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Abstract. A domain decomposition procedure based on Robin trans-
mission conditions applicable to elliptic boundary problems was first
introduced by P. L. Lions and later discussed by a number of authors.
In all of these discussions, the weighting of the flux and the trace of the
solution were independent of the iterative step number. For some model
problems we introduce a cycle of weights and prove that an accelera-
tion of the convergence rate similar to that occurring for alternating-
direction iteration using a cycle of pseudo-time steps results. In some
discrete cases, the cycle length can be taken to be independent of the
mesh spacing.

1 Introduction

Consider the model boundary value problem

“Au=f, zEQ,
w=0 € 09, 1)

where the domain Q = (—o0,00) % (0,1) is the unit strip. Split Q into two
subdomains ; = (—o0,0) x (0,1) and Q2 = (0,00) x (0,1), and let T' =T'y5 =
I'51 denote the interface between ; and 5. Then, under reasonable conditions,
(1) is equivalent to solving the two problems

—Au; = f, r€Q;, 1=1,2,
u; =0, x € 00N 09,

subject to the two consistency conditions

UL = U2, z €T, ()
Vuy -vy +Vuy - v =0, zel,

where v; is the outer unit to €; on I'. Let 8 > 0. Then, P. L. Lions noted the
simple fact that the Robin conditions

BVu; - v +u; = —pVu; - vy + uy, zely; i=1,2; j#4i, (3)
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is equivalent to (2) and based a domain decomposition procedure on (3).

In this short paper, we shall study a version of Lions’s iteration when the
parameter 3 depends on the iteration index. We shall treat the differential
problem first and then consider a discrete approximation by the standard five-
point finite difference operator. The object is to indicate that a properly chosen
parameter sequence can lead to a distinct speedup in the convergence rate for
the iteration. We wish to emphasize that this iterative procedure, with easily
chosen parameters, can suppress not just the high frequency modes but also the
low frequency ones in a very stable manner.

Let us define Lions’s iteration for the differential problem (1). Since the
model problem we are considering can be treated by separation of variables in
an elementary way, we shall omit technical details, such as worrying over the
proper Sobolev spaces for the procedure. The algorithm can be given as follows:

e Let u{ |[r12= U be arbitrary, so long as u9(0,0) = u9(0,1) = 0. Then,
solve the Dirichlet problem

—Au(l) = f, T € Ql:
U(l) = U, x € Flg,
u(l) = 0, x € 00 N oA
e Forn=1,2,..., let
—A’U,g = f: T e Q2a
BnVul v +ull = —,BnVu?_l ‘v + u’f_l, x € oy,
’U,g = 0, x € 005 N O,
_A’U’? = f: T € Ql:
BuVul -v1 +ul = —=8,Vul -vs + ul, z € I'g,
uf = 0, x € 90 NIN.

Note that we have employed a simple version of red-black ordering of the
subdomains; obviously, this concept generalizes to many ways of partitioning
Q in either two-or three-space. It also applies to bounded domains, instead of
the strip domain being treated here, and to equations with variable coefficients.
In both the differential and difference cases, the analysis given below extends
for the Laplace operator, with some algebraic complication, to a rectangular
domain decomposed into a union of rectangles without interior vertices; the
authors are still considering the case when interior vertices occur. The extension
to variable coefficients can be made rigorously by employing this iteration as a
preconditioner in a two-stage iteration.

Lions [3] gave a proof of the convergence of the iteration for fixed 8 > 0
under some reasonable hypotheses; however, the argument provides no estimate
of the rate of convergence. He states that in the finite-dimensional version of the
problem, geometric convergence results, but no estimate of the rate in terms of
a discretization parameter is given. As an aside in his thesis on the application
of this technique to the more difficult Helmholtz problem, Després [1] extended
Lions’s proof to a more general partition but again without an estimate of an
explicit rate of convergence. Douglas, Paes Leme, Roberts, and Wang [2] did
obtain convergence rates for fixed 3 for a mixed finite element approximation of
(1) under a number of different hypotheses on the coefficients and the partition.



