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type system have already been proposed (and also im-plemented), we believe that the essence of Haskell's typeinference algorithm has still not been presented in allits simplicity. The main purpose of this paper is to givewhat we believe to be the simplest algorithm publishedso far, a contribution for implementors. At the sametime we present a correspondingly simple type inferencesystem, a contribution aimed at users of the language.The algorithm is sound and complete with respect tothe inference system, and both are very close to theirML-counterparts. Despite this proximity, the proofs areconsiderably more involved and only the main steps areshown.A type class in Haskell is essentially a set of types(which all happen to provide a certain set of functions).The classical example is equality. In old versions ofML, the equality function = has the polymorphic type8�:� ! � ! bool, where the type variable � rangesover all types. However, = should not be applied to ar-guments of function type. To �x this problem, StandardML [11] introduces special type variables that rangeonly over types where equality is de�ned. Equality dif-fers from other polymorphic functions not just becauseof its restricted domain but also because of its mixtureof polymorphism and overloading: equality on lists isimplemented di�erently from equality on integers.Type classes treat both issues in a systematic way:the type variable � is restricted to elements of a certaintype class, say Eq. Then for each type � where = shouldbe de�ned, we have to declare that � is of class Eq byproviding an implementationof = of type � ! � ! bool.To express the fact that a type � is in some classC we introduce the judgement � : C.1 The idea ofviewing Haskell as a three level system of expressions,types and classes, where classes classify types, goes backto Nipkow and Snelting [12]. However, in their system itis impossible to express that a type belongs to more thanone class. To overcome this di�culty we introduce sorts1If classes are viewed as predicates on types, this leads to theHaskell notation C(�).



as �nite sets of classes. The judgement � : fC1; : : : ; Cngis a compact form of the conjunction � : C1 ^ : : : ^� : Cn. Alternatively we may think of fC1; : : : ; Cngas a notation for C1 \ : : : \ Cn, the intersection of thetypes belonging to the classes C1 to Cn. This leads to asimple type inference system and algorithm. The formerresembles that for Mini-ML [4], the latter is very similarto algorithm I by Milner [10]. The main di�erence isthat in both cases we also compute a set of constraintsof the form � : fC1; : : : ; Cng where � is a type variable.2 Mini-HaskellSince the aim of this paper is simplicity, we treat onlythe most essential features of Haskell relating to typeclasses. The resulting language is basically Mini-ML [4]plus class and instance declarations, Mini-Haskell forshort. Its syntax is shown in Figure 1. Although thenext paragraph provides a brief account of type classes,the reader should consult the Haskell Report [6] or theoriginal paper on type classes [14] for motivations andexamples.Mini-Haskell extends ML by a restricted form of over-loading. Each class declaration introduces a new classname C and a new overloaded function name x. Seman-tically C represents the set of all types which support afunction x. For instanceclass Eq where eq : 8�:Eq:�! �! boolintroduces the class Eq of all those types � which pro-vide a function eq : � ! � ! bool. A class declarationis like a module interface in that it separates declara-tions from implementations. In order to \prove" that aparticular type, say int, is in Eq, a \witness" for the re-quired function eq needs to be provided. This is the pur-pose of instance declarations. In order to prove int : Eqwe instantiate eq by eq int, some existing function oftype int! int! bool:inst int : Eq where eq = eq intAs motivated in the introduction, sorts are �nite setsof classes. This representation is a key ingredient for theconcise treatment of type inference. Yet semanticallythe sort fC1; : : : ; Cng should be understood as C1\: : :\Cn. Thus fCg and C are equivalent, and the empty setfg is the sort/set of all types. If S1 is more specialized,i.e. represents fewer types, than S2, we write S1 � S2.Since sorts are interpreted as intersections, S1 � S2 ,S1 � S2 holds. Hence any two sorts S1 and S2 have agreatest lower bound whose representation is their unionS1 [ S2.Types in Mini-Haskell are simply terms over vari-ables and constructors of �xed arity. Note that ! is

