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Extraction of geological information from
acoustic well-logging waveforms using
time-frequency wavelets

Naoki Saito∗ and Ronald R. Coifman‡

ABSTRACT

Recently developed classification and regression
methods are applied to extract geological informa-
tion from acoustic well-logging waveforms. First, acous-
tic waveforms are classified into the ones propagated
through sandstones and the ones propagated through
shale using the local discriminant basis (LDB) method.
Next, the volume fractions of minerals are estimated
(e.g., quartz and gas) at each depth using the local re-
gression basis (LRB) method. These methods first ana-
lyze the waveforms by decomposing them into a redun-
dant set of time-frequency wavelets, i.e., the orthogonal
wiggle traces localized in both time and frequency. Then,
they automatically extract the local waveform features
useful for such classification and estimation or regres-
sion. Finally, these features are fed into conventional
classifiers or predictors. Because these extracted features
are localized in time and frequency, they allow intuitive
interpretation. Using the field data set, we found that
it was possible to classify the waveforms without error
into sandstone and shale classes using the LDB method.
It was more difficult, however, to estimate the volume
fractions, in particular, that of gas, from the extracted
waveform features. We also compared the performance
of the LRB method with the prediction based on the
commonly used ratio of compressional and shear-wave
velocities, VP/VS, and found that our method performed
better than the VP/VS method.

INTRODUCTION

Acoustic measurements have long been used in geophysical
well logging to infer petrophysical properties or the lithology
of subsurface formations (Paillet and Cheng, 1991). In sonic
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logging, velocities of P-, S-, and Stoneley-wave components
(with or without their amplitudes) have been used to infer
petrophysical or lithologic properties of the surrounding for-
mations, such as porosity, mineralogy, grain contacts, fluid sat-
uration, or rock types, such as sandstone, shale, and limestone
(White, 1983; Paillet and Cheng, 1991; Murphy et al., 1993;
Winkler and Murphy, 1995).

Extracting velocity information for each wave component,
however, is not necessarily an easy task. There are two popu-
lar approaches for estimating velocities of wave components.
One is a semiautomatic tracking of the first zero-crossing of the
wave component, and the other is based on the semblance and
coherency of the wave components among multiple waveforms
(Kimball and Marzetta, 1984). Both have drawbacks. The for-
mer method often requires manual editing, since the positions
of zero-crossings vary (sometimes wildly) from trace to trace.
The latter method is computationally expensive and requires
a data set recorded by tools equipped with multiple receivers.

The velocity and amplitude information for a particular wave
component are just a portion of the information contained in
the entire waveform shape. Thus, it is expected that the entire
waveform shape contains more information about the lithology
of the formation. In fact, the empirical relationship between the
shapes of the waveforms and the lithology has been recognized
for some time. Several attempts have been made to infer this
information using the entire waveform shape (Hoard, 1983;
Hsu, 1990). Most of these attempts have been based on statis-
tical pattern recognition techniques because building an exact
mathematical or physical model is complicated and difficult.

The first method to use waveform shape information system-
atically for this inference problem was that of Hoard (1983). His
method is based on clustering the envelopes of the input wave-
forms. A few years later, Hsu (1990) recognized the importance
of the relationships between individual wave components and
lithologic information and proposed a different approach using
the Karhunen-Loeve transform. Unfortunately, both methods
suffer from the following: (1) These methods can extract only
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global waveform information; i.e., they cannot automatically
extract the wave components localized in both time and fre-
quency unless such localized features are explicitly supplied.
(2) Their computational costs are high; the graph-theoretical
clustering (with the Hilbert transform for envelope computa-
tion) costs at least O(n2 log n), whereas the Karhunen-Loeve
transform requires O(n3), where n is the number of time sam-
ples of each waveform. Moreover, both methods are “unsuper-
vised” learning methods. In other words, these methods first
extract waveform features without using any available litho-
logic or petrophysical information and then try to correlate
the features with such information.

In this paper, we view the problem of inferring lithologic in-
formation from the entire waveform shape as a classification or
regression problem, i.e., classification of the rock types or esti-
mation of the volume fractions of minerals (e.g., quartz or gas)
on the basis of the waveform shape information. Classification
and regression are “supervised” learning methods. They use
available lithologic or petrophysical information to construct
algorithms to predict rock classes or volume fractions. The re-
sulting algorithms are expected to predict such information
when they are given a new set of sonic waveforms recorded in
a geological environment similar to that of the training wave-
forms (which were used for constructing the algorithms). Then,
we apply recently developed methods, the so-called local dis-
criminant basis (LDB) and local regression basis (LRB) meth-
ods (Saito, 1994; Coifman and Saito, 1994; Saito and Coifman,
1994, 1995, 1996) to this inference problem. Both methods have
automatic feature extraction capability. Given a training data
set (i.e., waveforms and their associated lithologic information
at specific depth levels), the LDB and LRB methods automat-
ically extract useful waveform features for this inference task.
For these features, we use a specific set of elementary wave-
forms known as time-frequency wavelets, that are well local-
ized in both time and frequency. This local property of wavelets
makes interpretation of classification and regression results far
easier than with the conventional approaches directly applied
to signals represented as either time samples or frequency com-
ponents, since the time-domain representation is too local in
time and too global in frequency, and the frequency-domain
representation is too local in frequency and too global in
time.

