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Abstract

We study the type inference problem for a system with
type classes as in the functional programming language
Haskell. Type classes are an extension of ML-style
polymorphism with overloading. We generalize Milner’s
work on polymorphism by introducing a separate con-
text constraining the type variables in a typing judge-
ment. This leads to simple type inference systems and
algorithms which closely resemble those for ML. In par-
ticular we present a new unification algorithm which
is an extension of syntactic unification with constraint
solving. The existence of principal types follows from
an analysis of this unification algorithm.

1 Introduction

The extension of Hindley /Damas/Milner polymorphism
with the notion of type classes in the functional pro-
gramming language Haskell [6] has attracted much at-
tention. Type classes permit the systematic overloading
of function names while retaining the advantages of the
Hindley/Damas/Milner system: every expression which
has a type has a most general type which can be inferred
automatically. Although many extensions to Haskell’s
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type system have already been proposed (and also im-
plemented), we believe that the essence of Haskell’s type
inference algorithm has still not been presented in all
its simplicity. The main purpose of this paper is to give
what we believe to be the simplest algorithm published
so far, a contribution for implementors. At the same
time we present a correspondingly simple type inference
system, a contribution aimed at users of the language.
The algorithm is sound and complete with respect to
the inference system, and both are very close to their
ML-counterparts. Despite this proximity, the proofs are
considerably more involved and only the main steps are
shown.

A type class in Haskell is essentially a set of types
(which all happen to provide a certain set of functions).
The classical example is equality. In old versions of
ML, the equality function = has the polymorphic type
Ya.o — a — bool, where the type variable a ranges
over all types. However, = should not be applied to ar-
guments of function type. To fix this problem, Standard
ML [11] introduces special type variables that range
only over types where equality is defined. Equality dif-
fers from other polymorphic functions not just because
of its restricted domain but also because of 1ts mixture
of polymorphism and overloading: equality on lists is
implemented differently from equality on integers.

Type classes treat both issues in a systematic way:
the type variable « is restricted to elements of a certain
type class, say Fq. Then for each type 7 where = should
be defined, we have to declare that 7 is of class Fq by
providing an implementation of = of type 7 — 7 — bool.

To express the fact that a type 7 is in some class
C we introduce the judgement 7 : C'.'! The idea of
viewing Haskell as a three level system of expressions,
types and classes, where classes classify types, goes back
to Nipkow and Snelting [12]. However, in their system it
is impossible to express that a type belongs to more than
one class. To overcome this difficulty we introduce sorts

1If classes are viewed as predicates on types, this leads to the

Haskell notation C'(7).



as finite sets of classes. The judgement 7: {C4,...,C,}
is a compact form of the conjunction 7 : Cy A ... A
7 : Cy. Alternatively we may think of {C4,...,C,}
as a notation for C; N ...N (), the intersection of the
types belonging to the classes C; to C),. This leads to a
simple type inference system and algorithm. The former
resembles that for Mini-ML [4], the latter is very similar
to algorithm Z by Milner [10]. The main difference is
that in both cases we also compute a set of constraints
of the form « : {C1, ..., C,} where « is a type variable.

2 Mini-Haskell

Since the aim of this paper is simplicity, we treat only
the most essential features of Haskell relating to type
classes. The resulting language is basically Mini-ML [4]
plus class and instance declarations, Mini-Haskell for
short. Its syntax is shown in Figure 1. Although the
next paragraph provides a brief account of type classes,
the reader should consult the Haskell Report [6] or the
original paper on type classes [14] for motivations and
examples.

