
Generi programming with relations and funtorsRihard Bird and Oege de MoorProgramming Researh Group, 11 Keble RoadOxford OX1 3QD, United KingdomPaul HoogendijkEindhoven University of Tehnology, PO Box 5135600 MB Eindhoven, The NetherlandsOtober 25, 1999AbstratThis paper explores the idea of generi programming in whih programs are param-eterised by data types. Part of the onstrutive theory of lists, spei�ally the partdealing with properties of segments, is generalised in two ways: from lists to arbitraryindutive data types, and from funtions to relations. The new theory is used to solvea generi problem about segments.1 IntrodutionTo what extent is it possible to onstrut programs without knowing exatly what datatypes are involved? At �rst sight this may seem a strange question, but onsider the aseof pattern mathing. Over lists, this problem an be formulated in terms of two strings, apattern and a text; the objet is to determine if and where the pattern ours as a segmentof the text. Now, pattern mathing an be generalised to other data types, inluding arraysand trees of various kinds; the essential step is to be able to de�ne the notion of `segment'in these types. So the intriguing question arises: an one onstrut a useful algorithm,parameterised by a data type, to solve the general problem of pattern mathing?In this paper we give a positive answer to the above question, though for a problemsomewhat simpler than pattern mathing. The problem, the well-known maximum segmentsum, was hosen beause suÆient list theory exists [4, 5, 6℄ for one to alulate an eÆientsolution in a few equational steps. It turns out that we an generalise the theory of segmentsto more or less arbitrary data types, so the alulation leads to a generi solution to theproblem.In order to be able to onstrut a generi theory of segments, we need a reformulation ofthe theory of lists with two new ingredients. The �rst ingredient is a ategorial treatmentof data types [18, 19, 17℄. In the ategorial approah, data types are haraterised in terms1

of ertain funtors, and spei�ations an be parameterised by funtors in a simple anddiret manner.The seond ingredient involves the move from funtions to arbitrary relations [1, 8℄. In-troduing relations enables us to deal more smoothly with non-deterministi spei�ations,but it also turns out that the alulus of relations leads to substantial simpli�ations in thestudy of general data types.The rest of the paper is strutured as follows. In the next setion we show|quiteinformally|how the notion of segment an be de�ned in one or two other data types. Thiswill provide the motivation for the formal de�nitions in the sequel. After that, in Setions 3and 4 we review the alulus of relations and data types. Then in Setion 5 we show howevery data type omes equipped with a membership relation for testing whether or notan element ours in a given data struture. These membership relations are then usedin Setions 6{8 to develop a general theory of segments. In partiular, we give suitablygeneralised statements and proofs of some results at the heart of the original theory oflists. As an appliation, we then obtain a generi solution to the maximum segment sumproblem. Finally, Setion 9 ontains a disussion of the impliations of this researh.2 Towards generalityLet us start by being more preise about what we mean by a segment of a list, indeed,what we mean by a list. There are two basi views of lists, one of whih is given by thetype delarationlista ::= nil j sno (lista)a:Formally, this means that lists are represented as �nite trees (or terms) over nil and sno.For instane, the list [1; 2; 3℄ is represented by the treesno (sno (snonil 1)2)3):Thinking of lists purely as trees, we see that a pre�x of x is really the same thing as asubtree of x . The funtion subtrees takes a list and returns the set of all its subtrees:subtrees nil = fnilgsubtrees (snox a) = subtrees x [fsnox ag:In the theory of lists, pre�xes are alled initial segments, and the funtion subtrees is alledinits. There is the subtle di�erene that inits returns a list rather than a set, but we ignorethis distintion for now (though we return to it in due ourse).Dual to the notion of pre�x is that of a suÆx. A suÆx of x an be obtained bysubstituting the empty list for a subtree of x . For instane, [3; 4℄ is obtained from [1; 2; 3; 4℄by replaing [1; 2℄ by the empty list. For the sake of a word we an say that the subtree[1; 2℄ has been pruned. The funtion prunings takes a list and returns all ways in whih itan be pruned:prunings nil = fnilgprunings (snox a) = fnilg [fsnoy a jy 2 prunings xg:2

In the theory of lists, suÆxes are alled tail segments and prunings is alled tails.One an now de�ne arbitrary segments by the equation:segments = union �mapprunings � subtrees:Here union is the funtion that takes a olletion of sets and returns its union, and map isthe operator that applies a funtion to all elements of a set. We an also de�ne segmentsin terms of list onatenation, but that de�nition does not generalise to other data types.For omparison, onsider now the other view of lists, given by the type delarationlista ::= nil j ons a (lista):With this data type the role of inits and tails are reversed: subtrees gives the tail segmentsof a list, while prunings gives the initial segments. The funtion segments is de�ned in thesame way as before and again gives the segments of a list.Pursuing the same theme, now onsider binary trees, as de�ned bybintreea ::= nil j bina (bintreea)(bintreea):The elements of this type are �nite trees, this time over nil and bin, so it is again possibleto de�ne the funtions subtrees and prunings. The funtion subtrees takes a binary treeand returns the set of all its subtrees:subtrees nil = fnilgsubtrees (bina x y) = subtrees x [subtrees y [fbina x yg:The funtion prunings takes a binary tree and substitutes nil for its subtrees in all possibleways: prunings nil = fnilgprunings (bina x y) = fnilg [fbina s t js 2 prunings x ; t 2 prunings yg:The segments of a tree are de�ned by the same equation as before. Jeuring [13℄ alsoonsidered suh a de�nition, though he spoke of treeuts rather than segments.3 A alulus of relationsLet us now give a brief review of the relational alulus used in the sequel. The alulus isbased on Freyd's theory of allegories [10℄; basially, an allegory is a ategory with additionalaxioms designed to apture the essential fats about relations. However, we will not takea fully axiomati approah, relying instead on appeal to naive set theory, though we doassume a nodding aquaintane with ategories, funtors and natural transformations.Relations The basis of the alulus is a ategory Rel whose objets are sets and whosearrows are relations. Arrows go bakwards: we write R : A B to denote that R isa relation of type `A from B ' and we an think of R as a subset of A � B . Relationalomposition, like its funtional ounterpart, also goes bakwards: R � S is pronouned `R3

