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A Relational Model of Cognitive MapsB. Chaib-draa and J. DesharnaisDépartement d'informatique, Faculté des SciencesUniversité Laval, Sainte-Foy, QC, G1K 7P4, Canadae-mail: chaib@ift.ulaval.caAbstractA useful tool for causal reasoning is the language of cognitive maps developed by political scientiststo analyze, predict and understand decisions. Although, this language is based on simple inferencerules and its semantics is ad-hoc, it has many attractive aspects and has been found useful in manyapplications: administrative sciences, game theory, information analysis, popular political developments,electrical circuits analyze, cooperation man-machines, distributed group decision support and adaptationand learning, etc. In this paper, we show how cognitive maps can be viewed in the context of relationalgebra, and how this algebra provides a semantic foundation that helps to develop a computational toolusing the language of cognitive maps.1 IntroductionCausal knowledge generally involves many interacting concepts that make them di�cult to deal with, andfor which analytical techniques are inadequate (Park, 1995). In this case, other techniques, and particularlytechniques stemmed from qualitative reasoning, can be used to cope with this kind of knowledge. A cognitivemap (CM ) is based on those techniques and is adequate for dealing with interacting concepts.Generally, the basic elements of a CM are simple. The concepts an individual uses are represented aspoints, and the causal relationships between these concepts are represented as arrows between these points.This representation gives a graph of points and arrows, called a cognitive map. The strategic alternatives,all of the various causes and e�ects, goals, and the ultimate utility of the decision-making agent can allbe considered as concept variables, and represented as points in the causal map. Causal relationships cantake on basic values + (such as: promotes, enhances, helps, is bene�t to, etc.), � (such as: retards, hurts,prevents, is harmful to, etc.) and 0 (such as: has no e�ect on, does not matter for, etc.). With thisrepresentation, it is then relatively easy to see how concepts and causal relationships are related to eachother and to see the overall causal relationships of one concept with another. For instance, the CM ofFigure 1, studied by Wellman (Wellman, 1994) and taken from (Levi and Tetlock, 1980), explains how theJapanese made the decision to attack Peal Harbor. Indeed, this portion of a CM states that �remaining2



idle promotes the attrition of Japanese strength while enhancing the defensive preparedness of the US, bothof which decrease Japanese prospects for success in war�. This shows that a CM is a set of concepts as�Japan remains idle�, �Japanese attrition�, etc. and a set of signed edges representing causal relations like�promote(s)�, �enhance(s)�, �decrease(s)�, etc. Japanese ��
attritionJapanremainsidle ++ Japanesesuccessin warUSpreparednessFigure 1: A Cognitive Map (from [Levi and Tetlock, 1980])Note that the concepts' domains are not necessarily de�ned precisely since there are no obvious scalesfor measuring �US preparedness�, �success in war�, etc. Nevertheless, it seems easy to catch the intendedmeaning of the signed relationships in this model (Wellman, 1994). As any cognitive map, the CM ofFigure 1 can be transformed in a matrix called an adjacency or valency matrix. A valency matrix is a squarematrix with one row and one column for each concept in a CM . For instance, if we note the concepts �Japanremains idle�, �Japanese attrition�, �Japanese success in war�, �US preparedness� by a; b; c; d respectively,then the valency matrix of the CM represented in Figure 1 is the following:0BBBBBB@

a b c da 0 + 0 +b 0 0 � 0c 0 0 0 0d 0 0 � 0
1CCCCCCAInferences that we can draw from this CM are based on a qualitative reasoning similar to � the friendsof my friends are friends�. Thus, in the case of Figure 1, remaining idle decreases the prospects for Japanesesuccess in a war along two causal paths. Notice that the relationship between idleness and war prospects isnegative since both paths agree. In these conditions, Japan has interest to start war as soon as possible if�he believes� that war is inevitable. Thus, a CM provides an intuitive framework in which to form decisions.Cognitive maps (CMs) may be more complex than that given in this paper (see for example (Buede and3



Ferrell, 1993) for larger examples). Furthermore, they are often cyclic since cyclicness or feedback representinteresting dynamic systems (Kosko, 1992). For instance, the CM of Figure 2 represents view on researchin advanced countries which is a dynamic system re�ected by many cycles: (1), (2), (3), etc. Such cycles arehard to represent using trees, as for instance Markov or Bayesian trees, which are acyclic representations bydesign.
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Figure 2: A cognitive map representing an organization as loops.In summary, CMs are a power tool which allows users to represent and reason on causal relationshipsas re�ected in realistic dynamic systems. Cyclic CMs have been considered as ad-hoc representations withsimple inference rules and no semantics. In this paper, we propose a relational model of cognitive maps asa semantic. With this model, we have developed a computational model that we are using in the context ofmultiagent environments.This paper is organized as follows. The next section relates previous works about cognitive maps. Section3 sketches the classical calculus of relations and details our relational model of cognitive maps. Finally,section 5 presents the implementation of the proposed model and its applications in the context of multiagentsystems.
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2 Related worksCMs follow personal construct theory �rst put forward by Kelly (Kelly, 1955). His theory provides a basis forrepresenting an individual's multiple perspectives. Kelly suggests that understanding how individuals orga-nize their environments requires that subjects themselves de�ne the relevant dimensions of that environment.He proposed a set of techniques, known collectively as repertory grid, in order to facilitate empirical researchguided by the theory. Personal construct theory has spawned many �elds and has been used in the �eldsof international relations (Axelrod, 1976; Buede and Ferrell, 1993), administrative sciences (Ross and Hall,1980), management sciences (Eden, 1979; Di�enbach, 1993; Smithin and Sims, 1982), game theory (Kleinand Cooper, 1982), information analysis (Montazemi and Conrath, 1986), popular political developments(Taber and Siegel, 1987; Taber, 1991), electrical circuits analyze (Styblinski and Meyer, 1988) distributedgroup decision support (Zhang and Chen, 1988; Zhang et al., 1992; Zhang, 1996) and adaptation and learning(Kosko, 1986; Kosko, 1988; Kosko, 1992). Some of those studies were based on crisp CMs (Axelrod, 1976;Eden, 1979; Di�enbach, 1993; Smithin and Sims, 1982; Klein and Cooper, 1982; Montazemi and Conrath,1986; Buede and Ferrell, 1993) and others on fuzzy CMs (Kosko, 1986; Kosko, 1988; Kosko, 1992; Zhangand Chen, 1988; Zhang et al., 1992; Zhang, 1996). In the case of crisp CMs , what matters is whether, thecausal e�ects are +, negative � or 0 and the relative strengths of those causal relations are ignored. Theidea of Fuzzy CMs was introduced by Kosko (Kosko, 1986) who introduced causal algebra operating in therange of [0; 1] for propagating causality on a fuzzy cognitive map. Due to the limited range of fuzzy numbers,Kosko proposed to convert negative in�uences into positive ones by using the idea of dis-concepts.In thiscontext, Kosko developed a fuzzy causal map and introduced a fuzzy causal algebra operating in the rangeof [0; 1] for propagating causality. However, due the limited range of fuzzy number, negative in�uences wereconverted to positive ones, with the same absolute values, by using dis-concepts or dis-factors. This is basedon the following fact: Replace every vi ��! vj with vi +�!� vjAlthough this solution is attractive, doubling the size of the concept set may increase computation time andspace to unacceptable levels, particularly for the large CMs . Moreover, the author did not give a semanticsfor the fuzzy causal values such as none, some, etc.In the same context, Zhang and his colleagues proposed a system called POOL2 (Zhang and Chen, 1988)which is a generic system for fuzzy cognitive map development and decision analysis. This system usesan approach in which both negative and positive assertions are weighted and kept separately based on thenegative-positive-neutral (NPN) interval [�1; 1] instead of values in [0; 1]. Later, the same team proposedthe D-POOL system (Zhang et al., 1992). This system is based on NPN logics and NPN relations and5