Our objective in this paper is to examine (1) how accurately
we can classify lithology (in particular, sandstones or shale)
on the basis of the sonic waveform features automatically ex-
tracted by the LDB method, (2) how accurately we can estimate
the petrophysical quantities (in particular, volume fractions of
quartz and gas) from the sonic waveform features automati-
cally extracted by the LRB method, and (3) whether those fea-
tures provide results that are easy to interpret. Our method-
ology is generic enough so that it should be useful for other
geological settings, such as carbonate reservoirs.

The organization of the paper is as follows. In the next sec-
tion, we formulate the problem and review the LDB and LRB
methods. In the Data Description section, we give some back-
ground information for the field data set on which we test our
methods. Then, we present the results and their interpretation
in the Results section. In the Discussion section, we compare
the results of the LRB method with the prediction based on
the conventional physical quantity VP/VS. Finally, we present
our conclusions.

SIGNAL CLASSIFICATION AND REGRESSION USING
TIME-FREQUENCY WAVELETS

Signal classification and regression problems

Before proceeding further, we set up some notations and
clarify our strategy. Let X ⊆ Rn be an input signal space
that consists of all possible input signals under considera-
tion (i.e., sonic waveforms of n time samples). Let Y ⊂ R
be an output response space. For classification problems,
Y = {1, . . . , K } is a set of possible class names (e.g., 1 cor-
responds to sandstone, 2 corresponds to shale, etc.). For re-
gression problems, Y is simply an interval in the real axis,
e.g., Y = [0, 1] for the volume fraction of quartz or gas. Let
(X,Y)∈X ×Y be a pair of an input signal and the corre-
sponding response, which can be viewed as a random sam-
ple from a probability distribution P over X ×Y . A predic-
tor (also often called a classifier in classification problems) is
a function d:X→Y , which predicts the response to each in-
put signal X∈X . A learning (or training) data set T consists
of N pairs of input signals and the corresponding responses;
T ={(X1,Y1), . . . , (XN,YN)}. We also assume the availability
of data set T ′ = {(XN+1,YN+1), . . . , (XN+M ,YN+M )}, which is
independent of T and still obeys the same probability law that
generated T . This is called a test data set and is used for the
evaluation of predictors.

If we had complete knowledge of this probability model
(i.e., an exact physical model that can explain the recorded
phenomena with a valid stochastic noise model of the record-
ing devices), it would be the end of the story. One could con-
struct the so-called Bayes predictor, which gives the minimum
error among all the predictors using the probability models.
In practice, however, we do not have complete knowledge of
the probability distribution P. For problems with a small di-
mensionality, e.g., 1 ≤ n ≤ 3, it is feasible to estimate the
probability distribution from the available training data set.
For large-dimension problems, such as our sonic waveforms
n = 256, however, it is essentially impossible to obtain a re-
liable estimate of the probability distribution because of the
curse of dimensionality (Scott, 1992). We need a large num-
ber of training signals to estimate the probability distribution
reliably. Also, feeding raw signals to conventional predictors,
such as linear discriminant analysis, linear regression, or neu-
ral networks, is prohibitive. Noise in the signals and the large
dimensionality of the signals overwhelm these methods. On
the other hand, there often exists lower-dimensional important
structures in the signals (Scott, 1992). In other words, signal
classification and regression problems often have an intrinsic
dimension m¿ n. Therefore, it would be much more efficient
and effective to analyze the data and build predictors in this
smaller-dimensional subspaceF ofX . We callF a feature space
and a map f :X→F a feature extractor. Then, the key is how
to construct this “good” feature space F consisting of impor-
tant features for our problems and design the corresponding
feature extractor f . If we know precisely the underlying phys-
ical and mathematical models of the problem, we can design a
mechanism to extract specific features relevant for that prob-
lem and may obtain its intrinsic dimension.

It is often difficult, however, to set up exact mathematical
models for the problem we are interested in, such as estimating
the volume fraction of gas from sonic waveforms. Therefore, in
this paper, we adopt exploratory approaches; we want to find
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important features for our problems by automatic procedures
and examine their effectiveness. In turn, this may lead to our
understanding or reconfirmation of the underlying physics of
the problem.

Our strategy here for classification and regression problems
can now be written as

d = g ◦ f = g ◦2m ◦
˜
ΨT , (1)

where f :X → F is a feature extractor, g:F → Y is any con-
ventional predictor, and ◦ represents the composition opera-
tion, i.e., d(X) = g( f (X)). The feature extractor f here consists
of two components.

