
Generi
 programming with relations and fun
torsRi
hard Bird and Oege de MoorProgramming Resear
h Group, 11 Keble RoadOxford OX1 3QD, United KingdomPaul HoogendijkEindhoven University of Te
hnology, PO Box 5135600 MB Eindhoven, The NetherlandsO
tober 25, 1999Abstra
tThis paper explores the idea of generi
 programming in whi
h programs are param-eterised by data types. Part of the
onstru
tive theory of lists, spe
i�
ally the partdealing with properties of segments, is generalised in two ways: from lists to arbitraryindu
tive data types, and from fun
tions to relations. The new theory is used to solvea generi
 problem about segments.1 Introdu
tionTo what extent is it possible to
onstru
t programs without knowing exa
tly what datatypes are involved? At �rst sight this may seem a strange question, but
onsider the
aseof pattern mat
hing. Over lists, this problem
an be formulated in terms of two strings, apattern and a text; the obje
t is to determine if and where the pattern o

urs as a segmentof the text. Now, pattern mat
hing
an be generalised to other data types, in
luding arraysand trees of various kinds; the essential step is to be able to de�ne the notion of `segment'in these types. So the intriguing question arises:
an one
onstru
t a useful algorithm,parameterised by a data type, to solve the general problem of pattern mat
hing?In this paper we give a positive answer to the above question, though for a problemsomewhat simpler than pattern mat
hing. The problem, the well-known maximum segmentsum, was
hosen be
ause suÆ
ient list theory exists [4, 5, 6℄ for one to
al
ulate an eÆ
ientsolution in a few equational steps. It turns out that we
an generalise the theory of segmentsto more or less arbitrary data types, so the
al
ulation leads to a generi
 solution to theproblem.In order to be able to
onstru
t a generi
 theory of segments, we need a reformulation ofthe theory of lists with two new ingredients. The �rst ingredient is a
ategori
al treatmentof data types [18, 19, 17℄. In the
ategori
al approa
h, data types are
hara
terised in terms1

of
ertain fun
tors, and spe
i�
ations
an be parameterised by fun
tors in a simple anddire
t manner.The se
ond ingredient involves the move from fun
tions to arbitrary relations [1, 8℄. In-trodu
ing relations enables us to deal more smoothly with non-deterministi
 spe
i�
ations,but it also turns out that the
al
ulus of relations leads to substantial simpli�
ations in thestudy of general data types.The rest of the paper is stru
tured as follows. In the next se
tion we show|quiteinformally|how the notion of segment
an be de�ned in one or two other data types. Thiswill provide the motivation for the formal de�nitions in the sequel. After that, in Se
tions 3and 4 we review the
al
ulus of relations and data types. Then in Se
tion 5 we show howevery data type
omes equipped with a membership relation for testing whether or notan element o

urs in a given data stru
ture. These membership relations are then usedin Se
tions 6{8 to develop a general theory of segments. In parti
ular, we give suitablygeneralised statements and proofs of some results at the heart of the original theory oflists. As an appli
ation, we then obtain a generi
 solution to the maximum segment sumproblem. Finally, Se
tion 9
ontains a dis
ussion of the impli
ations of this resear
h.2 Towards generalityLet us start by being more pre
ise about what we mean by a segment of a list, indeed,what we mean by a list. There are two basi
 views of lists, one of whi
h is given by thetype de
larationlista ::= nil j sno
 (lista)a:Formally, this means that lists are represented as �nite trees (or terms) over nil and sno
.For instan
e, the list [1; 2; 3℄ is represented by the treesno
 (sno
 (sno
nil 1)2)3):Thinking of lists purely as trees, we see that a pre�x of x is really the same thing as asubtree of x . The fun
tion subtrees takes a list and returns the set of all its subtrees:subtrees nil = fnilgsubtrees (sno
x a) = subtrees x [fsno
x ag:In the theory of lists, pre�xes are
alled initial segments, and the fun
tion subtrees is
alledinits. There is the subtle di�eren
e that inits returns a list rather than a set, but we ignorethis distin
tion for now (though we return to it in due
ourse).Dual to the notion of pre�x is that of a suÆx. A suÆx of x
an be obtained bysubstituting the empty list for a subtree of x . For instan
e, [3; 4℄ is obtained from [1; 2; 3; 4℄by repla
ing [1; 2℄ by the empty list. For the sake of a word we
an say that the subtree[1; 2℄ has been pruned. The fun
tion prunings takes a list and returns all ways in whi
h it
an be pruned:prunings nil = fnilgprunings (sno
x a) = fnilg [fsno
y a jy 2 prunings xg:2

In the theory of lists, suÆxes are
alled tail segments and prunings is
alled tails.One
an now de�ne arbitrary segments by the equation:segments = union �mapprunings � subtrees:Here union is the fun
tion that takes a
olle
tion of sets and returns its union, and map isthe operator that applies a fun
tion to all elements of a set. We
an also de�ne segmentsin terms of list
on
atenation, but that de�nition does not generalise to other data types.For
omparison,
onsider now the other view of lists, given by the type de
larationlista ::= nil j
ons a (lista):With this data type the role of inits and tails are reversed: subtrees gives the tail segmentsof a list, while prunings gives the initial segments. The fun
tion segments is de�ned in thesame way as before and again gives the segments of a list.Pursuing the same theme, now
onsider binary trees, as de�ned bybintreea ::= nil j bina (bintreea)(bintreea):The elements of this type are �nite trees, this time over nil and bin, so it is again possibleto de�ne the fun
tions subtrees and prunings. The fun
tion subtrees takes a binary treeand returns the set of all its subtrees:subtrees nil = fnilgsubtrees (bina x y) = subtrees x [subtrees y [fbina x yg:The fun
tion prunings takes a binary tree and substitutes nil for its subtrees in all possibleways: prunings nil = fnilgprunings (bina x y) = fnilg [fbina s t js 2 prunings x ; t 2 prunings yg:The segments of a tree are de�ned by the same equation as before. Jeuring [13℄ also
onsidered su
h a de�nition, though he spoke of tree
uts rather than segments.3 A
al
ulus of relationsLet us now give a brief review of the relational
al
ulus used in the sequel. The
al
ulus isbased on Freyd's theory of allegories [10℄; basi
ally, an allegory is a
ategory with additionalaxioms designed to
apture the essential fa
ts about relations. However, we will not takea fully axiomati
 approa
h, relying instead on appeal to naive set theory, though we doassume a nodding a
quaintan
e with
ategories, fun
tors and natural transformations.Relations The basis of the
al
ulus is a
ategory Rel whose obje
ts are sets and whosearrows are relations. Arrows go ba
kwards: we write R : A B to denote that R isa relation of type `A from B ' and we
an think of R as a subset of A � B . Relational
omposition, like its fun
tional
ounterpart, also goes ba
kwards: R � S is pronoun
ed `R3

