
From SOS Rules to Proof Principles:An Operational Metatheory for Functional LanguagesDavid SandsChalmers, Sweden1AbstractStructural Operational Semantics (SOS) is a widely usedformalism for specifying the computational meaning ofprograms, and is commonly used in specifying the se-mantics of functional languages. Despite this widespreaduse there has been relatively little work on the �metathe-ory� for such semantics. As a consequence the opera-tional approach to reasoning is considered ad hoc sincethe same basic proof techniques and reasoning toolsare reestablished over and over, once for each oper-ational semantics speci�cation. This paper developssome metatheory for a certain class of SOS languagespeci�cations for functional languages. We de�ne a ruleformat, Globally Deterministic SOS (gdsos), and es-tablish some proof principles for reasoning about equiv-alence which are sound for all languages which can beexpressed in this format. More speci�cally, if the SOSrules for the operators of a language conform to thesyntax of the gdsos format, then� a syntactic analogy of continuity holds, which re-lates a recursive function to its �nite unwindings,and forms the basis of a Scott-style �xed-point in-duction technique;� a powerful induction principle called improvementinduction holds for a certain class of instrumentedgdsos semantics; the Improvement Theorem from[Sands, POPL'95] is a simple corollary;� a useful bisimulation-based coinductive proof tech-nique for operational approximation (and its �in-strumented� variants) is sound.To Appear: 24th Annual SIGPLAN-SIGACT Sympo-sium on Principles of Programming Languages, Paris,France, January 15�17, 1997.

1 IntroductionMethods for reasoning about equivalence in functionallanguages are often based upon denotational semantics.One characteristic feature of such semantics is that re-cursion in the language is modelled by the construc-tion of a least �xed point in some suitable ordered do-main of interpretations. The meta-theory of denota-tional semantics�domain theory�guarantees the ex-istence of �xed points, and provides certain reasoningprinciples for recursion based on this theory. Opera-tional semantics can also be used as the basis for rea-soning about equivalence in functional languages, andhas recently enjoyed something of a revival. A notableoperationally-based technique is the use of �applicativebisimulation� [Abr90, How89, Gor95] to reason aboutequivalence.Comparing the denotational and operational basedapproaches, the operational approach has the advan-tage that it is built up from rather modest mathemat-ical tools; it also appears that the operationally-basedtechniques are fairly robust with respect to changes orextensions to the underlying language. The disadvan-tage of operationally-based reasoning is that there is noanalogy of the domain theory that underpins the deno-tational approach. Consequently, any reasoning tech-niques or tools that are built up from operational se-mantics must be reestablished, and the same theoremsmust be reproved for each operational semantics speci-�cation.In this article we consider some �metatheory� for op-erational semantics, by studying a rule-format, gdsos,� a syntactic schema for SOS rules suitable for speci-fying small-step evaluation in functional languages. Anumber of proof techniques are established for any lan-guage whose operational semantics speci�cation matchesthe format.1Department of Computing Science,Chalmers University of Technology and Göteborg University,S-412 96 Göteborg, Swedendave@cs.chalmers.se http://www.cs.chalmers.se/~dave

The contributions of the paper are �rstly to lift somestandard proof techniques to the level of a rule format,and secondly, also at the rule-format level, to intro-duce a new operational proof technique based on instru-mented semantics. Speci�cally, the proof techniques weestablish for gdsos languages are� least �xed-point properties of the style usually as-sociated with the standard denotational approach;� improvement induction � a new proof techniquebased on an instrumented semantics and a corre-sponding de�nition of a contextual improvementrelation between terms, and� coinductive proof techniques of the standard bisim-ulation variety usually associated with the opera-tional approach.Recursion as a Least Fixed Point The properties ofrecursive de�nitions usually associated with the trap-pings of a denotational semantics can be establishedat the syntactic level from operational semantics, withvery little mathematical overhead. We establish a syn-tactic analogy of continuity which forms the basis ofScott-style �xed point induction. Syntactic continuitysays that a recursive constant f can be characterised interms of its syntactic �nite unwindings, �f i	i�0. Morespeci�cally, f is the least term (up to operational equiv-alence) which is operationally greater than the f i; more-over, this property is preserved by all syntactic contextsC[]: C[f] <�M () 8i: C[f i] <�Mwhere <� is the operational approximation ordering: M <�N i� for all contexts C 0, C 0[N] terminates wheneverC0[M] terminates.Improvement Induction The following operational vari-ant of the least pre-�xed-point property of a recursivede�nition is easily established from the syntactic conti-nuity: for all recursive f de�ned by f �= C[f]M =� C[M])M =� fThis is sometimes known as Park Induction. Unfor-tunately, the �dual� principle, that M <� C[M] (orM �= C[M]) implies M <� f , is not sound in general.The idea of the improvement induction principle in-troduced in this article is to establish M <� f by es-tablishing some stronger relation between M and C[M]than operational approximation. The improvement in-duction principle shows that there are many possible

(nontrivial) relations, each one obtained by instrument-ing the gdsos rules with additional �resource� informa-tion, and by deriving strengthened de�nitions of oper-ational approximation, called improvement, which alsotake into account resource use.A fairly immediate corollary of the improvement in-duction principle is a generalisation of the ImprovementTheorem [San96b]. The Improvement Theorem for aspeci�c higher-order functional language has been usedto develop a correctness preserving variant of unfold-fold transformations (in loc. cit.), as well as to give the�rst correctness proofs for some well known transforma-tion methods [San96a].Functional (bi)simulations and CoinductionOperationally-based proof principles of a more standardnature are also established for gdsos languages. Weshow that coinductive reasoning techniques based onbisimulation (à la [Abr90, How89, Pit99, Gor95]) aresound for reasoning about the various preorders andequivalences discussed in this article.1.1 Related WorkProofs of �standard� �xed-point properties based on op-erational semantics, for speci�c languages, can be foundin [Tal85, Smi92, Dam94, MT91, MST96, Pit99]. Wehave taken the term �syntactic continuity� from [Pit99]although our proof is somewhat more direct, and muchmore in the spirit of proofs found in [Smi92, MST96,MT91].1 The main contribution of this paper for thiskind of theorem is to lift these proofs from a particular(functional) language to any functional language whosestructural operational semantics �t a certain rule for-mat; the rules of [MST96] (a call-by-value functionallanguage) �t the rule format, as do the call-by-namerules of [Smi92] and [Pit99].Rule formats are well-known in process algebra (e.g.,see [GV92], [BIM95]) where the typical theorem es-tablished is that bisimulation is a congruence. Aceto,Bloom, and Vaandrager [ABV94] study axiomatisationsof strong bisimulation for the GSOS format of [BIM95];to handle potential recursion include an induction prin-ciple known as approximation induction.The use of rule formats in the setting of functionalprograms is rather less well-known. Bloom [Blo90] de-�nes a rule format for operators extending the LCF lan-guage, and establishes that all such extensions satisfya certain operational extensionality property. The ruleformat is rather restrictive, does not permit variable-binding constructs, and the arguments are assumed to1It should be noted that this is a continuity property of aparticular chain; in general, continuity fails for the operationalordering (see [Smi92]).2