˜
Ψ is an n-dimensional orthogonal matrix

(i.e., an orthonormal basis) selected from the so-called time-
frequency dictionary (Wickerhauser, 1994; Saito, 1994) consist-
ing of a large collection of the time-frequency wavelets briefly
mentioned in the Introduction. 2m is a feature selector that
selects the most important m(<n) coordinates (features) from
n-dimensional coordinates. Most statistical literature focuses
on the performance and statistical properties of various pre-
dictors g in equation (1). Some literature discusses the feature
selector 2m on a given set of features. On the other hand, the
LDB and LRB methods focus on f , in particular, how to select

˜
Ψ from a finite collection of bases.

Time-frequency wavelets and dictionary

Most geophysical signals of interest are nonstationary, con-
sisting of transients, edges, and/or local oscillations. To use
them efficiently and have easily interpretable results for var-
ious tasks, one should have tools that can not only analyze
the signals but also synthesize the signal components and fea-
tures useful for those tasks. The traditional Fourier transform is
not efficient enough to handle such nonstationary phenomena.
It uses global oscillations to analyze local phenomena. Time-
frequency wavelets are mathematical building blocks (basis
functions or vectors) well localized in both time and frequency.
Each such wavelet has specific time-frequency characteristics
(i.e., location and duration of its support in the time and fre-
quency domains). Wavelet packets and local trigonometric
functions are examples of such wavelets and recently have
drawn considerable attention from such diverse fields as signal
and image processing, numerical analysis, and statistics. See
Daubechies (1992), Meyer (1993), and Wickerhauser (1994)
for the detailed properties of these wavelets and other appli-
cations.

In this paper, we use the so-called time-frequency dictionary
extensively. This is a large collection of the time-frequency
wavelets organized in a hierarchical fashion (a binary tree
structure) (Wickerhauser, 1994; Saito, 1994). Each node in this
binary tree represents a specific set of wavelets that spans the
subspace occupying a specific region in the time-frequency
plane. For signals of length n, this dictionary can contain up
to n(1 + log2 n) wavelets and more than 2n different com-
plete orthonormal bases (Wickerhauser, 1994). Let D be this
time-frequency dictionary consisting of a collection of wavelets
{wi }Nwi=1. This dictionary D also can be expressed as a list
of all possible orthonormal bases (matrices) {

˜
B j }NB

j=1, where

˜
B j = (w j1 , . . . ,w jn). This redundancy permits us to select the
most suitable basis (coordinate system)

˜
Ψ in equation (1) for

given signals and a given objective. This implies that we can rep-
resent our signals as linear combinations of local features that

are useful for our classification and regression tasks. This local
property makes the interpretation of classification and regres-
sion results far easier than with the conventional approaches
(i.e., various conventional predictors computed on signals
represented entirely as either time samples or frequency com-
ponents). Moreover, the selection of such a basis is still com-
putationally efficient. Expanding a signal of length n into such
tree-structured bases is fast, i.e., O(n log n) for a wavelet packet
dictionary and O(n(log n)2) for a local trigonometric dictio-
nary. After expansion, the selection of a good basis

˜
Ψ, the

so-called best-basis algorithm of Coifman and Wickerhauser
(1992), is readily available. Let M+(

˜
B j ) be a measure of ef-

ficacy of the basis
˜
B j for a certain task. Then, the best-basis

algorithm selects

˜
Ψ = arg max

˜
B j ∈D

M+(
˜
B j ) (2)

in O(n). Clearly, if we use the deficiency of the basisM− instead
of efficacy, equation (2) should be written as

˜
Ψ = arg min

˜
B j ∈D

M−(
˜
B j ). (3)

The heart of the matter is the measures of efficacyM+ or de-
ficiencyM−. The original best-basis algorithm was developed
mainly for signal compression problems.

Local discriminant basis (LDB)

A good basis for classification and discrimination should be
the one through which we can “view” the classes as maximally
separated point clouds in X . Therefore, we need to measure
a certain kind of “distances” among the signal classes under
the coordinate system

˜
B j . To measure such distances, we need

the probability density function (pdf) of each input signal class.
This is, however, impossible to compute or estimate because of
the high dimensionality of X , as mentioned previously. There-
fore, we evaluate each basis vector in

˜
B j separately and sum up

their efficacies. If we project an input signal X ∈ X onto a unit
vector wi ∈ D, then its projection (or coordinate) Zi

1=wi ×X
also is a random variable, where × denotes the standard in-
ner product in Rn. We are interested in knowing how Zi is
distributed for each signal class so that we can quantify the ef-
ficacy of the direction wi for classification. We refer to such a
measure of efficacy as a discriminant measure. We also use the
term discriminant power of wi , which is the actual value of such
a measure evaluated at wi . Here, we must deal with two issues.
One is to decide how to represent the distribution of Zi ; the
other is how to define the differences or distances among those
computed distributions among signal classes. In this paper, we
consider only the following quantities to represent how Zi is
distributed:

1) Normalized energy of Zi written as

V (y)
i

1= E
[
Z2

i

∣∣Y = y
]∑n

i=1 E
[
Z2

i

∣∣Y = y
] , (4)

where E is the mathematical expectation.
2) Probability density function of Zi written as

q(y)
i (z) 1=

∫
wi · x=z

p(x | y) dx. (5)
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In practice, however, the true conditional pdf p(x | y) is not
available, as mentioned in the previous section. Therefore, we
must estimate equations (4) and (5) using the available training
data set. In other words, instead of equation (4) we use the
sample estimate

V̂ (y)
i =

∑Ny
k=1

∣∣∣wi · x(y)
k

∣∣∣2∑Ny
k=1

∥∥∥x(y)
k

∥∥∥2 , (6)

where {x(y)
k }Ny

k=1 is a set of available class y signals in the train-
ing data set T . For equation (5), we estimate the pdf using
commonly available methods, such as histograms or kernel
density estimators (Scott, 1992). We denote the sample esti-
mate of q(y)

i by q̂(y)
i (z). We note here that the normalized en-

ergy [equation (6)] is simply a scalar for each coordinate, but
the empirical estimation of the pdf per coordinate q̂(y)

i (z) is a
function (or a vector after discretization). Therefore, the esti-
mated pdf is expected to carry more subtle information, such as
phase information of input signals, than the normalized energy,
whereas the normalized energy is definitely computationally
much cheaper than the estimation of pdf.

Once we decide the representation of the distribution of
the projections onto each vector in D, the next question is
how to define the efficacy of a basis

˜
B j or how to measure

“distances” among the signal classes under the coordinate sys-
tem

˜
B j . There are many choices for such a distance measure

(Basseville, 1989). In this paper, we consider only the relative
entropy measure asM+ in equation (2). See Saito (1996) for
some experiments using the other measures. The normalized
energy for two-class problems can be written as

M+(
˜
B j ) =

n∑
k=1

V̂ (1)
jk

log2

V̂ (1)
jk

V̂ (2)
jk

. (7)

On the other hand, if we use the estimated pdf, we obtain

M+(
˜
B j ) =

n∑
k=1

∫ ∞
−∞

q̂(1)
jk

(z) log2

q̂(1)
jk

(z)

q̂(2)
jk

(z)
dz. (8)

For K -class problems with K > 2, the simplest approach is to
take K (K + 1)/2 pair-wise combinations of the above mea-
sures. We first proposed to use equation (7) to obtain the LDB
for a given classification problem (Coifman and Saito, 1994;
Saito and Coifman, 1994). Therefore, we call the method us-
ing equation (7) the original LDB (OLDB) method. The LDB
algorithm based on equation (8) is a relatively new strategy
(Saito and Coifman, 1996), so we call this method the new
LDB (NLDB) method.

After selecting the LDB, we still need to find the best m(<n)
features (or LDB coordinates) to supply to classifiers. This is
an interesting but difficult problem. There is no theoretical
answer to this problem [see, e.g., the counterintuitive example
in Cover (1974)]. Therefore, we use the suboptimal but fast
approach. We first sort the feature into descending order in
its discriminant power [i.e., the summand of equation (7) or
(8)]. We then take the first m features and construct the final
classifier g in equation (1) on the basis of these features.

Local regression basis (LRB)

In regression problems, for a given input signal, one wants
to predict a certain quantity of interest (e.g., volume fraction
of gas) carried by the signal. Classification problems can be
viewed as special cases of the regression problems by interpret-
ing the class labels as the quantity of interest. The goal here
is to extract a good prediction rule (predictor) from a given
training data set that is applicable to a test data set and that
provides better insight and understanding of the input-output
relationships. An important factor in the efficacy of regression
is the accuracy of the prediction. Thus, we adopt prediction er-
rors such as the residual sum of squares as the measure of the
deficiencyM− in equation (3), written as

M−(
˜
B j ) =

N∑
i=1

[
Yi − g̃

(
˜
BT

j Xi ; T
)]2
, (9)

where g̃ is a certain regression function (e.g., linear regression)
that clearly is dependent on the available training data set T .
Note that the measure (9) depends on the choice of the regres-
sion function g̃. We also note that g̃ here is not necessarily the
same regression method as the final predictor g in the overall
scheme (1). A major difference from the distance measures (7)
and (8) in the classification problems is that we do not evaluate
the individual coordinate for regression problems. Instead, we
compute the regression error for each node (subspace) in the
dictionary D. This is because the regression error is generally
not additive, i.e.,M−({w j ,wk}) 6=M−({w j })+M−({wk}). We
call the basis obtained via equation (9) a LRB relative to g̃. Af-
ter computing the LRB, we again need to select the best mLRB
coordinates to supply to the final predictor g in equation (1).
The situation is exactly the same as in the LDB case. There is
no theory to obtain the best m features from n features for re-
gression either. In this paper, we rely on the regression method
g, which has a built-in feature selection mechanism. Examples
include the regression tree (Breiman et al., 1993) and the linear
regression model with stepwise variable selection (Draper and
Smith, 1981).