strives for a cooperative or compromised solution between cognitive maps (from relevant agents) throughcoherent communication and perspective sharing. Finally, the NPN causal inference has been also used byPark (Park, 1995) to study a fuzzy time cognitive map with time lag on each arrow. The author developeda method of translating the fuzzy CM that has di�erent time lags into a fuzzy cognitive map having thesame unit-time lag.Notice that the NPN approach is a particular technique for associating numbers or intervals with edgeson directed graphs. Consequently, fuzzy CMs stemmed from this approach are not really qualitative models,but rather quantitative models where quantities are combined by propagation along paths. In other words,the interpretation adopted by Zhang and his colleagues is based on fuzzy interval calculus which has nosemantic account in terms of fundamental concept (Wellman, 1994). In fact, the de�nition of a precisesemantic interpretation of qualitative causality has received very little attention since all approaches toCMs were based on simple inference mechanisms in order to give rise to a qualitative calculus about theconsequences of a CM . The only work that we are aware of in this context is Wellman's approach (Wellman,1994). This author used an approach based on graphical dependency models (the Bayesian Networks), forprobabilistic reasoning, and sign algebras, for qualitative reasoning. This type of approach is usually usedin AI and is only applicable in the acyclic case (i.e., a graph with no cycles) (Wellman, 1994). As statedpreviously however, the acyclic case does not re�ect realistic systems since these systems contain often cyclesand feedbacks.In this paper, we propose an alternative approach based on relation algebra and which takes into accountthe cyclic case. Precisely, we use propagation-based inference procedures, based on relation algebra, to deriverelations among arbitrary connected concepts.3 A Relational Theory of Causal MapsThe following description of classical cognitive maps comes mostly from (Axelrod, 1976) and (Nakumaraet al., 1982). Generally, causal links (causal relations) between two concepts vi and vj have one of the eightvalues indicated in Table 1.
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TABLE 1Causal Links in a Causal MapCausal Relations Descriptionsvi +�! vj vi facilitates vj , vi helps vj , vi promotes vj , etc.vi ��! vj vi hinders vj , vi hurts vj , vi prevents vj , vi is harmful to vj , etc.vi 0�! vj vi has no e�ect on vj , vi does not matter or is neutral to vj , etc.Generally, this relation is not depicted in cognitive maps.vi ��! vj vi does not retard vj , vi does not hurt vj , vi does not prevent vj , etc.vi 	�! vj vi does not promote vj , vi does not help vj , vi is of no bene�t to vj , etc.vi ��! vj vi a�ects in some non-zero way vj , etc.vi ?�! vj +, �, and 0 can exist between variables vi and vj .vi a�! vj Con�icting assertions about the same relation have been made, this rela-tion is called ambivalent.These causal relations are used to build cognitive maps, de�ned as follows.De�nition 1 A causal map CM := (C;A) is a directed graph that represents an individual's (i.e., an agent,a group of agents or an organization) assertions about its beliefs with respect to its environment. Thecomponents of this graph are a set of points C (the vertices) and a set of arrows A (the edges) betweenthese points. The arrows are labeled by elements of the set C := fa;+;�; 0;�;	;�; ?}. A point represents aconcept (also called concept variable in the sequel), which may be a goal or an action option of any agent. Itcan also represent the utility of any agent or the utility of a group or an organization, or any other conceptappropriate to multiagent reasoning. An arrow represents a causal relation between concepts, that is, itrepresents a causal assertion of how one concept variable a�ects another. The concept variable at the originof an arrow is called a cause variable and that at the end point of the arrow is called the e�ect variable. Apath from variable v1 to variable vn is a sequence of points v1; v2; : : : ; vn, together with the non-zero arrows(i.e., arrows labeled by a relation di�erent from 0) v1v2; v2v3; : : : ; vn�1vn. A path is trivial if it consists of asingle point. The valency matrix V of a causal map M is a square matrix of size n, where n is the numberof concepts in M . The entry Vij is the label of the arrow from vi to vj in M . If there is no such arrow, thenof the arrow from vi to vj in M . If there is no such arrow, then Vij = 0. �Before detailing our model, we present a summary of the classical theory of CMs .
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3.1 Classical Theory of CMsFour operators are de�ned on the set C of causal relations. They are union ([), intersection (\), sum (j)and multiplication (�). The laws of union and intersection are obtained by considering a;+;�; 0;�;	;�and ? as shorthands for fg; f+g; f�g; f0g; f0;+g; f0;�g; f+;�g and f+; 0;�g, respectively. Thus, one has(Axelrod, 1976; Nakumara et al., 1982)� = 0 [+; 	 = 0 [ �;� = + [ �; ? = 0 [+ [�;a = + \ 0 = + \ � = 0 \�: (1)It can be seen that a denotes con�icting assertions about a given link. Although not stated explicitlyin (Nakumara et al., 1982), the law 8x : a [ x = x (2)follows from the author's considerations.The laws of sum are given below on the left (with �do� meaning �distributes over�). From these laws, onecan deduce a table giving the result of the application of sum to any pair of causal relations.8 x; y 2 C,(a) 0jy = y,(b) ajy = a,(c) yjy = y,(d) +j� = ?,(e) j do [,(f) xjy = yjx.
j a 0 + � � 	 � ?a a a a a a a a a0 a 0 + � � 	 � ?+ a + + ? + ? ? ?� a � ? � ? � ? ?� a � + ? � ? ? ?	 a 	 ? � ? 	 ? ?� a � ? ? ? ? � ?? a ? ? ? ? ? ? ?