after S '. Composition is asso
iative with the identity relation id : A A as unit, all ofwhi
h says Rel is a
ategory. For any A and B there exists a smallest relation 0 : A B ,whi
h is the zero of
omposition, and a largest relation � : A B whi
h is essentially the
artesian produ
t A� B .Ea
h relation R : A B has a
onverse relation RÆ : B A, whi
h preserves identitiesbut reverses
omposition (so (R � S)Æ = S Æ � RÆ), all of whi
h says that
onverse is a
ontravariant fun
tor from Rel to itself. By assumption, the
onverse fun
tor is its owninverse, (RÆ)Æ = R, and so is an isomorphism.For ea
h A and B the arrows A B form a
omplete latti
e with union [and interse
tion\. These arrows
an be
ompared via a partial order �, where R � S denotes R = R \ S .Converse preserves � and
omposition distributes over (arbitrary) unions, but only weaklydistributes over interse
tion in thatR � (S \ T) � (R � S) \ (R � T):We will suppose in what follows that
omposition binds more tightly than any other op-eration, so the right-hand side
ould have been written without bra
kets. Using the givenproperties of
onverse, we get from the above inequation a se
ond one:(R \ S) �T � (R � T) \ (S � T):These two inequations say that
omposition is monotoni
 in both arguments under �.One further inequation,
alled the modular law, is adjoined to the other axioms to givea weak
onverse of distributivity over interse
tion:(R � S) \ T � R � (S \ RÆ � T):Again, taking
onverses, we get the symmetri
 version(R � S) \ T � (R \ T � S Æ) � S :Division Be
ause relational
omposition distributes over arbitrary unions, it has a weakinverse,
alled division, whi
h is
hara
terised by the equivalen
eT � R=S � T � S � R for all T .The operator =
an be de�ned in set theory bya (R=S)b � (8
 : bS
 : aR
):A se
ond division operator n
an be introdu
ed by de�ning RnS = (S Æ=RÆ)Æ, soT � RnS � R � T � S for all T .As a predi
ate we have a (RnS)b � (8
 :
Ra :
S b).
4

Entire and simple relations There are three sub
ategories of Rel of parti
ular interest:the entire (or total) relations, the simple (or single-valued) relations, and fun
tions (whi
hby de�nition are those relations that are both entire and simple). A relation R : A B isentire if id � RÆ �R, and simple if R �RÆ � id . Identity arrows are both entire and simple,and
omposition preserves both properties, so both kinds of relations form sub
ategories ofRel . It follows that the
ategory Fun of fun
tions is also a sub
ategory of Rel . Fun
tionswill be denoted by lower
ase identi�ers, f ; g ; h; : : :.To illustrate these de�nitions, let us prove that(R \ S) � f = (R � f) \ (S � f)for all fun
tions f :(R \ S) � f� fdistributing
omposition over \g(R � f) \ (S � f)� fmodular lawg((R � f � f Æ) \ S) � f� fmonotoni
ity of
omposition, sin
e f � f Æ � idg(R \ S) � f :Note that we used only the fa
t that f was simple.Another useful result that applies to fun
tions only is the shunting rule:f � R � S � R � f Æ � SR � S � f � R � f Æ � S :The proof is an easy
onsequen
e of the de�nition of a fun
tion as an entire and simplerelation.Relators Fun
tors will be denoted using sans serif letters. A fun
tor F : Rel Rel is saidto be monotoni
 if R � S implies FR � FS . Monotoni
 fun
tors have many ni
e algebrai
properties, most of whi
h
an be derived from the fa
t that they preserve
onverse, that is,F(RÆ) = (FR)Æ. Monotoni
 fun
tors take entire relations to entire relations, simple relationsto simple ones, and so fun
tions to fun
tions. Furthermore, any fun
tor F : Fun Fun hasat most one monotoni
 extension F : Rel Rel that
oin
ides with F on fun
tions. Morepre
isely, write J : Rel Fun for the in
lusion fun
tor of fun
tions into relations. Then forall monotoni
 fun
tors F;G : Rel Rel we have(F = G) � (F � J = G � J):For a proof see [7℄. Following Ba
khouse [1℄, we will
all an endofun
tor of Fun a relator ifit has a monotoni
 extension in Rel , and also use this term simply as an abbreviation fora monotoni
 fun
tor of Rel . 5

Natural transformations In the relational
al
ulus it is ne
essary to distinguish be-tween two kinds of natural transformation. The �rst is the standard notion of a naturaltransformation in
ategory theory. That is, given two fun
tors F and G, we have� : F G � (8R :: FR � � = � � GR):Su
h natural transformations will be
alled proper. In the se
ond notion of natural trans-formation, the equation is weakened to an inequality:� : F - G � (8R :: FR � � � � � GR):Sin
e this weak type of natural transformation is more
ommon in the relational
al
ulusthan the proper one, we shall simply
all them natural transformations (the usual termis weak, or lax, natural transformation). Every natural transformation is proper whenrestri
ted to fun
tions, that is,(� : F - G) � (� : F � J G � J):Again the proof
an be found in [7℄. Note that � need not itself be a fun
tion.Powersets The view of relations adopted here is essentially that a relation A B is asubset of the
artesian produ
t A � B . However, one
an also view relations as fun
tionsPA B , where PA denotes the powerset of A. Formally, the isomorphism between thesetwo representations of relations
an be des
ribed in the following suitably abstra
t form.For every set A there exists a set PA,
alled the powerset of A, and a relation 2 : A PA,
alled the membership relation on A. The powerset PA and the relation 2 are
hara
terisedby the following property. For every relation R : A B , there exists a fun
tion �R : PA Bsu
h that(f = �R) � (2 � f = R) for all f : PA B .The fun
tion �R is said to be the power transpose of R and
an be de�ned in set theory by(�R)b = fa jaRbg. Mu
h of set theory
an be re
overed using just this universal property ofpowersets, plus the relational
al
ulus. This observation lies at the heart of the
ategori
alapproa
h to sets, the theory of toposes [14, 3, 12℄. Below we illustrate how various familiaroperators from set theory
an be de�ned in terms of �.First of all, it is immediate from the universal property of � that id : PA PA satis�esid = �(2). Next, the existential image of R : A B is a fun
tion ER : PA PB de�nedby ER = �(R � 2). In set theory we have(ER)x = fa j9b : aRb ^ b 2 xg:We have Eid = id , and below we will show that E(R � S) = ER � ES , so E is a fun
tor. It isnot, however, a relator be
ause it is not monotoni
: in
lusion of fun
tions is equality.To show E is a fun
tor we �rst prove �(R � S) = ER � �S :�(R � S) = ER � �S� fde�nition of �g 6