after S '. Composition is assoiative with the identity relation id : A A as unit, all ofwhih says Rel is a ategory. For any A and B there exists a smallest relation 0 : A B ,whih is the zero of omposition, and a largest relation � : A B whih is essentially theartesian produt A� B .Eah relation R : A B has a onverse relation RÆ : B A, whih preserves identitiesbut reverses omposition (so (R � S)Æ = S Æ � RÆ), all of whih says that onverse is aontravariant funtor from Rel to itself. By assumption, the onverse funtor is its owninverse, (RÆ)Æ = R, and so is an isomorphism.For eah A and B the arrows A B form a omplete lattie with union [and intersetion\. These arrows an be ompared via a partial order �, where R � S denotes R = R \ S .Converse preserves � and omposition distributes over (arbitrary) unions, but only weaklydistributes over intersetion in thatR � (S \ T) � (R � S) \ (R � T):We will suppose in what follows that omposition binds more tightly than any other op-eration, so the right-hand side ould have been written without brakets. Using the givenproperties of onverse, we get from the above inequation a seond one:(R \ S) �T � (R � T) \ (S � T):These two inequations say that omposition is monotoni in both arguments under �.One further inequation, alled the modular law, is adjoined to the other axioms to givea weak onverse of distributivity over intersetion:(R � S) \ T � R � (S \ RÆ � T):Again, taking onverses, we get the symmetri version(R � S) \ T � (R \ T � S Æ) � S :Division Beause relational omposition distributes over arbitrary unions, it has a weakinverse, alled division, whih is haraterised by the equivaleneT � R=S � T � S � R for all T .The operator = an be de�ned in set theory bya (R=S)b � (8 : bS : aR):A seond division operator n an be introdued by de�ning RnS = (S Æ=RÆ)Æ, soT � RnS � R � T � S for all T .As a prediate we have a (RnS)b � (8 : Ra : S b).
4

Entire and simple relations There are three subategories of Rel of partiular interest:the entire (or total) relations, the simple (or single-valued) relations, and funtions (whihby de�nition are those relations that are both entire and simple). A relation R : A B isentire if id � RÆ �R, and simple if R �RÆ � id . Identity arrows are both entire and simple,and omposition preserves both properties, so both kinds of relations form subategories ofRel . It follows that the ategory Fun of funtions is also a subategory of Rel . Funtionswill be denoted by lower ase identi�ers, f ; g ; h; : : :.To illustrate these de�nitions, let us prove that(R \ S) � f = (R � f) \ (S � f)for all funtions f :(R \ S) � f� fdistributing omposition over \g(R � f) \ (S � f)� fmodular lawg((R � f � f Æ) \ S) � f� fmonotoniity of omposition, sine f � f Æ � idg(R \ S) � f :Note that we used only the fat that f was simple.Another useful result that applies to funtions only is the shunting rule:f � R � S � R � f Æ � SR � S � f � R � f Æ � S :The proof is an easy onsequene of the de�nition of a funtion as an entire and simplerelation.Relators Funtors will be denoted using sans serif letters. A funtor F : Rel Rel is saidto be monotoni if R � S implies FR � FS . Monotoni funtors have many nie algebraiproperties, most of whih an be derived from the fat that they preserve onverse, that is,F(RÆ) = (FR)Æ. Monotoni funtors take entire relations to entire relations, simple relationsto simple ones, and so funtions to funtions. Furthermore, any funtor F : Fun Fun hasat most one monotoni extension F : Rel Rel that oinides with F on funtions. Morepreisely, write J : Rel Fun for the inlusion funtor of funtions into relations. Then forall monotoni funtors F;G : Rel Rel we have(F = G) � (F � J = G � J):For a proof see [7℄. Following Bakhouse [1℄, we will all an endofuntor of Fun a relator ifit has a monotoni extension in Rel , and also use this term simply as an abbreviation fora monotoni funtor of Rel . 5

Natural transformations In the relational alulus it is neessary to distinguish be-tween two kinds of natural transformation. The �rst is the standard notion of a naturaltransformation in ategory theory. That is, given two funtors F and G, we have� : F G � (8R :: FR � � = � � GR):Suh natural transformations will be alled proper. In the seond notion of natural trans-formation, the equation is weakened to an inequality:� : F - G � (8R :: FR � � � � � GR):Sine this weak type of natural transformation is more ommon in the relational alulusthan the proper one, we shall simply all them natural transformations (the usual termis weak, or lax, natural transformation). Every natural transformation is proper whenrestrited to funtions, that is,(� : F - G) � (� : F � J G � J):Again the proof an be found in [7℄. Note that � need not itself be a funtion.Powersets The view of relations adopted here is essentially that a relation A B is asubset of the artesian produt A � B . However, one an also view relations as funtionsPA B , where PA denotes the powerset of A. Formally, the isomorphism between thesetwo representations of relations an be desribed in the following suitably abstrat form.For every set A there exists a set PA, alled the powerset of A, and a relation 2 : A PA,alled the membership relation on A. The powerset PA and the relation 2 are haraterisedby the following property. For every relation R : A B , there exists a funtion �R : PA Bsuh that(f = �R) � (2 � f = R) for all f : PA B .The funtion �R is said to be the power transpose of R and an be de�ned in set theory by(�R)b = fa jaRbg. Muh of set theory an be reovered using just this universal property ofpowersets, plus the relational alulus. This observation lies at the heart of the ategorialapproah to sets, the theory of toposes [14, 3, 12℄. Below we illustrate how various familiaroperators from set theory an be de�ned in terms of �.First of all, it is immediate from the universal property of � that id : PA PA satis�esid = �(2). Next, the existential image of R : A B is a funtion ER : PA PB de�nedby ER = �(R � 2). In set theory we have(ER)x = fa j9b : aRb ^ b 2 xg:We have Eid = id , and below we will show that E(R � S) = ER � ES , so E is a funtor. It isnot, however, a relator beause it is not monotoni: inlusion of funtions is equality.To show E is a funtor we �rst prove �(R � S) = ER � �S :�(R � S) = ER � �S� fde�nition of �g 6

