From SOS Rules to Proof Principles:
An Operational Metatheory for Functional Languages

David Sands

Chalmers, Sweden'

Abstract

Structural Operational Semantics (SOS) is a widely used
formalism for specifying the computational meaning of
programs, and 1s commonly used in specifying the se-
mantics of functional languages. Despite this widespread
use there has been relatively little work on the “metathe-
ory” for such semantics. As a consequence the opera-
tional approach to reasoning is considered ad hoc since
the same basic proof techniques and reasoning tools
are reestablished over and over, once for each oper-
ational semantics specification. This paper develops
some metatheory for a certain class of SOS language
specifications for functional languages. We define a rule
format, Globally Deterministic SOS (aDsos), and es-
tablish some proof principles for reasoning about equiv-
alence which are sound for all languages which can be
expressed in this format. More specifically, if the SOS
rules for the operators of a language conform to the
syntax of the GDsos format, then

e a syntactic analogy of continuity holds, which re-
lates a recursive function to its finite unwindings,
and forms the basis of a Scott-style fixed-point in-
duction technique;

e a powerful induction principle called improvement
induction holds for a certain class of instrumented
GDSO0S semantics; the Improvement Theorem from
[Sands, POPL’95] is a simple corollary;

e a useful bisimulation-based coinductive proof tech-
nique for operational approximation (and its “in-
strumented” variants) is sound.

To Appear: 24th Annual SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, Paris,
France, January 15-17, 1997.

1 Introduction

Methods for reasoning about equivalence in functional
languages are often based upon denotational semantics.
One characteristic feature of such semantics is that re-
cursion in the language is modelled by the construc-
tion of a least fixed point in some suitable ordered do-
main of interpretations. The meta-theory of denota-
tional semantics—domain theory—guarantees the ex-
istence of fixed points, and provides certain reasoning
principles for recursion based on this theory. Opera-
tional semantics can also be used as the basis for rea-
soning about equivalence in functional languages, and
has recently enjoyed something of a revival. A notable
operationally-based technique is the use of “applicative
bisimulation” [Abr90, How89, Gor95] to reason about
equivalence.

Comparing the denotational and operational based
approaches, the operational approach has the advan-
tage that it is built up from rather modest mathemat-
ical tools; it also appears that the operationally-based
techniques are fairly robust with respect to changes or
extensions to the underlying language. The disadvan-
tage of operationally-based reasoning is that there is no
analogy of the domain theory that underpins the deno-
tational approach. Consequently, any reasoning tech-
niques or tools that are built up from operational se-
mantics must be reestablished, and the same theorems
must be reproved for each operational semantics speci-
fication.

In this article we consider some “metatheory” for op-
erational semantics, by studying a rule-format, GDSOS,
— a syntactic schema for SOS rules suitable for speci-
fying small-step evaluation in functional languages. A
number of proof techniques are established for any lan-
guage whose operational semantics specification matches
the format.

I Department of Computing Science,
Chalmers University of Technology and Géteborg University,
S-412 96 Goteborg, Sweden
dave@cs.chalmers.se http://www.cs.chalmers.se/ dave

The contributions of the paper are firstly to lift some
standard proof techniques to the level of a rule format,
and secondly, also at the rule-format level, to intro-
duce a new operational proof technique based on instru-
mented semantics. Specifically, the proof techniques we
establish for GDsos languages are

e least fized-point properties of the style usually as-
sociated with the standard denotational approach;

e improvement induction — a new proof technique
based on an instrumented semantics and a corre-
sponding definition of a contextual improvement
relation between terms, and

e coinductive proof techniques of the standard bisim-
ulation variety usually associated with the opera-
tional approach.

Recursion as a Least Fixed Point The properties of
recursive definitions usually associated with the trap-
pings of a denotational semantics can be established
at the syntactic level from operational semantics, with
very little mathematical overhead. We establish a syn-
tactic analogy of continuity which forms the basis of
Scott-style fixed point induction. Syntactic continuity
says that a recursive constant f can be characterised in
terms of its syntactic finite unwindings, {fi}l.>0. More
specifically, f is the least term (up to operational equiv-
alence) which is operationally greater than the f*; more-
over, this property is preserved by all syntactic contexts
Cll: '
CEIC M < Vi.ClIf']C M

where L is the operational approximation ordering: M C
N iff for all contexts C’, C'[N] terminates whenever
C'[M] terminates.

Improvement Induction The following operational vari-

ant of the least pre-fixed-point property of a recursive
definition is easily established from the syntactic conti-
nuity: for all recursive f defined by f 2 CIf]

MICMl=MIf

This is sometimes known as Park Induction. Unfor-
tunately, the “dual” principle, that M T C[M] (or
M = C[M]) implies M T f, is not sound in general.
The idea of the improvement induction principle in-
troduced in this article is to establish M T f by es-
tablishing some stronger relation between M and C[M]
than operational approximation. The improvement in-
duction principle shows that there are many possible

(nontrivial) relations, each one obtained by instrument-
ing the GDSOS rules with additional “resource” informa-
tion, and by deriving strengthened definitions of oper-
ational approximation, called improvement, which also
take into account resource use.

A fairly immediate corollary of the improvement in-
duction principle is a generalisation of the Improvement
Theorem [San96b]. The Improvement Theorem for a
specific higher-order functional language has been used
to develop a correctness preserving variant of unfold-
fold transformations (in loc. cit.), as well as to give the
first correctness proofs for some well known transforma-
tion methods [San96al.

Functional (bi)simulations and Coinduction
Operationally-based proof principles of a more standard
nature are also established for GDso0s languages. We
show that coinductive reasoning techniques based on
bisimulation (4 {a [Abr90, How89, Pit99, Gor95]) are
sound for reasoning about the various preorders and
equivalences discussed in this article.

1.1 Related Work

Proofs of “standard” fixed-point properties based on op-
erational semantics, for specific languages, can be found
in [Tal85, Smi92, Dam94, MT91, MST96, Pit99]. We
have taken the term “syntactic continuity” from [Pit99]
although our proof is somewhat more direct, and much
more in the spirit of proofs found in [Smi92, MST96,
MT91].} The main contribution of this paper for this
kind of theorem is to lift these proofs from a particular
(functional) language to any functional language whose
structural operational semantics fit a certain rule for-
mat; the rules of [MST96] (a call-by-value functional
language) fit the rule format, as do the call-by-name
rules of [Smi92] and [Pit99].

Rule formats are well-known in process algebra (e.g.,
see [GV92], [BIM95]) where the typical theorem es-
tablished is that bisimulation i1s a congruence. Aceto,
Bloom, and Vaandrager [ABV94] study axiomatisations
of strong bisimulation for the GSOS format of [BIM95];
to handle potential recursion include an induction prin-
ciple known as approzimation induction.

The use of rule formats in the setting of functional
programs is rather less well-known. Bloom [Blo90] de-
fines a rule format for operators extending the LCF lan-
guage, and establishes that all such extensions satisfy
a certain operational extensionality property. The rule
format is rather restrictive, does not permit variable-
binding constructs, and the arguments are assumed to

Tt should be noted that this is a continuity property of a
particular chain; in general, continuity fails for the operational
ordering (see [Smi92]).

evaluate to simple constants.

