition is associative with the identity relation id : A < A as unit, all of
which says Rel is a category. For any A and B there exists a smallest relation 0 : A < B,
which is the zero of composition, and a largest relation II : A <~ B which is essentially the
cartesian product A x B.

Each relation R : A <+ B has a converse relation R° : B <+ A, which preserves identities
but reverses composition (so (R-S)° = §° - R°), all of which says that converse is a
contravariant functor from Rel to itself. By assumption, the converse functor is its own
inverse, (R°)° = R, and so is an isomorphism.

For each A and B the arrows A< B form a complete lattice with union U and intersection
N. These arrows can be compared via a partial order C, where R C S denotes R = RN S.
Converse preserves C and composition distributes over (arbitrary) unions, but only weakly
distributes over intersection in that

R-(SNT) € (R-S)N(R-T).

We will suppose in what follows that composition binds more tightly than any other op-
eration, so the right-hand side could have been written without brackets. Using the given
properties of converse, we get from the above inequation a second one:

(RNS)-T C (R-T)N(S-T).

These two inequations say that composition is monotonic in both arguments under C.
One further inequation, called the modular law, is adjoined to the other axioms to give
a weak converse of distributivity over intersection:

(R-S)yNT C R-(SNR°-T).
Again, taking converses, we get the symmetric version

(R-S)NnT C (RNT-8°)-8S.

Division Because relational composition distributes over arbitrary unions, it has a weak
inverse, called division, which is characterised by the equivalence
TCR/S = T-SCR forall T.
The operator / can be defined in set theory by
a(R/S)b = (NVe:bSc:aRc).
A second division operator \ can be introduced by defining R\S = (S°/R°)°, so
TCR\S = R-TCS forall T.

As a predicate we have a(R\S)b = (Ve : cRa: ¢Sh).



Entire and simple relations There are three subcategories of Rel of particular interest:
the entire (or total) relations, the simple (or single-valued) relations, and functions (which
by definition are those relations that are both entire and simple). A relation R : A < B is
entire if id C R°- R, and simple if R - R° C id. Identity arrows are both entire and simple,
and composition preserves both properties, so both kinds of relations form subcategories of
Rel. Tt follows that the category Fun of functions is also a subcategory of Rel. Functions
will be denoted by lower case identifiers, f, g, h, .. ..

To illustrate these definitions, let us prove that

(RNS)-f = (R-f)N(S-f)
for all functions f:

(RNS)-f

C {distributing composition over N}
(B-f)N(S-f)

C {modular law}
(B-f-f)nS)-f

C {monotonicity of composition, since f - f° C id}

(RNS)-f.

Note that we used only the fact that f was simple.
Another useful result that applies to functions only is the shunting rule:

f-RCS = RCf°-§
RCS-f = R-f°CS8.

The proof is an easy consequence of the definition of a function as an entire and simple
relation.

Relators Functors will be denoted using sans serif letters. A functor F : Rel < Rel is said
to be monotonic if R C S implies FR C FS. Monotonic functors have many nice algebraic
properties, most of which can be derived from the fact that they preserve converse, that is,
F(R°) = (FR)°. Monotonic functors take entire relations to entire relations, simple relations
to simple ones, and so functions to functions. Furthermore, any functor F : Fun < Fun has
at most one monotonic extension F : Rel < Rel that coincides with F on functions. More
precisely, write J : Rel < Fun for the inclusion functor of functions into relations. Then for
all monotonic functors F, G : Rel < Rel we have

(F=G) = (F-J=G-J).

For a proof see [7]. Following Backhouse [1], we will call an endofunctor of Fun a relator if
it has a monotonic extension in Rel, and also use this term simply as an abbreviation for
a monotonic functor of Rel.



Natural transformations In the relational calculus it is necessary to distinguish be-
tween two kinds of natural transformation. The first is the standard notion of a natural
transformation in category theory. That is, given two functors F and G, we have

p:F+<~G = (VR:FR-¢=¢-GR).

Such natural transformations will be called proper. In the second notion of natural trans-
formation, the equation is weakened to an inequality:

p:F+—G = (VR:FR-¢$2 ¢-GR).

Since this weak type of natural transformation is more common in the relational calculus
than the proper one, we shall simply call them natural transformations (the usual term
is weak, or lax, natural transformation). Every natural transformation is proper when
restricted to functions, that is,

(p:F+—G) = (p:F-J«G-1J).

Again the proof can be found in [7]. Note that ¢ need not itself be a function.