evaluate to simple constants.Howe [How91, How96] de�nes a rule format for theevaluation relation for functional languages, and provesthat a functional analogy of bisimulation is a congru-ence. Our meta-syntax for de�ning rules is inspiredby Howe's. Our rule format is based on a single stepreduction relation, and appears to be slightly less gen-eral, since it seems possible to obtain, from our ruleformat for reduction, a natural semantics format whichis subsumed by Howe's. Howe does not, however, con-sider �xed-point properties, or other induction princi-ples other than (bi)simulation. We establish a similarresult to Howe's for gdsos (using the same methods),but also for instrumented variations of the semantics.This is a fairly easy adaptation of our earlier work on op-erational theories of improvement [San91], which gavemore abstract conditions (not based on SOS rules perse) which guarantee that a certain coinductively de�nedclass of improvement relations are congruences. We givesome consideration to the special case of purely call-by-value languages (languages in which all variables getbound to values) via the notion of value metaterms inthe SOS rules. Howe achieves the same ends by usingcall-by-value variables and explicit abstraction over val-ues as part of the ordinary syntax. A yet more elaborateterm-syntax (much more elaborate than needed in oursetting) in which variables are sorted, is described in[FV95]. They study very basic conservativity proper-ties of SOS rules, but covering a very general class oflanguages.Independently, Kristian Nielsen [Nie96] has recentlyintroduced a kind of rule format (expressing what hecalls �simple functional languages�) in both �large-step�and equivalent �small-step� forms. The aims are to de-velop some generalised theory for partial evaluation anddeforestation. Although notationally rather di�erent,gdsos and Nielsen's format are very close. The mostrecent re�nement of gdsos was to include non-strictdata constructors; the technical development of this as-pect (mostly omitted from this version of the paper)was in�uenced by Nielsen's approach. Independently ofHowe's work, Nielsen establishes that applicative bisim-ulation is a congruence.2 Preliminaries2.1 Operational OrderingsTo de�ne what it means for two programs to be equiva-lent, or for one program to �approximate� another, weuse an evaluation relation as our basic building block.An evaluation relation, +, is a binary relation betweenclosed terms and values; values are themselves just termsof a particular syntactic form. If M+V then computa-

tion beginning with M terminates with value V .Given such a relation, we can build, in a standardway, de�nitions of approximation and equivalence. Theoperational approximationwe use is the standard Morris-style contextual ordering. The notion of �observation�we take is just the fact of convergence, as in the lazylambda calculus [Abr90]. This particular choice is notcentral to the development, and could be generalisedby a de�nition parameterised by a suitable notion of an�observable� value.Operational equivalence equates two expressions ifand only if in all closing contexts they give rise to thesame observation � i.e. either they both converge, orthey both diverge.Definition 2.1(i) M operationally approximates N , M <� N , if forall contexts C such that C[M], C[N] are closed, ifC[M]+V then there exists aW such thatC[N]+W .(ii) M is operationally equivalent to N , M �= N , ifM <� N and N <� M .We could also parameterise the theory by a statictyping discipline, which would only allow the compar-ison of certain well-typed terms, and then only in ap-propriately typed contexts. This adds noise but rel-atively little e�ect to the developments in this paper,since most of the theorems are proved directly from theoperational semantics, and this, by de�nition, is inde-pendent of static typing. Adoption of a dynamic typingdiscipline would require more fundamental changes tothe framework.2.2 Structural Operational SemanticsIn this article we will consider evaluation relations whichare de�ned in terms of a �ner one-step evaluation rela-tion, 7! ; we de�ne M+V for some value V if M 7!� V .The mechanism we consider for de�ning 7! is the well-known Structural Operational Semantics (SOS) [Plo81].SOS is a syntactic style for presenting an inductivelyde�ned transition relation between �machine con�gu-rations�, given by cases according to their syntacticstructure. In our setting, the machine con�gurationswill be simply closed terms. As an example we presentthe one-step evaluation relation for the lazy lambda cal-culus [Abr90], together with booleans and conditionals,in Figure 1. For this language the values are deemed tobe true, false , and any closed lambda-term. It is easyto see that 7!, and hence + are partial functions.3 Second Order Abstract SyntaxWe introduce an abstract syntax for specifying func-tional programs, and for specifying the gdsos rule for-3

M 7!M 0M N 7!M 0N(�x:M)N 7!MfN=xg M 7! Nif M then N1 else N2 7! if N then N1 else N2if true then N1 else N2 7! N1if false then N1 else N2 7! N2Figure 1: Example SOS Rulesmat given in the next section. Our syntax follows [How91]very closely, but is fairly standard from the point of viewof formal speci�cation of syntax which includes variablebinding operators such as lambda abstraction (e.g., see[NPS90, Klo80, PE88]).First we �x a countably in�nite set Var of ordinaryvariables. A language L is speci�ed by (amongst otherthings) a set of operators O of a �xed arity �. As usual,the arity speci�es the number of operands for each oper-ator, but it speci�es more than just this, since we wishto specify the syntax of operators with binding. Eachoperand is possibly an abstraction, i.e., a list of zero ormore distinct variables followed by a term, where thevariables are considered bound in the term. The arityof an operator is therefore given by a sequence of natu-ral numbers; the length of the sequence is the numberof operands, and the natural numbers are the numberof bound variables associated with the correspondingoperand. For example, the language implicit in therules of Figure 1 would be represented in this syntaxby the set of operators f�;apply ; if ; true; falseg witharities �(�) = (1), �(apply) = (0; 0), �(if) = (0; 0; 0),�(true) = �(false) = ().Let x, y, etc., range over Var , and let p, q rangeover O.The terms of L, T , ranged over byM , N are de�nedinductively as follows:x 2 T M1 2 T � � �Mn 2 Tp((~x1)M1; : : : ; (~xn)Mn) 2 Twhere �(p) = (k1; : : :kn)and each ~xi is a list of ki distinct variables.For example, the term (�x:y)z would be written in thisabstract syntax as apply(�((x)y); z). Where we needto distinguish between the terms from di�erent lan-guages we will write T (L) for the terms of L.3.1 Meta TermsIn order to formalise the rules of a structural operationalsemantics for such a language we introduce a syntaxfor meta terms. We begin by �xing a a countable setof metavariables Mvar ranged over by X , Y, etc., anda disjoint set of value metavariables, ValMvar , ranged

over by V,W. Metavariables will range over both termsand operands (abstractions); value metavariables willrange over only those terms which are deemed to bevalues. With each metavariable X , we associate an ar-ity �(X) which is a natural number. The idea is thatmetavariables of arity 0 will range over terms, whilemeta variables of higher arity will range over abstrac-tions. Value metavariables always have arity 0.Definition 3.1 To de�ne the metaterms for a givenlanguageL, we de�ne an indexed set of meta-abstractionsfMTigi�0, (ranged over byM, N , etc.) inductively ac-cording to the following rules:x 2MT0 X 2MTn �(X) = nM2MT0(x1; : : : ; xn)M2MTnM1 2MT0 � � �Mn 2MT0X � (M1; : : : ;Mn) 2MT0 �(X) = nM1 2MTk1 : : :Mn 2MTknp(M1; : : : ;Mn) 2MT0 �(p) = (k1 : : :kn)Then we de�ne the metaterms to be MT0.The construct X�(M1; : : : ;Mn) denotes meta-appli-cation. Metavariable X , of arity n, ranges over abstrac-tions of n variables. When X is replaced by such anabstraction, the meta-terms M1; : : : ;Mn will be sub-stituted for the respective abstracted variables. Let �range over second-order substitutions��nite mappingsfrom metavariables to abstractions of corresponding ar-ity (and such that value meta-variables can only bebound to values). Thus if �(X) is de�ned then it hasthe form (x1; : : : ; xn)M . The operation of second or-der substitution is de�ned as for normal substitution,except that if �(X) = (x1; : : : ; xn)M then�(X�(M1; : : : ;Mn)) = Mf�(M1); : : : ; �(Mn)=x1; : : : ; xng:3.2 Values and MetavaluesBefore we introduce the gdsos rule format we need tospecify the set of terms deemed to be values. In addition4