just another type constructor, i.e. �1 ! �2 is short for!(�1; �2). The set of free variables in a type schemeis denoted by FV(�). Bound variables in type schemesrange only over certain subsets of types: 8�:S:� ab-breviates all instances [�=�]� where � : S, a judgmentde�ned formally below.Expressions are �-terms ex-tended with let-de�nitions. A program is a sequenceof declarations followed by an expression.A Mini-Haskell class declaration class C where x :8�:C:� (where � should contain no free variablesexcept �) corresponds to the Haskell declarationclass C � where x : �. The translation in the oppo-site direction is more involved because of the followingsimplifying assumptions:1. A class declares only one function symbol, whereasHaskell allows a set of functions. This feature isclearly not essential. Strictly speaking, we couldhave dropped class names altogether since there isa one to one correspondence between class namesand the single function declared in that class. How-ever this would have obscured the connection withHaskell.2. Classes are not ordered. It has already been ob-served [3] that subclasses are mere syntactic sugar.Section 6 discusses ways of dealing with subclasses.A Mini-Haskell instance declaration inst t :(S1; : : : ; Sn)C where x = e expresses that t(�1; : : : �n)is in class C provided the �i are of sort Si. Itcorresponds to the Haskell declaration inst (con) )C(t �1 : : : �n) where x = e where con is a list consist-ing of assumptions C 0�i with C 0 2 Si for all i = 1 : : :n.In the sequel a list of syntactic objects s1; : : : ; sn isabbreviated by sn. For instance, 8�n:Sn:� is equivalentwith 8�1:S1; : : : ; �n:Sn:�.2.1 Classifying TypesBefore we embark on type inference, the simpler prob-lem of sort inference has to be settled. In ML andmany other languages we have the judgement e : � ,expressing that e is of type � . Similarly, we classifytypes by sorts with the judgement � : C, stating thattype � is in class C. This judgement requires two kindsof information, namely the sorts of the type variablesin � and the \functionality" of the type constructors.The former is recorded in a sort context �, which is atotal mapping from type variables to sorts such thatDom(�) = f� j �� 6= fgg is �nite. Sort contextscan be written as [�1:S1; : : : ; �n:Sn]. The behaviourof type constructors is speci�ed by declarations of theform t : (Sn)C which have exactly the same meaning as



Type classes CSorts S = fC1; : : : ; CngType variables �Type constructors tTypes � = � j t(�1; : : : ; �n)Type schemes � = � j 8�:S:�Identi�ers xExpressions e = xj (e0 e1)j �x:ej let x = e0 in e1Declarations d = class C where x : 8�:C:�j inst t : (S1; : : : ; Sn)C where x = ePrograms p = d; p j eFigure 1: Syntax of Mini-Haskell types and expressionsthe corresponding instance declarations. A set of suchdeclarations is called a signature and is denoted by �.Given a context � and a signature �, we can infer thesort of a type � using the judgement �;� ` � : S. Therules are shown in Figure 2. Remember that the sortfCg and the class C are equivalent.Having seen sort inference for Mini-Haskell types weare prepared for our main goal, type inference and typereconstruction for Mini-Haskell programs.3 Type Inference SystemsIn this section we present two type inference systemsfor Mini-Haskell. We start with a set of inference ruleswhich de�ne the types of Mini-Haskell programs andexpressions. Then we proceed to a more restricted,syntax-directed set of rules, which will be the basis forthe type inference algorithm.As usual in type inference for ML-like languages, anenvironment is a �nite mapping E = [x1:�1; : : : ; xn:�n]from identi�ers to types. The domain ofE is Dom(E) =fx1; : : : ; xng. E[x:�] is a new map which maps x to �and all other xi to �i, and the free type variables in Eare FV(E) = FV(E(x1)) [ : : :[ FV(E(xn)). If V is aset of type variables the restriction of � to variables notin V is �nV = [�:�� j � 2 Dom(�) � V ].The judgement �;�; E ` p : � states that the Mini-Haskell program p is of type � under � and the assump-tions in � and E.For a program p, which begins with a series of classand inst declarations, the typing rules in Figure 3 canbe applied backwards to build up � and E. For in-stance, applying rule INST backwards adds the newdeclaration t : (Sn)C to � in the �rst premise. The