DATA DESCRIPTION

In this study, we use 3012 acoustic waveforms recorded in
a certain well at every 0.5 ft (0.15 m) depth. These are the
single-receiver waveforms, i.e., the common-offset gathers [the
distance between the source and the receiver is 9 ft (2.74 m)].
Each waveform consists of 512 time samples with a sampling
rate of 10 µs. No core samples from this well were available to
us. Thus, we do not know the “ground truth” of the lithology
here. Fortunately, however, the volume fractions of minerals at
each depth level were available. These were computed by the
volumetric analysis method from a set of geophysical well logs
(Quirein et al., 1986; Cannon and Coates, 1990). No acoustic
or elastic information was used to compute these volume frac-
tions. In this study, we use the volume fractions of quartz and
gas as the “lithologic” information. Because of the 9-ft distance
between the source and receiver locations, we assume that each
waveform carries the average lithologic information of a 9-ft
interval. Therefore, we computed the average of these quartz
and gas volume fractions over a 9-ft interval immediately be-
low the receiver locations and used these averaged quantities
as the lithologic information in this paper.
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The region in which the well is located consists mainly of
sandstone-shale sequences. Most sandstone layers contain ei-
ther gas or water. Figure 1 shows the data set under study. From
the volume fraction curves in Figure 1, we make the following
observations about the geological layers in this data set.

1) L1—There is a thick sandstone layer containing gas
around the depth indices ranging from 1600 to 2100.

2) L2—There is a shale layer around the depth indices rang-
ing from 700 to 1100.

3) L3—There are alternating sandstone-shale sequences
above the thick sandstone layer and below the shale layer
described above.

We refer to the waveforms propagated through sandstone lay-
ers as “sand waveforms” and those propagated through shale
layers as “shale waveforms.” We observe by visual inspection
the following waveform features from Figure 1.

1) W1—The S-wave components in the sand waveforms
have much stronger energy and faster speed than those
in the shale waveforms.

2) W2—The velocities of the P-wave components in the
sand waveforms are higher than those in the shale wave-
forms.

3) W3—The velocities of the Stoneley-wave components in
the shale waveforms (depth index, 700–1100) are lower
than those in the sand waveforms, except for those at the
bottom of the well.

The physics of wave propagation suggest that the P- and
S-wave velocities are sensitive to the fluid content and the min-
eralogy and that the Stoneley-wave velocity is sensitive to the
permeability of the formations as well as borehole conditions,

FIG. 1. Data set used in this study. (a) Two curves representing volume fractions of quartz (solid line) and gas
(thick solid line having smaller volume fractions). (b) Acoustic waveforms recorded at the corresponding depth
levels, shown as a gray-scale image. The depth index 0 corresponds to the deepest level. The windows indicated
by A, B, C, and D, were used for the classification study in this paper.

such as rugosity and borehole diameter (White, 1983; Paillet
and Cheng, 1991; Murphy et al., 1993; Winkler and Murphy,
1995). Because of the sensitivity to borehole conditions, we
smoothly taper the Stoneley-wave component from each wave-
form and consider only the earlier part of the waveforms (i.e.,
the number of time samples is now 256 for each waveform).

Because the waveforms from neighboring wells were not
available, we had to select both training and test data sets
from this well. Therefore, we adopt the so-called ten-fold cross-
validation method (Weiss and Kulikowski, 1991). We first di-
vide the entire data set randomly into ten groups (i.e., each
group consists of 301 waveforms and the corresponding litho-
logic information). We then repeat ten experiments by taking
one group as a test data set and the remaining nine groups as a
training data set at each time. Finally, we take an average over
these ten results to obtain the mean prediction error estimate
of our methods.

For waveform classification experiments, we do not use the
entire data set. Instead, we select from the entire data set rep-
resentative sand waveforms and shale waveforms as our work-
ing data set and simply ignore the rest. This is because the data
set contains ambiguous layers, such as “shaly-sand” or “sandy-
shale,” that make our classification task difficult. This two-class
assumption, however, is a good starting point to examine what
features in the waveforms carry the discriminatory information
between sandstone and shale and whether our methods extract
such relevant waveform features automatically and classify the
waveforms correctly. The selected subset of data consists of
201 contiguous depth levels from the main shale layer and 201
depth levels from three different sandstone layers (Figure 2).
We use the ten-fold cross-validation method (each group now
consists of 40 waveforms and the corresponding class names)
to compute the average misclassification rate.
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RESULTS

Since velocity information is important in this study, a nat-
ural choice for the time-frequency decomposition is the local
trigonometric transforms rather than the wavelet packets. It
is easier to manipulate the time (or velocity) information in
the local trigonometric transforms than in the wavelet packets.
Hence, we use a dictionary of local sine bases in this study.