to the arity, a language L comes equipped with a spec-i�cation of a syntactic strictness property for each op-erator. For each operator p of arity �(p) = (k1 : : :kn)we must specify a set strict(p) � f1 : : :ng � which wecall the set of strict arguments of p. This set satis�esthe property that i 2 strict(p)) ki = 0 � in otherwords strict arguments cannot be abstractions.Furthermore, each operator of the language is clas-si�ed as either a constructor or a non-constructor. Weuse c, c 0 etc. to range over constructors. Values arebuilt inductively from the constructors; meta-values area particular set of metaterms which only match values.Definition 3.2 The set of values, Val , ranged over byV ,W etc. is the subset of the terms of a given languagede�ned inductively as follows:fMj 2 Val j j 2 strict(c)gc((~x1)M1; : : : ; (~xn)Mn) 2 ValThe set of simple metavalues is a subset of the metatermsde�ned inductively by the following rules:ValMvar � MvalfMj 2Mval j j 2 strict(c)gfMk 2Mvar j k 2 f1 : : :ngnstrict(c)gc(M1; : : : ;Mn) 2MvalExample If stream is a constructor of arity (0; 0)whichis strict in its �rst argument, then stream(true;X) andstream(V;X) are simplemetavalues, but stream(X ;Y)is not (it matches some non-values), and neither arestream(V; stream(X ;Y)) or stream(true ;V) (they arenot �simple�).4 The gdsos Rule FormatThe purpose of introducing metaterms is to describethe rules of a structural operational semantics. As anexample, an axiom for a call-by-value application oper-ator, @ might be written: @(�X ;V) 7! X � V :Such a rule schema de�nes transitions on terms as fol-lows: for all second order substitutions � which mapX to some closed abstraction (x)M and V to someclosed value, we have that �(@(�X ;V)) 7! �(X � V) =Mf�(V)=xg. Here we use the metaterms to de�ne aparticular rule format, the gdsos format.Definition 4.1 (gdsos) The operational semantics fora language L is in Globally deterministic SOS format(gdsos format) if the one step evaluation relation canbe expressed by rules of the following forms.

The SOS rules for each operator p of arity (k1; : : :kn)consist of jIj inference rules, where I = strict(p), to-gether with possibly in�nitely many axioms of the fol-lowing forms:� Xi 7! Yip(X1 : : :Xi : : :Xn) 7! p(X1 : : :Yi : : :Xn)�i2I� p(M1j; : : : ;Mnj) 7! Mj �j2Jfor some indexing set J such that if p is a constructorthen J = ;, and such that for all i 2 I, j 2 J ,(i) Mij is a simple metavalue; other metatermsMhjh 62 I are metavariables;(ii) metavariablesXi and Yi are distinct, and all meta-variables and value metavariables occur at mostonce in any metaterm except Mj ;(iii) the set of left-hand sides of the axioms are non-overlapping (that is, there is no second-order sub-stitution which uni�es any two left hand sides);(iv) there are no free (ordinary) variables in Mj .The operational semantics for a language L is de-�ned to be in call-by-value gdsos format if it is ingdsos format, and additionally all meta-applicationsX � (N1 : : :Nn) occuring in the Mj are such that allclosed instances of the Ni are necessarily values.Before giving some examples of rules in this for-mat we give some intuitions for the requirements of thegdsos format. The collection of jstrict(p)j inferencerules for each operator in gdsos format re�ect that eval-uation steps may occur in any of the strict arguments.The side conditions can be explained respectively as fol-lows:(i) implies that the axioms can only be applied onceall the strict arguments have been evaluated to avalue. The de�nition of simple metavalues ensuresthat the evaluation step can only depend on theconstructors of these values;(ii) prevents the rules from depending on syntacticequivalence of arbitrary terms;(iii) is needed to ensure that the evaluation relationderived from the system is deterministic;(iv) ensures that free variables are not introduced byreduction (and hence is also needed for determi-nacy).The de�nition of call-by-value gdsos will be used tore�ne certain proof principles to the special case of call-by-value languages.5

Examples Here we give some examples of operatorswhich can be expressed in gdsos format. The rules ofFig. 1 can all be written in this format. Consider a slightvariation: a call-by-value application operator. Thisoperator is strict in both arguments. The associatedrules are: Y 7! Y 0@(Y;Z) 7!@(Y 0;Z) Z 7! Z 0@(Y;Z) 7!@(Y;Z 0)@(�X ;V) 7! X � VAs an example of a operator which is strict in no ar-guments, consider a local recursion construct with con-crete syntax letrec x = M in N , and with a computa-tion rule:letrec x =M in N 7! Nfletrec x = M in M=xgThe letrec operator has arity (1; 1), and letrec x =M in N has abstract syntax letrec((x)M; (x)N). Therule is letrec(X ;Y) 7! Y � letrec(X ;X)As a more involved example, consider a simple Mirandaor Haskell-like list comprehension with concrete syntax[M j x 2 N;P], representing �the list of M 's, for eachelement x in the list N which satisfy P�. The vari-able x is bound in M and P , so in abstract syntax thisis represented by an operator lcomp of arity (1; 0; 1).The operator is strict in its second argument, and theassociated rules (where cons and nil are constructors)are: Y 7! Y 0lcomp(X ;Y;Z) 7! lcomp(X ;Y 0;Z)lcomp(X ; cons(Y1;Y2);Z) 7!if (Z � Y1; cons(X � Y1; lcomp(X ;Y2;Z);lcomp(X ;Y2;Z)))lcomp(X ;nil ;Z) 7! nilHere the rules assume that cons is lazy (i.e. strict(cons)= ;). The rules for a strict version of cons di�er onlyin the use of value metavariables in place of metavari-ables Y1 and Y2.To represent a primitive function like addition, or alength function for strict lists one can give �direct� def-initions using the fact that an in�nite number of axiomsare permitted by the rule format.Curried operators cannot be directly represented,but can be encoded in terms of lambda abstractions.An example of an operator that cannot be represented

by gdsos operators is parallel-or [Plo77], which returnstrue if either of its operands can be evaluated to true,and diverges i� both operands diverge. For more onthe operational representability of parallel-or for �PCF-like� languages, see [JM91]. Parallel-or is interesting(only) because its addition to the language makes theusual denotational semantics fully-abstract. Since wework directly with the operational orderings, full ab-straction is not an issue.4.1 The Evaluation Relation for gdsosThe rules of a gdsos induce a one step transition rela-tion on closed terms of the underlying language L in theobvious way. Let 7!� denote the re�exive and transitiveclosure of the one step evaluation relation. Convergenceis de�ned as follows:Definition 4.2 Closed term M converges to value V ,written M+V if and only if M 7!� V .Proposition 4.3 Relation + is deterministic (up to�).Proof. By showing that the conditions on the rulesguarantee that 7! is strongly con�uent the result followsby a simple diagram-chase. 25 Fixed-Point PropertiesIn this section we present the �syntactic continuity�property for gdsos languages with recursion. For thereader interested in an outline of the proofs we includefurther details in the appendix. The main point of inter-est in the proofs is that we sketch how gdsos languagescan be reduced to a simpler dsos format for which 7!is deterministic.Recursion There are many equivalent forms of recur-sive de�nition. In what follows we will consider gdsoslanguages containing constants as speci�ed by recur-sion equations. The addition of such constants does notchange the expressive power of a gdsos language2 buteases the job of proving �xed point properties�in par-ticular since the recursive constants are not variables,so cannot be captured.A recursion equation h �=M is taken to be synony-mous with a non-constructor h of arity (), with gdsosrule h 7!M . In particular we consider languages in2More precisely, under the assumption that the language al-ready contains some nonterminating term, then the addition ofany recursive constants conservatively extends the theory of oper-ational approximation. Interestingly, to prove this conservativityproperty we �rst need the syntactic continuity result.6