R � S = 2 � ER � �S� fde�nition of EgR � S = 2 � �(R � 2) � �S� f2 anels � (twie)gtrueNow, taking S = T � 2, we get E(R � T) = ER � ET .From the de�nition of E (plus the fat that 2 anels �) we get R � 2 = 2 � ER, whihsays that 2 : id E is a proper natural transformation.Although E is not a relator, there does exist a variant of E whih is. The restrition ofE to funtions is alled P, so P = E � J. The funtor P : Fun Fun is a relator and itsunique extension to relations turns out to bePR = (2n(R � 2)) \ ((3 �R)=3);where 3 denotes the onverse of 2. Using the pointwise interpretation of the divisionoperators, this formula readsx (PR)y � (8a 2 x : 9b 2 y : aRb) ^(8b 2 y : 9a 2 x : aRb):Sine 2 : id E is proper, we get that 2 is a natural transformation id - P, though not aproper one.For future use, we note that E an be expressed in terms of P:ER = union � P�R; (1)where union : PA PPA is de�ned by union = E(2). This funtion returns the union ofa olletion of sets. Sine 2 : id E we have union : E EE. A more detailed disussionof P and its relation to E an be found in [8℄.Preorders By de�nition, a preorder is a relation R : A A whih is both reexive(id � R) and transitive (R � R � R). For any relation R there exists a smallest preorderR� ontaining R, de�ned as the least solution X = R� ofX = id [(X � R):The relation R� is ommonly known as the reexive transitive losure of R. The followingproperty will be useful in the sequel:R � S = S � R) R� � S = S � R�: (2)Maximum Finally, we onsider the maximum relation maxR : A PA assoiated witha given preorder R : A A, de�ned bymaxR = 2 \ (2nR)Æ:This de�nition orresponds to the usual de�nition of maximum elements in set theory:a(maxR)x holds when a is an element of x (the �rst term) and x has upper bound a (the7

seond term), that is, for all b 2 x , we have bRa. Note that, although the de�nition ofmaxR does not depend on R being a preorder, it is useful only when R is one, so we shallassume without stating it expliitly that R is a preorder whenever the onstrution maxRis onsidered.There are two properties of max that we will need in Setion 7. First of all,X � maxR � �S� fde�nition of maxRgX � (2 \ (2nR)Æ) � �S� ffuntions distribute bakwards over \gX � (2 � �S) \ ((2nR)Æ � �S)� f� anellation and universal property of \g(X � S) ^ (X � (2nR)Æ � �S):Continuing with the seond termX � (2nR)Æ � �S� fshuntinggX � (�S)Æ � (2nR)Æ� fonverseg�S � X Æ � 2nR� funiversal property of ng2 � �S �X Æ � R� f� anellationgS � X Æ � R� fonversegX � S Æ � RÆ:Hene X � maxR � �S if and only if X � S and X � S Æ � RÆ. We all this property theuniversal property of max . We have given the proof in details beause it is fairly typial ofthe kind of manipulations found in the relational alulus.The seond fat, whih depends on R being a preorder, is that maxR weakly distributesover union:maxR � union � maxR � P(maxR); provided R is a preorder. (3)To see that this inequation annot be strengthened to an equality, onsider some singletonset A = fag with the trivial preorder R = id . With x = ffag; fggwe have a(maxR�union)xbut not a(maxR � P(maxR))x sine (maxR)f g has empty range.4 TypesOur approah to data types is based on the idea that every type onstrutor, suh as list ortree, is assoiated with a funtor, suh as list or tree, that applies a funtion to all elements8

of the type. Suh funtors orrespond to the map operators in funtional programming.This view of data types is also the basis of the work by Bakhouse [1℄ to whih the interestedreader is referred for a more detailed disussion of the onepts introdued here. We beginby onsidering ertain basi types.Terminator The terminator 1 is a set with one element. It has the property that forevery set A there exists preisely one funtion 1 A, denoted by !. Note that, although 1is indeed a �nal objet in Fun, it is not a �nal objet in Rel sine 0 : 1 A and 0 6= !. Thefuntor that omes with the terminator is the onstant funtor K1 whih maps all sets to1, and all arrows to id : 1 1. More generally, the onstant funtor KA maps all sets to Aand all arrows to id : A A.Produt Reall that in a ategory an objet A � B with two arrows outl : A A � Band outr : B A � B is alled a produt if for all C and arrows f : A C , g : B Cthere is a unique arrow hf ; gi : A� B C suh that outl � hf ; gi = f and outr � hf ; gi = g .The ategory Fun has produts and the produt funtor � is de�ned as usual byf � g = hf � outl ; g � outri:This funtor is a relator and we have R � S = hR � outl ; S � outri, wherehR; S i = (outl Æ � R) \ (outr Æ � S):However, outl , outr and h�;�i do not de�ne a ategorial produt in Rel sine, for example,outl �hR; 0i = 0 for all R. This is not a problem, for we said only that funtional produt hasa unique extension in Rel , not that this extension should also be a produt in Rel . We dohave outl �hR; S i = R and outr �hS ;Ri = R whenever S is entire and so outl �(R�S) = R�outland outr � (S � R) = R � outr whenever S is entire.Coproduts Dually, in a ategory an objet A+B with two arrows inl : A+B A andinr : A + B B is a oprodut if for all C and arrows f : C A, g : C B there is aunique arrow [f ; g ℄ : C A+B suh that [f ; g ℄ � inl = f and [f ; g ℄ � inr = g . The ategoryFun has oproduts and the oprodut funtor + is de�ned as usual byf + g = [inl � f ; inr � g ℄:The oprodut is also a relator and R + S = [inl � R; inr � S ℄, where[R; S ℄ = (R � inlÆ) [(S � inr Æ):Unlike the situation with produts, inl , inr and [�;�℄ do form a proper oprodut in Rel .For example, [R; S ℄ � inl = R for all S , and from this it follows that[R; S ℄ � [U ;V ℄Æ = R � U Æ [S � V Æwhih will be needed below. 9