Mini-Haskell extends ML by a restricted form of over-
loading. Each class declaration introduces a new class
name C' and a new overloaded function name . Seman-
tically C represents the set of all types which support a
function z. For instance

class Fq where eq : Va:Eq.ac — o — bool

introduces the class Fq of all those types 7 which pro-
vide a function eq : 7 — 7 — bool. A class declaration
is like a module interface in that it separates declara-
tions from implementations. In order to “prove” that a
particular type, say int, 1sin Fq, a “witness” for the re-
quired function eq needs to be provided. This is the pur-
pose of instance declarations. In order to prove int : Eq
we instantiate eq by eq_int, some existing function of
type int — int — bool:

inst int : Fq where eq = eq_int

As motivated in the introduction, sorts are finite sets
of classes. This representation is a key ingredient for the
concise treatment of type inference. Yet semantically
the sort {C4, ..., C,} should be understood as C1N...N
Cp. Thus {C} and C are equivalent, and the empty set
{} is the sort/set of all types. If Sy is more specialized,
i.e. represents fewer types, than S5, we write S; < Ss.
Since sorts are interpreted as intersections, S; < Sy <
S1 D S5 holds. Hence any two sorts S; and S; have a
greatest lower bound whose representation is their union
S1U Ss.

Types in Mini-Haskell are simply terms over vari-
ables and constructors of fixed arity. Note that — is

just another type constructor, i.e. 7 — 75 is short for
—(71,72). The set of free variables in a type scheme
is denoted by FV(o). Bound variables in type schemes
range only over certain subsets of types: Va:S.o ab-
breviates all instances [r/a]o where 7 : S, a judgment
defined formally below.

Expressions are
tended with let-definitions. A program is a sequence
of declarations followed by an expression.

A Mini-Haskell class declaration class C' where « :
Va:C.o (where o should contain no free variables
except «) corresponds to the Haskell declaration
class C'a where z : 0. The translation in the oppo-
site direction is more involved because of the following
simplifying assumptions:

A-terms ex-

1. A class declares only one function symbol, whereas
Haskell allows a set of functions. This feature is
clearly not essential. Strictly speaking, we could
have dropped class names altogether since there is
a one to one correspondence between class names
and the single function declared in that class. How-
ever this would have obscured the connection with

Haskell.

2. Classes are not ordered. It has already been ob-
served [3] that subclasses are mere syntactic sugar.
Section 6 discusses ways of dealing with subclasses.

A Mini-Haskell instance declaration inst ¢
(S1,...,5,)C where & = e expresses that ¢t(ry,...7)
is in class C' provided the 7; are of sort S;. It
corresponds to the Haskell declaration inst (con) =
C(tay...an) where = e where con is a list consist-
ing of assumptions C’ o; with C' € S; foralli =1...n.

In the sequel a list of syntactic objects s1,...,s, 18
abbreviated by 5. For instance, Yo, 1S, .0 is equivalent
with Ya1:51, ..., an:5,.0.

2.1 Classifying Types

Before we embark on type inference, the simpler prob-
lem of sort inference has to be settled. In ML and
many other languages we have the judgement e : T,
expressing that e is of type 7. Similarly, we classify
types by sorts with the judgement 7 : C', stating that
type 7 1s in class C. This judgement requires two kinds
of information, namely the sorts of the type variables
in 7 and the “functionality” of the type constructors.
The former is recorded in a sort context I', which is a
total mapping from type variables to sorts such that
Dom(T) = {o | T # {}} is finite. Sort contexts
can be written as [e1:5],...,@,:S,]. The behaviour
of type constructors is specified by declarations of the
form ¢ : (S, )C which have exactly the same meaning as
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Figure 1: Syntax of Mini-Haskell types and expressions

the corresponding instance declarations. A set of such
declarations is called a signature and is denoted by A.

Given a context I' and a signature A we can infer the
sort of a type 7 using the judgement I') AF 7 : 5. The
rules are shown in Figure 2. Remember that the sort
{C'} and the class C' are equivalent.

Having seen sort inference for Mini-Haskell types we
are prepared for our main goal, type inference and type
reconstruction for Mini-Haskell programs.

3 Type Inference Systems

In this section we present two type inference systems
for Mini-Haskell. We start with a set of inference rules
which define the types of Mini-Haskell programs and
expressions. Then we proceed to a more restricted,
syntax-directed set of rules, which will be the basis for
the type inference algorithm.