Howe [How91, How96] defines a rule format for the
evaluation relation for functional languages, and proves
that a functional analogy of bisimulation is a congru-
ence. Our meta-syntax for defining rules is inspired
by Howe’s. Our rule format is based on a single step
reduction relation, and appears to be slightly less gen-
eral, since 1t seems possible to obtain, from our rule
format for reduction, a natural semantics format which
is subsumed by Howe’s. Howe does not, however, con-
sider fixed-point properties, or other induction princi-
ples other than (bi)simulation. We establish a similar
result to Howe’s for GDsos (using the same methods),
but also for instrumented variations of the semantics.
This is a fairly easy adaptation of our earlier work on op-
erational theories of improvement [San91], which gave
more abstract conditions (not based on SOS rules per
se) which guarantee that a certain coinductively defined
class of improvement relations are congruences. We give
some consideration to the special case of purely call-by-
value languages (languages in which all variables get
bound to values) via the notion of value metaterms in
the SOS rules. Howe achieves the same ends by using
call-by-value variables and explicit abstraction over val-
ues as part of the ordinary syntax. A yet more elaborate
term-syntax (much more elaborate than needed in our
setting) in which variables are sorted, is described in
[FV95]. They study very basic conservativity proper-
ties of SOS rules, but covering a very general class of
languages.

Independently, Kristian Nielsen [Nie96] has recently
introduced a kind of rule format (expressing what he
calls “simple functional languages”) in both “large-step”
and equivalent “small-step” forms. The aims are to de-
velop some generalised theory for partial evaluation and
deforestation. Although notationally rather different,
GDs0s and Nielsen’s format are very close. The most
recent refinement of GDsOS was to include non-strict
data constructors; the technical development of this as-
pect (mostly omitted from this version of the paper)
was influenced by Nielsen’s approach. Independently of
Howe’s work, Nielsen establishes that applicative bisim-
ulation is a congruence.

2 Preliminaries

2.1 Operational Orderings

To define what it means for two programs to be equiva-
lent, or for one program to “approximate” another, we
use an evaluation relation as our basic building block.
An evaluation relation, |}, is a binary relation between
closed terms and values; values are themselves just terms
of a particular syntactic form. If M{V then computa-

tion beginning with M terminates with value V.

Given such a relation, we can build, in a standard
way, definitions of approximation and equivalence. The
operational approximation we use is the standard Morris-
style contextual ordering. The notion of “observation”
we take is just the fact of convergence, as in the lazy
lambda calculus [Abr90]. This particular choice is not
central to the development, and could be generalised
by a definition parameterised by a suitable notion of an
“observable” value.

Operational equivalence equates two expressions if
and only if in all closing contexts they give rise to the
same observation — i.e. either they both converge, or
they both diverge.

DEFINITION 2.1

(1) M operationally approximates N, M T N, if for
all contexts C' such that C[M], C[N] are closed, if
C[M]UV then there exists a W such that C[N]{J .

(il) M is operationally equivalent to N, M = N, if
MENand NC M.

We could also parameterise the theory by a static
typing discipline, which would only allow the compar-
ison of certain well-typed terms, and then only in ap-
propriately typed contexts. This adds noise but rel-
atively little effect to the developments in this paper,
since most of the theorems are proved directly from the
operational semantics, and this, by definition, is inde-
pendent of static typing. Adoption of a dynamic typing
discipline would require more fundamental changes to
the framework.

2.2 Structural Operational Semantics

In this article we will consider evaluation relations which
are defined in terms of a finer one-step evaluation rela-
tion, — ; we define M}V for some value V if M —* V.
The mechanism we consider for defining — is the well-
known Structural Operational Semantics (SOS) [Plo81].
SOS is a syntactic style for presenting an inductively
defined transition relation between “machine configu-
rations”, given by cases according to their syntactic
structure. In our setting, the machine configurations
will be simply closed terms. As an example we present
the one-step evaluation relation for the lazy lambda cal-
culus [Abr90], together with booleans and conditionals,
in Figure 1. For this language the values are deemed to
be true, false, and any closed lambda-term. It is easy
to see that —, and hence |} are partial functions.

3 Second Order Abstract Syntax

We introduce an abstract syntax for specifying func-
tional programs, and for specifying the GDsos rule for-

M— N

M~ M
MNw—MN

if M then N; else No — if N then N, else N,

if true then N, else Ny — N;

(Ae. M) N — M{N/}

if false then N; else Ny — N»

Figure 1: Example SOS Rules

mat given in the next section. Our syntax follows [How91]
very closely, but is fairly standard from the point of view
of formal specification of syntax which includes variable
binding operators such as lambda abstraction (e.g., see
[NPS90, Klo80, PESS]).

First we fix a countably infinite set Var of ordinary
variables. A language L is specified by (amongst other
things) a set of operators O of a fixed arity a. As usual,
the arity specifies the number of operands for each oper-
ator, but it specifies more than just this, since we wish
to specify the syntax of operators with binding. Each
operand is possibly an abstraction, i.e., a list of zero or
more distinct variables followed by a term, where the
variables are considered bound in the term. The arity
of an operator is therefore given by a sequence of natu-
ral numbers; the length of the sequence is the number
of operands, and the natural numbers are the number
of bound variables associated with the corresponding
operand. For example, the language implicit in the
rules of Figure 1 would be represented in this syntax
by the set of operators {\, apply, if , true, false} with
arities a(A) = (1), a(apply) = (0,0), a(sf) = (0,0,0),
a(true) = a(false) = ()

Let z, y, etc., range over Var, and let p, g range
over Q.

The terms of L, T, ranged over by M, N are defined
inductively as follows:

MyeT---M,eT
p((Z1)My, ... (B,)M,) €T
where a(p) = (k1,...kn)

and each Z; is a list of k; distinct variables.

reT

For example, the term (Az.y)z would be written in this
abstract syntax as apply(A((#)y), z). Where we need
to distinguish between the terms from different lan-
guages we will write T'(L) for the terms of L.

3.1 Meta Terms

In order to formalise the rules of a structural operational
semantics for such a language we introduce a syntax
for meta terms. We begin by fixing a a countable set
of metavariables Mvar ranged over by X', Y, etc., and
a disjoint set of wvalue metavariables, ValMvar, ranged

O'(X'(./\/ll,...

over by V, W. Metavariables will range over both terms
and operands (abstractions); value metavariables will
range over only those terms which are deemed to be
values. With each metavariable X', we associate an ar-
ity a(X') which is a natural number. The idea is that
metavariables of arity 0 will range over terms, while
meta variables of higher arity will range over abstrac-
tions. Value metavariables always have arity 0.

DEFINITION 3.1 To define the metaterms for a given
language L, we define an indexed set of meta-abstractions
{MT;},5,, (ranged over by M, N, etc.) inductively ac-
cording to the following rules:

M, xvewmT, A =n
Me MT,
(Z1,...,2n)M € MT,
MlEMTOMnEMTO Oz(X)—n
X (Myq,... . M,) e MTy -
MyeMT,, .. M, € M}
L z = (ky...k,
p(MlaaMn)EMTO a(p) (1)

Then we define the metaterms to be M1Tj.