gdsos format which contain some recursively de�nedconstant f �= Cf [f]where we assume that the (closed) context Cf does notcontain occurrences of f . Now we also assume a set ofconstants �f i	i�0 de�ned inductively byf0 �= f0f i+1 �= Cf [f i]:We will call such a language a gdsos language withrecursion. The functions �f i	i�0 form a chain, boundedabove by f :Proposition 5.1 For any gdsos language with recur-sion,(i) f �= Cf [f].(ii) For all i � 0, f i <� f i+1 <� f .The point of the functions �f i	i�0 is that they com-pletely characterise the behaviour of the function f .This is the essence of the �xed-point induction prin-ciple of Scott-style denotational semantics. The mainproperty which justi�es this is the following syntacticnotion of continuity for the chain �f i	i�0; f the leastupper bound of this chain, and contexts preserve thisproperty:Theorem 5.2 (Syntactic Continuity)For any gdsos language with recursion, for all contextsC[], and expressions M we haveC[f] <�M () 8i: C[f i] <�MProof. Details in the appendix. 2From this we can establish some other standard �xedpoint properties. We already know that f satis�es f �=Cf [f]. The least-�xed-point property asserts that f isthe least expression (up to �=) satisfying this equation.The following is a slight strengthening:Theorem 5.3 (Least Pre Fixed-Point)For any gdsos language with recursion, ifM is a closedexpression satisfying Cf [M] <�M then f <�M .Proof. By Theorem 5.2, it is su�cient to show that8i:f i <� M . This follows by an easy induction on i; weknow that f0 <� M (Prop 5.1). Suppose fk <� M . Nowfk+1 �= Cf [fk], and so by the induction hypothesis andcongruence we have fk+1 �= Cf [fk] <� Cf [M]. 2It is also possible to build up various �xed-point induc-tion principles. The following is a good starting pointand is an easy corollary of Theorem 5.2:Corollary 5.4 If for all n � 0we have C[fn] <� C0[fn],then C[f] <� C0[f].

6 Instrumented gdsosWe introduce instrumented versions of gdsos rules, ob-tained by labelling the axioms with some resource in-formation. This induces a resource-labelled evaluationrelation. Resources are partially ordered, and from thiswe de�ne a resource-based strengthening of operationalapproximation called improvement. M is improved byN (with respect to some instrumented semantics) if inall closing contexts if C[M] terminates then C[N] ter-minates using fewer resources.Definition 6.1 (Resource Structure)A resource structure is a quadruple hR; �;0;�i wherehR;�i is a partially ordered set of resources, and hR; �;0iis a commutative monoid�that is to say, `�' (composi-tion of resources) is an associative, commutative oper-ation on R with 0 as an identity.A resource structure is de�ned to be monotonic ifr � 0 for all r 2 R, and if composition is �-monotonic,so that r � s) 8t: r � t � s � t.It is de�ned to be well-founded monotonic (or sim-ply, well-founded) if, additionally, > is well-founded(where r > s () r � s & r 6= s) and composition is>-monotonic.As an example of a monotonic resource we might takeR to be the powerset of non-constructor names, withcomposition given by set union, zero by the empty setand ordered by subset inclusion. As an example of astrictly monotonic resource we can take hIN;+; 0;�i.We will instrument gdsos by resource informationfrom a resource structure. The key features of the def-inition, and how they will be used in the remainder ofthe article are as follows:� We use `�' to combine the resources of each reduc-tion step to obtain a resource-labelled evaluationrelation; the monoid structure in the de�nition ofa resource is just su�cient to make the resultinginstrumented evaluation relation deterministic;� the partial ordering will provide us with a notionof improvement which is a preordering;� monotonic resource structures are those for whichwe provide certain coinductive proof techniques inSection 8;� well-founded monotonic resources will form the ba-sis of the improvement induction proof techniquegiven in Section 7.The use of a monotonic resource to instrumenting se-mantic de�nitions is fairly natural, and is anticipatedby Gurr [Gur91] (there called a commutative orderedmonoid) in the context of monadic semantics.7

Definition 6.2 For a given resource structure, an in-strumented gdsos is de�ned by labelling each axiomwith some resource r 2 R, and by labelling the transi-tion of each inference rule with a resource (meta)variable� thus: Xi �7! Yip(X1; : : :Xi; : : :Xn) �7! p(X1; : : :Yi; : : :Xn)This induces a resource-labelled transition system onterms in the obvious way. Now we de�ne the multiple-step labelled transition relation inductively as follows:� M 07!!M for all M� M s7! N 0 and N 0 t7!! N then M s�t7!! N .Finally, de�ne the resource-labelled convergence rela-tion between closed expressions by:For all closed M , V , de�ne M+rV i� M r7!! V .It follows easily from the transitivity and commutativ-ity properties of resource composition that for each Mthere is at most one resource r and value V such thatM+rV . Now for each instrumented gdsos we de�nean improvement relation by strengthening the require-ments of the operational orderings:Definition 6.3 With respect to a particular instru-mented gdsos de�ne(i) M is improved by N , M �� N , if for all closingcontexts C, if C[M]+rV then C[N]+sW for somes � r;(ii) M is cost equivalent to N , M ��� N , if M �� Nand N �� M .Certain properties of improvement follow easily fromthe de�nition; it is a preorder which is closed under syn-tactic contexts �in other words, it is a precongruence.Note that for the trivial monotonic resource structurein which R is just a singleton set, the improvement re-lation degenerates to operational approximation. Notealso that improvement implies operational approxima-tion, and cost equivalence implies operational equiva-lence.7 Improvement InductionIn this section we present the improvement inductionprinciple which holds for any well-founded instrumentedgdsos. The basic idea of the theorem can be motivatedas follows. The least �xed-point principle says that forf de�ned by f �= C[f] we haveM =� C[M])M =� f

We want to �nd an analogy to this that allows us toestablish that M <� f . What we seek is a relation Asuch that M A C[M])M <� f (�)As mentioned in the introduction, takingA to be simplyoperational approximation or equivalence is not su�cient3� for example if C is the trivial context [] and f there-fore never terminates, then this would allow us to showM <� f for all M !Rather than focussing on syntactic properties of C,the improvement induction principle provides a relationA (or rather, a set of nontrivial such relations) whichmakes (�) hold. The relation in question is based onthe improvement relation of some well-founded instru-mented gdsos. Assume that we have an instrumentedsemantics over some well-founded resource structure forwhich f r7! C[f] for some r > 0. Then the followingproperty holds:M �� r7!! �� C[M]) M �� f) M <� fwhere �� r7!! �� is just composition of the relations, soM �� r7!! �� N i� there exist N1, N2 such thatM �� N1, N1 r7!! N2, and N2 �� N .The improvement induction theorem gives a slightlymore general variant of the above property, by remov-ing the dependence on the recursive constants f . Firstwe introduce some new notation.De�ne the following relations on expressions:�� r def= �� r7!! ����� r def= ��� r7!! ��� :Intuitively,M �� r N says thatM is improved by N andthat any evaluation of N would be �faster� than M byat least r. If r � s then we have that�� = ��0 � �� s � �� rUsing this terminology we state the main theorem:Theorem 7.1 (Improvement Induction) For any well-founded instrumented gdsos, for all closed C, M , Nand all resources t > 0,M �� t C[M]and N ��� t C[N] �)M �� N:3One way around this problem is to restrict attention to onlycertain classes of context C for which this does hold; this tech-nique is used extensively in process algebra (e.g., see [BW90]) butis rarely used in the functional setting � although a few relatedtechniques have been described � see e.g., [Car84] and [Cou79].8