As usual in type inference for ML-like languages, an
environment is a finite mapping F = [@1:01, ..., 2,:0,]
from identifiers to types. The domain of E is Dom(FE) =
{@1,...,2,}. F[z:0] is a new map which maps z to o
and all other z; to o;, and the free type variables in £
are FY(E) = FV(E(x1))U .. .UFV(E(xy)). f Visa
set of type variables the restriction of I' to variables not
in Vis T\V = [aTa |« € Dom(T) — V].

The judgement I') A, E'F p : o states that the Mini-
Haskell program p is of type ¢ under A and the assump-
tions in I' and E.

For a program p, which begins with a series of class
and inst declarations, the typing rules in Figure 3 can
be applied backwards to build up A and . For in-
stance, applying rule INST backwards adds the new

declaration t : (S,)C to A in the first premise. The

second and third premises compare the types of # and
e in order to type-check # = e. These assumptions in A
and E are used in the typing rules for expressions e in
Figure 4.

The rules extend the classical system of Damas and
Milner [5] by the notion of sorts, which are represented
in contexts and in restricted quantifications of type vari-
ables. The assumption & € FV (o) in VI is not really es-
sential (for soundness) but simplifies the analysis later
on. Its practical significance is discussed in Section 8.

In contrast to the CLASS and INST rules, the sig-
nature A remains fixed in the typing derivation for an
expression.

3.1 Syntax-directed Type Inference

The next step towards a type checking algorithm is a
more restricted set of rules that is sufficient for type re-
construction. The application of the rules is determined
by the syntax of the expression whose type is to be com-
puted. To distinguish the syntax-directed system we use
F, ASM’ etc to denote its inferences and rules.

Definition 3.1 The type scheme ¢’ = Va/,:5! .7 is a
generic instance of 0 = Va1 Sy, .7 under I and A writ-
ten I', A F o > o, iff there exists a substitution 6 such
that

or = 7,
Dom(0) C {@m},
Tal:SLL,A B Gy i Sy [i=1...m],

{ol} N FV(o) {}
For the syntax-directed system, the rules APP and

ABS remain unchanged, the quantifier rules are incor-
porated into ASM and LET, as shown in Figure 5.
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There is a straightforward correspondence between
the two systems. The syntax-directed derivations are
sound

Theorem 3.2 If I, A/ EH e: 7 then I, AEte:T.

and in a certain sense complete w.r.t. the original sys-
tem:

Theorem 3.3 If I'AE F e

Tan: S, A EFH e 7.

Vo, :S,. 7 then

The last theorem clarifies in what sense F* works differ-
ently from : by applying the primed rules backwards,
the sort constraints for type variables are stored solely
in I', and not in the type scheme of e. For instance, the
LET’ rule explicitly extends I'. The > operation, used
in the ASM’ rule, may introduce new type variables,
whose sorts must be recorded in I'. The syntax-directed
system already has a very operational flavour. In order
to make the transition from a type inference system to
an algorithm we need one more ingredient: unification.

4 Unlification of Types with Sort
Constraints

This section deals with unification in the presence of
sort constraints in the form of contexts. This problem
can in principle be reduced to order-sorted unification,
as done in [12], using the ordering coming from the in-
clusion between sorts. However, we have refrained from
doing so because it 1s contrary to our quest for simplic-
ity: involving order-sorted unification makes the algo-
rithm appear more complicated than it actually is. In
addition, the standard theory of order-sorted unification
assumes that variables are tagged and would thus need
to be reformulated anyway.

For the remainder of this paper we assume a fixed
signature A. This 1s simply a notational device which
avoids parameterizing judgements etc. by A.

In our setting, a substitution is a finite mapping from
type variables to types. Substitutions are denoted by 8
and &; {} is the empty substitution. Define Dom(f) =
{a |0 # a} and Cod(8) = e, FV(0(a).