second and third premises compare the types of x ande in order to type-check x = e. These assumptions in �and E are used in the typing rules for expressions e inFigure 4.The rules extend the classical system of Damas andMilner [5] by the notion of sorts, which are representedin contexts and in restricted quanti�cations of type vari-ables. The assumption � 2 FV(�) in 8I is not really es-sential (for soundness) but simpli�es the analysis lateron. Its practical signi�cance is discussed in Section 8.In contrast to the CLASS and INST rules, the sig-nature � remains �xed in the typing derivation for anexpression.3.1 Syntax-directed Type InferenceThe next step towards a type checking algorithm is amore restricted set of rules that is su�cient for type re-construction. The application of the rules is determinedby the syntax of the expression whose type is to be com-puted. To distinguish the syntax-directed system we use`0, ASM0 etc to denote its inferences and rules.De�nition 3.1 The type scheme �0 = 8�0n:S0n:� 0 is ageneric instance of � = 8�m:Sm:� under � and �, writ-ten �;� ` � � �0, i� there exists a substitution � suchthat �� = � 0;Dom(�) � f�mg;�[�0n:S0n];� ` ��i : Si [i = 1 : : :m];f�0ng \ FV(�) = fg:For the syntax-directed system, the rules APP andABS remain unchanged, the quanti�er rules are incor-porated into ASM and LET, as shown in Figure 5.



SI [i = 1 : : :n]...�;� ` � : Ci�;� ` � : fC1; : : : ; CngSE �;� ` � : fC1; : : : ; Cng�;� ` � : Ci i = 1 : : :nTVAR �(�) = S�;� ` � : STCON t : (Sn)C 2 � [i = 1 : : :n]...�;� ` �i : Si�;� ` t(�n) : CFigure 2: The judgement �;� ` � : SCLASS �;�; E[x:8�:C:�] ` p : �0�;�; E ` class C where x : 8�:C:�; p : �0INST �;�[ ft : (Sn)Cg; E ` p : �0E(x) = 8�:C:� �[�n:Sn];�; E ` e : [t(�n)=�]��;�; E ` inst t : (Sn)C where x = e; p : �0Figure 3: The judgement �;�; E ` p : �There is a straightforward correspondence betweenthe two systems. The syntax-directed derivations aresoundTheorem 3.2 If �;�; E `0 e : � then �;�; E ` e : � .and in a certain sense complete w.r.t. the original sys-tem:Theorem 3.3 If �;�; E ` e : 8�n:Sn:� then�[�n:Sn];�; E `0 e : � .The last theorem clari�es in what sense `0 works di�er-ently from `: by applying the primed rules backwards,the sort constraints for type variables are stored solelyin �, and not in the type scheme of e. For instance, theLET0 rule explicitly extends �. The � operation, usedin the ASM0 rule, may introduce new type variables,whose sorts must be recorded in �. The syntax-directedsystem already has a very operational avour. In orderto make the transition from a type inference system toan algorithm we need one more ingredient: uni�cation.
4 Uni�cation of Types with SortConstraintsThis section deals with uni�cation in the presence ofsort constraints in the form of contexts. This problemcan in principle be reduced to order-sorted uni�cation,as done in [12], using the ordering coming from the in-clusion between sorts. However, we have refrained fromdoing so because it is contrary to our quest for simplic-ity: involving order-sorted uni�cation makes the algo-rithm appear more complicated than it actually is. Inaddition, the standard theory of order-sorted uni�cationassumes that variables are tagged and would thus needto be reformulated anyway.For the remainder of this paper we assume a �xedsignature �. This is simply a notational device whichavoids parameterizing judgements etc. by �.In our setting, a substitution is a �nite mapping fromtype variables to types. Substitutions are denoted by �and �; fg is the empty substitution. De�ne Dom(�) =f� j �� 6= �g and Cod(�) = S�2Dom(�) FV(�(�)).Since sort information is maintained in contexts, wefrequently work with pairs of contexts and substitutions.