The construct X'-(My, ..., M,) denotes meta-appli-
cation. Metavariable X'| of arity n, ranges over abstrac-
tions of n variables. When X is replaced by such an
abstraction, the meta-terms My, ..., M, will be sub-
stituted for the respective abstracted variables. Let o
range over second-order substitutions—finite mappings
from metavariables to abstractions of corresponding ar-
ity (and such that value meta-variables can only be
bound to values). Thus if ¢(X') is defined then it has
the form (z1,...,2,)M. The operation of second or-
der substitution is defined as for normal substitution,
except that if o(X) = (z1,...,2,)M then
M) = M{o(Mi),..., O'(Mn)/xl’ .

e

3.2 Values and Metavalues

Before we introduce the GDsos rule format we need to
specify the set of terms deemed to be values. In addition

to the arity, a language L comes equipped with a spec-
ification of a syntactic striciness property for each op-
erator. For each operator p of arity a(p) = (k1...kn)
we must specify a set strict(p) C {1...n} — which we
call the set of strict arguments of p. This set satisfies
the property that ¢ € strict(p) = k; = 0 — in other
words strict arguments cannot be abstractions.
Furthermore, each operator of the language is clas-
sified as either a constructor or a non-constructor. We
use ¢, ¢’ etc. to range over constructors. Values are
built inductively from the constructors; meta-values are
a particular set of metaterms which only match values.

DEFINITION 3.2 The set of values, Val, ranged over by
V', W etc. is the subset of the terms of a given language
defined inductively as follows:

{M; € Val | j € strict(e)}
C((fl)Ml, ceey (fn)Mn) € Val

The set of simple metavalues is a subset of the metaterms
defined inductively by the following rules:

ValMvar C Muval

{M; € Mval | j € strict(c)}
{My € Muvar | ke {l...n}\strict(c)}
e(My,...,Mp) € Muval

Example If stream is a constructor of arity (0, 0) which
is strict in its first argument, then stream(true, X') and
stream(V, X) are simple metavalues, but stream(X,))
is not (it matches some non-values), and neither are
stream(V, stream (X,))) or stream(true,)) (they are
not “simple”).

4 The ¢Dsos Rule Format

The purpose of introducing metaterms is to describe
the rules of a structural operational semantics. As an
example, an axiom for a call-by-value application oper-
ator, @ might be written:

QALY V)= X -V

Such a rule schema defines transitions on terms as fol-
lows: for all second order substitutions ¢ which map
X to some closed abstraction (z)M and V to some
closed value, we have that (@AY, V) — (X - V) =
M{c(V)/}. Here we use the metaterms to define a
particular rule format, the Gbsos format.

DEFINITION 4.1 (GDso0s) The operational semantics for
a language L is in Globally deterministic SOS format
(gDsos format) if the one step evaluation relation can
be expressed by rules of the following forms.

The SOS rules for each operator p of arity (ki,...kn)
consist of |I| inference rules, where I = strict(p), to-
gether with possibly infinitely many axioms of the fol-
lowing forms:

{ Xy = Vs
p(Xl.XZXn)i—)p(lel

.

{ p(./\/llj,...,./\/lnj) '—)./\/lj }

JjEJ

for some indexing set J such that if p is a constructor
then J = 0, and such that for all: € I, j € J,

(1) M;; is a simple metavalue; other metaterms AMy;
h & I are metavariables;

(ii) metavariables X; and Y; are distinct, and all meta-
variables and value metavariables occur at most
once in any metaterm except M;;

(iii) the set of left-hand sides of the axioms are non-
overlapping (that is, there is no second-order sub-
stitution which unifies any two left hand sides);

(iv) there are no free (ordinary) variables in M;.

The operational semantics for a language L is de-
fined to be in call-by-value GDSOS format if it is in
GDsos format, and additionally all meta-applications
X - (N1...N,) occuring in the M; are such that all

closed instances of the A; are necessarily values.

Before giving some examples of rules in this for-
mat we give some intuitions for the requirements of the
Gpsos format. The collection of |strict(p)| inference
rules for each operator in GDs0s format reflect that eval-
uation steps may occur in any of the strict arguments.
The side conditions can be explained respectively as fol-
lows:

(i) implies that the axioms can only be applied once
all the strict arguments have been evaluated to a
value. The definition of simple metavalues ensures
that the evaluation step can only depend on the
constructors of these values;

(ii) prevents the rules from depending on syntactic
equivalence of arbitrary terms;

(iii) is needed to ensure that the evaluation relation
derived from the system 1s deterministic;

(iv) ensures that free variables are not introduced by
reduction (and hence is also needed for determi-
nacy).

The definition of call-by-value GDsos will be used to
refine certain proof principles to the special case of call-
by-value languages.

Examples Here we give some examples of operators
which can be expressed in GDs0s format. The rules of
Fig. 1 can all be written in this format. Consider aslight
variation: a call-by-value application operator. This
operator is strict in both arguments. The associated
rules are:

Z—Z
@Y, 2)—~ @y, 2

Y=Y
@Y, 2)—~ @y, 2)

QAX, V) —» X -V

As an example of a operator which is strict in no ar-
guments, consider a local recursion construct with con-
crete syntax letrec x = M in N, and with a computa-
tion rule:

letrecx =M in N — N{letrec z=M in M/x}

The letrec operator has arity (1,1), and letrec z =
M in N has abstract syntax letrec((z)M, (z)N). The
rule 1s

letrec(X,Y) — Y - letrec(X, X)

As a more involved example, consider a simple Miranda
or Haskell-like list comprehension with concrete syntax
[M | « € N, P], representing “the list of M’s, for each
element # in the list N which satisfy P”. The vari-
able x is bound in M and P, so in abstract syntax this
is represented by an operator leomp of arity (1,0,1).
The operator is strict in its second argument, and the
associated rules (where cons and nil are constructors)
are:

Y=Y
lecomp (X, Y, Z) = lecomp (XY, Z)

lecomp (X, cons(V1,Y2), Z) —
if (2 Y1, cons(X - Vi, leomp(X, Vs, Z),
lcomp(X, y2a Z)))

lecomp(X,nil, Z) — nil

Here the rules assume that cons is lazy (i.e. strict(cons)

=). The rules for a strict version of cons differ only
in the use of value metavariables in place of metavari-
ables Vi and Y>.

To represent a primitive function like addition, or a
length function for strict lists one can give “direct” def-
initions using the fact that an infinite number of axioms
are permitted by the rule format.

Curried operators cannot be directly represented,
but can be encoded in terms of lambda abstractions.
An example of an operator that cannot be represented

by GDsos operators is parallel-or [Plo77], which returns
true if either of its operands can be evaluated to true,
and diverges iff both operands diverge. For more on
the operational representability of parallel-or for “PCF-
like” languages, see [JM91]. Parallel-or is interesting
(only) because its addition to the language makes the
usual denotational semantics fully-abstract. Since we
work directly with the operational orderings, full ab-
straction is not an issue.

4.1 The Evaluation Relation for GDsos

The rules of a GDsOS induce a one step transition rela-
tion on closed terms of the underlying language I in the
obvious way. Let —* denote the reflexive and transitive
closure of the one step evaluation relation. Convergence
is defined as follows:

DEFINITION 4.2 Closed term M converges to value V|
written MV if and only if M —* V.

PROPOSITION 4.3 Relation |} is deterministic (up to

=).

Proor. By showing that the conditions on the rules
guarantee that — 1s strongly confluent the result follows
by a simple diagram-chase. a

5 Fixed-Point Properties

In this section we present the “syntactic continuity”
property for GDSOS languages with recursion. For the
reader interested in an outline of the proofs we include
further details in the appendix. The main point of inter-
est in the proofs is that we sketch how ¢Dsos languages
can be reduced to a simpler Ds0s format for which —
is deterministic.

Recursion There are many equivalent forms of recur-
sive definition. In what follows we will consider GDS0S
languages containing constants as specified by recur-
sion equations. The addition of such constants does not
change the expressive power of a GDsos language? but
eases the job of proving fixed point properties—in par-
ticular since the recursive constants are not variables,
so cannot be captured.