Since sort information is maintained in contexts, we
frequently work with pairs of contexts and substitutions.
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A substitution § obeys the sort constraints of I' in the
context of IV, written I + ¢ : T, if IV, A F fa : la
for all a. Because IV, A F fa : I'a is trivially fulfilled
if Tae = {} it suffices to require IV, A F f« : Tw for all
a € Dom(T).

As usual, we define an ordering on context-
substitution pairs:

(T,0)>(1,¢) < 36.60=6 NT'F6:T
where 80 is their composition: (60)(s) = 6(6(s)).

The set of unifiers of m and ™ w.r.t. I', writ-
ten U(T', =72), consists of the following context-
substitution pairs:

U, m=m) ={(I",8) | 0r, =02 A T'F0:T}

A unifier (T'g,00) € U(T, m1=72) is most general if
(FO,HO) > (Flagl) for all (Flagl) S u(F,leTz). We
say that unification modulo A 1s unitary if for all I' and
=79 the set U(T', 7y =72) is empty or contains a most
general unifier.

A signature A is called coregular if for all type con-
structors ¢ and all classes C' the set

D(t,C) = (S | :(5n)C € A}

1s either empty or contains a greatest element w.r.t. the
component-wise ordering of the S,,. If A is coregular let

Dom(t, C') return the greatest element of D(¢, C') or fail
if D(t,C) is empty.

Sorted unification can be expressed as unsorted uni-
fication plus constraint solving. Given a coregular sig-
nature A, this has the following simple form:

unify(T,mi=m) =
let 0 = mgu(ri=m)
r. = UaeDom(e) constrain(fo, Tw)
in (T U(T\Dom(h)),0)

where mgu computes an unsorted mgu (in particu-
lar we assume that ¢ is idempotent and that Dom(d) U
Cod(0) C FV(r=m2)) or fails if none exists.

A context T is more general than T, written T > T,
if ' C I for all . The union of two sort contexts is

defined by
IMuTly = [a:TiaUTa |« € Dom(Ty) UDom(Ts)]

and constrain(r, S) computes the most general context

I such that T)AF 7:5:

constrain(co,S) = [aS]

constrain(t(7;),S) = U constr(T,, Dom(t, C))
ces



U constrain(r;, S;)

i=1..n

constr(T,,Sp) =

Thus unify fails if mgu fails or if some Dom(t, C)
used in constrain does not exist. Soundness and com-
pleteness of constrain are captured by the following
lemmas:

Lemma 4.1 constrain(r,S),A + 1+ = S or
constrain(r, S) fails.

Proof by induction on the structure of 7. a

Lemma 4.2 constrain(0r,S) & 0 : constrain(r, S).

Proof by comparing the calling trees of
constrain(0r,S) and constrain(r, S), using Lemma 4.1
at the leaves of the constrain(r, S) tree. a

Lemma 4.3 If I)A F 7 : S then constrain(r,S) is
defined and more general than T'.

Proof by induction on the structure of 7. a

Theorem 4.4 If A s coregular, unify computes a
most general unifier.

Proof To show soundness, let unify(T', m1=72) ter-
minate with result (T'p,fy). Tt follows directly that
Bo11 = Bp7o. It remains to be seen that I'y F 6y : v
for all a. If o & Dom(fy), then Taw C Tper and the
claim follows trivially. If o € Dom(fy) then T D T, =
UﬁeDom(eu) constrain(f0y5,TF) D constrain(fyo, Ter)
and the claim follows from Lemma 4.1.

To show completeness let (T'y,6,) € U(T,7=m2),
le. 017 = 617 and I'y - 61 : I'. Since 7 and 7
have an unsorted unifier 61, mgu(m =m3) is defined and
yields a substitution 6y such that #; = 66y for some
8. Definedness of unify(T',1=m2) also requires de-
finedness of constrain(fya,Te): since Ty F 1 : T,
Lemma 4.3 implies definedness of constrain(f; o, T'e)
which easily yields definedness of constrain(fpo, Tex).
Thus unify(T, 71 =72) terminates with a result (T'g, fy).