Powersets The view of relations adopted here is essentially that a relation A < B is a
subset of the cartesian product A x B. However, one can also view relations as functions
PA < B, where PA denotes the powerset of A. Formally, the isomorphism between these
two representations of relations can be described in the following suitably abstract form.
For every set A there exists a set PA, called the powerset of A, and a relation € : A+ PA,
called the membership relation on A. The powerset PA and the relation € are characterised
by the following property. For every relation R : A< B, there exists a function AR : PA«< B
such that

(f=AR) = (¢-f=R) forallf:PA+«+ B.

The function AR is said to be the power transpose of R and can be defined in set theory by
(AR)b = {a|aRb}. Much of set theory can be recovered using just this universal property of
powersets, plus the relational calculus. This observation lies at the heart of the categorical
approach to sets, the theory of toposes [14, 3, 12]. Below we illustrate how various familiar
operators from set theory can be defined in terms of A.

First of all, it is immediate from the universal property of A that id : PA + P A satisfies
id = A(€). Next, the existential image of R : A <— B is a function ER : PA < PB defined
by ER = A(R - €). In set theory we have

(ER)z = {a|3b:aRbADE z}.

We have Eid = id, and below we will show that E(R-S) = ER-ES, so E is a functor. It is
not, however, a relator because it is not monotonic: inclusion of functions is equality.
To show E is a functor we first prove A(R-S) =ER - AS:

A(R-S)=ER-AS
{definition of A}



R-S=¢€-ER-AS

=  {definition of E}
R-S=€-AR-€)-AS
{€ cancels A (twice)}

true

Now, taking S =T -€, weget E(R-T)=ER-ET.

From the definition of E (plus the fact that € cancels A) we get R - € = € - ER, which
says that € : id < E is a proper natural transformation.

Although E is not a relator, there does exist a variant of E which is. The restriction of
E to functions is called P, so P = E - J. The functor P : Fun < Fun is a relator and its
unique extension to relations turns out to be

PR = (e\(R-€))n((>-R)/3),

where 3 denotes the converse of €. Using the pointwise interpretation of the division
operators, this formula reads

z(PR)y = NMae€xz:3b€y:aRb) A
(Vb € y:3a € z: aRD).

Since € :id < E is proper, we get that € is a natural transformation id <— P, though not a
proper one.
For future use, we note that E can be expressed in terms of P:

ER = wunion-PAR, (1)

where union : PA < PPA is defined by union = E(€). This function returns the union of
a collection of sets. Since € : id <— E we have union : E <— EE. A more detailed discussion
of P and its relation to E can be found in [8].

Preorders By definition, a preorder is a relation R : A < A which is both reflexive
(id C R) and transitive (R - R C R). For any relation R there exists a smallest preorder
R* containing R, defined as the least solution X = R* of

X = idU(X-R).

The relation R* is commonly known as the reflexive transitive closure of R. The following
property will be useful in the sequel:

R-S=S-R = R-S=S-R" 2)

Maximum Finally, we consider the maximum relation mazR : A < PA associated with
a given preorder R : A <— A, defined by
mazR = €n(e\R)".

This definition corresponds to the usual definition of maximum elements in set theory:
a(mazR)z holds when a is an element of z (the first term) and z has upper bound a (the
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second term), that is, for all b € z, we have bRa. Note that, although the definition of
maxR does not depend on R being a preorder, it is useful only when R is one, so we shall
assume without stating it explicitly that R is a preorder whenever the construction mazR
is considered.

There are two properties of maz that we will need in Section 7. First of all,

X C mazR - AS
{definition of mazR}
X C(en(e\R)°)-AS
{functions distribute backwards over N}
X C(e-AS)N((e\R)”-AS)
{A cancellation and universal property of N}
(X CS) A (X C(e\R)"-AS).

Continuing with the second term

X C (e\R)°-AS
{shunting}
X - (AS)” C (e\R)
{converse}
AS-X°Ce\R
= {universal property of \}
€-AS-X°CR
{A cancellation}
S-X°CR
= {converse}
X -S§°CR°.

Hence X C mazR - AS if and only if X C S and X - S° C R°. We call this property the
universal property of maz. We have given the proof in details because it is fairly typical of
the kind of manipulations found in the relational calculus.

The second fact, which depends on R being a preorder, is that maxR weakly distributes
over union:

mazR - union O mazR - P(mazR), provided R is a preorder. (3)

To see that this inequation cannot be strengthened to an equality, consider some singleton
set A = {a} with the trivial preorder R = id. With z = {{a}, {}} we have a(mazR-union)z
but not a(mazR - P(mazR))z since (mazR){ } has empty range.

4 Types

Our approach to data types is based on the idea that every type constructor, such as list or
tree, is associated with a functor, such as list or tree, that applies a function to all elements



of the type. Such functors correspond to the map operators in functional programming.
This view of data types is also the basis of the work by Backhouse [1] to which the interested
reader is referred for a more detailed discussion of the concepts introduced here. We begin
by considering certain basic types.