ASM �;�; E ` x : E(x)8E �;�; E ` e : 8�:S:� �;� ` � : S�;�; E ` e : [�=�]�8I �[�:S];�; E ` e : � � 2 FV(�) �FV(E)�;�; E ` e : 8�:S:�APP �;�; E ` e1 : �2 ! �1 �;�; E ` e2 : �2�;�; E ` (e1 e2) : �1ABS �;�; E[x:�1] ` e : �2�;�; E ` �x:e : �1 ! �2LET �;�; E ` e1 : �1 �;�; E[x:�1] ` e2 : �2�;�; E ` let x = e1 in e2 : �2Figure 4: The judgement �;�; E ` e : �ASM0 �;� ` E(x) � ��;�; E `0 x : �LET0 �[�k:Sk];�; E `0 e1 : �1 �;�; E[x:8�k:Sk:�1] `0 e2 : �2 f�kg = FV(�1) �FV(E)�;�; E `0 let x = e1 in e2 : �2Figure 5: The judgement �;�; E `0 e : �A substitution � obeys the sort constraints of � in thecontext of �0, written �0 ` � : �, i� �0;� ` �� : ��for all �. Because �0;� ` �� : �� is trivially ful�lledif �� = fg it su�ces to require �0;� ` �� : �� for all� 2 Dom(�).As usual, we de�ne an ordering on context-substitution pairs:(�; �) � (�0; �0) , 9�: �� = �0 ^ �0 ` � : �where �� is their composition: (��)(s) = �(�(s)).The set of uni�ers of �1 and �2 w.r.t. �, writ-ten U(�; �1=�2), consists of the following context-substitution pairs:U(�; �1=�2) = f(�0; �) j ��1 = ��2 ^ �0 ` � : �gA uni�er (�0; �0) 2 U(�; �1=�2) is most general if(�0; �0) � (�1; �1) for all (�1; �1) 2 U(�; �1=�2). Wesay that uni�cation modulo � is unitary if for all � and�1=�2 the set U(�; �1=�2) is empty or contains a mostgeneral uni�er.A signature � is called coregular if for all type con-structors t and all classes C the setD(t; C) = fSn j t:(Sn)C 2 �gis either empty or contains a greatest element w.r.t. thecomponent-wise ordering of the Sn. If � is coregular let

Dom(t; C) return the greatest element of D(t; C) or failif D(t; C) is empty.Sorted uni�cation can be expressed as unsorted uni-�cation plus constraint solving. Given a coregular sig-nature �, this has the following simple form:unify(�; �1=�2) =let � = mgu(�1=�2)�c = S�2Dom(�) constrain(��;��)in (�c [ (�nDom(�)); �)where mgu computes an unsorted mgu (in particu-lar we assume that � is idempotent and that Dom(�) [Cod(�) � FV(�1=�2)) or fails if none exists.A context � is more general than �0, written � � �0,if �� � �0� for all �. The union of two sort contexts isde�ned by�1 [ �2 = [� : �1� [ �2� j � 2 Dom(�1) [Dom(�2)]and constrain(�; S) computes the most general context� such that �;� ` � : S:constrain(�; S) = [�:S]constrain(t(�n); S) = [C2S constr(�n;Dom(t; C))