It remains to be shown that I'y - 6 : I'g. If g €
Dom(0y) then T'y5 = {} and hence T'; F 63 : T3 holds
trivially. Now assume 3 & Dom(fy). Thus T'yf =T SU
I'g. FromI'y F 6, : ' it follows that I'y - 63 : I'3. Prov-
ing 'y F 6 : ', is more involved. From Lemma 4.2 it fol-
lows that constrain(61o,Ta) F 6 @ constrain(fpo, Ter)
for any o and hence UaEDom(GD) constrain(fy o, Ta) F
6 : UaEDom(GD) constrain(fya, Tar), le.
UaEDom(GD) constrain(fy o, Tea) 8 : T'p (). Since T'y
fhe : Ta, Lemma 4.3 implies Ty < constrain(f; o, Te)
and hence I'; < UaEDom(GD) constrain(f o, T'er). Thus
Iy 6 : T, follows from (%) by monotonicity. a

Theorem 4.5 Unification modulo A is unitary ff A is
coreqular.

Proof The “if” direction is a consequence of Theo-
rem 4.4. For the “only if” direction let A not be coreg-
ular. Let < denote the component-wise ordering of sort
tuples S,,. Thus there are two declarationst : (.S, )C and
t:(T,)C, Sy £ T,, and S, # T, such that there is no
third declaration t : (U,)C, and S, T,, < U,,. Hence the
unification problem ([5:C],t(a5)=/5) does not have a
most general unifier. Two maximal ones are ([ar,:5,], )

and ([een: T3], 0) where 6 = {8 — t(an)}. O

Thus we have a precise characterization of those signa-
tures where principal types exist.

5 Principal Types and Algorithm
T

The above syntax-directed rule system is non-
deterministic, since rule ASM’ can choose any instance
of the type of the identifier #. To obtain a determinis-
tic algorithm, we refine the syntax directed system such
that it keeps types as general as possible. The result is
algorithm 7 in Figure 6. In this section we assume that
A is coregular — otherwise unify is not well-defined.

Algorithm 7 follows the same pattern as Milner’s orig-
inal algorithm of the same name [10]: the type of an
expression e is computed by traversing e in a top-down
manner. 7 returns a quadruple (V,T',0, 1), where 07 is
the type of e under the context I'. The parameter V'
contains all “used” variables, 1.e. variables that occur in
rTorin @ orin . Thus a type variable o ¢ V is a “new”
variable. Observe the different let-constructs: the one
on the left hand side is in the object language, the ones
on the right are part of the type inference algorithm.

For an environment F and a substitution @, define
OF =[xz :0(E(x)) | # € Dom(E)]. We say F is closed if
FV(E) = {}. The free variables of a substitution 0 are
defined as FV(0) = {FV(fa)U{a} | o € Dom(6)}. Let
[] denote the empty context.

Theorem 5.1 (Correctness of 7) If
I(V,T,0,E e) = (V,TV,0', 1) and Dom(T) U FV(#) U
FV(E)CV then T/, AJ0'EFH e 6T

Proof by induction on the structure of e, using a num-
ber of auxiliary lemmas. a

A type reconstruction algorithm should compute
most general types, usually called principal types, if
they exist.

Definition 5.2 Let FE be a closed environment. The
type scheme o is a principal type of an expression e
wrt. Aand Eif [[,A)Ete:ocand if [, A,EFe:o
implies [[,AF ¢ > o'



I(V,T,0, Ee) = case e of

(e1 €2) =

letz =ejlney =

r = let Ya,:S,.7 = E)
B ¢ V [Z =1. n]
in (VU{Ba},T[Br:54],0,[ n/an] )
Az.e = et

(V. T 0, 1)
in (V/,T",0',a — 1)
Iet (Vl,Fl,Hl,Tl) =

(Va,T3, 02, m2)