(3)
The laws of multiplication are given below on the left. On the right is the table deduced from these laws.
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For any x; y 2 C,(a) + � y = y,(b) 0 � y = 0,(c) a � y = aif y 6= 0,(d) � � � = +,(e) � do [,(f) x � y =y � x.

� a 0 + � � 	 � ?a a 0 a a a0 0 0 0 0 0 0 0 0+ a 0 + � � 	 � ?� a 0 � + 	 � � ?� 0 � 	 � 	 ? ?	 0 	 � 	 � ? ?� a 0 � � ? ? � ?? 0 ? ? ? ? ? ?
(4)

Some entries are not given, because the laws of � lead to contradictory results. For instance, according tolaw (4c), a�� = a. But, using laws (4b,4c,4e,4f) and Equations (1) and (2), one gets a�� = a� (0[+) =a � 0 [ a �+ = 0 [ a = 0. In other words, the system is not consistent.Despite this major drawback, let us explain what these operations are intended for. Multiplication isused to calculate indirect e�ects. For instance, from vi ��! vj ��! vk, there is an indirect e�ect vi +�! vk(Equation (4d) is � � � = +). Given the set C of causal relations and their interpretation given in Table 1,the six rules of multiplication seem rather reasonable. For example, rule (4b) says that, if vi has no e�ecton vj , it is natural that vi has no indirect e�ect on vk through vj (0 � y = 0), no matter what the e�ect yof vj on vk is. Rule (4c) says that, if the e�ect from vi to vj is ambivalent, the indirect e�ect from vi to vkthrough vj is also ambivalent (a � y = a), even if the e�ect from vj to vk is not ambivalent. Rule (4f) statesthat � is commutative.The sum operator is used to accumulate indirect e�ects from di�erent paths. For example, if there isa path from vi to vj with indirect e�ect + and another path with indirect e�ect �, the net e�ect is ?,according to law (3d). Nakumara et al. (Nakumara et al., 1982) consider all the rules of Equation (3) easilyacceptable, except for rule (3b); they do not justify this statement, though.The operators � and j can be lifted to matrices. Assume that V and W are square matrices of size n.Addition and multiplication of matrices are de�ned as follows:(V jW )ij = Vij jWij ; (5)(V �W )ij = (Vi1 �W1j)j � � � j(Vin �Wnj): (6)The nth power of a square matrix V , for n > 0, is then naturally de�ned byV 1 := V and V n := V � V n�1: (7)9



The total e�ect of one concept on another is calculated according to the following de�nition.De�nition 2 The total e�ect of variable vi on variable vj is the sum of the indirect e�ects of all paths fromvi to vj . Let V be the valency matrix of a causal map. The total e�ect matrix Vt is the matrix that has asits ijth entry the total e�ect of vi on vj . That is, Vt = V jV 2jV 3j : : :.It is easy to check that the sum operator is �-monotonic. This implies that there is a k such that Vt =V jV 2j � � � jV k. �In summary, it is important to notice that the classical view of cognitive maps is an intuitive viewwith ad-hoc rules to calculate direct and indirect e�ects. Furthermore, there is no a precise meaning of theprimitive concepts, neither a sound formal treatment of relations between concepts. Finally, as we previouslyshown, the proposed model is not consistent. These considerations brought us to develop the formal modelpresented in the next section.3.2 A Relational Model of Causal Maps3.3 Relations and Relation AlgebraThe mathematical de�nition of a relation in terms of set theory is the following.De�nition 3 A relation R on a set F is a subset of the Cartesian product F � F . Elements x; y 2 F aresaid to be in relation R when (x; y) 2 R. �We conventionally employ the symbols (_;^;!) for conjunction, disjunction and implication betweenpredicates and truth values. We use ([;\;�) for the union, intersection and inclusion of sets. Finally,we use (t;u;v) to denote union, intersection and inclusion of relations. Other symbols used in this textare: =);() are metalevel implication and equivalence, respectively, := is de�nitional equality and :() isde�nitional equivalence.Notice that relations are sets, and consequently we can consider their intersection, union, complementa-tion and inclusion. What follows is a de�nition of some of the usual operations on relations.De�nition 4 Let R;S v F � F . The basic operations on relations are:1. union R t S := f(x; y) j (x; y) 2 R _ (x; y) 2 Sg,2. intersection R u S := f(x; y) j (x; y) 2 R ^ (x; y) 2 Sg,3. complement R := f(x; y) j (x; y) =2 Rg,4. product, composition R � S := f(x; z) j 9y 2 F : (x; y) 2 R ^ (y; z) 2 Sg,10