R � S = 2 � ER � �S� fde�nition of EgR � S = 2 � �(R � 2) � �S� f2
an
els � (twi
e)gtrueNow, taking S = T � 2, we get E(R � T) = ER � ET .From the de�nition of E (plus the fa
t that 2
an
els �) we get R � 2 = 2 � ER, whi
hsays that 2 : id E is a proper natural transformation.Although E is not a relator, there does exist a variant of E whi
h is. The restri
tion ofE to fun
tions is
alled P, so P = E � J. The fun
tor P : Fun Fun is a relator and itsunique extension to relations turns out to bePR = (2n(R � 2)) \ ((3 �R)=3);where 3 denotes the
onverse of 2. Using the pointwise interpretation of the divisionoperators, this formula readsx (PR)y � (8a 2 x : 9b 2 y : aRb) ^(8b 2 y : 9a 2 x : aRb):Sin
e 2 : id E is proper, we get that 2 is a natural transformation id - P, though not aproper one.For future use, we note that E
an be expressed in terms of P:ER = union � P�R; (1)where union : PA PPA is de�ned by union = E(2). This fun
tion returns the union ofa
olle
tion of sets. Sin
e 2 : id E we have union : E EE. A more detailed dis
ussionof P and its relation to E
an be found in [8℄.Preorders By de�nition, a preorder is a relation R : A A whi
h is both re
exive(id � R) and transitive (R � R � R). For any relation R there exists a smallest preorderR�
ontaining R, de�ned as the least solution X = R� ofX = id [(X � R):The relation R� is
ommonly known as the re
exive transitive
losure of R. The followingproperty will be useful in the sequel:R � S = S � R) R� � S = S � R�: (2)Maximum Finally, we
onsider the maximum relation maxR : A PA asso
iated witha given preorder R : A A, de�ned bymaxR = 2 \ (2nR)Æ:This de�nition
orresponds to the usual de�nition of maximum elements in set theory:a(maxR)x holds when a is an element of x (the �rst term) and x has upper bound a (the7

se
ond term), that is, for all b 2 x , we have bRa. Note that, although the de�nition ofmaxR does not depend on R being a preorder, it is useful only when R is one, so we shallassume without stating it expli
itly that R is a preorder whenever the
onstru
tion maxRis
onsidered.There are two properties of max that we will need in Se
tion 7. First of all,X � maxR � �S� fde�nition of maxRgX � (2 \ (2nR)Æ) � �S� ffun
tions distribute ba
kwards over \gX � (2 � �S) \ ((2nR)Æ � �S)� f�
an
ellation and universal property of \g(X � S) ^ (X � (2nR)Æ � �S):Continuing with the se
ond termX � (2nR)Æ � �S� fshuntinggX � (�S)Æ � (2nR)Æ� f
onverseg�S � X Æ � 2nR� funiversal property of ng2 � �S �X Æ � R� f�
an
ellationgS � X Æ � R� f
onversegX � S Æ � RÆ:Hen
e X � maxR � �S if and only if X � S and X � S Æ � RÆ. We
all this property theuniversal property of max . We have given the proof in details be
ause it is fairly typi
al ofthe kind of manipulations found in the relational
al
ulus.The se
ond fa
t, whi
h depends on R being a preorder, is that maxR weakly distributesover union:maxR � union � maxR � P(maxR); provided R is a preorder. (3)To see that this inequation
annot be strengthened to an equality,
onsider some singletonset A = fag with the trivial preorder R = id . With x = ffag; fggwe have a(maxR�union)xbut not a(maxR � P(maxR))x sin
e (maxR)f g has empty range.4 TypesOur approa
h to data types is based on the idea that every type
onstru
tor, su
h as list ortree, is asso
iated with a fun
tor, su
h as list or tree, that applies a fun
tion to all elements8

of the type. Su
h fun
tors
orrespond to the map operators in fun
tional programming.This view of data types is also the basis of the work by Ba
khouse [1℄ to whi
h the interestedreader is referred for a more detailed dis
ussion of the
on
epts introdu
ed here. We beginby
onsidering
ertain basi
 types.Terminator The terminator 1 is a set with one element. It has the property that forevery set A there exists pre
isely one fun
tion 1 A, denoted by !. Note that, although 1is indeed a �nal obje
t in Fun, it is not a �nal obje
t in Rel sin
e 0 : 1 A and 0 6= !. Thefun
tor that
omes with the terminator is the
onstant fun
tor K1 whi
h maps all sets to1, and all arrows to id : 1 1. More generally, the
onstant fun
tor KA maps all sets to Aand all arrows to id : A A.Produ
t Re
all that in a
ategory an obje
t A � B with two arrows outl : A A � Band outr : B A � B is
alled a produ
t if for all C and arrows f : A C , g : B Cthere is a unique arrow hf ; gi : A� B C su
h that outl � hf ; gi = f and outr � hf ; gi = g .The
ategory Fun has produ
ts and the produ
t fun
tor � is de�ned as usual byf � g = hf � outl ; g � outri:This fun
tor is a relator and we have R � S = hR � outl ; S � outri, wherehR; S i = (outl Æ � R) \ (outr Æ � S):However, outl , outr and h�;�i do not de�ne a
ategori
al produ
t in Rel sin
e, for example,outl �hR; 0i = 0 for all R. This is not a problem, for we said only that fun
tional produ
t hasa unique extension in Rel , not that this extension should also be a produ
t in Rel . We dohave outl �hR; S i = R and outr �hS ;Ri = R whenever S is entire and so outl �(R�S) = R�outland outr � (S � R) = R � outr whenever S is entire.Coprodu
ts Dually, in a
ategory an obje
t A+B with two arrows inl : A+B A andinr : A + B B is a
oprodu
t if for all C and arrows f : C A, g : C B there is aunique arrow [f ; g ℄ : C A+B su
h that [f ; g ℄ � inl = f and [f ; g ℄ � inr = g . The
ategoryFun has
oprodu
ts and the
oprodu
t fun
tor + is de�ned as usual byf + g = [inl � f ; inr � g ℄:The
oprodu
t is also a relator and R + S = [inl � R; inr � S ℄, where[R; S ℄ = (R � inlÆ) [(S � inr Æ):Unlike the situation with produ
ts, inl , inr and [�;�℄ do form a proper
oprodu
t in Rel .For example, [R; S ℄ � inl = R for all S , and from this it follows that[R; S ℄ � [U ;V ℄Æ = R � U Æ [S � V Æwhi
h will be needed below. 9