(I, )
in (VaUu{a}, T, 00,5, )
Iet (Vl,Fl,Hl,Tl) =

in Z(Vi,T1\{@n}, 01, E[x

a ¢ V
= I(VU{a},T,0,Elza]e)

I(V,T,0,E, e1)
= I(Vl,Fl,Hl,E,ez)

8% ¢ V2
= unify(Ta, bz = fam — «)

Z(V,T,0,E, e1)
{@n} = FV(in) = FV(6,E)
NonTia,.01m1], €2)

Figure 6: Algorithm 7

The following lemma is crucial for establishing the
principal type theorem.

Lemma 5.3 If IV, A E'H e : 7 where E' = 5’0F and
T'F & T then there exist V and &) such that

Dom(T') U FV(0) UFV(E) C V,
I(V,F,H,E,e): (VlarlaglaTl)a
E' =§6FE

T/ 261917'1,

IE6:T

Proof by induction on the structure of e, using a num-
ber of auxiliary lemmas. a

Theorem 5.4 If [, A,E F e : 7 and E is closed
then Z({}, [, 4}, E,e) = (V,T,0, 1) and Vo, T, 07 is a
principal type of e w.r.t. A and E, where a, = FV(071).

Proof follows from Lemma 5.3. O

We may restrict our attention to closed environments
because CLASS and INST declarations cannot intro-
duce free variables into an environment E: type schemes
in CLASS declarations must be closed.

Algorithm 7 relies on wunify which has only been
defined for coregular signatures. Hence it remains to
be seen if Mini-Haskell’s CLASS and INST declara-
tions yield coregular signatures. In fact they do if re-
stricted by the following context condition which is the
result of translating the restrictions actually adopted in

Haskell [6, Sec. 4.3.2] to Mini-Haskell:

For every class C' and type constructor ¢ there
is at most one instance declaration inst ¢ :

(Sh)C

The more complex restrictions for Haskell collapse to
this single requirement because of the absence of sub-
classes.

One can easily see that a signature is coregular if it is
derived from a set of instance declarations which meet
the above restriction. The converse does not hold: the
following declarations violate the above restriction

class C' where ¢ : Va:Cl.a;
inst int : ()C where ¢ = 1;
inst int : ()C where ¢ = 2;

although they give rise to the coregular signature {int :
()C}2. The reason is that although coregularity suffices
for the existence of principal types, it does not preclude
semantic ambiguities: the expression ¢+ 1 is definitely
of type int but may evaluate to either 2 or 3, depending
on which instance is chosen for ¢. Hence the above addi-
tional restriction which rules out situations like these.

6 Haskell = Mini-Haskell + Sub-
classes

Compared to standard Haskell, the main missing type
class feature of Mini-Haskell is the notion of subclasses.
Subclasses are clearly beneficial as far as methodical as-
pects are concerned. However, for semantics and type
reconstruction, subclasses are syntactic sugar and can
be eliminated. We present two methods for handling
subclasses. Subclasses can be integrated into our type
inference system by slightly changing some definitions.

It is easy to give similar examples where the IN ST declara-
tions not only differ in the function (or constant) provided.



As an alternative, we give a method for eliminating sub-
classes. We assume the restrictions on instance decla-
rations adopted in actual Haskell, which are the reason
why the latter method is particularly simple.

Assume a set of Haskell classes C' with an ordering
<. If ' < D, we say that C is a subclass of D and
D is a superclass of €. To accommodate subclasses,
we extend the Mini-Haskell judgement that defines sort
membership of types, ' A F 7 : S to the judgement
[AFH 7.5 The rules SI, SE, TVAR, and TCON are
the same for the Haskell-judgement H; we only have
one additional rule for the subclass ordering:

LA 7. C=<D

SUB
LLAFY 7D

6.1 Integrating Subclasses

Our unification and type inference algorithms easily ac-
commodate subclasses. We give a brief sketch of the
necessary extensions. In essence, only the unification
algorithm is affected by the integration of subclasses.
The key idea is to redefine the ordering on sorts:

S<S e veSIces o=

As above, the ordering < extends in the component-
wise way to sequences of sorts S,. Then for a type
constructor ¢ and a class C, the definition of D(¢,C) is
generalized to

D(t,C) = {5, 3D < C.t:(5,)D € A}

Coregularity is defined as above: D(¢, C') must be empty
or have a maximal element for all ¢ and C'. Similar to
above, 1t can be shown that coregularity is necessary
and sufficient for unitary unification and hence princi-
pal types. The restrictions adopted in Haskell imply
coregularity also in the presence of subclasses and are
also motivated by semantic reasons, as discussed in Sec-
tion 8.

6.2 Eliminating Subclasses

The idea behind translating Haskell type classes into
Mini-Haskell is to replace Haskell classes by the set of
their super sorts. Let C'T = {C’" | C < C’} and cor-
respondingly ST = UCeS C'7. Then a Haskell-like class

declaration

class C' < S where ¢ = Va.C Va,,:S,.7

states that C is a subclass of all ¢/ € S. Assume
that the subclass ordering < has been built up from
the CLASS declarations. Then the above CLASS dec-

laration translates into the Mini-Haskell declaration

class C' where v = Va:.C Va,,:S, 1.7

A Haskell instance declaration
inst ¢ : (E)C’ where r = ¢

simply translates into

inst ¢ : (S,1)C where z = ¢

In the last translation it is not necessary to expand
C' into several declarations, one for each element of C7,
since Haskell requires that if ¢(...) is declared as an
instance for ', then it also has to be an instance of
all super classes of C'. Another consequence of this re-
striction is that the rule SUB for type classification is
redundant in the case of Haskell.

Assume a Mini-Haskell class signature A that also
includes an ordering < on classes. For this Haskell-like
signature, let A] denote the pure Mini-Haskell signa-
ture obtained by translating all instance declarations in
A with the above rule. Define further I'l = [ : (T)1 |
a € Dom(T')]. We show the correctness of the transla-
tion with the following theorem.

Theorem 6.1 Let A be a Mini-Haskell signature with
an ordering on classes. Then T, AFH r: C iff T'7, AT F
T:C7.

It should be noted that this translation loses some
information about the class ordering. The difference to
the former method emerges when Mini-Haskell i1s trans-
lated into a functional language without classes, e.g.
ML.

For instance, assume the class ordering Ord < FEq.
Then a type 7 of sort Ord would be translated into a
type of sort {Ord, Eq} by the latter method. This is
equivalent in the sense that an object of type 7 still
provides the same functions. The particular instances
of these functions cannot be computed at compile time
and are usually carried around at run time in the form
of dictionaries (of functions). Now we can see the dis-
advantage of the latter method: an object of type 7 re-
quires two dictionaries instead of only one. In contrast,
after integrating subclasses, the two sorts {Ord, Eq}
and Ord are equivalent (since {Ord, Fq} < Ord and
Ord < {Ord, Fq}) and only one dictionary has to be
used for either one.

7 Related Work

The structure of algorithm 7 is very close to that of
Milner’s algorithm of the same name [10]. Apart from
the fact that our version of 7 is purely applicative (hence
we carry the substitution and the set of used variables
around explicitly), the main difference is that we also
have to maintain a set of constraints I'. In fact, this



is the only real difference to Milner’s algorithm. It is
interesting to note that Milner’s first formulation of type
inference uses a purely functional algorithm W which is
non-incremental, i.e. does not take a given substitution
6 and produce an extended one ¢, but computes the
result substitution from scratch. Whereas he considers
7 merely a more efficient refinement, in our case there
is a very strong simplicity argument in favour of the
incremental version: when typing an application (e eq)
it is far simpler to type es under the constraints due
to e; than compute two separate constraints I'y and I'y
and having to merge them afterwards.