5. converse, transposition R> := f(x; y) j (y; x) 2 Rg,6. empty O := f(x; y) j falseg v F � F ,7. universal L := f(x; y) j trueg = F � F ,8. identity I := f(x; y) j x = yg v F � F ,9. power R0 := I , and Rn = R �Rn�1 if n > 0,10. inclusion R v S :() 8x; y : [(x; y) 2 R! (x; y) 2 S]. �Priority of operations: The unary operations (>, �) are performed �rst, followed by the binaryoperation (�), and �nally by the binary operations (t, u).A �nite relation R can be represented by a Boolean matrix, using the convention Rxy = 1() (x; y) 2 Rand Rxy = 0() (x; y) 62 R. The de�nition of the relational operators for Boolean matrices follows: we use^ and _ as operators on the set f0; 1g, considered as a set of truth values in the usual way.(V t V 0)ik := Vik _ V 0ik ; (V )ik := :Vik (negation); (V � V 0)ik := nWj=1 Vij ^ V 0jk :(V u V 0)ik := Vik ^ V 0ik ; (V >)ik := Vki; (8)Thus, for example, if F = fa; bg, we haveO = 0@a ba 0 0b 0 01A; L = 0@ a ba 1 1b 1 11A;  0 11 1!> =  1 11 0! ;  0 11 1! � 0 00 1! =  0 10 1!(this example also shows that the labels of rows and columns may be explicit or implicit).Relations over a set, Boolean matrices and some types of graphs are instances of a more abstract concept,called relation algebra. A relation algebra is itself an extension of a Boolean algebra, which is a more familiarconcept.De�nition 5 A Boolean algebra is an algebra of the form (B;t;u; ; O; L), which satis�es the identities (Lad-kin and Maddux, 1994; Schmidt and Ströhlein, 1993):(Q t R) t S = Q t (R t S),(Q u R) u S = Q u (R u S),R t S = S t R,R u S = S u R, (Q u R) tQ = Q,(Q t R) uQ = Q,(QuR)tS = (QtS)u(RtS),(QtR)uS = (QuS)t(RuS), R tR = L,R uR = O. �
From this de�nition, other familiar laws can be derived (see (Ladkin and Maddux, 1994) for details)The partial ordering v on a Boolean algebra is de�ned by R v S () R u S = R.11



De�nition 6 A structure A is a relation algebra i� (Ladkin and Maddux, 1994; Schmidt and Ströhlein,1993) A = (A;t;u; ; O; L; �;>; I);where (A;t;u;�; O; L) is a Boolean algebra (called the reduct of R), � is a binary operation, > is a unaryoperation, I 2 A, and the following identities hold:(Q �R) � S = Q � (R � S),(Q t R) � S = Q � S t R � S,R � I = R = I �R,R>> = R, (R t S)> = R> t S>,(R � S)> = S> �R>,R> �R � S u S = O. �We refer to L as the Boolean unit of A, and to I as its identity element. Here are some theorems that canbe derived from these axioms:R> = R>,I> = I;O> = O;L> = L,O �R = R �O = O,
(R u S)> = R> u S>,Q � (R u S) v Q �R uQ � S,Q v R =) Q> v R>,Q v R =) Q � S v R � S,Q v R =) S �Q v S �R.Schmidt and Ströhlein (Schmidt and Ströhlein, 1993) mention that the set of all n � n matrices withcoe�cients from a homogeneous relation algebra again form a relation algebra, with the relational operatorson these matrices de�ned as follows:(V t V 0)ik := Vik t V 0ik ; (V )ik := Vik ; (V � V 0)ik := nFj=1 Vij � V 0jk :(V u V 0)ik := Vik u V 0ik ; (V >)ik := (Vki)>; (9)Let us show intuitively why it works. Consider the matrices below. The left one is a 4 � 4 Booleanmatrix. The middle one is the same matrix, but with groupings of rows and columns; the result is a 2� 2matrix whose entries are 2� 2 Boolean matrices, that is, a matrix with four entries that are relations. Theright one corresponds to the middle one: each submatrix is simply replaced by a relation identi�er in theobvious way. It is easy to see that applying the operations described in Equation (8) to 4� 4 matrices suchas the left one gives the same result as applying the operations of Equation (9) to matrices such as the rightone. 0BBBBBB@ 1 1 1 11 0 0 00 1 1 01 0 1 0

1CCCCCCA 0BBBBBBB@ 1 1 1 11 0 0 00 1 1 01 0 1 0
1CCCCCCCA 0@ R11 R12R21 R22 1A12



Let us call a matrix whose entries are relations a relational matrix. In the same manner than a valencymatrix can be associated to a causal map (see De�nition 1), one can associate to a relational matrix a graphwith arrows labeled by relations (we call such a map a relational causal map). Thus, if we had relationsmodeling the classical causal relations (+;�;	, etc.), and relational operations modeling the operations onclassical causal relations ([;\; j; �), we would have a relational model of cognitive maps. Now, in view of thecontradiction brought to light in Section 3.1, this is an impossible task. Hence, our goal is rather to �nd analternative relational description of cognitive maps, while trying to keep as much as possible of the �avor ofclassical causal maps. Another goal is to introduce a �exible model that can easily be extended if additionalprecision is required, rather than being stuck with a small set of causal relations. This model is presentedin the following section.3.3.1 The Relation Algebra of Causal MapsLet � := f�1; 0; 1g. Numbers in � are intended to represent changes (variations) in a concept variable,with �1; 0; 1 denoting decrease, stability and increase, respectively. How these variations are measured andwhat exactly is varying does not concern us here; it could be, e.g., the utility of a variable, an amount ofsomething, etc. Next, we de�ne the relations +; 0;� on the set �.These are
+ := 0BBB@ 1 0 �11 1 0 00 0 1 0�1 0 0 11CCCA 0 := 0BBB@ 1 0 �11 0 1 00 0 1 0�1 0 1 01CCCA � := 0BBB@ 1 0 �11 0 0 10 0 1 0�1 1 0 01CCCARecall that these relations are used to label arrows of a relational causal map, thus linking cause variablesto e�ect variables. Consider relation +. It is interpreted as follows: an increase in the cause variable causesan increase in the e�ect variable, a decrease in the cause variable causes a decrease in the e�ect variable,and stability of the cause variable promotes stability of the e�ect variable (note that + is just the identityrelation and could be written I). Relation 0 says that the cause variable promotes stability of the e�ectvariable, no matter how it changes. Relation � is interpreted similarly.We now use the primary relations +;� and 0 to de�ne �;	;�; ? and !.� := 0 t+; 	 := 0 t �; � := + t�; ? := + t� t 0; ! := + u �:Before discussing further the interpretation of the various relations (in particular O; 0 and !), we presentthe tables showing the result of the application of the relational operators t;u; � to the above relations.13