Waveform classification by LDB

We computed both OLDB and NLDB with the ten-fold
cross-validation method. Let Ti be the i th training data set
and T ′i be the corresponding test data set (i = 1, . . . , 10) in
the cross-validation experiments. Note that Ti ∪T ′i is the entire
working data set shown in Figure 2 for each i . Our experiments
are described as follows.

begin
for i := 1 to 10 step 1 do

Compute an LDB from the training data set Ti ;
for m := 5 to 100 step 5 do

Select the most discriminant m coordinates from the
LDB coordinates;

Build a classifier using these m features of the train-
ing signals in Ti ;

Compute the misclassification rate εm,i by supplying
the corresponding m features of the test signals
in T ′i ;

enddo
enddo
Compute the average misclassification rate for each m as
εm = (1/10)

∑10
i=1 εm,i ;

end

FIG. 2. Subset of Figure 1 selected for the classification study. The bottom 201 recordings correspond to the
shale region (window A in Figure 1). The top 201 recordings correspond to the sandstone regions [windows B, C
(water-sand), and D (gas-sand)]. The waveforms have been smoothly tapered to eliminate the Stoneley wave
components.

We used the averaged shifted histograms method (Scott,
1992) as the pdf estimator in the NLDB algorithm. For the clas-
sifier, we used the linear discriminant analysis (LDA) and the
classification tree (CT). For the details of these standard classi-
fication methods, see Fukunaga (1990) for LDA and Breiman
et al. (1993) for CT. We examined the dependence of classi-
fication performance on the number of selected features m.
The results for m = 5, . . . , 100 in steps of five are summarized
in Figures 3 and 4. From these plots, we make the following
observations.

FIG. 3. Misclassification rates using LDA as a classifier ver-
sus the number of top LDB features retained. The plots with
symbols O and N correspond to the results obtained using the
OLDB and NLDB algorithms, respectively. The constant level
line at about 4% indicates the performance of LDA applied
directly to the signals represented in the standard coordinate
system (of 256 time samples).
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1) No misclassification occurs with LDA in the top 20, 25,
and 30 NLDB features.

2) Using LDA with less than 40 features, NLDB outper-
forms OLDB. The difference is small for more than 45
features.

3) Using CT, OLDB performs better than NLDB, but the
result in the standard basis (STD) is even better.

These top 20 to 30 NLDB vectors or wavelets, with which the
perfect classification was obtained, are essentially the same
throughout the 10 cross-validation experiments; these features
are quite stable. Figure 5 shows the top 20 NLDB wavelets
constructed from the T1 data set. From this figure, we observe
that the NLDB algorithm selected the wavelets supported in
the first half-time interval, where the P-wave components ex-
ist. In other words, we can conclude that it is possible to use
only P-wave components to discriminate sand waveforms from
shale waveforms in this data set. We would like to empha-
size that these features were selected completely automati-

FIG. 4. Misclassification rates using CT as a classifier versus the
number of top LDB features retained. The constant level line
at about 2% indicates the performance of CT applied directly
to the signals represented in the standard coordinate system.
O = OLDB results; N = NLDB results.

FIG. 5. Top 20 NLDB vectors that allowed perfect classifica-
tion. All of them are supported in the first half-time interval,
which captures P-wave components.

cally once the data set was given. Since LDA produces the
best linear combination of given features, we can synthesize
the most discriminant feature. Figure 6 compares the feature
synthesized from the top 20 NLDB wavelets with the feature
obtained by applying LDA directly to the original signals repre-
sented as time samples (i.e., on the standard basis). The differ-
ence is very clear. LDA applied directly to the time samples is
very noisy and too sensitive to extremely local events in time,
since this synthesized feature is a linear combination of unit
impulses over the whole time interval. For example, the big
peaks around t = 2 ms must be an effect of the tapering used
to remove the Stoneley-wave components. On the other hand,
the feature synthesized from the top 20 NLDB wavelets is very
similar to the P-wave components, because this feature is a
linear combination of sinusoids supported in the first half-time
interval. Our classification scheme is equivalent to the follow-
ing intuitive procedure: (1) correlate the discriminant feature
in Figure 6 with each recorded waveform (i.e., inner product of
this feature and each waveform) and (2) classify a waveform as
the sand waveform class if the correlation is larger than some
threshold but as the shale waveform class otherwise. The rea-
son for success is that this synthesized feature, in particular, in
the time segment from 0.8 ms to 1.2 ms, is “in phase” with the
P-wave components of the sand waveforms but “out of phase”
with those of the shale waveforms. The NLDB algorithm suc-
cessfully extracted this discriminant feature, i.e., the difference
in P-wave velocity, automatically.