Terminator The terminator 1 is a set with one element. It has the property that for
every set A there exists precisely one function 1 <— A, denoted by !. Note that, although 1
is indeed a final object in Fun, it is not a final object in Rel since 0 : 1< A and 0 # !. The
functor that comes with the terminator is the constant functor K; which maps all sets to
1, and all arrows to id : 1+ 1. More generally, the constant functor K, maps all sets to A
and all arrows to id : A + A.

Product Recall that in a category an object A x B with two arrows outl : A+ A x B
and outr : B <+ A x B is called a product if for all C and arrows f : A+ C, g: B+ C
there is a unique arrow (f, g) : A x B < C such that outl - (f, g) = f and outr - (f, g) = g.
The category Fun has products and the product functor x is defined as usual by

fxg = (f-outl g- outr).
This functor is a relator and we have R x S = (R - outl, S - outr), where
(R,S) = (outl®- R)N (outr®-S).

However, outl, outr and (—, —) do not define a categorical product in Rel since, for example,
outl-(R,0) = 0 for all R. This is not a problem, for we said only that functional product has
a unique extension in Rel, not that this extension should also be a product in Rel. We do
have outl-(R, S) = R and outr-(S, R) = R whenever S is entire and so outl-(RxS) = R-outl
and outr - (S X R) = R - outr whenever S is entire.

Coproducts Dually, in a category an object A+ B with two arrows inl : A+ B < A and
inr : A+ B < B is a coproduct if for all C' and arrows f : C < A, g : C < B there is a
unique arrow [f, g| : C <= A + B such that [f, g]| - inl = f and [f, g| - inr = g. The category
Fun has coproducts and the coproduct functor + is defined as usual by

f+g = linl-f,inr-g].
The coproduct is also a relator and R + S = [inl - R, inr - S|, where
[R,S] = (R-nl°)U(S -inre).

Unlike the situation with products, inl, inr and [—, —] do form a proper coproduct in Rel.
For example, [R, S]-inl = R for all S, and from this it follows that

[R,S]-[U, V] = R-U>U §-V°

which will be needed below.



Polynomial Relators Relators built up from constants, finite products and coproducts
are said to be polynomial. More precisely, the class of polynomial relators is defined induc-
tively by the following clauses:

1. The identity relator id and the constant relators K4 are polynomial;

2. if F and G are polynomial, then so are their composition F - G, their sum F 4+ G and
their product F x G, where

(F+G)R = FR+GR
(FxG)R = FR xGR.

Catamorphisms and promotion Let F be a relator. By definition, an F-algebra is a re-
lation of type A<—F A, the set A being called the carrier of the algebra. A F-homomorphism
from an algebra S : B < FB to an algebra R : A <+ FA is a relation X : A < B such that

X-S = R-FX.
Identity arrows are homomorphisms, and the composition of two homomorphisms is again
a homomorphism, so F algebras form the objects of a category whose arrows are homomor-
phisms. For many relators (in particular, the polynomial ones), this category has an initial
object, which we shall denote by o : T <— FT. For any other F-algebra R : A <~ FA the

unique homomorphism from « to R will be denoted by (R)), so (R)) : A< T is characterised
by

(X-a=R-FX) = (X =(R)).
Homomorphisms of the form (R) are called catamorphisms [18]. The initial algebra « is,
in fact, an isomorphism [16] so we can rewrite the above equivalence in the form
(X=R-FX-0°) = (X = (R)).
The well-known Knaster-Tarski Fixpoint Theorem says that the unique solution (if it exists)

of X = F(X) is also the least solution of X O F(X) and the greatest solution of X C F(X),
so we get the following results, known collectively as promotion:

X=R-FX -a° = X =(R)

XCR-FX-a° = X C(R)

XDOR-FX-a° = X D(R).
The typical use of promotion is when X = §- (7). In particular, the following calculation
gives a useful condition for expressing S - (7)) as a catamorphism:

§-(T) = (B)
{promotion}
S-(T)-aa=R-F(S-(T))
{definition of (7))}
S-T-F(T)=R-F(S-(T))
<  {Fis a functor}
S-T=R-FS.

Use of this, or similar, conditions in calculations will be signalled with the hint ‘promotion’.
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Tree types defined Let us now return to tree types. Tree types are initial algebras and
can be named as such by type declarations. For example, the declaration

listA = nil|snoc(listA, A)

declares [nil, snoc| : listA <~ Hy(listA) to be the initial H, algebra, where Hy(X) = 1 +
(X x A) and Hu(f) = idy + (f x ids). We can and will write H(A, X') instead of Hs(X), in
which case we think of H as a bifunctor. By fixing the left or right argument of a bifunctor
we get two functors and, since we shall need both functors below, it is useful to settle on a
consistent convention for naming them. For a bifunctor H we define

Ho(f) = H(f,idx)
Hi(f) = H(ida,[).