These tables are constructed by using Equation (8). Thus, for instance, it is easy to verify that � � � = +by multiplying the matrix representing � by itself.0BB@ 0 0 10 1 01 0 01CCA � 0BB@ 0 0 10 1 01 0 01CCA = 0BB@ 1 0 00 1 00 0 11CCATABLE 2Table for tt O 0 + � � 	 � ? !O O 0 + � � 	 � ? !0 0 0 � 	 � 	 ? ? 0+ + � + � � ? � ? +� � 	 � � ? 	 � ? �� � � � ? � ? ? ? �	 	 	 ? 	 ? 	 ? ? 	� � ? � � ? ? � ? �? ? ? ? ? ? ? ? ? ?! ! 0 + � � 	 � ? !TABLE 3Table for �� O 0 + � � 	 � ? !O O O O O O O O O O0 O 0 0 0 0 0 0 0 0+ O 0 + � � 	 � ? !� O 0 � + 	 � � ? !� O 0 � 	 � 	 ? ? 0	 O 0 	 � 	 � ? ? 0� O 0 � � ? ? � ? !? O 0 ? ? ? ? ? ? 0! O ! ! ! ! ! ! ! !14



TABLE 4Table for uu O 0 + � � 	 � ? !O O O O O O O O O O0 O 0 ! ! 0 0 ! 0 !+ O ! + ! + ! + + !� O ! ! � ! � � � !� O 0 + ! � 0 + � !	 O 0 ! � 0 	 � 	 !� O ! + � + � � � !? O 0 + � � 	 � ? !! O ! ! ! ! ! ! ! !The relational composition operation (�) corresponds to the multiplication operation (�) of classicalcognitive maps. Comparing Table 3 and the table in Equation (4), we see that that, with the exception ofthe classical a and the relational !, there is an exact correspondence. Also, the classical 0 corresponds toboth the relational O and the relational 0. Although the status of the classical a is not clear, the fact thatit is interpreted by the empty set (see Section 3.1) leads us to compare it to the relation O; the match is nottoo bad.The relational union operation (t) has similarities with both classical union ([) and classical sum (j). Forexample, assuming that the classical 0 corresponds to the relational 0, we have the classical law 0 [+ = �and the relational law 0 t + = �. Assuming that the classical 0 corresponds to the relational O, we havethe classical law +j0 = + and the relational law + t O = +. The most conspicuous divergence concernsthe classical a. The law ajy = a means that it is not possible to weaken any contradiction; contradictionspropagate in the calculation of the total e�ect, because of laws (3b) and (4c). As we indicated in Section 3.1,Nakumara et al. (Nakumara et al., 1982) �nd it di�cult to accept ajy = a. In our case, no relation playsthe role of a.In our approach, the empty relation O is used to denote �unrelatedness� or �ambivalence�. Assertingthat there is no relationship between a cause variable and an e�ect variable is just the same as making acontradictory assertion about this relationship. Another way to realize that O corresponds to ambivalenceis to �move� from L to O by adding information. The universal relation L indicates that a variation ofthe cause variable can cause any variation of the e�ect variable (increase, decrease or no variation); this iscomplete uncertainty. Adding information, one goes from L through, e.g., ?;�;+. The relation + represents15



perfect information: any variation of the cause variable is related to a single variation of the e�ect variable.Adding more information (too much information, contradictory information), one then goes through ! toreach O. With respect to the representation of relational maps by matrices, the absence of an arrow betweentwo concepts in the graph is represented by O in the corresponding relational matrix.Note that we distinguish between the two relationships O and 0 since, in our model, 0 indicates that therelationship between two concepts exists and is �neutral� Also, the relation ! = + u � = + u 0 = � u 0 ispartially ambivalent (somewhat less than O); it is a weak ambivalent relation.There are at least two ways to obtain a relation algebra A = (A;t;u; ; O; L; �;>;+) from the set ofrelations f+; 0;�g. One way is to take for A the full set of relations over the set � (the full set of 3 � 3matrices). This gives 29 = 512 relations. The other way is to take for A the closure of f+; 0;�g under the�ve relational operations; the result is a set of 32 relations, whose atoms (minimal non-O relations) are0BB@ 1 0 00 0 00 0 11CCA 0BB@ 0 1 00 0 00 1 01CCA 0BB@ 0 0 10 0 01 0 01CCA0BB@ 0 0 01 0 10 0 01CCA 0BB@ 0 0 00 1 00 0 01CCA(these could be taken as primitive relations instead of +; 0;�).A causal map CM can then be built just as in Section 3.1, using relations in A to label the arrows.Alternatively, one can construct the associated (relational) valency matrix V . Indirect e�ects of length k aregiven by the k-th power of V , V k. Indirect e�ects are added by means of t. The total e�ect matrix is thetransitive closure of V , which is V + := Gk>0 V k (10)In fact, V + corresponds to the matrix Vt of De�nition 2 (we use V + rather than Vt because it is thestandard notation for transitive closure). A n � n matrix whose entries are 3 � 3 matrices is a 3n � 3nmatrix. This implies that V + = S3n�1k=0 V k (see (Schmidt and Ströhlein, 1993)). It also means that V +can be computed in O((3n)3) = O(n3) steps using the Roy-Warshall algorithm; better algorithms also exist(Schmidt and Ströhlein, 1993). Furthermore, large systems with few interconnections may use space-e�cientrepresentations (the implementation need not use the matrix view). Hence the approach developed here canbe used beyond a few agents and a few concepts. 16