Example 7.2 Consider an instrumented version of thelazy lambda calculus over the well-founded resource struc-ture hIN;+; 0;�i, in which each axiom is labelled with1 (i.e., each reduction step costs 1). We will show that�x �= (�x:�f:f (xx f))(�x:�f:f (xx f))where �x �= �f:f(�x f).Let P be the expression �x:�f:f (xx f). Note thatP P 17! �f:f (P P f), and hence thatP P �= �f:f (P P f):It follows by the least �xed-point property (Theorem 5.3)that �x <� P P . To prove the reverse inclusion we useimprovement induction. From the above reduction wesee that P P ��1 �f:f (P P f), and from the de�nitionof �x we know that �x ��� 1 �f:f(�x f). By improve-ment induction we conclude that P P �� �x, and hencethat P P �= �x.In the above example the �� r -property needed toapply improvement induction is established very simplyby the fact that r7!! � �� r. In our experience, onlyrelatively simple properties need be established to applyimprovement induction to good e�ect. One factor thataids reasoning is if there exist closed contexts Cr withthe property that for all N , Cr[N] r7!! N . In this casewe can reduce reasoning about �� r to reasoning about�� , since M �� r N () M �� Cr[N]. In the case ofapplications of the Improvement Theorem (below), theCr are just r-fold compositions of an identity function,and the speci�c improvement laws for Cr are what areknown as the �tick algebra� of [San96b].The Improvement Theorem The Improvement Theo-rem from [San96b] is a simple corollary of improvementinduction:Corollary 7.3 (Improvement Theorem) For anyinstrumented gdsos over the well-founded resource struc-ture hIN; 0;+;�i, if all the axioms for recursive con-stants are labelled by some resource n > 0 then wehave the following:If g �= M and M �� C[g] then g �� h, where h �= C[h].Proof. Since g n7! M (by de�nition) and M �� C[g],we have that g ��n C[g]. Also by de�nition, h n7! C[h],and since ��� is re�exive, we have h ��� n C[h]. Nowwe have, directly from Theorem 7.1 that g �� h. 2The signi�cant advance of Corollary 7.3 is that here itis established for any gdsos language. A minor varia-tion allows n to be di�erent for each recursive constant;

if ng � nh > 0 then the Improvement Theorem stillholds. This veri�es a conjecture in [San95a] about so-called weighted improvement relations, which are usedto establish the correctness of a higher-order variantof Scherlis' expression procedure transformation frame-work. The Improvement Theorem for this version ofimprovement provides a much simpler correctness proofthan that presented in [San95a].Space does not permit an illustration of the utility ofthe Improvement Theorem in establishing the correct-ness of program transformations; we refer the reader to[San96b, San96a] for a number of substantial applica-tions.7.1 Open Improvement InductionThe improvement induction principle is stated for closedexpressions and contexts. Our proof extends to openexpressions in two important special cases, accordingto how improvement behaves under the application ofsubstitutions.Theorem 7.4 The Improvement Induction Principle (asstated in Theorem 7.1) holds for open C, M and N inthe following case:(i) if �� is closed under substitution (i.e. M �� Nimplies M� �� N� for all �), or(ii) if �� is closed under value-substitutions (substitu-tions of values for variables) and the language isin call-by-value gdsos format.A su�cient condition for improvement to be closed un-der substitution is if a call-by-name let-expression isexpressible (up to operational equivalence) in the lan-guage; �� is closed under value substitutions providinga call-by-value let-expression is expressible.8 Coinductive Proof Techniques for gdsosWe have established a number of proof techniques foroperational approximation and equivalence which holdfor languages whose operators are in gdsos format.The proofs of these theorems work directly from thede�nition of operational approximation (although wedo simplify the gdsos format somewhat, as outlined inthe appendix); however, in applications of the theoremswe need to prove (hopefully much simpler) propertiesabout operational approximation and improvement inorder to make use of the theorems. For example, in Ex-ample 7.2 we tacitly assumed that 7! � �=, but we didnot actually prove it. Proving such �simple� proper-ties directly from the de�nitions is certainly possible,but somewhat tedious. Here we establish a simpler(but not necessarily complete) method for reasoning9

about improvement (and hence also operational approx-imation) for any monotonic instrumented gdsos lan-guage. The basic idea is now well-established (see e.g.,[Abr90, How89, Gor95, Pit99]): to establish M �� N itis su�cient to �nd a certain coinductive relation whichrelates M and N .Definition 8.1 A binary relation I on expressions isan open improvement simulation (respectively, an openvalue improvement simulation) if wheneverM I N thenfor all closing substitutions � (respectively, closing valuesubstitutions), ifM�+rc((�x1)M1; : : : ; (�xn)Mn)then N�+sc((�x1)N1; : : : ; (�xn)Nn)for some s, and N1 : : :Nn such that r � s and Mi I Ni,i 2 1 : : :n.Theorem 8.2(i) For any monotonic instrumented gdsos if I is anopen improvement simulation then I � �� .(ii) For any monotonic instrumented call-by-valuegdsosif I is an open value improvement simulation thenI � �� .Proof. In both cases it is su�cient to prove that themaximal improvement simulation, given by the unionof all improvement simulations, is a precongruence re-lation. This is established by instantiating the main re-sult of our earlier work [San91], which extends Howe'sproof techniques [How89, How96] to handle improve-ment relations. 2The proof technique also applies to operational approx-imation, taking the trivial (necessarily monotonic) in-strumentation where the resource is just a singleton set.Unfortunately, the proof technique is not always com-plete; for some instrumented gdsos languages thereare pairs of closed terms which are not contained inany improvement simulation, but which are in the im-provement relation. General conditions for complete-ness are somewhat di�cult to establish, although for thespecial case of operational approximation completenessamounts to showing that there are su�ciently many�destructors� for each constructor � see [How96] for aprecise formulation.Bisimulation upto Improvement and ContextIn [San97] we described a bisimulation-like proof tech-nique for equivalence based on the Improvement Theo-rem of [San96b], with something of the �avour of San-giorgi's �bisimulation up to context and up to expan-sion� for the pi-calculus [San95b, San94], where �expan-sion� is analogous to an improvement relation based on