Polynomial Relators Relators built up from onstants, �nite produts and oprodutsare said to be polynomial. More preisely, the lass of polynomial relators is de�ned indu-tively by the following lauses:1. The identity relator id and the onstant relators KA are polynomial;2. if F and G are polynomial, then so are their omposition F � G, their sum F + G andtheir produt F� G, where(F + G)R = FR + GR(F� G)R = FR � GR:Catamorphisms and promotion Let F be a relator. By de�nition, an F{algebra is a re-lation of type A FA, the set A being alled the arrier of the algebra. A F{homomorphismfrom an algebra S : B FB to an algebra R : A FA is a relation X : A B suh thatX � S = R � FX :Identity arrows are homomorphisms, and the omposition of two homomorphisms is againa homomorphism, so F{algebras form the objets of a ategory whose arrows are homomor-phisms. For many relators (in partiular, the polynomial ones), this ategory has an initialobjet, whih we shall denote by � : T FT . For any other F{algebra R : A FA theunique homomorphism from � to R will be denoted by ([R℄), so ([R℄) : A T is haraterisedby (X � � = R � FX) � (X = ([R℄)):Homomorphisms of the form ([R℄) are alled atamorphisms [18℄. The initial algebra � is,in fat, an isomorphism [16℄ so we an rewrite the above equivalene in the form(X = R � FX � �Æ) � (X = ([R℄)):The well-known Knaster-Tarski Fixpoint Theorem says that the unique solution (if it exists)of X = F (X) is also the least solution of X � F (X) and the greatest solution of X � F (X),so we get the following results, known olletively as promotion:X = R � FX � �Æ � X = ([R℄)X � R � FX � �Æ) X � ([R℄)X � R � FX � �Æ) X � ([R℄):The typial use of promotion is when X = S � ([T ℄). In partiular, the following alulationgives a useful ondition for expressing S � ([T ℄) as a atamorphism:S � ([T ℄) = ([R℄)� fpromotiongS � ([T ℄) � � = R � F(S � ([T ℄))� fde�nition of ([T ℄)gS �T � F([T ℄) = R � F(S � ([T ℄))(fF is a funtorgS �T = R � FS :Use of this, or similar, onditions in alulations will be signalled with the hint `promotion'.10

Tree types de�ned Let us now return to tree types. Tree types are initial algebras andan be named as suh by type delarations. For example, the delarationlistA ::= nil jsno(listA;A)delares [nil ; sno℄ : listA HA(listA) to be the initial HA{algebra, where HA(X) = 1 +(X �A) and HA(f) = id1+ (f � idA). We an and will write H(A;X) instead of HA(X), inwhih ase we think of H as a bifuntor. By �xing the left or right argument of a bifuntorwe get two funtors and, sine we shall need both funtors below, it is useful to settle on aonsistent onvention for naming them. For a bifuntor H we de�neH0(f) = H(f ; idX)H1(f) = H(idA; f):Note that dependene on X and A has been suppressed in this notation. Moreover, wewill always arrange the arguments of a given bifuntor H so that it is H1 that desribes theinitial algebra. With this onvention, [nil ; sno℄ is the initial H1{algebra orresponding tothe bifuntor H(A;X) = 1+ (X � A).Above we wrote list in sans serif font, whih is our onvention for denoting funtors.This was intended: with every tree type T is assoiated a ertain funtor, whih we shallall a tree funtor. For example, the tree funtor list is just the familiar map operation offuntional programming. The funtion listf is de�ned over sno lists bylistf = ([nil ; sno � (id � f)℄):Note that we write ([e; f ℄) rather than the more lumsy ([[e; f ℄℄). Using the haraterisationof atamorphisms, this de�nition expands to the familiar reursion equationslistf [℄ = [℄listf (sno (x ; a)) = sno (listf x ; f a):In fat, ([e; f ℄) translates to the standard higher-order funtion foldl f e.Tree funtors are relators and the ase of lists illustrates how they are de�ned in general:given an initial algebra � : TA H(A;TA), the tree funtor T is de�ned byTR = ([� � H0R℄):We desribe this situation by saying H is a binary relator with tree type (�;T). Elementsof a tree type are alled trees. Note that the de�nition of T gives that � : T G, whereGR = H(R;TR), is a proper natural transformation.5 MembershipData types reord the presene of elements, so one would expet relator F to ome equippedwith a membership relation 2F suh that a2Fx preisely when a is an element of x . Indeed,this notion of membership is so ommon that its de�nition is usually taken for granted.11

Formally, a olletion of arrows 2F is a membership relation of F if for eah R,FR � 2Fnid = 2FnR:The pointwise interpretation of this equation is8a : a2Fx : aRb�9y : x (FR)y ^ (8b 0 : b 02Fy : b 0 = b):Our �rst result about membership says that the above equation has at most one solution.For a proof see [9℄ (where proofs of most of the following fats about membership an befound).Lemma 1 If 2F is a membership relation of F , then 2F is the largest natural transforma-tion of type id - F.To illustrate, onsider the membership relation of the powerset funtor, writing 2 in-stead of 2P. To say that 2 is a natural transformation is to say that f � 2 = 2 � Pf forall funtions f (reall that every natural transformation is proper when restrited to fun-tions). Equivalently, for all a and x we have a2Pf x if and only if there exists b 2 x suhthat f b = a, whih is a well known property in set theory. There exist relators that do nothave a membership relation, but all relators in programming do have one. Below we showhow to onstrut the membership relation of polynomial relators, and of tree relators.Lemma 2 The membership relation of a polynomial relator is given by the following lauses:2id = id2KA = 02F+G = [2F;2G℄2F�G = 2F � outl [2G � outr2F�G = 2G � 2FNot every relator is polynomial; in partiular, the tree relator T of a tree type is notpolynomial. Sine T is de�ned by a atamorphism, one might expet that 2T an also beexpressed as a atamorphism, but this is not possible for data types ontaining onstantssuh as the empty list. The reason is simple: membership redues to the empty relation onempty lists, and the empty relation would propagate through any atamorphi de�nition,rendering suh a de�nition useless. Fortunately, there is another solution for the de�nitionof 2T, one whih makes use of three auxiliary relations, whih we will all root , branh andsubtree.Let H be a binary relator, and let (�;T) be its tree type. We assume that both H0and H1 have a membership relation, and we shall write 2i instead of 2Hi . The naturaltransformation root : id - T returns an element that ours at the root of a tree. It isde�ned by the equationroot = 20 � �Æ: 12