Note that dependence on X and A has been suppressed in this notation. Moreover, we
will always arrange the arguments of a given bifunctor H so that it is H; that describes the
initial algebra. With this convention, [nil, snoc| is the initial H; algebra corresponding to
the bifunctor H(A4, X) = 1+ (X x A).

Above we wrote list in sans serif font, which is our convention for denoting functors.
This was intended: with every tree type T is associated a certain functor, which we shall
call a tree functor. For example, the tree functor list is just the familiar map operation of
functional programming. The function listf is defined over snoc lists by

listf = (nil, snoc- (id x f)]).

Note that we write (e, f) rather than the more clumsy ([e, f])). Using the characterisation
of catamorphisms, this definition expands to the familiar recursion equations

listf[] = []
listf (snoc(z,a)) = snoc(listfz,fa).

In fact, (e, f)) translates to the standard higher-order function foldlf e.
Tree functors are relators and the case of lists illustrates how they are defined in general:
given an initial algebra o : TA <~ H(A, TA), the tree functor T is defined by

TR = (o-HyR).

We describe this situation by saying H is a binary relator with tree type (o, T). Elements
of a tree type are called trees. Note that the definition of T gives that o : T <— G, where
GR = H(R, TR), is a proper natural transformation.

5 Membership

Data types record the presence of elements, so one would expect relator F to come equipped
with a membership relation € such that a €gz precisely when a is an element of z. Indeed,
this notion of membership is so common that its definition is usually taken for granted.
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Formally, a collection of arrows € is a membership relation of F if for each R,
FR - GF\id = GF\R.
The pointwise interpretation of this equation is

Va : a€fx : aRb

dy : x(FR)y A (V0" : b'€py : b = D).

Our first result about membership says that the above equation has at most one solution.
For a proof see [9] (where proofs of most of the following facts about membership can be
found).

Lemma 1 If € is a membership relation of F', then € is the largest natural transforma-
tion of type id <= F.

To illustrate, consider the membership relation of the powerset functor, writing € in-
stead of €p. To say that € is a natural transformation is to say that f - € = € - Pf for
all functions f (recall that every natural transformation is proper when restricted to func-
tions). Equivalently, for all ¢ and z we have a €Pfz if and only if there exists b € z such
that f b = a, which is a well known property in set theory. There exist relators that do not
have a membership relation, but all relators in programming do have one. Below we show
how to construct the membership relation of polynomial relators, and of tree relators.

Lemma 2 The membership relation of a polynomial relator is given by the following clauses:

€g = 1id
€ka = 0
€ric = [EF, €q]
€rxg = €Ef-outlU Eg - outr
€FrG = €G- EF

Not every relator is polynomial; in particular, the tree relator T of a tree type is not
polynomial. Since T is defined by a catamorphism, one might expect that €t can also be
expressed as a catamorphism, but this is not possible for data types containing constants
such as the empty list. The reason is simple: membership reduces to the empty relation on
empty lists, and the empty relation would propagate through any catamorphic definition,
rendering such a definition useless. Fortunately, there is another solution for the definition
of €1, one which makes use of three auxiliary relations, which we will call root, branch and
subtree.

Let H be a binary relator, and let (a, T) be its tree type. We assume that both Hy
and H; have a membership relation, and we shall write €; instead of €y,. The natural
transformation root : id <= T returns an element that occurs at the root of a tree. It is
defined by the equation

Toot = €Eg-a .

12



Naturality of root follows from the theory of membership, see [9]. Similarly, the natural
transformation branch : T <= T returns an immediate subtree of its argument

(o]

branch = €1-a°.

Finally, the natural transformation subtree : T <= T is defined by subtree = branch* and
returns an arbitrary subtree of a given tree.

Below we shall list a number of examples to illustrate these definitions, but first we
state the main result about membership of trees:

Lemma 3 Let H be a binary relator with tree type (o, T). Then

€t = root - subtree.

In words, this lemma says that a is an element of z if a occurs at the root of a subtree of
z. This intuition is further explained in the following examples:

1. Snoc lists. With H(A, X) =1+ (X x A), we get the tree type
([empty, snoc], list) of snoc lists. Since

HO = K1 + (KX X Id)
Hl = K1+(idXKA),
we find, using Lemma 2, that
€ = 10, outr]
€ = [0, outl].
Hence

root = €g - a° = [0, outr] - [nil, snoc]” = outr - snoc®

and, similarly, branch = outl - snoc®. In other words, root is last, the partial function
that returns the last element of a nonempty list, and branch is init, the partial
function that removes the last element from a nonempty list. Lemma 3 says that a
is an element of a list z iff a occurs as the last element of a prefix of z.