constr(�n; Sn) = [i=1:::n constrain(�i; Si)Thus unify fails if mgu fails or if some Dom(t; C)used in constrain does not exist. Soundness and com-pleteness of constrain are captured by the followinglemmas:Lemma 4.1 constrain(�; S);� ` � : S orconstrain(�; S) fails.Proof by induction on the structure of � . 2Lemma 4.2 constrain(��; S) ` � : constrain(�; S).Proof by comparing the calling trees ofconstrain(��; S) and constrain(�; S), using Lemma 4.1at the leaves of the constrain(�; S) tree. 2Lemma 4.3 If �;� ` � : S then constrain(�; S) isde�ned and more general than �.Proof by induction on the structure of � . 2Theorem 4.4 If � is coregular, unify computes amost general uni�er.Proof To show soundness, let unify(�; �1=�2) ter-minate with result (�0; �0). It follows directly that�0�1 = �0�2. It remains to be seen that �0 ` �0� : ��for all �. If � 62 Dom(�0), then �� � �0� and theclaim follows trivially. If � 2 Dom(�0) then � � �c =S�2Dom(�0) constrain(�0�;��) � constrain(�0�;��)and the claim follows from Lemma 4.1.To show completeness let (�1; �1) 2 U(�; �1=�2),i.e. �1�1 = �1�2 and �1 ` �1 : �. Since �1 and �2have an unsorted uni�er �1, mgu(�1=�2) is de�ned andyields a substitution �0 such that �1 = ��0 for some�. De�nedness of unify(�; �1=�2) also requires de-�nedness of constrain(�0�;��): since �1 ` �1� : ��,Lemma 4.3 implies de�nedness of constrain(�1�;��)which easily yields de�nedness of constrain(�0�;��).Thus unify(�; �1=�2) terminates with a result (�0; �0).It remains to be shown that �1 ` � : �0. If � 2Dom(�0) then �0� = fg and hence �1 ` �� : �0� holdstrivially. Now assume � 62 Dom(�0). Thus �0� = �c� [��. From�1 ` �1 : � it follows that �1 ` �� : ��. Prov-ing �1 ` � : �c is more involved. From Lemma 4.2 it fol-lows that constrain(�1�;��) ` � : constrain(�0�;��)for any � and hence S�2Dom(�0) constrain(�1�;��) `� : S�2Dom(�0) constrain(�0�;��), i.e.S�2Dom(�0) constrain(�1�;��) ` � : �c (�). Since �1 `�1� : ��, Lemma 4.3 implies �1 � constrain(�1�;��)and hence �1 � S�2Dom(�0) constrain(�1�;��). Thus�1 ` � : �c follows from (�) by monotonicity. 2Theorem 4.5 Uni�cation modulo � is unitary i� � iscoregular.

Proof The \if" direction is a consequence of Theo-rem 4.4. For the \only if" direction let � not be coreg-ular. Let � denote the component-wise ordering of sorttuples Sn. Thus there are two declarations t : (Sn)C andt : (Tn)C, Sn 6� Tn, and Sn 6� Tn, such that there is nothird declaration t : (Un)C, and Sn; Tn � Un. Hence theuni�cation problem ([�:C]; t(�n)=�) does not have amost general uni�er. Two maximal ones are ([�n:Sn]; �)and ([�n:Tn]; �) where � = f� ! t(�n)g. 2Thus we have a precise characterization of those signa-tures where principal types exist.5 Principal Types and AlgorithmIThe above syntax-directed rule system is non-deterministic, since rule ASM0 can choose any instanceof the type of the identi�er x. To obtain a determinis-tic algorithm, we re�ne the syntax directed system suchthat it keeps types as general as possible. The result isalgorithm I in Figure 6. In this section we assume that� is coregular | otherwise unify is not well-de�ned.Algorithm I follows the same pattern as Milner's orig-inal algorithm of the same name [10]: the type of anexpression e is computed by traversing e in a top-downmanner. I returns a quadruple (V;�; �; � ), where �� isthe type of e under the context �. The parameter Vcontains all \used" variables, i.e. variables that occur in� or in � or in E. Thus a type variable � 62 V is a \new"variable. Observe the di�erent let-constructs: the oneon the left hand side is in the object language, the oneson the right are part of the type inference algorithm.For an environment E and a substitution �, de�ne�E = [x : �(E(x)) j x 2 Dom(E)]. We say E is closed ifFV(E) = fg. The free variables of a substitution � arede�ned as FV(�) = fFV(��)[f�g j � 2 Dom(�)g. Let[] denote the empty context.Theorem 5.1 (Correctness of I) IfI(V;�; �; E; e) = (V 0;�0; �0; � ) and Dom(�) [ FV(�) [FV(E) � V then �0;�; �0E `0 e : �0� .Proof by induction on the structure of e, using a num-ber of auxiliary lemmas. 2A type reconstruction algorithm should computemost general types, usually called principal types, ifthey exist.De�nition 5.2 Let E be a closed environment. Thetype scheme � is a principal type of an expression ew.r.t. � and E if [];�; E ` e : � and if [];�; E ` e : �0implies [];� ` � � �0.