A recursion equation h £ M is taken to be synony-
mous with a non-constructor h of arity (), with Gpsos
rule h — M. In particular we consider languages in

?More precisely, under the assumption that the language al-
ready contains some nonterminating term, then the addition of
any recursive constants conservatively extends the theory of oper-
ational approximation. Interestingly, to prove this conservativity
property we first need the syntactic continuity result.

GDsos format which contain some recursively defined
constant

f 2 Clf]

where we assume that the (closed) context Cg does not
contain occurrences of f. Now we also assume a set of
constants {fl}i>0 defined inductively by

fO
Cylf?].

We will call such a language a GDs0s language with
recursion. The functions {fi}z’>0 form a chain, bounded

fO
fz'+1

(> (I

above by f:

ProprosITION 5.1 For any GDsos language with recur-
siomn,

(i) £ = Celf).
(i) Forall i >0, ' C i+ C f.

The point of the functions {fi}z’>0 is that they com-
pletely characterise the behaviour of the function f.
This is the essence of the fixed-point induction prin-
ciple of Scott-style denotational semantics. The main
property which justifies this is the following syntactic
notion of continuity for the chain {fi}l.>0; f the least
upper bound of this chain, and contexts preserve this
property:

THEOREM 5.2 (Syntactic Continuity)
For any GDsos language with recursion, for all contexts
C[], and expressions M we have

CIC M < Vi.CIf'1C M
ProoF. Details in the appendix. a

From this we can establish some other standard fixed
point properties. We already know that f satisfies £ =
Ckl[f]. The least-fixed-point property asserts that f is
the least expression (up to =) satisfying this equation.
The following is a slight strengthening:

THEOREM 5.3 (Least Pre Fixed-Point)
For any GDso0s language with recursion, if M is a closed
expression satisfying Ce[M]C M then £ T M.

Proor. By Theorem 5.2, it is sufficient to show that
Vi £ L M. This follows by an easy induction on ¢; we
know that £ C M (Prop 5.1). Suppose f¥ C M. Now

fk+1 = Ce[f¥], and so by the induction hypothesis and
congruence we have fF+1 2 Cp[f¥] C CelM]. m|

It is also possible to build up various fixed-point induc-
tion principles. The following is a good starting point
and is an easy corollary of Theorem 5.2:

CoROLLARY 5.4 Iffor all n > 0 we have C[f"] T C'[f"],
then C[f] C CVIf].

6 Instrumented GDsos

We introduce instrumented versions of GDS0S rules, ob-
tained by labelling the axioms with some resource in-
formation. This induces a resource-labelled evaluation
relation. Resources are partially ordered, and from this
we define a resource-based strengthening of operational
approximation called improvement. M is improved by
N (with respect to some instrumented semantics) if in
all closing contexts if C[M] terminates then C[N] ter-
minates using fewer resources.

DEFINITION 6.1 (Resource Structure)

A resource structure is a quadruple (R, -, 0,>) where
(R, >) is a partially ordered set of resources, and (R, -, 0)
is a commutative monoid—that is to say, ‘-’ (composi-
tion of resources) is an associative, commutative oper-
ation on R with 0 as an identity.

A resource structure is defined to be monotonic if
r > 0 for all » € R, and if composition is >-monotonic,
so that r > s =>Vt.r -1 > s-1.

It is defined to be well-founded monotonic (or sim-
ply, well-founded) if, additionally, > is well-founded
(where r > s <= r > s & r # s) and composition is
>-monotonic.

As an example of a monotonic resource we might take
R to be the powerset of non-constructor names, with
composition given by set union, zero by the empty set
and ordered by subset inclusion. As an example of a
strictly monotonic resource we can take (IN, +,0, >).

We will instrument ¢Ds0S by resource information
from a resource structure. The key features of the def-
inition, and how they will be used in the remainder of
the article are as follows:

e We use ‘-’ to combine the resources of each reduc-
tion step to obtain a resource-labelled evaluation
relation; the monoid structure in the definition of
a resource is just sufficient to make the resulting
instrumented evaluation relation deterministic;

e the partial ordering will provide us with a notion
of improvement which 1s a preordering;

e monotonic resource structures are those for which
we provide certain coinductive proof techniques in
Section 8;

o well-founded monotonic resources will form the ba-
sis of the improvement induction proof technique
given in Section 7.

The use of a monotonic resource to instrumenting se-
mantic definitions is fairly natural, and is anticipated
by Gurr [Gur9l] (there called a commutative ordered
monoid) in the context of monadic semantics.

DEFINITION 6.2 For a given resource structure, an in-
strumented GDSOS is defined by labelling each axiom
with some resource r € R, and by labelling the transi-
tion of each inference rule with a resource (meta)variable
p thus:

X5 Y
- An) o p(X1, .. Vi, ..)

p(Xl,...XZ',..

This induces a resource-labelled transition system on
terms in the obvious way. Now we define the multiple-
step labelled transition relation inductively as follows:

oMlg—)MforaHM
o M N and N’ 5 N then M &5 N

Finally, define the resource-labelled convergence rela-
tion between closed expressions by:

For all closed M, V, define MYV iff M +» V.

It follows easily from the transitivity and commutativ-
1ty properties of resource composition that for each M
there is at most one resource r and value V such that
MY"V. Now for each instrumented GDSOS we define
an improvement relation by strengthening the require-
ments of the operational orderings:

DEeFINITION 6.3 With respect to a particular instru-
mented GDSOS define

(1) M is improved by N, M > N, if for all closing
contexts C, if C[M]J"V then C[NJ*W for some

s

(i1) M is cost equivalent to N, M <& N,if M > N
and N > M.

Certain properties of improvement follow easily from
the definition; it is a preorder which is closed under syn-
tactic contexts —in other words, it is a precongruence.
Note that for the trivial monotonic resource structure
in which R is just a singleton set, the improvement re-
lation degenerates to operational approximation. Note
also that improvement implies operational approxima-
tion, and cost equivalence implies operational equiva-
lence.

7 Improvement Induction

In this section we present the improvement induction
principle which holds for any well-founded instrumented
GDS0S. The basic idea of the theorem can be motivated
as follows. The least fixed-point principle says that for
f defined by f £ C[f] we have

MICMl=MIf

We want to find an analogy to this that allows us to
establish that M T f. What we seek is a relation A
such that

MACM]l= MLt (%)

As mentioned in the introduction, taking A to be simply
operational approximation or equivalence is not sufficient®
— for example if C'is the trivial context [] and f there-
fore never terminates, then this would allow us to show
M C f for all M!

Rather than focussing on syntactic properties of C,
the improvement induction principle provides a relation
A (or rather, a set of nontrivial such relations) which
makes (x) hold. The relation in question is based on
the improvement relation of some well-founded instru-
mented GDSOS. Assume that we have an instrumented
semantics over some well-founded resource structure for
which f ©» C[f] for some r > 0. Then the following
property holds:

MP o> CM] = MPf
= MCf

where > LYY P> is just composition of the relations, so
M P oy > N iff there exist Vi, No such that

M > Ny, Ny 5 No, and N> > N.

The improvement induction theorem gives a slightly
more general variant of the above property, by remov-
ing the dependence on the recursive constants f. First
we introduce some new notation.