the number of silent transitions a process can perform.It seems that a similar development to [San97] can becarried out in the setting of a well-founded gdsos, androughly speaking, amounts to generalising the improve-ment induction principle from a pair of expressions to apossibly in�nite set of pairs. Such a development wouldput improvement induction on a bisimulation-like foot-ing, but we leave it for future investigation.9 Conclusion and Further WorkWe have established a number of proof principles forfunctional languages whose validity for any particularlanguage can be established by simply considering thesyntactic form of the SOS rules. These principles in-clude the standard �denotational� properties which char-acterise a recursive de�nition in terms of its �nite un-windings, as well as the standard operational techniquesbased on (bi)simulations and coinduction. We have alsointroduced a new operational proof technique, improve-ment induction, of which the Improvement Theorem isa corollary.In future work we hope to investigate more expres-sive formats, possibly dealing with control operators likecallcc, with bounded nondeterminism, and with opera-tions acting on state. It may be natural in these set-tings to consider alternative semantic styles, such asnatural semantics, or evaluation-context style (see theappendix for an example). A promising starting pointis the recent metatheory for languages with control ande�ects described by Talcott [Tal97]. Talcott describessome properties which must hold of a reduction rela-tion which guarantee that a form of context lemma issound. The abstract properties given are closely relatedto certain fundamental technical properties that we es-tablish (Proposition A.6)for the simpler dsos formatin the appendix. The class of languages considered arecall-by-value lambda calculi extended with binding-free,completely strict operators. It would be interesting tosee if an improvement induction principle can be estab-lished for Talcott's class of languages. It would alsobe interesting to provide a syntactic �front-end�, in theform of a rule format, for Talcott's work.Other �metatheory� worth investigating includes ab-stract interpretation [CC92, Sch95, GD95] and call-by-need theories [Lau93, AFM+95].Acknowledgements The more basic dsos rule formatgiven in the appendix was communicated to the au-thor by Davide Sangiorgi (INRIA) [personal communi-cation], who proposed the format during an extendeddiscussion on proof techniques for functional programs(in particular the Improvement Theorem) and the re-lation to proof techniques for the pi-calculus. Thanks10

are due to Davide for his valuable contribution. Thanksare also due to Andrew Moran, Caroline Talcott and theanonymous POPL referees for several useful suggestionsand criticisms on an earlier draft.References[Abr90] S. Abramsky. The lazy lambda calculus. In D. Turner,editor, Research Topics in Functional Programming, pages65�116. Addison Wesley, 1990.[ABV94] Luca Aceto, Bard Bloom, and Frits Vaandrager. Turn-ing SOS rules into equations. Information and Computa-tion, 111(1):1�52, 15 May 1994.[AFM+95] Z. Ariola, M. Felleisen, J. Maraist, M. Odersky, andP. Wadler. The call-by-need lambda calculus. In The 22ndAnnual ACM SIGPLAN-SIGACT Symposium on Princi-ples of Programming Languages (POPL '95), New York,1995. ACM Press.[BIM95] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimu-lation can't be traced. Journal of the ACM, 42(1):232�268,January 1995.[Blo90] Bard Bloom. Can LCF be topped? Flat lattice mod-els of typed �-calculus. Information and Computation,87(1/2):263�300, jul / aug 1990.[BW90] J. C. M. Baeten and W. P. Weijland. Process Alge-bra, volume 18 of Tracts in Theoretical Computer Science.Cambridge Univ. Press, 1990.[Car84] Robert Cartwright. Recursive programs as de�nitions in�rst order logic. Siam Journal of Computing, 13(2):374�408, May 1984.[CC92] P. Cousot and R. Cousot. Inductive de�nitions, Seman-tics and Abstract Interpretation. In 19th POPL, Albu-querque, New Mexico, pages 83�94. ACM Press, January1992.[Cou79] B. Courcelle. In�nite trees in normal form and recursiveequations having a unique solution. Mathematical SystemsTheory, 13(1):131�180, 1979.[Dam94] L. Dami. Software Composition: Towards an Integra-tion of Functional and Object-Oriented Approaches. PhDthesis, Faculté des Sciences Économiques et Scociales, Uni-versité de Genève, 1994.[FFK87] M. Felleisen, D. Friedman, and E. Kohlbecker. A syn-tactic theory of sequential control. Theoretical ComputerScience, 52(1):205�237, 1987.[FV95] W. Fokkink and C. Verhoef. A conservative look at termdeduction systemswith variable bindings. Technical ReportUtrecht Logic Group Preprint 140 / Eindhoven ComputerScience report 95-28, Utrecht University/Eindhoven Uni-versity of Technology, 1995.[GD95] V. Gouranton and D. Le Métayer. Derivation of staticanalysers of functional programs from path properties ofa natural semantics. Rapport de recherche 2607, INRIA,Rennes, 1995.[Gor95] A. D. Gordon. Bisimilarity as a theory of functionalprogramming. Technical Report BRICS NS-95-3, BRICS,Aarhus University, Denmark, 1995. Preliminary version inMFPS'95.[Gur91] D. Gurr. Semantic Frameworks for Complexity. PhDthesis, Department of Computer Science, Edinburgh, 1991.(Available as reports CST-72-91 and ECS-LFCS-91-130).

[GV92] J.F. Groote and F.W. Vaandrager. Structured opera-tional semantics and bisimulation as a congruence. Infor-mation and Computation, 100(2):202�260, October 1992.[How89] D. J. Howe. Equality in lazy computation systems. InFourth annual symposium on Logic In Computer Science,pages 198�203. IEEE, 1989.[How91] D. J. Howe. On computational open-endedness inMartin-Löf's type theory. In Sixth annual symposium onLogic In Computer Science, pages 162�172, 1991.[How96] D. J. Howe. Proving congruence of bisimulation in func-tional programming languages. Information and Computa-tion, 124(2):103�112, February 1996.[JM91] T. Jim and A. R. Meyer. Full abstraction and the contextlemma (preliminary report). In STACS. LNCS 526, 1991.(Full version to appear in Siam J. Comp, 1996).[Klo80] J.W. Klop. Combinatory Reduction Systems, volume 127of Mathematical Centre Tracts. Mathematischen Centrum,413 Kruislaan, Amsterdam, 1980.[Lau93] J. Launchbury. A natural semantics for lazy evalua-tion. In Conference record of the Twentieth Annual ACMSIGPLAN-SIGACT Symposium on Principles of Program-ming Languages, (POPL'92), pages 144�154. ACM Press,1993.[MST96] I. A. Mason, S. Smith, and C. L. Talcott. From Op-erational Semantics to Domain Theory. Information andComputation, 1996. to appear.[MT91] I. Mason and C. Talcott. Equivalence in functional lan-guages with e�ects. Journal of Functional Programming,1(3):287�327, July 1991.[Nie96] K. Nielsen. A uni�ed approach to partial evaluation anddeforestation. Master's thesis, DIKU, University of Copen-hagen, September 1996.[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith.Programming in Martin-Löf 's Type Theory: An Introduc-tion, volume 7 of International Series of Monographs onComputer Science. Oxford University Press, 1990.[PE88] F. Pfenning and C. Elliott. Higher-order abstract syn-tax. In Proceedings of the SIGPLAN '88 Conference onProgramming Lanugage Design and Implementation (SIG-PLAN '88), pages 199�208. ACM Press, June 1988.[Pit99] A. M. Pitts. Operationally-based theories of programequivalence. In P. Dybjer and A. M. Pitts, editors, Se-mantics and Logics of Computation. Cambridge Univer-sity Press, 199? Based on lectures given at the CLICS-IISummer School on Semantics and Logics of Computation,Isaac Newton Institute for Mathematical Sciences, Cam-bridge UK, September 1995.[Plo77] G. Plotkin. LCF considered as a programming language.Theoretical Computer Science, 5(3):223�256, 1977.[Plo81] G. D. Plotkin. A structural approach to operational se-mantics. Technical Report DAIMI FN�19, Computer Sci-ence Department, Aahus University, Denmark, September1981.[San91] D. Sands. Operational theories of improvement in func-tional languages (extended abstract). In Proceedings of theFourth Glasgow Workshop on Functional Programming,pages 298�311, Skye, August 1991. Springer Workshop Se-ries.[San94] D. Sangiorgi. Locality and non-interleaving semanticsin calculi for mobile processes. Technical report, LFCS,University of Edinburgh, Edinburgh, U.K., 1994.11