Polynomial Relators Relators built up from
onstants, �nite produ
ts and
oprodu
tsare said to be polynomial. More pre
isely, the
lass of polynomial relators is de�ned indu
-tively by the following
lauses:1. The identity relator id and the
onstant relators KA are polynomial;2. if F and G are polynomial, then so are their
omposition F � G, their sum F + G andtheir produ
t F� G, where(F + G)R = FR + GR(F� G)R = FR � GR:Catamorphisms and promotion Let F be a relator. By de�nition, an F{algebra is a re-lation of type A FA, the set A being
alled the
arrier of the algebra. A F{homomorphismfrom an algebra S : B FB to an algebra R : A FA is a relation X : A B su
h thatX � S = R � FX :Identity arrows are homomorphisms, and the
omposition of two homomorphisms is againa homomorphism, so F{algebras form the obje
ts of a
ategory whose arrows are homomor-phisms. For many relators (in parti
ular, the polynomial ones), this
ategory has an initialobje
t, whi
h we shall denote by � : T FT . For any other F{algebra R : A FA theunique homomorphism from � to R will be denoted by ([R℄), so ([R℄) : A T is
hara
terisedby (X � � = R � FX) � (X = ([R℄)):Homomorphisms of the form ([R℄) are
alled
atamorphisms [18℄. The initial algebra � is,in fa
t, an isomorphism [16℄ so we
an rewrite the above equivalen
e in the form(X = R � FX � �Æ) � (X = ([R℄)):The well-known Knaster-Tarski Fixpoint Theorem says that the unique solution (if it exists)of X = F (X) is also the least solution of X � F (X) and the greatest solution of X � F (X),so we get the following results, known
olle
tively as promotion:X = R � FX � �Æ � X = ([R℄)X � R � FX � �Æ) X � ([R℄)X � R � FX � �Æ) X � ([R℄):The typi
al use of promotion is when X = S � ([T ℄). In parti
ular, the following
al
ulationgives a useful
ondition for expressing S � ([T ℄) as a
atamorphism:S � ([T ℄) = ([R℄)� fpromotiongS � ([T ℄) � � = R � F(S � ([T ℄))� fde�nition of ([T ℄)gS �T � F([T ℄) = R � F(S � ([T ℄))(fF is a fun
torgS �T = R � FS :Use of this, or similar,
onditions in
al
ulations will be signalled with the hint `promotion'.10

Tree types de�ned Let us now return to tree types. Tree types are initial algebras and
an be named as su
h by type de
larations. For example, the de
larationlistA ::= nil jsno
(listA;A)de
lares [nil ; sno
℄ : listA HA(listA) to be the initial HA{algebra, where HA(X) = 1 +(X �A) and HA(f) = id1+ (f � idA). We
an and will write H(A;X) instead of HA(X), inwhi
h
ase we think of H as a bifun
tor. By �xing the left or right argument of a bifun
torwe get two fun
tors and, sin
e we shall need both fun
tors below, it is useful to settle on a
onsistent
onvention for naming them. For a bifun
tor H we de�neH0(f) = H(f ; idX)H1(f) = H(idA; f):Note that dependen
e on X and A has been suppressed in this notation. Moreover, wewill always arrange the arguments of a given bifun
tor H so that it is H1 that des
ribes theinitial algebra. With this
onvention, [nil ; sno
℄ is the initial H1{algebra
orresponding tothe bifun
tor H(A;X) = 1+ (X � A).Above we wrote list in sans serif font, whi
h is our
onvention for denoting fun
tors.This was intended: with every tree type T is asso
iated a
ertain fun
tor, whi
h we shall
all a tree fun
tor. For example, the tree fun
tor list is just the familiar map operation offun
tional programming. The fun
tion listf is de�ned over sno
 lists bylistf = ([nil ; sno
 � (id � f)℄):Note that we write ([e; f ℄) rather than the more
lumsy ([[e; f ℄℄). Using the
hara
terisationof
atamorphisms, this de�nition expands to the familiar re
ursion equationslistf [℄ = [℄listf (sno
 (x ; a)) = sno
 (listf x ; f a):In fa
t, ([e; f ℄) translates to the standard higher-order fun
tion foldl f e.Tree fun
tors are relators and the
ase of lists illustrates how they are de�ned in general:given an initial algebra � : TA H(A;TA), the tree fun
tor T is de�ned byTR = ([� � H0R℄):We des
ribe this situation by saying H is a binary relator with tree type (�;T). Elementsof a tree type are
alled trees. Note that the de�nition of T gives that � : T G, whereGR = H(R;TR), is a proper natural transformation.5 MembershipData types re
ord the presen
e of elements, so one would expe
t relator F to
ome equippedwith a membership relation 2F su
h that a2Fx pre
isely when a is an element of x . Indeed,this notion of membership is so
ommon that its de�nition is usually taken for granted.11

Formally, a
olle
tion of arrows 2F is a membership relation of F if for ea
h R,FR � 2Fnid = 2FnR:The pointwise interpretation of this equation is8a : a2Fx : aRb�9y : x (FR)y ^ (8b 0 : b 02Fy : b 0 = b):Our �rst result about membership says that the above equation has at most one solution.For a proof see [9℄ (where proofs of most of the following fa
ts about membership
an befound).Lemma 1 If 2F is a membership relation of F , then 2F is the largest natural transforma-tion of type id - F.To illustrate,
onsider the membership relation of the powerset fun
tor, writing 2 in-stead of 2P. To say that 2 is a natural transformation is to say that f � 2 = 2 � Pf forall fun
tions f (re
all that every natural transformation is proper when restri
ted to fun
-tions). Equivalently, for all a and x we have a2Pf x if and only if there exists b 2 x su
hthat f b = a, whi
h is a well known property in set theory. There exist relators that do nothave a membership relation, but all relators in programming do have one. Below we showhow to
onstru
t the membership relation of polynomial relators, and of tree relators.Lemma 2 The membership relation of a polynomial relator is given by the following
lauses:2id = id2KA = 02F+G = [2F;2G℄2F�G = 2F � outl [2G � outr2F�G = 2G � 2FNot every relator is polynomial; in parti
ular, the tree relator T of a tree type is notpolynomial. Sin
e T is de�ned by a
atamorphism, one might expe
t that 2T
an also beexpressed as a
atamorphism, but this is not possible for data types
ontaining
onstantssu
h as the empty list. The reason is simple: membership redu
es to the empty relation onempty lists, and the empty relation would propagate through any
atamorphi
 de�nition,rendering su
h a de�nition useless. Fortunately, there is another solution for the de�nitionof 2T, one whi
h makes use of three auxiliary relations, whi
h we will
all root , bran
h andsubtree.Let H be a binary relator, and let (�;T) be its tree type. We assume that both H0and H1 have a membership relation, and we shall write 2i instead of 2Hi . The naturaltransformation root : id - T returns an element that o