I(V;�; �; E;e) = case e of x ) let 8�n:Sn:� = E(x)�i 62 V [i = 1 : : :n]in (V [ f�ng;�[�n:Sn]; �; [�n=�n]� )�x:e ) let � 62 V(V 0;�0; �0; � ) = I(V [ f�g;�; �; E[x:�]; e)in (V 0;�0; �0; �! � )(e1 e2) ) let (V1;�1; �1; �1) = I(V;�; �; E; e1)(V2;�2; �2; �2) = I(V1;�1; �1; E; e2)� 62 V2(�0; �0) = unify(�2; �2�1 = �2�2 ! �)in (V2 [ f�g;�0; �0�2; �)let x = e1 in e2 ) let (V1;�1; �1; �1) = I(V;�; �; E; e1)f�ng = FV(�1�1)� FV(�1E)in I(V1;�1nf�ng; �1; E[x : 8�n:�1�n:�1�1]; e2)Figure 6: Algorithm IThe following lemma is crucial for establishing theprincipal type theorem.Lemma 5.3 If �0;�; E0 `0 e : � 0 where E0 = �0�E and�0 ` �0 : � then there exist V and �01 such thatDom(�) [ FV(�) [ FV(E) � V;I(V;�; �; E; e) = (V1;�1; �1; �1);E0 = �01�1E;� 0 = �01�1�1;�0 ` �01 : �1:Proof by induction on the structure of e, using a num-ber of auxiliary lemmas. 2Theorem 5.4 If [];�; E `0 e : � 0 and E is closedthen I(fg; []; fg;E; e) = (V;�; �; � ) and 8�n:��n:�� is aprincipal type of e w.r.t. � and E, where �n = FV(�� ).Proof follows from Lemma 5.3. 2We may restrict our attention to closed environmentsbecause CLASS and INST declarations cannot intro-duce free variables into an environmentE: type schemesin CLASS declarations must be closed.Algorithm I relies on unify which has only beende�ned for coregular signatures. Hence it remains tobe seen if Mini-Haskell's CLASS and INST declara-tions yield coregular signatures. In fact they do if re-stricted by the following context condition which is theresult of translating the restrictions actually adopted inHaskell [6, Sec. 4.3.2] to Mini-Haskell:For every class C and type constructor t thereis at most one instance declaration inst t :(Sn)C.

The more complex restrictions for Haskell collapse tothis single requirement because of the absence of sub-classes.One can easily see that a signature is coregular if it isderived from a set of instance declarations which meetthe above restriction. The converse does not hold: thefollowing declarations violate the above restrictionclass C where c : 8�:C:�;inst int : ()C where c = 1;inst int : ()C where c = 2;although they give rise to the coregular signature fint :()Cg2. The reason is that although coregularity su�cesfor the existence of principal types, it does not precludesemantic ambiguities: the expression c+ 1 is de�nitelyof type int but may evaluate to either 2 or 3, dependingon which instance is chosen for c. Hence the above addi-tional restriction which rules out situations like these.6 Haskell = Mini-Haskell + Sub-classesCompared to standard Haskell, the main missing typeclass feature of Mini-Haskell is the notion of subclasses.Subclasses are clearly bene�cial as far as methodical as-pects are concerned. However, for semantics and typereconstruction, subclasses are syntactic sugar and canbe eliminated. We present two methods for handlingsubclasses. Subclasses can be integrated into our typeinference system by slightly changing some de�nitions.2It is easy to give similar examples where the INST declara-tions not only di�er in the function (or constant) provided.