The paper is organized as follows. In §2, we consider the differential model
problem in the plane and indicate how its analysis carries over trivially to three-
space. A finite difference analogue of the model problem in two space variables
will be treated in §3; it will be necessary to reinterpret the Robin condition
in order to have the iteration compatible with the difference equation on the
unpartitioned domain. The three-dimensional problem will be treated in §4.

2 The Model Differential Problem
Let v™ = u — u”" represent the error in the nt” iteration, so that

—Av! =0, x € Oy, (4)
and the problem is to determine the effect of an initial error

00 |ry,= Z ay sin wky. (5)
k

It suffices to treat each mode separately; thus, let
0 —
v} |ry,= sinwky.
Then, it is easy to see that

k

0 _ wkx
vy = e FsinTky, =z € Q.

Evaluating the Robin transmission condition for v% on I's; leads to
1 81}? 0 .
_ﬁl_:c +vy, = _ﬁlﬁ +v; = (1 — Biwk)sinmky on Tys.

Then, since vi = Ale~™** sin 1ky, the boundary condition at z = 0 implies that

Al_ 1—,6171']{7
2 1+ﬂlﬂ'k=
so that
1 _ 1—,6171’](2 . k‘
Uy |F21—mslnﬂ' Y.

Next, evaluate the Robin condition for v} on 13 and solve for v1. By symmetry,

it is clear that )
1 1- ,6171']{7 .
Uy |1"12 = m Sin 7Tk'y

Note that the choice .

T Tk

gives v} = 0 on €, i = 1,2; i.e., if the initial error consists of a single harmonic
on I', the error can be eliminated in one iteration; moreover, for any 8 > 0,
each nonzero coefficient of a mode in the initial condition is reduced. For those
familiar with alternating-direction iteration, this observation can bring to mind
the possibility of choosing a cycle {3;} of parameters, in place of repeating a
single (3, in order to accelerate the convergence of the iteration.

A



Consider the general initial condition (5) and m iterations employing the
parameter sequence {f1,...,0m}. Then,

. m ]._ﬂn 2 )
o' r, = Z H <1—|—,3n7rk> -sinky

n=1

= Z H (k, Bn) sinmky.

m
There is no finite set {81, ..., B } for which H R(k, B) tends to zero uniformly
n=1
for all k; however, in the discrete case to follow, there will be only N = O(h™1!)
components of the error. Now, in order to lead our intuition properly in the
discrete case, let us fix the number of components at N (hence, assume «y, = 0
for k > N) and try to find a more or less optimal parameter cycle. Let

(11— Bk 2

Let ¢ > 0 and define 8y > ... > B and T =1y <ny < ... < Ny by

1- n'in— e 1- n'ln
750 1:5%: ﬂn ’I’L:]_,...,m,

1+ Bunn—1 1 +/6n77n

where 7, is the first 7, to satisfy n,, > N=. Thus, {8,} and {n,} form
geometric sequences,

1+e2 log N'
nn:ﬂ'< +52>, and m ~ 8
1-¢ 4t

1
2

Moreover, for any k € {1,...,N}, 7k € [gp—1,ny] for some n € {1,m}, so that
0 < R(k, 8n) < e. Hence,

max R(k,m) <e
1<k<N

and
o ll22(ry < ellodllzo(ry

so that we have achieved an alternatlng—dlrectlon-hke acceleration of the conver-
gence of the iteration for the differential model problem under the assumption
that the number of error components is boundable in advance.

It is clear that the three-dimensional case of the model problem on () =
(—o00,¢) % (0,1)? can be treated similarly. In the case that Q = (—1,0) x (0, 1),
the same conclusion can be reached after a slightly messier argument

3 A Model Finite Difference Problem in Two-
Space

Let us consider the discretization of (1) by the standard five-point finite differ-
ence method; i.e., let

h=1/N, x =kh, ye="th, f(xr,ye) = fres
Ovafre = (frs1,0 — 2fne + fr—1,0)/h?,



and approximate (4) by

—Apu = —(0zz + Oyy)u = f, (T, ye) € Q,
UZO, (afk,y[) EaQ

We wish to carry over the procedure of the previous section to the discrete
problem. So, first we solve the discrete Dirichlet problem on 2. Then, the ob-
ject is to solve the discrete problems with boundary values specified on 9Q; NOf2
and a discrete analogue of the Robin condition (3) on I';; thereafter. However, a
straightforward discretization of (1) fails to lead to a relation consistent with the
finite difference equation for grid points on the interface I';;, since the iteration
would converge to a solution that is linear on each line y = y; between z_; and
x1, a clear violation of the global difference equation. Thus, we are forced to
modify the Robin condition; one modification is indicated below.