Define the following relations on expressions:

>r > O
Tr E ST

o

Intuitively, M > N says that M is improved by NV and
that any evaluation of N would be “faster” than M by
at least r. If » > s then we have that

P =R0DB DR
Using this terminology we state the main theorem:

THEOREM 7.1 (Improvement Induction) For any well-
founded instrumented GDsos, for all closed C', M, N
and all resources ¢t > 0,

M >t CM]

and N ¢ CIN] }:‘MBN'

30ne way around this problem is to restrict attention to only
certain classes of context C' for which this does hold; this tech-
nique is used extensively in process algebra (e.g., see [BW90]) but
is rarely used in the functional setting — although a few related
techniques have been described — see e.g., [Car84] and [Cou79].

ExXAMPLE 7.2 Consider an instrumented version of the

lazy lambda calculus over the well-founded resource struc-

ture (IN,+,0,>), in which each axiom is labelled with
1 (i.e., each reduction step costs 1). We will show that

fix = Az Af.f(zz) Az f.f(zxf))

where fix 2 Af.f(fix f).
Let P be the expression Az Af.f (zx f). Note that

PP Af.f (P P f), and hence that
PP=X.f(PPY]).

It follows by the least fixed-point property (Theorem 5.3)
that fix C P P. To prove the reverse inclusion we use
improvement induction. From the above reduction we
see that PP D1 Af.f (P P f), and from the definition
of fix we know that fix <1 Af.f(fix f). By improve-
ment induction we conclude that P P > fix, and hence
that P P = fix.

In the above example the I>r -property needed to
apply improvement induction is established very simply
by the fact that v C Br. In our experience, only
relatively simple properties need be established to apply
improvement induction to good effect. One factor that
alds reasoning is if there exist closed contexts C, with
the property that for all N, C,.[N] =+ N. In this case
we can reduce reasoning about >~ to reasoning about
D>, since M Dr N <= M > C,[N]. In the case of
applications of the Improvement Theorem (below), the
C, are just r-fold compositions of an identity function,
and the specific improvement laws for . are what are
known as the “tick algebra” of [San96b].

The Improvement Theorem The Improvement Theo-
rem from [San96b] is a simple corollary of improvement
induction:

COROLLARY 7.3 (Improvement Theorem) For any
instrumented ¢Ds0S over the well-founded resource struc-
ture (IV,0,+4,>), if all the axioms for recursive con-
stants are labelled by some resource n > 0 then we
have the following:

If g2 M and M > C[g] then g > h, where h 2 C[h].

PROOF. Since g v M (by definition) and M > Clg],
we have that g >» C[g]. Also by definition, h s C[hl,
and since <T> is reflexive, we have h <>» C[h]. Now
we have, directly from Theorem 7.1 that g &> h. a

The significant advance of Corollary 7.3 is that here it
is established for any GDsos language. A minor varia-
tion allows n to be different for each recursive constant;

if ng > ny > 0 then the Improvement Theorem still
holds. This verifies a conjecture in [San9ba] about so-
called weighted itmprovement relations, which are used
to establish the correctness of a higher-order variant
of Scherlis’ expression procedure transformation frame-
work. The Improvement Theorem for this version of
improvement provides a much simpler correctness proof
than that presented in [San95a].

Space does not permit an illustration of the utility of
the Improvement Theorem in establishing the correct-
ness of program transformations; we refer the reader to
[San96b, San96a] for a number of substantial applica-
tions.

7.1 Open Improvement Induction

The improvement induction principle is stated for closed
expressions and contexts. Our proof extends to open
expressions in two important special cases, according
to how improvement behaves under the application of
substitutions.

THEOREM 7.4 The Improvement Induction Principle (as
stated in Theorem 7.1) holds for open C'; M and N in
the following case:

(i) if > is closed under substitution (i.e. M > N
implies Mo &> No for all), or

(i1) if > is closed under value-substitutions (substitu-
tions of values for variables) and the language is
in call-by-value GDsos format.

A sufficient condition for improvement to be closed un-
der substitution is if a call-by-name let-expression is
expressible (up to operational equivalence) in the lan-
guage; > is closed under value substitutions providing
a call-by-value let-expression is expressible.

8 Coinductive Proof Techniques for GDs0s

We have established a number of proof techniques for
operational approximation and equivalence which hold
for languages whose operators are in GDS0S format.
The proofs of these theorems work directly from the
definition of operational approximation (although we
do simplify the GDsos format somewhat, as outlined in
the appendix); however, in applications of the theorems
we need to prove (hopefully much simpler) properties
about operational approximation and improvement in
order to make use of the theorems. For example, in Ex-
ample 7.2 we tacitly assumed that — C =2, but we did
not actually prove it. Proving such “simple” proper-
ties directly from the definitions is certainly possible,
but somewhat tedious. Here we establish a simpler
(but not necessarily complete) method for reasoning

about improvement (and hence also operational approx-
imation) for any monotonic instrumented GDsos lan-
guage. The basic idea is now well-established (see e.g.,
[Abr90, How89, Gor95, Pit99]): to establish M B> N it
is sufficient to find a certain coinductive relation which
relates M and N.

DEeFINITION 8.1 A binary relation Z on expressions is
an open improvement simulation (respectively, an open
value improvement simulation) if whenever M Z N then
for all closing substitutions o (respectively, closing value
substitutions), if

Mol e((z1) My, ..., (Z,) M,)
then NollPe((Z1)N1, ..., (2,)Np)

for some s, and Ny ... N, such that » > s and M; T N;,
1€1...n.

THEOREM &.2

(i) For any monotonic instrumented GDsos if 7 is an
open improvement simulation then 7 C [>.

(ii) For any monotonicinstrumented call-by-value Gpsos

if 7 1s an open value improvement simulation then
ZChb.

ProoF. In both cases it is sufficient to prove that the
maximal improvement simulation, given by the union
of all improvement simulations, is a precongruence re-
lation. This is established by instantiating the main re-
sult of our earlier work [San91], which extends Howe’s
proof techniques [How89, How96] to handle improve-
ment relations. ad

The proof technique also applies to operational approx-
imation, taking the trivial (necessarily monotonic) in-
strumentation where the resource is just a singleton set.
Unfortunately, the proof technique is not always com-
plete; for some instrumented GDSOS languages there
are pairs of closed terms which are not contained in
any improvement simulation, but which are in the im-
provement relation. General conditions for complete-
ness are somewhat difficult to establish, although for the
special case of operational approximation completeness
amounts to showing that there are sufficiently many
“destructors” for each constructor — see [How96] for a
precise formulation.

Bisimulation upto Improvement and Context

In [San97] we described a bisimulation-like proof tech-
nique for equivalence based on the Improvement Theo-
rem of [San96b], with something of the flavour of San-
giorgi’s “bisimulation up to context and up to expan-
sion” for the pi-calculus [San95b, San94], where “expan-
sion” is analogous to an improvement relation based on

10

the number of silent transitions a process can perform.
It seems that a similar development to [San97] can be
carried out in the setting of a well-founded GDsos, and
roughly speaking, amounts to generalising the improve-
ment induction principle from a pair of expressions to a
possibly infinite set of pairs. Such a development would
put improvement induction on a bisimulation-like foot-
ing, but we leave it for future investigation.

9 Conclusion and Further Work

We have established a number of proof principles for
functional languages whose validity for any particular
language can be established by simply considering the
syntactic form of the SOS rules. These principles in-
clude the standard “denotational” properties which char-
acterise a recursive definition in terms of its finite un-
windings, as well as the standard operational techniques
based on (bi)simulations and coinduction. We have also
introduced a new operational proof technique, improve-
ment induction, of which the Improvement Theorem is
a corollary.