Probably the first combination of ML-style polymor-
phism and parametric overloading (as opposed to finite
overloading as in Hope [2]) was presented by Kaes [8].
His language is in fact very close to our Mini-Haskell, ex-
cept that he does not introduce classes explicitly. More
importantly, he does not use contexts to record infor-
mation about type variables but tags the type variables
directly.

The original version of type classes as presented by
Wadler and Blott [14] was significantly more powerful
than what went into Haskell, the reason being that the
original system was undecidable, as shown later by Vol-
pano and Smith [13]. The relationship to Haskell proper
is discussed in Section 2.

Nipkow and Snelting [12] realized that type inference
for type classes can be formulated as an extension of
ordinary ML-style type inference with order-sorted uni-
fication, i.e. simply by changing the algebra of types
and the corresponding unification algorithm. Although
this was an interesting theoretical insight, it only lead
to a simple algorithm for a restricted version of Haskell
where each type variable is constrained by exactly one
class. In addition it was not possible to identify ambigu-
ous typings like [a:C], A, E'F e : int because there was
no notion of contexts and type variables were tagged
with their sort. Both problems have been eliminated in
the present paper.

An interesting extension of Haskell using the notion
of “predicated types” was designed and implemented by
Mark Jones [7]. The main difference is that he allows
arbitrary predicates P(7y, ..., T,) over types as opposed
to our membership constraints a : 5.

Independently of our own work Chen, Hudak and
Odersky [3] developed an extension of type classes us-
ing similar techniques and arriving at a similar type
reconstruction algorithm. Since their type system is
more general, they use different and more involved for-
malisms, in particular for unification. In contrast, we
reduce unification to its essence by splitting it into stan-
dard unification plus constraint solving. This enables
us to give a sufficient and necessary criterion for uni-
tary unification, which is required for principal types.

As discussed in Section b, the restrictions in Haskell
easily archive unitary unification. An example where
unitary unification is more difficult is the integration
of subclasses (see Sec. 6.1), where Dom(t, (') is defined
differently.

Kaes [9] presents an extension of Hindley/Milner
polymorphism with overloading, subtypes and recursive
types. Due to the overall complexity of the resulting
system, the simplicity of the pure system for overload-
ing is lost.

8 Ambiguity

We would like to conclude this paper with a discussion of
the ambiguity problem which affects most type systems
with overloading. It is caused by the fact that although
a program may have a unique type, it’s semantics is not
well-defined. According to our rules, the program

class C' where f : Va:C.a — int;

class D where ¢ : Va:D.q;

(f ¢
has type int in any context containing an assumption
a : {C, D}. Yet the program has no semantics because
there are no instances of f and c¢ at all. If there were
multiple instances of both C' and D), it would be impos-
sible to determine which one to use in the expression
(f o).

Motivated by such examples, a typing A E ke : o
is usually defined to be ambiguous if there is a type vari-
able in I which does not occur free in ¢ or . However,
the only formal proof of a relationship between such
ambiguous types and ill-defined semantics that we are
aware of is due to Blott [1]. Since we have not provided a
semantics for our language, we have not introduced am-
biguity formally. Nevertheless there 1s one place in our
inference system where we anticipate a particular treat-
ment of ambiguity. In rule VI, the proviso o € FV(0)
is intended to propagate ambiguity problems: with this
restriction, the expression let # = (f ¢) in 5 (preceded
by classes C' and D as declared above) has type int only
in a context containing an assumption « : {C, D}. If the
proviso is dropped, the expression also has type int in
the empty context, thus disguising the local ambiguity.
The reason is that x can be given the ambiguous type
Ya:{C, D}.int, but since # does not occur in 5, this does
not matter. Although in a lazy language xz need not be
evaluated and hence the semantics of the whole let is
indeed unambiguous, we would argue that for pragmatic
reasons 1t advisable to flag ambiguities whenever they
arise.

From this discussion it is obvious that a semantics and
a coherence proof for the type system w.r.t. a semantics
are urgently needed.
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