Let 9,,u; denote the interior, first, divided difference quotient in the exterior
normal direction on I';; of the function u; = ulg,;i.e., with usx ¢ = ui(x, ye)

aulul;O,l = (UI;O,E - ul;*l,f)/h'

As in the differential case, let there be two values defined at a mesh point on T,
u1,0,¢ and ug,0,¢, and write the difference equation in the form

Ov,wi + Oy uj — Oh(Oyyui + f) — (1 = O)h(Oyyu; + f) =0, i#j, zoe €T,

where 0 < § < 1. Then, for i # j and 29, € I', consistent modifications of the
Robin transmission condition can be given by

ﬂ(a,,iui - Hh(ayyui + f)) +u; = —5(6,,]. uj — (1- 0)h(8yyu] + f)) + ujy, (6)

again for 0 < # < 1. The choice # = 1 weights the information at the new
iterate on (); the heaviest and seems to be preferable to smaller values for 6;
thus, we shall require the following transmission condition:

ﬂ(awui — h(Oyyu; + f)) +u; = —B0,,u; +u;, i#j, woe€l.

The choice 6 = % leads to convergence estimates quite similar to those for the
differential problem; this case will be indicated later.

Let the superscript ° on Q; or I';; indicate the mesh points of these sets
interior to 2. We can summarize the iterative algorithm as follows. Let u}’ = 0
on 99, n > 0. Then, let

. ul re, arbitrary,
0 o
_Ahul = fa Tre € Ql:

. Forn > 1,

BrlOv,uy — hOyyuy — hf] + uy
_Ahug = fa Tre € Q;:

n—1 n—1 o
—BnOpuy™ +ul ", xp €T3,

ﬁn[amu? - hayyu? - hf] + u? = _ﬁnal&ug + ug, Tpe € F(l)2=
—Apul = f, zp € Q5.



Let v™ = u — u” represent the error in the nt” iteration, beginning with an
initial error on Iy given by (5) with the range of k given by k € {1,..., N — 1},
where N = h~!. Thus,

o v rn= Zaksm?rky, (7)

—Ahvl = 0, Tre € Ql,
° Forn > 1,

-1 -1
BulOu,v3 — h0yyv3] +v3 = =By, 07 +0vi'", ke € T3y,
—Ah’l)g = 0, Ty € QQ,

ﬂn[am U{L - hayy”?] + U{L = _ﬂnallzvg + Uga Tre € Fcl)Q:
—Ah’l)? =0, x¢ € Q?.

Since 8y, sintky = —4h~2sin?(7kh/2) - sin wky, it suffices to consider the
modes one at a time and seek a solution in the form

ol (x;) = A?z,i,l sin mky, i=0,—-1,-2,...,

n
1
vy (i)

ALz, sinmhy, i=0,1,2,...,
where A) =1,
A\ = 2sin’(7kh/2),

and 21 and zp» are the roots
zej =14+ M — (=03 +M)2 -1, j=1,2,
of the characteristic equation
2> —2(2 —cosmkh)z4+1=0

associated with separating variables in the Laplace difference equation. Note
that zp12p2 =1 and 0 < 22 < 1. (Note that the particularly simple form of
the solution above results from considering the infinite strip; if the domain were
a rectangle, the solution would be a linear combination of the two independent
solutions in each subdomain.)