3.3.2 DiscussionCausal maps were originally proposed to capture the qualitative causal relationships that exist betweenconcepts in a structure of decision. Some intuitive inference mechanisms, based on reasoning from causeto e�ect, were proposed (Axelrod, 1976; Nakumara et al., 1982). In this section, we have de�ned a precisesemantic interpretation of qualitative causality in terms of relation algebra, to justify these intuitive inferencemechanisms. Indeed, as discussed in the previous subsection, our model justi�es most of the rules proposedby Nakumara et al. As we have pointed out, the main di�erence concerns ambivalence. Another di�erenceis our law +t� = � versus +j� = ?. According to (Nakumara et al., 1982), +j� = ? says that the sum of+ and � depends on which of the indirect e�ects + or � is stronger; the rule expresses that the total e�ectis plus (+) if the indirect e�ect + is stronger than the indirect e�ect �, is minus (�) if + is weaker than �,and is zero (0) if + is as strong as �. It may be argued, however, that in a qualitative approach it is di�cultto know how a relation can be as strong or stronger than another. It seems more reasonable to retain + and� for further reasoning. Our model takes this point of view into account by having + t � = �.It is also important to point out that, contrary to other models of cognitive maps, our model distinguishesbetween the �unrelated� relation (i.e., O) and the �neutral� relation (i.e., 0). The �rst relation expresses thatthere is no relation between two concepts, whereas the second relation indicates that one concept has aneutral relation to another.Our model also takes into account nonreversible causation, contrary to classical models of cognitive maps.An example of nonreversible causation is �an increase in vi causes an increase in vj , but a decrease in vi doesnot cause a decrease in vj�. For instance, the normal interpretation of �smoking causes illnesses� involvesnonreversible causation, because stopping smoking does not put out illnesses. In classical CM theory, onlyreversible causation is allowed, because, e.g., vi +�! vj is taken to mean both that �an increase in vi causesan increase in vj� and �a decrease in vi causes a decrease in vj�. In our model, reversible causation canbe expressed by choosing the appropriate relation among the set of 512 possible relations; for example,f(1; 1); (0; 0); (�1; 0); (�1; 1)g expresses that an increase in the cause variable causes an increase in the e�ectvariable; it also says that a decrease in the cause variable causes anything but a decrease in the e�ect variable.The u operation is used to combine relations when they are asserted together. Suppose, for instance,that an agent A wants to produce a matrix V by combining the matrices V1 and V2 transmitted by two otheragents A1 and A2. If A considers the information sent by A1 and A2 to be reliable, then she should de�neV := V1 u V2; the result might be that some concepts become related by ambivalent relations (O; !). On theother hand, if A considers both V1 and V2 to be possible (e.g., they represent a range of opinions), then sheshould de�ne V := V1 t V2; the result is fuzzier information than that of either V1 or V2.We have just mentioned that many more relations can be asserted than the few causal relations of the17



classical theory. There are also two new operations, complementation and converse, which still have to beexploited. Complementation allows to say that the relationship between two concepts is, e.g., anything but0 (expressed by 0). Converse allows talking about �backward causality� (consequence).An important advantage of the model is that it can be easily contracted or extended, by starting with adi�erent set �. Choosing � := f�1; 1g results in a smaller model. Choosing � := f�2;�1; 0; 1; 2g gives alarger model, in which �ner distinctions can be made; for example, it becomes possible to say that a largeincrease (2) in the cause variable causes a small decrease (�1) in the e�ect variable.4 Implementation and Application to Multiagent Environments4.1 The SR�	lab ToolThe crisp causal reasoning model presented in this paper has been implemented in a system used as acomputational tool supporting the relational manipulations. This tool is called SR�	lab (Caron, 1996) andis built over the 	lab software1, a freeware package developed by INRIA, France. This tool enables users 1)to edit matrices about relations, 2) store matrices in the working memory, 3) execute algebraic operationson matrices and 4) calculate the total e�ect matrix as precised by Equation 10. Any session begins bypresenting a matrix called �working copy� which is displayed on the screen for editing. Using this matrixallows users to represent relations like +, �, etc. A whole set of matrices can be kept in the working sessionto allow any combination of relations.With this tool, we are investigating the causal reasoning in multiagent environments (Chaib-draa, 1997).Causal reasoning is important in multiagent environments because it allows to model interrelationships orcausalities among a set of individual and social concepts. This provides a foundation to 1) test a modelabout the prediction of how agents will respond to expected (or not) events; 2) explain how agents havedone speci�c actions; 3) make a decision in a distributed environment; 4) analyze and compare the agents'causal representations. All these aspects are important for coordination, con�ict solving and the emergenceof cooperation between agents.4.2 Reasoning about Changes in an Organization of AgentsWeick (Weick, 1969) suggested to change the prevalent static view of an organization of agents to a dynamicview which is sustained by change. Precisely, he proposed that organization and change were two sides ofthe same social phenomena. His reasoning was that an organization is a process of co-evolution of agents'1This software can be obtained by anonymous ftp from �ftp.inria.fr:/INRIA/Scilab�.18



perceptions, cognitions and actions. In this context, Weick proposed a theory of organization and changebased on the graphs of loops in evolving social systems. Recently, additional investigation guided by thisapproach (Bougon and Komocar, 1990) tried to articulate how cognitive maps provide a way to identify theloops that produce and control an organization.In multiagent systems, the study of an organization of agents has generally focused on some structuralmodels such as (Moulin and Chaib-draa, 1996): 1) centralized and hierarchical organizations, 2) organizationsas authority structure, 3) market-like organizations, 4) organizations as communities with rules of behavior.All these structures missed dynamic aspects and in�uences that exist in an organization of agents. Generally,dynamic aspects and in�uences evolve through paths that close on themselves and form loops. We haverealized that such loops are important for an organization of agents for two main reasons: i) a change in anorganization is the result of deviation amplifying loops, ii) the stability of an organization is the result ofdeviation countering loops (Bougon and Komocar, 1990).As an example, consider the organization that binds researchers, grant agencies and quali�ed person-nel and for which, we only consider the three basic relationships (+; 02;�) for the sake of simplicity andreadability. The causal map representing this organization is shown in Figure 2. The meaning of this CMis clear and we shall explain it no more. In this causal map, concepts link together to form loops, someof which are numbered (1) to (7). Loops as (1), (4)�(7), etc., containing an even number of ��� relations,are deviation-amplifying loops. Change in the organization is the result of such loops, because any initialincrease (or decrease) in any concept loops back to that concept as an additional increase (or decrease)which, in turn, leads to more increase (or decrease). Thus, in loop (5), an increase in �research quality�improves �researcher satisfaction�. Increase in �satisfaction of researchers� allows, in turn, to improve the�retention of the best researchers�. Finally, the improvement of �retention of the best researchers� improves�research quality�.Loops as (2) and (3), containing an odd number of ��� relations, are deviation-countering loops (Bougonand Komocar, 1990). The stability of the organization is the result of such loops. In the case of loop(2), for instance, an increase of �resources for research� can lead to an increase of �salaries� which, in turn,reduces the resources allowed to research. If this reduction is not enough to compensate the initial increaseof resources, then a residual increase of salaries takes place which, in turn, reduces the resources, and so on,until a balance between the initial increase of resources and salaries is reached. Thus, deviation-counteringloops are useful for stabilizing the growth generated in an organization.Thus we can conceptualize an organization of agents as a �whole� composed of loops of in�uences. Thisis a wholistic approach in which the �whole� constrains the concepts and the relationships between them.20 represents here the �unrelated� and the �neutral�. 19