As an alternative, we give a method for eliminating sub-classes. We assume the restrictions on instance decla-rations adopted in actual Haskell, which are the reasonwhy the latter method is particularly simple.Assume a set of Haskell classes C with an ordering�. If C � D, we say that C is a subclass of D andD is a superclass of C. To accommodate subclasses,we extend the Mini-Haskell judgement that de�nes sortmembership of types, �;� ` � : S to the judgement�;� `H � : S. The rules SI, SE, TVAR, and TCON arethe same for the Haskell-judgement `H ; we only haveone additional rule for the subclass ordering:SUB �;� `H � : C C � D�;� `H � : D6.1 Integrating SubclassesOur uni�cation and type inference algorithms easily ac-commodate subclasses. We give a brief sketch of thenecessary extensions. In essence, only the uni�cationalgorithm is a�ected by the integration of subclasses.The key idea is to rede�ne the ordering on sorts:S � S0 , 8C 0 2 S09C 2 S: C � C 0As above, the ordering � extends in the component-wise way to sequences of sorts Sn. Then for a typeconstructor t and a class C, the de�nition of D(t; C) isgeneralized toD(t; C) = fSn j 9D � C:t : (Sn)D 2 �gCoregularity is de�ned as above: D(t; C) must be emptyor have a maximal element for all t and C. Similar toabove, it can be shown that coregularity is necessaryand su�cient for unitary uni�cation and hence princi-pal types. The restrictions adopted in Haskell implycoregularity also in the presence of subclasses and arealso motivated by semantic reasons, as discussed in Sec-tion 8.6.2 Eliminating SubclassesThe idea behind translating Haskell type classes intoMini-Haskell is to replace Haskell classes by the set oftheir super sorts. Let C" = fC 0 j C � C 0g and cor-respondingly S" = SC2S C". Then a Haskell-like classdeclarationclass C � S where x = 8�:C:8�n:Sn:�states that C is a subclass of all C 0 2 S. Assumethat the subclass ordering � has been built up fromthe CLASS declarations. Then the above CLASS dec-laration translates into the Mini-Haskell declarationclass C where x = 8�:C:8�n:Sn":�

A Haskell instance declarationinst t : (Sn)C where x = esimply translates intoinst t : (Sn")C where x = eIn the last translation it is not necessary to expandC into several declarations, one for each element of C",since Haskell requires that if t(: : :) is declared as aninstance for C, then it also has to be an instance ofall super classes of C. Another consequence of this re-striction is that the rule SUB for type classi�cation isredundant in the case of Haskell.Assume a Mini-Haskell class signature � that alsoincludes an ordering � on classes. For this Haskell-likesignature, let �" denote the pure Mini-Haskell signa-ture obtained by translating all instance declarations in� with the above rule. De�ne further �" = [� : (��)" j� 2 Dom(�)]. We show the correctness of the transla-tion with the following theorem.Theorem 6.1 Let � be a Mini-Haskell signature withan ordering on classes. Then �;� `H � : C i� �";�" `� : C".It should be noted that this translation loses someinformation about the class ordering. The di�erence tothe former method emerges when Mini-Haskell is trans-lated into a functional language without classes, e.g.ML.For instance, assume the class ordering Ord � Eq.Then a type � of sort Ord would be translated into atype of sort fOrd;Eqg by the latter method. This isequivalent in the sense that an object of type � stillprovides the same functions. The particular instancesof these functions cannot be computed at compile timeand are usually carried around at run time in the formof dictionaries (of functions). Now we can see the dis-advantage of the latter method: an object of type � re-quires two dictionaries instead of only one. In contrast,after integrating subclasses, the two sorts fOrd;Eqgand Ord are equivalent (since fOrd;Eqg � Ord andOrd � fOrd;Eqg) and only one dictionary has to beused for either one.7 Related WorkThe structure of algorithm I is very close to that ofMilner's algorithm of the same name [10]. Apart fromthe fact that our version of I is purely applicative (hencewe carry the substitution and the set of used variablesaround explicitly), the main di�erence is that we alsohave to maintain a set of constraints �. In fact, this