In future work we hope to investigate more expres-
sive formats, possibly dealing with control operators like
callce, with bounded nondeterminism, and with opera-
tions acting on state. It may be natural in these set-
tings to consider alternative semantic styles, such as
natural semantics, or evaluation-context style (see the
appendix for an example). A promising starting point
is the recent metatheory for languages with control and
effects described by Talcott [Tal97]. Talcott describes
some properties which must hold of a reduction rela-
tion which guarantee that a form of context lemma is
sound. The abstract properties given are closely related
to certain fundamental technical properties that we es-
tablish (Proposition A.6)for the simpler Dsos format
in the appendix. The class of languages considered are
call-by-value lambda calculi extended with binding-free,
completely strict operators. It would be interesting to
see 1f an improvement induction principle can be estab-
lished for Talcott’s class of languages. It would also
be interesting to provide a syntactic “front-end”, in the
form of a rule format, for Talcott’s work.

Other “metatheory” worth investigating includes ab-
stract interpretation [CC92, Sch95, GDY5] and call-by-
need theories [Lau93, AFM*95].

Acknowledgements The more basic DSOS rule format
given in the appendix was communicated to the au-
thor by Davide Sangiorgi (INRIA) [personal communi-
cation], who proposed the format during an extended
discussion on proof techniques for functional programs
(in particular the Improvement Theorem) and the re-

lation to proof techniques for the pi-calculus. Thanks

are due to Davide for his valuable contribution. Thanks
are also due to Andrew Moran, Caroline Talcott and the
anonymous POPL referees for several useful suggestions
and criticisms on an earlier draft.

References

[Abr9o] S. Abramsky. The lazy lambda calculus. In D. Turner,
editor, Research Topics in Functional Programming, pages
65—-116. Addison Wesley, 1990.

[ABV94] Luca Aceto, Bard Bloom, and Frits Vaandrager. Turn-
ing SOS rules into equations. Information and Computa-
tion, 111(1):1-52, 15 May 1994,

[AFM*95] Z. Ariola, M. Felleisen, J. Maraist, M. Odersky, and
P. Wadler. The call-by-need lambda calculus. In The 22nd
Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL ’95), New York,
1995. ACM Press.

[BIM95] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimu-
lation can’t be traced. Journal of the ACM, 42(1):232-268,
January 1995.

[Blo90] Bard Bloom. Can LCF be topped? Flat lattice mod-
els of typed A-calculus. Information and Computation,
8'7(1/2):26373007 jul / aug 1990.

[BW90] J. C. M. Baeten and W. P. Weijland. Process Alge-
bra, volume 18 of Tracts in Theoretical Computer Science.
Cambridge Univ. Press, 1990.

[Car84] Robert Cartwright. Recursive programs as definitions in
first order logic. Siam Journal of Computing, 13(2):374—
408, May 1984.

[CC92] P. Cousot and R. Cousot. Inductive definitions, Seman-
tics and Abstract Interpretation. In 19th POPL, Albu-
querque, New Mexico, pages 83-94. ACM Press, January
1992.

[Cou79] B. Courcelle. Infinite trees in normal form and recursive
equations having a unique solution. Mathematical Systems
Theory, 13(1):131-180, 1979.

[Dam94] L. Dami. Software Composition: Towards an Integra-
tron of Functional and Object-Oriented Approaches. PhD
thesis, Faculté des Sciences Economiques et Scociales, Uni-
versité de Genéve, 1994.

[FFK87] M. Felleisen, D. Friedman, and E. Kohlbecker. A syn-
tactic theory of sequential control. Theoretical Computer
Science, 52(1):205-237, 1987.

[FV95] W. Fokkink and C. Verhoef. A conservative look at term
deduction systems with variable bindings. Technical Report
Utrecht Logic Group Preprint 140 / Eindhoven Computer
Science report 95-28, Utrecht University /Eindhoven Uni-
versity of Technology, 1995.

[GD95] V. Gouranton and D. Le Métayer. Derivation of static
analysers of functional programs from path properties of
a natural semantics. Rapport de recherche 2607, INRIA,
Rennes, 1995.

[Gor95] A. D. Gordon. Bisimilarity as a theory of functional
programming. Technical Report BRICS NS-95-3, BRICS,
Aarhus University, Denmark, 1995. Preliminary version in

MFPS’95.

[Gur91] D. Gurr. Semantic Frameworks for Complexity. PhD
thesis, Department of Computer Science, Edinburgh, 1991.
(Available as reports CST-72-91 and ECS-LFCS-91-130).

11

[GV92] J.F. Groote and F.W. Vaandrager. Structured opera-
tional semantics and bisimulation as a congruence. Infor-
mation and Computation, 100(2):202-260, October 1992.

[How89] D. J. Howe. Equality in lazy computation systems. In
Fourth annual symposium on Logic In Computer Science,
pages 198-203. IEEE, 1989.

[How91] D. J. Howe. On computational open-endedness in
Martin-Léf’s type theory. In Sizth annual symposium on
Logic In Computer Science, pages 162172, 1991.

[How96] D. J. Howe. Proving congruence of bisimulation in func-
tional programming languages. Information and Computa-
tion, 124(2):103-112, February 1996.

[JM91] T. Jim and A. R. Meyer. Full abstraction and the context
lemma (preliminary report). In STACS. LNCS 526, 1991.
(Full version to appear in Siam J. Comp, 1996).

[K1o80] J.W. Klop. Combinatory Reduction Systems, volume 127
of Mathematical Centre Tracts. Mathematischen Centrum,
413 Kruislaan, Amsterdam, 1980.

[Lau93] J. Launchbury. A natural semantics for lazy evalua-
tion. In Conference record of the Twentieth Annual ACM
SIGPLAN-SIGACT Sympostum on Principles of Program-
ming Languages, (POPL’92), pages 144-154. ACM Press,
1993.

[MST96] 1. A. Mason, S. Smith, and C. L. Talcott. From Op-
erational Semantics to Domain Theory. Information and
Computation, 1996. to appear.

[MT91] I. Mason and C. Talcott. Equivalence in functional lan-
guages with effects. Journal of Functional Programming,
1(3):287-327, July 1991.

[Nie96] K. Nielsen. A unified approach to partial evaluation and
deforestation. Master’s thesis, DIKU, University of Copen-
hagen, September 1996.

[NPS90] Bengt Nordstrsm, Kent Petersson, and Jan M. Smith.
Programmang in Martin-Lof’s Type Theory: An Introduc-
tion, volume 7 of International Series of Monographs on
Computer Science. Oxford University Press, 1990.

[PE88] F. Pfenning and C. Elliott. Higher-order abstract syn-
tax. In Proceedings of the SIGPLAN 88 Conference on
Programming Lanugage Design and Implementation (SIG-
PLAN ’88), pages 199-208. ACM Press, June 1988.

[Pit99] A. M. Pitts. Operationally-based theories of program
equivalence. In P. Dybjer and A. M. Pitts, editors, Se-
mantics and Logics of Computation. Cambridge Univer-
sity Press, 1997 Based on lectures given at the CLICS-II
Summer School on Semantics and Logics of Computation,
Isaac Newton Institute for Mathematical Sciences, Cam-
bridge UK, September 1995.

[P1o77] G. Plotkin. LCF considered as a programming language.
Theoretical Computer Science, 5(3):223-256, 1977.

[Plo81] G. D. Plotkin. A structural approach to operational se-
mantics. Technical Report DAIMI FN-19, Computer Sci-
ence Department, Aahus University, Denmark, September
1981.