2. Cons lists. Dually, with the relator H(A, X) = 1+ (A x X), we get the term type
([nil, cons], list) of cons lists. Here, root is head and returns the first element of a
nonempty list, and branch is tail, returning the remainder.

3. Binary trees. With H(A, X) = 14+(Ax (X x X)), we get the tree type ([nil, bin], bintree)
described in Section 2. Here we have

Ho = Ki+ (id x (Kx x Ky))
Hi = K;+ (K4 x (id x id)).
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Hence

€ = 10, outl]
€1 = [0, (outl U outr) - outr],
and so
root = outl - bin°
branch = (outl U outr) - outr - bin®.

The partial function root returns the label of a nonempty tree, and branch returns
one of the subtrees. Lemma 3 says that a is an element of a tree z just in the case
that a is the label of some subtree of z.

4. Unlabelled binary trees. Let us try another kind of tree, unlabelled binary trees with
values at the tips. With H(A4, X) = A+ (X x X)) we get the tree type ([tip, bin], tree).
This time we have

HO = Id+(KXxKx)
Hi = K4+ (id x id),

and so
€ = [id,0]
€ = [0,outl U outr].
Hence
root = tip°
branch = (outl U outr) - bin®.

Lemma 3 says that a is an element of a tree z just in the case that a occurs as a tip
in z.

In the sequel, we shall use trees to represent sets. It will be necessary, therefore, to
implement various operators on sets (such as the maximum relation) on trees. Formally,
let H be a binary relator, and let (a, T) be its tree type. The function setify : P <= T takes
a tree and returns the set of its elements

setify = Aer.

Note that setify is not a surjective function, because there are many sets that cannot be
represented as a tree. For instance, no infinite set can be represented as a finite tree. The
next lemma shows how one may implement the maximum operator on trees in terms of a
simpler maximum operator, for instance on pairs.

Lemma 4 Let H and T be as defined above, and let R be a preorder. Then
mazR - setify O (mazR - AX)),
where X = €y U €;.

The containment cannot be strengthened to an equality because there may be constant
trees that have no elements.

14



6 Subtrees and accumulations

The function Asubtree returns the set of subtrees of a given tree; in the case of snoc lists
this gives the set of initial segments of a list. In functional programming there is an
important and useful operation on initial segments, called accumulation and expressed by
the higher-order function scanl. The key fact is the accumulation lemma, which says

map (foldlf e) - inits = scanlfe.
Here, inits returns the list of initial segments of a list in ascending order of length:

initslay, ag, ..., a,] =[], [a@], a1, a2, [a1, a2, as], ... (a1, a9, ..., 4]l

The function scanl captures a common pattern of computation, the point of the accumu-
lation lemma being that evaluation of

scanl(®)elay, ag,...,a,] = [e;e@ar,(e®a)Dag,--((e®a) ®-+) D ay]

can be done with n evaluations of @, whereas direct evaluation of map (foldl(®)e) - inits
requires O(n?) evaluations of @ on a list of length n.

In an attempt to construct a generic version of the accumulation lemma, we might try
and render the left-hand side as

list(e, f]) - sort - Asubtree,

where sort orders a set of structures into ascending size. There are various problems with
this idea, including the fact that it still involves lists in an essential way. Instead of a list
of structures we really want to think of a structure of structures: a list of lists, a tree of
trees, and so on. The way to achieve this is to create a new type of labelled structures in
which each ‘node’ is labelled with the corresponding subtree. Not every tree type allows
the labelling of nodes (think of unlabelled binary trees), but there is a canonical way of
introducing labels into a tree type. We consider this first, returning to accumulations at
the end of the section.

Labelled tree types Let H be a binary relator, and (a, T) its tree type. Define another
bifunctor H' by

H(A,X) = H(1,X)xA

and let (o', T') be its tree type. We call H' the labelled variant of H, and (o', T') the labelled
tree type associated with (a, T). Let us consider some examples to clarify the idea.

1. Snoc lists. With H(A, X) =1+ (X x A) we get
H(A, X) = (1+ (X x1))x A= A+ (X x A).

So the labelled tree type is isomorphic to the type ([one, snoc|, nelist) of nonempty
snoc lists.
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2. Nonempty snoc lists. What happens when we try and label nonempty snoc lists?
Here H(A, X) = A+ (X x A) and so

H(A, X) = 1+ (X x1))x A= A+ (X x A).

Therefore labelling does not change nonempty snoc lists.