Naturality of root follows from the theory of membership, see [9℄. Similarly, the naturaltransformation branh : T - T returns an immediate subtree of its argumentbranh = 21 � �Æ:Finally, the natural transformation subtree : T - T is de�ned by subtree = branh� andreturns an arbitrary subtree of a given tree.Below we shall list a number of examples to illustrate these de�nitions, but �rst westate the main result about membership of trees:Lemma 3 Let H be a binary relator with tree type (�;T). Then2T = root � subtree:In words, this lemma says that a is an element of x if a ours at the root of a subtree ofx . This intuition is further explained in the following examples:1. Sno lists. With H(A;X) = 1+ (X � A), we get the tree type([empty ; sno℄; list) of sno lists. SineH0 = K1 + (KX � id)H1 = K1 + (id� KA);we �nd, using Lemma 2, that20 = [0; outr ℄21 = [0; outl ℄:Heneroot = 20 � �Æ = [0; outr ℄ � [nil ; sno℄Æ = outr � snoÆand, similarly, branh = outl � snoÆ. In other words, root is last , the partial funtionthat returns the last element of a nonempty list, and branh is init , the partialfuntion that removes the last element from a nonempty list. Lemma 3 says that ais an element of a list x i� a ours as the last element of a pre�x of x .2. Cons lists. Dually, with the relator H(A;X) = 1 + (A � X), we get the term type([nil ; ons℄; list) of ons lists. Here, root is head and returns the �rst element of anonempty list, and branh is tail , returning the remainder.3. Binary trees. With H(A;X) = 1+(A�(X�X)), we get the tree type ([nil ; bin℄; bintree)desribed in Setion 2. Here we haveH0 = K1 + (id� (KX � KX))H1 = K1 + (KA � (id� id)): 13

Hene20 = [0; outl ℄21 = [0; (outl [outr) � outr ℄;and so root = outl � binÆbranh = (outl [outr) � outr � binÆ:The partial funtion root returns the label of a nonempty tree, and branh returnsone of the subtrees. Lemma 3 says that a is an element of a tree x just in the asethat a is the label of some subtree of x .4. Unlabelled binary trees. Let us try another kind of tree, unlabelled binary trees withvalues at the tips. With H(A;X) = A+(X �X) we get the tree type ([tip; bin℄; tree).This time we haveH0 = id+ (KX � KX)H1 = KA + (id� id);and so20 = [id ; 0℄21 = [0; outl [outr ℄:Hene root = tipÆbranh = (outl [outr) � binÆ:Lemma 3 says that a is an element of a tree x just in the ase that a ours as a tipin x .In the sequel, we shall use trees to represent sets. It will be neessary, therefore, toimplement various operators on sets (suh as the maximum relation) on trees. Formally,let H be a binary relator, and let (�;T) be its tree type. The funtion setify : P - T takesa tree and returns the set of its elementssetify = �2T:Note that setify is not a surjetive funtion, beause there are many sets that annot berepresented as a tree. For instane, no in�nite set an be represented as a �nite tree. Thenext lemma shows how one may implement the maximum operator on trees in terms of asimpler maximum operator, for instane on pairs.Lemma 4 Let H and T be as de�ned above, and let R be a preorder. ThenmaxR � setify � ([maxR � �X ℄);where X = 20 [21.The ontainment annot be strengthened to an equality beause there may be onstanttrees that have no elements. 14

6 Subtrees and aumulationsThe funtion �subtree returns the set of subtrees of a given tree; in the ase of sno liststhis gives the set of initial segments of a list. In funtional programming there is animportant and useful operation on initial segments, alled aumulation and expressed bythe higher-order funtion sanl . The key fat is the aumulation lemma, whih saysmap (foldl f e) � inits = sanl f e:Here, inits returns the list of initial segments of a list in asending order of length:inits [a1; a2; : : : ; an ℄ = [[℄; [a1℄; [a1; a2℄; [a1; a2; a3℄; : : : ; [a1; a2; : : : ; an ℄℄:The funtion sanl aptures a ommon pattern of omputation, the point of the aumu-lation lemma being that evaluation ofsanl (�)e [a1; a2; : : : ; an ℄ = [e; e � a1; (e � a1)� a2; � � � ((e � a1)� � � �)� an ℄an be done with n evaluations of �, whereas diret evaluation of map (foldl (�)e) � initsrequires O(n2) evaluations of � on a list of length n.In an attempt to onstrut a generi version of the aumulation lemma, we might tryand render the left-hand side aslist([e; f ℄) � sort � �subtree;where sort orders a set of strutures into asending size. There are various problems withthis idea, inluding the fat that it still involves lists in an essential way. Instead of a listof strutures we really want to think of a struture of strutures: a list of lists, a tree oftrees, and so on. The way to ahieve this is to reate a new type of labelled strutures inwhih eah `node' is labelled with the orresponding subtree. Not every tree type allowsthe labelling of nodes (think of unlabelled binary trees), but there is a anonial way ofintroduing labels into a tree type. We onsider this �rst, returning to aumulations atthe end of the setion.Labelled tree types Let H be a binary relator, and (�;T) its tree type. De�ne anotherbifuntor H0 byH0(A;X) = H(1;X)� Aand let (�0;T0) be its tree type. We all H0 the labelled variant of H, and (�0;T0) the labelledtree type assoiated with (�;T). Let us onsider some examples to larify the idea.1. Sno lists. With H(A;X) = 1+ (X � A) we getH0(A;X) = (1+ (X � 1))� A �= A+ (X � A):So the labelled tree type is isomorphi to the type ([one; sno℄; nelist) of nonemptysno lists. 15