urs at the root of a tree. It isde�ned by the equationroot = 20 � �Æ: 12

Naturality of root follows from the theory of membership, see [9℄. Similarly, the naturaltransformation bran
h : T - T returns an immediate subtree of its argumentbran
h = 21 � �Æ:Finally, the natural transformation subtree : T - T is de�ned by subtree = bran
h� andreturns an arbitrary subtree of a given tree.Below we shall list a number of examples to illustrate these de�nitions, but �rst westate the main result about membership of trees:Lemma 3 Let H be a binary relator with tree type (�;T). Then2T = root � subtree:In words, this lemma says that a is an element of x if a o

urs at the root of a subtree ofx . This intuition is further explained in the following examples:1. Sno
 lists. With H(A;X) = 1+ (X � A), we get the tree type([empty ; sno
℄; list) of sno
 lists. Sin
eH0 = K1 + (KX � id)H1 = K1 + (id� KA);we �nd, using Lemma 2, that20 = [0; outr ℄21 = [0; outl ℄:Hen
eroot = 20 � �Æ = [0; outr ℄ � [nil ; sno
℄Æ = outr � sno
Æand, similarly, bran
h = outl � sno
Æ. In other words, root is last , the partial fun
tionthat returns the last element of a nonempty list, and bran
h is init , the partialfun
tion that removes the last element from a nonempty list. Lemma 3 says that ais an element of a list x i� a o

urs as the last element of a pre�x of x .2. Cons lists. Dually, with the relator H(A;X) = 1 + (A � X), we get the term type([nil ;
ons℄; list) of
ons lists. Here, root is head and returns the �rst element of anonempty list, and bran
h is tail , returning the remainder.3. Binary trees. With H(A;X) = 1+(A�(X�X)), we get the tree type ([nil ; bin℄; bintree)des
ribed in Se
tion 2. Here we haveH0 = K1 + (id� (KX � KX))H1 = K1 + (KA � (id� id)): 13

Hen
e20 = [0; outl ℄21 = [0; (outl [outr) � outr ℄;and so root = outl � binÆbran
h = (outl [outr) � outr � binÆ:The partial fun
tion root returns the label of a nonempty tree, and bran
h returnsone of the subtrees. Lemma 3 says that a is an element of a tree x just in the
asethat a is the label of some subtree of x .4. Unlabelled binary trees. Let us try another kind of tree, unlabelled binary trees withvalues at the tips. With H(A;X) = A+(X �X) we get the tree type ([tip; bin℄; tree).This time we haveH0 = id+ (KX � KX)H1 = KA + (id� id);and so20 = [id ; 0℄21 = [0; outl [outr ℄:Hen
e root = tipÆbran
h = (outl [outr) � binÆ:Lemma 3 says that a is an element of a tree x just in the
ase that a o

urs as a tipin x .In the sequel, we shall use trees to represent sets. It will be ne
essary, therefore, toimplement various operators on sets (su
h as the maximum relation) on trees. Formally,let H be a binary relator, and let (�;T) be its tree type. The fun
tion setify : P - T takesa tree and returns the set of its elementssetify = �2T:Note that setify is not a surje
tive fun
tion, be
ause there are many sets that
annot berepresented as a tree. For instan
e, no in�nite set
an be represented as a �nite tree. Thenext lemma shows how one may implement the maximum operator on trees in terms of asimpler maximum operator, for instan
e on pairs.Lemma 4 Let H and T be as de�ned above, and let R be a preorder. ThenmaxR � setify � ([maxR � �X ℄);where X = 20 [21.The
ontainment
annot be strengthened to an equality be
ause there may be
onstanttrees that have no elements. 14

6 Subtrees and a

umulationsThe fun
tion �subtree returns the set of subtrees of a given tree; in the
ase of sno
 liststhis gives the set of initial segments of a list. In fun
tional programming there is animportant and useful operation on initial segments,
alled a

umulation and expressed bythe higher-order fun
tion s
anl . The key fa
t is the a

umulation lemma, whi
h saysmap (foldl f e) � inits = s
anl f e:Here, inits returns the list of initial segments of a list in as
ending order of length:inits [a1; a2; : : : ; an ℄ = [[℄; [a1℄; [a1; a2℄; [a1; a2; a3℄; : : : ; [a1; a2; : : : ; an ℄℄:The fun
tion s
anl
aptures a
ommon pattern of
omputation, the point of the a

umu-lation lemma being that evaluation ofs
anl (�)e [a1; a2; : : : ; an ℄ = [e; e � a1; (e � a1)� a2; � � � ((e � a1)� � � �)� an ℄
an be done with n evaluations of �, whereas dire
t evaluation of map (foldl (�)e) � initsrequires O(n2) evaluations of � on a list of length n.In an attempt to
onstru
t a generi
 version of the a

umulation lemma, we might tryand render the left-hand side aslist([e; f ℄) � sort � �subtree;where sort orders a set of stru
tures into as
ending size. There are various problems withthis idea, in
luding the fa
t that it still involves lists in an essential way. Instead of a listof stru
tures we really want to think of a stru
ture of stru
tures: a list of lists, a tree oftrees, and so on. The way to a
hieve this is to
reate a new type of labelled stru
tures inwhi
h ea
h `node' is labelled with the
orresponding subtree. Not every tree type allowsthe labelling of nodes (think of unlabelled binary trees), but there is a
anoni
al way ofintrodu
ing labels into a tree type. We
onsider this �rst, returning to a

umulations atthe end of the se
tion.Labelled tree types Let H be a binary relator, and (�;T) its tree type. De�ne anotherbifun
tor H0 byH0(A;X) = H(1;X)� Aand let (�0;T0) be its tree type. We
all H0 the labelled variant of H, and (�0;T0) the labelledtree type asso
iated with (�;T). Let us
onsider some examples to
larify the idea.1. Sno
 lists. With H(A;X) = 1+ (X � A) we getH0(A;X) = (1+ (X � 1))� A �= A+ (X � A):So the labelled tree type is isomorphi
 to the type ([one; sno
℄; nelist) of nonemptysno
 lists. 15