[San91] D. Sands. Operational theories of improvement in func-
tional languages (extended abstract). In Proceedings of the
Fourth Glasgow Workshop on Functional Programming,
pages 298-311, Skye, August 1991. Springer Workshop Se-
ries.

[San94] D. Sangiorgi. Locality and non-interleaving semantics
in calculi for mobile processes. Technical report, LFCS,
University of Edinburgh, Edinburgh, U.K., 1994.

[San95a] D. Sands. Higher-order expression procedures. In
Proceeding of the ACM SIGPLAN Syposium on Partial
FEvaluation and Semantics-Based Program Manipulation,
PEPM’95, pages 190-201, New York, 1995. ACM.

San95b]| D. Sangiorgi. Lazy functions and mobile processes. Rap-
glorg
port de recherche 2515, INRIA Sophia Antipolis, 1995.

[San96a] D. Sands. Proving the correctness of recursion-based
automatic program transformations. Theoretical Computer
Science, A(167), October 1996.
TAPSOFT’95, LNCS 915.

Preliminary version in

[San96b] D. Sands. Total correctness by local improvement in
the transformation of functional programs. ACM Transac-
tions on Programming Languages and Systems (TOPLAS),
18(2):175-234, March 1996.

[San97] D. Sands. Improvement theory and its applications.
In A. Gordon and A. Pitts, editors, Higher-Order oper-
ational Technigques in Semantics. Cambridge University
Press, 1997. (to appear).

[Scho5] D. A. Schmidt. Natural-semantics-based abstract inter-
pretation. In Proc. 2d Static Analysis Symposium, volume
983 of LNCS, pages 1-18. Springer-Verlag, 1995.

[Smi92] Scott Smith. From operational to denotational seman-
tics. In Conference on Mathematical Foundations of Pro-
gramming Language Semantics, volume 598 of Lecture
Notes in Computer Science. Springer-Verlag, 1992.

[Tal85] C. L. Talcott. The Essence of Rum, A Theory of the in-
tensional and extensional aspects of Lisp-type computation.
PhD thesis, Stanford University, August 1985.

[Tal97] C. Talcott. Reasoning about functions with effects.
In A. Gordon and A. Pitts, editors, Higher-Order Op-

erational Technigues in Semantics. Cambridge University
Press, 1997. (to appear).

A Technical Development

In this section we present highlights of the technical de-
velopment, leading to sketch proofs of the main theorems,
syntactic continuity and improvement induction.

The first part of the technical development is to reduce
the task of proving theorems about GDs0Os to that of proving
corresponding theorems about a simpler rule format which
we call DSOS. DSOS is a subset of GDSOS in which the one-
step evaluation relation is deterministic, and all constructors
are lazy.

In order that theorems about DSOS can be applied to
GDSOS we need to show that there are fully-abstract trans-
lations from any GDSOS language to a DSOS language. The
result of these constructions is the following: in proofs of
syntactic continuity and improvement induction rules we
can assume, without loss of generality, that the rules are
in DSOS format.

A.1 aDsos reduces to lazy-GDsos

A GDsOs language is in lazy-GDS0S format if all constructors
are lazy (strict in zero arguments). The following proposi-
tion states that there is a fully abstract translation from
any instrumented GDSOS language to an instrumented lazy-
GDSOS language.

12

ProposITION A.1 For any language L in instrumented GDSOS
format there exists a language K in lazy-GDSOs format and a
compositional translation, ~, from T(L) to T(¥K') such that
VYM,N e T(L). MEL N = MEKN

The proof is by a uniform construction of a language K and
a translation from 7'(L) to T(K). The general construc-
tion is rather technical so we will not present it here. But
the basic idea is to introduce a new lazy constructor for
the “constructor components” of every value (c.f. Nielsen’s
value skeletons [Nie96]); the nonstrict parts form the respec-
tive (lazy) arguments.

A.2 lazy-GDsos reduces to DSOS

We outline how any language in lazy-GDs0s format can be
systematically represented by an extended language (that is
to say, a language with some additional operators) whose
SOS rules are in a simpler format: Deterministic Structural
Operational Semantics. This can be done in such a way
that the evaluation relation, and the operational approxi-
mation (improvement) relation for the extended language
are conservative extensions of those relations for the under-
lying language.

DEFINITION A.2 (Dsos format) A language is in Dsos for-
mat, if it is in lazy-GDsos format, and if each operator is
strict in either zero or one argument (in which we assume
that it is strict in the first argument).

As a simple consequence of the definition, the one-step tran-
sition relation for a DSOS language is deterministic. For ex-
ample, the application rule for the lazy lambda-calculus is
in DSOS format, since it is strict in one argument.

The idea 1s that any GDsoOs language can be extended
such that all the rules of the extended language are in DSOS
format. For example, the call-by-value application operator
is strict in both arguments:

Zw Z
Q¥ 2) > (X, 2)

Z Z
Q@(Z,Y)— @(Z,))

QX V) XV

To represent this by a DSOS language, we add a new operator
@5 of arity (0,1). The Dsos rules in the extended language
are:

Zw Z
@x(Z,X) > @ (2,)

Zw Z
@(Z,Y)— Q(Z2))

QYY) = @, (), X) @\(V,X)» XV

This idea extends uniformly to all operators which are strict
in more than one argument, and this provides the basis for
the following:

ProposITION A.3 Any language I whose operators are in
(instrumented) GDsos format can be represented by a lan-
guage L’ in Dsos format such that L’ includes all the op-
erators in L, and such that for all M, N € T(L), M EL

N MLk N

i

We omit the details of the proof, but it is based on a (compo-
sitional) encoding like the one above, with the slight differ-
ence that we eliminate all value metavariables (like V above)
in favour of a rule for each possible constructor. The idea of
the additional operators is that they “remember” the con-
structors of the values which have been evaluated so far; the
arguments of the additional operators include one argument
for each operand of these constructors.

A.3 Context Notation and Reduction Contexts

The definition of operational approximation and equivalence
involve the notions of a context. The definition of a context
is the usual one. In particular the holes in a context occur
in place of terms, and not arbitrary operands (abstractions).
As is also usual, a context may capture free variables in the
term placed in its holes. In reasoning directly about the op-
erational orderings for a language in DSOS format we will do
some proofs directly involving manipulation of contexts. For
this we need a more general form of context in which more
than one distinct type of hole may occur. These are some-
times called polyadic contexts. In fact for present purposes
we will be able to make do with just two distinct “holes”,
denoted by [] and ().

Contexts C, C’ etc. will now denote contexts containing
zero or more occurrences of two distinct types of hole, [] and
(). We will adopt the convention that when we write C{)
we are indicating that context C contains no occurrences
of the hole [], and vice-versa. As an example, if C is the
context (Azx.[]) () then Clz]{true) is the term (A\z.) true.

Reduction Contexts An alternative (but equivalent) pre-
sentation of the one step evaluation relation is in terms of
a simple form of contexts containing a single occurrence of
a single hole, known as reduction context [FFK8T]| (or eval-
uation contexts). A reduction context is used to specify the
position in a term where the next reduction step can be
performed. As an example, for the language in Figure 1
the reduction contexts R are contexts given inductively by:
R :=[]] RM|if R then M else N . We will use a
reduction context presentation of the rules to simplify some
of our reasoning.

DEFINITION A.4 The reduction contexts for a language in
Dsos format are defined inductively as follows:

e []is a reduction context;

e if R is a reduction context, and p is a nonconstructor
operator strict in its first argument, then a well-formed
context of the form p(R, (F2)Mo, ..., (£n)My) is a re-
duction context.