2. Nonempty sno lists. What happens when we try and label nonempty sno lists?Here H(A;X) = A + (X � A) and soH0(A;X) = (1+ (X � 1))� A �= A+ (X � A):Therefore labelling does not hange nonempty sno lists.3. Binary trees. With H(A;X) = 1+ (A� (X � X)) , we �ndH0(A;X) = (1+ (1� (X � X)))� A �= A+ ((X � X)� A):The tree type of H0 is thus isomorphi to ([tip; node℄; netree), the type of nonemptylabelled binary trees.4. Unlabelled binary trees. With H(A;X) = A + (X � X), giving the tree type ofunlabelled binary trees with values at the tips, we �ndH0(A;X) = (1+ (X � X))� A �= A + ((X � X)� A);so the tree type of H0 is isomorphi to that of the previous example.Subtrees Now we an de�ne subtrees as a struture of strutures. Given a binary relatorH with tree type (�;T) and labelled tree type (�0;T0), the natural transformation subtrees :T0 � T - T is de�ned by the equationsubtrees = ([�0 � hH0!; � � H1rooti℄): (4)We will show below that subtrees is a funtion; it takes a tree and turns it into a tree ofthe same shape in whih every node is labelled by its subtree. The somewhat ompliatedde�nition is explained with the help of the following examples.1. Sno lists. We have just seen that for sno lists, (�0;T) is isomorphi to the tree type([one; sno℄; nelist) of non-empty lists. Let � denote the obvious isomorphism from(1+ (1� X))� A to A + (X � A), so �0 = [one; sno℄ � �. Now we have�0 � hH0!; � � H1rooti= fde�nitions, and H(A;X) = 1+ (X � A)g[one; sno℄ � � � hid + (id � !); [nil ; sno℄ � (id + root � id)i= foprodutg[one; sno℄ � � � hid + (id � !); [nil ; sno � (root � id)℄i= fproperty of �g[one; sno℄ � (nil + hid ; sno � (root � id)i)= foprodutg[one � nil ; sno � hid ; sno � (root � id)i℄:16

Realling that the root of a sno list is its last element, and writing the �rst andseond terms above as [[℄℄ and
, respetively, we an translate the de�nition ofsubtrees into more familiar programming terms:subtrees = foldl (
)[[℄℄x
 a = x ++ [last x ++ [a℄℄:This is preisely the de�nition of the funtion inits found in the theory of lists.2. Binary trees. Here the labelled tree type (�0;T0) is isomorphi to the tree type([tip; node℄; netree) of nonempty binary trees. As before one may alulate that�0 � hH0!; � � H1rooti =[tip � nil ; node � hid � id ; bin � (id � (root � root))i℄:A funtional programmer would de�ne subtrees by the following equations, writingbinauv instead of bin (a; (u; v)) and nodeauv instead ofnode ((u; v); a):subtrees nil = tipnilsubtrees (binauv) = node (bina (root x)(root y))x ywhere x = subtrees uy = subtrees vroot (nodeauv) = aProperties Let us now look at some algebrai properties of subtrees. To repeat theearlier de�nition, we are given a binary relator H with tree type (�;T) and labelled treetype (�0;T0). Moreover, (�0;T0) is the tree type of H0, de�ned by H0(A;B) = H(1;B)� A.To start with, we show that subtrees is a funtion. Realling the de�nition (4) ofsubtrees, we need only show that root : id - T0 is a funtion. Observe thatroot = 20 � �0Æ = outr � �0Æ�Sine �0 is an isomorphism, this partiular instane of root is a funtion, and thereforesubtrees is a funtion as well.Next, we haveroot � subtrees = id and branh � subtrees = subtrees � branh: (5)The �rst equation says that the label at the root of subtrees x is x itself, and the seondequation says that the branhes of subtrees x are the subtrees of the branhes of x . The�rst equation may be proved using promotion, and the seond equation follows from thenaturality of membership, but we omit details. Using these two equations, we will nowshow that subtrees is an implementation of �subtree. Reall that setify : P - T0 is de�nedby setify = �2T0 .Lemma 5 setify � subtrees = �subtree. 17

Proof. First note that beause subtrees is a funtion, we havesetify � subtrees = �2T0 � subtrees = �(2T0 � subtrees):Using this fat, the proof proeeds as follows:setify � subtrees = �subtree� fabove, haraterisation of �g2T0 � subtrees = subtree� fLemma 3, de�nition of subtreegroot � branh� � subtrees = branh�� fImpliation (2), Equation (5)groot � subtrees � branh� = branh�� fEquation (5)gtrue2Aumulations Now let us return to aumulations and the aumulation lemma. Infat, de�nition (4) of subtrees is a speial ase of an aumulation. Formally, for a givenH1{algebra R the aumulation bR of R is de�ned bybR = ([�0 � hH0!;R � H1rooti℄):De�nition (4) is the speial ase subtrees = b�. As we said before, aumulations arevery popular in funtional programming, where they are known as sans. Gibbons [11℄ hasmade a study of sans on a partiular speies of binary tree.Intuitively, the aumulation bR implements the evaluation of the atamorphism ([R℄)on all subtrees of its argument. This is the ontent ofLemma 6 (Aumulation) For any H1{algebra R, we haveT0([R℄) � subtrees � bR:The proof is a straightforward appliation of promotion.Deforestation The struture built up by an aumulation is usually not the �nal resultof a omputation; it is only an intermediate stage. The labelled tree that was onstrutedwith an aumulation is often evaluated by a atamorphism. In suh ases, the labelledtree need never be built up as a whole: one an merge the proess of its onstrution and itsevaluation. This tehnique is very ommon in funtional programming; it has been alleddeforestation by Wadler [21℄, and Swierstra [20℄ speaks of virtual data strutures. The nextlemma shows how deforestation an be used in the present ontext:18