2. Nonempty sno
 lists. What happens when we try and label nonempty sno
 lists?Here H(A;X) = A + (X � A) and soH0(A;X) = (1+ (X � 1))� A �= A+ (X � A):Therefore labelling does not
hange nonempty sno
 lists.3. Binary trees. With H(A;X) = 1+ (A� (X � X)) , we �ndH0(A;X) = (1+ (1� (X � X)))� A �= A+ ((X � X)� A):The tree type of H0 is thus isomorphi
 to ([tip; node℄; netree), the type of nonemptylabelled binary trees.4. Unlabelled binary trees. With H(A;X) = A + (X � X), giving the tree type ofunlabelled binary trees with values at the tips, we �ndH0(A;X) = (1+ (X � X))� A �= A + ((X � X)� A);so the tree type of H0 is isomorphi
 to that of the previous example.Subtrees Now we
an de�ne subtrees as a stru
ture of stru
tures. Given a binary relatorH with tree type (�;T) and labelled tree type (�0;T0), the natural transformation subtrees :T0 � T - T is de�ned by the equationsubtrees = ([�0 � hH0!; � � H1rooti℄): (4)We will show below that subtrees is a fun
tion; it takes a tree and turns it into a tree ofthe same shape in whi
h every node is labelled by its subtree. The somewhat
ompli
atedde�nition is explained with the help of the following examples.1. Sno
 lists. We have just seen that for sno
 lists, (�0;T) is isomorphi
 to the tree type([one; sno
℄; nelist) of non-empty lists. Let � denote the obvious isomorphism from(1+ (1� X))� A to A + (X � A), so �0 = [one; sno
℄ � �. Now we have�0 � hH0!; � � H1rooti= fde�nitions, and H(A;X) = 1+ (X � A)g[one; sno
℄ � � � hid + (id � !); [nil ; sno
℄ � (id + root � id)i= f
oprodu
tg[one; sno
℄ � � � hid + (id � !); [nil ; sno
 � (root � id)℄i= fproperty of �g[one; sno
℄ � (nil + hid ; sno
 � (root � id)i)= f
oprodu
tg[one � nil ; sno
 � hid ; sno
 � (root � id)i℄:16

Re
alling that the root of a sno
 list is its last element, and writing the �rst andse
ond terms above as [[℄℄ and
, respe
tively, we
an translate the de�nition ofsubtrees into more familiar programming terms:subtrees = foldl (
)[[℄℄x
 a = x ++ [last x ++ [a℄℄:This is pre
isely the de�nition of the fun
tion inits found in the theory of lists.2. Binary trees. Here the labelled tree type (�0;T0) is isomorphi
 to the tree type([tip; node℄; netree) of nonempty binary trees. As before one may
al
ulate that�0 � hH0!; � � H1rooti =[tip � nil ; node � hid � id ; bin � (id � (root � root))i℄:A fun
tional programmer would de�ne subtrees by the following equations, writingbinauv instead of bin (a; (u; v)) and nodeauv instead ofnode ((u; v); a):subtrees nil = tipnilsubtrees (binauv) = node (bina (root x)(root y))x ywhere x = subtrees uy = subtrees vroot (nodeauv) = aProperties Let us now look at some algebrai
 properties of subtrees. To repeat theearlier de�nition, we are given a binary relator H with tree type (�;T) and labelled treetype (�0;T0). Moreover, (�0;T0) is the tree type of H0, de�ned by H0(A;B) = H(1;B)� A.To start with, we show that subtrees is a fun
tion. Re
alling the de�nition (4) ofsubtrees, we need only show that root : id - T0 is a fun
tion. Observe thatroot = 20 � �0Æ = outr � �0Æ�Sin
e �0 is an isomorphism, this parti
ular instan
e of root is a fun
tion, and thereforesubtrees is a fun
tion as well.Next, we haveroot � subtrees = id and bran
h � subtrees = subtrees � bran
h: (5)The �rst equation says that the label at the root of subtrees x is x itself, and the se
ondequation says that the bran
hes of subtrees x are the subtrees of the bran
hes of x . The�rst equation may be proved using promotion, and the se
ond equation follows from thenaturality of membership, but we omit details. Using these two equations, we will nowshow that subtrees is an implementation of �subtree. Re
all that setify : P - T0 is de�nedby setify = �2T0 .Lemma 5 setify � subtrees = �subtree. 17

Proof. First note that be
ause subtrees is a fun
tion, we havesetify � subtrees = �2T0 � subtrees = �(2T0 � subtrees):Using this fa
t, the proof pro
eeds as follows:setify � subtrees = �subtree� fabove,
hara
terisation of �g2T0 � subtrees = subtree� fLemma 3, de�nition of subtreegroot � bran
h� � subtrees = bran
h�� fImpli
ation (2), Equation (5)groot � subtrees � bran
h� = bran
h�� fEquation (5)gtrue2A

umulations Now let us return to a

umulations and the a

umulation lemma. Infa
t, de�nition (4) of subtrees is a spe
ial
ase of an a

umulation. Formally, for a givenH1{algebra R the a

umulation bR
 of R is de�ned bybR
 = ([�0 � hH0!;R � H1rooti℄):De�nition (4) is the spe
ial
ase subtrees = b�
. As we said before, a

umulations arevery popular in fun
tional programming, where they are known as s
ans. Gibbons [11℄ hasmade a study of s
ans on a parti
ular spe
ies of binary tree.Intuitively, the a

umulation bR
 implements the evaluation of the
atamorphism ([R℄)on all subtrees of its argument. This is the
ontent ofLemma 6 (A

umulation) For any H1{algebra R, we haveT0([R℄) � subtrees � bR
:The proof is a straightforward appli
ation of promotion.Deforestation The stru
ture built up by an a

umulation is usually not the �nal resultof a
omputation; it is only an intermediate stage. The labelled tree that was
onstru
tedwith an a

umulation is often evaluated by a
atamorphism. In su
h
ases, the labelledtree need never be built up as a whole: one
an merge the pro
ess of its
onstru
tion and itsevaluation. This te
hnique is very
ommon in fun
tional programming; it has been
alleddeforestation by Wadler [21℄, and Swierstra [20℄ speaks of virtual data stru
tures. The nextlemma shows how deforestation
an be used in the present
ontext:18