Estimation of volume fraction of minerals by LRB

We now describe our results for a more challenging problem,
the estimation of volume fractions of quartz and gas using the
sonic waveforms. We used the entire data set shown in Figure 1
and split it randomly into ten groups for the cross-validation
experiments, which are described as follows.

begin
for i := 1 to 10 step 1 do

Compute an LRB relative to g̃ from the training data
set Ti ;

FIG. 6. Local feature synthesized by the linear combination of
the top 20 NLDB wavelets (solid line) and that synthesized by
the linear combination of the unit impulses (dashed line). The
weights were supplied by the LDA method in both cases.
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Supply the entire LRB coordinates to the predictor g,
which does the automatic feature selection;

Predict the responses in Ti and compute the relative `2

error R(Ti );
Compute the LRB coordinates of the test signals in T ′i ,

predict the responses, and compute the relative `2

error R(T ′i );
enddo
Compute the average relative `2 errors as R= (1/10)∑10

i=1 R(Ti ), R′ = (1/10)
∑10

i=1 R(T ′i );
end

As a final predictor g in equation (1) and a basis evaluator
g̃ in objective function (9), we adopted the linear regression
model with step-wise variable selection (LMSTEP) and the re-
gression tree (RT). For the details of these regression methods,
see Draper and Smith (1981) for the LMSTEP and Breiman
et al. (1993) for the RT. The relative `2 error R for a data set
S = {(X1,Y1), . . . , (XL ,YL)} is defined as

R(S)1
(∑L

j=1(Yj − Ŷj )2∑L
j=1 Y2

j

)1/2

, (10)

where Ŷj is the prediction of Yj using the regression method.
We summarize the average prediction errors in Table 1. As

a comparison, we also estimated these volume fractions from

Table 1. Average prediction (relative `2) errors for the vol-
ume fractions of minerals using the LRB; STD denotes the
waveforms represented in the standard coordinates (i.e., as
time samples).

Error for quartz Error for gas

Method Training Test Training Test

RT on STD 0.0630 0.0747 0.3456 0.4783
LMSTEP on STD 0.1073 0.1125 0.6281 0.6754
RT on LRB RT 0.0629 0.0732 0.3293 0.4486
LMSTEP on 0.1067 0.1117 0.6060 0.6747

LRB RT
LMSTEP on 0.1047 0.1135 0.6041 0.6730

LRB LMSTEP
RT on LRB LMSTEP 0.0666 0.0833 0.3352 0.4575

FIG. 7. Cross plots of the quartz volume fractions estimated by the volumetric analysis method (Quirein
et al., 1986; Cannon and Coates, 1990) versus those estimated by the proposed method (with RT on LRB-RT
coordinates). (a) Results for the training data set T2. (b) Results for the corresponding test data set T ′2 .

the original waveforms represented in the STD, i.e., as time
samples. From Table 1, we make the following observations.

1) For both quartz and gas volume estimates, the best results
were obtained with RT applied to the LRB-RT coordi-
nates [i.e., RT is used for both g in equation (1) and g̃ in
equation (9)].

2) The use of LMSTEP as the final predictor g generated
larger errors in both the quartz and the gas volume frac-
tion estimates than did the use of RT.

3) The errors in the gas volume were much larger than those
in the quartz volume.

The first two observations suggest that the linear combinations
of LRB wavelets or impulses are not suitable features for the
estimation of volume fractions of minerals. In other words,
there must be a nonlinear relationship between these volume
fractions and the LRB and STD coordinates. This nonlinearity
may be the reason for the good performance of the RT, which
is a nonlinear predictor. Even the RT on STD produced results
better than any obtained by setting g = LMSTEP.

As for the third observation (the larger errors for gas than for
quartz), there may be two reasons. First, the acoustic velocities
contain little information on hydrocarbon saturation (Williams,
1990). (See also the Discussion section.) Second, only a small
number of gas waveforms exist in our data set. In fact, only
about 20% of the entire depth levels have a gas volume frac-
tion of more than 0.01 (i.e., the distribution of the gas volume
fractions is very skewed toward the lower values), whereas the
distribution of the quartz volume fraction is well balanced at
about 0.6.

In Figure 7, we show cross plots of the quartz volume frac-
tions given by the volumetric analysis method of Quirein et al.
(1986) and Cannon and Coates (1990) versus our best estimates
by RT on LRB-RT coordinates. In this case, the RT method
selected 27 wavelets (LRB-RT vectors), on average, in these
10 cross-validation experiments. Throughout these ten exper-
iments, four wavelets were consistently selected and signifi-
cantly reduced the prediction errors in comparison with the
other wavelets. In Figure 8, we show these four “common” or
“survived” wavelets in our ten cross-validation experiments.
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From Figure 8, we observe that the P-wave components play a
more important role for the quartz volume fraction estimates,
since the algorithm selected three wavelets in the time interval
in which the P-waves reside. This is consistent with the classi-
fication problem discussed above, in which all the discriminant
information (whether sand or shale) is contained in the P-wave
components. In fact, a further examination of the plots in Fig-
ures 1, 2, and 8 shows that the three wavelets of the LRB indices,
81, 85, and 89, are located at the beginning of the P-wave com-
ponents of the sand waveforms. On the other hand, the shale
waveforms in the time interval in which these three wavelets
are located have very little activity. The P-waves have not yet
arrived in the shale region.