[San95a] D. Sands. Higher-order expression procedures. InProceeding of the ACM SIGPLAN Syposium on PartialEvaluation and Semantics-Based Program Manipulation,PEPM'95, pages 190�201, New York, 1995. ACM.[San95b] D. Sangiorgi. Lazy functionsandmobile processes. Rap-port de recherche 2515, INRIA Sophia Antipolis, 1995.[San96a] D. Sands. Proving the correctness of recursion-basedautomatic program transformations. Theoretical ComputerScience, A(167), October 1996. Preliminary version inTAPSOFT'95, LNCS 915.[San96b] D. Sands. Total correctness by local improvement inthe transformation of functional programs. ACM Transac-tions on Programming Languages and Systems (TOPLAS),18(2):175�234, March 1996.[San97] D. Sands. Improvement theory and its applications.In A. Gordon and A. Pitts, editors, Higher-Order oper-ational Techniques in Semantics. Cambridge UniversityPress, 1997. (to appear).[Sch95] D. A. Schmidt. Natural-semantics-based abstract inter-pretation. In Proc. 2d Static Analysis Symposium, volume983 of LNCS, pages 1�18. Springer-Verlag, 1995.[Smi92] Scott Smith. From operational to denotational seman-tics. In Conference on Mathematical Foundations of Pro-gramming Language Semantics, volume 598 of LectureNotes in Computer Science. Springer-Verlag, 1992.[Tal85] C. L. Talcott. The Essence of Rum, A Theory of the in-tensional and extensional aspects of Lisp-type computation.PhD thesis, Stanford University, August 1985.[Tal97] C. Talcott. Reasoning about functions with e�ects.In A. Gordon and A. Pitts, editors, Higher-Order Op-erational Techniques in Semantics. Cambridge UniversityPress, 1997. (to appear).A Technical DevelopmentIn this section we present highlights of the technical de-velopment, leading to sketch proofs of the main theorems,syntactic continuity and improvement induction.The �rst part of the technical development is to reducethe task of proving theorems about gdsos to that of provingcorresponding theorems about a simpler rule format whichwe call dsos. dsos is a subset of gdsos in which the one-step evaluation relation is deterministic, and all constructorsare lazy.In order that theorems about dsos can be applied togdsos we need to show that there are fully-abstract trans-lations from any gdsos language to a dsos language. Theresult of these constructions is the following: in proofs ofsyntactic continuity and improvement induction rules wecan assume, without loss of generality, that the rules arein dsos format.A.1 gdsos reduces to lazy-gdsosA gdsos language is in lazy-gdsos format if all constructorsare lazy (strict in zero arguments). The following proposi-tion states that there is a fully abstract translation fromany instrumented gdsos language to an instrumented lazy-gdsos language.

Proposition A.1 For any language L in instrumented gdsosformat there exists a language K in lazy-gdsos format and acompositional translation, � , from T (L) to T (K) such that8M;N 2 T (L): M ��L N () M ��K NThe proof is by a uniform construction of a language K anda translation from T (L) to T (K). The general construc-tion is rather technical so we will not present it here. Butthe basic idea is to introduce a new lazy constructor forthe �constructor components� of every value (c.f. Nielsen'svalue skeletons [Nie96]); the nonstrict parts form the respec-tive (lazy) arguments.A.2 lazy-gdsos reduces to dsosWe outline how any language in lazy-gdsos format can besystematically represented by an extended language (that isto say, a language with some additional operators) whoseSOS rules are in a simpler format: Deterministic StructuralOperational Semantics. This can be done in such a waythat the evaluation relation, and the operational approxi-mation (improvement) relation for the extended languageare conservative extensions of those relations for the under-lying language.Definition A.2 (dsos format) A language is in dsos for-mat, if it is in lazy-gdsos format, and if each operator isstrict in either zero or one argument (in which we assumethat it is strict in the �rst argument).As a simple consequence of the de�nition, the one-step tran-sition relation for a dsos language is deterministic. For ex-ample, the application rule for the lazy lambda-calculus isin dsos format, since it is strict in one argument.The idea is that any gdsos language can be extendedsuch that all the rules of the extended language are in dsosformat. For example, the call-by-value application operatoris strict in both arguments:Z 7! Z 0@(Z;Y) 7! @(Z 0;Y) Z 7! Z 0@(X ;Z) 7! @(X ;Z 0)@(�X ; V) 7! X � VTo represent this by a dsos language, we add a new operator@� of arity (0; 1). The dsos rules in the extended languageare: Z 7! Z 0@(Z;Y) 7! @(Z 0;Y)@(�X ;Y) 7! @�(Y;X) Z 7! Z 0@�(Z;X) 7! @�(Z 0;X)@�(V;X) 7! X � VThis idea extends uniformly to all operators which are strictin more than one argument, and this provides the basis forthe following:Proposition A.3 Any language L whose operators are in(instrumented) gdsos format can be represented by a lan-guage L0 in dsos format such that L0 includes all the op-erators in L, and such that for all M , N 2 T (L), M ��LN () M ��L0 N:12

We omit the details of the proof, but it is based on a (compo-sitional) encoding like the one above, with the slight di�er-ence that we eliminate all value metavariables (like V above)in favour of a rule for each possible constructor. The idea ofthe additional operators is that they �remember� the con-structors of the values which have been evaluated so far; thearguments of the additional operators include one argumentfor each operand of these constructors.A.3 Context Notation and Reduction ContextsThe de�nition of operational approximation and equivalenceinvolve the notions of a context. The de�nition of a contextis the usual one. In particular the holes in a context occurin place of terms, and not arbitrary operands (abstractions).As is also usual, a context may capture free variables in theterm placed in its holes. In reasoning directly about the op-erational orderings for a language in dsos format we will dosome proofs directly involving manipulation of contexts. Forthis we need a more general form of context in which morethan one distinct type of hole may occur. These are some-times called polyadic contexts. In fact for present purposeswe will be able to make do with just two distinct �holes�,denoted by [] and h i.Contexts C, C 0 etc. will now denote contexts containingzero or more occurrences of two distinct types of hole, [] andh i. We will adopt the convention that when we write Ch iwe are indicating that context C contains no occurrencesof the hole [], and vice-versa. As an example, if C is thecontext (�x:[]) h i then C[x]htruei is the term (�x:x) true.Reduction Contexts An alternative (but equivalent) pre-sentation of the one step evaluation relation is in terms ofa simple form of contexts containing a single occurrence ofa single hole, known as reduction context [FFK87] (or eval-uation contexts). A reduction context is used to specify theposition in a term where the next reduction step can beperformed. As an example, for the language in Figure 1the reduction contexts R are contexts given inductively by:R ::= [] j RM j if R then M else N : We will use areduction context presentation of the rules to simplify someof our reasoning.Definition A.4 The reduction contexts for a language indsos format are de�ned inductively as follows:� [] is a reduction context;� if R is a reduction context, and p is a nonconstructoroperator strict in its �rst argument, then a well-formedcontext of the form p(R; (~x2)M2; : : : ; (~xn)Mn) is a re-duction context.Given this de�nition, it can be seen that the transition re-lation generated by the rules of a dsos can be equivalentlyrepresented by the collection of axiomsfR[M] 7! R[N] j M 7! N is an axiom of the dsos g :The determinacy of the system guarantees that if M 7! Nthen there exists a unique reduction context R, and uniqueterms M 0 and N 0 such that M � R[M 0], N � R[N 0], and