Lemma 7 (Deforestation) Let S be a H01{algebra, and R a H1{algebra. Then([S ℄) � bR
 � outl � ([X ℄)where X = hS ; outri � hH(!; outl);R � H1outr)i.Again the proof is a simple appli
ation of promotion, and we shall not go into the details.If the �nal program is going to be evaluated in a lazy programming language, this lemmadoes not o�er a real improvement in eÆ
ien
y: the intermediate data stru
ture in ([S ℄) � bR
never exists in its entirety anyway. It was for this reason that the above result was notstated in the theory of lists.7 PruningWe now pro
eed to formalise the notion of pruning introdu
ed in Se
tion 2. In order to doso, it is ne
essary to assume that H is of a parti
ular form, namelyH(A;X) = 1+ G(A;X)for some binary relator G whi
h is not further spe
i�ed. We follow Ba
khouse [1℄ in
allingsu
h relators pointed. Sin
e H(A;X) is a
oprodu
t, the tree type (�;T)
an be written inthe form [�; �℄: there exist � : T 1 and � : T G1T su
h that[�; �℄ = �:One
ould think of � as a
onstant, representing the empty stru
ture. In the sequel, weshall abuse notation and write � instead of � � !.To prune a tree x means to substitute � for some (zero or more) subtrees of x . Therelation prune : T - T takes a tree and prunes it in some arbitrary way:prune = ([� [�℄):Note that for sno
 lists, prune is pre
isely the suÆx relation. The fun
tion prunings inSe
tion 2
ould be de�ned by prunings = �prune. These examples suggest that prune is apreorder; that this is indeed so
an be veri�ed using promotion.Horner's rule Now we turn to the se
ond result in the theory of lists. This resultis known as Horner's rule be
ause of its similarities with Horner's method of evaluatingpolynomials. In [5℄ the rule was given in the formfoldl1(�) �map (foldl (
)e) � tails = foldl (�)e;where a � b = (a
 b) � e. For this identity to be valid, it is required that
 distributeba
kward over �. Furthermore, tails returns the list of tail segments of a list in des
endingorder of length:tails [a1; a2; : : : ; an ℄ = [[a1; a2; : : : ; an ℄; [a2; : : : ; an ℄; : : : ; [an ℄; [℄℄:19

For example, taking � = + and
 = � Horner's rule says that(e � a1 � a2 � a3) + (e � a2 � a3) + (e � a3) + e
an be evaluated in the form(((e � a1 + e)� a2) + e)� a1 + e:Moreover, the alternative form does not exploit the asso
iativity of + or �.In many
ases in pra
ti
e, the operation � is either binary minimum or maximum, sofoldl1(�) takes the minimum or maximum of essentially a set of values. This leads to aversion of Horner' rule in whi
h tails is not required to return a list:max �map (foldl (
)e) � tails = foldl (�)e;where a � b = (a
 b)max e. The ne
essary
ondition here is that
 should be monotoni
with respe
t to �. It is this version we shall generalise to arbitrary tree types. The reasonis that, in general, prunings
annot be turned into a fun
tion returning a stru
ture ofstru
tures in the same way as subtrees; there is an arbitrary number of prunings we
ouldatta
h to ea
h node, so we would have to label ea
h node with a set of prunings.Before we state the generalised version of Horner's rule, we need to make pre
ise whatwe mean by monotoni
ity.Monotoni
ity A fun
tional algebra f : A FA is said to be monotoni
 on a relationR : A A iff � FR � R � f :Here are two examples to explain this de�nition.1. Addition Let R = leq , where leq denotes the relation � on number s, and let f = plus,where plus denotes binary addition. With FX = X � X the monotoni
ity
onditiontranslates toplus � (leq � leq) � leq � plusand says that x = y + z and y � y 0 and z � z 0 implies x � y 0 + z 0. This is just the(true) statement that addition is monotoni
 in both arguments.2. Cons lists. Let R = lex , where lex is the lexi
ographi
 ordering on lists, and f =
ons.With FX = id � X , the monotoni
ity
ondition translates to
ons � (id � lex) � lex �
onsand says that x = [a℄ ++ y and y � y 0 implies x � [a℄ ++ y 0. This is just the truestatment that
ons is monotoni
 with respe
t to the lexi
ographi
 ordering.Lemma 8 (Horner's rule) Let H be a pointed binary relator and g = [g0; g1℄ be a fun
tionalH1{algebra. If g1 is monotoni
 with respe
t to the preorder R, thenmaxR � P([g ℄) � �prune � ([maxR � �Y ℄);where Y = g0 [g. 20

The proof of Horner's Rule is a straightforward appli
ation of promotion, plus theuniversal property of maxR. Below we
onsider two examples:1. Sno
 lists. The maximum suÆx sum
an be spe
i�ed asmss = max leq � Psum � �prune;where sum = ([zero; plus℄). It is easy to
he
k that plus is monotoni
 on leq , soHorner's rule is appli
able. Sin
emax leq � �(zero [plus) � [0; f ℄where f (s; a) = (s + a)max 0, we
an implement mss by ([0; f ℄).Similarly, the maximum sum suÆx problem
an be spe
i�edmss = maxR � �prune;where xRy = sumx � sumy . Sin
e here g = � = [nil ; sno
℄ the requirement is thatsno
 should be monotoni
 on R:sumx � sumy) sum (x ++ [a℄) � sum (y ++ [a℄):This
ondition is satis�ed be
ause addition is monotoni
 under �. We
an implementthis version of mss by ([nil ; f ℄), wheref (x ; a) = (x ++ [a℄; if sum (x ++ [a℄) > 0[℄; otherwiseWe
an make this program more eÆ
ient by representing ea
h tree x by the pair(x ; sumx), thereby avoiding
omputing sum from s
rat
h ea
h time.2. Binary trees. Taking H(A;X) = 1+(A�(X �X)) gives the tree type ([nil ; bin℄; tree).The sum of a tree is de�ned bysum = ([zero; plus℄);where plus(a; (m; n)) = a + m + n. For this type mss gives the maximum pruningsum. The monotoni
ity
ondition readsm0 � m1 ^ n0 � n1) plus(a; (m0; n0)) � plus(a; (m1; n1))and is easily seen to be true. This time we
an implement mss by ([zero; f ℄), wheref (a; (m; n)) = (a +m + n)max 0.
21

8 Segments and segment de
ompositionHaving
overed subtrees and prunings, we
an now return to arbitrary segments. A tree yis a segment of x if there exists a subtree z of x su
h that y is a pruning of z . Formally,the natural transformation segment : T - T is de�ned bysegment = prune � subtree:This de�nition was introdu
ed informally in Se
tion 2 for lists and trees of various kinds.The segment de
omposition theorem stated below puts the previous results together.Theorem 1 (Segment De
omposition) Let H be a pointed binary relator with tree type(�;T). Suppose g = [g0; g1℄ is a fun
tional H1-algebra, and that g1 is monotoni
 on thepreorder R. ThenmaxR � P([g ℄) � �segment � ([maxR � �X ℄) � bmaxR � �Y
;where X = 20 [21, and Y = g0 [g.Proof. As before, let H0 be the labelled variant of H, with tree type (�0;T0). We arguemaxR � P([g ℄) � �segment= fde�nition of segmentgmaxR � P([g ℄) � �(prune � subtree)= f� of
ompositiongmaxR � P([g ℄) � Eprune � �subtree= fE in terms of P (Eq. 1)gmaxR � P([g ℄) � union � P�prune � �subtree= fsin
e P = E on fun
tions and union : E E � EgmaxR � union � P(P([g ℄) � �prune) � �subtree� fdistributing maxR over union, sin
e R is a preordergmaxR � P(maxR � P([g ℄) � �prune) � �subtree� fHorner's rule, Lemma 8gmaxR � P([maxR � �Y ℄) � �subtree= fLemma 5gmaxR � P([maxR � �Y ℄) � setify � subtrees� fsin
e setify : P - T0gmaxR � setify � T0([maxR � �Y ℄) � subtrees� fA

umulation Lemma 6gmaxR � setify � bmaxR � �Y
� fLemma 4g([maxR � �X ℄) � bmaxR � �Y
:Appli
ation of the segment de
omposition theorem gives an eÆ
ient solution for themaximum segment sum problem on any tree type that allows the de�nition of sum.22

