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In many applications of learning procedures, prior knowledge about proper-ties of the function to be learned is available (for a review, see Abu{Mostafa,1995). For instance, certain transformations of the input could be known toleave function values unchanged. Mostly, two di�erent ways of exploiting thisknowledge have been used: either the knowledge is directly incorporated in thealgorithm, or it is used to generate arti�cial training examples (\virtual exam-ples") by transforming the training examples accordingly.In the �rst case, an additional term in an error function can force a learn-ing machine to construct a function with the desired invariances (Simard etal., 1992); alternatively the invariance can be achieved by using an appropri-ate distance measure in the pattern space (Simard, Le Cun, and Denker, 1993).The latter is akin to changing the representation of the data by �rst mappingthem into a more suitable space; an approach pursued for instance by Segman,Rubinstein, & Zeevi (1992), or Vetter & Poggio (1996).In the second case, it is hoped that given su�cient time, the learning machinewill extract the invariances from the arti�cially enlarged training data. Figure 1contains illustrations of the di�erent approaches.Simard et al. (1992) compare the two techniques and �nd that for the con-sidered problem | learning a function with three plateaus where the functionvalues are locally invariant | training on the arti�cially enlarged data set is sig-ni�cantly slower, due to both correlations in the arti�cial data and the increasein training set size. Moving to real{world applications, the latter factor becomeseven more important. If the size of a training set is multiplied by a number ofdesired invariances (by generating a corresponding number of arti�cial exam-ples for each training pattern), the resulting training set can get rather large(as the ones used by Drucker, Schapire, and Simard, 1993). On the other hand,



the method of generating virtual examples has the advantage of being read-ily implemented for all kinds of learning machines and symmetries. If instead ofLie groups of symmetry transformations one is dealing with discrete symmetries,such as the bilateral symmetries of Vetter, Poggio, & B�ultho� (1994), derivative{based methods such as the ones of Simard et al. (1992) are not applicable. Inconclusion, it would be desirable to have an intermediate method which has theadvantages of the virtual examples approach without its computational cost. Inthis paper, we will try to convince the reader that such a method can be realizedif we build on a type of learning machine to be described in the following section.
Fig. 1. Di�erent ways of incorporating invariances in a decision function. The dottedline marks the \true" boundary, disks and circle are the training examples. We assumethat prior information tells us that the classi�cation function only depends on thenorm of the input vector (the origin being in the center of each picture). Solid linescrossing an example indicate the type of information conveyed by the di�erent methodsof incorporating prior information. Left: incorporating a regularizer to learn tangentvalues (cf. Simard et al., 1992); middle: generating virtual examples in a localizedregion around each training example, right: changing the representation of the databy �rst mapping each example to its norm. If feasible, the latter method yields themost information. However, if the necessary nonlinear transformation cannot be found,or if the desired invariances are of localized nature, one has to resort to one of theformer techniques. Finally, the reader may note from the right hand side picture thatin particular, examples close to the boundary allow us to exploit prior knowledge verye�ectively: given a method to get a �rst approximation of the true boundary, theexamples closest to it would allow good estimation of the true boundary. A similartwo{step approach shall be pursued in this paper.2 Support Vector Learning MachinesThe support vector algorithm (Vapnik, 1995, Boser, Guyon & Vapnik, 1992,Cortes & Vapnik, 1995) uses the Structural Risk Minimization principle (Vapnik,1979) to construct decision rules that generalize well. In doing so, they extract asmall subset of the training data. Space does not permit to explain this algorithmin detail; we thus will merely outline its main ideas. The Method of StructuralRisk Minimization is based on the fact that the test error rate is bounded bythe sum of the training error rate and a term which depends on the so{calledVC(Vapnik{Chervonenkis){dimension of the learning machine. By minimizing



the sum of both quantities, high generalization performance can be achieved.For linear hyperplane decision functionsf(x) = sgn ((w � x) + b) ; (1)the VC{dimension can be controlled by controlling the norm of the weight vec-tor w (Vapnik, 1995). Given training data (x1; y1); : : : ; (x`; y`); xi 2 RN ; yi 2f�1g; a separating hyperplane which generalizes well can be found by minimizing(Cortes & Vapnik, 1995) kwk2 + 
 � X̀i=1 �i (2)subject to �i � 0; yi � ((xi �w) + b) � +(1 � �i) for i = 1; : : : ; ` (3)(
 is a constant which determines the trade{o� between training error and VC{dimension). The solution of this problem can be shown to have an expansionw = X̀i=1 �ixi; (4)where only those �i are nonzero which belong to an xi precisely meeting theconstraint (3) | these xi lie closest to the decision boundary, they are calledSupport Vectors. The �i are found by solving the quadratic programming prob-lem de�ned by (2) and (3).Finally, this method can be generalized to nonlinear decision surfaces by �rstmapping the input nonlinearly into some high{dimensional space, and �ndingthe separating hyperplane in that space (Boser, Guyon & Vapnik, 1992). Thisis achieved implicitely by using di�erent types of symmetric functions K(x;y)instead of the ordinary scalar product (x�y). This way one gets as a generalizationof (1) and (4) f(x) = sgn X̀i=1 �i �K(x;xi) + b! : (5)3 Virtual Support VectorsThe choice of K determines the type of classi�er that is constructed; pos-sible choices include polynomial classi�ers (K(x;y) = (x � y)n), neural net-works (K(x;y) = tanh(� � (x � xi) � �)) and radial basis function classi�ers(K(x;y) = exp ��kx � yk2=�2�). Already without the use of prior knowledge,these machines exhibit high generalization ability;3 moreover, they extract al-most identical sets of support vectors (cf. Eq. 4). It is possible to train any one of3 In a performance comparison, Bottou et al. (1994) note that the support vectormachine \has excellent accuracy, which is most remarkable, because unlike the otherhigh performance classi�ers, it does not include knowledge about the geometry ofthe problem."