By achieving this, we obtain a dynamic system in which deviation-amplifying loops are responsible forchange and deviation-countering loops are responsible for stability of the organization. Using these loops, anindividual strategist can direct strategic change in the desired direction. This can be done by 1) choosing andchanging a loop or 2) choosing and changing a set of loops (Bougon and Komocar, 1990). Our SR�	lab toolcan be used in this context to 1) identify the type of loops (deviation-amplifying or deviation countering) and2) develop a strategic plan to change a wholistic system by changing its loops. Notice that an organizationconsidered as a whole of loops, is represented by its valency matrix in the context of SR�	lab. The studyof this valency matrix allows one to identify the type of loops. Firstly, if V +ii = +, then there exists atleast one deviation-amplifying loop through node i. Secondly, if V +ii = �, then there exists at least onedeviation-countering loop through i. Strategic changes to a wholistic system can be made by changing aloop or a set of loops (Bougon and Komocar, 1990). Of course, the loop to be changed should be a weak loopwhich is loosely coupled to the system. Changing a loop (from deviation-amplifying to deviation-countering,or vice-versa), can be done by 1) adding, removing, or replacing a node; 2) changing the label of a link.All those changes can be done by users of SR�	lab tool in an easly way, by editing and manipulating thevalency and the total e�ect matrices.4.3 Disparities between AgentsAnother approach that we are investigating concerns the reduction of disparities between agents. In thiscontext, we have considered every individual agent as seeing a situation through an unique set of perceptual�lters that re�ects its capabilities and its experience, as suggested by the personal construct theory of Kelly(Kelly, 1955). Precisely, we have used causal maps at di�erent levels to represent the subjective views.Thus, �rst order cognitive maps show the views of individuals (or group of individuals) such as I , J , K, etc.Second order cognitive maps show what agent X thinks agent Y is thinking and vice versa. Third ordermaps show what agent X thinks agent Y thinks agent Z is thinking and vice versa. Similarly, higher ordercognitive maps can be constructed. Here also, our SR�	lab tool provides an inference procedure that allowsindividuals to reason on others in the context of negotiation, coordination and cooperation between agents.This reasoning can bear on 1) predicting what others can do (this helps in negotiation and coordinationbetween agents), 2) explaining what others have done; 3) trying to demonstrate to others the importance ofsome area of causal relationships between concepts (this helps in negotiation and mediation between agents),4) analyze and compare the agents' causal representations. Readers interested by this approach can be referto (Chaib-draa, 1997).
20



4.4 CMs for Representing Qualitative Distributed Decision MakingCMs can also help an agent or a group of agents considered as a whole to make a decision. Given a causalmap with one or more decision variables and a utility variable, which decision should be taken and whichshould be rejected? To achieve this, the concerned entity should calculate the total e�ect (as precised byEquation 10) of each decision on the utility variable. Those decisions that have a positive total e�ect onutility should be chosen, and decisions that have a negative total e�ect should be rejected. Decisions with anonnegative total e�ect on utility should not be rejected, decisions with a nonpositive total e�ect should notbe accepted. No advice can be given about decisions with an universal, a non-zero, or an ambivalent totale�ect on utility.To illustrate the decision-making process in the context of multiagent environments, consider, for example,the causal map of the Professor P1 (considered as an agent) shown in Figure 3. This professor has to choosebetween two coursesD1 and D2 (D1 and D2 are decisions variables). Furthermore, P1 works with a colleagueP2 in the same research group (this group is called here G12) and shares with her some students. P1's causalmap, shown in Figure 3, includes the following beliefs. D1 favors the theoretical knowledge of G12's students.Greater theoretical knowledge gives a greater motivation to students. Greater motivation of students givesa better quality of research for group G12, which gives, in turn, a greater utility of G12. P2 gives a course C1that improves, asD1, the theoretical knowledge ofG12's students. This course, however, has the disadvantageto be very hard and this makes G12's students lose their motivation. Finally, the second decision variableD2 is an easy course that decreases the workload of P1. Obviously, decreasing P1's workload increases herutility.In this case, how can P1 make her choice between the two courses D1 and D2? Notice that in the contextof our example, P1 should reason about other agents (i.e., P2 and G12) to make her decision. Under somecircumstances, she can also collaborate with them to develop her decision. In this sense, the decision-makingprocess considered here is a multiagent process. To run this process, it might be useful to convert the causalmap being analyzed to the form of a valency matrix V . With the valency matrix, P1 can calculate indirectpaths of length 2 (i.e. V 2), 3 (i.e. V 3), etc., and the total e�ect matrix V + (see Equation 10). In fact, V +tells P1 how the decision variables D1 and D2 a�ect her utility and G12's utility. Here also our SR�	labtool allows one to calculate direct and indirect e�ects and consequently allows agents to make decisions. Asexplained previously, each concerned agent should calculate the total e�ect of each decision on the utilityvariable. Those decisions that have a positive total e�ect on utility should be chosen, and decisions that havea negative e�ect should be rejected. Advice on other total e�ects can be based on heuristics. Adopting thisprocedure for the example of Section 2.3 gives the following matrix of size 2� 2 (keeping only the relevantentries) involving two decision concepts (DC ), D1 and D2, and two utilities considered as value concepts21
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Figure 3: An Illustrative Example for Decision-Making in a Multiagent Environment.(VC ), namely, Utility of G12 and Utility of P1.DCnV C Utility of G12 Utility of P1D1 + �D2 � +Thus, P1 perceives 1) decision D1 as having a positive e�ect on Utility of G12 and a negative e�ect onher utility; 2) decision D2 as having a negative e�ect on Utility of G12 and a positive e�ect on her utility.In these conditions, it depends on how P1 and P2 want to cooperate and how do they rank Utility of G12and Utility of P1. If we assume, for example, that Utility of G12 is more important than utility of P1, thendecision D1 would be preferred. Conversely, D2 would be the preferred decision if utility of P1 is moreimportant than utility of G12.5 Conclusion and Future WorkWe have explained that the classical model of cognitive maps is an intuitive model with ad-hoc rules tocalculate direct and indirect e�ects. It is also a model which has no a precise meaning of the primitiveconcepts, neither a sound formal treatment of relations between concepts. Finally, we have shown that thismodel is not consistent. These considerations brought us to develop a cognitive map representation based on22