3. Binary trees. With H(A, X) =14 (A x (X x X)) , we find
H(A,X) = 1+ (1 x (X xX))) x4 =2 A+ ((X x X) x A).

The tree type of H' is thus isomorphic to ([tip, node], netree), the type of nonempty
labelled binary trees.

4. Unlabelled binary trees. With H(A, X) = A + (X x X), giving the tree type of
unlabelled binary trees with values at the tips, we find

H(A4,X) = 1+ (X x X)) x A2 A+ ((X xX)xA),
so the tree type of H' is isomorphic to that of the previous example.

Subtrees Now we can define subtrees as a structure of structures. Given a binary relator
H with tree type (o, T) and labelled tree type (o/, T'), the natural transformation subtrees :
T - T <= T is defined by the equation

subtrees = (o' - (Hy!, - Hyroot))). (4)

We will show below that subtrees is a function; it takes a tree and turns it into a tree of
the same shape in which every node is labelled by its subtree. The somewhat complicated
definition is explained with the help of the following examples.

1. Snoc lists. We have just seen that for snoc lists, (o, T) is isomorphic to the tree type
([one, snoc], nelist) of non-empty lists. Let o denote the obvious isomorphism from
(1+(1xX))xAto A+ (X x A), so o' = [one, snoc| - 0. Now we have

o' - (Ho!, a - Hyroot)
= {definitions, and H(4, X) =1+ (X x A4)}
lone, snoc] - o - (id + (id x 1), [nil, snoc] - (id + root x id))
= {coproduct}
lone, snoc] - o - (id + (id x !), [nil, snoc - (root x id)])
= {property of o}
lone, snoc] - (nil + (id, snoc - (root x id)))
= {coproduct}

[one - nil, snoc - (id, snoc - (root x id))].
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Recalling that the root of a snoc list is its last element, and writing the first and
second terms above as [[|] and ®, respectively, we can translate the definition of
subtrees into more familiar programming terms:

subtrees = foldl(®)[[]]
t®a = zH[lastz 4 [al].

This is precisely the definition of the function inits found in the theory of lists.

2. Binary trees. Here the labelled tree type (a/,T’) is isomorphic to the tree type
([tip, node], netree) of nonempty binary trees. As before one may calculate that

o' - (Hy!, a - Hyroot) =
[tip - nil, node - (id x id, bin - (id X (root X root)))].
A functional programmer would define subtrees by the following equations, writing

bin auv instead of bin(a, (u, v)) and node auv instead of
node ((u, v), a):

subtreesnil = tipnil
subtrees (binauv) = mnode(bina(rootz)(rooty))zy
where z = subtreesu
y = subtreesw
root (nodeauv) = a

Properties Let us now look at some algebraic properties of subtrees. To repeat the
earlier definition, we are given a binary relator H with tree type («, T) and labelled tree
type (o', T'). Moreover, (o', T') is the tree type of H', defined by H'(A, B) = H(1, B) x A.

To start with, we show that subtrees is a function. Recalling the definition (4) of
subtrees, we need only show that root : id <= T’ is a function. Observe that

root = €y - o/° = outr - a'°-

Since o' is an isomorphism, this particular instance of root is a function, and therefore
subtrees is a function as well.
Next, we have

root - subtrees = id and  branch - subtrees = subtrees - branch. (5)

The first equation says that the label at the root of subtreesz is z itself, and the second
equation says that the branches of subtreesz are the subtrees of the branches of z. The
first equation may be proved using promotion, and the second equation follows from the
naturality of membership, but we omit details. Using these two equations, we will now
show that subtrees is an implementation of Asubtree. Recall that setify : P <= T’ is defined
by setify = A€1.

Lemma 5 setify - subtrees = Asubtree.
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Proof. First note that because subtrees is a function, we have
setify - subtrees = A€t - subtrees = A(E1: - subtrees).
Using this fact, the proof proceeds as follows:

setify - subtrees = Asubtree

{above, characterisation of A}

€1 - subtrees = subtree

{Lemma 3, definition of subtree}
root - branch* - subtrees = branch*
{Implication (2), Equation (5)}
root - subtrees - branch® = branch*
{Equation (5)}

true

Accumulations Now let us return to accumulations and the accumulation lemma. In
fact, definition (4) of subtrees is a special case of an accumulation. Formally, for a given
H;-algebra R the accumulation |R] of R is defined by

|R] = (- (H!, R-Hiroot)).

Definition (4) is the special case subtrees = |a. As we said before, accumulations are
very popular in functional programming, where they are known as scans. Gibbons [11] has
made a study of scans on a particular species of binary tree.

Intuitively, the accumulation | R| implements the evaluation of the catamorphism (R)
on all subtrees of its argument. This is the content of

Lemma 6 (Accumulation) For any Hy algebra R, we have

T'(R) - subtrees 2 |R].