Given this definition, it can be seen that the transition re-
lation generated by the rules of a DSOS can be equivalently
represented by the collection of axioms

{RIM] = R[N]| M — N is an axiom of the Dsos }.

The determinacy of the system guarantees that if M — N
then there exists a unique reduction context R, and unique

terms M’ and N’ such that M = R[M'], N = R[N'], and

13

such that M’ — N’ is an instance of an axiom of the DSOS
(we say that M’ is a redex).

Reduction Contexts with Holes A reduction step of a
term of the form C{M), if M ¢ Val, satisfies the follow-
ing informal property: either the reduction step does not
depend on M (it is uniform in M) or it occurs inside M.
This property holds in any language in Dsos format, and
captures a common case analysis used (usually informally)
when reasoning directly about operational approximation.
The property is formalised below.

The following defines a particular set of contexts —namely
reduction contexts with additional {)-holes:

DEFINITION A.5 Let ﬁ, ﬁ', the reduction contexts with holes,
be defined as follows:

e []is a reduction context with holes;

e if p is a nonconstructor of arity (0,k2,...k,) which
is strict in one argument (the first argument), and Z;,
1 € {2,...,n} is a vector of k; distinct variables, then

(R, (#2).C2(), (#0).Cn())

is a reduction context with holes.

LEMMA A.6 For any instrumented DSOS language, for all
contexts C{), and all closed expressions M ¢ Val, if C{M) N
M', then there exists contexts ﬁ, C'{) such that C =
ﬁ(JC'] and exactly one of the following two properties
hold:

(i) either the reduction is uniform in M:
there exists a context C"', such that for all closed N,
C'(N) > C"(N)

(ii) or the reduction is “inside” M: C’ = {) and M .

The proof is by induction on the context C.

A.4 Proof of Syntactic Continuity

Recalling Theorem 5.2 we need to show
C{E)CM < Vi.C{f)C M

where f 2 C{f), £° 2 £° and f£i*t!' 2 C{f'). By Proposi-
tion A.3, it is sufficient to assume that the language is in
DSOS format.

(=) Follows from Prop 5.1, together with the congru-
ence property of L.

(<) Under the assumption that Vi. C{f) C M we

will show that for all closing contexts Col], and all natural
numbers n, if Cp [C{f)] converges in n steps then Cy [M] con-
verges. From the assumption, and the congruence property
of T, it will be sufficient to show that Cj [C(f™)] converges
(intuitively, if the computation takes n steps, then we can’t
need more than n unwindings of the recursion), and this we
do by induction on n.

Let C1{) denote the context Cj [C].
n=0 Then C; <f> € Val, and hence C'; must have

an outermost constructor. Hence C1{f™) € Val.

Base:

Induction: n > 0 In this case we have C,{f) = N for
some N such that NV converges in n—1 steps. We proceed by
case analysis according to Lemma A.6. C; can be written
as ﬁ(M’ for some R and C’{). The Lemma gives us
two cases, corresponding to whether f is involved in the
reduction step or not. In the first case there exists a C”
such that for all closed L, C'(L) — C"{L). So in particular

we have that

Ci{f) = RO = RO
and Oy (f7) = REMICE™)] = RETC"(E)].

Now since ﬁ(f>[0”<f>] converges in n — 1 steps, by the in-
duction hypothesis we conclude that ﬁ(f"_1>[0”<f"_l>]l}.
Since f*~! C f” we can conclude by congruence that
RED[C"{E™)]U, ie., that CL{F)).
In the second case we have €’ = {) and hence the redex
is f itself. By definition, f — C¢{f) and ™ — C¢{(f"71). So

in this case we have

= RUOICe ()] = N
= RO (£ 1))

C1(f)
and C{f") =

R
£

But R{EHCe{E)] converges in (n—1)-steps, and so by the in-
duction hypothesis we have ﬁ(f"_1>[0f<f"_l>]l} which im-
plies that ﬁ(f">[0f<f"_l>]l}. Hence we can conclude that
C1{f™)| as required. a

Rt

A.5 Proof of Improvement Induction

We will make use of the following notations:
e M|)" «— IV.M{Y"V
o MY™S® «—= MU &r<s
o MIS® «—= Ir. MY " &r<s
We will need the following simple properties about the im-
provement relation over any instrumented DSOS language:
LEMMA A.7 For all closed M and N
(i) M>r N = R[M] >+ R[N]
(i) (M B>r N &MJ*)= NJ' where s >r-t
(i) M < N= (M) < NI
The proofs are straightforward from the definition of >~ and
the fact that improvement is a congruence.

Now we proceed to the proof of the improvement induc-
tion principle. From the assumptions that M >~ Co(M)

and N <t Co{N) for some r > 0, we are required to show
that M > N. We prove this by showing that

for all closed contexts C, if C{M)J* in I reduc-
tion steps then C{N){=*

14

by lexicographic induction on (u,l) (recalling that u is an
element of a well-founded resource structure).

Assume for some arbitrary closed C, that C{M)J* in
I steps. We must show that C{N){<* using the induction
hypothesis:

vC' Vs <u. C{M
v

e = C'(N)y=*
(C{M)J* in ' < I steps) = C/{N)y=*

and

We proceed by case analysis according to the length [of the
computation:

Case 1 (I =0) In this case C{M) € Val, and hence u = 0.
Since r > 0 it follows from Proposition A.7(ii) that C # (),
and hence C has an outermost constructor. This implies

C(N) is also a value, and hence C{N}{J°.
Case 2 (I > 0) In this case C{M) V> M’ for some s, M'.

Since M is not a value (as argued above), we can consider
cases according to Proposition A.6:

Case 2.1 (The reduction step is uniform in M) In
this case C' can be written as R{ }[C'{}] and

R(M)C'(M)] S R(M)C" (MY
RINIC(NY] & R(NC"(N)]

for some C”', and some ¢ such that s-t = u. Now we consider

cases according to the value of s:

Case 2.1.1 (s = 0) In this case R(
[—1 steps, so by the induction hypothesis
But since ¢t = 0 then C{N){=*.

Case 2.1.2 (s > 0) Since composition is <-monotonic
for a well-founded resource, it follows that ¢ < u, so by

the induction hypothesis we have ﬁ<N>[C"<N>]U$t. Hence
C{N)ys-=,

Case 2.2 (The reduction step is inside M) In this
case C' can be written as R{)[{)]. Since M B> Co{M), by

Lemma A.7 (i) we have R(M)[M] >r R(M)[Co(M)] and
hence by Lemma A.7 (ii) ﬁ<M>[CO<M>]Ut for some ¢ such
that r - £ < w. Since r > 0 iE follows that ¢ < u, and so
by the induction hypothesis R(ZV>[CO<N>]U$t. Now from
Lemma A.7 (iii) it follows that R(N)[NJYSt=, m]

e (M)
R(N)c"(N >]U<“

The proof of the extension of the theorem to open expres-
sions, in the special cases given in Theorem 7.4, follows ex-
actly the same structure as the above proof. The difference
is that we need a more elaborate version of Lemma A.6 in
which uniform computation is described by extending the
evaluation relation to contexts. This is technically a little
problematic (see for example [Tal97] for one approach based
on substitution-decorated holes); our approach — which will
be described elsewhere — is to use second-order syntax for
contexts. This combines smoothly with the use of a second-
order syntax for SOS-rules so as to obtain,
definition of context-evaluation which commutes with hole-

filling.

“for free”, a