such that M 0 7! N 0 is an instance of an axiom of the dsos(we say that M 0 is a redex).Reduction Contexts with Holes A reduction step of aterm of the form ChMi, if M 62 Val, satis�es the follow-ing informal property: either the reduction step does notdepend on M (it is uniform in M) or it occurs inside M .This property holds in any language in dsos format, andcaptures a common case analysis used (usually informally)when reasoning directly about operational approximation.The property is formalised below.The following de�nes a particular set of contexts � namelyreduction contexts with additional h i-holes:Definition A.5 Let R̂, R̂0, the reduction contexts with holes,be de�ned as follows:� [] is a reduction context with holes;� if p is a nonconstructor of arity (0; k2; : : : kn) whichis strict in one argument (the �rst argument), and ~xi,i 2 f2; : : : ; ng is a vector of ki distinct variables, thenp(R̂; (~x2):C2h i; : : : (~xn):Cnh i)is a reduction context with holes.Lemma A.6 For any instrumented dsos language, for allcontexts Ch i, and all closed expressionsM 62 Val, if ChMi r7!M 0, then there exists contexts R̂, C 0h i such that C �R̂h i[C 0] and exactly one of the following two propertieshold:(i) either the reduction is uniform in M :there exists a context C 00, such that for all closed N ,C 0hNi r7! C 00hNi(ii) or the reduction is �inside� M: C 0 = h i and M r7!.The proof is by induction on the context C.A.4 Proof of Syntactic ContinuityRecalling Theorem 5.2 we need to showChfi <�M () 8i: Chf ii <�Mwhere f �= Chfi, f0 �= f0 and f i+1 �= Chf ii. By Proposi-tion A.3, it is su�cient to assume that the language is indsos format.()) Follows from Prop 5.1, together with the congru-ence property of <�.(() Under the assumption that 8i: Chf ii <� M wewill show that for all closing contexts C0[], and all naturalnumbers n, if C0[Chfi] converges in n steps then C0[M] con-verges. From the assumption, and the congruence propertyof <�, it will be su�cient to show that C0[Chfni] converges(intuitively, if the computation takes n steps, then we can'tneed more than n unwindings of the recursion), and this wedo by induction on n.13

Let C1h i denote the context C0[C].Base: n = 0 Then C1hfi 2 Val, and hence C1 must havean outermost constructor. Hence C1hfni 2 Val.Induction: n > 0 In this case we have C1hfi 7! N forsome N such that N converges in n�1 steps. We proceed bycase analysis according to Lemma A.6. C1 can be writtenas R̂h i[C 0] for some R̂ and C 0h i. The Lemma gives ustwo cases, corresponding to whether f is involved in thereduction step or not. In the �rst case there exists a C 00such that for all closed L, C 0hLi 7! C 00hLi. So in particularwe have that C1hfi � R̂hfi[C 0hfi] 7! R̂hfi[C 00hfi] � Nand C1hfni � R̂hfni[C 0hfni] 7! R̂hfni[C 00hfni]:Now since R̂hfi[C 00hfi] converges in n� 1 steps, by the in-duction hypothesis we conclude that R̂hfn�1i[C 00hfn�1i]+:Since fn�1 <� fn we can conclude by congruence thatR̂hfni[C 00hfni]+, i.e., that C1hfni+.In the second case we have C 0 = h i and hence the redexis f itself. By de�nition, f 7! Cf hfi and fn 7! Cf hfn�1i. Soin this case we haveC1hfi � R̂hfi[f] 7! R̂hfi[Cf hfi] � Nand C1hfni � R̂hfni[fn] 7! R̂hfni[Cf hfn�1i]:But R̂hfi[Cf hfi] converges in (n�1)-steps, and so by the in-duction hypothesis we have R̂hfn�1i[Cf hfn�1i]+ which im-plies that R̂hfni[Cf hfn�1i]+: Hence we can conclude thatC1hfni+ as required. 2A.5 Proof of Improvement InductionWe will make use of the following notations:� M+r () 9V:M+rV� M+r�s () M+r & r � s� M+�s () 9r:M+r & r � sWe will need the following simple properties about the im-provement relation over any instrumented dsos language:Lemma A.7 For all closed M and N(i) M ��r N) R[M] ��r R[N](ii) (M ��r N & M+s)) N+t where s � r � t(iii) M ��� r N) (M+t�r () N+t)The proofs are straightforward from the de�nition of �� r andthe fact that improvement is a congruence.Now we proceed to the proof of the improvement induc-tion principle. From the assumptions that M ��r C0hMiand N ��� r C0hNi for some r > 0, we are required to showthat M �� N . We prove this by showing thatfor all closed contexts C, if ChMi+u in l reduc-tion steps then ChNi+�u

by lexicographic induction on hu; li (recalling that u is anelement of a well-founded resource structure).Assume for some arbitrary closed C, that ChMi+u inl steps. We must show that ChNi+�u using the inductionhypothesis:8C 0:8s < u: C 0hMi+s) C 0hNi+�sand 8C 0: (C 0hMi+u in l0 < l steps)) C 0hNi+�uWe proceed by case analysis according to the length l of thecomputation:Case 1 (l = 0) In this case ChMi 2 Val, and hence u = 0.Since r > 0 it follows from Proposition A.7(ii) that C 6= h i,and hence C has an outermost constructor. This impliesChNi is also a value, and hence ChNi+0.Case 2 (l > 0) In this case ChMi s7! M 0 for some s, M 0.Since M is not a value (as argued above), we can considercases according to Proposition A.6:Case 2.1 (The reduction step is uniform in M) Inthis case C can be written as R̂h i[C 0h i] andR̂hMi[C 0hMi] s7! R̂hMi[C 00hMi]+tR̂hNi[C 0hNi] s7! R̂hNi[C 00hNi]for some C 00, and some t such that s�t = u. Now we considercases according to the value of s:Case 2.1.1 (s = 0) In this case R̂hMi[C 00hMi]+u inl�1 steps, so by the induction hypothesis R̂hNi[C 00hNi]+�u:But since t = 0 then ChNi+�u.Case 2.1.2 (s > 0) Since composition is <-monotonicfor a well-founded resource, it follows that t < u, so bythe induction hypothesis we have R̂hNi[C 00hNi]+�t: HenceChNi+�s�t=u.Case 2.2 (The reduction step is inside M) In thiscase C can be written as R̂h i[h i]. Since M �� r C0hMi, byLemma A.7 (i) we have R̂hMi[M] ��r R̂hMi[C0hMi] andhence by Lemma A.7 (ii) R̂hMi[C0hMi]+t for some t suchthat r � t � u. Since r > 0 it follows that t < u, and soby the induction hypothesis R̂hNi[C0hNi]+�t. Now fromLemma A.7 (iii) it follows that R̂hNi[N]+�r�t�u . 2The proof of the extension of the theorem to open expres-sions, in the special cases given in Theorem 7.4, follows ex-actly the same structure as the above proof. The di�erenceis that we need a more elaborate version of Lemma A.6 inwhich uniform computation is described by extending theevaluation relation to contexts. This is technically a littleproblematic (see for example [Tal97] for one approach basedon substitution-decorated holes); our approach � which willbe described elsewhere � is to use second-order syntax forcontexts. This combines smoothly with the use of a second-order syntax for SOS-rules so as to obtain, �for free�, ade�nition of context-evaluation which commutes with hole-�lling.14