The proof is a straightforward application of promotion.

Deforestation The structure built up by an accumulation is usually not the final result
of a computation; it is only an intermediate stage. The labelled tree that was constructed
with an accumulation is often evaluated by a catamorphism. In such cases, the labelled
tree need never be built up as a whole: one can merge the process of its construction and its
evaluation. This technique is very common in functional programming; it has been called
deforestation by Wadler [21], and Swierstra [20] speaks of virtual data structures. The next
lemma shows how deforestation can be used in the present context:
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Lemma 7 (Deforestation) Let S be a H'y algebra, and R a Hy algebra. Then
(S)-|R] 2 outl- (X))
where X = (S, outr) - (H(!, outl), R - Hy outr)).

Again the proof is a simple application of promotion, and we shall not go into the details.
If the final program is going to be evaluated in a lazy programming language, this lemma
does not offer a real improvement in efficiency: the intermediate data structure in (S)) - | R|
never exists in its entirety anyway. It was for this reason that the above result was not
stated in the theory of lists.

7 Pruning

We now proceed to formalise the notion of pruning introduced in Section 2. In order to do
S0, it is necessary to assume that H is of a particular form, namely

H(A4,X) = 1+G(4,X)

for some binary relator G which is not further specified. We follow Backhouse [1] in calling
such relators pointed. Since H(A, X) is a coproduct, the tree type («, T) can be written in
the form [v, p|: there exist v : T« 1 and p: T <= G; T such that

v, p] = o

One could think of v as a constant, representing the empty structure. In the sequel, we
shall abuse notation and write v instead of v - .

To prune a tree z means to substitute v for some (zero or more) subtrees of z. The
relation prune : T <= T takes a tree and prunes it in some arbitrary way:

prune = (aUv).

Note that for snoc lists, prune is precisely the suffix relation. The function prunings in
Section 2 could be defined by prunings = Aprune. These examples suggest that prune is a
preorder; that this is indeed so can be verified using promotion.

Horner’s rule Now we turn to the second result in the theory of lists. This result
is known as Horner’s rule because of its similarities with Horner’s method of evaluating
polynomials. In [5] the rule was given in the form

foldl1(®) - map (foldl(®)e€) - tails = foldl(®)e,

where ¢ © b = (a ® b) @ e. For this identity to be valid, it is required that ® distribute
backward over @. Furthermore, tails returns the list of tail segments of a list in descending
order of length:

tails[ay, ag, ..., an] = [[o1, a2, .., an), 02, ., anl, ..., [an], []]-
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For example, taking & = + and ® = x Horner’s rule says that
(e X a; X ag X a3) + (e X ag X a3) + (e x a3) + ¢

can be evaluated in the form
(e x ap+¢€) x ag) +¢e) X a +e.

Moreover, the alternative form does not exploit the associativity of 4+ or x.

In many cases in practice, the operation & is either binary minimum or maximum, so
foldl1 (@) takes the minimum or maximum of essentially a set of values. This leads to a
version of Horner’ rule in which tails is not required to return a list:

maz - map (foldl(®)e) - tails = foldl(O)e,

where ¢ ®@ b = (a ® b) max e. The necessary condition here is that ® should be monotonic
with respect to <. It is this version we shall generalise to arbitrary tree types. The reason
is that, in general, prunings cannot be turned into a function returning a structure of
structures in the same way as subtrees; there is an arbitrary number of prunings we could
attach to each node, so we would have to label each node with a set of prunings.

Before we state the generalised version of Horner’s rule, we need to make precise what
we mean by monotonicity.

Monotonicity A functional algebra f : A < FA is said to be monotonic on a relation
R:A«+ Aif

f-FR CR-f.
Here are two examples to explain this definition.

1. Addition Let R = leq, where leq denotes the relation < on number s, and let f = plus,
where plus denotes binary addition. With FX = X x X the monotonicity condition
translates to

plus - (leq X leq) C  leq - plus

and says that £ = y + 2z and y < ¢’ and z < 2’ implies x < y' + 2’. This is just the
(true) statement that addition is monotonic in both arguments.

2. Cons lists. Let R = lex, where lex is the lexicographic ordering on lists, and f = cons.
With FX = id x X, the monotonicity condition translates to

cons - (id x lex) C lex - cons

and says that z = [a] # y and y < y' implies z < [a] #+ y'. This is just the true
statment that cons is monotonic with respect to the lexicographic ordering.