is the only real di�erence to Milner's algorithm. It isinteresting to note that Milner's �rst formulation of typeinference uses a purely functional algorithmW which isnon-incremental, i.e. does not take a given substitution� and produce an extended one �0, but computes theresult substitution from scratch. Whereas he considersI merely a more e�cient re�nement, in our case thereis a very strong simplicity argument in favour of theincremental version: when typing an application (e1 e2)it is far simpler to type e2 under the constraints dueto e1 than compute two separate constraints �1 and �2and having to merge them afterwards.Probably the �rst combination of ML-style polymor-phism and parametric overloading (as opposed to �niteoverloading as in Hope [2]) was presented by Kaes [8].His language is in fact very close to our Mini-Haskell, ex-cept that he does not introduce classes explicitly. Moreimportantly, he does not use contexts to record infor-mation about type variables but tags the type variablesdirectly.The original version of type classes as presented byWadler and Blott [14] was signi�cantly more powerfulthan what went into Haskell, the reason being that theoriginal system was undecidable, as shown later by Vol-pano and Smith [13]. The relationship to Haskell properis discussed in Section 2.Nipkow and Snelting [12] realized that type inferencefor type classes can be formulated as an extension ofordinary ML-style type inference with order-sorted uni-�cation, i.e. simply by changing the algebra of typesand the corresponding uni�cation algorithm. Althoughthis was an interesting theoretical insight, it only leadto a simple algorithm for a restricted version of Haskellwhere each type variable is constrained by exactly oneclass. In addition it was not possible to identify ambigu-ous typings like [�:C];�; E ` e : int because there wasno notion of contexts and type variables were taggedwith their sort. Both problems have been eliminated inthe present paper.An interesting extension of Haskell using the notionof \predicated types" was designed and implemented byMark Jones [7]. The main di�erence is that he allowsarbitrary predicates P (�1; : : : ; �n) over types as opposedto our membership constraints � : S.Independently of our own work Chen, Hudak andOdersky [3] developed an extension of type classes us-ing similar techniques and arriving at a similar typereconstruction algorithm. Since their type system ismore general, they use di�erent and more involved for-malisms, in particular for uni�cation. In contrast, wereduce uni�cation to its essence by splitting it into stan-dard uni�cation plus constraint solving. This enablesus to give a su�cient and necessary criterion for uni-tary uni�cation, which is required for principal types.

As discussed in Section 5, the restrictions in Haskelleasily archive unitary uni�cation. An example whereunitary uni�cation is more di�cult is the integrationof subclasses (see Sec. 6.1), where Dom(t; C) is de�neddi�erently.Kaes [9] presents an extension of Hindley/Milnerpolymorphismwith overloading, subtypes and recursivetypes. Due to the overall complexity of the resultingsystem, the simplicity of the pure system for overload-ing is lost.8 AmbiguityWewould like to conclude this paper with a discussion ofthe ambiguity problem which a�ects most type systemswith overloading. It is caused by the fact that althougha program may have a unique type, it's semantics is notwell-de�ned. According to our rules, the programclass C where f : 8�:C:�! int;class D where c : 8�:D:�;(f c)has type int in any context containing an assumption� : fC;Dg. Yet the program has no semantics becausethere are no instances of f and c at all. If there weremultiple instances of both C and D, it would be impos-sible to determine which one to use in the expression(f c).Motivated by such examples, a typing �;�; E ` e : �is usually de�ned to be ambiguous if there is a type vari-able in � which does not occur free in � or E. However,the only formal proof of a relationship between suchambiguous types and ill-de�ned semantics that we areaware of is due to Blott [1]. Since we have not provided asemantics for our language, we have not introduced am-biguity formally. Nevertheless there is one place in ourinference system where we anticipate a particular treat-ment of ambiguity. In rule 8I, the proviso � 2 FV(�)is intended to propagate ambiguity problems: with thisrestriction, the expression let x = (f c) in 5 (precededby classes C and D as declared above) has type int onlyin a context containing an assumption � : fC;Dg. If theproviso is dropped, the expression also has type int inthe empty context, thus disguising the local ambiguity.The reason is that x can be given the ambiguous type8�:fC;Dg:int, but since x does not occur in 5, this doesnot matter. Although in a lazy language x need not beevaluated and hence the semantics of the whole let isindeed unambiguous, we would argue that for pragmaticreasons it advisable to ag ambiguities whenever theyarise.From this discussion it is obvious that a semantics anda coherence proof for the type system w.r.t. a semanticsare urgently needed.
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