Fig. 2. Example of a support vector classi�er found by using a radial basis functionkernel K(x;y) = exp(�kx� yk2). Both coordinate axes range from -1 to +1. Circlesand disks are two classes of training examples; the middle line is the decision surface;the outer lines precisely meet the constraint (3). Note that the support vectors foundby the algorithm (marked by extra circles) are not centers of clusters, but exampleswhich are critical for the given classi�cation task.these machines solely on the support vector set extracted by another machine,with a test performance not worse than after training on the full data base(Sch�olkopf, Burges, and Vapnik, 1995). Using this �nding as a starting point,we investigated the question whether it might be su�cient to generate virtualexamples from the support vectors only. After all, one might hope that it doesnot add much information to generate virtual examples of patterns which arenot close to the boundary. In our experiments, we proceeded as follows:1. Train a support vector machine to extract the support vector set.2. Generate arti�cial examples by applying the desired invariance transforma-tions to the support vectors. In the following, we will refer to these examplesas virtual support vectors.3. Train another support vector machine on the generated examples.The �rst set of experiments was conducted on a US postal service data base ofhandwritten digits, containing 7291 training examples and 2007 test examples.This data base has been used extensively in the literature, with a LeNet1 Con-volutional Network achieving a test error rate of 5.0% (Le Cun et al., 1989). Inthe experiments, we used 
 = 10 (cf. (2)), and a smoothing of the data with aGaussian kernel of width 0.75.To get a ten{class classi�er for digit recognition, we combine ten binary clas-si�ers of the described type (cf. Vapnik, 1995). In this case, virtual supportvectors are generated for the set of all di�erent support vectors of the ten clas-si�ers. Alternatively, one can carry out the procedure separately for the tenbinary classi�ers, thus dealing with smaller training sets during the training ofthe second machine. Table 1 shows that incorporating only translational invari-ance already improves performance signi�cantly, from 4.0% to 3.2% error rate.44 It should be noted that the used test set is rather di�cult | the human error rateis 2.5% (for a discussion, see Simard, Le Cun, and Denker, 1993).



Table 1. Comparison of support vector sets and performance for training on the orig-inal data base and training on the generated virtual support vectors. In both trainingruns, we used a polynomial classi�er of degree 3. Virtual support vectors were gener-ated by simply shifting the images by one pixel in the four principal directions. Addingthe unchanged support vectors, this leads to a training set of the second classi�er whichhas �ve times the size of the �rst classi�er's overall support vector set (i.e. the unionof the 10 support vector sets of the binary classi�ers | note that due to some overlap,this is smaller than the sum of the ten support set sizes).classi�er trained on size average no. of SVs no. of di�erent SVs test errorfull training set 7291 274 1677 4.0%overall SV set 1677 268 1582 4.1%virtual SV set 8385 686 4535 3.2%For other types of invariances, we also found improvements, albeit smaller ones:generating virtual support vectors by rotation or by the line thickness trans-formation of Drucker, Schapire, and Simard (1993), we constructed polynomialclassi�ers with 3.7% error rate (in both cases).The larger a database, the more information about invariances of the de-cision function is already contained in the di�erences between patterns of thesame class. To show that it is nevertheless possible to improve classi�cation ac-curacies with our technique, we applied the method to the MNIST database of60000+10000 handwritten digits. This database has become the standard forperformance comparisons in our department; the error rate record of 0.7% isheld by a boosted LeNet4 (Bottou et al. 1994). Using virtual support vectorsgenerated by 1{pixel translations, we improved a degree 5 polynomial classi�erfrom 1.4% to 1.0% error rate. In this case, we applied our technique separatelyfor all ten support vector sets of the binary classi�ers (rather than for theirunion) in order to avoid getting overly large support vector sets after retraining.Further improvements can possibly be achieved by combining di�erent typesof invariances, and choosing the kind of transformations applied to individualsupport vectors according to whether they actually do provide new informa-tion about the decision boundary (c.f. (3)). Another intriguing extension of thescheme would be to use techniques based on image correspondence (e.g. Vetter& Poggio, 1996) to extract transformations from the training examples. Thosetransformations can then be used to generate virtual support vectors.4 DiscussionWe have shown that for support vector learning machines, invariances can read-ily be incorporated by generating virtual examples from the support vectors,rather than from the whole training set. The method yields a signi�cant gain inclassi�cation accuracy at a moderate cost in time: it requires two training runs(rather than one), and it constructs classi�cation rules utilizing more supportvectors, thus slowing down classi�cation speed (cf. Eq. 5) | in our case, bothpoints amounted to a factor of about 2.



Given that support vector machines are known to allow for short trainingtimes (Bottou et al., 1994), the �rst point is usually not critical. Certainly,training on virtual examples generated from the whole data base would be sig-ni�cantly slower. To compensate for the second point, one could use the reducedset method of Burges (1996) to increase the speed.Acknowledgements The ideas presented here were in
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