In Figure 9, we show cross plots of the gas volume frac-
tions. RT on LRB-RT coordinates again produced the best
results and selected 34 wavelets, on average. However, the se-
lected features were more variable among the ten experiments
than in the quartz case. Four of the ten experiments produced
the three global sinusoids as the “survived” wavelets, whereas
the other six experiments produced two wavelets located in the

FIG. 8. LRB-RT wavelets that contributed most to the quartz
volume fraction estimation.

FIG. 9. Cross plots of the gas volume fractions estimated by the volumetric analysis method (Quirein et al., 1986;
Cannon and Coates, 1990) versus those estimated by the proposed method (with RT on LRB-RT coordinates).
(a) Results for the training data set T2. (b) Results for the corresponding test data set T ′2 . Note that the axis range
just covers the porosity range in this well (0 to 0.24).

S-wave time interval and one wavelet located in the P-wave
time interval. These three wavelets are shown in Figure 10. The
frequency contents of the three global sinusoids are essentially
the same as those of these three wavelets. This implies that the
particular frequency components of the S-waves are important
for the prediction of the gas volume fractions in this data set.
This can be understood by examining Figures 1 and 2. The gas
waveforms have distinctive frequency components with high
amplitudes. LRB automatically found these specific features
(wavelets 151 and 191) for gas volume estimation. The physi-
cal reason for this high-amplitude effect of the gas waveforms
may be the difference in the shear velocity of the gas sand layers
and the velocity in the borehole mud (VS > Vmud) in this well.
Wavelet 94 is located in the middle of the P-wave components
of the sand waveforms, and it also works as a “sand detector.”

DISCUSSION

In this study, we automatically extracted the waveform fea-
tures, predicted the quantity of interest, and provided some

FIG. 10. LRB-RT wavelets that contributed most to the gas
volume fraction estimation.
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Table 2. Average prediction errors for the quartz and gas vol-
ume fractions using regressions on the VP/VS values with the
10-fold cross-validation method.

Error for quartz Error for gas

Method Training Test Training Test

RT on VP/VS 0.0981 0.1127 0.4906 0.5754
LM on VP/VS 0.1095 0.1095 0.5980 0.6001

interpretations. Thus, it is important to compare the perfor-
mance of the automatic procedures with that of the regression
analysis for the quantities directly derived from the theory of
wave propagation. The physics of wave propagation suggest
that the key parameter for predicting lithology is the ratio of
P- and S-wave velocities, VP/VS (Tatham, 1982; Williams,
1990). Although this quantity is still affected by other factors,
such as cracks, pores, and geometry, it is related directly to Pois-
son’s ratio, a characteristic property of elastic solids (Murphy
et al., 1993; Tatham, 1982). In our data set, the velocities of the
P- and S-wave components at each depth level were computed
using the semblance-based algorithm (Kimball and Marzetta,
1984), which requires recording of multiple waveforms for each
shot (in this case, eight receivers). This means that the aver-
age depth resolution of these velocities was 3.5 ft (1.07 m).
Therefore, to compare performance with that in the experi-
ments of the previous section, we averaged VP and VS values
over a 9-ft window and then computed VP/VS values. For a
fair comparison with our methods, we used RT and the sim-
ple linear regression model (LM) to predict the quartz and
gas volume fractions from the VP/VS values. We again used
the ten-fold cross-validation method to compute the average
prediction errors as shown in Table 2. From Table 2, we can
observe that the results of the LRB-RT method were supe-
rior to those of the VP/VS method, whereas the results of the
LRB-LMSTEP method were inferior to the VP/VS method re-
sults. This is understandable, since VP/VS does not contain the
volume information of the saturating fluid (Paillet and Cheng,
1991; Williams, 1990).

Williams (1990) proposed an algorithm to identify the type
of saturating fluid based on VP/VS. His algorithm, however,
is not a predictor of the volume of the saturating fluid, as he
emphasizes. Therefore, we cannot use his algorithm for our
volume estimation problem.

CONCLUSION

In this paper, we applied the LDB and LRB methods (Saito,
1994; Coifman and Saito, 1994; Saito and Coifman, 1994, 1995,
1996) to classify rock types and to predict the volume fractions
of quartz and gas from acoustic well-logging waveforms. Using
these methods, we successfully extracted the features useful
for predicting such information automatically. Our results also
allowed us to make interpretations in an intuitive manner and
essentially agreed with explanations by the physics of wave
propagation.

The LDB and LRB methods tested in this paper are generic
in nature, and we believe that they can be used for other clas-
sification and regression tasks in geophysical problems. Their
extension to images or multichannel waveforms also is quite
straightforward.
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