9 Con
luding remarksWe have demonstrated how mu
h of the original theory of lists
an be parameterised byan arbitrary data type. The result is, in our opinion, at least a linguisti
 improvement;the theory is no longer
luttered by the synta
ti
 idiosyn
ra
ies of lists. It is debatable,however, whether by itself any mere linguisti
 improvement would justify the
ood ofde�nitions and results given above. What is of greater interest is the possibility that thisstyle of generi
 programming
an be applied to more
hallenging problems. An obvious
andidate for further work is the so-
alled sliding tails lemma, whi
h underlies all eÆ
ientpattern mat
hing algorithms on lists. If this lemma
an be parameterised by an arbitrarydata type, the way is open for a generi
 theory of pattern mat
hing. Su
h a generi
 theoryis likely to bene�t by the work of Ba
khouse [1℄, who has shown how many theoremsabout regular algebra
an be generalised to data types. Ba
khouse and his team have alsodeveloped a generi
 theory of zips [2℄.Finally, another important dire
tion for future resear
h is the design of a programminglanguage in whi
h data types are �rst-
lass
itizens, in the sense that they
an be passedas parameters to generi
 programs. It seems that resear
h in the design of fun
tionalprogramming languages is also heading in this dire
tion; in parti
ular the work of Jones[15℄ on
onstru
tor
lasses is relevant in this
onne
tion.A
knowledgementsPart of this work was done while Oege de Moor visited Roland Ba
khouse at EindhovenUniversity. Oege de Moor also wishes to thank Masato Takei
hi for providing an inspiringworking environment at Tokyo University, where this paper was �nished. Many of the ideasand examples presented here are impli
it in the work of Jeuring and Gibbons; the in
uen
eof their pioneering e�orts
an be tra
ed throughout the paper. Johan Jeuring and Jaapvan der Woude s
rutinized drafts of this paper, and suggested many improvements.Referen
es[1℄ C. J. Aarts, R. C. Ba
khouse, P. Hoogendijk, E. Voermans, and J. C. S. P. Van derWoude. A relational theory of datatypes. Available via anonymous ftp fromftp.win.tue.nl in dire
tory pub/math.prog.
onstru
tion, September 1992.[2℄ Roland Ba
khouse, Henk Doornbos, and Paul Hoogendijk. Commuting relators.Te
hni
al Report. Available by anonymous ftp from ftp.win.tue.nl, dire
torypub/math.prog.
onstru
tion., 1992.[3℄ M. Barr and C. Wells. Toposes, Triples and Theories, volume 278 of Grundlehren derMathematis
hen Wissens
haften. Springer{Verlag, 1985.[4℄ R. S. Bird. An introdu
tion to the theory of lists. In M. Broy, editor, Logi
 ofProgramming and Cal
uli of Dis
rete Design, volume 36 of NATO ASI Series F, pages3{42. Springer{Verlag, 1987. 23

[5℄ R. S. Bird. Le
tures on
onstru
tive fun
tional programming. In M. Broy, editor,Constru
tive Methods in Computing S
ien
e, volume 55 of NATO ASI Series F, pages151{216. Springer{Verlag, 1989.[6℄ R. S. Bird. A
al
ulus of fun
tions for program derivation. In D.A. Turner, editor,Resear
h Topi
s in Fun
tional Programming, University of Texas at Austin Year ofProgramming Series, pages 287{308. Addison{Wesley, 1990.[7℄ A. Carboni, G.M. Kelly, and R.J. Wood. A 2{
ategori
al approa
h to geometri
morphisms I. Cahiers de Topologie et Geometrie Di�erentielle Categoriques, 32(1):47{95, 1991.[8℄ O. de Moor. Categories, relations and dynami
 programming. D.Phil. thesis. Te
hni
alMonograph PRG-98, Computing Laboratory, Oxford, 1992.[9℄ O. de Moor. Working notes on membership of data types. Unpublished manus
ript,1993.[10℄ P. J. Freyd and A. �S�
edrov. Categories, Allegories, volume 39 ofMathemati
al Library.North{Holland, 1990.[11℄ J. Gibbons. Algebras for tree algorithms. D.Phil. thesis. Programming Resear
hGroup, Computing Laboratory, 11 Keble Road, Oxford OX1 3QD, September 1991.[12℄ R. Goldblatt. Topoi | The Categorial Analysis of Logi
, volume 98 of Studies inLogi
 and the Foundations of Mathemati
s. North{Holland, 1986.[13℄ J. Jeuring. Deriving algorithms on binary labelled trees. In P.M.G. Apers, D. Bosman,and J. Van Leeuwen, editors, Pro
eedings SION Computing S
ien
e in the Netherlands,pages 229{249, 1989.[14℄ P. T. Johnstone. Topos Theory. A
ademi
 Press, 1977.[15℄ M. P. Jones. A system of
onstru
tor
lasses: overloading and impli
it higher-orderpolymorphism. Journal of Fun
tional Programming, 5(1):1{35, 1995.[16℄ J. Lambek. A �xpoint theorem for
omplete
ategories. Mathematis
he Zeits
hrift,103:151{161, 1968.[17℄ D. J. Lehmann and M. B. Smyth. Algebrai
 spe
i�
ation of data types: A syntheti
approa
h. Mathemati
al Systems Theory, 14:97{139, 1981.[18℄ G. Mal
olm. Data stru
tures and program transformation. S
ien
e of ComputerProgramming, 14:255{279, 1990.[19℄ E. G. Manes and M. A. Arbib. Algebrai
 Approa
hes to Program Semanti
s. Textsand Monographs in Computer S
ien
e. Springer{Verlag, 1986.
24

[20℄ S. D. Swierstra and O. de Moor. Virtual data stru
tures. In B. M�oller, H. Parts
h,and S. S
human, editors, Formal Program Development, volume 755 of Le
ture Notesin Computer S
ien
e, pages 355{371, 1993.[21℄ P. Wadler. Deforestation. Theoreti
al Computer S
ien
e, 73(2):231{248, 1990.

25