Lemma 8 (Horner’s rule) Let H be a pointed binary relator and g = [go, ¢1] be a functional
Hi—algebra. If g, is monotonic with respect to the preorder R, then

mazR - P(g)) - Aprune O (mazR-AY]),
where Y =gy U g.
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The proof of Horner’s Rule is a straightforward application of promotion, plus the
universal property of mazR. Below we consider two examples:

1. Snoc lists. The maximum suffix sum can be specified as
mss = mazleq - Psum - Aprune,

where sum = (zero, plus)). It is easy to check that plus is monotonic on leq, so
Horner’s rule is applicable. Since

maz leq - A(zero U plus) O [0, f]

where f(s, a) = (s + a) max 0, we can implement mss by (0, f].

Similarly, the maximum sum suffix problem can be specified
mss = mazr R - Aprune,

where TRy = sumz < sumy. Since here g = o = [nil, snoc] the requirement is that
snoc should be monotonic on R:

sumz < sumy = sum(z 4 [a]) < sum(y H [a]).

This condition is satisfied because addition is monotonic under <. We can implement
this version of mss by (nil, f]), where

B T H [a], if sum(x 4+ [a]) >0
fla,0) = { [, otherwise

We can make this program more efficient by representing each tree z by the pair
(z, sumz), thereby avoiding computing sum from scratch each time.

2. Binary trees. Taking H(A, X) = 14 (A X (X x X)) gives the tree type ([nil, bin], tree).
The sum of a tree is defined by

sum = (zero, plus)),

where plus(a, (m,n)) = a + m + n. For this type mss gives the maximum pruning
sum. The monotonicity condition reads

mo < mi A ng<n = plus(a,(mg, ng)) < plus(a,(mi,n))

and is easily seen to be true. This time we can implement mss by (zero, f]), where
f(a,(m,n)) = (a+ m+ n) max 0.
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8 Segments and segment decomposition

Having covered subtrees and prunings, we can now return to arbitrary segments. A tree y
is a segment of z if there exists a subtree z of z such that y is a pruning of z. Formally,
the natural transformation segment : T <= T is defined by

segment = prune - subtree.

This definition was introduced informally in Section 2 for lists and trees of various kinds.
The segment decomposition theorem stated below puts the previous results together.

Theorem 1 (Segment Decomposition) Let H be a pointed binary relator with tree type
(a, T). Suppose g = [go, 1] is a functional Hy-algebra, and that g, is monotonic on the
preorder R. Then

mazR - P(g)) - Asegment O (mazR - AX)) - |mazR-AY |,

where X = €yUe€y, and Y = gy U g.
Proof. As before, let H' be the labelled variant of H, with tree type (o', T"). We argue

mazR - P(g]) - Asegment
= {definition of segment}
mazR - P(g]) - A(prune - subtree)
= {A of composition}
mazR - P(g]) - Eprune - Asubtree
=  {Ein terms of P (Eq. 1)}
mazR - P(g]) - union - PAprune - Asubtree
= {since P = E on functions and union : E <+ E - E}

mazR - union - P(P(g)) - Aprune) - Asubtree

D {distributing mazR over union, since R is a preorder}
mazR - P(mazR - P(g) - Aprune) - Asubtree
2 {Horner’s rule, Lemma 8}
mazR - P(mazR - AY]) - Asubtree
=  {Lemma 5}
mazR - P(mazR - AY)) - setify - subtrees
D {since setify : P <= T'}
mazR - setify - T'(mazR - AY)) - subtrees
2 {Accumulation Lemma 6}
mazR - setify - [mazR - Y |
> {Lemma 4}

(mazR - AX]) - [mazR - AY |.

Application of the segment decomposition theorem gives an efficient solution for the
maximum segment sum problem on any tree type that allows the definition of sum.
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9 Concluding remarks

We have demonstrated how much of the original theory of lists can be parameterised by
an arbitrary data type. The result is, in our opinion, at least a linguistic improvement;
the theory is no longer cluttered by the syntactic idiosyncracies of lists. It is debatable,
however, whether by itself any mere linguistic improvement would justify the flood of
definitions and results given above. What is of greater interest is the possibility that this
style of generic programming can be applied to more challenging problems. An obvious
candidate for further work is the so-called sliding tails lemma, which underlies all efficient
pattern matching algorithms on lists. If this lemma can be parameterised by an arbitrary
data type, the way is open for a generic theory of pattern matching. Such a generic theory
is likely to benefit by the work of Backhouse [1], who has shown how many theorems
about regular algebra can be generalised to data types. Backhouse and his team have also
developed a generic theory of zips [2].

Finally, another important direction for future research is the design of a programming
language in which data types are first-class citizens, in the sense that they can be passed
as parameters to generic programs. It seems that research in the design of functional
programming languages is also heading in this direction; in particular the work of Jones
[15] on constructor classes is relevant in this connection.
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