relation algebra. This representation, (1) de�nes a precise semantic interpretation of qualitative causalities;(2) justi�es most of the classical intuitive inference laws for reasoning from cause to e�ect; (3) provides userswith formulae to determine certain quantitative and qualitative features of cognitive maps.There are many directions in which the proposal made here can be extended.� The full possibilities of relation algebra have yet to be exploited. In particular, it allows equationsolving, which would certainly be useful. Also, as we have indicated in the text, the relational operationsof complementation and conversion o�er ways of expressing relationships between concepts that arenot available in the classical theory of cognitive maps. Another option is to study �fuzzy relations�between agents' concepts (Chaib-draa, 1994; Kosko, 1992; Zhang et al., 1992; Zhang, 1996). Ourapproach might be extended in this direction to take into account many degrees and vague degrees ofin�uence between agents such as: none, very little, sometimes, a lot, usually, more or less, etc.� Applications such as the following ones must be investigated in greater depth: 1) negotiation andmediation between agents reasoning about their subjective views, 2) knowledge available to or necessaryto agents in the case of nested cognitive maps, 3) reasoning about the wholistic approach, 4) reasoningon social laws, particularly for qualitative decision making and coordination.Acknowledgments: This work was supported in part by the Natural Sciences and Engineering ResearchCouncil of Canada under grants OGP�0121634 and OGP�0089769.ReferencesAxelrod, R., editor (1976). Structure of Decision: The Cognitive Maps of Political Elites. Princeton Univer-sity Press.Bougon, M. G. and Komocar, J. M. (1990). Directing strategic change: a dynamic wholistic appraoch. InHu�, A. S., editor, Mapping Startegic Thought, pages 153�163. Wiley and Sons.Buede, D. M. and Ferrell, D. (1993). Convergence in problem solving: a prelude to quantitative analysis.IEEE Transactions System, Man and Cybernetics, 23:746�765.Caron, A. (1996). SR�	lab: Manual d'utilisation, Département d'Informatique, Université Laval, Canada.Chaib-draa, B. (1994). Coordination between agents in routine, familiar and unfamiliar situations. TechnicalReport DIUL-RR-9401, département d'Informatique, Université Laval.Chaib-draa, B. (1997). Causal reasoning in multiagent systems. In Boman, M., editor,MAAMAW'97�Agentsand Multiagent Systems. LNAI, Springer�Verlag.23



Di�enbach, J. (1993). In�uence diagrams for complex strategic issues. Strategic Management Journal,3:133�146.Eden, C. J., editor (1979). Thinking in Organizations. Macmillan, London.Kelly, G. A., editor (1955). The Psychology of Personal Constructs. New: Norton.Klein, J. L. and Cooper, D. F. (1982). Cognitive maps of decision-makers in a complex game. Journal ofthe Operational Research Society, 2:377�393.Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24:65�75.Kosko, B. (1988). Hidden patterns in combined and adaptative knowledge networks. Inernational Journalof Approximate Reasoning, 2:377�393.Kosko, B. (1992). Fuzzy associative memory systems. In A, K., editor, Fuzzy Expert Systems, pages 135�162.CRC Press.Ladkin, L. B. and Maddux, R. D. (1994). On binary constraint problems. Journal of ACM, 41:435�469.Levi, A. and Tetlock, P. E. (1980). A cognitive analysis of japan's 1941 decision for war. Journal of con�ictResolution, 24:195�211.Montazemi, A. R. and Conrath, D. W. (1986). The use of cognitive mapping for information requirementanalysis. MIS Quarterly, pages 45�56.Moulin, B. and Chaib-draa, B. (1996). An overview of distributed arti�cial intelligence. In O'Hare, G.and Jennings, N. R., editors, Foundations of Distributed Arti�cial Intelligence, pages 3�55. Wiley Inter-science.Nakumara, K., Iwai, S., and Sawaragi, T. (1982). Decision support using causation knowledge base. IEEETransactions on Systems, Man and Cybernetics, 12:765�777.Park, K. S. (1995). Fuzzy cognitive maps considering time relationships. International Journal of Man-Machine Studies, 42:157�168.Ross, L. L. and Hall, R. I. (1980). In�uence diagrams and organizational power. Administrative ScienceQuaterly, 25:57�71.Schmidt, G. and Ströhlein, T., editors (1993). Relations and Graphs. EATCS Monographs on TheoreticalComputer Science, Springer-Verlag, Berlin. 24



Smithin, T. and Sims, D. (1982). Ubi caritas?�modeling beliefs about charities. European Journal OplResearch, 10:273�243.Styblinski, M. A. and Meyer, B. D. (1988). Fuzzy cognitive maps, signal �ow graphs, and qualitative circuitanalysis. In Proc. IEEE International Conference on neural Networks (ICNN-87), pages 549�556.Taber, W. R. (1991). Knowledge processing with fuzzy cognitive maps. Expert Systems with Applications,2:83�87.Taber, W. R. and Siegel, M. (1987). Estimation of expert weights with fuzzy cognitive maps. In Proc. ofthe 1st IEEE International Conference on Neural Networks (ICNN-87), pages 319�325.Weick, K. E. (1969). The social Psychology of Organizing. Addison-Wesley, Reading, MA.Wellman, M. (1994). Inference in cognitive maps. Mathematics and Computers in Simulation, 36:137�148.Zhang, W. R. (1996). NPN fuzzy sets and NPN qualitative algebra: a computational framework for bipolarcognitive modeling and multiagent analysis. IEEE Transactions on Systems, Man and Cybernetics,26:561�574.Zhang, W. R. and Chen, S. S. (1988). A logical architecture for cognitive maps. In Proc. of the 2nd IEEEInternational Conference on Neural Networks (ICNN-88), pages 231�238.Zhang, W. R., Chen, S. S., and King, R. S. (1992). A cognitive map based approach to the coordination ofdistributed cooperative agents. IEEE Transactions on Systems, Man and Cybernetics, 22:103�113.

25