Lemma 7 (Deforestation) Let S be a H01{algebra, and R a H1{algebra. Then([S ℄) � bR � outl � ([X ℄)where X = hS ; outri � hH(!; outl);R � H1outr)i.Again the proof is a simple appliation of promotion, and we shall not go into the details.If the �nal program is going to be evaluated in a lazy programming language, this lemmadoes not o�er a real improvement in eÆieny: the intermediate data struture in ([S ℄) � bRnever exists in its entirety anyway. It was for this reason that the above result was notstated in the theory of lists.7 PruningWe now proeed to formalise the notion of pruning introdued in Setion 2. In order to doso, it is neessary to assume that H is of a partiular form, namelyH(A;X) = 1+ G(A;X)for some binary relator G whih is not further spei�ed. We follow Bakhouse [1℄ in allingsuh relators pointed. Sine H(A;X) is a oprodut, the tree type (�;T) an be written inthe form [�; �℄: there exist � : T 1 and � : T G1T suh that[�; �℄ = �:One ould think of � as a onstant, representing the empty struture. In the sequel, weshall abuse notation and write � instead of � � !.To prune a tree x means to substitute � for some (zero or more) subtrees of x . Therelation prune : T - T takes a tree and prunes it in some arbitrary way:prune = ([� [�℄):Note that for sno lists, prune is preisely the suÆx relation. The funtion prunings inSetion 2 ould be de�ned by prunings = �prune. These examples suggest that prune is apreorder; that this is indeed so an be veri�ed using promotion.Horner's rule Now we turn to the seond result in the theory of lists. This resultis known as Horner's rule beause of its similarities with Horner's method of evaluatingpolynomials. In [5℄ the rule was given in the formfoldl1(�) �map (foldl (
)e) � tails = foldl (�)e;where a � b = (a
 b) � e. For this identity to be valid, it is required that
 distributebakward over �. Furthermore, tails returns the list of tail segments of a list in desendingorder of length:tails [a1; a2; : : : ; an ℄ = [[a1; a2; : : : ; an ℄; [a2; : : : ; an ℄; : : : ; [an ℄; [℄℄:19

For example, taking � = + and
 = � Horner's rule says that(e � a1 � a2 � a3) + (e � a2 � a3) + (e � a3) + ean be evaluated in the form(((e � a1 + e)� a2) + e)� a1 + e:Moreover, the alternative form does not exploit the assoiativity of + or �.In many ases in pratie, the operation � is either binary minimum or maximum, sofoldl1(�) takes the minimum or maximum of essentially a set of values. This leads to aversion of Horner' rule in whih tails is not required to return a list:max �map (foldl (
)e) � tails = foldl (�)e;where a � b = (a
 b)max e. The neessary ondition here is that
 should be monotoniwith respet to �. It is this version we shall generalise to arbitrary tree types. The reasonis that, in general, prunings annot be turned into a funtion returning a struture ofstrutures in the same way as subtrees; there is an arbitrary number of prunings we ouldattah to eah node, so we would have to label eah node with a set of prunings.Before we state the generalised version of Horner's rule, we need to make preise whatwe mean by monotoniity.Monotoniity A funtional algebra f : A FA is said to be monotoni on a relationR : A A iff � FR � R � f :Here are two examples to explain this de�nition.1. Addition Let R = leq , where leq denotes the relation � on number s, and let f = plus,where plus denotes binary addition. With FX = X � X the monotoniity onditiontranslates toplus � (leq � leq) � leq � plusand says that x = y + z and y � y 0 and z � z 0 implies x � y 0 + z 0. This is just the(true) statement that addition is monotoni in both arguments.2. Cons lists. Let R = lex , where lex is the lexiographi ordering on lists, and f = ons.With FX = id � X , the monotoniity ondition translates toons � (id � lex) � lex � onsand says that x = [a℄ ++ y and y � y 0 implies x � [a℄ ++ y 0. This is just the truestatment that ons is monotoni with respet to the lexiographi ordering.Lemma 8 (Horner's rule) Let H be a pointed binary relator and g = [g0; g1℄ be a funtionalH1{algebra. If g1 is monotoni with respet to the preorder R, thenmaxR � P([g ℄) � �prune � ([maxR � �Y ℄);where Y = g0 [g. 20

The proof of Horner's Rule is a straightforward appliation of promotion, plus theuniversal property of maxR. Below we onsider two examples:1. Sno lists. The maximum suÆx sum an be spei�ed asmss = max leq � Psum � �prune;where sum = ([zero; plus℄). It is easy to hek that plus is monotoni on leq , soHorner's rule is appliable. Sinemax leq � �(zero [plus) � [0; f ℄where f (s; a) = (s + a)max 0, we an implement mss by ([0; f ℄).Similarly, the maximum sum suÆx problem an be spei�edmss = maxR � �prune;where xRy = sumx � sumy . Sine here g = � = [nil ; sno℄ the requirement is thatsno should be monotoni on R:sumx � sumy) sum (x ++ [a℄) � sum (y ++ [a℄):This ondition is satis�ed beause addition is monotoni under �. We an implementthis version of mss by ([nil ; f ℄), wheref (x ; a) = (x ++ [a℄; if sum (x ++ [a℄) > 0[℄; otherwiseWe an make this program more eÆient by representing eah tree x by the pair(x ; sumx), thereby avoiding omputing sum from srath eah time.2. Binary trees. Taking H(A;X) = 1+(A�(X �X)) gives the tree type ([nil ; bin℄; tree).The sum of a tree is de�ned bysum = ([zero; plus℄);where plus(a; (m; n)) = a + m + n. For this type mss gives the maximum pruningsum. The monotoniity ondition readsm0 � m1 ^ n0 � n1) plus(a; (m0; n0)) � plus(a; (m1; n1))and is easily seen to be true. This time we an implement mss by ([zero; f ℄), wheref (a; (m; n)) = (a +m + n)max 0.
21

8 Segments and segment deompositionHaving overed subtrees and prunings, we an now return to arbitrary segments. A tree yis a segment of x if there exists a subtree z of x suh that y is a pruning of z . Formally,the natural transformation segment : T - T is de�ned bysegment = prune � subtree:This de�nition was introdued informally in Setion 2 for lists and trees of various kinds.The segment deomposition theorem stated below puts the previous results together.Theorem 1 (Segment Deomposition) Let H be a pointed binary relator with tree type(�;T). Suppose g = [g0; g1℄ is a funtional H1-algebra, and that g1 is monotoni on thepreorder R. ThenmaxR � P([g ℄) � �segment � ([maxR � �X ℄) � bmaxR � �Y ;where X = 20 [21, and Y = g0 [g.Proof. As before, let H0 be the labelled variant of H, with tree type (�0;T0). We arguemaxR � P([g ℄) � �segment= fde�nition of segmentgmaxR � P([g ℄) � �(prune � subtree)= f� of ompositiongmaxR � P([g ℄) � Eprune � �subtree= fE in terms of P (Eq. 1)gmaxR � P([g ℄) � union � P�prune � �subtree= fsine P = E on funtions and union : E E � EgmaxR � union � P(P([g ℄) � �prune) � �subtree� fdistributing maxR over union, sine R is a preordergmaxR � P(maxR � P([g ℄) � �prune) � �subtree� fHorner's rule, Lemma 8gmaxR � P([maxR � �Y ℄) � �subtree= fLemma 5gmaxR � P([maxR � �Y ℄) � setify � subtrees� fsine setify : P - T0gmaxR � setify � T0([maxR � �Y ℄) � subtrees� fAumulation Lemma 6gmaxR � setify � bmaxR � �Y � fLemma 4g([maxR � �X ℄) � bmaxR � �Y :Appliation of the segment deomposition theorem gives an eÆient solution for themaximum segment sum problem on any tree type that allows the de�nition of sum.22