Let

Then, a simple calculation shows that

1—(1-
= TR
1+ (1 —zrp2+2M)m

More generally, for the initial condition (7),

1 n

= 1 1 2k, )’w >
— =22 -
II ky;.
1(zi,95) 2 Qg i L (1= 20 + 20072 Zp 1 SINTKY;




N\np 1 2 3 4 )

10 .356e-1 | .227e-3 | .152e-5 | .719e-8 | .851e-10
20 .100e0 | .324e-2 | .372e-4 | .279e-5 | .291e-6
50 .238¢e0 | .291e-1 | .621e-3 | .175e-3 | .705e-4
100 .365e0 | .839e-1 | .286e-2 | .144e-2 | .786e-3

np

1- (1 — Zk 2)’)/4
Table 1: ’
able mlzcauxfl_l1

|:1 + (1 — Zp2 + 2/\k)’}/é

Note that, as h — 0,
1 5.9
>\1~§7Th, AN—1 ~ 2,
so that

l—2z19~7h, 1-—2y-12~3- 22 ~ 17

The choice 71 = (1 — 21,2)~" ~ 1/mwh suppresses the fundamental mode; to see
what this choice does to the other modes, consider (with v; = 1/7h)

FOum) = I—(1—2M\)n A= /T+N2—1+7h
T TT A 420 A+ JAEN 14k

for £72h? < X\ < 2. For X close to 272k, f()) is small and negative. A calculus
exercise shows that f(A,~;) has a minimum for

A=wh/(1 —7h) ~ 7h,

and then

F(@h, ) ~ =(1 = V2rh)/(1+ V2rh).

For A > wh, f(\,m) is increasing and f(2,71) ~ —.04. For h = 1/100, the
minimum value of f(\,7;) is approximately —.7, so that every mode has its
coefficient reduced by a factor of at least two for NV < 100 if just this single
parameter is used.

Let us consider choosing v;, j =1,...,5, as follows:

vi=(1—=\)"", j=1,245 v3 =1/V2mh,

where
\j = 2sin®(mjh/2), j=1,2; M=1 X =2.

This set of iteration parameters first (y; and 72) suppresses the fundamental
and second modes of the error on the interface, then (v3) severely reduces the
coefficients of the modes with frequencies near values at which the first two
parameters are least effective, and finally (y4 and 7s5) severely reduces the co-
efficients of the higher frequency modes. The minimum reduction factors for
the coefficients oy in the initial error (7) for one cycle of iteration using the
parameters v;, j = 1,...,np, can be computed; see Table 1.

If, instead, we had made the choice # = L in (6), then the function f(),7)

2
corresponding to this choice would have been

1= (1 =2(\)+ )y
14 (1= 2(A) + M)y’

FO)



N\np 1 2 3 4 )

10 A177e-1 | .350e-4 | .805e-6 | .158e-7 | .669e-9
20 .632e-1 | .977e-3 | .112e-4 | .163e-5 | .329e-6
50 181e0 | .145e-1 | .153e-3 | .352e-4 | .185e-4
100 .301e0 | .519e-1 | .127e-2 | .338e-2 | .167e-3

np

1- (1 — Zk 2)’)/4
Table 2: ’
able mlzcauxfl_l1

|:1 + (1 — Zp2 + 2/\k)’}/é

and, as in the differential case, we would have been led to a parameter sequence
of length O(log N - ¢~%) to obtain a reduction of the error by a factor e. It is
clear from the form of the error reduction functions that the choice § = 1 is
superior to # = 0; the same conclusion can be reached for % <f<1.

4 A Model Problem in Three-Space

Let Q be the infinite cylinder (—oo,00) x (0,1)2 and consider the analogous
iterative procedure for the seven-point finite difference equation, with Q; being
the left half of the domain and Qs the right half. The entire analysis above
applies to this problem if we reinterpret the index k to be {k1,k2} and v”, to be

o () = AZz,’Cm sinkiysinmkez, m=1,2, ™ >0.
Then, change A\ to be
e = 2(sin®(mk h/2) + sin® (ko h/2)).

Table 2 is the three-space analogue of Table 1, with the five parameters
determined as above, except that the A-values are as follows:

\j = 4sin®(7jh/2), j=1,2; M =1, X5 =3.

Again, the modified Robin transmission condition is very effective.
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