9 Conluding remarksWe have demonstrated how muh of the original theory of lists an be parameterised byan arbitrary data type. The result is, in our opinion, at least a linguisti improvement;the theory is no longer luttered by the syntati idiosynraies of lists. It is debatable,however, whether by itself any mere linguisti improvement would justify the ood ofde�nitions and results given above. What is of greater interest is the possibility that thisstyle of generi programming an be applied to more hallenging problems. An obviousandidate for further work is the so-alled sliding tails lemma, whih underlies all eÆientpattern mathing algorithms on lists. If this lemma an be parameterised by an arbitrarydata type, the way is open for a generi theory of pattern mathing. Suh a generi theoryis likely to bene�t by the work of Bakhouse [1℄, who has shown how many theoremsabout regular algebra an be generalised to data types. Bakhouse and his team have alsodeveloped a generi theory of zips [2℄.Finally, another important diretion for future researh is the design of a programminglanguage in whih data types are �rst-lass itizens, in the sense that they an be passedas parameters to generi programs. It seems that researh in the design of funtionalprogramming languages is also heading in this diretion; in partiular the work of Jones[15℄ on onstrutor lasses is relevant in this onnetion.AknowledgementsPart of this work was done while Oege de Moor visited Roland Bakhouse at EindhovenUniversity. Oege de Moor also wishes to thank Masato Takeihi for providing an inspiringworking environment at Tokyo University, where this paper was �nished. Many of the ideasand examples presented here are impliit in the work of Jeuring and Gibbons; the inueneof their pioneering e�orts an be traed throughout the paper. Johan Jeuring and Jaapvan der Woude srutinized drafts of this paper, and suggested many improvements.Referenes[1℄ C. J. Aarts, R. C. Bakhouse, P. Hoogendijk, E. Voermans, and J. C. S. P. Van derWoude. A relational theory of datatypes. Available via anonymous ftp fromftp.win.tue.nl in diretory pub/math.prog.onstrution, September 1992.[2℄ Roland Bakhouse, Henk Doornbos, and Paul Hoogendijk. Commuting relators.Tehnial Report. Available by anonymous ftp from ftp.win.tue.nl, diretorypub/math.prog.onstrution., 1992.[3℄ M. Barr and C. Wells. Toposes, Triples and Theories, volume 278 of Grundlehren derMathematishen Wissenshaften. Springer{Verlag, 1985.[4℄ R. S. Bird. An introdution to the theory of lists. In M. Broy, editor, Logi ofProgramming and Caluli of Disrete Design, volume 36 of NATO ASI Series F, pages3{42. Springer{Verlag, 1987. 23

[5℄ R. S. Bird. Letures on onstrutive funtional programming. In M. Broy, editor,Construtive Methods in Computing Siene, volume 55 of NATO ASI Series F, pages151{216. Springer{Verlag, 1989.[6℄ R. S. Bird. A alulus of funtions for program derivation. In D.A. Turner, editor,Researh Topis in Funtional Programming, University of Texas at Austin Year ofProgramming Series, pages 287{308. Addison{Wesley, 1990.[7℄ A. Carboni, G.M. Kelly, and R.J. Wood. A 2{ategorial approah to geometrimorphisms I. Cahiers de Topologie et Geometrie Di�erentielle Categoriques, 32(1):47{95, 1991.[8℄ O. de Moor. Categories, relations and dynami programming. D.Phil. thesis. TehnialMonograph PRG-98, Computing Laboratory, Oxford, 1992.[9℄ O. de Moor. Working notes on membership of data types. Unpublished manusript,1993.[10℄ P. J. Freyd and A. �S�edrov. Categories, Allegories, volume 39 ofMathematial Library.North{Holland, 1990.[11℄ J. Gibbons. Algebras for tree algorithms. D.Phil. thesis. Programming ResearhGroup, Computing Laboratory, 11 Keble Road, Oxford OX1 3QD, September 1991.[12℄ R. Goldblatt. Topoi | The Categorial Analysis of Logi, volume 98 of Studies inLogi and the Foundations of Mathematis. North{Holland, 1986.[13℄ J. Jeuring. Deriving algorithms on binary labelled trees. In P.M.G. Apers, D. Bosman,and J. Van Leeuwen, editors, Proeedings SION Computing Siene in the Netherlands,pages 229{249, 1989.[14℄ P. T. Johnstone. Topos Theory. Aademi Press, 1977.[15℄ M. P. Jones. A system of onstrutor lasses: overloading and impliit higher-orderpolymorphism. Journal of Funtional Programming, 5(1):1{35, 1995.[16℄ J. Lambek. A �xpoint theorem for omplete ategories. Mathematishe Zeitshrift,103:151{161, 1968.[17℄ D. J. Lehmann and M. B. Smyth. Algebrai spei�ation of data types: A synthetiapproah. Mathematial Systems Theory, 14:97{139, 1981.[18℄ G. Malolm. Data strutures and program transformation. Siene of ComputerProgramming, 14:255{279, 1990.[19℄ E. G. Manes and M. A. Arbib. Algebrai Approahes to Program Semantis. Textsand Monographs in Computer Siene. Springer{Verlag, 1986.
24

[20℄ S. D. Swierstra and O. de Moor. Virtual data strutures. In B. M�oller, H. Partsh,and S. Shuman, editors, Formal Program Development, volume 755 of Leture Notesin Computer Siene, pages 355{371, 1993.[21℄ P. Wadler. Deforestation. Theoretial Computer Siene, 73(2):231{248, 1990.

25

